

AFRL-RQ-WP-TR-2014-0226

RAPID RESPONSE RESEARCH AND DEVELOPMENT (R&D) FOR THE AEROSPACE SYSTEMS DIRECTORATE Delivery Order 0021: Engineering Research and Technical Analyses of Advanced Airbreathing Propulsion Fuels Subtask: Fit-For-Purpose (FFP) and Dynamic Seal Testing of Alternative Aviation Fuels Scott A. Hutzler, Nigil Jeyashekar, and Keri M. Petersen Southwest Research Institute (SwRI®)

AUGUST 2014 Interim Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY AEROSPACE SYSTEMS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7541 AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public Affairs Office (PAO) and is available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RQ-WP-TR-2014-0226 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature//

JAMES T. EDWARDS Program Manager Fuels and Energy Branch Turbine Engine Division //Signature//

MIGUEL A. MALDONADO, Chief Fuels and Energy Branch Turbine Engine Division

//Signature// ROBERT HANCOCK, PhD Principal Scientist Turbine Engine Division

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government's approval or disapproval of its ideas or findings.

*Disseminated copies will show "//Signature//" stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS .			
1. REPORT DATE (DD-MM-YY)	2. REPORT TYPE	3. DATE	S COVERED (From - To)
August 2014	Interim	06	5 December 2011 – 22 July 2014
4. TITLE AND SUBTITLE RAPID RESPONSE RESEARCH AND DEVELOPMENT (R&D) FOR THE AEROSPACE SYSTEMS DIRECTORATE Delivery Order 0021: Engineering Research and Technical Analyses of Advanced Airbreathing Propulsion Fuels			5a. CONTRACT NUMBER FA8650-08-D-2806-0021 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 63216F
Fuels	Dynamic Scar Testing of Anemati	ve Avlation	
6. AUTHOR(S) Scott A. Hutzler, Nigil Jevashekar	and Keri M. Petersen		5d. PROJECT NUMBER 2480
			5e. TASK NUMBER
			5f. WORK UNIT NUMBER
			Q0SJ
7. PERFORMING ORGANIZATION NAME(S) AN By: Southwest Research Institute 6220 Culebra Road San Antonio, TX 78228	ND ADDRESS(ES) For: Universal Technology Corpor 1270 N. Fairfield Road Dayton, OH, 45432-2600	ration	8. PERFORMING ORGANIZATION REPORT NUMBER 08.17149
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory Aerospace Systems Directorate		10. SPONSORING/MONITORING AGENCY ACRONYM(S) AFRL/RQTF	
Wright-Patterson Air Force Base, OH 45433-7541 Air Force Materiel Command United States Air Force		11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AFRL-RQ-WP-TR-2014-0226	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited.			
13. SUPPLEMENTARY NOTES PA Case Number: 88ABW-2014-44	141; Clearance Date: 24 Sep 2014.		
14. ABSTRACT Alternative aviation fuels derived from a number of emerging synthetic pathways were subjected to fit-for-purpose analysis and other specification testing. The fuels included in the study were of the type: direct sugar-to-hydrocarbon (DSHC), alcohol-to-jet (ATJ), hydrotreated depolymerized cellulosic jet (HDCJ), hydro-deoxygenated synthesized kerosene (HDO-SK), and catalytic hydrothermolysis (CH).			
15. SUBJECT TERMS			
alternative fuels, fit-for-purpose, se	al, material compatibility, DSHC, A	ΓJ, HDCJ, H	DO-SK, CH 8
16. SECURITY CLASSIFICATION OF:	17. LIMITATION 18. NUMBER 1	9a. NAME OF	RESPONSIBLE PERSON (Monitor)

16. SECURITY	CLASSIFICATIO	N OF:	17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	of abstract: SAR	OF PAGES 294	James T. Edwards 19b. TELEPHONE NUMBER (Include Area Code) N/A

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18

<u>Section</u> <u>P</u>	age
List of Figures	iv
List of Tables	vii
Preface	.viii
1.0 EXECUTIVE SUMMARY	1
1.1 Effect of Aromatic Content on Dynamic Seal Properties and Performance	1
1.2 Fit-For-Purpose (FFP) Testing of Alternative Aviation Fuels	1
1.3 Effect of Fame Contamination on Permittivity and Density	2
2.0 INTRODUCTION	3
Appendix A Task 1B – Dynamic Seal Testing	4
A.1.0 INTRODUCTION AND OBJECTIVE	8
A.2.0 TECHNICAL APPROACH	9
A.3.0 RESULTS	10
A.3.1 Dynamic Seal Performance	10
A.3.2 Elastomer Weight	11
A.3.3 Elastomer Thickness and Hardness	11
A.3.4 Volume Change	13
A.4.0 CONCLUSIONS	14
A.5.0 RECOMMENDATIONS FOR FUTURE RESEARCH	15
Appendix B Task 1A & 6 – Fit-For-Purpose and Miscellaneous Testing	16
Executive Summary	22
Acronyms & Abbreviations	23
B.1.0 INTRODUCTION	25
B.2.0 METHODS, ASSUMPTIONS, AND PROCEDURES	26
B.2.1 Sample Terminology	26
B.2.2 Test Methods and Specifications	26
B.2.3 Non-Standard Test Methods	26
B.2.3.1 Thermal Conductivity (Transient Hot Wire)	27
B.3.0 RESULTS AND DISCUSSION	28
B.3.1 Sample Cross-Reference	28
B.3.2 Evaluation of Alternative Aviation Fuels and Blendstocks	28
B.3.2.1 AMJ $700 - \text{Jet A Blend}$	28
B.3.2.2 Swedish Biofuel / Jet A Blend	28
B.3.2.3 K10r HDCJ	28
B.3.2.4 Virent SK / Jet A Blend	29
B.3.2.5 AKA Keadijet	29
B.3.2.6 Total / Amyris Farnesane Blends	29
B.3.3 Miscellaneous Testing	29
B.3.3.1 Additional Amyris Testing	29
D.3.3.2 Baseline U-King Testing D.2.2.2 Additional Testing for Tri Service Semples	
D.3.3.3 Auditional results for fri-Service Samples	
D.5.5.4 Derived Cetane Number (IQ1) Analysis	
D.3.4 Discussion of Second and Icontraria Dully Madulus	
D.3.4.1 Speed-of-Sound and Isentropic Bulk Modulus	30

Table of Contents

Section

Page

B.3.4.3 Vapor Pressure (D6378)32B.3.4.4 Density (D4052)32B.3.4.5 Dielectric Constant37B.3.4.6 Spontaneous Ignition40B.3.4.7 Minimum Ignition Energy (ASTM E582)41B.3.4.8 Upper/Lower Explosion Limits (E681)42B.3.4.9 Specific Heat Capacity (E2716)42B.3.4.10 Thermal Conductivity (Transient Hot Wire)45B.3.4.12 BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)48B.3.4.13 Water Content (D6304) vs. Temperature48B.3.4.14 Kinematic Viscosity (D445)51B.3.4.15 Electrical Conductivity (V2624) vs. SDA Concentration (Stadis 450)54
B.3.4.4 Density (D4052)32B.3.4.5 Dielectric Constant37B.3.4.6 Spontaneous Ignition40B.3.4.7 Minimum Ignition Energy (ASTM E582)41B.3.4.8 Upper/Lower Explosion Limits (E681)42B.3.4.9 Specific Heat Capacity (E2716)42B.3.4.10 Thermal Conductivity (Transient Hot Wire)45B.3.4.11 Surface Tension (D1331A)45B.3.4.12 BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)48B.3.4.13 Water Content (D6304) vs. Temperature48B.3.4.14 Kinematic Viscosity (D445)51B.3.4.15 Electrical Conductivity (D2624) vs. SDA Concentration (Stadis 450)54
B.3.4.5 Dielectric Constant37B.3.4.6 Spontaneous Ignition40B.3.4.7 Minimum Ignition Energy (ASTM E582)41B.3.4.8 Upper/Lower Explosion Limits (E681)42B.3.4.9 Specific Heat Capacity (E2716)42B.3.4.10 Thermal Conductivity (Transient Hot Wire)45B.3.4.11 Surface Tension (D1331A)45B.3.4.12 BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)48B.3.4.13 Water Content (D6304) vs. Temperature48B.3.4.14 Kinematic Viscosity (D445)51B.3.4.15 Electrical Conductivity (D2624) vs. SDA Concentration (Stadis 450)54
B.3.4.6 Spontaneous Ignition40B.3.4.7 Minimum Ignition Energy (ASTM E582)41B.3.4.8 Upper/Lower Explosion Limits (E681)42B.3.4.9 Specific Heat Capacity (E2716)42B.3.4.10 Thermal Conductivity (Transient Hot Wire)45B.3.4.11 Surface Tension (D1331A)45B.3.4.12 BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)48B.3.4.13 Water Content (D6304) vs. Temperature48B.3.4.14 Kinematic Viscosity (D445)51B.3.4.15 Electrical Conductivity (D2624) vs. SDA Concentration (Stadis 450)54
B.3.4.7 Minimum Ignition Energy (ASTM E582)41B.3.4.8 Upper/Lower Explosion Limits (E681)42B.3.4.9 Specific Heat Capacity (E2716)42B.3.4.10 Thermal Conductivity (Transient Hot Wire)45B.3.4.11 Surface Tension (D1331A)45B.3.4.12 BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)48B.3.4.13 Water Content (D6304) vs. Temperature48B.3.4.14 Kinematic Viscosity (D445)51B.3.4.15 Electrical Conductivity (D2624) vs. SDA Concentration (Stadis 450)54
B.3.4.8 Upper/Lower Explosion Limits (E681)42B.3.4.9 Specific Heat Capacity (E2716)42B.3.4.10 Thermal Conductivity (Transient Hot Wire)45B.3.4.11 Surface Tension (D1331A)45B.3.4.12 BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)48B.3.4.13 Water Content (D6304) vs. Temperature48B.3.4.14 Kinematic Viscosity (D445)51B.3.4.15 Electrical Conductivity (D2624) vs. SDA Concentration (Stadis 450)54
B.3.4.9 Specific Heat Capacity (E2716)42B.3.4.10 Thermal Conductivity (Transient Hot Wire)45B.3.4.11 Surface Tension (D1331A)45B.3.4.12 BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)48B.3.4.13 Water Content (D6304) vs. Temperature48B.3.4.14 Kinematic Viscosity (D445)51B.3.4.15 Electrical Conductivity (D2624) vs. SDA Concentration (Stadis 450)54
B.3.4.10Thermal Conductivity (Transient Hot Wire)45B.3.4.11Surface Tension (D1331A)45B.3.4.12BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)48B.3.4.13Water Content (D6304) vs. Temperature48B.3.4.14Kinematic Viscosity (D445)51B.3.4.15Electrical Conductivity (D2624) vs. SDA Concentration (Stadis 450)54
B.3.4.11Surface Tension (D1331A)45B.3.4.12BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)48B.3.4.13Water Content (D6304) vs. Temperature48B.3.4.14Kinematic Viscosity (D445)51B.3.4.15Electrical Conductivity (D2624) vs. SDA Concentration (Stadis 450)54
B.3.4.12 BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)
B.3.4.13 Water Content (D6304) vs. Temperature
B.3.4.14 Kinematic Viscosity (D445)
B 3.4.15 Electrical Conductivity (D2624) vs. SDA Concentration (Stadis 450) 54
D.5.4.15 Electrical Conductivity ($D2024$) vs. SDA Concentration (Statis 450)54
B.3.4.16 Electrical Conductivity vs. Temperature
B.3.4.17 Elastomer Compatibility
B.3.5 PQIS Comparison
B.4.0 CONCLUSIONS 69
B.5.0 RECOMMENDATIONS
B.6.0 REFERENCES
Appendix BA Amyris AMJ 700 / Jet A Evaluations
Appendix BB Swedish Biofuel / Jet A Data
Appendix BC Kior HDCJ Evaluations
Appendix BD Virent Evaluations
Appendix BE ARA (ReadiJet) Evaluations
Appendix BF Total / Amyris Blends
Appendix BG Miscellaneous Amyris Testing
Appendix BH O-Ring Material Compatibility Testing
Appendix BI Miscellaneous Tri-Service Sample Testing
Appendix BJ EPA Testing Reports: CL12-3339 and CL12-3599
Appendix BK EPA Testing Report: CL12-3883
Appendix BL EPA Testing Report: CL12-4367
Appendix BM EPA Testing Report: CL13-4826
Appendix BN EPA Testing Reports: CL12-4716 and CL12-4717
Appendix BO EPA Testing Reports: CL13-5265
Appendix BP Certificates of Analysis (CoA) by POSF Number
Appendix C Effect of FAME Contamination on Permittivity and Density
C.1.0 Introduction
C.2.0 Background
C.3.0 Test Materials
C.3.1Fuel
C.3.2FAME Contaminant
C.3.3FAME Contaminated Jet A
C.4.0 Test equipment

Section	Page
C.5.0 Technical Approach	
C.5.1 Test Temperatures	
C.5.2 Temperature Sequence Order	
C.5.3 Test Method	
C.6.0 Results and Discussions	
C.6.1 Measured Density Data	
C.6.2 Measured Permittivity Values and Corresponding Density Values	
C.6.3Permittivity vs. Temperature	
C.6.4Density vs. Temperature	
C.6.5 Density vs. Permittivity	
C.6.6Permittivity vs. Temperature vs. FAME Concentration	
C.6.7 Density vs. Temperature vs. FAME Concentration	
C.6.8Density vs. Permittivity vs. FAME Concentration	
C.6.9Permittivity vs. FAME Concentration	
C.6.10 Comparison of all the Results to CRC Data	
C.6.10.1 Permittivity vs. Temperature	
C.6.10.2 Density vs. Temperature	
C.6.10.3 Density vs. Permittivity	
C.6.11 Miscellaneous Supporting Data	
C.6.11.1 Density of n-hexane	
C.6.11.2 Permittivity of Cyclohexane	275
C.7.0 Conclusions	
Appendix CA Jet A Certificate of Analysis	
Appendix CB SwRI Permittivity Procedure	

List of Figures

Figure	Page
Figure A-1. Dynamic Seal Performance	
Figure A-2. Elastomer Weight versus Aromatic Content	
Figure A-3. Elastomer Thickness versus Aromatic Content	
Figure A-4. Elastomer Hardness versus Aromatic Content	
Figure A-5. Aromatic Content versus Volume Change	
Figure B-1. Speed of Sound (30 °C at Atmospheric Pressure)	
Figure B-2. Isentopic Bulk Modulus (30 °C at Atmospheric Pressure)	
Figure B-3. Distillation (D86)	
Figure B-4. Absolute Vapor Pressure (D6378) – Raw Data	
Figure B-5. Absolute Vapor Pressure (D6378) – Arrhenius Plot	
Figure B-6. Density (D4502)	
Figure B-7. Dielectric Constant vs. Temperature	
Figure B-8. Dielectric Constant vs. Density	
Figure B-9. Autoignition Temperature	
Figure B-10. Hot Surface Ignition Temperature	
Figure B-11. Minimum Ignition Energy	
Figure B-12. Explosion Limits	
Figure B-13. Reversing Heat Capacity	
Figure B-14. Thermal Conductivity	
Figure B-15. Surface Tension (D1331A) vs. Temperature	
Figure B-16. BOCLE (D5001) vs. CI/LI Concentration (DCI-4A)	
Figure B-17. Water Content (D6304) vs. Temperature	
Figure B-18. Kinematic Viscosity (D445)	
Figure B-19. Kinematic Viscosity by ASTM D445/D341	
Figure B-20. Kinematic Viscosity by ASTM D445/D341	
Figure B-21. Electrical Conductivity vs. Stadis 450 Concentration	
Figure B-22. Electrical Conductivity vs. Temperature	
Figure B-23. Elastomer Compatibility – Tensile Strength	
Figure B-24. Elastomer Compatibility – Volume Change	
Figure B-25. PQIS Comparison: Initial Boiling Point	
Figure B-26. PQIS Comparison: 10% Recovered	59
Figure B-27. PQIS Comparison: 20% Recovered	59
Figure B-28. PQIS Comparison: 50% Recovered	
Figure B-29. PQIS Comparison: 90% Recovered	
Figure B-30. PQIS Comparison: Final Boiling Point	61
Figure B-31. PQIS Comparison: Density (D4052)	61
Figure B-32. PQIS Comparison: Aromatics (D1319)	
Figure B-33. PQIS Comparison: Olefins (D1319)	
Figure B-34. PQIS Comparison: Hydrogen Content (D3701)	
Figure B-35. PQIS Comparison: Viscosity at -20°C (D445)	
Figure B-36. PQIS Comparison: Water Content (D6304)	
Figure B-37. PQIS Comparison: Microseparometer (D3948)	
Figure B-38. PQIS Comparison: Smoke Point (D1322)	

Figure

Page

Figure B-39. PQIS Comparison: Naphthalene Content (D1840)	65
Figure B-40. PQIS Comparison: Sulfur Mercaptan (D3227)	66
Figure B-41. PQIS Comparison: Acid Number (D3242)	66
Figure B-42. PQIS Comparison: Existent Gums (D381)	67
Figure B-43. PQIS Comparison: Net Heat of Combustion (D4809)	67
Figure B-44. PQIS Comparison: Sulfur Content (D2622)	68
Figure BA-1. Tensile Strength – Amyris AMJ 700 / Jet A Blend	77
Figure BA-2. Volume Change – Amyris AMJ 100 / Jet A Blend	77
Figure BB-1. Tensile Strength – Swedish Biofuel / Jet A Blend	83
Figure BB-2. Volume Change – Swedish Biofuel / Jet A Blend	83
Figure BC-1. Tensile Strength – Kior HDCJ / Jet A Blend	89
Figure BC-2. Volume Change – Kior HDCJ / Jet A Blend	89
Figure BD-1. Tensile Strength – Virent / Jet A Blend	95
Figure BD-2. Volume Change – Virent / Jet A Blend	95
Figure BE-1. Tensile Strength – ARA ReadiJet	100
Figure BE-2. Volume Change – ARA ReadiJet	101
Figure BF-1. Tensile Strength – Total / Amyris 20% Blend	107
Figure BF-2. Volume Change – Total / Amyris 20% Blend	107
Figure BF-3. Tensile Strength – Total / Amyris 10% Blend	108
Figure BF-4. Volume Change – Total / Amyris 10% Blend	108
Figure BH-1. Tensile Strength – Jet A (CL12-4134)	113
Figure BH-2. Volume Change – Jet A (CL12-4134)	113
Figure BH-3. Tensile Strength – JP-8 (CL11-2680, POSF4751)	114
Figure BH-4. Volume Change – JP-8 (CL11-2680, POSF4751)	114
Figure BH-5. Tensile Strength – 50/50 GEVO ATJ / Low ArH JP8	115
Figure BH-6. Volume Change – 50/50 GEVO ATJ / Low ArH JP8	115
Figure C-1. Permittivity vs. Temperature – Neat Jet A	262
Figure C-2. Permittivity vs. Temperature - 100 ppmw FAME	262
Figure C-3. Permittivity vs. Temperature - 400 ppmw FAME	263
Figure C-4. Density vs. Temperature – Neat Jet A	263
Figure C-5. Density vs. Temperature 100 ppmw FAME	264
Figure C-6. Density vs. Temperature - 400 ppmw FAME	264
Figure C-7. Density vs. Permittivity – Neat Jet A	265
Figure C-8. Density vs. Permittivity - 100 ppmw FAME	265
Figure C-9. Density vs. Permittivity - 400 ppmw FAME	266
Figure C-10. Permittivity vs. Temperature vs. FAME Concentration	266
Figure C-11. Density vs. Temperature vs. FAME Concentration	267
Figure C-12. Density vs. Permittivity vs. FAME Concentration	267
Figure C-13. Permittivity vs. Density vs. FAME Concentration	268
Figure C-14. Permittivity vs. Temperature – Neat Jet A (w/ CRC Limits)	269
Figure C-15. Permittivity vs. Temperature – 100 ppm FAME (w/ CRC Limits)	269
Figure C-16. Permittivity vs. Temperature – 400 ppm FAME (w/ CRC Limits)	270
Figure C-17. Density vs. Temperature – Neat Jet A (w/ CRC Limits)	270
Figure C-18. Density vs. Temperature – 100 ppm FAME (w/ CRC Limits)	271
Figure C-19. Density vs. Temperature – 400 ppm FAME (w/ CRC Limits)	271

<u>Figure</u>	<u>I</u>	Page
Figure C-20. D	Density vs. Permittivity – Neat Jet A (w/ CRC Limits)	272
Figure C-21. D	Density vs. Permittivity – 100 ppm FAME (w/ CRC Limits)	273
Figure C-22. D	Density vs. Permittivity – 400 ppm FAME (w/ CRC Limits)	273
Figure C-23. Pe	Permittivity vs. Temperature – Cyclohexane	275

List of Tables

Table	Page
Table A-1. Representative Fuel Samples for Dynamic Seal Tests	9
Table A-2. Dynamic Seal Test Results	10
Table B-1. Sample Identifiers	
Table B-2. Reversing Heat Capacity	43
Table BA-1. Amyris AMJ 700 / Jet A Evaluations	
Table BB-1. Swedish Biofuel / Jet A Evaluations	
Table BC-1. Kior HDCJ Evaluations	84
Table BD-1. Virent Evaluations	90
Table BE-1. ARA (ReadiJet) Evaluations	96
Table BF-1. Total / Amyris Blends Evaluations	102
Table BG-1. Amyris Jet A-1 (CL13-5265)	109
Table BG-2. Additional Results for Amyris 10% Farnesane Blend (CL13-4717)	110
Table BG-3. Amyris Viscosity Analysis of Seven Fuels	111
Table BI-1. Additive Compatibility for Nominal Jet A (DLA #22, CL13-5892)	116
Table BI-2. Additional Results for Nominal Jet A (DLA Sample #22, CL13-5892)	116
Table BI-3. Nitrogen Results for DLA Samples	117
Table BI-4. Surface Tension Results for Three (3) Tri-Service Samples	117
Table C-1. Test Point Sequence	258
Table C-2. Density Data	259
Table C-3. Measured Permittivity and Extrapolated Density Values NEAT Jet A	260
Table C-4. Measured Permittivity and Extrapolated Density Values 100 ppm FAME in Je	et A 260
Table C-5. Measured Permittivity and Extrapolated Density Values 400 ppm FAME in Je	et A 261
Table C-6. Density Values for n-hexane	274
Table C-7. Permittivity of Cyclohexane	275
Table C-8. Literature Values for Permittivity of Cyclohexane	275

Preface

This report was prepared for the Universal Technology Corporation (UTC), 1270 North Fairfield Road, Dayton, Ohio, 45432-2600 under Sub Contract Number 12-S590-0021-02-C1 (Contract Number FA8650-08-D-2806 Task Order 0021, SwRI task numbers 1a, 1b, 6) for the Air Force Research Laboratory's Fuel & Energy Branch (AFRL/RQTF). Ms. Michele Puterbaugh (UTC) was the Task Order Program Manager for this effort. Ms. Amanda Welch (UTC) was the Task Order Assistant Program Manager for this effort. Mr. James Klein, (Subcontractor, Klein Consulting LLC), was the technical leader in support of Dr. James T. Edwards, Government Task Order Program Manager and Technical Point of Contact, of the Energy & Fuels Branch, (AFRL/RQTF), Turbine Engine Division, Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio. The research reported herein was performed by Southwest Research Institute, 6220 Culebra Road, San Antonio, TX and covers the period of 06 December 2011 – 22 July 2014. This effort was funded by the Air Force Research Laboratory.

1.0 EXECUTIVE SUMMARY

1.1 Effect of Aromatic Content on Dynamic Seal Properties and Performance

The research task was an extension of work that was conducted on dynamic seal test rig under Report No. AFRL-RQ-WP-TM-2013-0010. This report addressed the engineering performance and properties of elastomer O-rings; and compared the results from alternative fuel and alternative fuel blends to conventional jet fuel. The objective of this task was to address the effect of aromatic content on dynamic performance of the O-ring seal and its properties.

The test fuel set consists of two JP-8 fuels, with 24% and 13% aromatic content. The remaining four test fuel set consisted of R-8/JP-8 blends with aromatic content ranging from 8% to 1%. A pair of Buna-N O-rings was tested at 200°F until failure (fuel leak).

Based on the results from the dynamic seal tests, it was concluded that, at higher aromatic content there was a net weight gain by the elastomer due to absorption of fuel, which resulted in increase in percentage thickness and provided the O-ring sufficient squeeze and sealing capability throughout its operation. At higher aromatic content, the hardness increased and provided the O-ring with sufficient elastic modulus along with sufficient volume swell for sealing application. As the aromatic content decreased, the loss of O-ring material into fuel coupled with decreased thickness (elastomer squeeze) and/or insufficient volume swell, resulted in O-ring failure.

The overall conclusion was that the non-linear nature of the elastomer performance curve was directly related to the percentage thickness change and hence, elastomer squeeze of the O-ring. The elastomer weight, hardness and volume swell measurements were used to understand fuel absorption, material loss, modulus of elasticity and nature of dynamic performance of the O-ring. A unique research finding was that different trends emerged with respect to each fuel type in regards to property changes and accounted for the non-linear nature of the elastomer performance curve.

The results were obtained for one pair of Buna-N O-ring per fuel sample. These results provided an insight into the relationship between aromatic content versus dynamic seal performance. Future research should focus on validation studies with statistically relevant number of samples. Besides R-8 blends, other alternative fuel blends must be tested relative to JP-8 fuel with different aromatic levels to gain a complete understanding of the effect of aromatic content on dynamic performance of the elastomer O-ring.

1.2 Fit-For-Purpose (FFP) Testing of Alternative Aviation Fuels

The overall objective of this effort was to provide continued support to UTC/AFRL in the area of alternative aviation fuels. New synthetic pathways continue to emerge for generating blend stocks and drop-in replacement jet fuels. Some of these pathways allow the production of aromatic components simultaneously with paraffins thus overcoming the need to blend with petroleum based fuel. Therefore, the need for fit-for-purpose testing, component/rig testing, engine/pump testing, and material compatibility still play a key role in assessing these new fluids.

The fuels included in this study have been developed by several processes and include samples of the type: Direct Sugar to Hydrocarbon (DSHC), Alcohol-to-Jet (ATJ), Hydrotreated Depolymerized Cellulosic Jet (HDCJ), Hydro-Deoxygenated Synthesized Kerosene (HDO-SK), and Catalytic Hydrothermolysis (CH). From these blend stocks, samples have been obtained containing anywhere from 10% to 100% synthetic jet fuel.

This report contains all of the fit-for-purpose and miscellaneous specification testing performed to date under TO 21. Several of the fuels exhibited excellent jet fuel characteristics that would meet or exceed many of the specification requirements. Others seemed to perform well with only marginal issues that could be handled by adjusting the blend ratios.

1.3 Effect of Fame Contamination on Permittivity and Density

Testing at 400 ppm FAME contamination is required in support of clearance activity for western commercial aviation fuels. Based on an initial assessment of the raw data, both the permittivity and density values appeared to be essentially identical for the neat jet fuel and FAME-additized fuels. The subsequent analysis, provided herein, shows strong linear relationships among permittivity, density, and temperature. There appears to be little hysteresis in the permittivity measurement technique across the full range of test points. The results also appear to fall well within the experience-base provided by the CRC World Fuel Sampling Program. Based on these results, it is a reasonable conclusion that FAME contamination up to 400 ppmw does not significantly affect the measurement of permittivity or density over a relatively wide-temperature range beyond the normal expected variation in the test methods themselves.

2.0 INTRODUCTION

This final report contains a compilation of results for task numbers 1a, 1b, and 6 under Contract Number FA-8650-08-D-2806 Task Order 0021 in partial fulfillment of UTC Subcontract Number 12-S590-0021-02-C1.

Task 1a included various specification testing per ASTM D1655 and MIL-DTL-83133G. Test results are reported with the task 6 evaluations.

Task 1b addressed the effect of aromatic content on dynamic performance of the O-ring seal and its properties using the SwRI dynamic seal test rig.

Task 6 included evaluations of several emerging alternative aviation fuels. Fit-for-purpose (FFP) and other related testing as defined in ASTM D4054 was accomplished. Miscellaneous testing of interest to the Air Force including SAE J1488 fuel/water separation, speed of sound and isentropic bulk modulus, elastomer compatibility, vapor pressure vs. temperature, and lubricity (HFRR, SLBOCLE, BOCLE) vs. CI/LI concentration were also accomplished. The effect of fame contamination on permittivity and density was also determined in support of clearance activity for western commercial aviation fuels.

Appendix A Task 1B – Dynamic Seal Testing

EFFECT OF AROMATIC CONTENT ON DYNAMIC SEAL PROPERTIES AND PERFORMANCE

Prepared by

Nigil Jeyashekar, Ph.D., P.E., Sr. Research Engineer

Southwest Research Institute[®] (SwRI[®]) San Antonio, TX

Prepared for

Universal Technology Corporation

July 2014

Table of Contents

Section	Page
A.1.0 INTRODUCTION AND OBJECTIVE	8
A.2.0 TECHNICAL APPROACH	9
A.3.0 RESULTS	10
A.3.1 Dynamic Seal Performance	10
A.3.2 Elastomer Weight	11
A.3.3 Elastomer Thickness and Hardness	11
A.3.4 Volume Change	13
A.4.0 CONCLUSIONS	14
A.5.0 RECOMMENDATIONS FOR FUTURE RESEARCH	15

Executive Summary

The research task was an extension of work that was conducted on dynamic seal test rig under Report No. AFRL-RQ-WP-TR-2013-0010. This report addressed the engineering performance and properties of elastomer O-rings; and compared the results from alternative fuel and alternative fuel blend to conventional jet fuel. The objective of this task was to address the effect of aromatic content on dynamic performance of the O-ring seal and its properties.

