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1. Introduction 

 

This year we continue our partnership between Delaware State University and University of Pennsylvania. We 

finalized ACRIN data transfer on MIRC and resolved issues with various batch transfers.  We performed a 

preliminary query of the ACRIN data aimed at identifying the prevalence of women with incomplete 

visualization of the breast.  We developed a code to estimate the breast cancer risks using the demographic 

metadata information from the ACRIN cases.  We estimated breast densities for GE mammograms from the 

ACRIN database, using the software developed at the University of Pennsylvania. A novel breast image 

registration method is proposed to obtain a composite mammogram from several images with partial breast 

coverage, for the purpose of accurate breast density estimation. We designed a method to improve thickness 

control of the Cooper’s ligaments in the simulation algorithm by reducing “dents” on the ligaments’ surface. 

 

2. Body 

 

With this funded project, we will enhance DSU breast cancer research resources by:  improving our expertise in 

translational and clinical breast cancer research; developing methods for computing image-based biomarkers for 

breast cancer risk, as well as methods for biomarker analysis of risk disparity; developing a database of clinical 

biomarkers computed from images of minority women; refining the existing and developing novel data mining 

techniques to determine the relationship between risk and image-based biomarkers.  The improvement will 

support further growth of a sustained breast cancer research program at DSU and help establish us as a 

mid-Atlantic center for analysis of breast cancer risk and risk disparity among minority women.  

The specific objectives of this training program include: (1) extending the skills of a select cadre of DSU 

faculty, so that they may become accomplished, influential and competitive breast cancer researchers; (2) 

establishing an independent breast cancer research program at DSU by performing a joint DSU–UPENN 

research project focused on breast cancer risk disparity in minority populations; and (3) producing a corpus of 

high quality published work and develop a portfolio of independently funded research grants at DSU to support 

a sustained breast cancer research program. 

2.1 Objective 1  

Extend the skills of a select cadre of Delaware State University (DSU) faculty, so that we may become 

accomplished, influential, and competitive breast cancer researchers. 

 

 Organize specific training for selected DSU faculty, aimed at complementing our individual scientific 

background. (Y1-4); and 
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 Augment the faculty training by frequent communications with collaborating mentors and other 

renowned breast cancer researchers, by: (Y1-4) 

 

    

2.1.1 Seminars and Conferences attended 

 

 

 On July  8-11, 2012, Dr. Pokrajac and Mr. Chen attended and presented the IWDM 2012, the 11th 

International Workshop on Breast Imaging, in Philadelphia, PA. 

The first presentation entitled “Toward Breast Anatomy Simulation using GPU” (co-authored by 

J. Chu, D. Pokrajac, A. D. Maidment,  P. Bakic) described the development of highly-parallel 

GPU simulation of software breast phantoms.   

 

The second presentation entitled “Simulation of Three Materials Partial Volume 

Averaging in a Software  Breast Phantom” (co-authored by F. Chen, D. Pokrajac, X. Shi, F. Liu, 

A. D. Maidment,  P. Bakic) described the development of simulation for voxels containing three 

different materials in a software phantom. 

 

These two presentations are also published in Springer Lecture Notes  in Computer Science 7361, edited by 

Gavenonis, Sara, Bakic, Predrag R. and Maidment, Andrew D.A., 2012.  

 

 On February 9-14, 2013, Dr. Pokrajac attended and presented the 2013 SPIE Medical Imaging 

conference in Orlando, FL. 

The first presentation entitled “Breast image registration by using non-linear local affine 

transformation” (co-authored by F. Chen, P.  Zheng, P. Xu, D. Pokrajac, P. R. Bakic, Andrew D. 

A. Maidment, F. Liu, X. Shi) discusses a novel method for registration of mammograms.  

 

The second presentation entitled “Two methods for simulation of dense tissue distribution in 

software breast phantoms,”   (co-authored by J. Chui, R. Zeng, D. Pokrajac, S. Park, K. J. Myers, 

A. D. A. Maidment, P. R. Bakic) described the comparison of two techniques for simulation of 

dense tissue distribution with the distribution from clinical images. 

 

These two presentations are also published in Proceedings of SPIE Volume 8668, 2013. 
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2.1.2 DSUPENN Breast Cancer Seminar 

 

Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for 

mammography and tomosynthesis, January 17, 2013 

Speaker: 

Lynda Ikejimba,  

Medical Physics Graduate Program 

Ravin Advanced Imaging Laboratories 

Duke University 

 
 

2.2 Objective 2 

 

Establish an independent breast cancer research program at DSU by performing a joint DSU/Penn 

research project focused on breast cancer risk disparity in minority populations 

 

 Obtain appropriate IRB approvals for the proposed research. (months 1-6 of Y1) 

 

 Included in Year 1 Report.  

 

 

  Develop a database of anonymized clinical mammograms and patient metadata, obtained retrospectively 

from ACRIN DMIST and Penn PPG trials. (Y1-Y2) 

 

 Included in Year 2 Report. 

 

 Exploratory study  (Drs. Wilson, Pokrajac, and Liu) Explore potential racial differences 

in genetic determinants of breast density. (Y2-Y4) 

 

  

2.2.1 Analysis of Mammographic Images and Clinical Metadata of All Minority Women and the Age-

Matched Caucasian Controls from the ACRIN DMIST Database  

 

 

We finalized ACRIN data transfer on MIRC and resolved issues with various batch transfers.  During the 

transfer some of the studies from ACRIN data were reported as having ‘invalid’ images, related to problems 

with encoding in the MIRC database.  Some cases did not get merged in the correct MIRC folders.  Those cases 

were reviewed and if needed pushed manually to ensure correct uploading.  In addition, the DICOM import 

service periodically got interrupted, which required to restart the MIRC automatic importing service.  VB script 

problem: XML files from ACRIN Data occasionally did not get parsed correctly. 

 

We performed a preliminary query of the ACRIN data aimed at identifying the prevalence of women with 

incomplete visualization of the breast.  Here is the summary of the results from this query: 

 The total number of uploaded cases with more than 4 Dicoms images is 3845; 267 of them are 

aggregated duplicates (files belong to the same patient but were divided in various folders);  
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 The number of cases with multiple images (>4) and no aggregation is 3578; 

 About 30% of the cases have been checked manually to confirm partial visualization;  

 If the number of DICOMs is less than 9, partial visualization is present in about 10% of the cases; 

 Our estimation is that that about 500-550 out of 3845 cases have partial breast visualization which is 

approximately 5-8% of all cases. 

 There are 4406 patients who have four or less DICOM  images with MLO-position. The algorithm we 

employed to compute density is more suitable for MLO-position images than CC-position.  

 

We have also developed a code to estimate the breast cancer risks using the demographic metadata information 

from the ACRIN cases.  The risk estimation is based upon the Gail risk model, currently used by the National 

Cancer Institute.  Our code has been developed as a wrapper script around the Java software for the Gail risk 

estimation (downloaded from the hughesriskapps.net).  The risk estimation method uses as its input the patient's 

age, the age of the menarche, the age of the first live-birth, the number of biopsies, the number of first-degree 

relatives with cancer; the information about previous biopsies with hyperplasia, and the race.  See Figure 7 and 

Figure 8. 

 

These corresponding information was read from the metadata accompanying the ACRIN database of images.  In 

cases of missing information, we followed the instructions in the Gail risk model and used the “UNKNOWN” 

entry.   

 

We estimated breast densities for GE mammograms from the ACRIN database, using the software developed at 

the University of Pennsylvania. The total number of processed images (both MLO and CC) was 24945. For the 

same images, we calculated risk estimation using the Gail model. 

 

For patients with 2 MLO paired images (left and right) we performed and computed: 

 

 Comparison of Histograms of average and minimal densities for different racial group 

 

 Correlations between estimated minimal and average densities and the lifetime risk estimated by GAIL 

model  for all the samples, and for racial groups 

 

 Scatter plots of estimated densities on left and right breast for all the samples, and for racial groups 

 

 Correlations of estimated densities on L and R images with demographic variables all the samples 

 

 Correlations of estimated densities on L and R images with demographic variables for different racial 

groups  when density was <80% 
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For patients with more than 2MLO images: 

 

 Correlations between estimated minimal and average densities and the lifetime risk estimated by GAIL 

model 

 

The preliminary results indicated that there is no sufficient statistical evidence that the distribution of breast 

densities in African-Americans population differs from the distribution in Caucasian population, see Figure 1 to 

Figure 4.  And the breast density distribution does not vary with age groups, see Figure 5 and Figure 6. The 

obtained correlations between estimated minimal and average densities and the lifetime risk estimated by GAIL 

model were small but statistically significant both for general population and for African-Americans, see Figure 

7 and Figure 8. Correlations between estimated densities on left and right breasts were high and statistically 

significant.  

 

If we treat  women’s  breast density as a random variable,  after  we normalize the frequency and perform interpolation on 

the histogram graph (see Figure 1), we obtain this  probability distribution of breast density (see Figure 2).  From the 

figures, we can see that  it is most common that  women’s breast density is around 25%, and it is unlikely a woman’s 

breast density is around 0%, 80% or 100%.  The  significance of this plot is to help medical doctors to establish a profile 

about breast density in order to tell whether a given density case  is “normal”, “abnormal”, “common” or “rare”. All of the 

above show that the probability distribution of breast density, unlike breast volume,  remains relatively independent of 

race and age (see Figure 6). 

 

 
 

Figure 1   The histogram of breast density computed from all 4406 MLO-position images.  
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Figure 2  The probability distribution of breast density.   

 
 

 

 

 

 

 
 

Figure 3   The histogram of breast density for African American. Sample size=1568.  It  looks  similar to Fig 1 for all 

races combined.    
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Figure 4   The probability distribution of breast density for African American.   
 

 

 

 

 

 

 

 

 
 

Figure 5   The histogram of breast density of women over 60 years old.  Sample size=1147. 
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Figure 6     The probability distribution of breast density for women over 60 years old.  

 

 

 

 

 
 

 
 

Figure 7     This figure shows that, for all 4406 MLO-position samples, the breast density   and  the life-time breast cancer 

risk estimated by using the Gail’s model are weakly  but significantly correlated to each other .   
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Figure 8    The correlation is slightly weaker for African Americans. 

 

In Figure 1, the second peak  in the range (85%, 96%) seems unnatural,  and  about 10% of  patients have this 

“suspiciously unnatural” density. This percentage is roughly  the percentage of women in the same age window 

in USA who have plastic surgery of breast.  It is also known that the implants affect mammogram in some 

degree.  Therefore, the plastic surgery could be the reason for this “suspicious” peak in the probability 

distribution. However, we see  this  peak for all races and all age groups(some are shown below).  Therefore, it 

remains uncertain if the second peak is unnatural. 

 

2.2.2 Mammogram Image Registration/Fusion 

A novel breast image registration method is proposed to obtain a composite mammogram from several images 

with partial breast coverage, for the purpose of accurate breast density estimation. The breast percent density 

estimated as a fractional area occupied by fibroglandular tissue has been shown to be correlated with breast 

cancer risk. Some mammograms, however, do not cover the whole breast area, which makes the interpretation 

of breast density estimates ambiguous. One solution is to register and merge mammograms, yielding complete 

breast coverage. Due to elastic properties of breast tissue and differences in breast positioning and deformation 

during the acquisition of individual mammograms, the use of linear transformations does not seem appropriate 

for mammogram registration. Non-linear transformations are limited by the changes in the mammographic 

projections pixel intensity with different positions of the focal spot.  We propose a novel method based upon 

non-linear local affine transformations. Our algorithm requires that feature points be extracted prior to 

registration, and the result of registration will depend on the reliability and accuracy of the extracted features. 

Automatic identification and extraction of feature points is difficult due to the non-linear compression 



 

10 

 

deformation and the lack of significant landmarks in mammograms . We observe the prominent features (such 

as ducts and blood vessels) from both images. The crossing points are determined upon visual similarity in both 

mammograms. Due to compression and different positions of the breast, the coordinates of those crossing points 

may be different in the two mammograms, but the orientation of feature and local curvature of crossing points 

are more likely to be preserved. We also select other features (end points and middle points) in a small 

neighborhood around the selected crossing points. Subsequently, the deformation between two sets of feature 

points can be estimated. Given two sets of feature points in two images that need to be registered, we assume 

the deformation between them can be approximated by affine transformation, which can be considered as a 

first-order approximation of the true transformation resulting from breast projection.  Finally, Shepherd 

interpolation is employed to compute affine transformations for the rest of the image area. The pixel values in 

the composite image are assigned using bilinear interpolation. We present preliminary results using the 

proposed approach applied to clinic mammograms taken from the ACRIN DMIST database of mammograms. 

This work is a part of a larger study of racial disparity in breast cancer risk. For that project, breast percent 

density and parenchymal texture of minority women and age-matched Caucasian controls from the ACRIN 

DMIST database are being compared.  To date, we have been able to achieve anecdotal results that support 

continued development and testing of this new method. The proposed method is robust, since the results of 

registration are similar regardless of the choice of the reference image. The observable features, especially the 

nipple and the boundary of skin, have good agreement. The results of the proposed method are comparable to 

the results of the diffeomorphic transform implemented using ANTs, an open source software package. 

Particularly, the textures of warped image are preserved in registered images, and the shape of registered image 

is similar as reference image. The registration error is smaller in the region of overlap (the upper part of the 

registered image), since we can extract the corresponding feature points only from this region. . The proposed 

transformation can be controlled locally. Moreover, the method is converging to the ground truth deformation if 

the paired feature points are evenly distributed and its number is large enough .In our future work, we plan to 

perform more extensive quantitative validation of the proposed algorithm on a series reference and warped 

images extracted from all the applicable images in the ACRIN DMIST database. Also, we will apply the 

technique to more images in the ACRIN DMIST database and develop statistical measures of the registration 

accuracy.  

  

2.2.3 Breast Phantom Development and Characterization 

 Numerous research contributions have been made related to further development and characterization of the 

software breast phantom, including the improved simulation of breast Cooper’s ligaments, insertion of 

simulated microcalcification clusters in the phantom, simulation of the dense tissue distribution, and simulation 

of phantom voxels containing multiple tissues (partial volume simulation).  The following details these 

contributions. We designed a method to improve thickness control of the Cooper’s ligaments in the simulation 
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algorithm by reducing “dents” on the ligaments’ surface. The method is based on more accurate determination 

of the ligament closest to the cubic region and utilization of the exact distance to the ligament instead of the 

linear approximation. The method is currently under test, see Figure 9. 

 

 

 

Figure 9  (a) Dent-shaped artifacts visible on a section of 100μm phantom; (b) The novel algorithm eliminates the dent-

shaped artifact; (c) Measurement of Cooper’s ligament thickness; and (d) Target and measured average thicknesses of the 

ligaments for various phantom resolutions and voxel sizes.  

 

 

We developed and preliminary tested a method for automatic insertion of simulated calcifications into a 

voxelized phantom, see Figure 10. Also, we developed an algorithm for insertion of calcifications into an oct-

tree based phantom, see Figure 11. We worked on replacement of commercial software for phantom 

deformation (Abaqus) with open-source and in-house solutions. 

 

 

 

 

                      (a)                                                    (b)                                                         (c) 
Figure 10 (a) An example of a malignant a calcification cluster extracted from clinical images.  Details of synthetic 

images of a phantom with an embedded cluster: (b) DM; and (c) a reconstructed DBT image.   
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Figure 11 (a) 2D illustration of a calcification cluster binary image (black circles), minimal bounding rectangle (dashed) 

and the sub-volume corresponding to an octree node of the phantom (bold); (b) Octree corresponding to the cluster; (c) 

The selected phantom node for cluster placement (black circle); (d) Octree of the phantom with the cluster after insertion. 

 

We have compared two methods for simulation of dense tissue distribution in a software breast phantom: (1) the 

previously used Gaussian distribution centered at the phantom nipple point, and (2) the combination of two Beta 

functions, one modeling the dense tissue distribution along the chest wall-to-nipple direction, and the other 

modeling the radial distribution in each coronal section of the phantom, see Figure 12. Dense tissue 

distributions obtained using these methods have been compared with distributions reported in the literature 

estimated from the analysis of breast CT images. Qualitatively, the two methods produced rather similar dense 

tissue distributions. The simulation based upon the use of Beta functions provides more control over the 

simulated distributions through the selection of the various Beta function parameters. Both methods showed 

good agreement to the clinical data, suggesting both provide a high level of realism, see Figure 13.  Preliminary 

results have been published in [Chui et al., SPIE 2013; listed in Section 4 as Ref. #4]. 

 a)                        b)                           c)   

Figure 12 Probability maps of compartments labeled as dense tissues: a) Gaussian b) Beta1 and c) Beta 2.  
 

 

… 

… 

… 

… … 
… 

… 

… … 
… 

… 

… 
 (a)                        (b)                      (c)                             (d) 
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                                                     a)                                                                                             b) 

Figure 13 Profiles of average normalized covariance matrices in a) posterior-to-anterior direction; and b) top-to-bottom 

direction from simulated data created with Beta1 method and clinical data (modified from Freed et al. [11]). FWHMs 

measured from clinical data are 0.450(posterior-to-anterior) and 0.466 (top-to-bottom). FWHMs measured from simulated 

data using Beta1 are 0.433 (posterior-to-anterior) and 0.366 (top-to-bottom). 
 

 

Further modification to our simulation algorithm is proposed, in order to improve the quality of simulated 

projections generated using software breast phantoms. Anthropomorphic software breast phantoms have 

been used for quantitative validation of breast imaging systems. Previously, we developed a novel algorithm for 

breast anatomy simulation, which did not account for the partial volume (PV) of various tissues in a voxel, see 

Figure 14; instead, each phantom voxel was assumed to contain single tissue type. As a result, phantom 

projection images displayed notable artifacts near the borders between regions of different materials, 

particularly at the skin-air boundary. These artifacts diminished the realism of phantom images. One solution is 

to simulate smaller voxels. Reducing voxel size, however, extends the phantom generation time and increases 

memory requirements. We achieved an improvement in image quality without reducing voxel size by the 

simulation of PV in voxels containing more than one simulated tissue type, see Figure 15. The linear x-ray 

attenuation coefficient of each voxel is calculated by combining attenuation coefficients proportional to the 

voxel subvolumes occupied by the various tissues. A local planar approximation of the boundary surface is 

employed, see Figure 16, and the partial volume in each voxel is computed by decomposition into simple 

geometric shapes.  

 

 

 

 

 

 

 

 

 



 

14 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Possible cases of voxels containing multiple materials (partial volume voxels) in a breast phantom. 

  

   (a)                     (b)             (c)             (d) 

Figure 15 Simulated projections of (a) a phantom with 400μm voxels and no PV; (b) the phantom from (a) with simulated 

PV; and (c) the same phantom generated at 200 μm voxels and no PV. (d) The difference between (a) and (b); the image 

contrast was enhanced for display purposes. 
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Figure 16 Planar approximation of a boundary between Cooper’s ligament and a compartment. 

 

An efficient encoding scheme is proposed for the type and proportion of simulated tissues in each voxel, see 

Table 1.  

Table 1:  Taxonomy of voxels in the phantom and encoding in the phantom. 