The test fuel set consists of two JP-8 fuels, with 24% and 13% aromatic content. The remaining four test fuel set consisted of R-8/JP-8 blends with aromatic content ranging from 8% to 1%. A pair of Buna-N O-rings was tested at 200°F until failure (fuel leak).

Based on the results from the dynamic seal tests, it was concluded that, at higher aromatic content there was a net weight gain by the elastomer due to absorption of fuel, which resulted in increase in percentage thickness and provided the O-ring sufficient squeeze and sealing capability throughout its operation. At higher aromatic content, the hardness increased and provided the O-ring with sufficient elastic modulus along with sufficient volume swell for sealing application. As the aromatic content decreased, the loss of O-ring material into fuel coupled with decreased thickness (elastomer squeeze) and/or insufficient volume swell, resulted in O-ring failure.

The overall conclusion was that the non-linear nature of the elastomer performance curve was directly related to the percentage thickness change and hence, elastomer squeeze of the O-ring. The elastomer weight, hardness and volume swell measurements were used to understand fuel absorption, material loss, modulus of elasticity and nature of dynamic performance of the O-ring. A unique research finding was that different trends emerged with respect to each fuel type in regards to property changes and accounted for the non-linear nature of the elastomer performance curve.

The results were obtained for one pair of Buna-N O-ring per fuel sample. These results provided an insight into the relationship between aromatic content versus dynamic seal performance. Future research should focus on validation studies with statistically relevant number of samples. Besides R-8 blends, other alternative fuel blends must be tested relative to JP-8 fuel with different aromatic levels to gain a complete understanding of the effect of aromatic content on dynamic performance of the elastomer O-ring.

Acronyms & Abbreviations

°F	Fahrenheit
hrs	Hours
SwRI	Southwest Research Institute
ΔH	Change in Hardness
ΔT	Change in Thickness
ΔV	Change in Volume
ΔW	Change in Weight

A.1.0 INTRODUCTION AND OBJECTIVE

The results from the dynamic seal test rig in Report No. AFRL-RQ-WP-TR-2013-0010, have shown that the test was capable of assessing the engineering performance of elastomer O-rings in turbojet fuel systems. It was also established that the test rig was capable of distinguishing the dynamic performance of Fluorosilicone, Buna-N and Viton O-rings. The performance and properties of the three elastomer O-rings under pre-test and post-test conditions were assessed for jet fuel, alternative fuel and a 50/50 jet fuel/alternative fuel blend. This research was effective in addressing the performance elastomer O-rings in alternative fuels and fuel blends relative to conventional jet fuels. However, the outcomes of this research were not sufficient to examine the relationship between aromatic content and elastomer performance. In light of this technical void, the objective of this task was to assess the effect of aromatic content on dynamic performance of elastomer of elastomer O-rings in elastomer properties with aromatic content have been addressed in this research task.

A.2.0 TECHNICAL APPROACH

The test fuel set consisted of two JP-8 fuels provided by AFRL, with 24% aromatic content (POSF 10130) and 13% aromatic content (POSF 9698). The results from these two fuels would indicate if elastomer performance under dynamic conditions and properties are affected by variation in aromatic content with JP-8 fuel. 50/50 R-8/ JP-8 blend (POSF 7386) with an aromatic content of 10.1% and R-8 fuel (POSF 5469) with an aromatic content of 0.9% were used to prepare the remaining four test fuel blends, with aromatic content ranging from 8% to 1%. The test fuels and fuel blends are listed in Table A-1.

A detailed description and working principle of the dynamic seal test rig was provided in Report No. AFRL-RQ-WP-TR-2013-0010. This report provides the test results of three elastomers, namely, Fluorosilicone, Buna-N and Viton O-rings, with Jet-A, R-8 and 50/50 R-8/JP-8 blend. For the current research task, a pair of Buna-N O-rings (AS568-O12) was tested with fuels and fuel blends listed in Table A-1. The O-rings were run at 200°F until failure (fuel leak) was detected. Pre-test and post-test properties such as weight, thickness, and hardness were measured and volume swell was calculated.

#	Description	Aromatics (%)
1	JP-8 (POSF 10130)	24
2	JP-8 (POSF 9698)	13
3	R-8/JP-8 Blend (CL13-4964)	8
4	R-8/JP-8 Blend (CL13-4965)	4
5	R-8/JP-8 Blend (CL13-4966)	2
6	R-8/JP-8 Blend (CL13-4967)	1

Table A-1. Representative Fuel Samples for Dynamic Seal Tests

A.3.0 RESULTS

The results from the dynamic seal tests are listed in Table A-2. The effect of aromatic content in jet fuel on elastomer O-rings have been discussed in terms of dynamic performance, and percent change in elastomer weight (ΔW), thickness (ΔT), hardness (ΔH), and volume (ΔV).

Aromatic Content	Failure Time		Left O-r	ing Data			Right O-	ring Data	
(%)	(hrs)	ΔΤ (%)	ΔH (%)	ΔV (%)	ΔW (%)	ΔΤ (%)	ΔH (%)	ΔV %	ΔW %
24	235.3	7.7195	4.1096	6.0255	2.2430	12.2024	2.3256	10.6430	5.9609
13	182.7	7.1215	0.4525	0.2260	-0.4587	9.4912	0.9174	4.7253	1.4097
8	160.5	9.8834	10.9005	1.6018	-1.6529	11.6691	8.8785	4.0526	0.7916
4	162.5	11.6870	7.3394	3.8002	-0.6969	8.8697	3.2258	2.1052	-0.3759
2	68.5	9.6936	5.2381	3.2768	0.0905	8.2049	4.2254	3.2439	-0.5357
1	45.4	6.2284	3.6364	-0.0701	-2.4889	5.2840	2.2727	0.0411	-3.1334

 Table A-2. Dynamic Seal Test Results

A.3.1 Dynamic Seal Performance

The dynamic seal performance (failure time) was plotted as a function of aromatic content, as shown in Figure A-1. The dynamic performance of the elastomer O-ring was 235.3 hours for JP-8 fuel with 24% aromatic content and 182.7 hours for JP-8 with 13% aromatic content. The performance dropped from 235.3 hours to 162.5 hours as the aromatic content reduced from 24% to 4%, averaging a performance reduction of 3.64 hours for 1% drop in aromatic content. At 8% and 4% aromatic contents, the level of performance remained the same at approximately 160 hours. Below 4%, the performance reduction was approximately 39 hours for every 1% drop in aromatic content. Based on this result, it was concluded that the desirable range for aromatic content was between 23% and 4%. The performance points at 8% and 4% aromatic levels resulted in a non-linear performance curve. The subsequent sections address the non-linearity in O-ring dynamic performance curve in terms of elastomer properties.

Figure A-1. Dynamic Seal Performance

10 Approved for public release; distribution unlimited.

A.3.2 Elastomer Weight

The percentage weight change of the elastomer O-ring, as a function of aromatic content, is shown in Figure A-2. Since the data was measured for a pair of O-rings, the results are represented in Figure A-2 in the form of a vertical bar.

Figure A-2. Elastomer Weight versus Aromatic Content

At 24% aromatic content, there was increase in the weight of the elastomer O-ring indicating that there was a net absorption of fuel by the elastomer. As the aromatic content decreased to 1%, there was a net loss of material from the elastomer into the fuel. It should be noted that the total run time for the low aromatic fuel (1%) is much less than JP-8 with 24% aromatic content and during this short run time, the O-ring had lost a significant amount of material into the fuel.

A.3.3 Elastomer Thickness and Hardness

The elastomer thickness is a direct measure of elastomer squeeze, and hardness is a measure of modulus of elasticity. As the aromatic content decreased, the percentage change in thickness also decreased, indicating a similar trend for elastomer squeeze. Thus, at lower aromatic content, the O-ring will be unable to provide the same sealing capability as that of a high aromatic fuel. The results are shown in Figure A-3. It should be noted that the change in percentage thickness for 8% and 4% aromatic level fuel blends were as high as JP-8 fuel, indicating that the O-rings at these aromatic levels provided the same level of elastomer squeeze providing sealing capability and hence, contributed to increase in performance duration of the O-ring, as indicated by the low rate of failure between 24% and 4% aromatic levels.

Figure A-3. Elastomer Thickness versus Aromatic Content

The elastomer hardness results shown in Figure A-4, shows that the overall percentage change in hardness and hence modulus of elasticity decreased with decrease in fuel aromatic content. It should be noted that this trend is different for each fuel type, namely, JP-8 and R-8, as shown in Figure A-4. When R-8 fuel is in use, the percentage increase in hardness of the elastomer is much higher, which could possibly explain the higher performance of the O-ring at 8% and 4% despite lower aromatic content. However, at 2% and 1% aromatic levels the percentage change in hardness is comparable to JP-8 fuel. Since the elastomers do not have significantly higher elastomer squeeze or hardness (modulus of elasticity) at these aromatic levels. Based in the trends in Figure A-4, it can be concluded that the percentage change in elastomer thickness and hardness is a function of aromatic content <u>only</u> for a particular type of fuel under investigation and the trend varies for each fuel being tested. This is attributed to the non-linear behavior of the dynamic seal performance curve, in Figure A-1, at 8% and 4% aromatic levels.

Figure A-4. Elastomer Hardness versus Aromatic Content

A.3.4 Volume Change

The results of volume change as a function of aromatic content is plotted in Figure A-5. As the aromatic level reduced from 24% to 13%, for JP-8 fuel, there was a reduction in volume swell of elastomers that reduced dynamic performance. At 13%, 8%, 4% and 2%, the volume swell values showed a steady decrease. This fact explained the steady decrease in O-ring performance at these aromatic levels, as shown in Figure A-1, except at 2% aromatic level. The drastic reduction in O-ring performance at 2% aromatic level could only be attributed to the low value of percentage thickness change and hence, elastomer squeeze. At 1% aromatic level there is no change in volume. This factor combined with net loss of O-ring material into fuel, as shown in Figure A-2, and lower elastomer squeeze, resulted in insufficient sealing capacity, and contributed to poor dynamic performance at this aromatic level.

Figure A-5. Aromatic Content versus Volume Change

A.4.0 CONCLUSIONS

For JP-8 fuel, as the aromatic content reduced from 24% to 13%, the reduction in performance of Buna-N O-ring was approximately 22%. As the aromatic content reduced further from 13% to 4%, there was no significant change in dynamic performance. Below 4%, the performance dropped drastically to 45.4 hours at 1% aromatic content. Therefore, it was concluded that the desirable range for aromatic content is 4% to 24% of the given fuel set and that R-8 blends with aromatic content below 4% were not suitable for dynamic seal applications.

The percentage weight change was positive for 24% aromatic content jet fuel indicating net fuel absorption by the elastomer. As the aromatic content reduced further, the percentage weight change became negative indicating a net material loss from the O-ring into the fuel. The trend was uniform for both R-8 blends and JP-8 fuel indicating that the overall weight change was governed by the aromatic content in the given set of test fuels. However, the percentage thickness and hardness change had two trends for each type of fuel, namely, R-8 blends and JP-8. Thickness is a measure of elastomer squeeze, required for providing sufficient sealing for O-ring operation and hardness is a measure of modulus of elasticity. The percentage thickness and hardness decreased as the aromatic content dropped from 24% to 13% for JP-8 fuel. However, at 8% and 4% (R-8 blends), the percentage change in thickness and hardness was significantly higher compared to JP-8 fuel. This implied that the O-rings had sufficient squeeze at those aromatic levels which further explained the slow rate of reduction in dynamic performance at those aromatic levels.

The percentage thickness for R-8 blends at 2% and 1% aromatic levels were lower compared to JP-8 fuel. However, the percentage hardness, at these aromatic levels, was marginally higher than JP-8 fuel. The lower thickness signified lower elastomer squeeze and insufficient sealing capability and hence, the dynamic performance reduced at a drastic rate at these aromatic levels, despite marginally higher percentage hardness. This inference indicated that the dynamic performance was highly dependent on percentage thickness change and elastomer squeeze than on hardness and modulus of elasticity.

Overall, two broad conclusions were reached, based on property measurements. While elastomer weight, hardness and volume swell measurements were important, the non-linear nature of the elastomer performance curve was directly related to the percentage thickness change and hence, elastomer squeeze of the O-ring, for the set of test fuels under study. Secondly, two different trends emerged for each test fuel type, JP-8 fuel and R-8 blends, which needs further investigation with increase in the number of O-ring samples being tested.

A.5.0 RECOMMENDATIONS FOR FUTURE RESEARCH

All the results were obtained by testing one pair of Buna-N O-ring, per fuel sample. In order to validate these results, statistically relevant number of samples must be tested. Besides R-8, other alternative fuels needs to be tested in order to determine the extent to which the alternative fuel type affects the elastomer O-ring properties and hence, its' dynamic performance.

Appendix B

Task 1A & 6 – Fit-For-Purpose and Miscellaneous Testing

FIT-FOR-PURPOSE (FFP) TESTING OF ALTERNATIVE AVIATION FUELS

Prepared by

Scott A. Hutzler, Manager Keri M. Petersen, Engineer

Southwest Research Institute[®] (SwRI[®]) San Antonio, TX

Prepared for

Universal Technology Corporation

July 2014

Table of Contents

<u>Section</u> <u>P</u>	<u>'age</u>
Executive Summary	22
Acronyms & Abbreviations	23
B 1 0 INTRODUCTION	25
B 2.0 METHODS ASSUMPTIONS AND PROCEDURES	
B.2.1 Sample Terminology	26
B.2.2 Test Methods and Specifications	26
B.2.3 Non-Standard Test Methods	26
B.2.3.1 Thermal Conductivity (Transient Hot Wire)	27
B.3.0 RESULTS AND DISCUSSION	28
B.3.1 Sample Cross-Reference	28
B.3.2 Evaluation of Alternative Aviation Fuels and Blendstocks	28
B.3.2.1 AMJ 700 – Jet A Blend	28
B.3.2.2 Swedish Biofuel / Jet A Blend	28
B.3.2.3 Kior HDCJ	28
B.3.2.4 Virent SK / Jet A Blend	29
B.3.2.5 ARA ReadiJet	29
B.3.2.6 Total / Amyris Farnesane Blends	29
B.3.3 Miscellaneous Testing	29
B.3.3.1 Additional Amyris Testing	29
B.3.3.2 Baseline O-Ring Testing	30
B.3.3.3 Additional Testing for Tri-Service Samples	30
B.3.3.4 Derived Cetane Number (IQT) Analysis	30
B.3.4 Discussion of Selected Fuel Properties	30
B.3.4.1 Speed-of-Sound and Isentropic Bulk Modulus	30
B.3.4.2 Distillation (D86)	32
B.3.4.3 Vapor Pressure (D6378)	32
B.3.4.4 Density (D4052)	32
B.3.4.5 Dielectric Constant	37
B.3.4.6 Spontaneous Ignition	40
B.3.4.7 Minimum Ignition Energy (ASTM E582)	41
B.3.4.8 Upper/Lower Explosion Limits (E681)	42
B.3.4.9 Specific Heat Capacity (E2716)	42
B.3.4.10 Thermal Conductivity (Transient Hot Wire)	45
B.3.4.11 Surface Tension (D1331A)	45
B.3.4.12 BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)	48
B.3.4.13 Water Content (D6304) vs. Temperature	48
B.3.4.14 Kinematic Viscosity (D445)	51
B.3.4.15 Electrical Conductivity (D2624) vs. SDA Concentration (Stadis 450)	54
B.3.4.16 Electrical Conductivity vs. Temperature	54
B.3.4.17 Elastomer Compatibility	57
B.5.5 PQIS Comparison	58
B.4.U CUNCLUSIONS	69

Page

B.5.0 RECOMMENDATIONS	70
B.6.0 REFERENCES	71
Appendix BA Amyris AMJ 700 / Jet A Evaluations	72
Appendix BB Swedish Biofuel / Jet A Data	78
Appendix BC Kior HDCJ Evaluations	
Appendix BD Virent Evaluations	
Appendix BE ARA (ReadiJet) Evaluations	96
Appendix BF Total / Amyris Blends	
Appendix BG Miscellaneous Amyris Testing	
Appendix BH O-Ring Material Compatibility Testing	112
Appendix BI Miscellaneous Tri-Service Sample Testing	116
Appendix BJ EPA Testing Reports: CL12-3339 and CL12-3599	
Appendix BK EPA Testing Report: CL12-3883	141
Appendix BL EPA Testing Report: CL12-4367	
Appendix BM EPA Testing Report: CL13-4826	177
Appendix BN EPA Testing Reports: CL12-4716 and CL12-4717	
Appendix BO EPA Testing Reports: CL13-5265	
Appendix BP Certificates of Analysis (CoA) by POSF Number	

List of Figures

Figure	Page
Figure B-1. Speed of Sound (30 °C at Atmospheric Pressure)	
Figure B-2. Isentopic Bulk Modulus (30 °C at Atmospheric Pressure)	
Figure B-3. Distillation (D86)	
Figure B-4. Absolute Vapor Pressure (D6378) – Raw Data	
Figure B-5. Absolute Vapor Pressure (D6378) – Arrhenius Plot	35
Figure B-6. Density (D4502)	
Figure B-7. Dielectric Constant vs. Temperature	
Figure B-8. Dielectric Constant vs. Density	
Figure B-9. Autoignition Temperature	40
Figure B-10. Hot Surface Ignition Temperature	41
Figure B-11. Minimum Ignition Energy	41
Figure B-12. Explosion Limits	
Figure B-13. Reversing Heat Capacity	44
Figure B-14. Thermal Conductivity	
Figure B-15. Surface Tension (D1331A) vs. Temperature	
Figure B-16. BOCLE (D5001) vs. CI/LI Concentration (DCI-4A)	49
Figure B-17. Water Content (D6304) vs. Temperature	50
Figure B-18. Kinematic Viscosity (D445)	
Figure B-19. Kinematic Viscosity by ASTM D445/D341	52
Figure B-20. Kinematic Viscosity by ASTM D445/D341	53
Figure B-21. Electrical Conductivity vs. Stadis 450 Concentration	55
Figure B-22. Electrical Conductivity vs. Temperature	56
Figure B-23. Elastomer Compatibility – Tensile Strength	57
Figure B-24. Elastomer Compatibility – Volume Change	57
Figure B-25. PQIS Comparison: Initial Boiling Point	58
Figure B-26. PQIS Comparison: 10% Recovered	59
Figure B-27. PQIS Comparison: 20% Recovered	59
Figure B-28. PQIS Comparison: 50% Recovered	60
Figure B-29. PQIS Comparison: 90% Recovered	60
Figure B-30. PQIS Comparison: Final Boiling Point	61
Figure B-31. PQIS Comparison: Density (D4052)	61
Figure B-32. PQIS Comparison: Aromatics (D1319)	
Figure B-33. PQIS Comparison: Olefins (D1319)	
Figure B-34. PQIS Comparison: Hydrogen Content (D3701)	
Figure B-35. PQIS Comparison: Viscosity at -20°C (D445)	
Figure B-36. PQIS Comparison: Water Content (D6304)	64
Figure B-37. PQIS Comparison: Microseparometer (D3948)	64
Figure B-38. PQIS Comparison: Smoke Point (D1322)	65
Figure B-39. PQIS Comparison: Naphthalene Content (D1840)	65
Figure B-40. PQIS Comparison: Sulfur Mercaptan (D3227)	
Figure B-41. PQIS Comparison: Acid Number (D3242)	
Figure B-42. PQIS Comparison: Existent Gums (D381)	67
Figure B-43. PQIS Comparison: Net Heat of Combustion (D4809)	67

Figure B-44.	PQIS Comparison: Sulfur Content (D2622)	68
Figure BA-1.	Tensile Strength – Amyris AMJ 700 / Jet A Blend	77
Figure BA-2.	Volume Change – Amyris AMJ 100 / Jet A Blend	77
Figure BB-1.	Tensile Strength – Swedish Biofuel / Jet A Blend	83
Figure BB-2.	Volume Change – Swedish Biofuel / Jet A Blend	83
Figure BC-1.	Tensile Strength – Kior HDCJ / Jet A Blend	89
Figure BC-2.	Volume Change – Kior HDCJ / Jet A Blend	89
Figure BD-1.	Tensile Strength – Virent / Jet A Blend	95
Figure BD-2.	Volume Change – Virent / Jet A Blend	95
Figure BE-1.	Tensile Strength – ARA ReadiJet	100
Figure BE-2.	Volume Change – ARA ReadiJet	101
Figure BF-1.	Tensile Strength – Total / Amyris 20% Blend	107
Figure BF-2.	Volume Change – Total / Amyris 20% Blend	107
Figure BF-3.	Tensile Strength – Total / Amyris 10% Blend	108
Figure BF-4.	Volume Change – Total / Amyris 10% Blend	108
Figure BH-1.	Tensile Strength – Jet A (CL12-4134)	113
Figure BH-2.	Volume Change – Jet A (CL12-4134)	113
Figure BH-3.	Tensile Strength – JP-8 (CL11-2680, POSF4751)	114
Figure BH-4.	Volume Change – JP-8 (CL11-2680, POSF4751)	114
Figure BH-5.	Tensile Strength – 50/50 GEVO ATJ / Low ArH JP8	115
Figure BH-6.	Volume Change – 50/50 GEVO ATJ / Low ArH JP8	115

List of Tables

Table	Page
Table B-1. Sample Identifiers	28
Table B-2. Reversing Heat Capacity	43
Table BA-1. Amyris AMJ 700 / Jet A Evaluations	72
Table BB-1. Swedish Biofuel / Jet A Evaluations	78
Table BC-1. Kior HDCJ Evaluations	84
Table BD-1. Virent Evaluations	90
Table BE-1. ARA (ReadiJet) Evaluations	96
Table BF-1. Total / Amyris Blends Evaluations	102
Table BG-1. Amyris Jet A-1 (CL13-5265)	109
Table BG-2. Additional Results for Amyris 10% Farnesane Blend (CL13-4717)	110
Table BG-3. Amyris Viscosity Analysis of Seven Fuels	111
Table BI-1. Additive Compatibility for Nominal Jet A (DLA #22, CL13-5892)	116
Table BI-2. Additional Results for Nominal Jet A (DLA Sample #22, CL13-5892)	116
Table BI-3. Nitrogen Results for DLA Samples	117
Table BI-4. Surface Tension Results for Three (3) Tri-Service Samples	117

Executive Summary

The overall objective of this effort was to provide continued support to UTC/AFRL in the area of alternative aviation fuels. New synthetic pathways continue to emerge for generating blend stocks and drop-in replacement jet fuels. Some of these pathways allow the production of aromatic components simultaneously with paraffins thus overcoming the need to blend with petroleum based fuel. Therefore, the need for fit-for-purpose testing, component/rig testing, engine/pump testing, and material compatibility still play a key role in assessing these new fluids.

The fuels included in this study have been developed by several processes and include samples of the type: Direct Sugar to Hydrocarbon (DSHC), Alcohol-to-Jet (ATJ), Hydrotreated Depolymerized Cellulosic Jet (HDCJ), Hydro-Deoxygenated Synthesized Kerosene (HDO-SK), and Catalytic Hydrothermolysis (CH). From these blend stocks, samples have been obtained containing anywhere from 10% to 100% synthetic jet fuel.

This report contains all of the fit-for-purpose and miscellaneous specification testing performed to date under TO 21. Several of the fuels exhibited excellent jet fuel characteristics that would meet or exceed many of the specification requirements. Others seemed to perform well with only marginal issues that could be handled by adjusting the blend ratios.

°C	Celsius
°F	Fahrenheit
μm	Micrometer
AA	Atomic Absorption
BOCLE	Ball-On-Cylinder Lubricity Evaluator
BTU	British Thermal Unit
CI/LI	Corrosion Inhibitor/Lubricity Improver
cSt	Centistokes
DCN	Derived Cetane Number
DLA	Defense Logistics Agency
EPA	Environmental Protective Agency
FFP	Fit-For-Purpose
FT	Fischer-Tropsch
FTM	Federal Test Method
g	Gram
HDCJ	Hydroprocessed Depolymerized Cellulosic Jet
HEFA	Hydroprocessesd Esters and Fatty Acids
HFRR	High Frequency Reciprocating Rig
HRJ	Hydroprocessed Renewable Jet
Hz	Hertz
ID	Ignition Delay
IPK	Iso-Paraffinic Kerosene
IQT TM	Ignition Quality Tester
JFTOT	Jet Fuel Thermal Oxidation Tester
K	Kelvin
kg	Kilogram
kHz	Kilohertz
kJ	Kilojoule
kPa	Kilopascal
L	Liter
lb	Pound
LEL	Lower Explosion Limit
lpm	Liters Per Minute
m	Meter
mg	Milligram
MJ	Mega joule
mJ	Mill joule
mL	Milliliter
mm	Millimeter
mN	Mill newton
MPa	Mega Pascal
ms	Millisecond
NMR	Nuclear Magnetic Resonance
ppb	Parts Per Billion
ppm	Parts Per Million

Acronyms & Abbreviations

psi(a or g)	Pounds Per Square Inch (Absolute Or Gauge)
SAE	Society of Automotive Engineers
SDA	Static Dissipater Additive
SK	Synthetic Kerosene
SPK	Synthetic Paraffinic Kerosene
TWO WRE	Time Weighted Average Water Removal Efficiency
UEL	Upper Explosion Limit
W	Watts

B.1.0 INTRODUCTION

The work reported herein is a continuation of prior work to provide fit-for-purpose testing and subject matter expertise to UTC and AFRL in support of emerging synthetic aviation fuels. This report contains information on the following subjects:

- Evaluation of alternative aviation fuels, blends, and blendstocks
 - o 50/50 AMJ 700 / Jet A Blend
 - o 50/50 Swedish Biofuel / Jet A Blend
 - o 30/70 Kior HDCJ / Jet A Blend
 - Neat Kior HDCJ
 - o 50/50 Virent SK / Jet A Blend
 - o Neat Virent SK
 - o ARA ReadiJet
 - o Total / Amyris 20/80 Farnesane/Jet A Blend
 - o Total / Amyris 10/90 Farnesane/Jet A Blend
- Miscellaneous Analyses
 - o O-ring Material Compatibility Testing
 - o Viscosity
 - Derived Cetane Number (IQT)
B.2.0 METHODS, ASSUMPTIONS, AND PROCEDURES

B.2.1 Sample Terminology

Throughout this report, various means of identifying samples, fuels, and blendstocks are utilized. The Sample Identifiers, shown below in Table B-1 should be used as the primary sample reference. In figures and tables (where space is limited) and in the text to improve readability, shortened versions of the formal fuel descriptions may appear. Unless noted otherwise, blends denoted in this manner – "Virent SK / JP-8" – are assumed to be 50/50 volumetric blends of the synthetic and petroleum-based fuels. For those blends containing "JP-8" as the petroleum based fraction, the JP-8 additives are assumed to have been added to the proper levels after the blend was prepared.

B.2.2 Test Methods and Specifications

Numerous analytical methods were used in the conduct of this testing. The large majority of those are ASTM "D" and "E" methods. Throughout this document, those methods are simply referenced by their method numbers, e.g. "D4052" and "E2716." Non-ASTM methods, such as Federal Test Methods (FTM) and those maintained by SAE, EPA, etc. are noted accordingly. Standardized test methods are not discussed at length in this document. These can be acquired from the presiding organizations and some are freely available via the Internet (e.g. FTM). Unless noted otherwise, it is assumed that the standardized tests were run as prescribed. New tests, modifications to standardized tests, or non-standardized tests are described in more detail below.

The primary fuel specifications referenced during the conduct of this work are indicated below. Many of these specifications are undergoing extensive modifications to accommodate the new emerging turbine fuels.

- ASTM D1655 Standard Specification for Aviation Turbine Fuels
- ASTM D4054 Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives
- ASTM D7566 Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons
- MIL-DTL-83133H Detail Specification: Turbine Fuel, Aviation, Kerosene Type, JP-8 (NATO F-34), NATO F-35, and JP-8+100 (NATO F-37)
- DEF STAN 91-91 Turbine Fuel, Aviation Kerosene Type, Jet A-1, NATO Code: F-35

B.2.3 Non-Standard Test Methods

The reader is referred to previously published reports [1], [2] describing the use of alternative/modified methods shown below. Having had difficulties obtaining satisfactory data for thermal conductivity, a new instrument was acquired and utilized for this testing. That instrument is described below in Section B.2.3.1.

- Thermal Conductivity (Transient Hot Wire)
- Hot Surface Ignition Temperature (FTM 791-6053)
- True Vapor Pressure (ASTM D6378)

- Specific Heat Capacity (ASTM E2716)
- Surface Tension (ASTM D1331A)
- Dielectric Constant (SwRI)
- Elastomer (O-ring) Evaluations

B.2.3.1 Thermal Conductivity (Transient Hot Wire)

Since most of the literature data for thermal conductivity of liquids is based on hot wire data (referencing ASTM D2717), we sought to acquire an instrument that would provide comparable measurements. One such instrument is the Transient Hot Wire (THW) Liquid Thermal Conductivity Meter from ThermTest, Inc (http://www.thermtest.com/Products/THW.aspx). This instrument uses small test volumes and rapid test times to limit the effects of convection. Verification checks using hydrocarbon standards showed a <2% deviation from literature values across a wide temperature range. The upper temperature limit was generally restricted to less than 50% of the boiling point to avoid non-linear behavior.

In 2014, a method for the use of the THW with liquids was established under ASTM D7896-14.

B.3.0 RESULTS AND DISCUSSION

B.3.1 Sample Cross-Reference

The samples I, Table B-1were the primary focus of the fit-for-purpose testing under this effort. With the exception of the farnesane blends, all of the fuels were supplied by AFRL. Miscellaneous samples received for the analysis are described below. Where available, Certificates of Analysis (CofA) are provided in Appendix BP.

POSF #	SwRI CL#	Description		
7708	CL12-3599	50/50 AMJ 700 / Jet A Blend		
7658	CL12-3339	50/50 Swedish Biofuel / Jet A Blend		
8123	CL12-3883/5832	30/70 Kior HDCJ / Jet A Blend		
80076	CL12-4384	Neat Kior HDCJ		
9404	CL12-4367	50/50 Virent SK / Jet A Blend		
8535	CL12-4370	Neat Virent SK		
10136	CL12-4826	ARA ReadiJet		
	CL12-4716	Total / Amyris 20/80 Farnesane/Jet A Blend		
	CL12-4717	Total / Amyris 10/90 Farnesane/Jet A Blend		

Table B-1.	Sample Identifiers
------------	--------------------

B.3.2 Evaluation of Alternative Aviation Fuels and Blendstocks

A description of each fuel is provided below. All of the data collected under this effort is tabulated in appendices and noted below.

B.3.2.1 AMJ 700 – Jet A Blend

This fuel was provided as a 50/50 blend of Amyris AMJ 700 with Jet A. AMJ 700 is a fuel derived from engineered microorganisms that operate like living factories to convert sugars into renewable hydrocarbon molecules. This fuel exhibited elevated cycloparaffins but otherwise fell within the JP-8 specification for those properties tested.

Results of FFP testing can found tabulated in Table BA-1 in Appendix BA.

B.3.2.2 Swedish Biofuel / Jet A Blend

Swedish Biofuels fully synthetic jet fuel process incorporates their advanced processes for the conversion of alcohols with LanzaTech's unique gas fermentation process for converting waste gas streams to ethanol. The alcohol conversion process begins with grain/wood being converted to sugar followed by fermentation into a mixture of C2-C5 alcohols. These are then converted to a mixture of C4-C20 hydrocarbons. In testing, this was one of the fuels that had an elevated UEL value of approximately 7.3% but otherwise exhibited good jet fuel characteristics.

Results of FFP testing can found tabulated in Table BB-1 in Appendix BB.

B.3.2.3 Kior HDCJ

The blendstock for this fuel is created from Kior's biofuel process and is known as Hydrotreated Depolymerized Cellulosic Jet or HDCJ and was supplied as a 30/70 HDJC/Jet A blend. The most unusual characteristic of this fuel is it's high aromatic content. Because of the strong relationship between aromatic content and several other fuel properties, the HDCJ blend has

several properties that marginal such as aromatic content, hydrogen content, and heat of combustion. There was also a potential issue with its distillation slope. Many of its properties are exaggerated relative to the other fuels and it was shown to have some impact on material compatibility.

Results of FFP testing can found tabulated in Table BC-1 in Appendix BC.

B.3.2.4 Virent SK / Jet A Blend

This fuel was supplied as a 50/50 blend of Virent Synthetic Kerosene (SK) and Jet A. This version of the SK contained no aromatics and is known as a Hydro-Deoxygenated Synthesized Kerosene or HDO-SK. It is produced using Virent's BioForming® platform which utilizes their Aqueous Phase Reforming (APR) technology. Other than a reduced aromatic content due to blending, this fuel exhibited good characteristics and met all of the JP-8 specification properties that were tested.

Results of FFP testing can found tabulated in Table BD-1 in Appendix BD.

B.3.2.5 ARA ReadiJet

Using a Biofuels ISOCONVERSION (BIC) process based on Catalytic Hydrothermolysis (CH) and hydroprocessing, renewable oil feedstocks are converted into Renewable, Aromatic, Drop-in (Readi) fuels known as ReadiJet. The interesting part of this process is that it also yields aromatics along with cycloparaffins and isoparaffins so no blending is required. Testing revealed that the fuel has a freeze point(approx -43°C) that would not meet the JP-8 specification. This results was verified by two different instruments/methods. It's unknown if this is typical of that fuel or some artifact of that particular sample. Otherwise, the fuel exhibited good characteristics.

Results of FFP testing can found tabulated in Table BE-1 in Appendix BE.

B.3.2.6 Total / Amyris Farnesane Blends

The farnesane blendstock is a Synthesized Iso-Paraffinic Kerosene (SIK). Total/Amyris produce farnesene by fermentation of sugar feedstocks. Farnesene is then converted to farnesane through a combination of hydroprocessing and fractionation steps resulting in nearly total conversion to a branched C15 paraffin. The targeted blends for incorporation into ASTM standards are 10% and 20% farnesane in jet fuel.

Results of FFP testing can found tabulated in Table BF-1 in Appendix BF.

B.3.3 Miscellaneous Testing

B.3.3.1 Additional Amyris Testing

To provide additional support to Amyris for their research report, AFRL authorized some additional testing as outlined below. Results can be found in Appendix BG.

- Amyris Jet A-1 FFP Testing, Table BG-1
- Speed-of-Sound and Bulk Modulus for 10% Farnesane Blend, Table BG-2
- Amyris Viscosity Analysis, Table BG-3

B.3.3.2 Baseline O-Ring Testing

UTC/AFRL authorized another round of O-ring baseline testing for JP-8 and Jet A. The results for tensile strength and volume swell for each fuel can be found in Appendix BH. The results were found to be comparable to those generated under TO 112. The differences between the JP-8 and Jet A appear to be negligible.

B.3.3.3 Additional Testing for Tri-Service Samples

AFRL identified one of the DLA Tri-Service fuel samples (#22) as having nominal Jet A characteristics. To provide additional reference data, AFRL authorized some extended testing on this and a few other Tri-Service samples. Data is tabulated in Appendix BI as follows:

- Additive Compatibility of DLA #22, Table BI-1
- FFP Testing of DLA #22, Table BI-2
- Nitrogen content of Tri-Service samples, Table BI-3
- Surface Tension vs. Temperature for Tri-Service samples, Table BI-4

B.3.3.4 Derived Cetane Number (IQT) Analysis

Three samples were received for IQT analysis:

- R-8 Renewable Jet Fuel, POSF7272 (SwRI CL12-4174)
 - o ID: 3.417
 - o DCN: 59.1
- HRJ Blend, Bio-Oil Derived SPK, POSF7665, 50:50 Camelina JP-8 (SwRI CL12-4175)
 - o ID: 3.924
 - o DCN: 52.0
- Jet Fuel JP-8, Valero (SwRI CL12-4176)
 - o ID: 4.315
 - o DCN: 47.7

B.3.4 Discussion of Selected Fuel Properties

Selected properties of the test fuels are discussed below. Where possible, the data is plotted against reference data such as found in the Handbook of Aviation Fuel Properties [3], fuels from the CRC World Fuel Sampling Program [4], or a nominal Jet A.

B.3.4.1 Speed-of-Sound and Isentropic Bulk Modulus

Speed-of-Sound and Bulk Modulus data are shown in Figure B-1 and Figure B-2, respectively. For the most part, these fuels behave similar to the nominal Jet A (Sample #22). The HDCJ blend could be somewhat deceiving. Its values are approaching that of a diesel fuel. Speed-of-sound and hence bulk modulus are density-driven and therefore strongly tied to aromatic content. Like density, these results tend to follow a linear trend with blending. So, a blend of two fuels will tend to fall proportionally in between each of the blendstocks.

Figure B-1. Speed of Sound (30 °C at Atmospheric Pressure)

Figure B-2. Isentopic Bulk Modulus (30 °C at Atmospheric Pressure)

B.3.4.2 Distillation (D86)

The distillation curves for the test fuels are shown in Figure B-3. These fuels tend to follow the expected trends see in the literature values.

B.3.4.3 Vapor Pressure (D6378)

Vapor pressure curves are depicted in two ways:

- Pressure (psi) vs. Temperature (°C), Raw data, Figure B-4
- ln(Pressure (kPa) vs. 1/Temperature (K), Figure B-5

The results in Figure B-5 are only plotted for values with vapor pressures ≥ 1.0 kPa. This data shows good linearity and compares well with the CRC data. The vapor pressures at temperatures below 20°C are very low and therefore less repeatable.

B.3.4.4 Density (D4052)

The density data for the test fuels is shown in Figure B-6. These fuels fall in a small band around the nominal CRC and World Survey data due to variations in chemical composition of the samples.

Figure B-3. Distillation (D86)

33 Approved for public release; distribution unlimited.

Figure B-4. Absolute Vapor Pressure (D6378) – Raw Data

34 Approved for public release; distribution unlimited.

Figure B-5. Absolute Vapor Pressure (D6378) – Arrhenius Plot

35 Approved for public release; distribution unlimited.

Figure B-6. Density (D4502)

36 Approved for public release; distribution unlimited.

B.3.4.5 Dielectric Constant

The results for dielectric constant are presented below as follows:

Dielectric Constant vs. Temperature, Figure B-7

Dielectric Constant vs. Density, Figure B-8

The measurement of dielectric constant continues to be a hotly debated subject. In part, the debate is over the measurement of density and whether the values collected on an automated densitometer can be extrapolated to low temperature extremes. In unpublished work, we've found that values for hydrocarbons can be extrapolated with good accuracy to meet this need. The dielectric values from CRC and the World Survey spear to be the same data and have a similar slope to the fuels in this study. However, when plotted against density, the slope of the World Survey data deviates substantially. This could be an issue with the density data in the World Survey. The CRC data shows a slope that's very comparable to the data measured in this effort.

Figure B-7. Dielectric Constant vs. Temperature

38 Approved for public release; distribution unlimited.

Figure B-8. Dielectric Constant vs. Density

39 Approved for public release; distribution unlimited.

B.3.4.6 Spontaneous Ignition

B.3.4.6.1 Autoignition Temperature (ASTM E659)

With the exception of the HDCJ blend, the fuels in this study fall within 5-10°C of the CRC data (Figure B-9). Curiously, the HDCJ blend autoignition temperature and minimum ignition energy is significantly higher than other fuels while its upper explosion limit it substantially lower.

Figure B-9. Autoignition Temperature

B.3.4.6.2 Hot Surface Ignition Temperature (FTM 791-6053)

All of the fuels in this study exhibited a minimum hot surface ignition temperature in the range of 1100-1250°F (Figure B-10). This seems to be a nominal range for most fuels tested by this method to date. As written, this method is a pass/fail test at 1300°F so, strictly speaking, all of these fuels would fail.

B.3.4.7 Minimum Ignition Energy (ASTM E582)

With the exception of the HDCJ blend, most of the fuels in this study showed a similar response to this test (Figure B-11). While most of those values are below the expected CRC data, it's uncertain how the CRC data was generated or how the sensitivity of those measurements compare to the modern day instrumentation.

Figure B-11. Minimum Ignition Energy

B.3.4.8 Upper/Lower Explosion Limits (E681)

The upper and lower explosion (a.k.a flammability) limits are shown in Figure B-12. This set of samples showed a wider range of response for the upper limit than had been seen previously. In some cases, the results were checked against a second lab and found to give comparable results. The lower limits all seem to vary between 0.5-1.0% so they present about the same hazards as far as handling is concerned. The HDCJ blend did show a lower upper limit compared to other fuels and lower than the expected CRC values.

Figure B-12. Explosion Limits

B.3.4.9 Specific Heat Capacity (E2716)

The results for specific heat capacity are tabulated in Table B-2 and shown in Figure B-13. While the slopes of these curves are often in good agreement across many labs, the bias has been cause for concern. Based on our experience with this method, we would estimate the repeatability to be in the range of 5-10%.

SwRI Sample	Reversing Heat Capacity (kJ/kg.K)					Equation	
ID	-25°C	0°C	25°C	50°C	100°C	150°C	Equation
CL12-3599	1.880	1.966	2.062	2.163	2.346	2.563	y=(0.00389)*x+1.96863
CL12-3339	1.810	1.880	1.970	2.050	2.200	2.380	y=(0.00325)*x+1.88598
CL12-3883	1.601	1.684	1.764	1.849	2.042	2.249	y=(0.00370)*x+1.67983
CL12-4367	1.702	1.793	1.892	1.983	2.176	2.398	y=(0.00395)*x+1.79302
CL13-4826	1.703	1.790	1.870	1.960	2.160	2.370	y=(0.00372)*x+1.79412
CL12-4716	1.953	2.032	2.136	2.244	2.445	2.673	y=(0.00414)*x+2.03993
CL13-4717	1.976	2.058	2.146	2.242	2.470	2.676	y=(0.00406)*x+2.05816

Table B-2. Reversing Heat Capacity

Figure B-13. Reversing Heat Capacity

44 Approved for public release; distribution unlimited.

B.3.4.10 Thermal Conductivity (Transient Hot Wire)

Using the new transient hot wire device, the thermal conductivity data, Figure B-14, appears more consistent with values for typical hydrocarbons and the samples in this study appear to fall about both sides a of typical Jet A (DLA Sample #22). Like other hydrocarbon properties, thermal conductivity appears to follow expected trends and shows only a slight variation across a wide temperature range.

B.3.4.11 Surface Tension (D1331A)

The trends in surface tension were similar for all of the fuels and compared well to the CRC data (Figure B-15). The apparent bias of 2-3 mN/m units relative to the CRC data is negligible. Additive treatment alone can result in much larger changes (5-25mN/m) in surface tension.

Figure B-14. Thermal Conductivity

46 Approved for public release; distribution unlimited.

Figure B-15. Surface Tension (D1331A) vs. Temperature

47 Approved for public release; distribution unlimited.

B.3.4.12 BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)

Most of the fuels in this study had an inherent baseline lubricity at or slightly above the 0.65 mm wear scar limit established in MIL-PRF-25017. While all of the fuels showed a fairly linear response to treatment with DCI-4A (Figure B-16), most required up to 20 mg/L to achieve a value at or below 0.65 mm.

B.3.4.13 Water Content (D6304) vs. Temperature

Water Content vs. Temperature data is often debated due to the inconsistent nature of the testing. The inconsistencies stem from the lack of an established procedure resulting in slight differences in methodology and sampling technique. Repeatability of the D6304 test is also suspect. As one might expect, all fuels show an increased affinity for water with an increase in temperature (Figure B-17). More important would be the fuel/water separation characteristics of these fuels which have not been sufficiently tested to date. In previous research, tallow-based fuels showed an affinity for water and subsequent fuel/water separation tests confirmed that it was difficult to remove that water using standard filtration equipment.

Figure B-16. BOCLE (D5001) vs. CI/LI Concentration (DCI-4A)

49 Approved for public release; distribution unlimited.

Figure B-17. Water Content (D6304) vs. Temperature

50 Approved for public release; distribution unlimited.

B.3.4.14 Kinematic Viscosity (D445)

Three different views of viscosity data are provided below:

- Raw data on a log scale, Figure B-19
- Viscosity vs. Temperature on a linear scale with artificial x and y axes, Figure B-20
- Viscosity vs. Temperature, linearized and extrapolated on a log scale, Figure B-18

The last figure was generated using the MATAB script designed for the Navy. These fuels follow the general trends see in the World Survey Data and fall well within the upper limit of 8 cSt required for JP-8.

Figure B-18. Kinematic Viscosity (D445)

Figure B-19. Kinematic Viscosity by ASTM D445/D341

Figure B-20. Kinematic Viscosity by ASTM D445/D341

53 Approved for public release; distribution unlimited.

B.3.4.15 Electrical Conductivity (D2624) vs. SDA Concentration (Stadis 450)

The fuels in this effort showed a good response to treatment with static dissipater additive (Figure B-21). Most showed a linear response and 1 mg/L was sufficient to bring the electrical conductivity into the JP-8 range. The distinct clustering of the samples into two groups seemed odd; however, no systematic variation could be found. The samples were analyzed over a wide period of time, using up to three different meters and some samples that were run at the same time fell into different clusters.

B.3.4.16 Electrical Conductivity vs. Temperature

Apparently, most of the fuels in this effort contained no static dissipater as evidenced by their lack of baseline electrical conductivity and little response to temperature (Figure B-22). The Swedish biofuel had a baseline conductivity falling in the JP-8 range and responded to temperature changes. Only above 30°C did it exceed 600 pS/m.

Figure B-21. Electrical Conductivity vs. Stadis 450 Concentration

Figure B-22. Electrical Conductivity vs. Temperature

56 Approved for public release; distribution unlimited.

B.3.4.17 Elastomer Compatibility

Figure B-23 and Figure B-24 provides a summary of the tensile strength and volume change, respectively, following immersion in each fuel. This chart is compiled from the individual figures in the appendices and includes Jet A as a reference. Other than the high aromatic HDCJ fuels, fluorosilicone seems to be impervious to changes in fuel composition. The HDCJ also appears to impact tensile strength for viton and all three materials with respect to volume change.

Figure B-23. Elastomer Compatibility – Tensile Strength

Figure B-24. Elastomer Compatibility – Volume Change

B.3.5 PQIS Comparison

Utilizing the PQIS 2013 Annual Report database, fuel quality data for Jet A, Jet A-1, JP-8, and JP-5 was extracted and plotted for comparison against the samples evaluated under this effort. Figures for selected properties are shown in Figure B-24 through Figure B-43 and indicate where the test fuels fall within the distribution of data in the PQIS database. When reading the x-axis, the lower bound is inclusive and the upper bound is exclusive. For example, in Figure B-24 the second column indicates the % of total sample volume that has an IBP between 90.00 and 99.99. The textboxes indicate to which bin the data point for each of those samples belongs.

Note that the PQIS values for net heat of combustion are calculated (D3338/4529) and some properties are a mix of data from several methods. Generally, the data shows that the values for these samples fall within the range of values found in the PQIS database. A few properties such as low aromatic content for the Virent Blend and high aromatic content / high density for the Kior HDCJ Blend lie at the furthest extremes of their respective distribution curves. These properties are not unexpected given the composition of the blendstocks.

Figure B-25. PQIS Comparison: Initial Boiling Point

Figure B-26. PQIS Comparison: 10% Recovered

Figure B-27. PQIS Comparison: 20% Recovered

Figure B-28. PQIS Comparison: 50% Recovered

Figure B-29. PQIS Comparison: 90% Recovered

Figure B-30. PQIS Comparison: Final Boiling Point

Figure B-31. PQIS Comparison: Density (D4052)

Figure B-32. PQIS Comparison: Aromatics (D1319)

Figure B-33. PQIS Comparison: Olefins (D1319)

Figure B-34. PQIS Comparison: Hydrogen Content (D3701)

Figure B-35. PQIS Comparison: Viscosity at -20°C (D445)

Figure B-36. PQIS Comparison: Water Content (D6304)

Figure B-37. PQIS Comparison: Microseparometer (D3948)

Figure B-38. PQIS Comparison: Smoke Point (D1322)

Figure B-39. PQIS Comparison: Naphthalene Content (D1840)

Figure B-40. PQIS Comparison: Sulfur Mercaptan (D3227)

Figure B-41. PQIS Comparison: Acid Number (D3242)

Figure B-42. PQIS Comparison: Existent Gums (D381)

Figure B-43. PQIS Comparison: Net Heat of Combustion (D4809)

Figure B-44. PQIS Comparison: Sulfur Content (D2622)

B.4.0 CONCLUSIONS

The testing performed under this effort provided the opportunity to see blendstocks from several different synthetic pathways used to create alternative aviation fuel. One fuel, the ARA ReadiJet, was a supplied as a fully synthetic drop-in fuel since its process also yields aromatics in addition to paraffins. The Swedish Biofuel, derived from an ATJ process and the Virent HDO-SK were both supplied as 50/50 blends with Jet A and both exhibited good jet fuel characteristics. This version of the Virent blendstock contained no aromatics so the blend concentration was just above the 8 vol% minimum. The Total/Amyris blends derived from a DSHC process were supplied as 10% and 20% blends in Jet A and seemed to perform well. The Kior fuel stood out the most because of its high aromatic content. This affected the properties one might expect: density, speed-of-sound, hydrogen content, heat of combustion, cetane number, distillation slope, material compatibility etc. These properties were all marginal and could probably be corrected with a modified blend ratio. In general, most of the candidate fuels performed remarkably well, only showing marginal results in one or two properties.

B.5.0 RECOMMENDATIONS

It's clear that the vast amount of data being collected on candidate fuels has provided a wealth of information and contributed to the on-going research and approval process. The state-of-the-art for historical methods has improved over the last few years to the point they are becoming more routine and better understood. There are perhaps some areas that have received less attention but are nonetheless critical to the industry. Fuel/water separation is one area that has critical ramifications to the airline industry. While some types of fuels, like the FT-SPKs, have demonstrated excellent fuel/water separation, others derived from bio-based processes or sourced from biomass have revealed possible issues. The MSEP test or Water Solubility test has identified these problems in the past. The likely problem is that natural compounds from the feedstock that have survived the fuel processing can behave as surfactants and change the interfacial tension of the fuel. As a minimum, it might be wise to add interfacial tension to the FFP testing. A step beyond that would be to include a screening test like SAE J1488 and ultimately a full scale EI 1581 test.

B.6.0 REFERENCES

- Propulsion and Power Rapid Response Research and Development (R&D) Support -Delivery Order 0011: Analysis of Synthetic Aviation Fuels, AFRL-RZ-WP-TR-2011-2084, April 2011.
- [2] Propulsion and Power Rapid Response Research and Development (R&D) Support Delivery Order 0011: Advanced Propulsion Fuels R&D Subtask: Advanced Propulsion Fuels Research and Development Support to AFRL/RQTF, AFRL-RQ-WP-TM-2013-0010, December 2012.
- [3] Handbook of Aviation Fuel Properties, CRC Report No. 635, 3rd Edition, Coordinating Research Council, Alpharetta, GA, 2004.
- [4] CRC World Fuel Sampling Program, CRC Report No. 647, Coordinating Research Council, Alpharetta, GA, 2006.

Appendix BA

Amyris AMJ 700 / Jet A Evaluations

Table BA-1. Amyris AMJ 700 / Jet A Evaluations

			CL12-3599	MIL DTL 9212211
Test	Method	Units	AMJ 700 / Jet A Blend	Table 1 Limits
			(POSF7708)	Table I Linnis
Chemistry				
Hydrocarbon Types by Mass Spec	D2425			
Paraffins		mass%	40.6	
Monocycloparaffins		mass%	44.1	
Dicycloparaffins		mass%	0.0	
Tricycloparaffins		mass%	0.0	
TOTAL SATURATES		mass%	84.7	
Alkylbenzenes		mass%	10.4	
Indans/Tetralins		mass%	3.0	
Indenes		mass%	0.3	
Naphthalene		mass%	0.2	
Naphthalene, Alkyl		mass%	1.1	
Acenanhthenes		mass%	0.2	
Acenanhthylenes		mass%	0.1	
Tricyclic Aromatics		mass%	0.0	
TOTAL AROMATICS		mass%	15.3	
Aromatic Content	D1319	111113570	10.0	
Aromatics	D1317	vol%	14.5	25.0 may
Olofing		vol%	11.5	23.0 max
Soturatos		vol %	1.1 84 A	
Carbon/Hudrogen	D5201	V0170	04.4	
Carbon/Hydrogen	D5291	0/	95.95	
		% 0/	85.85	
Hydrogen	D2501	[%] 0	14.05	12.4
Hydrogen Content (NMR)	D3701	mass%	13.98	13.4 min
Carbonyis, Alconois, Esters, Phenois	ED 4 0015D			
Alcohols	EPA 8015B	mg/kg		
Carbonyls, Esters	EPA 8260B	mg/kg	Appendix BJ	
Phenols	EPA 8270C	mg/kg	-	
Nitrogen Content	D4629	mg/kg	2	
Copper by AA	D3237M	ppb	0.01	
Elemental Analysis	D7111			
Al		ppb	145 ppb	
Ba		ppb	<100 ppb	
Ca		ppb	<100 ppb	
Cr		ppb	<100 ppb	
Cu		ppb	<100 ppb	
Fe		ppb	<100 ppb	
Li		ppb	<100 ppb	
Pb		ppb	<100 ppb	
Mg		ppb	<100 ppb	
Mn		ppb	<100 ppb	
Мо		ppb	<100 ppb	
Ni		ppb	<100 ppb	
K			<1 ppm	
Na			<1 ppm	
Si			1.3 ppm	
Ag		ppb	<100 ppb	
Ti		dqq	<100 ppb	
V		dqq	<100 ppb	
Zn		ppb	<100 ppb	
Bulk Physical and Performance Properties			FF.	
Distillation	D86			
IRP		°C	164.9	
5%		°C	174.6	
10%		°C	177.5	205 max
15%		°Č	179.2	
200%		°C	181 5	
20 /8		L L	101.0	

72

			CL12-3599	MII DTI 82122U
Test	Method	Units	AMJ 700 / Jet A Blend	Table 1 Limits
200/		°C	(POSF7708)	
30%		°C	180.5	
40%		°C	191.9	+
50%		°C	200.1	-
70%		°C	211.0	-
7078		°C	220.9	-
90%		°C	240	
95%		°C	254.8	
FBP		°C	269.8	300 max
Residue		%	13	15 max
Loss		%	0.4	1.5 max
T50-T10		°C	22.6	
T90-T10		°Č	70.8	
Simulated Distillation	D2887			
IBP		°C	118.3	
5%		°C	157.9	
10%		°C	166.9	
15%		°C	168.5	
20%		°C	169.4	
25%		°C	170.6	
30%		°C	172.1	
35%		°C	173.2	
40%		°C	179.5	
45%		°C	183.7	
50%		°C	196.2	
55%		°C	208.4	
60%		°C	219	
65%		°C	234.5	
70%		°C	247.1	
75%		°C	250.3	
80%		°C	251.3	
85%		°C	251.9	
90%		°C	253.4	
95%		°C	269	
FBP	D (250	°C	305.7	
Vapor pressure (Absolute)	D6378		0.0	
		psi	0.0	
<u>20 °C</u>		psi	0.04	
40°C		psi	0.08	
		psi nci	0.24	
		psi psi	1 24	
		psi psi	2 5/	
JETOT Breakpoint	D3241RP	°C Par	2.J T	
Test Temperature	DUATIDI	°C	290.0	
ASTM Code		rating	.</td <td><3 max</td>	<3 max
Maximum Pressure Dron		mm Hø	0.1	25 max
Lubricity (BOCLE) as received	D5001	mm	0.66	
Lubricity (BOCLE) vs. CI/LI				
Concentration	D5001			
0 mg/L		mm	0.81	
5 mg/L		mm	0.74	
10 mg/L		mm	0.68	
15 mg/L		mm	0.64	
20 mg/L		mm	0.61	
Lubricity (HFRR)	D6079	μm	0.71	
Lubricity (HFRR) vs. CI/LI Concentration	D6079			
0 mg/L		μm	0.69	
5 mg/L		μm	0.70	
10 mg/L		μm	0.72	
15 mg/L		μm	0.72	

Table BA-1.	Amyris	AMJ	700 /	Jet A	Evaluations
-------------	--------	-----	-------	-------	-------------

			CL12-3599	MIL DTL 9212211	
Test	Method	Units	AMJ 700 / Jet A Blend	Table 1 Limits	
			(POSF7708)	Table 1 Linnis	
20 mg/L		μm	0.73		
Lubricity (Scuffing Load BOCLE)	D6078	g	2850		
Lubricity (Scuffing Load BOCLE) vs.	D(079				
CI/LI Concentration	D00/8				
0 mg/L		g	1600		
5 mg/L		g	1900		
10 mg/L		g	2900		
15 mg/L		g	2850		
20 mg/L		g	3200		
Kinematic Viscosity	D445	, , , , , , , , , , , , , , , , , , ,			
-40		cSt	9.53		
-20		cSt	4.69	8.0 max	
25°C		cSt	1.70		
40°C		cSt	1 35		
Specific Heat Canacity	F2716	cor	1.00		
-25°C	12710	k I/ka K	1.880		
-23 C		kJ/kg.K	1.000		
		k I/ka K	2.062		
25°C		KJ/Kg.K	2.002		
50°C		KJ/Kg.K	2.103		
		KJ/Kg.K	2.346		
150°C	D IOF-	KJ/Kg.K	2.563		
Density	D4052	. 3			
5°C		g/cm ³	0.8099		
<u>15°C</u>		g/cm ³	0.8024	0.775 to 0.840	
40°C		g/cm ³	0.7840		
60°C		g/cm ³	0.7692		
80°C		g/cm ³	0.7541		
Surface tension	D1331A				
-10°C		mN/m	28.1		
22°C		mN/m	25.3		
40°C		mN/m	23.9		
Speed of Sound @ 30°C		m/s	1272		
Isentropic Bulk Modulus @ 30°C		psi	185853		
Thermal Conductivity	SwRI				
0°C		W/m.K	0.1211		
25°C		W/m.K	0.1163		
50°C		W/m.K	0.1115		
Water Content	D6304	ppm	59		
Water Content	D6304				
°C		nnm	37		
30°C		nnm	115		
<u> </u>		npm	213		
		nnm	210		
30 C Water Content	D6304	ppm	207		
1000	10304	nnm			
-10°C		ppill			
40°C		ppm			
SUC	D5(ppm °C	47	29	
Flash Folint - Tag Closed	D30	°C	4/	38 11111	
Freeze Point (manual)	D2380	J.	-58	-47 max	
Freeze Point	D5972	<u> </u>	-53.3		
Electrical Properties	G DI				
Dielectric Constant (10kHz)	SWRI		0.107		
-40.2°C			2.187		
-20.0°C			2.160		
0.9°C			2.129		
30.0°C			2.092		
50.0°C			2.069		
-40°C					
-20°C					
0°C					
30°C					