Case   p1   (6 bits)  p2 (6 bits)  Label 

(4 bits)  

1. Skin 0  0  0 

2. Air 0  100  0  

3. Cooper’s ligament  0  0  1  

4. Fat 0  0  2 

5. Dense   0  0  3  

6. Skin; air  0  pAir  0  

7. Skin; fat tissue  0  pSkin  2  

8. Skin; dense tissue  0  pSkin  3  

9. Skin; Cooper’s ligament pCooper 0  0 

10. Cooper’s ligament; fat  pFat  0  1  

11. Cooper’s ligament; dense  0  pDense  1  

12. Skin, Cooper’s ligament and 

fat tissue 

pCooper pSkin  2  

 

13. Skin, Cooper’s ligament and 

dense tissue  

pCooper pSkin  3  

 

 

We designed and implemented algorithm for a general case for simulation of the partial volume (PV) of voxels 

containing up to three materials, Figure 17  (published in Chen et al., SPIE 2012 and Chen et al., IWDM 2012; 

listed in Section 4 as Refs. #2 and #3).   
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Figure 17 Partial volume Vi of the voxel V above planes 1 and 2 and containing vertex v. S1, S2 and S3(here S3=0) are 

surface areas of parts of the volume boundary belonging to voxel sides 1, 2 and 3 that do not contain the vertex v. 

 

 We developed a method for validation of partial volume computation based on the Monte Carlo simulation and 

demonstrated that the accuracy of the computation is close to one determined by the discretization error. We 

also studied computation of partial volumes based on the Monte Carlo and developed technique to determine 

the parameters of the Monte Carlo simulation in order to achieve a specified accuracy.  

 

We worked on improving linear approximation of the distance between a voxel and the surface of the Cooper’s 

ligaments. We derived an exact formula for the gradient of the surface of the ligament. The preliminary results 

demonstrated improvements in computed partial volumes due to utilization of the improved linear 

approximation. 

 

We developed a highly-parallel implementation of the algorithm based on GPU architecture in order to reduce 

the time needed to generate software breast phantoms. The rapid generation of high resolution phantoms is 

needed to support virtual clinical trials of breast imaging systems. We compared the performance of GPU 

implementation with the single- and multi-threaded CPU C/C++ implementation and observed significant 

speedups, see Figure18 which made it possible to generate phantoms at the resolutions of 12.5 μm.  The results 

of the parallel implementation have been published in [Chui et al., SPIE 2012 and Chui et al., IWDM 2012; 

listed in Section 4 as Refs. #1 and #5].   
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                     (a)                                      (b)                                                               (c)                    
Figure 18  (a) Cross-sections of a simulated 25μm phantom; (b) Projection of a simulated 200μm phantom; (c) Average 
simulation times expressed as a function of voxel size for different implementations of the octree-based algorithm.  

 

We worked on theoretical properties of the proposed oct-tree based recursive partitioning simulation algorithm. 

Currently, we are working on proving its quadratic computational complexity and asymptotic optimality using 

the fractal theory. 

 

 Prepare peer-review publications on the results of the proposed research. (Y3-Y4) 

 

While working on the current research, we have prepared several publications about our results.  These 

publications are listed in the section on “Reportable Outcomes”.  

 

 Validate success of the research training program by annual teleconferences with and bi-annual visits by 

  external Advisory Committee. 

 

DSU faculty had by-monthly teleconference during 2012 year. The teleconferences will be continued in 2013. 

 

Our collaborative work (particularly during Dr. Pokrajac's sabbatical leave from DSU to work with  

Dr. Maidment and Dr. Bakic in Fall semester of 2011) generated an NIH R01 grant proposal in Spring 2012 to 

the RFA on the Continued Development of Biomedical Software (PAR-11-028).  

 

2.3 Objective 3 

 

Produce a corpus of high-quality published work and develop a portfolio of independently funded 

research grants at DSU to support a sustained breast cancer program 

 

 See Reportable outcomes for publications 
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 In June 2012, we submitted an NIH R01 grant proposal to the RFA on the Continued Development of 

Biomedical Software (PAR-11-028):      http://grants.nih.gov/grants/guide/pa-files/PAR-11-028.html), 

P. Bakic, D. Pokrajac, A. Maidment, entitled “Continued Development and Maintenance of Computer 

Simulation of Breast Anatomy”.  The proposal was scored at 41%.  We plan to resubmitted in July 2013.  

 

 

3. Important Findings 

 

 We finalized ACRIN data transfer on MIRC and resolved issues with various batch transfers;   

 We performed a preliminary query of the ACRIN data aimed at identifying the prevalence of women 

with incomplete visualization of the breast;   

 We developed a code to estimate the breast cancer risks using the demographic metadata information 

from the ACRIN cases;   

 We estimated breast densities for GE mammograms from the ACRIN database, using the software 

developed at the University of Pennsylvania;  

 A novel breast image registration method is proposed to obtain a composite mammogram from several 

images with partial breast coverage, for the purpose of accurate breast density estimation;  

 We developed and validated several modifications and novel features to breast anatomy simulation 

methods, used for generating software breast phantoms, including: (1) a method to improve thickness 

control of the Cooper’s ligaments in the simulation algorithm by reducing “dents” on the ligaments’ 

surface; (2) a method for insertion of simulated microcalcification clusters in the software breast 

phantom; (3) a method for simulating the dense tissue distribution in the software phantom; and (4) a 

method for reducing quantization artifacts in phantom images by simulating partial volume in voxels 

containing several simulated tissue types.  The listed novel features have resulted in further 

improvement of the image quality in synthetic breast images generated using the software phantom.  

 

4. Reportable Outcomes 

 

Publications (journal papers and conference proceedings):  

 

1. J. Chu, D. Pokrajac, A. D. Maidment,  P. Bakic, “Toward Breast Anatomy Simulation using GPU,” Proc. 

Breast Imaging (IWDM), Lecture Notes in Computer Science 7361, pp. 508-515, 2012. 

  

2. F. Chen, D. Pokrajac, X. Shi, F. Liu, A. D. Maidment,  P. Bakic, “Simulation of Three 

Materials Partial VolumeAveraging in a Software Breast Phantom,” Proc. Breast Imaging (IWDM), Lecture 

Notes in Computer Science 7361, pp. 151-158, 2012.  
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3. F. Chen, P.  Zheng, P. Xu, D. Pokrajac, P. R. Bakic, Andrew D. A. Maidment, F. Liu, X. Shi,  “Breast 

image registration by using non-linear local affine transformation,” Proc. of SPIE 8668, in press. 

 

4. J. Chui, R. Zeng, D. Pokrajac, S. Park, K. J. Myers, A. D. A. Maidment, P. R. Bakic, “Two methods for 

simulation of dense tissue distribution in software breast phantoms,”  Proc. of SPIE 8668, in press. 

 

5. Chui, J.H., Pokrajac, D.D., Maidment, A.D.A., Bakic, P.R.: “Roadmap for Efficient Parallelization of Breast 

Anatomy Simulation,” In Physics of Medical Imaging, Proc. SPIE 8313, edited by N.J. Pelc, R.M. 

Nishikawa 2012.  

 

  

Presentations: 

 

1. D. Pokrajac made a presentation at the IWDM 2012, the 11th International Workshop on Breast Imaging, in 

Philadelphia, PA. on July  8-11, 2012,  “Toward Breast Anatomy Simulation using GPU” (co-authored by J. 

Chu, D. Pokrajac, A. D. Maidment,  P. Bakic)  

2. F. Chen made a presentation at the IWDM 2012, the 11th International Workshop on Breast Imaging, in 

Philadelphia, PA. On July  8-11, 2012,  “Simulation of Three Materials Partial Volume 

Averaging in a Software  Breast Phantom” (co-authored by F. Chen, D. Pokrajac, X. Shi, F. Liu, A. D. 

Maidment,  P. Bakic)  

 

Grant Applications: 

 

 Submitted an NIH R01 grant proposal to the RFA on the Continued Development of Biomedical 

Software (PAR-11-028): http://grants.nih.gov/grants/guide/pa-files/PAR-11-028.html) P. Bakic, D. 

Pokrajac, A. Maidment. Grant scored at 41 percentile, not funded. Resubmission for July 2013 in 

preparation. 

 

 

5. Conclusion 

 

This year we submitted an NIH R01 grant proposal to the RFA. We organized DSUPENN seminars, attended 

and presented at national and international conferences. We held by-monthly teleconferences with DSU and 

UPENN. We finalized ACRIN data transfer on MIRC and resolved issues with various batch transfers.  We 

performed a preliminary query of the ACRIN data aimed at identifying the prevalence of women with 

incomplete visualization of the breast. We developed a code to estimate the breast cancer risks using the 

demographic metadata information from the ACRIN cases. We estimated breast densities for GE mammograms 

from the ACRIN database, using the software developed at the University of Pennsylvania. A novel breast 

image registration method is proposed to obtain a composite mammogram from several images with partial 
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breast coverage, for the purpose of accurate breast density estimation. We designed a method to improve 

thickness control of the Cooper’s ligaments in the simulation algorithm by reducing “dents” on the ligaments’ 

surface. 
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Abstract. We have developed a method for massively parallelized breast anat-
omy simulation and a corresponding GPU implementation using OpenCL. The 
simulation method utilizes an octree data structure for recursively splitting the 
simulated tissue volume.  Several strategies to optimize the GPU utilization 
were proposed and evaluated, including the use of synchronization constructs in 
the language and minimization of buffer allocations. The task of tissue classifi-
cation was separated from the voxelization to further improve the balance of the 
control flow. The proposed anatomy simulation method provides for fast gener-
ation of high-resolution anthropomorphic breast phantoms.  Currently, it is 
possible to generate an octree representation of 450 ml breasts with 50 μm vox-
el size on a AMD Radeon 6950 GPU with 2GB of memory at a rate of 7 phan-
toms per minute, 32 times faster than a multithreaded C++ implementation.   

Keywords: Digital mammography, anthropomorphic breast phantom, Paralleli-
zation, GPU. 

1 Introduction 

Breast tissue simulation is of great importance for pre-clinical testing and optimization 
of imaging systems or image analysis methods.  Currently, the standard for imaging 
systems validation includes pre-clinical evaluation performed with simple geometric 
phantoms, followed up by clinical imaging trials involving large numbers of patients 
and repeated imaging using different acquisition conditions.  Such an approach fre-
quently causes delays in technology dissemination, due to the duration and cost of these 
trials. In addition, there are many factors which place strict limitations on the number of 
test conditions, such as the use of radiation in x-ray imaging trials.   