Table BA-1. Amyris AMJ 700 / Jet A Evaluations

			CL12-3599	MIL DTI 9212211
Test	Method	Units	AMJ 700 / Jet A Blend	MIL DIL 65155H
			(POSF7708)	Table I Linnts
50°C				
Electrical Conductivity (as received)	D2624	pS/m	0	
Electrical Conductivity vs. SDA	Darad			
Concentration	D2624			
0 mg/L		pS/m	0	
1 mg/L		pS/m	480	
2 mg/L		pS/m	930	
3 mg/L		pS/m	1330	
4 mg/L		pS/m	1720	
Electrical Conductivity vs. Temperature	D2624	F ^{ab}		
-40		nS/m	0.0	
		nS/m	0.0	
-30		pS/m	0.0	
-20		p5/m	0.0	
-10		p 5/m	0.0	
0		ps/m	0.0	
10		ps/m	0.0	
20		pS/m	0.0	
30		pS/m	0.0	
40		pS/m	10.0	
Ground Handling Properties and Safety		1		<u> </u>
MSEP	D3948	rating	83	70-90 min
Storage Stability - Peroxides @65°C	D3703			
0 week		mg/kg	1.44	
1 week		mg/kg	3.40	
2 week		mg/kg	3.72	
3 week		mg/kg	4.04	
6 week		mg/kg	4.12	
Storage Stability – Potential Gums	D5304	8		
	20001	mg/100m		
16 hours		L	0.0	
Upper Explosion Limit (UEL), @100°C	E681	%	5.7 ± 0.1	
Lower Explosion Limit (LEL), @100°C	E681	0/0	0.5 ± 0.1	
Autoignition temperature	E650	70	0.5 ± 0.1	
Het Flome Autoignition Temperature	E039	°C	241.0	
Hot Flame Autoignition Temperature		U U	52.0	
Hot Flame Lag Time		seconds	52.0	
Cool Flame Autoignition Temperature		<u> </u>	229.0	
Cool Flame Lag Time		seconds	273.0	
Barometric Pressure		mm Hg	739.8	
Reaction Threshold Temperature		°C	223.0	
Hot surface ignition	FTM 791-	°F	1150 (burns on tube and in	
not surface ignition	6053	-	pan)	
Compatibility				
Fuel/Additive Compatibility (2x treat rate)	D4054B			
			 large droplets after 	
			initial cold soak	
			 not present after 	
FSII, DIEGME (0.3 vol%)		effect	raising temperature	
			above room	
			temperature	
SDA Stadis 450 (10 mg/L)		effect	 no issues observed 	
		offoot	 no issues observed 	
Motol Departmentary DMD (11.4 //		effect		
wietai Deacuvator, DMD (11.4 mg/L)		errect	Ito issues observed	
Antioxidant, AO-30 (48 mg/L)		effect	no issues observed	
Thermal Stability, +100 (512 mg/L)		effect	 no issues observed 	
			 thin film on bottom 	
Additive Cocktail (DMD AO 20 Stadia			after initial cold soak	
AUDITYC COCKIAII (DIVID, AC-30, SIAUIS		offort	 not present after 	
(same concentrations as at)		enect	raising temperature	
(sume concentrations as above)			above room	
			temperature	
	C D'	I	See Figure B-45	
Elastomer Compatibility (O-Ring Tests)	SWRI		and Figure B-46	

Table BA-1. Amyris AMJ 700 / Jet A Evaluations

Test	Method	Units	CL12-3599 AMJ 700 / Jet A Blend (POSF7708)	MIL DTL 83133H Table 1 Limits
Miscellaneous				
Copper Strip Corrosion (100°C for 2 hours)	D130	rating	1A	No. 1 max
Smoke Point	D1322	mm	24	25.0 min or 19.0 min
Naphthalene Content	D1840	vol%	0.57	3.0 max
Sulfur - Mercaptan	D3227	mass%	0.0006	0.002 max
Acid Number	D3242	mg KOH/g	0.009	0.015 max
Existent Gums	D381	mg/100m L	4	7.0 max
Heat of Combustion	D4809			
BTUHeat_Net		BTU/lb	18516.8	18400.7 min
MJHeat_Net		MJ/kg	43.07	42.8 min
Sulfur Content - (Antek)	D5453	ppm	423.9	0.30 mass % max
Ignition Quality Test (IQT)	D6890			
Ignition Delay, ID		ms	4.793	
Derived Cetane Number, DCN			43.39	
Minimum Ignition Energy @ 100°C	E582	mJ	0.13 - 0.18	
Sulfur Content - (XRY)	D2622	ppm	444.8	0.30 mass % max

Table BA-1. Amyris AMJ 700 / Jet A Evaluations

Figure BA-1. Tensile Strength – Amyris AMJ 700 / Jet A Blend

Figure BA-2. Volume Change – Amyris AMJ 100 / Jet A Blend

Appendix BB

Swedish Biofuel / Jet A Data

Table BB-1. Swedish Biofuel / Jet A Evaluations

			CL12-3339	
Test	Method	Units	Swedish Biofuel / Jet A Blend	MIL DIL 85155H
			(POSF7658)	Table 1 Limits
Chemistry		•	•	
Hydrocarbon Types by Mass Spec	D2425			
Paraffins		mass%	44.0	
Monocycloparaffins		mass%	37.4	
Dicycloparaffins		mass%	0.0	
Tricycloparaffins	-	mass%	0.0	
TOTAL SATURATES		mass%	81.4	
Alkylbenzenes		mass%	13.8	
Indans/Tetralins		mass%	4.0	
Indenes		mass%	0.0	
Naphthalene		mass%	0.3	
Nanhthalene, Alkyl		mass%	0.2	
Acenanhthenes		mass%	0.1	
Acenanhthylenes		mass%	0.2	
Tricyclic Aromatics		mass ⁰ /o	0.0	
TOTAL AROMATICS		mass ⁰ /o	18.6	
Aromatic Content	D1310	11103570	10.0	
Aromatic Content	D1319	wo10/	15.6	25.0 may
Alonatics		V0176	13.0	25.0 max
<u> </u>		V0170	1.2	
Saturates	D5201	V01%	83.2	
Carbon/Hydrogen	D5291	0/	95 (7	
Carbon		%	85.67	
Hydrogen	52504	%	14.04	12.4.1
Hydrogen Content (NMR)	D3701	mass%	14.12	13.4 min
Carbonyls, Alcohols, Esters, Phenols				
Alcohols	EPA 8015B	mg/kg		
Carbonyls, Esters	EPA 8260B	mg/kg	Appendix BJ	
Phenols	EPA 8270C	mg/kg		
Nitrogen Content	D4629	mø/kø	<1	
Copper by AA	D3237M	bpp	0.006	
Elemental Analysis	D7111	PP~		
Al	Dim	nnh	<100 nph	
Ba		 	<100 pp>	
		 	<100 pp>	
		nnh	<100 ppb	
		nnh	<100 ppb	
Fe Cu		nnh	<100 ppb	
I i		nnh	<100 ppb	
Ph		nnh	<100 ppb	
		nnh	<100 ppb	
Mn		րրի	<100 ppb	
Ma		րթե	<100 ppb	
		րիս	<100 pp0	
		իրո		
No.				
			3.1 nnm	
		nnh		
Ag T		hbn	<100 ppp	
11 x7		hbn	<100 ppp	
V 7		ppp	<100 ppp	
Zn Pulk Division and Derformance Drangetter		սզգ	<100 ppp	
Distillation	D94			
	1000	00	160.4	
			107.4	
5%		-C	179.4	

			CL12-3339	
Test	Method	Units	Swedish Biofuel / Jet A Blend (POSF7658)	MIL DTL 83133H Table 1 Limits
10%		°C	181.4	205 max
15%		°C	183.3	
20%		°C	185.7	
30%		°C	189.8	
40%		°C	194.4	
50%		°C	199.1	
60%		°C	204.5	
70%		°C	210.4	
80%		°C	217.8	
90%		°C	228.6	
95%		°C	238.3	
FBP		°C	250.3	300 max
Residue		%	1.2	1.5 max
Loss		%	0.7	1.5 max
T50-T10		°C	17.7	
T90-T10		°C	47.2	
Simulated Distillation	D2887			
IBP		°C	122.1	
5%		°C	150.2	
10%		°C	162.7	
15%		<u>°C</u>	168.7	
20%		<u>°C</u>	174.2	
25%		<u>°C</u>	179.8	
30%		<u>°C</u>	186.2	
35%		<u> </u>	190.3	
40%		<u> </u>	194.3	
		<u> </u>	197.3	
50%		<u>°C</u>	201.1	
		°C	206.5	
600%		<u> </u>	210.2	
05%		<u> </u>	214.8	
7070		<u> </u>	217.7	
80%		<u>°C</u>	225	
85%		<u>°C</u>	220.5	
90%		<u>°C</u>	233.1	
95%		<u>°C</u>	253.2	
FBP		<u>°C</u>	282.1	
Vapor pressure (Absolute)	D6378		20211	
0 °C	20010	nsi	0.05	
20 °C		psi	0.06	
40 °C		psi	0.15	
60 °C		psi	0.35	
80 °C		psi	0.72	
100 °C		psi	1.38	
120 °C		psi	2.10	
JFTOT Breakpoint	D3241BP	°C		
Test Temperature		°C	305	
ASTM Code		rating	2.0	<3 max
Maximum Pressure Drop		mm Hg	0.0	25 max
Lubricity (BOCLE) as received	D5001	mm	0.61	
Lubricity (BOCLE) vs. CI/LI Concentration	D5001			
0 mg/L		mm	0.93	
5 mg/L		mm	0.80	
10 mg/L		mm	0.72	
15 mg/L		mm	0.63	
20 mg/L		mm	0.60	
Lubricity (HFRR)	D6079	μm	0.70	
Lubricity (HFRR) vs. CI/LI Concentration	D6079			
0 mg/L		μm	0.70	
5 mg/L		μm	0.69	

Table BB-1. Swedish Biofuel / Jet A Evaluations

			CL12-3339	MII DTI 83133H
Test	Method	Units	Swedish Biofuel / Jet A Blend (POSF7658)	Table 1 Limits
10 mg/L		μm	0.67	
15 mg/L		μm	0.67	
20 mg/L		μm	0.67	
Lubricity (Scuffing Load BOCLE)	D6078	g	1450	
Lubricity (Scuffing Load BOCLE) vs. CI/LI Concentration	D6078			
0 mg/L		g	1150	
5 mg/L		g	1100	
10 mg/L		g	1300	
15 mg/L		g	1650	
20 mg/L		g	2050	
Kinematic Viscosity	D445			
-40		cSt	8.32	
-20		cSt	4.12	8.0 max
25°C		cSt	1.55	
40°C		cSt	1.24	
Specific Heat Capacity	E2716	1 1 0 17	1.01	
-25°C		KJ/Kg.K	1.81	
		KJ/Kg.K	1.88	
25°C		KJ/Kg.K	1.9/	
		KJ/Kg.K	2.05	
100°C		KJ/Kg.K	2.20	
150 C	D4052	KJ/Kg.K	2.38	
5°C	D4032	a/cm ³	0 8045	
<u> </u>		g/cm ³	0.3043	0 775 to 0 840
40°C		g/cm ³	0.7786	0.775 to 0.040
60°C		g/cm ³	0.7636	
80°C		g/cm ³	0.7485	
Surface tension	D1331A	g,		
-10°C		mN/m	26.6	
22°C		mN/m	24.0	
40°C		mN/m	23.0	
Speed of Sound @ 30°C		m/s	1268	
Isentropic Bulk Modulus @ 30°C		psi	183217	
Thermal Conductivity	SwRI			
<u> </u>		W/m.K	0.1228	
25°C		W/m.K	0.1176	
50°C	D (20 4	W/m.K	0.1124	
Water Content	D6304	ppm	58	
water Content	D6304		25	
		ppm nr==	35	
		ppm prm	10/	
40°C		ppin ppm	215	
Water Content	D6304	ppm	413	
-10°C	20004	ppm		
40°C		ppm		
50°C		ppm		
Flash Point - Tag Closed	D56	°C	55	38 min
Freeze Point (manual)	D2386	°C	-48	47
Freeze Point	D5972	°C	-61.3	-4/ max
Electrical Properties				
Dielectric Constant (10kHz)	SwRI			
-40°C			2.174	
-20°C			2.146	
0°C			2.116	
			2.079	
50°C			2.057	
Electrical Conductivity	D2624	pS/m	410	
Electrical Conductivity vs. SDA Concentration	D2624			

Table BB-1. Swedish Biofuel / Jet A Evaluations

			CL12-3339	MII DTI 821221	
Test	Method	Units	Swedish Biofuel / Jet A Blend (POSF7658)	Table 1 Limits	
0 mg/L		pS/m	0		
1 mg/L		pS/m	480		
2 mg/L		pS/m	870		
3 mg/L		pS/m	1240		
4 mg/L		pS/m	1680		
Electrical Conductivity vs. Temperature	D2624				
-40		pS/m	210		
-30		pS/m	240		
-20		pS/m	290		
-10		pS/m	330		
0		pS/m	340		
10		pS/m	360		
20		pS/m	420		
30		pS/m	590		
40		pS/m	750		
Ground Handling Properties and Safety	D2049		74	70.00	
MOLT Starage Stability Devention @(700	D3948	rating	/4	70-90 min	
Storage Stability - Peroxides @65°U	D3703	mallea	16		
U week		mg/kg	1.0		
1 week		mg/kg	2.28		
2 week		mg/kg	3.50		
S week		mg/kg	3.90		
0 week	D5204	mg/kg	4.04		
Storage Stability – Potential Guills	D5504	mg/100mI	0.0		
Upper Explosion Limit (UEL) @100°C	F681	0/2	$\frac{0.0}{7.3 \pm 0.1 (r_0 - r_{10}, 7.48)}$		
Lower Explosion Limit (LEL), @100 C	E001 F681	/0 0/2	7.5 ± 0.1 (re-run 0.96)		
Autoignition temperature	E659	70	0.5 ± 0.1 (10-1 un 0.90)		
Hot Flame Autoignition Temperature	E037	°C	242		
Hot Flame Lag Time		seconds	60		
Cool Flame Autoignition Temperature		°C	236		
Cool Flame Lag Time		seconds	110		
Barometric Pressure		mm Hg	735.5		
Reaction Threshold Temperature		°C	203		
	FTM	<u> </u>			
Hot surface ignition	791-6053	° F	1250 (burns on tube and in pan)		
Compatibility					
Fuel/Additive Compatibility (2x treat rate)	D4054B				
			small droplets after initial		
			cold soak		
FSII, DIEGME (0.3 vol%)		effect	 not present after raising 		
			temperature above room		
			temperature		
SDA, Stadis 450 (10 mg/L)		effect	no issues observed		
CI/LI, DCI-4A (46 mg/L)		effect	no issues observed		
Metal Deactivator, DMD (11.4 mg/L)		effect	no issues observed		
			anomalous large droplet		
			seen at room temperature		
Antioxidant, AO-30 (48 mg/L)		effect	 not present after raising 		
			temperature above room		
		200	temperature		
Thermal Stability, +100 (512 mg/L)		effect	no issues observed		
			• thin film on bottom after		
Additive Cocktail (DMD, AO-30, Stadis 450,		ee (initial cold soak		
DCI-4A, DIEGNIE, +100)		effect	not present after raising		
(same concentrations as above)			temperature above room		
			See Figure RR-1		
Elastomer Compatibility (O-Ring Tests)	SwRI		and Figure BR-7		
Zastonici Compationity (O-Milg 10303)	Switt		and Figure DD-2		
Miscellaneous	1	L			
Copper Strip Corrosion (100°C for 2 hours)	D130	rating	1A	No. 1 max	

Table BB-1. Swedish Biofuel / Jet A Evaluations

Test	Method	Units	CL12-3339 Swedish Biofuel / Jet A Blend (POSF7658)	MIL DTL 83133H Table 1 Limits
Smoke Point	D1322	mm	25	25.0 min or 19.0 min
Naphthalene Content	D1840	vol%	0.18	3.0 max
Sulfur - Mercaptan	D3227	mass%	<0.0003	0.002 max
Acid Number	D3242	mg KOH/g	0.008	0.015 max
Existent Gums	D381	mg/100mL	2	7.0 max
Heat of Combustion	D4809			
BTUHeat_Net		BTU/lb	18489.3	18400.7 min
MJHeat_Net		MJ/kg	43.00	42.8 min
Sulfur Content - (Antek)	D5453	ppm	40.7	0.30 mass % max
Ignition Quality Test (IQT)	D6890			
Ignition Delay, ID		ms	4.893	
Derived Cetane Number, DCN			42.60	
Minimum Ignition Energy @ 100°C	E582	mJ	0.13 - 0.18	
Sulfur Content - (XRY)	D2622	ppm	45.8	

Table BB-1. Swedish Biofuel / Jet A Evaluations

Figure BB-1. Tensile Strength – Swedish Biofuel / Jet A Blend

Figure BB-2. Volume Change – Swedish Biofuel / Jet A Blend

Appendix BC

Kior HDCJ Evaluations

Table BC-1. Kior HDCJ Evaluations

			CL12-3883/5832	CL12-4384	MIL DTL 0212211
Test	Method	Units	Kior HDCJ/Jet A Blend	neat Kior HDCJ	Table 1 Limits
			(POSF8123)	(POSF8076)	Table 1 Linnis
Chemistry					
Hydrocarbon Types by Mass Spec	D2425				
Paraffins		mass%	34.8	0.0	
Monocycloparaffins		mass%	37.2		
Dicycloparaffins		mass%		See Lable	
Tricycloparaffins		mass%		Footnote (1)	
TOTAL SATURATES		mass%	72.0	49.3	
Alkylbenzenes		mass%	11.0	7.1	
Indans/Tetralins		mass%	13.2	32.8	
Indenes		mass%	2.1	6.7	
Naphthalene		mass%	1.2	2.9	
Naphthalene, Alkyl		mass%			
Acenaphthenes		mass%	0.3	0.7	
Acenanhthylenes		mass%	0.2	0.5	
Tricyclic Aromatics		mass%	0.2	0.0	
TOTAL ADOMATICS		mass //	28.0	50.7	
Aromatic Content	D1310	111435 /0	20.0	50.7	
Anomatica	D1319	vol0/	25.6	15 7	25 0 may
		v0170 v010/	23.0	43./	23.0 Illax
		V01%0	2.0	<i>4.4</i> 53.1	
Saturates	D5201	V01%	/2.4	52.1	
Carbon/Hydrogen	D5291	01	05.00	00.0	
Carbon		%	85.99	88.0	
Hydrogen		%	13.33	11.8	
Hydrogen Content (NMR)	D3701	mass%	13.46	13.9	13.4 min
Carbonyls, Alcohols, Esters, Phenols					
Alcohols	EPA	mø/kø			
	8015B	88			
Carbonyls, Esters	EPA	mg/kg	Appendix BK	N/A	
	8260B	88	inppendin Dit		
Phenols	EPA	mg/kg			
	8270C	8			
Nitrogen Content	D4629	mg/kg	<0.3	<1	
Copper by AA	D3237M	ppb	0.007	N/A	
Elemental Analysis	D7111				
Al		ppb	<100	286.0	
Ba		ppb	<100	<100	
Ca		ppb	<100	<100	
Cr		ppb	<100	<100	
Cu		ppb	<100	<100	
Fe		ppb	<100	<100	
Li		ppb	<100	<100	
Pb		ppb	<100	<100	
Mg		ppb	<100	<100	
Mn		ppb	<100	<100	
Mo		ppb	<100	<100	
Ni		ppb	<100	<100	
K		ppm	<1	<1	
Na		ppm	<1	<1	
Si		ppm	<100	<100	
Ag		ppb	<100	<100	
Ti		ppb	<100	<100	
v		pph	<100	<100	
7.1		nnh	<100	<100	
Bulk Physical and Performance		640			
Properties					
Distillation	D86				
IRP	200	°C	177.5 (175.2)	N/A	
IDI		č	1110 (11014)	- 1/ / 3	

Table BC-1.	Kior	HDCJ	Evaluations
-------------	------	------	--------------------

			CL12-3883/5832	CL12-4384	MIL DTI 92122U
Test	Method	Units	Kior HDCJ/Jet A Blend (POSF8123)	neat Kior HDCJ (POSF8076)	Table 1 Limits
5%		°C	181.9 (181.8)	N/A	
10%		°C	183.0 (182.5)	N/A	205 max
15%		°C	182.9 (183.2)	N/A	
20%		°C	185.0 (184.9)	N/A	
30%		°C	187.6 (188.0)	N/A	
40%		°C	191.8 (191.6)	N/A	
50%		<u> </u>	195.7 (195.7)	N/A	
<u> </u>		<u>)°</u>	201.3 (201.1)	N/A	
		°C	208.2 (207.9)	IN/A N/A	
00%		°C	217.0(217.2) 232.6(232.4)	N/A N/A	
95%		°C	232.0 (232.4)	N/A N/A	
FBP		<u>°C</u>	264.1 (263.1)	N/A	300 max
Residue		%	1.2 (1.1)	N/A	1.5 max
Loss		%	0.3 (0.3)	N/A	1.5 max
T50-T10		°C	12.7 (13.2)	N/A	
T90-T10		°Č	49.6 (49.9)	N/A	
Simulated Distillation	D2887	-			
IBP		°C	143.3	N/A	
5%		°C	159.7	N/A	
10%		°C	167.0	N/A	
15%		°C	171.5	N/A	
20%		°C	174.8	N/A	
25%		°C	179.0	N/A	
		°C	182.7	N/A	
35%		°C	187.6	N/A	
40%		°C	192.0	N/A	
45%		<u>°C</u>	196.1	N/A	
50%		<u> </u>	198.2	N/A	
55%		<u></u>	204.0	N/A	
		<u>°C</u>	208.0	N/A N/A	
05%		<u>°C</u>	213.4	IN/A N/A	
75%		°C	217.2	N/A N/A	
80%		<u>°C</u>	229.8	N/A N/A	
85%		<u>°C</u>	236.6	N/A	
90%		°C	248.0	N/A	
95%		°Č	265.4	N/A	
FBP		°C	293.3	N/A	
Vapor pressure (Absolute)	D6378				
0°C		psi	0.00	N/A	
20°C		psi	0.03	N/A	
40°C		psi	0.03	N/A	
60°C		psi	0.17	N/A	
80°C		psi	0.48	N/A	
100°C		psi	1.09	N/A	
120°C	Dague	psi	2.68	N/A	
JFTOT Breakpoint	D3241BP	<u> </u>	200	N 77.4	
Test Temperature		°C	300		
ASTNI Code		rating	2.0		< 3 max
Lubricity (BOCLE) as received	D5001	mm	0.4	IN/A N/A	23 IIIX
Lubricity (BOCLE) as received	05001		0.720	11/A	
Concentration	D5001				
0 mg/L		mm	0.890	N/A	
5 mg/L		mm	0.780	N/A	
10 mg/L		mm	0.710	N/A	
15 mg/L		mm	0.680	N/A	
20 mg/L		mm	0.650	N/A	
Lubricity (HFRR)	D6079	μm	710	N/A	
Lubricity (HFRR) vs. CI/LI	D6079				

Table BC-1. Kior HDCJ Evaluations

			CL12-3883/5832	CL12-4384	MII DTI 83133H
Test	Method	Units	Kior HDCJ/Jet A Blend	neat Kior HDCJ	Table 1 Limits
			(POSF8123)	(POSF8076)	
Concentration					
0 mg/L		μm	745	N/A	
5 mg/L		μm	735	N/A	
10 mg/L		μm	738	N/A	
15 mg/L		μm	727	N/A	
20 mg/L		μm	696	N/A	
Lubricity (Scuffing Load BOCLE)	D6078	g	1650	N/A	
Lubricity (Scuffing Load BOCLE) vs. CI/LI Concentration	D6078				
0 mg/L		g	1550	N/A	
5 mg/L		g	1550	N/A	
10 mg/L		g	1750	N/A	
15 mg/L		g	1800	N/A	
20 mg/L		8 	1950	N/A	
Kinematic Viscosity	D445	8	1900	1 1/14	
-40	Dillo	cSt	8.20	N/A	
-20		cSt	4.10	N/A	8.0 max
-20 25°C		cSt	1.10	N/A	0.0 max
<u>25 C</u>		cSt	1.50	N/A N/A	
40 C Specific Heat Canacity	F2716	CSI	1.40		
specific freat Capacity	E2/10	k I/ba V	1 601	NI/A	
-25 C		KJ/Kg.K	1.001	IN/A	
<u> </u>		KJ/Kg.K	1.084	IN/A	
25°C		kJ/kg.K	1.764	N/A	
50°C		KJ/Kg.K	1.849	N/A	
100°C		kJ/kg.K	2.042	N/A	
150°C		kJ/kg.K	2.249	N/A	
Density	D4052	. 3			
5°C		g/cm ³	0.8262	N/A	
15°C		g/cm ³	0.8189	N/A	0.775 to 0.840
40°C		g/cm [°]	0.8001	N/A	
60°C		g/cm ³	0.7850	N/A	
80°C		g/cm ³	0.7698	N/A	
Surface tension	D1331A				
-10°C		mN/m	28.4	N/A	
22°C		mN/m	25.1	N/A	
40°C		mN/m	24.4	N/A	
Speed of Sound @ 30°C		m/s	1289	N/A	
Isentropic Bulk Modulus @ 30°C		psi	194592	N/A	
Thermal Conductivity	SwRI				
0°C		W/m.K	0.1240	N/A	
25°C		W/m.K	0.1191	N/A	
50°C		W/m.K	0.1142	N/A	
Water Content	D6304	ppm	93	90	
Water Content	D6304				
0°C		ppm	58	N/A	
<u>30°C</u>			157	N/A	
40°C		ppm	354	N/A	
50°C		ppm	412	N/A	
Flash Point - Tag Closed	D56	°C	55	N/A	38 min
Freeze Point (manual)	D2386	°C	-58	N/A	-47 may
Freeze Point	D5972	°r	-63.2	N/A	- -
Floctrical Properties	D3912	C	-03.2	IV/A	
Dielectric Constant (10kHz)	SwDI				
	SWKI		2 224	NI/A	
-40°C			2.234	IN/A	
-20°C			2.200		
-0.4°C			2.177	N/A	
<u>30°C</u>			2.139	N/A	
50°C	DA COL		2.113	N/A	
Electrical Conductivity	D2624	pS/m	3.0	N/A	
Electrical Conductivity vs. SDA	D2624				
Concentration					

Table BC-1. Kior HDCJ Evaluations

			CL12-3883/5832	CL12-4384	MIL DTI 921221
Test	Method	Units	Kior HDCJ/Jet A Blend (POSF8123)	neat Kior HDCJ (POSF8076)	Table 1 Limits
0 mg/L		pS/m	0	N/A	
1 mg/L		pS/m	600	N/A	
2 mg/L		pS/m	1150	N/A	
3 mg/L		pS/m	1730	N/A	
4 mg/L		pS/m	2300	N/A	
Electrical Conductivity vs. Temperature	D2624				
-40		pS/m	0	N/A	
-30		pS/m	0	N/A	
-20		pS/m	0	N/A	
-10		pS/m	0	N/A	
0		pS/m	0	N/A	
10		pS/m	0	N/A	
20		pS/m	3	N/A	
		pS/m	40	N/A	
40		pS/m	113	N/A	
Ground Handling Properties and Safety					
MSEP	D3948	rating	97	N/A	70-90 min
Storage Stability - Peroxides @65°C	D3703				
0 week		mg/kg	0.36	N/A	
1 week	-	mg/kg	0.76	N/A	
2 week		mg/kg	1.56	N/A	
3 week		mg/kg	2.08	N/A	
6 week		mg/kg	6.28	N/A	
Storage Stability – Potential Gums	D5304				
16 hours		mg/100mL	0.1	N/A	
Upper Explosion Limit (UEL), @100°C	E681	%	4.0±0.1%	N/A	
Lower Explosion Limit (LEL), @100°C	E681	%	0.5±0.1%	N/A	
Autoignition temperature	E659				
Hot Flame Autoignition Temperature		°C	259	N/A	
Hot Flame Lag Time		seconds	33	N/A	
Cool Flame Autoignition Temperature		°C		N/A	
Cool Flame Lag Time		seconds		N/A	
Barometric Pressure	-	mm Hg	740.2	N/A	
Reaction Threshold Temperature		°C	238	N/A	
	FTM	ů F	1200 (burns on tube and		
Hot surface ignition	791-6053	° F	pan)	N/A	
Compatibility			• • • • • • • • • • • • • • • • • • • •		
Fuel/Additive Compatibility (2x treat rate)	D4054B				
FSII, DIEGME (0.3 vol%)		effect	 large droplets after initial cold soak went back into solution only upon heating to 100°F 	N/A	
SDA, Stadis 450 (10 mg/L)		effect	no issues observed	N/A	
CI/LI, DCI-4A (46 mg/L)		effect	 no issues observed 	N/A	
Metal Deactivator, DMD (11.4 mg/L)		effect	 no issues observed 	N/A	
Antioxidant, AO-30 (48 mg/L)		effect	 no issues observed 	N/A	
Thermal Stability, +100 (512 mg/L)		effect	no issues observed	N/A	
Additive Cocktail (DMD, AO-30, Stadis 450, DCI-4A, DIEGME, +100) (same concentrations as above)		effect	 thin film on bottom after initial cold soak went back into solution only upon heating to 100°F 	N/A	
Elastomer Compatibility (O-Ring Tests)	SwRI		See Figure BC-1 and Figure BC-2	N/A	

87

			CL12-3883/5832	CL12-4384	MIL DTL 0212211	
Test	Method Units		Kior HDCJ/Jet A Blend	neat Kior HDCJ	MIL DIL 65155H	
			(POSF8123)	(POSF8076)	Table I Linnis	
Miscellaneous						
Copper Strip Corrosion (100°C for 2 hours)	D130	rating	1A	N/A	No. 1 max	
Smoke Point	D1322	mm	20.5	N/A	25.0 min or 19.0 min	
Naphthalene Content	D1840	vol%	0.32	N/A	3.0 max	
Sulfur - Mercaptan	D3227	mass%	<0.003	N/A	0.002 max	
Acid Number	D3242	mg KOH/g	0.011	0.019	0.015 max	
Existent Gums	D381	mg/100mL	0.8	0.5	7.0 max	
Heat of Combustion	D4809					
BTUHeat_Net		BTU/lb	18402.0	N/A	18400.7 min	
MJHeat_Net		MJ/kg	42.80	N/A	42.8 min	
Sulfur Content - (Antek)	D5453	ppm	51	5.8	0.30 mass % max	
Ignition Quality Test (IQT)	D6890					
Ignition Delay, ID		ms	5.38	N/A		
Derived Cetane Number, DCN			39.2	N/A		
Minimum Ignition Energy @ 100°C	E582	mJ	0.45 - 0.63	N/A		
Sulfur Content - (XRY)	D2622	ppm	59.4	10.2		
FAME Content	IP585	ppm	< 4.5	N/A		

Table BC-1. Kior HDCJ Evaluations

(1) ASTM D2425 - Duplicate runs gave conflicting results. ASTM D2425 does not distinguish well between mono/di/tri cycloparaffins. One run showed all mono and the other run was spread across mono/di/tri. The Total value was similar in both cases so only that is being reported.