Use of software anthropomorphic phantoms for pre-clinical evaluations offers a 
valuable alternative approach which can reduce the burden of clinical trials.  In this 
paper, we present a GPU (Graphical Processing Unit) implementation of a method for 
generating software anthropomorphic breast phantoms.  The breast anatomy simula-
tion method is based upon recursive partitioning of the simulated volume utilizing 
octrees. The octree-based algorithm allows generation and processing of octree nodes 
at the same tree level independently (i.e., in any arbitrary order), which makes the 
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algorithm a good candidate for parallelization.  Using profiler analysis we have iden-
tified the bottleneck steps in the CPU implementation of the algorithm and developed 
a corresponding GPU implementation using OpenCL. The performances of the GPU 
and CPU implementations were compared in terms of the time needed for generating 
phantoms of various voxel sizes. The effects of several implementation parameters 
are discussed.  

2 Methods 

Our proposed method of breast anatomy simulation using GPUs is based on the algo-
rithm originally proposed by Pokrajac et al [1]. The paper proposed a method of using 
octrees to represent simulated volumes of various tissue types. We recently proposed 
a roadmap [2] to migrate its implementation to a platform that directly utilizes mas-
sively parallel processors such as GPUs. Specific milestones were defined to allow 
incremental migration in implementations and regression testing. A multiple threaded, 
concurrent version targeting multiple-core CPUs had been implemented along the 
roadmap. Figure 1 shows the flowchart of this version of algorithm. 

 
Fig. 1. Flowchart of the concurrent version of the octree-based algorithm, where nodes are 
processed concurrently to determine their tissue types 
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We chose OpenCL [3] as our software platform to implement a massively parallel 
version of the algorithm. Each individual octree node is identified as the finest granu-
larity in the parallelization. To map it to OpenCL, each OpenCL work item is indexed 
to a unique node at each tree level. The concurrent part of the algorithm is ported into 
OpenCL kernels which are functions invoked and executed by the GPUs. 

Profiling was performed on the initial OpenCL implementation to identify its po-
tential bottlenecks using AMD APP SDK v2.6 [4]. The data transfer between the host 
memory and the device memory was identified as the major bottleneck in the pipe-
line. To reduce the amount of data transferred between the host and the devices, the 
process of splitting the nodes into child nodes was ported as an OpenCL kernel, so 
that the uploading of octree data to the devices was no longer needed. Figure 2 shows 
a float chart where the node splitting is parallelized on the GPU.   

 
Fig. 2. A massively parallel version of the octree algorithm. At each octree level, two paralle-
lized steps are performed. The first step is to split each splitable node into 8 child nodes. The 
second step is determining the tissue type of each node. 

Because OpenCL does not allow allocation of memory by its kernels, buffers  
of sufficient sizes have to be allocated by the host in advance. Therefore, the GPU 
implementation has to determine, in advance, the number of octree nodes requiring 
for splitting. A technique similar to reduction [5] is used to accelerate the counting 
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process. The implementation first counts the number of nodes which require splitting 
in each work group using a counter in local memory. Next, the counts of each 
workgroup are accumulated so that the accumulation result multiplied by 8 would be 
the index where each workgroup starts splitting its nodes in parallel. Figure 3 shows 
an example of the parallelized splitting process.  

……………………………….

…………
0..7 0..7 0..7

i‐th level

(i+1)‐th 
level

……………………………….Threads

Leaf node

Non‐leaf node

0..7

Workgroup 0 Workgroup n

0 23  

Fig. 3. Illustration of GPU threads splitting its each node into eight nodes in parallel. In this 
example, workgroup 0 has 3 nodes (0, 6, and 7) requiring splitting. Indexes 0 to 23 (= 3 x 8 - 1) 
are reserved for workgroup 0, while the next workgroup splits the nodes into child nodes start-
ing from index 24. 

Built-in OpenCL atomic functions atom_inc() and atom_add() were utilized 
to increment and add the counters on multiple threads to guard against a race condi-
tion. 

During software profiling, several other GPU-specific bottlenecks were also identi-
fied. First, buffer allocations on GPUs require significant time. Secondly, excessive 
use of flow control in the kernels running on the GPUs slows down the execution of 
work groups. 

To address the buffer allocation problem, instead of re-allocating new buffers for 
every level of octrees, buffers were retained on the devices until the current ones were 
no longer big enough for the next tree level. This was especially effective for phan-
toms of high resolution, where the buffers created for an octree section could often be 
reused for subsequent sections. 

To tackle the issue of excessive use of flow control, the OpenCL kernels imple-
mented in this study were refactored manually. Programming methods using branch-
ing that are designed for sequential computation are often unsuitable for parallel  
computation [6]. Instead, costly functions called on different control paths can be 
consolidated into a single call on the main path.  

Our concurrent, non-parallel version of the algorithm conditionally voxelizes vo-
lumes on some of its control paths based on each node’s tissue types. The whole 
workgroup is blocked when there is a work item in this group requires voxelization of 
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its octree node. To improve the utilization of the GPU, the voxelization was separated 
from the kernel that determines each node’s tissue type. 

We validated the implementation by comparing the generated octrees with the ones 
generated by previous implementations using the same set of parameters. In order to 
assess the performances of various implementations, the simulation times at different 
target resolutions were compared. We also measured the effects of workgroup sizes 
on the performance. Performances of the implementations were assessed by their 
duration times on a desktop PC with Intel® Core™ i7-2600K CPU @ 3.40GHz and 
16GB of RAM and Radeon 6950 GPU with 2GB of VRAM. 

3 Results 

Figure 4 shows the orthogonal sections of a phantom with 400 μm and 50 μm voxel 
resolutions. With the same inputs, the identical octrees were constructed by the differ-
ent implementations. 

 

Fig. 4. Orthogonal sections of a simulated breast phantom of (a) 400μm and (b) 50μm  
resolutions 

The performance of the OpenCL implementation was assessed by comparing the 
duration times to generate phantoms of various voxel sizes. The duration time of each 
configuration was measured by averaging the duration times of 5 independent phan-
toms; each phantom was generated from a different set of ellipsoids modeled random-
ly inside the simulated breast. Figure 5 is a graph showing the duration times of 2 
implementations at different voxel resolutions. Figure 6 shows the duration times 
measured for 25μm resolution using different OpenCL workgroup sizes. 
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Fig. 5. Average duration times of different implementations of the octree-based algorithm for 
various voxel sizes (12.5, 25, 50, 100 and 200 μm) 

 
Fig. 6. The duration times using different OpenCL workgroup sizes (16, 32, 64, 128, and 256) 
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4 Discussion and Conclusions 

We have successfully implemented an efficient parallelized version of an algorithm to 
simulate the breast anatomy for anthropomorphic phantoms by utilizing some of the 
strategies targeted for GPUs such as reuse of buffers and reduction of flow control.  
We measured, on average, a 32-fold improvement for the GPU implementation over 
the multi-threaded CPU implementation when simulating 50 μm phantoms.  

Based on the measured duration times using different workgroup sizes, a 
workgroup of 64 yielded the best performance. Since the GPU used in this study has a 
wavefront size of 64 work items, any work group size less than 64 may underutilize 
the GPUs. On the other hand, a workgroup of more than 64 items would increase the 
memory contention among the units. Since the optimal workgroup size is hardware 
dependent, benchmarking on individual hardware is required to determine the optimal 
work group size.  

The performance of the implementation is sufficient to create phantoms of reason-
ably high resolution in near real time. By generating and storing the data on the GPU, 
it becomes feasible to develop real time visualization software that interoperates with 
the same set of data on the GPU. This arises, in part, because the octree data structure 
offers a superior memory footprint compared to a 3D voxel representation. Therefore, 
an octree is an ideal data structure for storage on GPUs (that are typically available 
with limited memory). For simulations requiring higher resolution, the simulated 
phantom can be subdivided into sub-volumes small enough for the individual GPUs.  

We observed a CPU usage of 2% by the application when the octrees are generated 
on the GPU. Thus, porting the code to the GPU not only resulted in the performance 
being significantly improved, but shifting the processing from the CPU to the GPU 
frees the CPU for other operations such as voxelization, data compression and I/O. 
Our GPU implementation can be further enhanced by operating it upon multiple 
GPUs; a feature supported by most mainstream performance computing hardware. It 
is noteworthy that it is more feasible to assemble hardware with multiple GPUs than 
hardware with multiple CPUs. 

Our latest profiling results indicate that further improvements in performance can 
be achieved by extending the parallelization to the evaluation of shape functions for 
each octree.  Please note that the estimated slope of the dependence of the computa-
tion time vs. voxel size for the GPU implementation (Fig. 5) is less than two.  The 
computation time consists of two components. The first component, related to build-
ing and maintaining the octree structure of the phantom, is believed to be quadratic 
function of the inverse voxel size [1].  The second component includes overhead of 
initializing the OpenCL kernels that has linear or constant complexity as a function of 
the inverse voxel size.  For larger voxel sizes, this linear component becomes domi-
nant, influencing the estimate slope of the regression line.   

It is further observed that when the resolution is sufficiently high, the duration in-
creased slightly more than a quadratic as a function of the inverse voxel size.  This is 
caused mainly by the overhead of the data transfers between the host and the devices, 
which accrue a cost proportional to the cube of the inverse voxel size. For simulations 
that require resolutions higher than 25 μm, further investigations of performance  



 Towards Breast Anatomy Simulation Using GPUs 513 

 

improvement are needed.  Such work should emphasize the reduction of the cost of 
operations for each sub-volume, such as voxelization and communication between the 
host and devices.  Finally, the frequency of buffer allocation on the devices can be 
reduced if an accurate maximum buffer size can be estimated in advance for different 
sets of parameters. 
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BC083639), and the US National Institutes of Health (grant 1R01CA154444).  The 
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Abstract.  A general case for simulation of partial volume (PV) averaging in 

software breast phantoms is presented.  PV simulation could improve the quali-

ty of phantom images by reducing quantization artifacts near borders between 

different materials. The validity of phantom studies depends on the realism of 

simulated images, which is affected by the size of phantom voxels.  Large 

voxels may cause notable quantization artifacts; small voxels, however, extend 

the generation time and increase the memory requirements.  An improvement in 

image quality without reducing voxel size is achievable by the simulation of PV 

averaging in voxels containing more than one simulated tissue type; the linear 

x-ray attenuation coefficient of such voxels is represented by a combination of 

attenuation coefficients proportional to voxel subvolumes occupied by different 

tissues. In this paper, we present results of simulated PV in the general case of 

voxels containing up to three materials.   