Figure BC-1. Tensile Strength – Kior HDCJ / Jet A Blend

Figure BC-2. Volume Change – Kior HDCJ / Jet A Blend

Appendix BD

Virent Evaluations

Table BD-1. Virent Evaluations

			CL12-4367	CL12-4370	
Test	Method	Units	Virent / Jet A Blend	neat Virent	MIL DIL 83133H
			(POSF9404)	(POSF8535)	Table I Limits
Chemistry					
Hydrocarbon Types by Mass Spec	D2425				
Paraffins		mass%	33.9	17.0	
Monocycloparaffins		mass%	24.9	42.5	
Dicycloparaffins		mass%	26.2	36.2	
Tricycloparaffins		mass%	5.6	4.2	
TOTAL SATURATES		mass%	90.6	99.9	
Alkylbenzenes		mass%	4.1	-	
Indans/Tetralins		mass%	2.5	-	
Indenes		mass%	0.5	-	
Naphthalene		mass%	0.3	-	
Naphthalene, Alkyl		mass%	1.5	-	
Acenaphthenes		mass%	0.3	0.1	
Acenaphthylenes		mass%	0.2	-	
Tricyclic Aromatics		mass%	-	-	
TOTAL AROMATICS		mass%	9.4	0.1	
Aromatic Content	D1319				
Aromatics		vol%	8.3	0.7	25.0 max
Olefins		vol%	2.3	1.2	
Saturates		vol%	89.4	98.1	
Carbon/Hydrogen	D5291				
Carbon		%	85.4	85.7	
Hydrogen		%	14.0	14.2	
Hydrogen Content (NMR)	D3701	mass%	14.1	14.3	13.4 min
Carbonyls, Alcohols, Esters, Phenols	03701	111113370	17,1	140	15.4 mm
Alcohols	EPA 8015B			N/A	
Carbonyls, Esters	EPA 8260B		Annendix BL	N/A	
Phenols	EPA 8270C		Appendix DL	N/A	
Nitrogen Content	D4629	ma/ka	<1	<u></u>	
Copper by AA	D3237M	nnh	<0.005	N/A	
Flomental Analysis	D3237101	ppo	<0.005	10/4	
Al	D/III	nnh	311	287	
Ai Ba		րրն	<100	<u></u>	
		nnh	<100	<100	
		nnh	<100	<100	
		nnh	<100	<100	
Ea		ppb ppb	<100	<100	
		ppo ppb	<100	<100	
Dh Dh		րրն	<100	<100	
ru Ma		րիս	<100	<100	
Ng Mn		րրթ	<100	<100	
Ma		րրթ	<100	<100	
IVIO NI:		րե	<100	<100	
INI V		phn	<100	<100	
<u> </u>		ppm nnm	< <u>1</u>		
		ppm	<1	102	
		ppin pph	<100	102	
Ag		 	<100	<100	
11 • • • • • • • • • • • • • • • • • • •		ppp ppb	<100	<100	
V Z		ppp ppb	<100	<100	
Dralls Discrimination 1 D f		ррв	<100	<100	
Bulk Physical and Performance Properties					
Distillation	D86				
IBP		°C	159.7	N/A	
5%		°Č	173.4	N/A	
10%		°Č	177.0	N/A	205 max
15%		°Č	182.1	N/A	
10/0		Ň			

			CL12-4367	CL12-4370	MII DTI 83133H
Test	Method	Units	Virent / Jet A Blend	neat Virent	Table 1 Limits
			(POSF9404)	(POSF8535)	Table I Linnes
Chemistry					
20%		°C	185.7	<i>N/A</i>	
30%		°C	194.5	<i>N/A</i>	
40%		°C	203.1	<i>N/A</i>	
50%		°C	210.9	<i>N/A</i>	
60%		°C	219.5	<i>N/A</i>	
70%		°C	228.6	<i>N/A</i>	
80%		°C	239.8	<i>N/A</i>	
90%		°C	255.3	<i>N/A</i>	
95%		°C	267.0	N/A	
FBP		°Č	279.4	N/A	300 max
Residue		%	1.3	N/A	1.5 max
Loss		%	01	N/A	1.5 max
		°C	33.0	N/A N/A	1.5 max
T00 T10		°C	78.2	N/A N/A	
Simulated Distillation	D1997	C	/0.5	11///	
Simulated Distillation	D2007	°C	112 7	N7/ 4	
IBP 70/		-C	113.7	N/A	
5%		°C	146.4	N/A	
10%		°C	157.6	<u>N/A</u>	
15%		°C	169.2	<u>N/A</u>	
20%		°C	175.5	<i>N/A</i>	
25%		°C	184.6	<i>N/A</i>	
30%		°C	192.6	<i>N/A</i>	
35%		°C	196.8	<i>N/A</i>	
40%		°C	204.1	<i>N/A</i>	
45%		°C	209.1	<i>N/A</i>	
50%		°C	215.3	<i>N/A</i>	
55%		°C	218.4	<i>N/A</i>	
60%		°C	225.7	<i>N/A</i>	
65%		°C	232.1	N/A	
70%		°C	238.3	N/A	
75%		°Č	246.7	N/A	
80%		°Č	254.2	N/A	
85%		°C	263.6	N/A	
90%		°C	203.0	N/A N/A	
05%		°C	272.4	N/A N/A	
9370 FPD		°C	207.0	N/A N/A	
FDI Vener program (Absolute)	D6279	C	514.5	11///	
vapor pressure (Absolute)	D03/8		0.0	37/4	
		psi ·	0.0	IV/A	
		psi ·	0.0	N/A	
40 °C		psı	0.1	N/A	
60 °C		psi	0.3	N/A	
80 °C		psi	0.6	N/A	
100 °C		psi	1.3	<i>N/A</i>	
120 °C		psi	2.3	<u>N/A</u>	
JFTOT Breakpoint	D3241BP	°C			
Test Temperature		°C	335	<i>N/A</i>	
ASTM Code		rating	<3	<i>N/A</i>	<3 max
Maximum Pressure Drop		mm Hg	0.0	<i>N/A</i>	25 max
Lubricity (BOCLE)	D5001	mm	0.75	<i>N/A</i>	
Lubricity (BOCLE) vs. CI/LI	D5001				
Concentration	D2001				
0 mg/L		mm	0.86	N/A	
5 mg/L		mm	0.79	N/A	
10 mg/L		mm	0.72	N/A	
15 mg/L		mm	0.68	N/A	
20 mg/L		mm	0.66	N/A	
Lubricity (HFRR)	D6079	um	0.70	N/4	
Lubricity (HFRR) vs. CI/LI	10077	μΠ	0.70	11//1	
Concentration	D6079				
			0.70	N/A	
v mg/L		μΠ	0./0	11///	

			CL12-4367 CL12-4370		MIL DTI 921221
Test	Method	Units	Virent / Jet A Blend	neat Virent	Table 1 Limits
			(POSF9404)	(POSF8535)	Table I Linnes
Chemistry					
5 mg/L		μm	0.71	<i>N/A</i>	
10 mg/L		μm	0.65	<i>N/A</i>	
15 mg/L		μm	0.63	<i>N/A</i>	
20 mg/L		μm	0.65	<i>N/A</i>	
Lubricity (Scuffing Load BOCLE)	D6078	mm	1700	<i>N/A</i>	
Lubricity (Scuffing Load BOCLE) vs.	D6078				
CI/LI Concentration	20010				
0 mg/L		g	1600	N/A	
5 mg/L		g	1450	<u>N/A</u>	
10 mg/L		g	1400	<i>N/A</i>	
15 mg/L		g	1850	<i>N/A</i>	
20 mg/L		g	1900	<u>N/A</u>	
Kinematic Viscosity	D445				
-39.95°C		cSt	10.9	N/A	
-20.0°C		cSt	5.1	<i>N/A</i>	8.0 max
25°C		cSt	1.8	<i>N/A</i>	
40°C		cSt	1.4	<u>N/A</u>	
Specific Heat Capacity	E2716				
-25°C		kJ/kg.K	1.702	<i>N/A</i>	
0°C		kJ/kg.K	1.793	<i>N/A</i>	
25°C		kJ/kg.K	1.892	<i>N/A</i>	
50°C		kJ/kg.K	1.983	<i>N/A</i>	
100°C		kJ/kg.K	2.176	<i>N/A</i>	
150°C		kJ/kg.K	2.398	<u>N/A</u>	
Density	D4052				
<u> </u>		g/cm ³	0.8168	<i>N/A</i>	
<u>15°C</u>		g/cm ³	0.8095	<i>N/A</i>	0.775 to 0.840
40°C		g/cm ³	0.7912	<i>N/A</i>	
60°C		g/cm ³	0.7765	<i>N/A</i>	
80°C		g/cm ³	0.7618	<u>N/A</u>	
Surface tension	D1331A				
-10.0°C		mN/m	27.7	<i>N/A</i>	
<u>22°C</u>		mN/m	25.7	N/A	
40.0°C		mN/m	24.1	<u>N/A</u>	
Speed of Sound @ 30°C		m/s	1277	<u>N/A</u>	
Isentropic Bulk Modulus @ 30°C	a bi	psi	188813	<u>N/A</u>	
Thermal Conductivity	SwRI				
<u> </u>		W/m.K	0.1217	N/A	
<u>25°C</u>		W/m.K	0.1170	<u>N/A</u>	
50°C		W/m.K	0.1124	N/A	
Water Content	D6304	ppm	54.0	43.0	
Water Content	D6304		2-		
<u>0°C</u>		ppm	35	<u>N/A</u>	
<u>30°C</u>		ppm	97	<u>N/A</u>	
40°C		ppm	125	<u>N/A</u>	
50°C		ppm	158	<u>N/A</u>	<u> </u>
Flash Point - Tag Closed	D56	°C	47.0	<u>N/A</u>	38 min
Freeze Point (manual)	D2386	°C	-56.0	N/A	-47 max
Freeze Point	D5972	°C	-52.7	<u>N/A</u>	
Electrical Properties	a ==				
Dielectric Constant (10kHz)	SwRI				
-34.3°C			2.1650	<u>N/A</u>	
-20°C			2.1437	<u>N/A</u>	
0.0°C			2.1190	<u>N/A</u>	
<u>30°C</u>			2.0865	<u>N/A</u>	
50°C			2.0613	<u>N/A</u>	
Electrical Conductivity	D2624	pS/m	0.0	N/A	
Electrical Conductivity vs. SDA	D2624				
Concentration		<i>a</i> :	0.0		
0 mg/L		pS/m	0.0	<u>N/A</u>	

			CL12-4367	CL12-4370	MIL DTL 0212211
Test	Method	Units	Virent / Jet A Blend (POSF9404)	neat Virent (POSF8535)	Table 1 Limits
Chemistry			(1001)101)	(10010000)	
1 mg/L		pS/m	470.0	N/A	
2 mg/L		pS/m	900.0	N/A	
3 mg/L		pS/m	1350.0	N/A	
4 mg/L		pS/m	1790.0	N/A	
Electrical Conductivity vs.	D2624				
-40		nS/m	0.0	N/4	
-30		nS/m	0.0	N/A	
-20		nS/m	0.0	N/A	
-10		nS/m	0.0	N/A	
0		pS/m	0.0	N/A	
10		pS/m	0.0	N/A	
20		pS/m	0.0	N/A	
30		pS/m	0.0	N/A	
40		pS/m	10.0	N/A	
Ground Handling Properties and		L			
MSEP	D3948	rating	99	N/A	70-90 min
Storage Stability - Peroxides @65°C	D3703	. aung	,,	11/28	, 5-20 mm
0 week	20100	mg/kg	1.2	N/A	
1 week		mg/kg	1.5	N/A	
2 week		mg/kg	2.0	N/A	
3 week		mg/kg	2.2	N/A	
6 week		mg/kg	3.2	N/A	
Storage Stability – Potential Gums	D5304	00			
16 hours		mg/100mL	0.0	<i>N/A</i>	
Upper Explosion Limit (UEL), @100°C	E681	%	7.2 ± 0.2 (re-run 7.46)	<i>N/A</i>	
Lower Explosion Limit (LEL), @100°C	E681	%	0.5 ± 0.1 (re-run 0.92)	<i>N/A</i>	
Autoignition temperature	E659)		
Hot Flame Autoignition Temperature		°C	233	N/A	
Hot Flame Lag Time		seconds	179	N/A	
Cool Flame Autoignition Temperature		°C		<i>N/A</i>	
Cool Flame Lag Time		seconds		<i>N/A</i>	
Barometric Pressure		mm Hg	739.5	<i>N/A</i>	
Reaction Threshold Temperature		°C	223	<i>N/A</i>	
Hot surface ignition	FTM 791- 6053	°F	1125 (burns on tube and pan)	<i>N/A</i>	
Compatibility	0000	I	unu pun)		
Fuel/Additive Compatibility (2x treat	D4054B				
FSII, DIEGME (0.3 vol%)		effect	 large droplets after initial cold soak small droplet remaining at room temperature went back into solution only upon heating to 100°F 	N/A	
SDA, Stadis 450 (10 mg/L)		effect	 no issues observed no issues 	N/A	
		enect	observed no issues 	IN/A	
Metal Deactivator, DMD (11.4 mg/L)		effect	observed	N/A	
Anuoxidant, AU-30 (48 mg/L)		enect	 no issues 	1 V/A	

93

			CL12-4367	CL12-4370	MII DTI 83133H	
Test	Method	Units	Virent / Jet A Blend	neat Virent	Table 1 Limits	
			(POSF9404)	(POSF8535)	Table T Emiles	
Chemistry						
			observed			
Thermal Stability +100 (512 mg/L)		offect	 no issues 	N/A		
Therman Stability, +100 (312 llg/L)		enect	observed	10/A		
			 thin film on 			
			bottom after			
			initial cold			
			soak			
			 small droplet 			
Additive Cocktail (DMD, AO-30, Stadis			remaining at			
450, DCI-4A, DIEGME, +100)		effect	room	N/A		
(same concentrations as above)			temperature			
			• went back			
			into solution			
			only upon			
			neating to			
Flastomer Compatibility (O-Ping			Soo Figuro BD-1			
Tests)	SwRI		and Figure BD 2			
Miscellaneous		I	unu rigure DD 2			
Copper Strip Corrosion (100°C for 2 hours)	D130	rating	1A	<i>N/A</i>	No. 1 max	
Smoke Point	D1322	mm	26.0	<i>N/A</i>	25.0 min or 19.0 min	
Naphthalene Content	D1840	vol%	0.9	<i>N/A</i>	3.0 max	
Sulfur - Mercaptan	D3227	mass%	<0.0003	<i>N/A</i>	0.002 max	
Acid Number	D3242	mg KOH/g	0.005	0.003	0.015 max	
Existent Gums	D381	mg/100mL	0.6	1.4	7.0 max	
Heat of Combustion	D4809					
BTUHeat_Net		BTU/lb	18522.4	<i>N/A</i>	18400.7 min	
MJHeat_Net		MJ/kg	43.08	<i>N/A</i>	42.8 min	
Sulfur Content - (Antek)	D5453	ppm	341.4	0.5	0.30 mass % max	
Ignition Quality Test (IQT)	D6890					
Ignition Delay, ID		ms	4.6	<i>N/A</i>		
Derived Cetane Number, DCN			44.9	<i>N/A</i>		
Minimum Ignition Energy @ 100°C	E582	mJ	0.13-0.28	<i>N/A</i>		
Sulfur Content - (XRY)	D2622	ppm	352.2	2.8		

Figure BD-1. Tensile Strength – Virent / Jet A Blend

Figure BD-2. Volume Change – Virent / Jet A Blend

Appendix BE

ARA (ReadiJet) Evaluations

Table BE-1. ARA (ReadiJet) Evaluations

			CL13-4826	MIL DTI 82122H
Test	Method	Units	ARA ReadiJet	Table 1 Limits
			(POSF10136)	
Chemistry				
Hydrocarbon Types by Mass Spec	D2425			
Paraffins		mass%	33.1	
Monocycloparaffins		mass%	35.2	
Dicycloparaffins		mass%	10.0	
Tricycloparaffins		mass%	1.9	
TOTAL SATURATES		mass%	80.2	
Alkylbenzenes		mass%	9.3	
Indans/Tetralins		mass%	8.5	
Indenes		mass%	0.9	
Naphthalene		mass%	0.7	
Naphthalene, Alkyl		mass%	0.2	
Acenaphthenes		mass%	0.1	
Acenanhthylenes		mass%	0.1	
Tricyclic Aromatics		mass%		
TOTAL AROMATICS		mass ⁰ /	19.8	
Aromatic Content	D1319	11103570	17.0	
Aromatics	01317	vol%	16.0	25.0 may
Olofing		vol /0	10.7	20.0 IIIdA
Clemis		V0170 V010/	1.7 Q1 7	
Carbon/Hydrogen	D5201	VU170	01.2	
	D5291	0/	QC 1	
Carbon		%	86.1	
Hydrogen	D2501	%	13.9	12.4 .
Hydrogen Content (NMIR)	D3701	mass%	14.0	13.4 min
Carbonyls, Alcohols, Esters, Phenols				
Alcohols	EPA 8015B			
Carbonyls, Esters	EPA 8260B		Appendix BM	
Phenois	EPA 8270C			
Nitrogen Content	D4629	mg/kg	<1	
Copper by AA	D3237M	ppb	<5	
Elemental Analysis	D7111			
Al		ppb	211.0	
Ba		ppb	<100	
Ca		ppb	220.0	
Cr		ppb	<100	
Cu		ppb	<100	
Fe		ppb	<100	
Li		ppb	<100	
Pb		ppb	<100	
Mg		ppb	<100	
Mn		ppb	<100	
Мо		ppb	<100	
Ni		ppb	<100	
K		ppm	<1	
Na		ppm	<1	
Si		ppm	<100	
Ag		ppb	<100	
Ti		daa	<100	
V		ppb	<100	
Zn		ppb	<100	
Bulk Physical and Performance Properties		FF~		
Distillation	D86			
IRP	2.30	°C	152.3	
50%		°C	163.5	
10%		°C	166 1	205 may
1070		°C	160.6	aus max
200%		°C	173.7	
2078		C	1/3./	

			CL13-4826	MIL DTI 83133H
Test	Method	Units	ARA ReadiJet	Table 1 Limits
		0.07	(POSF10136)	
30%		°C	182.0	
40%		<u>°C</u>	191.1	
50%		°C	201.2	
		°C	211.9	
70%		°C	222.0	
		°C	234.7	
90%		°C	240.0	
95 /8 FBD		°C	257.2	300 may
r Dr Dosiduo		0%	1.2	1.5 max
Loss		/0	0.2	1.5 max
T50-T10		°C	35.1	The mux
T90-T10		<u>°C</u>	82.5	
Simulated Distillation	D2887	U	0210	
IBP	District	°C	122.3	
5%		°C	136.1	
10%		°C	150.2	
15%		°C	152.0	
20%		°Č	163.6	
25%		°Č	172.1	
30%		°Č	175.1	
35%		°Č	184.7	
40%		°Č	193.2	
45%		°Č	196.4	
50%		°Č	203.1	
55%		°C	210.3	
60%		°C	216.2	
65%		°C	224.4	
70%		°C	232.7	
75%		°C	239.4	
80%		°C	247.6	
85%		°C	255.0	
90%		°C	264.3	
95%		°C	273.3	
FBP		°C	304.3	
Vapor pressure (Absolute)	D6378			
0 °C		psi	0.01	
20 °C		psi	0.14	
40 °C		psi	0.19	
60 °C		psi	0.36	
80 °C		psi	0.84	
100 °C		psi	1.73	
120 °C	Dation	psi	3.23	
JFTOT Breakpoint	D3241BP			
Test Temperature		°C	295	
ASTM Code		rating	2	<3 max
Maximum Pressure Drop	D-5004	mm Hg	0	25 max
Lubricity (BOCLE)	D5001	mm	0.68	
LUDTICITY (DULLE) VS. CI/LI CONCENTRATION	10001		0.72	
U mg/L		mm	0.72	
5 mg/L 10 /7		iiiiii	0.70	
10 mg/L 15 /7		iiiiii	0.05	
15 lllg/L 20 mg/L		mm	0.02	
Lubricity (HFRR)	D6079		642	
Lubricity (HFRR) vs. CI/LI Concentration	D6079	μιιι	042	
	10077	um	712	
5 mg/L		um	704	
10 mg/L		um	719	
15 mg/L		um	722	
20 mg/L		um	736	
20 mg/1				

Table BE-1. ARA (ReadiJet) Evaluations
			CL13-4826	MIL DTI 921221
Test	Method	Units	ARA ReadiJet	Table 1 Limits
			(POSF10136)	Table I Links
Lubricity (Scuffing Load BOCLE)	D6078	mm	2150	
Lubricity (Scuffing Load BOCLE) vs. CI/LI	D6078			
Concentration	D0070			
0 mg/L		g	1700	
5 mg/L		g	2200	
10 mg/L		g	2100	
15 mg/L		g	2050	
20 mg/L		g	2200	
Kinematic Viscosity	D445			
-39.95°C		cSt	7.90	
-20.0°C		cSt	4.05	8.0 max
25°C		cSt	1.56	
40°C		cSt	1.26	
Specific Heat Capacity	E2716			
-25°C		kJ/kg.K	1.73	
0°C		kJ/kg.K	1.79	
25°C		kJ/kg.K	1.87	
50°C		kJ/kg.K	1.96	
100°C		kJ/kg.K	2.16	
150°C		kJ/kg.K	2.37	
Density	D4052			
5°C		g/cm ³	0.8111	
15°C		g/cm ³	0.8036	0.775 to 0.840
25°C		g/cm ³	0.7962	
35°C		g/cm ³	0.7887	
45°C		g/cm ³	0.7812	
55°C		g/cm ³	0.7736	
65°C		g/cm ³	0.7661	
75°C		g/cm ³	0.7585	
85°C		g/cm ³	0.7508	
Surface tension	D1331A			
-10.0°C		mN/m	28.2	
22°C		mN/m	25.7	
40.0°C		mN/m	24.3	
Speed of Sound @ 30°C		m/s	1281	
Isentropic Bulk Modulus @ 30°C		psi	188541	
Thermal Conductivity	SwRI			
0°C		W/m.K	0.1284	
25°C		W/m.K	0.1227	
50°C		W/m.K	0.1170	
Water Content	D6304	ppm	52	
Water Content	D6304			
0°C		ppm	33	
30°C		ppm	101	
40°C		ppm	138	
50°C		ppm	201	
Flash Point - Tag Closed	D56	°C	42.0	38 min
Freeze Point (manual)	D2386	°C	-43.0	-47 max
Freeze Point	D5972	°C	-43.9	
Electrical Properties		I		
Dielectric Constant (10kHz)	SwRI			
	D WR		2,191	
			2,161	
			2.137	
30°C			2.103	
50°C			2.078	
Electrical Conductivity	D2624	nS/m	0.0	
Electrical Conductivity vs. SDA Concentration	D2624	P.//III	0.0	
	DEVET	nS/m	0	
1 mg/L		nS/m	303	
2 mg/L		nS/m	714	
2 mg/1				

Table BE-1. ARA (ReadiJet) Evaluations

Table BE-1. ARA (ReadiJet) Evaluations

			CL13-4826	MIL DTL 0212211
Test	Method	Units	ARA ReadiJet	Table 1 Limits
			(POSF10136)	Table I Linnes
3 mg/L		pS/m	1425	
4 mg/L		pS/m	2700	
Electrical Conductivity vs. Temperature	D2624			
-40		pS/m	11	
-30		pS/m	11	
-20		pS/m	7	
-10		pS/m	3	
0		pS/m	1	
10		pS/m	1	
20		pS/m	3	
		pS/m	5	
40		pS/m	8	
Ground Handling Properties and Safety		ì		
MSEP	D3948	rating	97.0	70-90 min
Storage Stability - Peroxides @65°C	D3703			
0 week		mg/kg	1.08	
1 week		mg/kg	1.92	
2 week		mg/kg	2.16	
3 week		mg/kg	2.76	
6 week		mg/kg	3.00	
Storage Stability – Potential Gums	D5304			
16 hours		mg/100mL	0.4	
Upper Explosion Limit (UEL), @100°C	E681	%	6.0 +/- 0.1	
Lower Explosion Limit (LEL), @100°C	E681	%	0.5 +/- 0.1	
Autoignition temperature	E659			
Hot Flame Autoignition Temperature		°C	234	
Hot Flame Lag Time		seconds	209	
Cool Flame Autoignition Temperature		°C	N/A	
Cool Flame Lag Time		seconds	0	
Barometric Pressure		mm Hg	741	
Reaction Threshold Temperature		°C	217	
	FTM 791.		1200 (burns on tube and	
Hot surface ignition	6053	°F	pan)	
	0055			
Compatibility		i		
Fuel/Additive Compatibility (2x treat rate)	D4054B			
FSIL DIEGME (0.3 vol%)		effect	Large droplets after	
		eneer	cold soak	
SDA, Stadis 450 (10 mg/L)		effect	No issues	
CI/LI, DCI-4A (46 mg/L)		effect	No issues	
Metal Deactivator, DMD (11.4 mg/L)		effect	No issues	
Antioxidant, AO-30 (48 mg/L)		effect	No issues	
Thermal Stability, +100 (512 mg/L)		effect	No issues	
Additive Cocktail (DMD, AO-30, Stadis 450,				
DCI-4A, DIEGME, +100)		effect	No issues	
(same concentrations as above)				
Elastomer Compatibility (O-Ring Tests)	SwRI		See Figure BE-1	
			and Figure BE-2	
Miscellaneous	D120		14	No. 1 more
Copper Strip Corrosion (100°C for 2 nours)	D130	rating		No. 1 max
Smoke Point Nachthalana Cantant	D1322	mm	27.5	25.0 min or 19.0 min
Naprinalene Content	D1840	V01%	0.52	3.0 max
Sunur - Mercaptan	D3227	mass%	<0.0003	0.002 max
Acia Number	D5242	mg KOH/g	0.008	0.015 max
Existent Gums	D381	mg/100mL	5.0	7.0 max
Heat of Combustion	D4809	DITTAL	10/04	10400 = '
BTUHeat_Net		BTU/lb	18604	18400.7 min
MJHeat_Net	DECES	MJ/kg	43.3	42.8 min
Sultur Content - (Antek)	D5453	ppm	1.3	0.30 mass % max
Ignition Quality Test (IQT)	D6890			
Ignition Delay, ID		ms	4.1	
Derived Cetane Number, DCN			49.9	

99

Table BE-1. ARA (ReadiJet) Evaluations

Test	Method	Units	CL13-4826 ARA ReadiJet (POSF10136)	MIL DTL 83133H Table 1 Limits
Minimum Ignition Energy @ 100°C	E582	mJ	0.15-0.18	
Sulfur Content - (XRY)	D2622	ppm	<1.0	