Keywords:  Digital mammography, computer breast phantom, partial volume 

simulation, computational geometry.  

1 Introduction 

This study is motivated by the desire to improve the quality of synthetic images gen-

erated using software breast phantoms.  The partial volume (PV) averaging can help 

reduce the quantization artifacts on boundaries of regions with different simulated 

materials. The software phantoms in this study have been generated based upon the 

recursive partitioning of the phantom volume using octrees [1]. In this paper, we pro-

pose a solution for a general PV case with up to three simulated materials in a voxel. 

This work represents the first PV simulation in software phantoms generated based 

upon the rules for simulating anatomical structures [1-4].  PV simulation has been 

indirectly reported in a method for generating phantoms based upon the CT images of 

mastectomy specimen [5].  In that method, the values of each reconstructed breast CT 

image voxel were scaled and interpreted as the percentage of adipose breast tissue in 

the voxel.   



In this paper, we present an overview of the PV simulation method including de-

tails of a planar approximation and the PV computation.  The improvement of image 

quality is qualitatively validated.  The results are shown in the form of slices and sim-

ulated X-ray projections of phantoms with and without PV. 

2 Method 

The effective linear x-ray attenuation in a voxel which contains more than one simu-

lated material can be calculated as: 
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where |V| is the voxel volume, |Vi| is the subvolume of material i with the linear x-ray 

attenuation μi, and pi is the percentage of the material i in the voxel (Fig. 1a). One can 

distinguish the following cases of PV (Fig 1b):  

A. Two materials with one bounding surface:  (1) Skin and air; (2) Cooper’s 

ligament and adipose tissue; (3) Ligament and fibroglandular dense tissue; 

(4) Skin and dense tissue; (5) Skin and adipose tissue, and (6) Skin and 

Cooper’s ligament;  

B. Three materials with two bounding surfaces: (7) Skin, ligament, and dense 

tissue; and (8) Skin, ligament, and adipose tissue 

 

 

  (a)     (b)  

Fig. 1. (a) The concept of PV simulation; V denotes the voxel volume and Vi is the sub-volume 

occupied by dense tissue.(b) Different cases of material combination in a voxel.  



The simulation of PV case (1) has been reported previously [6]; it can be easily ex-

tended to cases (2)-(6).  In this abstract we present a general case of PV simulation 

based upon the planar approximation of up to two bounding surfaces in a voxel, ad-

dressing cases (7)-(8). 

The planar approximation for the boundary between Cooper’s ligaments and adi-

pose tissue, as simulated in our software breast phantom [1], can be obtained as fol-

lows.  Adipose compartments Ci and Cj, which may be given by shape functions fi and 

fj, determine a Cooper’s ligament between them as the locus of points within a dis-

tance of D/2 from a surface Fij(x)= fi(x)- fj(x), see Fig. 2.  Consider a voxel V with 

center xc. We define a planar approximation  of the boundary between the Cooper’s 

ligament and the compartment Cj as 
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Fig. 2. Planar approximation of a boundary between Cooper’s ligament and a compartment. 

In a general PV case with three simulated materials and two bounding surfaces in a 

voxel, we can construct a planar approximation for each bounding surface (Fig. 3). 

The result of the approximation are planes 01
ˆ)1(:1  nxx  and 

01
ˆ)2(:2  nxx .  The partial volumes |Vi| of interest are subsequently calculated 

as the volume of a portion of the voxel V (with center xc) that is bellow/above the 

planes. For example, the PV Vi corresponding to the fat tissue in Figure 4 is computed 

as a volume of a part of the voxel that is both above planes π1 and π2. 



The PV Vi in a voxel shown in Fig. 3 has been computed using planar approxima-

tions as follows.  Consider a voxel of linear size x, with a vertex v located above 

planes 1 and 2.  (If no such vertex exists, the PV should be zero).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. A voxel containing skin, Cooper’s ligament and fat tissue and planar approximations 1 

and 2 of the tissue boundaries. 

The divergence (or Gauss-Ostrogradsky) theorem [7] is employed to compute the 

partial volume |Vi| of the voxel above planes 1 and 2, where the volume Vi is bound-

ed by planes 1 and 2 and at most 6 sides of the voxel. The divergence theorem can 

be described as the following integral equation: 

 dSFdVF
iV S   )()( n . (4) 

The left side is a volume integral over the partial volume Vi of voxel, the right side 

is the surface integral over the boundary of the volume Vi, and n is the outward point-

ing unit normal vector of the boundary. 

After the appropriate choice of the vector field function inside the integral at left 

side, i.e., F(x) = x, the whole quantity at the left side becomes 3|Vi|, and the right side 

can be rewritten as: 

  1 2 3 1 1 2 2S S S x A d A d      ,  (5) 

where Si, i=1,3 are surface areas of the boundary formed by the voxel sides 1 ,2 and 

3, that do not contain the vertex v;  A1 and A2 are surface areas of the boundary of 

Vi belonging to planes 1 and 2.   
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Subsequently, the PV can be calculated as: 
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ˆ)( nxv d  are distances of the vertex v to planes 1 

and 2. 

 

Fig. 4. Partial volume Vi of the voxel V above planes 1 and 2 and containing vertex v. S1, S2 

and S3(here S3=0) are surface areas of parts of the volume boundary belonging to voxel sides 

1, 2 and 3 that do not contain the vertex v. 

3 Results and Discussion 

Fig. 5 illustrates the PV simulation in a 450ml software breast phantom with 400m 

voxels.  Shown is the segmentation of phantom detail into air and voxels containing 

one, two or three materials.  For the corresponding phantom detail, shown also are the 

equivalent linear x-ray attenuations, and percentages of ligament tissue and skin tis-

sue. 

Fig. 5 suggests that the PV simulation on the ligaments-fat boundary was qualita-

tively correct. The voxels containing two materials are detected at the boundaries of 

two materials (e.g., skin, compartment).  Similarly, the three material voxels are de-

tected where the skin meets Cooper’s ligaments and a compartment.  Fig. 5b indicates 

that the PV helped smooth the appearance of boundaries between regions with differ-

ent x-ray attenuations.  The computed percentages of ligament and skin tissues in a 

voxel (Figs. 5c, 5d) suggest the correctness of the applied algorithm.  The voxels in 

the interior of skin/ligaments contain 100% of the corresponding tissues, while the 

percentages gradually decrease at the boundaries.   



 

Fig. 5. Detail of a 450ml phantom with 400m voxel size:  (a) Segmentation of a phantom into 

air and voxels containing one (light gray), two (dark gray) or three (black) materials; (b) Simu-

lated linear attenuation coefficients of voxels in (a) (in cm-1, assuming monoenergetic x-ray 

beam at 20 keV); and percentage of (c) ligament tissue and (d) skin tissue in voxels from (a).   

Fig. 6 shows simulated x-ray projections of phantoms with and without simulated 

PV.  The simulated acquisition assumed a monoenergetic x-ray beam (at 20 keV) and 

parallel x-ray propagation, without scatter or quantum noise.  The projections corre-

spond to three phantoms with identical distributions of compartments: the phantom 

with 400m voxels and no PV (Fig. 6a); the 400m phantom with simulated PV (Fig. 

6b); and the phantom with 200m voxels and no PV (Fig. 6c).  Shown also is the 

difference between the projections with and without simulated PV (Fig. 6d). 

In a projection of the phantom with PV in Fig. 6b, the skin and Cooper’s ligaments 

appear thinner (as compared to the phantom without PV, Fig. 6a).  We believe this is 

caused by the reduction in the effective x-ray attenuations of voxels on the liga-

ment/adipose tissue boundaries, which are lower than the x-ray attenuation of dense 

tissue (see Fig. 5b).  Further, the characteristic stair-step quantization artifacts on 

tissue boundaries were noticeably reduced with simulated PV, as seen in the differ-

ence between PV and non PV projections (Fig 6d).  Comparison of Figs. 6b and 6c 

indicates similar appearance of a phantom with PV simulated at a lower resolution 

(400μm) to a phantom simulated at a higher resolution (200μm) with no simulated 

PV.  Hence, the application of PV may lead to an improvement in image quality with-

out reducing voxel size. 

a b c 

(a) 

(c) (d) 

(b) 



 (a)          (b)      (c)             (d) 

Fig. 6. Simulated projections of (a) a phantom with 400μm voxels and no PV; (b) the phantom 

from (a) with simulated PV; and (c) the same phantom generated at 200 μm voxels and no PV. 

(d) The difference between (a) and (b); the image contrast was enhanced for display purposes. 

 

4 Conclusion 

We have developed and qualitatively assessed a method for PV simulation of phan-

tom voxels containing up to three simulated materials.  The percentage of simulated 

tissues was estimated based upon the use of the Gauss-Ostrogradsky theorem.  Cross-

section and projections of phantoms with and without PV simulation were visually 

compared.  PV simulation can improve the quality of phantom images by reducing the 

quantization artifacts caused by large voxel sizes.   
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ABSTRACT   

A novel breast image registration method is proposed to obtain a composite mammogram from several images 

with partial breast coverage, for the purpose of accurate breast density estimation. The breast percent density 

estimated as a fractional area occupied by fibroglandular tissue has been shown to be correlated with breast 

cancer risk. Some mammograms, however, do not cover the whole breast area, which makes the interpretation 

of breast density estimates ambiguous. One solution is to register and merge mammograms, yielding complete 

breast coverage. Due to elastic properties of breast tissue and differences in breast positioning and deformation 

during the acquisition of individual mammograms, the use of linear transformations does not seem appropriate 

for mammogram registration. Non-linear transformations are limited by the changes in the mammographic 

projections pixel intensity with different positions of the focal spot.  We propose a novel method based upon 

non-linear local affine transformations. Initially, pairs of feature points are manually selected and used to 

compute the best fit affine transformation in their small neighborhood. Finally, Shepherd interpolation is 

employed to compute affine transformations for the rest of the image area. The pixel values in the composite 

image are assigned using bilinear interpolation. Preliminary results with clinical images show a good match of 

breast boundaries, providing an increased coverage of breast tissue. The proposed transformation can be 

controlled locally. Moreover, the method is converging to the ground truth deformation if the paired feature 

points are evenly distributed and its number is large enough. 

Keywords: Digital mammography, image registration, affine transformation, Shepherd interpolation. 

1. INTRODUCTION 

Breast density, the relative amount of fat and dense tissue in the breast as seen in a mammogram, has been 

shown to be correlated with breast cancer risk.  A number of methods
[1][2]

 have been proposed to measure breast 

density from mammograms. However, some mammograms do not cover the entire patient’s breast, e.g., due to 

large breast size in comparison to the x-ray imaging detector. This is of particular importance for the estimation 

of breast density, a biomarker of breast cancer risk.  Partial breast visualization limits our ability to calculate 

breast density.  One solution is to register and merge such partial mammograms, yielding complete breast 

coverage. Registration of mammograms is challenging because the mammogram is a 2D projection of non-rigid 

breast tissues.  As a result, the 3D arrangement of the breast tissue is not exactly replicated in partial projections 

of large breasts. This is further complicated by differences in mammographic compression between images.   

 

Registration techniques can be categorized as: 1) feature based techniques
[3][4]

, which use feature points to match 

the images; 2) intensity based algorithms
[5]

, which use the gray value of images; and 3) hybrid methods
[6]

 that 

generate mapping between images (using feature points) with constraint on their intensity. For all of these 

registration techniques, a transformation must be determined so that the points in warped image can be related to 

their corresponding points in the reference image. Based on the number of degrees of freedom, the 

transformation models can use linear transformation (rigid and affine), elastic models or diffeomorphic 

transformations.  Local controls cannot be achieved from the linear transformation model as the global 

parameters are computed for the entire image. The elastic model offer high order control, but the performance of 

elastic models is a balance between flexibility and computational complexity. Diffeomorphic transformations, 

which preserve topology, have resulted in good performance in a number of applications including brain MRI 

image registration.  

 

The main difficulty of feature-based methods is to extract and match intrinsic feature points from mammograms, 

as there are no significant landmarks in a mammogram except the nipple.   In this paper, a novel feature based 

approach, non-linear local affine transformation, is proposed to obtain a composite image from several images 

with partial breast coverage. Feature points are manually selected near the nipple, breast boundary and inside the 



 

 
 

 

breast based upon visual similarity in both mammograms. Affine transformations between sets of feature points 

are then computed. Finally, Shepherd interpolation
 [7]

 is used to extend affine transformations to the entire 

breast. The pixel values in the composite image are assigned using the average of different images. Results with 

clinical images show that the resulting image cover different parts of original images, and the same texture from 

both registered images has a good agreement in composite image.  

 

Qualitative testing is presented on selected images from the ACRIN DMIST database
[8]

. This work was tested 

with anonymized images obtained about IRB ethical review. A clinical image was split into two overlapping 

partial images; one partial image was transformed (the warped image), while another was not modified (the 

reference image).  Those images were treated as a pair of mammograms with different coverage.  

 

2. METHODOLOGY 

2.1 Extraction of feature points 

Our algorithm requires that feature points be extracted prior to registration, and the result of registration will 

depend on the reliability and accuracy of the extracted features. Automatic identification and extraction of 

feature points is difficult due to the non-linear compression deformation and the lack of significant landmarks in 

mammograms (Fig. 1). Typically, the features are the center of ROI, crossing points, end points and middle 

points. We observe the prominent features (such as ducts and blood vessels) from both images, Fig. 1. The 

crossing points are determined upon visual similarity in both mammograms. Due to compression and different 

positions of the breast, the coordinates of those crossing points may be different in the two mammograms, but 

the orientation of feature and local curvature of crossing points are more likely to be preserved. The advantage 

of our manual extraction is that the correspondence of two sets of feature points can be established during the 

extraction step. We also select other features (end points and middle points) in a small neighborhood around the 

selected crossing points. Subsequently, the deformation between two sets of feature points can be estimated.  

 

 

 
 

Figure 1:  Three clinical images of the same patient from ACRIN DMIST database demonstrating partial 

breast coverage. 

 

 

2.2 Best affine transformation 

Given two sets of feature points in two images that need to be registered, we assume the deformation between 

them can be approximated by affine transformation, which can be considered as a first-order approximation of 

the true transformation resulting from breast projection. 

 

We denote the two images obtained from different angle and different compression by I1 and I2, and assume 

 1 1 2, , , nS X X X  be a set of feature points in I1 (reference image), and  1 1 2, , , nT Y Y Y  be the 

corresponding set in I2 (warped image). Particularly, 1X and 1Y are the crossing points in each set, called the 

centers of 1S and 1T . The affine transformation : ( )x Ax b    mapping 1S into 1T  can be obtained by solving 

the optimization problem: 
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where A  is  a 2x2 matrix including scaling and rotation, 2b R  is a translation vector.  

 

The solution of the above optimization problem can be expressed as: 
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where 1 2, , , nX X X X    and 1 2, , , nY Y Y Y   . 

 

Similarly, for each corresponding pairs of feature sets 1 1 2 2( , ),( , ), ,( , )k kS T S T S T , we can also obtain the best 

affine transformations  1 2, , k  ,  that minimize the least square error.  Note that if we consider  i as a 

basis, then for an arbitrary point in I1, we can find its affine transformation by combining the basis with different 

non-linear weights [see equation (3) below]. 
 

 
2.3 Non-linear Local Affine Transformation 

The Shepard interpolation
 [7]

, which is a simple case of inverse distance weighting to assign value to unknown 

points based on given points, is employed to compute the local affine transformation   for each non-feature 

point in the image. 

Assume iX  and iY  are the centers of iS and iT , i.e., the affine transformation of iX is i , obtained from 

equation (2).  For any other point Z in I1, its corresponding local non-linear affine transformation  is defined 

as: 
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where i id X Z  is the Euclidean distance between iX  and Z . Note that non-linear deformation mapping is 

continuous since lim  ( )
i

i
Z X

Z 


 . Moreover, the partial derivatives with respect to two coordinates of   exist 

at all the points if 1  . We choose the default value of  as 2 for convenience of computation. The function 

( )Z  can be considered as the first order approximation of the ground truth deformation in a small neighbor of 

Z . It will converge to the ground truth deformation when the number of neighbors k is large enough and the 

feature points are evenly distributed. Note also that  can be expressed locally as a linear combination of affine 

transformations.  Moreover, local controls can be achieved if we add or delete feature sets in the region of 

interest.  

 

The purpose of our image registration is mapping both I1 and I2 into same region to get composite image, say Ic. 

I1 can be mapped to Ic by a translation transformation; while the non linear local affine transformation   was 

used to estimate the mapping between I2 and Ic, which will change the shape of image Ic. 

 

In order to initialize the size of Ic, we have to determine the maximum and minimum value of I2 under the local 

affine transformation ( )x , where x can be represented by linear combination of four corner points jc  of I2. 
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According to equation (3), we know that ( )x , the local affine transformation at point x, is the linear average of 

i with weight 1, therefore:  

max ( ) max(max ( )), min ( ) min(min ( )).i j i j
x i jx i j

x c x c                               (5) 

Now we can classify Ic 
into four different regions R1: the points x that have only inverse image y in I1; R2: the 

points x with inverse image z only from I2; R3: the points x that have inverse images y both in I1 and in I2; R4: 



 

 
 

 

the points that do not have any inverse image. The following strategy is used to assign gray values to the points 

in Ic. 
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2.4 Image validation method 

The simplest validation is obtained from examination of the pixel-wise brightness difference between the 

reference image and the transformed warped image. However, such technique does not provide good 

performance for mammogram registration due to the 3D various projections of the breast tissues. Even if the 

positions of the image features are matched in the warped image and the reference image, the pixel brightness of 

same features will be different since the path of X-ray is different. 

 

As an initial validation, individual clinical images were transformed to mimic partial coverage as illustrated in 

Fig. 2. A clinical image is split into two overlapping partial images. One partial image was transformed (the 

warped image) and another was not modified (the reference image).  Those images were treated as a pair of 

mammograms with different coverage. The registration error can be computed as the difference between the 

original image and the composite image after the registration. 

 

  

Figure 2:  Original image and partial images (1 and 2) for validation. 

 

3. RESULTS 

In this section we present preliminary results using the proposed approach applied to clinic mammograms taken 

from the ACRIN DMIST database of mammograms.  This work is a part of a larger study of racial disparity in 

breast cancer risk. For that project, breast percent density and parenchymal texture of minority women and age-

matched Caucasian controls from the ACRIN DMIST database
[8]

 are being compared.  

Fig. 3 (a,b) illustrates the registration of two images from a large breast using the proposed non-linear local 

affine transformation with 9 pairs of feature sets. The effect of the choice of reference image is shown. Fig. 3c 

shows the composition of 3 partial views that covers the whole breast.  

 

Fig. 4 illustrates the qualitative comparison of the proposed method with the result of Advanced Normalization 

Tools
[9]

, (ANTs) that computes the unsupervised optimal diffeomorphic transformation by minimizing the 

similarity measure between warped image and reference image. The registered image of the warped image (Fig. 