Figure BE-1. Tensile Strength – ARA ReadiJet

Figure BE-2. Volume Change – ARA ReadiJet

Appendix BF

Total / Amyris Blends

Table BF-1. Total / Amyris Blends Evaluations

			CL12-4716	CL12-4717	
Test	Method	Units	Total / Amyris 20% Blend	Total / Amyris 10% Blend	MIL DTL 83133H Table 1 Limits
Chemistry					
Hydrocarbon Types by Mass Spec	D2425				
Paraffins		mass%	56.1	50.2	
Monocycloparaffins		mass%	25.9	28.8	
Dicycloparaffins		mass%	0.0	0.0	
Tricycloparaffins		mass%	0.0	0.0	
TOTAL NAPTHENES		mass%	25.9	28.8	
TOTAL SATURATES		mass%	82.0	79.0	
Alkylbenzenes		mass%	13.4	15.4	
Indans/Tetralins		mass%	3.5	4.2	
Indenes		mass%	0.0	0.0	
Naphthalene		mass%	0.2	0.3	
Naphthalene, Alklyl		mass%	0.7	0.9	
Acenaphthenes		mass%	0.1	0.1	
Acenaphthylenes		mass%	0.1	0.1	
Tricyclic Aromatics		mass%	0.0	0.0	
TOTAL PNAs		mass%	1.1	1.4	
TOTAL AROMATICS		mass%	18.0	21.0	
Aromatic Content	D1319				
Aromatics		vol%	14.5	17.2	25.0 max
Olefins		vol%	1.7	1.5	
Saturates		vol%	83.8	81.3	
Carbon/Hydrogen	D5291				
Carbon		%	86.02	86.23	
Hydrogen		%	14.07	13.93	
Hydrogen Content (NMR)	D3701	mass%	14.13	14.06	13.4 min
Carbonyls, Alcohols, Esters, Phenols					
Carbonyls, Esters	EPA				
	8260B		Append	ix BN	
Phenols	EPA 9270C				
Nitzagan Contant	02/0C				
Niti ogen Content	11/16 /11	malka	/1	-1	
Connor by AA	D4629	mg/kg	<1	<1	
Copper by AA Elemental Analysis	D4629 D3237M D7111	mg/kg ppb	<1 <0.01	<1 <0.01	
Copper by AA Elemental Analysis	D4629 D3237M D7111	mg/kg ppb	<1 <0.01	<1 <0.01	
Copper by AA Elemental Analysis Al	D3237M D7111	mg/kg ppb ppb ppb	<1 <0.01 <100 <100	<1 <0.01 104 <100	
Copper by AA Elemental Analysis Al Ba	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb	<1 <0.01 <100 <100 <100	<1 <0.01 104 <100 <100	
Copper by AA Elemental Analysis Al Ba Ca	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb	<1 <0.01 <100 <100 <100 <100	<1 <0.01 104 <100 <100 <100	
Copper by AA Elemental Analysis Al Ba Ca Cr Cn	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb	<1 <0.01 <100 <100 <100 <100 <100	<1 <0.01 104 <100 <100 <100 <100	
Copper by AA Elemental Analysis Al Ba Ca Cr Cu E	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb	<1 <0.01 <100 <100 <100 <100 <100 <100	<1 <0.01 104 <100 <100 <100 <100 <100	
Copper by AA Elemental Analysis Al Ba Ca Cr Cu Cu Fe Li	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100	
Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Ph	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100	
Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb ppb	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <10	
Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <10	
Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <10	
Copper by AA Elemental Analysis Al Ba Ca Cr Cu Cu Fe Li Pb Mg Mn Mo Ni	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <10	
Copper by AA Elemental Analysis Al Ba Ca Cr Cu Cu Fe Li Pb Mg Mn Mo Ni K	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <10	
Copper by AA Elemental Analysis Al Ba Ca Ca Cr Cu Fe Li Pb Mg Mn Mn Mo Ki K	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <10	
Copper by AA Elemental Analysis Al Ba Ca Ca Cr Cu Fe Li Pb Mg Mn Mn Mo Ki Ki Na	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <10	
Copper by AA Elemental Analysis Al Ba Ca Ca Cr Cu Fe Li Pb Mg Mn Mo Ni Ki Ka Na Si Ag	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <10	
Copper by AA Elemental Analysis Al Ba Ca Ca Cr Cu Fe Li Pb Mg Mn Mo Ni K Na Si Ag Ag Ti	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <10	
Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni Si Ag Ti V	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <10	
Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni Si Ag Ti V	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <10	
Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni Si Ag Ti V Bulk Physical and Performance	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <10	
Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni Si Ag Ti V Bulk Physical and Performance Properties	D4629 D3237M D7111	mg/kg ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	<1 <0.01 <100 <100 <100 <100 <100 <100 <	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <10	

			CL12-4716	CL12-4717	
Test	Method	Units	Total / Amyris 20% Blend	Total / Amyris 10% Blend	MIL DTL 83133H Table 1 Limits
IBP		°C	158.2	157.4	
5%		°C	169.3	167.3	
10%		°C	171.2	169.0	205 max
15%		°C	174.4	171.6	
20%		°C	177.6	174.6	
30%		°C	184.0	180.0	
40%		°C	191.6	186.1	
50%		°C	200.4	193.6	
60%		°C	210.4	202.3	
70%		°C	221.6	213.0	
80%		°C	232.7	225.5	
90%		°C	242.5	238.8	
95%		°C	247.8	247.0	
FBP		°C	260.7	261.1	300 max
Residue		%	1.3	1.3	1.5 max
Loss		%	0.0	0.1	1.5 max
T50-T10		°C	29.2	24.6	
Т90-Т10		°C	71.3	69.8	
Simulated Distillation	D2887				
IBP		°C	92.7	84.0	
5%		°C	142.9	142.4	
10%		°C	151.2	150.8	
15%		°C	159.3	158.0	
20%		°C	166.0	164.9	
25%		°C	172.0	168.5	
30%		°C	174.7	173.7	
35%		°C	180.8	177.1	
40%		°C	188.2	182.7	
45%		°C	195.1	189.2	
50%		°C	200.3	195.5	
55%		<u> </u>	208.5	200.1	
60%		<u> </u>	215.9	207.8	
65%		°C	223.8	215.0	
/0%		°C	234.7	219.8	
/5%		°C	240.1	230.2	
0070 850/		°C	240.0	239.7	
		°C	249.0	240.5	
9070		°C	250.7	250.1	
9576 FDD		°C	239.5	230.0	
Vapor prossure (Absolute)	D6378	C	550.2	304.2	
	10570	nsi	0.00	0.00	
<u> </u>		psi nei	0.03	0.02	
<u>20 C</u> <u>40 °C</u>		nsi	0.08	0.02	
		nsi	0.28	0.30	
80°C		nsi	0.69	0.77	
100 °C		nsi	1.48	1.65	
120 °C		nsi	2.61	2.81	
JFTOT Breakpoint	D3241BP	P.0.			
Test Temperature		°C	310	295	
ASTM Code		rating	2	<2	<3 max
Maximum Pressure Drop		mm Hg	0	0	25 max
Lubricity (BOCLE)	D5001	mm	0.730	0.780	
Lubricity (BOCLE) vs. CI/LI	D5001				
Concentration	02001				
0 mg/L		mm	0.870	0.920	
5 mg/L		mm	0.800	0.830	
10 mg/L		mm	0.730	0.680	
15 mg/L		mm	0.630	0.640	
20 mg/L		mm	0.610	0.620	
Lubricity (HFRR)	D6079	μm	768	758	

Table BF-1. Total / Amyris Blends Evaluations

			CL12-4716	CL12-4717	
Test	Method	Units	Total / Amyris 20% Blend	Total / Amyris 10% Blend	MIL DTL 83133H Table 1 Limits
Lubricity (HFRR) vs. CI/LI Concentration	D6079				
0 mg/L		μm	726	755	
5 mg/L		μm	719	741	
10 mg/L		μm	723	749	
15 mg/L		μm	715	689	
20 mg/L		μm	717	695	
Lubricity (Scuffing Load BOCLE)	D6078	g	1700	2100	
Lubricity (Scuffing Load BOCLE) vs. CI/LI Concentration	D6078				
0 mg/L		g	1300	1150	
5 mg/L		g	1400	1500	
10 mg/L		g	1600	1350	
15 mg/L		g	1950	1650	
20 mg/L		g	1950	2050	
Kinematic Viscosity	D445	a .	0.40		
-40°C		cSt	8.49	7.28	0.0
-20°C		cSt	4.19	3.75	8.0 max
25°C		cSt	1.58	1.47	
40°C	FARIA	cSt	1.26	1.18	
Specific Heat Capacity	E2716	1.7/1 . 77	1.053	1.057	
-25°C		kJ/kg.K	1.953	1.976	
0°C		kJ/kg.K	2.032	2.058	
<u>25°C</u>		kJ/kg.K	2.136	2.146	
50°C		kJ/kg.K	2.244	2.242	
100°C		kJ/kg.K	2.445	2.470	
150°C	D 4053	kJ/kg.K	2.673	2.676	
Density	D4052	. 13	0.7007	0.0020	
5.0		g/cm	0.7996	0.8020	0.775 4 0.040
15°C		g/cm ²	0.7922	0.7946	0.775 to 0.840
25°C		g/cm	0.7848	0.7872	
<u> </u>		g/cm	0.7/74	0.7797	
45 C		g/cm ³	0.7099	0.7721	
55 C	-	g/cm ³	0.7024	0.7040	
<u> </u>	-	g/cm ³	0.7349	0.7370	
73 C		g/cm ³	0.7475	0.7495	
Surface tension	D1331A	g/cm	0.7390	0.7410	
-10.0°C	DISSIA	mN/m	27.5	27.5	
22°C		mN/m	27.5	27.5	
<u>40 0°C</u>		mN/m	23.0	23.1	
Speed of Sound @ 30°C and atm	SwRI	m/s	1265	1263	
Isentropic Bulk Modulus @ 30°C and atm pressure	SwRI	psi	181175	181325	
Thermal Conductivity – THW	SwRI				
0°C	D WIN	W/m.K	0.1250	0.1252	
25°C		W/m.K	0.1197	0.1198	
50°C		W/m.K	0.1144	0.1143	
Water Content	D6304	ppm	42	37	
Water Content	D6304	F F F F			
0°C		ppm	29	36	
30°C		ppm	94	111	
40°C		ppm	140	147	
50°C		ppm	208	202	
Flash Point - Tag Closed	D56	°C	44	43	38 min
Freeze Point (manual)	D2386	°C	-54.0	-55.0	-47 max
Freeze Point	D5972	°C	-58.1	-57.2	
Electrical Properties					
Dielectric Constant (10kHz)	SwRI				
-40°C			2.172		

Table BF-1. Total / Amyris Blends Evaluations

			CL12-4716	CL12-4717	
Test	Method	Units	Total / Amyris	Total / Amyris	MIL DTL 83133H
			20% Blend	10% Blend	Table 1 Limits
-20°C			2.143		
0.0°C			2.120		
30°C			2.085		
50.1°C			2.062		
-40.1°C				2.179	
-20°C				2.150	
0.0°C				2.125	
30°C				2.089	
50°C				2.065	
Electrical Conductivity	D2624	pS/m	0.0	0.0	
Electrical Conductivity vs. SDA Concentration	D2624				
0 mg/L		pS/m	0	0.0	
1 mg/L		pS/m	610	640.0	
2 mg/L		pS/m	1160	1170.0	
<u></u>		pS/m	1640	1710.0	
4 mg/L		pS/m	2190	2280.0	
Electrical Conductivity vs. Temperature	D2624				
-40		pS/m	0.0	0.0	
-30		pS/m	0.0	0.0	
-20		pS/m	0.0	0.0	
-10		pS/m	0.0	0.0	
0		pS/m	0.0	0.0	
10		pS/m	0.0	0.0	
20		pS/m	0.0	0.0	
30		pS/m	10.0	10.0	
40		pS/m	20.0	20.0	
Ground Handling Properties and Safety					
MSEP - Alumicel	D3948	rating	99.0	99.0	70-90 min
Storage Stability - Peroxides @65°C	D3703				
0 week		mg/kg	0.44	1.12	
1 week		mg/kg	1.08	1.80	
2 week		mg/kg	1.24	2.00	
3 week		mg/kg	1.80	2.12	
6 week		mg/kg	2.08	2.68	
Storage Stability – Potential Gums	D5304				
16 hours		mg/100mL	0.4	0.5	
Upper Explosion Limit (UEL), @100°C	E681	%	3.8	4.1	
Lower Explosion Limit (LEL), @100°C	E681	%	0.4	0.5	
Autoignition temperature	E659				
Hot Flame Autoignition Temperature		°C	233	233	
Hot Flame Lag Time		seconds	147.0	165.1	
Cool Flame Autoignition Temperature		°C	0	0	
Cool Flame Lag Time		seconds	0.0	0.0	
Barometric Pressure		mm Hg	743.2	743.2	
Reaction Threshold Temperature		°C	217	217	
	FTM 701		1250 (burns on	1250 (burns on	
Hot surface ignition	6053	° F	tube	tube	
	0055		and in pan)	and in pan)	
Compatiblity					
Fuel/Additive Compatibility (4x treat rate)	D4054B				
FSII		effect	Large droplets	Large droplets	
		offect	arter cold soak	no icence	
SDA CULL		offect	no issues	no issues	
		effect	no issues	no issues	
MDA		effect	no issues	no issues	
AU-30		offoot	no issues	no issues	
Additive Cockteil (MDA AO SDA		enect	no issues	no issues	
CI/LI, FSII,+100)		effect	no issues	no issues	

Table BF-1. Total / Amyris Blends Evaluations

			CL12-4716	CL12-4717	
Test	Method	Units	Total / Amyris	Total / Amyris	MIL DTL 83133H
			20% Blend	10% Blend	Table 1 Limits
			Saa Figuna DE 1	Sac Figure DE 2	
Elastomer Compatibility (O-Ring Tests)	SwRI		See Figure DF-1	See Figure DF-5	
			and Figure BF-2	and Figure BF-4	
Miscellaneous	.	•		•	
Copper Strip Corrosion (100°C for 2	D130	roting	14	14	No. 1 may
hours)	D130	Taung	IA	IA	110. I max
Surala Daint	D1222		27.5	28.0	25.0 min or 19.0
Smoke Point	D1322	mm	27.5	28.0	min
Naphthalene Content	D1840	vol%	0.63	0.62	3.0 max
Sulfur - Mercaptan	D3227	mass%	<0.0003	<0.0003	0.002 max
Acid Number	D3242	mg KOH/g	0.001	0.001	0.015 max
Existent Gums	D381	mg/100mL	<1	4.0	7.0 max
Heat of Combustion	D4809				
BTUHeat_Net		BTU/lb	18586.0	18509.1	18400.7 min
MJHeat_Net		MJ/kg	43.231	43.052	42.8 min
Sulfur Content - (Antek)	D5453	ppm	4.8	5.1	0.30 mass % max
Ignition Quality Test (IQT)	D6890				
Ignition Delay, ID		ms	4.609	4.772	
Derived Cetane Number, DCN			44.95	43.57	
Minimum Ignition Energy @ 100°C	E582	mJ	0.13 - 0.18	0.13 - 0.15	
Sulfur Content - (XRY)	D2622	ppm	5.8	6.6	

Table BF-1. Total / Amyris Blends Evaluations

Figure BF-1. Tensile Strength – Total / Amyris 20% Blend

Figure BF-2. Volume Change – Total / Amyris 20% Blend

Figure BF-3. Tensile Strength – Total / Amyris 10% Blend

Figure BF-4. Volume Change – Total / Amyris 10% Blend

Appendix BG

Miscellaneous Amyris Testing

Table BG-1. Amyris Jet A-1 (CL13-5265)

_			SwRI Sample ID
Test	Method	Units	CL13-5265
	D2241		Result
JF101 Breakpoint Test Temperature	D3241	°C	225
ASTM Code		rating	355
Maximum Prossure Drop		mm Ha	<u> </u>
Lubricity (BOCLE) vs. Concentration	D5001	iiiii iig	0
Lubricity (BOCLE) vs. Concentration	D3001	mm	0.00
5 ppm CI/LI		mm	0.50
10 ppm CI/LI		mm	0.30
15 ppm CI/LI		mm	0.70
20 ppm CI/LI		mm	0.67
Kinematic Viscosity	D445		0.05
40°C	0440	cSt	1 11
25°C		cSt	1 37
-20°C		cSt	3 29
-20°C		cSt	636
Specific Heat Canacity	E2716	cor	0.50
-25°C	12/10	kJ/kg.K	1.663
<u> </u>		k.J/kg.K	1.722
25°C		k.J/kg.K	1.797
50°C		k.J/kg.K	1.887
100°C		k.J/kg.K	2.071
150°C		k.J/kg.K	2.285
Dielectric Constant	SwRI	no, ngun	
50°C	5 mile		2.066
30°C			2.090
0°C			2.126
-19.8°C			2.158
-40°C			2.186
Density (5°-85°C)	D4052		
5°C		g/mL	0.8042
15°C		g/mL	0.7968
25°C		g/mL	0.7892
35°C		g/mL	0.7817
45°C		g/mL	0.7741
55°C		g/mL	0.7665
65°C		g/mL	0.7588
75°C		g/mL	0.7512
85°C		g/mL	0.7434
Extrapolated Density (for Dielectric Constant)	SwRI		
50°C		g/mL	0.7702
30°C		g/mL	0.7854
0°C		g/mL	0.8082
-19.8°C		g/mL	0.8232
-40°C		g/mL	0.8386
Surface Tension	D1331A		
-10°C		mN/m	27.4
22°C		mN/m	25.1
40°C		mN/m	23.5
Water Solubility vs. Temperature	D6304		
0°C		ppm	37
30°C		ppm	109
40°C		ppm	155
50°C		ppm	189
Minimum Ignition Energy	E582		
Minimum Ignition Energy		mJ	0.11-0.18
Sample Concentration		mg/cm ³	0.14-0.19

Test	Method	Units	SwRI Sample ID CL13-5265 Result
Carbonyls/Esters	EPA 8260B	mg/kg	A mm on dim DN
Phenols	EPA 8270C	mg/kg	Appendix BN
Upper Explosion Limits (UEL) at 100°C	E681	%	7.70
Lower Explosion Limits (LEL) at 100°C	E681	%	0.84
Electrical Conductivity vs. SDA Concentration	D2624		
0 mg/L Stadis 450		pS/m	0
1 mg/L Stadis 450		pS/m	520
2 mg/L Stadis 450		pS/m	970
3 mg/L Stadis 450		pS/m	1460
4 mg/L Stadis 450		pS/m	1980
Speed-of-Sound (atmospheric pressure)	SwRI		
3.8°C		m/s	1370.8
21.8°C		m/s	1294.9
29.8°C		m/s	1263.6
50.2°C		m/s	1183.8
Isentropic Bulk Modulus (atmospheric pressure)	SwRI		
3.8°C		psi	219,464
21.8°C		psi	192,524
29.8°C		psi	181,923
50.2°C		psi	156,523

Table BG-1. Amyris Jet A-1 (CL13-5265)

Table BG-2. Additional Results for Amyris 10% Farnesane Blend (CL13-4717)

Test	Method	Units	SwRI Sample ID# CL13-4717 Results
Speed-of-Sound (atmospheric pressure)	SwRI		
4°C		m/s	1370.8
22.2°C		m/s	1294.7
29.8°C		m/s	1264.5
50.2°C		m/s	1186.2
Isentropic Bulk Modulus (atmospheric pressure)	SwRI		
4°C		psi	218,848
22.2°C		psi	191,866
29.8°C		psi	181,693
50.2°C		psi	156,788

Method	Parameter	Units	Takreer-10	10:90-Biojet	20:80-Biojet	Concord-Jet	Honeywell-Jet-A	10%-Amyris-Blend	20%-Amyris-Blend
D2532	Visc @ 35 min	cSt	3.39	4.37	4.9	3.99	4.57	5	5.59
	Visc @ 3 hours	cSt	3.39	4.39	4.9	3.98	4.57	4.99	5.58
	Visc @ 72 hours	cSt	3.38	4.41	4.91	3.98	4.57	4.99	5.58
	Temp	°C	-20	-20	-20	-20	-20	-20	-20
	Visc @ 35 min	cSt	6.41	9.25	10.58	8.13	8.45	10.97	12.55
	Visc @ 3 hours	cSt	6.41	9.27	10.57	8.13	8.44	10.97	12.55
	Visc @ 72 hours	cSt	6.41	9.23	10.55	8.13	8.45	11.02	12.6
	Temp	°C	-40	-40	-40	-40	-40	-40	-40
D2983 -20°C	Visc	cPs							
	RPM	rpm	60	60	60	60	60	60	60
D2983 -40°C	Visc	cPs							
	RPM	rpm	60	60	60	60	60	60	60
D445	Visc	cSt	3.41	4.47	4.91	4.07	4.61	5.1	5.57
	Тетр	°C	-20	-20	-20	-20	-20	-20	-20
	Visc	cSt	6.42	9.26	10.58	8.12	9.67	10.76	12.31
	Temp	°C	-40	-40	-40	-40	-40	-40	-40
D5133	Gelation Index	•							
	Gelation Temp	°C							
	Temp @ 5,000 cPs	°C	<-40	<-40	<-40	<-40	<-40	<-40	<-40
	Temp @ 10,000 cPs	°C	<-40	<-40	<-40	<-40	<-40	<-40	<-40
	Temp @ 20,000 cPs	°C	<-40	<-40	<-40	<-40	<-40	<-40	<-40
	Temp @ 30,000 cPs	°C	<-40	<-40	<-40	<-40	<-40	<-40	<-40
	Temp @ 40,000 cPs	°C	<-40	<-40	<-40	<-40	<-40	<-40	<-40

Table BG-3. Amyris Viscosity Analysis of Seven Fuels

Note: No usable data could be obtained from D2983 and D5133 as a result of the viscosity being too low to measure.

Appendix BH O-Ring Material Compatibility Testing

The following O-ring material compatibility evaluations were performed:

- Jet A (CL12-4134, sourced at SwRI)
 - Tensile Strength Figure BH-1
 - Volume Change Figure BH-2
- JP-8 (CL11-2680, POSF4751)
 - Tensile Strength Figure BH-3
 - Volume Change Figure BH-4

An O-ring material compatibility test was performed using a blend of low aromatic JP-8 (CL13-5864, 11.3 % ArH) and GEVO ATJ (CL14-5998)

- Tensile Strength
 - o Figure BH-5
 - The tensile strength appears to be relatively unaffected for all materials
- Volume Swell
 - o Figure BH-6
 - Although some spread in the individual replicates was observed, the average for the fluorosilicone was nearly the same as a baseline JP-8 (Figure BH-4). However, compared to the same JP-8, the nitrile and viton O-rings were more severely impacted. The nitrile O-rings were reduced from ~10% to ~4% swell and the viton O-rings increased from approximately -0.5% swell to ~3% swell.

Figure BH-1. Tensile Strength – Jet A (CL12-4134)

Figure BH-2. Volume Change – Jet A (CL12-4134)

Figure BH-3. Tensile Strength – JP-8 (CL11-2680, POSF4751)

Figure BH-4. Volume Change – JP-8 (CL11-2680, POSF4751)

Figure BH-5. Tensile Strength – 50/50 GEVO ATJ / Low ArH JP8

Figure BH-6. Volume Change – 50/50 GEVO ATJ / Low ArH JP8

Appendix BI

Miscellaneous Tri-Service Sample Testing

Table BI-1. Additive Compatibility for Nominal Jet A (DLA #22, CL13-5892)

Fuel/Additive	e Compati	ibility (2x treat rate)
FSII, DIEGME (0.2 vol%)	effect	 large droplets after initial cold soak and at room temperature not present after100°F soak
SDA, Stadis 450 (10 mg/L)	effect	 no issues observed
CI/LI, DCI-4A (46 mg/L)	effect	 no issues observed
Metal Deactivator, DMD (11.4 mg/L)	effect	 no issues observed
Antioxidant, AO-30 (48 mg/L)	effect	 no issues observed
Thermal Stability, +100 (512 mg/L)	effect	 no issues observed
Additive Cocktail (DMD, AO-30, Stadis 450, DCI-4A, DIEGME, +100) (same concentrations as above)	effect	• no issues observed

Table BI-2. Additional Results for Nominal Jet A (DLA Sample #22, CL13-5892)

Test	Method	Units	SwRI Sample ID# CL13-5892
Electrical Conductivity	D2624		
0 mg/L SDA, 20.9°C		pS/m	0
1 mg/L SDA, 22.2°C		pS/m	430
2 mg/L SDA, 21.4°C		pS/m	790
3 mg/L SDA, 21.7°C		pS/m	1180
4 mg/L SDA, 22.2°C		pS/m	1620
Peroxides (at 65°C)	D3703		
0 week		mg/kg	0.360
1 weeks		mg/kg	0.960
2 weeks		mg/kg	1.120
3 weeks		mg/kg	2.360
6 weeks		mg/kg	2.96
Dielectric Constants (at 10 kHz)	SwRI		
-40.1°C			2.192
-20.0°C			2.163
0.2°C			2.136
30.0°C			2.099
50.0°C			2.073
Minimum Ignition Energy	E582		
Minimum Ignition Energy		mJ	0.63-0.69
Upper Explosion Limits (UEL) at 100°C	E681	%	7.58
Lower Explosion Limits (LEL) at 100°C	E681	%	1.02
Thermal Conductivity (transient hot wire)	SwRI		
0°C		W/mK	0.1244
20°C		W/mK	0.1204
40°C		W/mK	0.1163
60°C		W/mK	0.1123
Speed-of-Sound (atmospheric pressure)	SwRI		
2.4°C		m/s	1388.3
21.0°C		m/s	1310.2
29.8°C		m/s	1276.4
50.1°C		m/s	1197.2
Isentropic Bulk Modulus (atmospheric pressure)	SwRI		
2.4°C		psi	227.167
21.0°C		psi	198,860
29.8°C		psi	187.188
50.1°C		Psi	161,543

SwRI Sample ID#	DLA Sample #	Description	D4629 Nitrogen Content [ppm]
CL13-5471	23	Best case Jet A (3.4 cSt, 40 C, 14% ArH)	<1.0
CL13-5231	14	Jet A - PADD 1	4.2
CL13-4901	15	Jet A - PADD 2	10.1
CL13-4848	16	Jet A - PADD 3	2.0
CL13-5508	17	Jet A - PADD 4	3.3
CL13-4928	18	Jet A - PADD 5	8.9
CL13-5441	13	Jet-A (FAME Sensitive, POSF 9326)	<1.0
CL13-5352	19	JP-5 - Supplier 1 (Valero?)	4.1
CL13-5351	8	JP-8 - PADD 1	3.9
CL13-5111	9	JP-8 - PADD 2	2.2
CL13-4851	10	JP-8 - PADD 3	<1.0
CL13-5092	11	JP-8 - PADD 4	<1.0
CL13-5059	12	JP-8 - PADD 5	2.8
CL13-5440	7	JP-8 (Blend Stock for above)	2.2
CL13-5892	22	Nominal Jet A (4.5 cSt, 50 C flash, 17% ArH)	1.3
CL13-5470	24	Worst case JP-5 (6.5 cSt, 66 C, 21% ArH)	2.4
CL13-5443	25	WPAFB JP-8 (13% ArH, POSF 9698)	2.4

Table BI-3. Nitrogen Results for DLA Samples

Table BI-4. Surface Tension Results for Three (3) Tri-Service Samples

Surface Tension (D1331A) vs. Temperature									
JP-5		JP-8		Jet A					
POSF 102	POSF 10289 POSF 10264 POSF 10			POSF 103	325				
SwRI CL13	SwRI CL13-5470		SwRI CL13-5471		-5472				
Temp (°C)	mN/m	Temp (°C)	mN/m	Temp (°C)	mN/m				
40	24.7	40	22.8	40	23.6				
22	25.7	22	23.8	22	24.8				
-10	28.4	-10	25.8	-10	28.0				

Appendix BJ EPA Testing Reports: CL12-3339 and CL12-3599

Page 1 of 23

Final 1.000

10-MAY-12

Project Manager: **Scott Hutzler Southwest Research Institute** 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228

Reference: XENCO Report No: 441475 17149.26.001 Project Address:

Scott Hutzler :

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 441475. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 441475 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Skip Harden Project Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 23

CASE NARRATIVE

Client Name: Southwest Research Institute Project Name: 17149.26.001

Project ID: SO091904E Work Order Number: 441475 Report Date: 10-MAY-12 Date Received: 04/26/2012

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-887395 VOAs by SW-846 8260B S10: Due to matrix interference, the surrogate recovered above acceptance criteria.