4a) and reference image (Fig. 4b) is shown in Fig. 4c. Fig. 4c illustrates the result of ANTs. 

 



 

 
 

 

 

Figure 3a, b: Two partial images combined following registration, showing the effect of the choice of reference image. 

Figure 3c: The same breast showing the composition of three images in figure 1 after logarithm of grayscale 

values.  

  

Fig. 5 illustrates the comparison of the original and the registered image. The reference (Fig. 5a) and the warped 

image (Fig. 5b) are obtained from Fig.2c. Fig. 5c illustrates the registered image using the proposed method, and 

Fig. 5d shows the difference between the composite and the original image (Fig. 1a after taking the logarithm).  

 

4. DISCUSSION 

To date, we have been able to achieve anecdotal results that support continued development and testing of this 

new method.  Fig. 3 (a,b) suggests that the proposed method is robust, since the results of registration are similar 

regardless of the choice of the reference image (comparing Figs. 3a and 3b. Fig. 3 indicates that the observable 

features, especially the nipple and the boundary of skin, have good agreement.  

 

Fig. 4 suggusts that the results of the proposed method are comparable to the results of the diffeomorphic 

transform implemented using ANTs, an open source software package.  Particularly, the textures of warped 

image are preserved in registered images, and the shape of registered image is similar as reference image. The 

proposed method may have difficulties in registering some regions of the image (corresponding to region R4, see 

equation (6)).  Fig. 5 suggests that the features in the composite image show good agreement. The registration 

error is smaller in the region of overlap (the upper part of the registered image), since we can extract the 

corresponding feature points only from this region. 

 

In our future work, we will apply the technique to more images in the DMIST database and develop statistical 

measures of the registration accuracy. 

 

5. CONCLUSIONS 

A novel registration task is proposed, and two methods are compared in this task.  This study indicates that our 

newly proposed method may provide fast and comparatively accurate registration of overlapping breast images. 

The method may be of value whether used standalone or for initialization of other modern registration 

techniques (e.g., diffeomorphic transformation).  The major drawback of the proposed method is the need for 

manual extraction of feature points. Further work is needed on application of automatic feature selection (e.g., 

SIFT algorithm
 [10]

).  Finally, we plan to perform more extensive quantitative validation of the proposed 

algorithm on a series reference and warped images extracted from all the applicable images in the ACRIN 

database.  
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Figure 4: Warped image (a), reference image (b) and the result using the proposed method (c) and Advanced 

Normalization Tools (ANTs)[9] (d).    
 

 

 



 

 
 

 

 
Figure 5:  Example validation.  
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ABSTRACT 
 
Software breast phantoms have been developed for use in evaluation of novel breast imaging systems. Software 
phantoms are flexible allowing the simulation of wide variations in breast anatomy, and provide ground truth for the 
simulated tissue structures. Different levels of phantom realism are required depending on the intended application. 
Realistic simulation of dense (fibroglandular) tissue is of particular importance; the properties of dense tissue – breast 
percent density and the spatial distribution – have been related to the risk of breast cancer. In this work, we have 
compared two methods for simulation of dense tissue distribution in a software breast phantom previously developed at 
the University of Pennsylvania. The methods compared are: (1) the previously used Gaussian distribution centered at 
the phantom nipple point, and (2) the proposed combination of two Beta functions, one modeling the dense tissue 
distribution along the chest wall-to-nipple direction, and the other modeling the radial distribution in each coronal 
section of the phantom. Dense tissue distributions obtained using these methods have been compared with distributions 
reported in the literature estimated from the analysis of breast CT images. Qualitatively, the two methods produced 
rather similar dense tissue distributions. The simulation based upon the use of Beta functions provides more control 
over the simulated distributions through the selection of the various Beta function parameters. Both methods showed 
good agreement to the clinical data, suggesting both provide a high level of realism. 

 
Keywords: Breast cancer imaging, anthropomorphic breast phantoms, software breast phantoms, validation, 
fibroglandular tissue distribution, Beta functions. 

1. INTRODUCTION 
Virtual Clinical Trials (VCTs) are emerging as a preclinical complement to clinical trials of breast imaging systems 
which are often longer and more expensive. In VCT, the simulations of breast anatomy, image acquisition, and model 
observers are combined to form a simulation pipeline. Realistic simulation of dense tissue is of particular importance 
since several properties of dense tissue may be used as imaging biomarkers of breast cancer risk. In this paper, we 
consider improvements to the glandular tissue distribution of the breast anatomy simulation component of the pipeline. 
 
The 2D and volumetric fractional amount of dense tissue (called breast percent density) and the spatial distribution of 
dense tissue (called parenchymal texture) are known to correlate with cancer risk [1-7]. In this work we have compared 
two methods for simulation of dense tissue distribution in our software breast phantom design. The simulated 
distributions have been compared with distributions reported in the literature estimated from the analysis of breast CT 
images [8]. Covariance profiles estimated from phantom images, created with different methods for dense tissue 
simulation, are also compared to clinical data reported in the literature [11]. 
 



2. METHODS 
 
Our proposed simulation of dense tissue is performed on breast phantoms created using a method proposed by Bakic et 
al [9]. In this proposed method, each simulated breast is divided into a predefined set of compartments. Each 
compartment consists of a seed point and a shape function. The seed point defines the compartment location, while the 
shape function defines its orientation. The values of seed points and shape functions are generated randomly based on a 
number of parameters defined by users. Each compartment is then labeled with different material types. Figure 1a) 
shows the cross section of a breast phantom where the compartments have not been labeled and figure 1b) shows a 
labeling of compartments to dense or fat tissues. A compartment is labeled as dense tissue if the criteria defined by the 
methods are met; or as fat tissue otherwise. 
 

                                                                                                                                  
                                                                 a)                                               b) 
Figure 1. a) A cross section of simulated phantom. b) Each compartment inside the phantom is labeled with tissue types (light gray – 
dense, dark gray – fat). 
 
A target number of compartments being labeled as dense is first determined based on a desired target volumetric breast 
density (VBD) defined by users. Each compartment is then assigned a probability of it being labeled as dense tissue, 
based on factors such as its location in the breast. Finally, each compartment is then labeled randomly based on its 
probability value.  

2.1. Gaussian distribution method 
The Gaussian distribution method for labeling dense components was originally proposed by Bakic et al [9]. In this 
method, the probability of a compartment labeled as dense tissue is determined by a Gaussian function: 
 
 
             (1) 
 
 
where (.)Mf  represents the compartment shape function consistent with the quadratic decision boundaries described by a 
maximum a posteriori (MAP) classifier; a is the x coordinate of a simulated nipple point (y = z = 0), si (sxi, syi, szi) are 
coordinates of seed vectors for the i-th compartment, and σ is a scaling coefficient. Z is a normalization constant chosen 
based upon a user-specified VBD of the phantom. In this method, the compartments near the nipple have a higher 
probability of being labeled as dense tissue compared to the ones further from the nipple.  
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2.2. Beta distribution method 
In the Beta distribution method, the probability of a compartment labeled as dense tissue is determined by a function 
given by the product of two separate Beta functions:  
 
 
             
                              (2) 
            
 
where: 

𝐵𝑒𝑡𝑎(𝑥; 𝑝, 𝑞) − 1
𝐵(𝑝,𝑞)

𝑥𝑝−1(1 − 𝑥)𝑞−1, 0 ≤ 𝑥 ≤ 1,𝐵(𝑝, 𝑞) =  ∫ 𝑡𝑝−11
0 (1 − 𝑡)𝑞−1𝑑𝑡, 

sxi is the distance of i-th seed point from the chest wall in posterior to anterior direction; ri is the radial distance of seed 
point from center of its coronal slice; and Ri is the maximum radius of the coronal plane containing the i-th seed point. 
 
Since these two beta functions are functions of distance in different directions, the distributions of dense tissue can be 
controlled separately in the chest wall to nipple direction and radial direction. Moreover, the shape of the beta function 
changes with different (p, q) values. Figure 2 shows two examples of beta function where the shapes are one-sided or 
two-sided depending on the values of (p, q).  

              
   a)                             b) 

 
Figure 2: Beta distributions of two different (p, q) values: a) p = 2, q = 3.5; b) p = 1.0, q = 0.75. 

2.3. Simulated acquisition of phantom images 
Simulated mammograms are generated using software phantoms in a 2-step procedure.  First, the breast deformation 
due to clinical mammographic compression is simulated by a finite element model [10]. The finite element model is 
implemented, using Abaqus (version 6.10-EF; Dessault Systèmes Americas, Waltham, MA), assuming a hyperelastic, 
almost incompressible material model for breast tissue, and 50% reduction in phantom thickness.  Second, projection 
images of compressed phantoms are simulated using a ray-tracing method.  The x-ray image acquisition model assumes 
a mono-energetic x-ray beam with the energy of 20 keV and an ideal detector with 100µm pixel size.  The quantum 
noise is simulated by Poisson random variations and added to all simulated images.  

2.4. Statistical analysis of phantom data 

2.4.1. Analysis of dense tissue distributions 
The dense tissue simulated using different methods are quantified using metrics defined in Huang et al [8], called Radial 
Glandular Fraction (RGF) and Coronal Glandular Fraction (CGF). 
 
RGF and CGF are defined as 
 

𝑅𝐺𝐹𝑛(𝑟) = �
𝑁𝐷(𝑟, 𝑥)

𝑁𝐷(𝑟, 𝑥) + 𝑁𝐴(𝑟, 𝑥)
�
𝑥𝜖𝑛

               (3) 
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where  ND is the number of pixels labeled as dense tissue,NA is the number of pixels labeled as adipose tissue, and n 
indicates portion of breast,  n∈{Posterior, Middle Breast, Anterior}. 
 
The RGF is used to quantify the distribution of simulated dense tissue based on the distance from center of the coronal 
slice in each region breast region (Posterior, Middle, and Anterior), while the CGF is used to quantify the distribution of 
simulated dense tissue in the posterior to anterior direction. 