Page 3 of 23

Flagging Criteria

Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 3.0 9/20/2007. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- D1 Sample required dilution due to matrix.
- D2 Sample required dilution due to high concentration of target analyte.
- L1 The associated blank spike recovery was above laboratory acceptance limits.
- L2 The associated blank spike recovery was below laboratory acceptance limits.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.
- **M3** The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to spike level. The associated blank spike recovery was acceptable.
- S1 Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.
- S10 Surrogate recovery was above laboratory and method acceptance limits. See case narrative.
- **S8** The analysis of the sample required a dilution such that the surrogate recovery calculation does not provide any useful information. The associated blank spike recovery was acceptable.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Page 4 of 23

Sample Cross Reference 441475

Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CL12-3339	W	04-23-12 00:00		441475-001
CL12-3599	W	04-23-12 00:00		441475-002

Page 5 of 23

Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id: CL12-3339		Matrix: Product		Date Received: Apr-26-12 09:30			
Lab Sample Id: 441475	5-001	Date Collected	: Apr-23-12 00:00				
A Indian I Madhada	SVOA - h. SW 846 82700				Mala L CU	12590 4	
Analytical Method:	SVOAS by SW-846 8270C			1	Prep Method: SW	(3380A	
Tech:	LRA				% Moisture:		
Analyst:	MCH	Dat	e Prep: Apr-30-12	10:18			
Seq Number:	886890						
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	472	mg/kg	04/30/12 17:35	D1	10
Acenaphthylene	208-96-8	BRL	472	mg/kg	04/30/12 17:35	D1	10
Aniline (Phenylamine, Aminobenze	ene) 62-53-3	BRL	472	mg/kg	04/30/12 17:35	D1	10
Anthracene	120-12-7	BRL	472	mg/kg	04/30/12 17:35	D1	10
Benzo(a)anthracene	56-55-3	BRL	472	mg/kg	04/30/12 17:35	D1	10
Benzo(a)pyrene	50-32-8	BRL	472	mg/kg	04/30/12 17:35	D1	10
Benzo(b)fluoranthene	205-99-2	BRL	472	mg/kg	04/30/12 17:35	D1	10
Benzo(g,h,i)perylene	191-24-2	BRL	472	mg/kg	04/30/12 17:35	D1	10
Benzo(k)fluoranthene	207-08-9	BRL	472	mg/kg	04/30/12 17:35	D1	10
Benzoic Acid	65-85-0	BRL	2830	mg/kg	04/30/12 17:35	D1L1	10
Benzyl Butyl Phthalate	85-68-7	BRL	472	mg/kg	04/30/12 17:35	D1	10
bis(2-chloroethoxy) methane	111-91-1	BRL	472	mg/kg	04/30/12 17:35	D1	10
bis(2-chloroethyl) ether	111-44-4	BRL	472	mg/kg	04/30/12 17:35	D1	10
bis(2-chloroisopropyl) ether	108-60-1	BRL	472	mg/kg	04/30/12 17:35	D1	10
bis(2-ethylhexyl) phthalate	117-81-7	BRL	472	mg/kg	04/30/12 17:35	D1	10
4-Bromophenyl-phenylether	101-55-3	BRL	472	mg/kg	04/30/12 17:35	D1	10
Di-n-butylphthalate	84-74-2	BRL	472	mg/kg	04/30/12 17:35	D1	10
4-chloro-3-methylphenol	59-50-7	BRL	472	mg/kg	04/30/12 17:35	D1	10
4-Chloroaniline	106-47-8	BRL	472	mg/kg	04/30/12 17:35	D1	10
2-Chloronaphthalene	91-58-7	BRL	472	mg/kg	04/30/12 17:35	D1L1	10
2-Chlorophenol	95-57-8	BRL	472	mg/kg	04/30/12 17:35	D1	10
4-Chlorophenyl Phenyl Ether	7005-72-3	BRL	472	mg/kg	04/30/12 17:35	D1	10
Chrysene	218-01-9	BRL	472	mg/kg	04/30/12 17:35	D1	10
Dibenz(a,h)anthracene	53-70-3	BRL	472	mg/kg	04/30/12 17:35	D1	10
Dibenzofuran	132-64-9	BRL	472	mg/kg	04/30/12 17:35	D1	10
1,2-Dichlorobenzene	95-50-1	BRL	472	mg/kg	04/30/12 17:35	D1	10
1,3-Dichlorobenzene	541-73-1	BRL	472	mg/kg	04/30/12 17:35	D1	10
1,4-Dichlorobenzene	106-46-7	BRL	472	mg/kg	04/30/12 17:35	D1	10
3,3-Dichlorobenzidine	91-94-1	BRL	472	mg/kg	04/30/12 17:35	D1	10
2,4-Dichlorophenol	120-83-2	BRL	472	mg/kg	04/30/12 17:35	D1	10
Diethylphthalate	84-66-2	BRL	472	mg/kg	04/30/12 17:35	D1	10
Dimethyl Phthalate	131-11-3	BRL	472	mg/kg	04/30/12 17:35	D1	10
2,4-Dimethylphenol	105-67-9	BRL	472	mg/kg	04/30/12 17:35	D1	10
4,6-dinitro-2-methyl phenol	534-52-1	BRL	472	mg/kg	04/30/12 17:35	D1L2	10
2,4-Dinitrophenol	51-28-5	BRL	472	mg/kg	04/30/12 17:35	D1L2	10
2,4-Dinitrotoluene	121-14-2	BRL	472	mg/kg	04/30/12 17:35	D1	10
2,6-Dinitrotoluene	606-20-2	BRL	472	mg/kg	04/30/12 17:35	D1L1	10
Fluoranthene	206-44-0	BRL	472	mg/kg	04/30/12 17:35	D1	10
Fluorene	86-73-7	BRL	472	mg/kg	04/30/12 17:35	D1	10
Hexachlorobenzene	118-74-1	BRL	472	mg/kg	04/30/12 17:35	D1	10
				00			

Project: Standard List of Methods

Page 6 of 23

Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id: CL12-3339 Lab Sample Id: 441475-001		Matrix: Product Date Received: Apr-26-12 Date Collected: Apr-23-12 00:00			Apr-26-12 0	9:30	
Analytical Method: SVOAs by	SW-846 8270C				Prep Method:	SW3580A	
Tech: LRA					% Moisture:		
Analyst: MCH		Dat	Pront Apr-	30-12 10.18			
Seq Number: 886890		Date	errep. rep.	00-12 10.10			
Parameter	Cas Number	Result	BI	Un	its Analysis Da	e Flag	Dil
Haveshlarshutediana	97.69.3	DDI	472		04/20/12 17:2	5 D1	10
Hexachlorogyclopentadiene	87-08-3 77-47-4	BRI	472	mg/l	kg $04/30/12$ 17.3	5 DI 2	10
Hexachlorocthono	67.72.1	DRL	472	mg/l	$\log 04/30/12 17.3$	5 DIL2	10
Indexa(1.2.2.a.d)Demons	07-72-1	DRL	472	mg/l	kg 04/30/12 17:3	5 DI	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	BKL	472	mg/I	kg 04/30/12 17:3	5 DI	10
Isophorone	/8-59-1	BRL	472	mg/I	kg 04/30/12 17:3	5 DI	10
2-Methylnaphthalene	91-57-6	BRL	472	mg/l	kg 04/30/12 17:3	5 DI	10
2-methylphenol	95-48-7	BRL	472	mg/l	kg 04/30/12 17:3	5 DI	10
3&4-Methylphenol	15831-10-4	BRL	472	mg/l	kg 04/30/12 17:3	5 DI	10
Naphthalene	91-20-3	BRL	472	mg/l	kg 04/30/12 17:3	5 DI	10
4-Nitroaniline	100-01-6	BRL	472	mg/l	kg 04/30/12 17:3	5 DI	10
3-Nitroaniline	99-09-2	BRL	472	mg/l	kg 04/30/12 17:3	5 DI	10
2-Nitroaniline	88-74-4	BRL	472	mg/l	kg 04/30/12 17:3	5 D1	10
Nitrobenzene	98-95-3	BRL	472	mg/l	kg 04/30/12 17:3	5 D1	10
2-Nitrophenol	88-75-5	BRL	472	mg/l	kg 04/30/12 17:3	5 D1	10
4-Nitrophenol	100-02-7	BRL	472	mg/l	kg 04/30/12 17:3	5 D1L1	10
N-Nitrosodi-n-Propylamine	621-64-7	BRL	472	mg/l	kg 04/30/12 17:3	5 D1	10
N-Nitrosodiphenylamine	86-30-6	BRL	472	mg/l	kg 04/30/12 17:3	5 D1	10
di-n-Octyl Phthalate	117-84-0	BRL	472	mg/l	kg 04/30/12 17:3	5 D1	10
Pentachlorophenol	87-86-5	BRL	472	mg/l	kg 04/30/12 17:3	5 D1	10
Phenanthrene	85-01-8	BRL	472	mg/l	kg 04/30/12 17:3	5 D1	10
Phenol	108-95-2	BRL	472	mg/l	kg 04/30/12 17:3	5 D1	10
Pyrene	129-00-0	BRL	472	mg/l	kg 04/30/12 17:3	5 D1	10
Pyridine	110-86-1	BRL	472	mg/l	kg 04/30/12 17:3	5 D1L1	10
1,2,4-Trichlorobenzene	120-82-1	BRL	472	mg/l	kg 04/30/12 17:3	5 D1	10
2,4,6-Trichlorophenol	88-06-2	BRL	472	mg/l	kg 04/30/12 17:3	5 D1	10
2,4,5-Trichlorophenol	95-95-4	BRL	472	mg/l	kg 04/30/12 17:3	5 D1	10
Tetradecane (CAS); n-Tetradecane; (TIC) *	TIC	5890		mg/l	kg 04/30/12 17:3	5 D2T4	10
Nonane, 2,6-dimethyl-; 2,6-Dimethy (TIC) *	TIC	5430		mg/l	kg 04/30/12 17:3	5 D2T4	10
Undecane (CAS); n-Undecane; Hendec (TIC) *	TIC	16000		mg/l	kg 04/30/12 17:3	5 D2T4	10
Undecane, 5-methyl- (TIC) *	TIC	4340		mg/l	kg 04/30/12 17:3	5 D2T4	10
Benzene, 1-methyl-3-(1-methylethyl (TIC) *	TIC	7070		mg/l	kg 04/30/12 17:3	5 D2T4	10
Undecane, 3-methyl-; 3-Methylundec (TIC) *	TIC	4030		mg/l	kg 04/30/12 17:3	5 D2T4	10
Decane, 3-methyl-; 3-Methyldecane; (TIC) *	TIC	3940		mg/l	kg 04/30/12 17:3	5 D2T4	10
Benzene, 1,2,3-trimethyl- (TIC) *	TIC	4480		mg/l	kg 04/30/12 17:3	5 D2T4	10
Tridecane (CAS); n-Tridecane; Trid (TIC) *	TIC	10300		mg/l	kg 04/30/12 17:3	5 D2T4	10
Heptadecane, 2,6,10,15-tetramethyl (TIC) *	TIC	3690		mg/l	kg 04/30/12 17:3	5 D2T4	10
Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Da	te Flag	
2-Fluorobiphenyl	321-60-8	100	%	30-115	04/30/12 17:3	5	
2-Fluorophenol	367-12-4	294	%	25-121	04/30/12 17:3	5 S8	
F		221					

Project: Standard List of Methods

Page 7 of 23

Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id: CL12-3339 Lab Sample Id: 441475-001		Matrix: Date Collected:	Matrix: Product Date Collected: Apr-23-12 00:00			Date Received: Apr-26-12 09:30		
Analytical Method:	SVOAs by SW-846 82700	2			Prep Method: SV	/3580A		
Tech:	LRA				% Moisture:			
Analyst:	MCH	Date	Prep: A	pr-30-12 10:18				
Seq Number:	886890							
Surrogate	Cas Number	% Recovery			Analysis Date	Flag		
Nitrobenzene-d5	4165-60-0	266	%	23-120	04/30/12 17:35	S8		
Phenol-d6	13127-88-3	146	%	24-113	04/30/12 17:35	S8		
Terphenyl-D14	1718-51-0	94	%	18-137	04/30/12 17:35			
2,4,6-Tribromophenol	118-79-6	82	%	19-122	04/30/12 17:35			

Project: Standard List of Methods

Page 8 of 23

Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id: CL12-3339		Matrix	: Product	D	Date Received: Apr-26-12 09:30			
Lab Sample Id: 441475-	001	Date Collected	: Apr-23-12 00:00					
Eab Sample Ia. 11115		Date concetta						
Analytical Method:	VOAs by SW-846 8260			1	Prep Method: SW	/5030B		
Tech:	CYE				% Moisture:			
Analyst:	CYE	Dat	e Pren: May-04-12	18:43	Basis: We	t Weight		
Sea Number:	887395		••••••••••••••••			Ū		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Benzene	71-43-2	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Bromobenzene	108-86-1	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Bromochloromethane	74-97-5	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Bromodichloromethane	75-27-4	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Bromoform	75-25-2	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Methyl bromide	74-83-9	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
MTBE	1634-04-4	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
tert-Butylbenzene	98-06-6	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Sec-Butylbenzene	135-98-8	715	50.0	mg/kg	05/04/12 22:06	D2	10000	
n-Butylbenzene	104-51-8	1240	50.0	mg/kg	05/04/12 22:06	D2	10000	
Carbon Tetrachloride	56-23-5	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Chlorobenzene	108-90-7	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Chloroethane	75-00-3	BRL	100	mg/kg	05/04/12 22:06	D1	10000	
Chloroform	67-66-3	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Methyl Chloride	74-87-3	BRL	100	mg/kg	05/04/12 22:06	D1	10000	
2-Chlorotoluene	95-49-8	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
4-Chlorotoluene	106-43-4	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
p-Cymene (p-Isopropyltoluene)	99-87-6	1050	50.0	mg/kg	05/04/12 22:06	D2	10000	
1.2-Dibromo-3-Chloropropane	96-12-8	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Dibromochloromethane	124-48-1	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
1.2-Dibromoethane	106-93-4	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Methylene bromide	74-95-3	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
1.2-Dichlorobenzene	95-50-1	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
1.3-Dichlorobenzene	541-73-1	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
1.4-Dichlorobenzene	106-46-7	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Dichlorodifluoromethane	75-71-8	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
1.2-Dichloroethane	107-06-2	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
1.1-Dichloroethane	75-34-3	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
trans-1 2-dichloroethylene	156-60-5	BRL	50.0	mg/kg	05/04/12 22:06	DI	10000	
cis-1 2-Dichloroethylene	156-59-2	BRL	50.0	mg/kg	05/04/12 22:06	DI	10000	
1 1-Dichloroethene	75-35-4	BRL	50.0	mg/kg	05/04/12 22:06	DI	10000	
2 2-Dichloropropane	594-20-7	BRL	50.0	mg/kg	05/04/12 22:06	DI	10000	
1.3-Dichloropropane	142-28-9	BRL	50.0	mg/kg	05/04/12 22:06	DI	10000	
1.2-Dichloropropane	78-87-5	BRI	50.0	mg/kg	05/04/12 22:06	DI	10000	
trans-1 3-dichloropropene	10061-02-6	BRI	50.0	mg/kg	05/04/12 22:00	DI	10000	
1 1-Dichloropropene	562-58-6	DRL	50.0	mg/kg	05/04/12 22:00	DI	10000	
cis-1.3 Dichloropropene	10061_01_5	BRL	50.0	mg/kg	05/04/12 22:00	DI	10000	
Ethylbenzene	100-41-4	309	50.0	mg/kg	05/04/12 22:00	D1	10000	
Havashlarabutadiana	97.69.2	DDI	50.0	mg/kg	05/04/12 22:00	D2	10000	
Nanhthalana	0/-00-3	162	100	mg/kg	05/04/12 22:00	D1	10000	
raphtnaiene	91-20-3	105	100	mg/kg	05/04/12 22:06	D2	10000	

Project: Standard List of Methods

Page 9 of 23





#### Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id: CL12-3339 Lab Sample Id: 441475-001		Matrix Date Collected	: Product : Apr-23-1	2 00:00	Date Received: Apr-26-12 09:30			
Analytical Method: VO	As by SW-846 8260				Prep Method: SV	V5030B		
Tech: CY	E				% Moisture:			
Analyst: CY	E	Date	e Pren: Ma	av-04-12 18.43	Basis: We	et Weight		
Sea Number: 887	395	Dut	e riepi	,		0		
Parameter	Cas Number	Result	RL	Unit	Analysis Date	Flag	Dil	
Isopropylbenzene	98-82-8	229	50.0	mg/kg	05/04/12 22:06	D2	10000	
Methylene Chloride	75-09-2	BRL	200	mg/kg	05/04/12 22:06	D1	10000	
n-Propylbenzene	103-65-1	661	50.0	mg/kg	05/04/12 22:06	D2	10000	
Styrene	100-42-5	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
1,1,1,2-Tetrachloroethane	630-20-6	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
1,1,2,2-Tetrachloroethane	79-34-5	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Tetrachloroethylene	127-18-4	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Toluene	108-88-3	123	50.0	mg/kg	05/04/12 22:06	D2	10000	
1,2,4-Trichlorobenzene	120-82-1	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
1,2,3-Trichlorobenzene	87-61-6	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
1,1,2-Trichloroethane	79-00-5	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
1,1,1-Trichloroethane	71-55-6	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Trichloroethylene	79-01-6	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
Trichlorofluoromethane	75-69-4	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
1,2,3-Trichloropropane	96-18-4	BRL	50.0	mg/kg	05/04/12 22:06	D1	10000	
1,2,4-Trimethylbenzene	95-63-6	8380	500	mg/kg	05/04/12 22:27	D2	100000	
1,3,5-Trimethylbenzene	108-67-8	713	50.0	mg/kg	05/04/12 22:06	D2	10000	
Vinyl Chloride	75-01-4	BRL	20.0	mg/kg	05/04/12 22:06	D1	10000	
o-Xylene	95-47-6	648	50.0	mg/kg	05/04/12 22:06	D2	10000	
m,p-Xylenes	179601-23-1	1070	100	mg/kg	05/04/12 22:06	D2	10000	
Hexadecane (TIC)	TIC	3210	10.0	mg/kg	05/04/12 22:06	D2T4	10000	
Undecane (TIC)	TIC	1530	10.0	mg/kg	05/04/12 22:06	D2T4	10000	
Formaldehyde, (1-methylethyl)(2-proper	yl)hyd (T TIC	3690	10.0	mg/kg	05/04/12 22:06	D2T4	10000	
Octane, 2,3-dimethyl- (TIC)	TIC	2000	10.0	mg/kg	05/04/12 22:06	D2T4	10000	
Nonane, 3-methyl- (TIC)	TIC	2280	10.0	mg/kg	05/04/12 22:06	D2T4	10000	
Cyclohexane, 1-ethyl-4-methyl-, cis- (TIC	C) TIC	1020	10.0	mg/kg	05/04/12 22:06	D2T4	10000	
Nonane, 3-methyl- (TIC)	TIC	1920	10.0	mg/kg	05/04/12 22:06	D2T4	10000	
Octane, 3-methyl- (TIC)	TIC	1710	10.0	mg/kg	05/04/12 22:06	D2T4	10000	
Cyclohexane, 1-ethyl-4-methyl-, cis- (TIC	C) TIC	1650	10.0	mg/kg	05/04/12 22:06	D2T4	10000	
Heptane, 3-methyl- (TIC)	TIC	997	10.0	mg/kg	05/04/12 22:06	D2T4	10000	
Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
4-Bromofluorobenzene	460-00-4	111	%	58-152	05/04/12 22:06			
Dibromofluoromethane	1868-53-7	96	%	74-126	05/04/12 22:06			
1,2-Dichloroethane-D4	17060-07-0	97	%	80-120	05/04/12 22:06			
Toluene-D8	2037-26-5	129	%	73-132	05/04/12 22:06			

Project: Standard List of Methods

Page 10 of 23





#### Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id: CL12-	3599	Matrix	: Product	Da	Date Received: Apr-26-12 09:30			
Lab Sample Id: 441475	5-002	Date Collected	: Apr-23-12 00:00					
			1					
Analytical Method:	SVOAs by SW-846 8270C			I	Prep Method: SW	/3580A		
Tech:	LRA				% Moisture:			
Analyst:	МСН	Dat	e Pren: Apr-30-12	10.24				
Sea Number:	886890	Dut						
Seq rumberr								
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Acenaphthene	83-32-9	BRL	442	mg/kg	04/30/12 17:58	D1	10	
Acenaphthylene	208-96-8	BRL	442	mg/kg	04/30/12 17:58	D1	10	
Aniline (Phenylamine, Aminobenza	zene) 62-53-3	BRL	442	mg/kg	04/30/12 17:58	D1	10	
Anthracene	120-12-7	BRL	442	mg/kg	04/30/12 17:58	D1	10	
Benzo(a)anthracene	56-55-3	BRL	442	mg/kg	04/30/12 17:58	D1	10	
Benzo(a)pyrene	50-32-8	BRL	442	mg/kg	04/30/12 17:58	D1	10	
Benzo(b)fluoranthene	205-99-2	BRL	442	mg/kg	04/30/12 17:58	D1	10	
Benzo(g,h,i)perylene	191-24-2	BRL	442	mg/kg	04/30/12 17:58	D1	10	
Benzo(k)fluoranthene	207-08-9	BRL	442	mg/kg	04/30/12 17:58	D1	10	
Benzoic Acid	65-85-0	BRL	2650	mg/kg	04/30/12 17:58	D1L1	10	
Benzyl Butyl Phthalate	85-68-7	BRL	442	mg/kg	04/30/12 17:58	D1	10	
bis(2-chloroethoxy) methane	111-91-1	BRL	442	mg/kg	04/30/12 17:58	D1	10	
bis(2-chloroethyl) ether	111-44-4	BRL	442	mg/kg	04/30/12 17:58	D1	10	
bis(2-chloroisopropyl) ether	108-60-1	BRL	442	mg/kg	04/30/12 17:58	D1	10	
bis(2-ethylhexyl) phthalate	117-81-7	BRL	442	mg/kg	04/30/12 17:58	D1	10	
4-Bromophenyl-phenylether	101-55-3	BRL	442	mg/kg	04/30/12 17:58	D1	10	
Di-n-butylphthalate	84-74-2	BRL	442	mg/kg	04/30/12 17:58	D1	10	
4-chloro-3-methylphenol	59-50-7	BRL	442	mg/kg	04/30/12 17:58	D1	10	
4-Chloroaniline	106-47-8	BRL	442	mg/kg	04/30/12 17:58	D1	10	
2-Chloronaphthalene	91-58-7	BRL	442	mg/kg	04/30/12 17:58	D1L1	10	
2-Chlorophenol	95-57-8	BRL	442	mg/kg	04/30/12 17:58	D1	10	
4-Chlorophenyl Phenyl Ether	7005-72-3	BRL	442	mg/kg	04/30/12 17:58	DI	10	
Chrysene	218-01-9	BRL	442	mg/kg	04/30/12 17:58	DI	10	
Dibenz(a h)anthracene	53-70-3	BRL	442	mg/kg	04/30/12 17:58	DI	10	
Dibenzofuran	132-64-9	BRL	442	mg/kg	04/30/12 17:58	DI	10	
1.2-Dichlorobenzene	95-50-1	BRL	442	mg/kg	04/30/12 17:58	DI	10	
1.3-Dichlorobenzene	541-73-1	BRL	442	mg/kg	04/30/12 17:58	DI	10	
1 4-Dichlorobenzene	106-46-7	BRL	442	mg/kg	04/30/12 17:58	DI	10	
3 3-Dichlorobenzidine	91-94-1	BRL	442	mg/kg	04/30/12 17:58	DI	10	
2 4-Dichlorophenol	120-83-2	BRL	442	mg/kg	04/30/12 17:58	DI	10	
Diethylphthalate	84-66-2	BRL	442	mg/kg	04/30/12 17:58	DI	10	
Dimethyl Phthalate	131-11-3	BRI	442	mg/kg	04/30/12 17:58	DI	10	
2 4-Dimethylphenol	105-67-9	BRI	442	mg/kg	04/30/12 17:58	DI	10	
4 6-dinitro-2-methyl phenol	534-52-1	BRI	442	mg/kg	04/30/12 17:58	DIL2	10	
2 4-Dinitrophenol	51_28_5	RRI	442	mg/kg	04/30/12 17:58	DIL2	10	
2,4-Dinitrotoluana	121-14-2	DDI	442	mg/kg	04/30/12 17:58	D1L2	10	
2.4-Dinitrotoluene	606.20.2	BDI	142	mg/kg	04/30/12 17.50		10	
Eluoranthana	206 44 0	DIL	442	mg/kg	04/30/12 17:58	DILI	10	
Fluorana	200-44-0	DRL	-++2	mg/kg	04/20/12 17:58	DI	10	
Havashlarahanzana	00-/ <i>3</i> -/ 118 74 1	DKL	442	mg/kg	04/30/12 17:58	DI	10	
riexaciiiorobenzene	110-/4-1	DKL	442	mg/kg	04/30/12 17:38	DI	10	

Project: Standard List of Methods

Page 11 of 23





#### Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id: CL12-3599		Matrix: Product			Date Received: Apr-26-12 09:30			
Lab Sample Id: 441475-00	)2	Date Collected	: Apr-23-12 (	00:00				
	10 1 1 GWL 016 00500						12 500 1	
Analytical Method: S	VOAs by SW-846 8270C				J	Prep Method: SW	/3580A	
Tech: LI	RA					% Moisture:		
Analyst: M	СН	Date	e Prep: Apr-	30-12 10:24				
Seq Number: 88	6890							
Parameter	Cas Number	Result	RL	ı	Jnits	Analysis Date	Flag	Dil
Hexachlorobutadiene	87-68-3	BRL	442	m	g/kg	04/30/12 17:58	D1	10
Hexachlorocyclopentadiene	77-47-4	BRL	442	m	g/kg	04/30/12 17:58	D1L2	10
Hexachloroethane	67-72-1	BRL	442	m	g/kg	04/30/12 17:58	D1	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	442	m	g/kg	04/30/12 17:58	D1	10
Isophorone	78-59-1	BRL	442	m	g/kg	04/30/12 17:58	D1	10
2-Methylnaphthalene	91-57-6	1340	442	m	g/kg	04/30/12 17:58	D2	10
2-methylphenol	95-48-7	BRL	442	m	g/kg	04/30/12 17:58	D1	10
3&4-Methylphenol	15831-10-4	BRL	442	m	g/kg	04/30/12 17:58	D1	10
Naphthalene	91-20-3	687	442	m	g/kg	04/30/12 17:58	D2	10
4-Nitroaniline	100-01-6	BRL	442	m	g/kg	04/30/12 17:58	D1	10
3-Nitroaniline	99-09-2	BRL	442	m	g/kg	04/30/12 17:58	D1	10
2-Nitroaniline	88-74-4	BRL	442	m	g/kg	04/30/12 17:58	D1	10
Nitrobenzene	98-95-3	BRL	442	m	g/kg	04/30/12 17:58	D1	10
2-Nitrophenol	88-75-5	BRL	442	m	g/kg	04/30/12 17:58	D1	10
4-Nitrophenol	100-02-7	BRL	442	m	g/kg	04/30/12 17:58	D1L1	10
N-Nitrosodi-n-Propylamine	621-64-7	BRL	442	m	g/kg	04/30/12 17:58	D1	10
N-Nitrosodiphenylamine	86-30-6	BRL	442	m	g/kg	04/30/12 17:58	D1	10
di-n-Octyl Phthalate	117-84-0	BRL	442	m	g/kg	04/30/12 17:58	D1	10
Pentachlorophenol	87-86-5	BRL	442	m	g/kg	04/30/12 17:58	D1	10
Phenanthrene	85-01-8	BRL	442	m	g/kg	04/30/12 17:58	D1	10
Phenol	108-95-2	BRL	442	m	g/kg	04/30/12 17:58	D1	10
Pyrene	129-00-0	BRL	442	m	g/kg	04/30/12 17:58	D1	10
Pyridine	110-86-1	BRL	442	m	g/kg	04/30/12 17:58	D1L1	10
1,2,4-Trichlorobenzene	120-82-1	BRL	442	m	g/kg	04/30/12 17:58	D1	10
2,4,6-Trichlorophenol	88-06-2	BRL	442	m	g/kg	04/30/12 17:58	D1	10
2,4,5-Trichlorophenol	95-95-4	BRL	442	m	g/kg	04/30/12 17:58	D1	10
Octane, 3,6-dimethyl- (TIC) *	TIC	9080		m	g/kg	04/30/12 17:58	D2T4	10
Benzene, 2-ethyl-1,4-dimethyl- (CA (T)	IC) * TIC	4350		m	g/kg	04/30/12 17:58	D2T4	10
Benzene, 1,2,3-trimethyl- (TIC) *	TIC	5330		m	g/kg	04/30/12 17:58	D2T4	10
Tetradecane (TIC) *	TIC	11200		m	g/kg	04/30/12 17:58	D2T4	10
Benzene, 1-methyl-4-(1-methylethyl (T	IC) * TIC	39400		m	g/kg	04/30/12 17:58	D2T4	10
Benzene, 1,4-dimethyl- (CAS); p-Xy (T	TC) * TIC	4220		m	g/kg	04/30/12 17:58	D2T4	10
Nonane (CAS); n-Nonane; Shellsol 1 (T	TIC) * TIC	7470		m	g/kg	04/30/12 17:58	D2T4	10
1-Methyl-4-(1-methylethyl)-cyclohe (T	IC) * TIC	84100		m	g/kg	04/30/12 17:58	D2T4	10
Decane (TIC) *	TIC	13000		m	g/kg	04/30/12 17:58	D2T4	10
Undecane (TIC) *	TIC	16600		m	g/kg	04/30/12 17:58	D2T4	10
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
2-Fluorobiphenyl	321-60-8	104	%	30-115		04/30/12 17:58		
2-Fluorophenol	367-12-4	156	%	25-121		04/30/12 17:58	<b>S</b> 8	
		100						