2.4.2. Analysis of covariance in simulated Images 
Projection images were simulated for software phantoms with dense tissues labeled using either Gaussian or Beta 
distribution method with different sets of parameters. Covariance matrix elements [11] are defined as 
 

𝐾𝑖𝑗 =  �(𝑔𝑖 − 𝑔𝑖)�𝑔𝑗 − 𝑔𝑗��  ,                (5) 
 

where 𝑔𝑖 and 𝑔𝑗 are pixel values at the positions whose covariance is being estimated.  The covariance matrix of each 
image set is assumed to be stationary; i.e. the covariance is independent of the location of their ROIs.  We estimated 
covariance matrix elements along two orthogonal directions (chest-to-nipple and top-to-bottom) using ROIs of 4.35cm 
× 4.35cm in the regions of simulated images with constant thickness of the compressed phantom. A total number of 25 
windows (1.45cm × 1.45cm) of 50% overlap in each ROI were used to calculate covariance matrix elements.  To 
compare the covariance matrices of images simulated using different methods and parameters as well as with clinical 
data, the full width at half maximum (FWHM) of the average normalized covariance was used as the metric.      

2.5. Materials 
We compared the statistical properties of the phantom data to the clinical data reported in the literature [8] [11]. All 
phantoms were simulated with a breast volume of 450ml with resolution of 200µm per voxel. Each phantom contains 
333 compartments randomly located and oriented inside the breast. Three phantom instances were simulated for each 
pair of distribution method/parameter and VBD value.  The distribution parameters: σ in Gaussian method, and (p1, q1, 
p2, q2) in Beta method, were chosen manually based on user experience. Two sets of beta distribution parameters with 
different sidedness were chosen in order to interrogate the effects of the sidedness in beta functions. Table 1 shows the 
three sets of parameters used in the study.  
 
Table 1. Distribution methods and parameter values used in the study. 
 

Distribution methods Parameter values 
Gaussian σ = 5.0 
Beta1 p1=2.0, q1=0.5, p2=2.0, q2=3.5 
Beta2 p1=4.0, q1=0.5, p2=1.0, q2=4.5 

 
In our study, we created a total of 27 phantoms which consisted of 3 phantoms for each pair of VBD (20, 30, and 40%) 
and parameter in Table 1. 

3. RESULTS  

3.1. Probability maps of simulated dense tissue distribution 
Probability values of dense tissue plotted on phantom surface provide a useful insight on the spatial characteristics of 
the method. Figure 3 shows the probability maps of phantoms created using the distribution parameters in Table 1. The 
probability map of Beta1 indicates a more uniformly distribution of probability, while Beta2 indicates a more 
concentrated probability near the nipple.     
 



               a)                     b)                           c)   
Figure 3: Probability maps of compartments labeled as dense tissues: a) Gaussian b) Beta1 and c) Beta 2.  

3.2. Dense tissue simulation 
Based on the probability values, calculated for each phantom compartment using the selected simulated method, the 
compartments are randomly labeled as containing dense or adipose tissue. Figure 4 shows the examples of phantoms of 
the same definition of compartment locations and orientations with dense tissue simulated using three sets of 
distribution parameters in Table 1. Compared to Gaussian and Beta2, dense tissue simulated using Beta1 are more 
distributed inside the breast. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  a)    b)    c) 
Figure 4: Phantoms with dense tissue simulated using a) Gaussian; b) Beta1; and c) Beta2.  

3.3. RGF 
The analysis of RGF is intended to compare dense tissue distributions simulated using different methods and parameters 
to clinical data, based on the radial distance from the center of the coronal plane. In order to have a close comparison 
with the clinical data, each breast phantom was divided into three equal thickness regions (Posterior, Middle, and 
Anterior).  The RGFs were then measured separately in each of these three regions. Figure 5 a) to c) show the average 
RGFs of simulated phantoms using the three pre-defined parameters. Figure 5 d) to f) (the dash lines) show the average 
RGFs measured from the clinical data by Huang et al [8]. It was observed that the RGFs of the three distribution 
parameters in Table 1 result in similar trend as clinical data. Among the three distribution parameters, Beta2 method 
results in the best fit to the clinical data qualitatively. 
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                                             a) 

 

    b)    

      
                            c)                               f)                  

Figure 5: Average RGFs estimated from the simulated and clinical data. a)–c) The average RGFs in anterior, middle and posterior 
regions of simulated data, respectively. d)—f) The average RGFs in the respective regions, estimated from clinical data; (reprinted 
with permission from Huang et al. [8]).  The total and 25-75 percentile regions are indicated by dark and bright colors, respectively.  
The mean and median values are indicated by dash and solid lines, respectively.    
 
 
 
 
 

d) 

e) 



3.4. CGF 
The analysis of CGF is intended to compare dense tissue distributions simulated using different methods and parameters 
to clinical data, based on the distance from the chest wall. Figure 6 a) shows the average CGFs measured from 
simulated distribution parameters in Table 1, and the dash line in Figure 6 b) shows the average CGFs measured from 
clinical data. Similar to the clinical data, the average CGFs measured from the simulated data increases with the coronal 
distance from the chest wall. 

  
   a)       b) 
Figure 6: a) Average CGFs estimated from simulated data. b) Average CGFs (dash line) estimated from clinical data; (reprinted with 
permission from Huang et al [8].) 

3.5. Simulated phantom images  
Software phantoms created with different distribution methods and parameters are deformed to simulate breast 
compression during mammography acquisitions. Figure 7 shows the simulated acquisitions of phantoms with dense 
tissue created using the parameters in Table 1. Compared to Gaussian and Beta2, the dense tissue is more widely 
distributed in the image simulated using Beta1.  
 

                                                
   a)      b)        c) 
Figure 7: Simulated x-ray acquisition of phantoms using a) Gaussian method; b) Beta1 method; and c) Beta2 method. 



3.6. Covariance analysis of simulated images  
Average normalized covariance matrices measured from simulated acquisitions are shown in Figure 8 as function of the 
relative distance.  The relative distance is equal to the spatial distance normalized by the window size used for 
estimating the covariance in the simulated images.  Two windows are completely overlapped when the relative distance 
is 0, while only one row or column of pixels are overlapped when the relative distance is 1 or -1.  The FWHMs of the 
average normalized covariance matrices are 0.381 (Gaussian), 0.433 (Beta1) and 0.344 (Beta2) for posterior-to-anterior 
direction; and 0.296 (Gaussian), 0.366 (Beta1) and 0.237 (Beta2) for top-to-bottom direction.    
 

 
                                                a)                                                                                             d) 
                               

 
                                                b)                      e)                   
 

 
                                                c)                                                                                            f) 
Figure 8:  The profiles of average normalized covariance matrix measured from simulated acquisitions. Figure a) to c) are the 
profiles in posterior-to-anterior direction measured from a) Gaussian method; b) Beta1; and c) Beta2 method. Figures d) to f) are the 
respective profiles in top-to-bottom direction.  
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3.7. Comparing covariance profiles between simulated and clinical data 
The covariance profiles in both posterior-to-anterior and top-to-bottom directions measured in simulated data are 
compared to ones measured from clinical data [11], using FWHM as the metric. Among the three distribution 
parameters in Table 1, Beta1 most closely matches the clinical data in both directions.  Figure 9 shows the covariance 
profiles estimated from phantom images and clinical data.  (Similar as in Figure 8, the relative distance is calculated as 
normalized by the window size used for the covariance calculation in the simulated images.) 
 
 

  
                                                     a)                                                                                             b) 
Figure 9: Profiles of average normalized covariance matrices in a) posterior-to-anterior direction; and b) top-to-bottom direction 
from simulated data created with Beta1 method and clinical data (modified from Freed et al. [11]). FWHMs measured from clinical 
data are 0.450(posterior-to-anterior) and 0.466 (top-to-bottom). FWHMs measured from simulated data using Beta1 are 0.433 
(posterior-to-anterior) and 0.366 (top-to-bottom). 
 

4. DISCUSSION 
 

We implemented and compared the simulations of dense tissue using two different methods. Comparing to the Gaussian 
method using the Cartesian distance from the nipple, the Beta method separates the distance into radial and coronal 
distance. The use of beta functions offers higher control in the shape of distribution function such as its skewness and 
sidedness. The combination of extra flexibility in direction and the distribution functions provides additional freedom 
for the user to control the result of the dense tissue simulation. 

 
The statistical properties such as RGF, CGF, and covariance matrices from data simulated using different methods and 
parameters shows Beta method has a better match to clinical data compared to Gaussian method. Careful optimization 
of the parameters in Gaussian method and in Beta method would be desirable to improve the matching between 
statistical properties measured in simulated and clinical data. Computing methods such as simulated annealing [12] and 
genetic programming [13] could be utilized for the tasks of parameter optimizations.  
 
When comparing the RGFs of simulated versus clinical data near anterior breast region, a sudden drop off of glandular 
fraction is observed in the clinical data (Figure 5 a) and d)). The drop off is likely caused by the existence of 
subcutaneous fat around the nipple area. The existing simulation model used in our study does not correctly model the 
subcutaneous fat.  
 
We observe a difference in normalized covariance between simulated and clinical data when the sampling windows are 
distant from each other. We believe that this could be the result of two factors. First it could be caused by the difference 
of ROI sizes used in simulated and clinical data. Smaller ROIs are used in measuring the simulated data, because of a 
restriction of the smaller region where uniform thickness exists in the compressed phantom. Second, there could be long 
distance correlations in the clinical data that are not modeled in the simulation.  
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5. CONCLUSION 
 
We have proposed a novel method to assign dense compartments based upon Beta distributions. The new method offers 
better user control in spatial directions and shape of distribution function. We compared the simulated results with 
clinical images using CGF and RGF, and showed qualitative agreement. Future work includes quantitative evaluation of 
the agreement and selection of optimal distribution parameters. 
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