Project: Standard List of Methods

Page 12 of 23





#### Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id: CL12- Lab Sample Id: 441475	Matrix: Date Collected:	Product Apr-23-	t -12 00:00	Date Received: Apr-26-12 09:30			
Analytical Method:	SVOAs by SW-846 8270C				Prep Method: SW	/3580A	
Tech:	LRA				% Moisture:		
Analyst:	MCH	Date	Prep: A	Apr-30-12 10:24			
Seq Number:	886890						
Surrogate	Cas Number	% Recovery			Analysis Date	Flag	
Nitrobenzene-d5	4165-60-0	556	%	23-120	04/30/12 17:58	S8	
Phenol-d6	13127-88-3	0	%	24-113	04/30/12 17:58	S8	
Terphenyl-D14	1718-51-0	96	%	18-137	04/30/12 17:58		
2,4,6-Tribromophenol	118-79-6	84	%	19-122	04/30/12 17:58		

Project: Standard List of Methods

Page 13 of 23





#### Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id: CL12-3	Matrix	: Product	D	Date Received: Apr-26-12 09:30						
Lab Sample Id: 441475	Date Collected	: Apr-23-12 00.00	)	Date Accived. Apr-20-12 09.50						
Lab Sample Ia. 11175	001	Date Content								
Analytical Method:	VOAs by SW-846 8260			1	Prep Method: SW5030B					
Tech:	CYE				% Moisture:					
Analyst:	CYE	Dat	e Pren. May-04-1	2 18:45	8:45 Basis: Wet Weight					
Sea Number	887305	Dat	errep. May-04-1	2 10.45	10.45 Dasis. Wet Weight					
Seq Pumber.	007575									
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil			
Benzene	71-43-2	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
Bromobenzene	108-86-1	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
Bromochloromethane	74-97-5	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
Bromodichloromethane	75-27-4	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
Bromoform	75-25-2	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
Methyl bromide	74-83-9	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
MTBE	1634-04-4	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
tert-Butylbenzene	98-06-6	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
Sec-Butylbenzene	135-98-8	443	50.0	mg/kg	05/04/12 22:49	D2	10000			
n-Butylbenzene	104-51-8	909	50.0	mg/kg	05/04/12 22:49	D2	10000			
Carbon Tetrachloride	56-23-5	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
Chlorobenzene	108-90-7	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
Chloroethane	75-00-3	BRL	100	mg/kg	05/04/12 22:49	D1	10000			
Chloroform	67-66-3	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
Methyl Chloride	74-87-3	BRL	100	mg/kg	05/04/12 22:49	D1	10000			
2-Chlorotoluene	95-49-8	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
4-Chlorotoluene	106-43-4	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
p-Cymene (p-Isopropyltoluene)	99-87-6	41300	10000	mg/kg	05/07/12 21:27	D2	2000000			
1.2-Dibromo-3-Chloropropane	96-12-8	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
Dibromochloromethane	124-48-1	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
1.2-Dibromoethane	106-93-4	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
Methylene bromide	74-95-3	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
1.2-Dichlorobenzene	95-50-1	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
1.3-Dichlorobenzene	541-73-1	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
1.4-Dichlorobenzene	106-46-7	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
Dichlorodifluoromethane	75-71-8	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
1.2-Dichloroethane	107-06-2	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
1.1-Dichloroethane	75-34-3	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
trans-1.2-dichloroethylene	156-60-5	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
cis-1.2-Dichloroethylene	156-59-2	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
1.1-Dichloroethene	75-35-4	BRL	BRL 50.0 mg		05/04/12 22:49	D1	10000			
2.2-Dichloropropane	594-20-7	BRL	50.0	mg/kg	05/04/12 22:49	D1	10000			
1.3-Dichloropropane	142-28-9	BRL	50.0	mg/kg	05/04/12 22:49	DI	10000			
1.2-Dichloropropane	78-87-5	BRL	50.0	mg/kg	05/04/12 22:49	DI	10000			
trans-1.3-dichloropropene	10061-02-6	BRI	50.0	mø/kø	05/04/12 22:49	DI	10000			
1 1-Dichloropropene	563-58-6	BRI	50.0	mg/kg	05/04/12 22:49	DI	10000			
cis-1 3-Dichloropropene	10061-01-5	BRI	50.0	mg/kg	05/04/12 22:49	DI	10000			
Ethylbenzene	100-41-4	637	50.0	mg/kg	05/04/12 22:49	D2	10000			
Heyachlorobutadiene	87-68-3	BRI	50.0	mg/kg	05/04/12 22:49	D1	10000			
Nanhthalene	91_20_3	666	100	mg/kg	05/04/12 22.49	D2	10000			
rapitulatene	91-20-5	000	100	mg/kg	00/07/12 22.49	102	10000			

Project: Standard List of Methods

Page 14 of 23





#### Southwest Research Institute, San Antonio, TX

17149.26.001

Analytical Method:         VOAs by SW-846 8260         Prep Method:         SW5030B           Tech:         CYE         Date Prep:         May-04-12 18-45         Basis:         Weight           Seq Number:         887395         Date Prep:         May-04-12 18-45         Basis:         Weight           Parameter         Cas Number         887395         Stool         mgkg         05/04/12 22-49         D1           Isopropythenzene         98-82-8         321         50.0         mgkg         05/04/12 22-49         D1         10000           n-Propythenzene         103-65-1         782         50.0         mgkg         05/04/12 22-49         D1         10000           Styrene         100-42-5         BRL         50.0         mgkg         05/04/12 22-49         D1         10000           1,1,2-Tetrachloroethane         630-20-6         BRL         50.0         mgkg         05/04/12 22-49         D1         10000           1,2,3-Trichlorobenzene         106-88-3         606         50.0         mgkg         05/04/12 22-49         D1         10000           1,2,3-Trichlorobenzene         120-82-1         BRL         50.0         mgkg         05/04/12 22-49         D1         10000           1,2,3	Sample Id: CL12- Lab Sample Id: 44147:	Matrix Date Collected	Product Apr-23-12	2 00:00	Date Received: Apr-26-12 09:30						
Tech:         CYE         Naniyst:         CYE         Date Prep:         May-04-12 18:45         Basis:         Weight           Seq Number:         887395         887395         Basis:         Veiller         Basis:         Veiller           Farmeter:         Cas Number:         88248         321         50.0         mg/kg         050/41/2 22:49         D2         10000           Methylenc Chloride         75:09-2         BRL         20.0         mg/kg         050/41/2 22:49         D1         10000           N=Propylbenzene         103-65-1         782         50.0         mg/kg         050/41/2 22:49         D1         10000           1,1.2-Tetrachloroethane         630-20-6         BRL         50.0         mg/kg         050/41/2 22:49         D1         10000           1,1.2-Z-Tetrachloroethane         79-34-5         BRL         50.0         mg/kg         050/41/2 22:49         D1         10000           1,2.2-Tetrachloroethane         127-18-4         BRL         50.0         mg/kg         050/41/2 22:49         D1         10000           1,2.3-Trichlorobenzene         127-18-6         BRL         50.0         mg/kg         050/41/2 22:49         D1         10000           1,2.3-Trichlorobenzene<	Analytical Method:	VOAs by SW-846 8260				Prep Method: SV	V5030B				
Anaysi: CYE Seg Numer: 837995         Date Pre:: May-04-12 18.5         Basi: W: Weight           Parameter         Cas Number         Result         No.         Malaysi Date         No.           Sporopylbenzere         98-82-8         321         50.0         mg/g         05/04/12 22-49         D1         10000           Methylene Chloride         75-09-2         BRL         200         mg/g         05/04/12 22-49         D1         10000           NP-Propylbenzere         103-65-1         782         50.0         mg/g         05/04/12 22-49         D1         10000           Styrene         104-25-5         BRL         50.0         mg/g         05/04/12 22-49         D1         10000           1,1,2-Tetrachloroethane         630-20-6         BRL         50.0         mg/g         05/04/12 22-49         D1         10000           1,2,3-Trichloroethane         79-34-5         BRL         50.0         mg/g         05/04/12 22-49         D1         10000           1,2,4-Trichloroethane         79-04-5         BRL         50.0         mg/g         05/04/12 22-49         D1         10000           1,2,4-Trichloroethane         76-16-6         BRL         50.0         mg/g         05/04/12 22-49         D1	Tech:	CYE				% Moisture:					
Seq Number:         887395           Parameter         Cas Number         Result         RL         Units         Analysis Date         Flag         Dit           Isopropylbenzene         98-82-8         321         50.0         mg/kg         05/04/12         22.49         D1         10000           n-Progylbenzene         103-65-1         782         50.0         mg/kg         05/04/12         22.49         D1         10000           styrene         100-42-5         BRL         50.0         mg/kg         05/04/12         22.49         D1         10000           1,1,2-Tetrachloroethane         79-34-5         BRL         50.0         mg/kg         05/04/12         22.49         D1         10000           1,1,2-Tetrachloroethane         79-34-5         BRL         50.0         mg/kg         05/04/12         D4         D1         10000           1,2,3-Trichlorobenzene         120-82-1         BRL         50.0         mg/kg         05/04/12         D4         D1         10000           1,2,3-Trichlorobenzene         120-82-1         BRL         50.0         mg/kg         05/04/12         D4         D1         10000         1,2-3-Trichlorobenzene         120-82-1         BRL         50.0<	Analyst:	CYE	Date	Pren: Ma	w-04-12 18·45	Basis: W	<b>Basis:</b> Wet Weight				
Parameter         Cas Number         Result         RL         Units         Analysis Date         Flag         Dil           Isopropylbenzene         98-82-8         321         50.0         mg/kg         05/04/12 22:49         D2         10000           n-Propylbenzene         103-65-1         782         50.0         mg/kg         05/04/12 22:49         D2         10000           styrene         100-42-5         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1,2-2rterachloroethane         630-20-6         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1,2-2rterachloroethane         79-34-5         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,2,2-Trichloroethane         127-18-4         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,2,3-Trichlorobenzne         187-61-6         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1,2-Trichloroethane         79-00-5         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1,2-Trichloroethane	Seq Number:	887395	2								
ParameterCas NumberResultRLUnitsAnalysis DateFlagDilIsopropibenzene98-82-832150.0mg/kg05/04/12 22-49D210000Methylene Chloride75-09-2BRL200mg/kg05/04/12 22-49D210000Di-Propibenzene100-45-5BRL50.0mg/kg05/04/12 22-49D1100001,1,2-7terachloroethane630-20-6BRL50.0mg/kg05/04/12 22-49D1100001,1,2-7terachloroethane79-34-5BRL50.0mg/kg05/04/12 22-49D110000Tetrachloroethylene127.18-4BRL50.0mg/kg05/04/12 22-49D1100001,2,4-Trichlorobenzene120-82-1BRL50.0mg/kg05/04/12 22-49D1100001,2,3-Trichlorobenzene87-61-6BRL50.0mg/kg05/04/12 22-49D1100001,1,1-Trichloroethane79-00-5BRL50.0mg/kg05/04/12 22-49D1100001,1,1-Trichloroethane75-69-4BRL50.0mg/kg05/04/12 22-49D1100001,2,3-Trichloroptane96-18-4BRL50.0mg/kg05/04/12 22-49D1100001,2,3-Trichloroptane95-63-651.6050.0mg/kg05/04/12 22-49D1100001,2,3-Trichloroptane95-63-650.0mg/kg05/04/12 22-49D1100001,2,3-Trichloroptane95-63-650.0mg/kg	••••										
Isopropylbenzene         98-82-8         321         50.0         mg/kg         05/04/12 22:49         D2         10000           Methylene Chloride         75-09-2         BRL         200         mg/kg         05/04/12 22:49         D2         10000           Styrene         103-65-1         782         50.0         mg/kg         05/04/12 22:49         D2         10000           1,1,2-Tetrachloroethane         630-20-6         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1,2-Tetrachloroethane         79-34-5         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           Tetrachloroethane         127-18-4         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,2,4-Trichlorobenzene         108-88-3 <b>606</b> 50.0         mg/kg         05/04/12 22:49         D1         10000           1,2,3-Trichlorobenzene         87-61-6         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1-Trichlorobenzene         75-60-6         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1,2-Trichloroothane </th <th>Parameter</th> <th>Cas Number</th> <th>Result</th> <th>RL</th> <th>Un</th> <th>its Analysis Date</th> <th>Flag</th> <th>Dil</th>	Parameter	Cas Number	Result	RL	Un	its Analysis Date	Flag	Dil			
Methylene Chloride         75-09-2         BRL         200         mg/kg         05/04/12         D1         100000           n-Propylbenzene         103-65-1         782         50.0         mg/kg         05/04/12         22:49         D1         100000           1,1,2-Tetrachloroethane         630-20-6         BRL         50.0         mg/kg         05/04/12         22:49         D1         100000           1,1,2-Tetrachloroethane         79-34-5         BRL         50.0         mg/kg         05/04/12         22:49         D1         100000           Tetrachloroethylene         127-18-4         BRL         50.0         mg/kg         05/04/12         22:49         D1         10000           1,2,3-Trichlorobenzene         120-82-1         BRL         50.0         mg/kg         05/04/12         22:49         D1         10000           1,1,1-Trichlorobenzene         87-61-6         BRL         50.0         mg/kg         05/04/12         22:49         D1         10000           1,1,1-Trichloroethane         71-55-6         BRL         50.0         mg/kg         05/04/12         22:49         D1         10000           1,2,3-Trichloroethane         79-01-6         BRL         50.0         mg/kg <td>Isopropylbenzene</td> <td>98-82-8</td> <td>321</td> <td>50.0</td> <td>mg/l</td> <td>kg 05/04/12 22:49</td> <td>D2</td> <td>10000</td>	Isopropylbenzene	98-82-8	321	50.0	mg/l	kg 05/04/12 22:49	D2	10000			
n-Propylbenzene         103-65-1         782         50.0         mg/kg         05/04/12 22:49         D2         10000           Styrene         100-42-5         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1,2-2-Tetrachloroethane         630-20-6         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           Tetrachloroethylene         127.18-4         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           Toluene         128.88-3         606         50.0         mg/kg         05/04/12 22:49         D1         10000           1,2,4-Trichlorobenzene         87-61-6         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1,1-Trichloroethane         79-00-5         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1,1-Trichloroethane         79-01-6         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,2,3-Trichloropropane         95-63-6         5160         50.0         mg/kg         05/04/12 22:49         D1         10000           1,2,3-Trinethylbenzene	Methylene Chloride	75-09-2	BRL	200	mg/l	cg 05/04/12 22:49	D1	10000			
Styrene         100-42-5         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1,2-2*tetrachloroethane         630-20-6         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1,2-2*tetrachloroethane         79-34-5         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           Tetrachloroethylene         127-18-4         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,2.4*Trichlorobenzene         120-82-1         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,2.3*Trichloroethane         79-00-5         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1.2*Trichloroethane         71-55-6         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,2.3*Trichloropropane         96-18-4         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,2.3*Trichloropropane         95-63-6         5160         500         mg/kg         05/04/12 22:49         D1         10000           1,2.4*Tr	n-Propylbenzene	103-65-1	782	50.0	mg/ł	kg 05/04/12 22:49	D2	10000			
1,1,2-Tetrachloroethane       630-20-6       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,1,2-Tetrachloroethane       79-34-5       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         Tetrachloroethylene       127-18-4       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,2,4-Trichlorobenzene       120-82-1       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,2,3-Trichlorobenzene       87-61-6       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,1,2-Trichloroethane       79-00-5       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,1,1-Trichloroethane       79-01-6       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         Trichlorofhuoromethane       75-69-4       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,3,5-Trinkhoropopane       96-18-4       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,3,5-Trinkhoropopane       95-63-6       5160       50.0       mg/kg       05/04/12 22:49	Styrene	100-42-5	BRL	50.0	mg/l	cg 05/04/12 22:49	D1	10000			
1,1,2,2-Tetrachloroethane       79-34-5       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         Tetrachloroethylene       127-18-4       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         Toluene       120-88-3       606       50.0       mg/kg       05/04/12 22:49       D1       10000         1,2,4-Trichlorobenzene       120-82-1       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,1,2-Trichloroethane       79-00-5       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,1,1-Trichloroethane       79-00-6       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,1,2-Trichloroethane       75-69-4       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,2,3-Trichloropropane       96-18-4       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,3,5-Trimethylbenzene       95-63-6       5160       500       mg/kg       05/04/12 22:49       D1       10000         1,3,5-Trimethylbenzene       198-67-8       1240       50.0       mg/kg       05/04/12 22:49	1,1,1,2-Tetrachloroethane	630-20-6	BRL	50.0	mg/l	g 05/04/12 22:49	D1	10000			
Tetrachloroethylene127-18-4BRL50.0mg/kg05/04/12 22:49D110000Totuene108-88-360650.0mg/kg05/04/12 22:49D2100001,2,4-Trichlorobenzene120-82-1BRL50.0mg/kg05/04/12 22:49D1100001,2,3-Trichlorobenzene87-61-6BRL50.0mg/kg05/04/12 22:49D1100001,1,2-Trichloroethane79-00-5BRL50.0mg/kg05/04/12 22:49D1100001,1,1-Trichloroethane79-01-6BRL50.0mg/kg05/04/12 22:49D110000Trichloroethylene79-01-6BRL50.0mg/kg05/04/12 22:49D1100001,2,3-Trichloroptopane96-18-4BRL50.0mg/kg05/04/12 22:49D1100001,2,4-Trimethylbenzene95-63-6 <b>5160</b> 500mg/kg05/04/12 23:11D2100001,3,5-Trimethylbenzene108-67-8 <b>1240</b> 50.0mg/kg05/04/12 23:49D110000 <b>1,3,5-Trimethylbenzene</b> 95-67-6 <b>1270</b> 50.0mg/kg05/04/12 22:49D210000Vinyl Chloride75-01-4BRL20.0mg/kg05/04/12 22:49D210000 <b>0-xylene</b> 95-67-6 <b>1270</b> 50.0mg/kg05/04/12 22:49D210000 <b>0-xylene</b> 95-67-6 <b>1270</b> 50.0mg/kg05/04/12 22:49D210000 <b>0-xylene</b> 95-67-6 <b>1270</b> 50.0mg	1,1,2,2-Tetrachloroethane	79-34-5	BRL	50.0	mg/l	cg 05/04/12 22:49	D1	10000			
Toluene         108-88-3         606         50.0         mg/kg         05/04/12 22:49         D2         10000           1,2,4-Trichlorobenzene         120-82-1         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,2,3-Trichlorobenzene         87-61-6         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,1,2-Trichloroethane         79-00-5         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           Trichloroethane         71-55-6         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           Trichloropthucomethane         75-69-4         BRL         50.0         mg/kg         05/04/12 22:49         D1         10000           1,2,4-Trimethylbenzene         96-18-4         BRL         50.0         mg/kg         05/04/12 23:11         D2         10000           1,2,4-Trimethylbenzene         95-63-6         1240         50.0         mg/kg         05/04/12 23:49         D1         10000           1,3,5-Trimethylbenzene         108-67-8         1240         50.0         mg/kg         05/04/12 23:49         D2         100000           whyl Chloride </td <td>Tetrachloroethylene</td> <td>127-18-4</td> <td>BRL</td> <td>50.0</td> <td>mg/l</td> <td>cg 05/04/12 22:49</td> <td>D1</td> <td>10000</td>	Tetrachloroethylene	127-18-4	BRL	50.0	mg/l	cg 05/04/12 22:49	D1	10000			
1,2,4-Trichlorobenzene120-82-1BRL50.0mg/kg05/04/12 22:49D1100001,2,3-Trichlorobenzene87-61-6BRL50.0mg/kg05/04/12 22:49D1100001,1,2-Trichlorobthane79-00-5BRL50.0mg/kg05/04/12 22:49D1100001,1,1-Trichlorobthane71-55-6BRL50.0mg/kg05/04/12 22:49D1100001,1,1-Trichlorobthane79-01-6BRL50.0mg/kg05/04/12 22:49D110000Trichloropthane75-69-4BRL50.0mg/kg05/04/12 22:49D1100001,2,3-Trichloroptopane96-18-4BRL50.0mg/kg05/04/12 22:49D1100001,2,4-Trimethylbenzene95-63-6 <b>5160</b> 500mg/kg05/04/12 23:11D2100001,3,5-Trimethylbenzene95-63-6 <b>5160</b> 50.0mg/kg05/04/12 23:49D1100001,3,5-Trimethylbenzene108-67-8 <b>1240</b> 50.0mg/kg05/04/12 23:49D2100000'knyl Chloride75-01-4BRL20.0mg/kg05/04/12 23:49D210000m,p-Xylenes179601-23-1 <b>2340</b> 100mg/kg05/04/12 23:49D210000Hexplace, 2-methyl- (TIC)TIC <b>500</b> 10.0mg/kg05/04/12 23:49D21410000Hexplace, 3-methyl- (TIC)TIC <b>500</b> 10.0mg/kg05/04/12 23:49D21410000Cyclobexane, 1,1,3-trimethyl- (TIC	Toluene	108-88-3	606	50.0	mg/l	g 05/04/12 22:49	D2	10000			
1,2,3-Trichlorobenzene       87-61-6       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,1,2-Trichloroethane       79-00-5       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,1,1-Trichloroethane       71-55-6       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         Trichloroethylen       79-01-6       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,2,3-Trichloropthylen       75-69-4       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,2,3-Trichloroptopane       96-18-4       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,2,4-Trimethylbenzene       95-63-6       5160       50.0       mg/kg       05/04/12 22:49       D2       10000         1,3,5-Trimethylbenzene       108-67-8       1240       50.0       mg/kg       05/04/12 22:49       D2       10000         Vinyl Chloride       75-01-4       BRL       20.0       mg/kg       05/04/12 22:49       D2       10000         Mp-Xylene       19561-23-1       2340       100       mg/kg       05/04/12 22:49       D21 <td>1,2,4-Trichlorobenzene</td> <td>120-82-1</td> <td>BRL</td> <td>50.0</td> <td>mg/l</td> <td>kg 05/04/12 22:49</td> <td>D1</td> <td>10000</td>	1,2,4-Trichlorobenzene	120-82-1	BRL	50.0	mg/l	kg 05/04/12 22:49	D1	10000			
1,1,2-Trichloroethane       79-00-5       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,1,1-Trichloroethane       71-55-6       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         Trichloroethylene       79-01-6       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         Trichlorofluoromethane       75-69-4       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,2,3-Trichloropropane       96-18-4       BRL       50.0       mg/kg       05/04/12 23:11       D2       100000         1,3,5-Trimethylbenzene       108-67-8       1240       50.0       mg/kg       05/04/12 22:49       D2       10000         Vinyl Chloride       75-01-4       BRL       20.0       mg/kg       05/04/12 22:49       D2       10000         o-Xylene       95-47-6       1270       50.0       mg/kg       05/04/12 22:49       D2       10000         Gydohexane, methyl- (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       D2       10000         Heptane, 2-methyl- (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       D274	1,2,3-Trichlorobenzene	87-61-6	BRL	50.0	mg/l	g 05/04/12 22:49	D1	10000			
1,1,1-Trichloroethane       71-55-6       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         Trichloroethylene       79-01-6       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         Trichloroftuoromethane       75-69-4       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,2,3-Trichloropropane       96-18-4       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,3,5-Trimethylbenzene       108-67-8       1240       50.0       mg/kg       05/04/12 22:49       D2       10000         1,3,5-Trimethylbenzene       108-67-8       1240       50.0       mg/kg       05/04/12 22:49       D2       10000         0-Xylene       95-47-6       1270       50.0       mg/kg       05/04/12 22:49       D2       10000         Cyclohexane, methyl- (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       D2       10000         Hexyl octyl ether (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       D21       10000         Hexyl octyl ether (TIC)       TIC       362       10.0       mg/kg       05/04/12 22:49       D21	1,1,2-Trichloroethane	79-00-5	BRL	50.0	mg/l	g 05/04/12 22:49	D1	10000			
Trichloroethylene         79-01-6         BRL         50.0         mg/kg         05/04/12         02:49         D1         10000           Trichlorofluoromethane         75-69-4         BRL         50.0         mg/kg         05/04/12         D1         10000           1,2,3-Trichloropropane         96-18-4         BRL         50.0         mg/kg         05/04/12         D1         10000           1,2,3-Trichloropropane         95-63-6         5160         500         mg/kg         05/04/12         D2         100000           1,3,5-Trimethylbenzene         95-63-6         5160         500         mg/kg         05/04/12         D2         100000           1,3,5-Trimethylbenzene         108-67-8         1240         50.0         mg/kg         05/04/12         D2         10000           o'myl Chloride         75-01-4         BRL         20.0         mg/kg         05/04/12         D2         10000           o-Xylene         95-47-6         1270         50.0         mg/kg         05/04/12         D2         10000           Cyclohexane, methyl- (TIC)         TIC         500         10.0         mg/kg         05/04/12         D2:49         D21         100000           Hexyl octyl ether (TIC) <td>1,1,1-Trichloroethane</td> <td>71-55-6</td> <td>BRL</td> <td>50.0</td> <td>mg/l</td> <td>g 05/04/12 22:49</td> <td>D1</td> <td>10000</td>	1,1,1-Trichloroethane	71-55-6	BRL	50.0	mg/l	g 05/04/12 22:49	D1	10000			
Trichlorofluoromethane         75-69-4         BRL         50.0         mg/kg         05/04/12         D1         10000           1,2,3-Trichloropropane         96-18-4         BRL         50.0         mg/kg         05/04/12         D1         10000           1,2,4-Trimethylbenzene         95-63-6         5160         500         mg/kg         05/04/12         D2:19         D1         10000           1,3,5-Trimethylbenzene         108-67-8         1240         50.0         mg/kg         05/04/12         D2:19         D2         10000           Vinyl Chloride         75-01-4         BRL         20.0         mg/kg         05/04/12         D2:149         D2         10000           o-Xylene         95-47-6         1270         50.0         mg/kg         05/04/12         D2:149         D2         10000           m,p-Xylenes         179601-23-1         2340         100         mg/kg         05/04/12         D2:49         D2         10000           Heytane, 2-methyl- (TIC)         TIC         362         10.0         mg/kg         05/04/12         D2:49         D214         10000           Heytane, 3-methyl- (TIC)         TIC         747         10.0         mg/kg         05/04/12         D2	Trichloroethylene	79-01-6	BRL	50.0	mg/l	g 05/04/12 22:49	D1	10000			
1,2,3-Trichloropropane       96-18-4       BRL       50.0       mg/kg       05/04/12 22:49       D1       10000         1,2,4-Trimethylbenzene       95-63-6       5160       500       mg/kg       05/04/12 22:49       D2       100000         1,3,5-Trimethylbenzene       108-67-8       1240       50.0       mg/kg       05/04/12 22:49       D2       10000         Vinyl Chloride       75-01-4       BRL       20.0       mg/kg       05/04/12 22:49       D2       10000         o-Xylene       95-47-6       1270       50.0       mg/kg       05/04/12 22:49       D2       10000         m,p-Xylenes       179601-23-1       2340       100       mg/kg       05/04/12 22:49       D2       10000         Cyclohexane, methyl- (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       D274       10000         Heptane, 2-methyl- (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       D274       10000         Heptane, 3-methyl- (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       D274       10000         Cyclohexane, 1,1,3-trimethyl- (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       <	Trichlorofluoromethane	75-69-4	BRL	50.0	mg/l	g 05/04/12 22:49	D1	10000			
1,2,4-Trimethylbenzene       95-63-6       5160       500       mg/kg       05/04/12 23:11       D2       100000         1,3,5-Trimethylbenzene       108-67-8       1240       50.0       mg/kg       05/04/12 22:49       D2       100000         Vinyl Chloride       75-01-4       BRL       20.0       mg/kg       05/04/12 22:49       D1       10000         o-Xylene       95-47-6       1270       50.0       mg/kg       05/04/12 22:49       D2       10000         mp-Xylenes       179601-23-1       2340       100       mg/kg       05/04/12 22:49       D2       10000         Cyclohexane, methyl- (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       D21       10000         Heptane, 2-methyl- (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       D214       10000         Heptane, 3-methyl- (TIC)       TIC       747       10.0       mg/kg       05/04/12 22:49       D214       10000         Octane, 3-methyl- (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       D214       10000         Cyclohexane, 1,1,3-trimethyl- (TIC)       TIC       301       10.0       mg/kg       05/04/12 22:49 <th< td=""><td>1,2,3-Trichloropropane</td><td>96-18-4</td><td>BRL</td><td>50.0</td><td>mg/l</td><td>g 05/04/12 22:49</td><td>D1</td><td>10000</td></th<>	1,2,3-Trichloropropane	96-18-4	BRL	50.0	mg/l	g 05/04/12 22:49	D1	10000			
1,3,5-Trimethylbenzene       108-67-8       1240       50.0       mg/kg       05/04/12 22:49       D2       10000         Vinyl Chloride       75-01-4       BRL       20.0       mg/kg       05/04/12 22:49       D1       10000         o-Xylene       95-47-6       1270       50.0       mg/kg       05/04/12 22:49       D2       10000         m,p-Xylenes       179601-23-1       2340       100       mg/kg       05/04/12 22:49       D2       10000         Cyclohexane, methyl- (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       D2       10000         Hexpt actyl ether (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       D274       10000         Octane, 3-methyl- (TIC)       TIC       362       10.0       mg/kg       05/04/12 22:49       D274       10000         Octane, 3-methyl- (TIC)       TIC       500       10.0       mg/kg       05/04/12 22:49       D274       10000         Cyclohexane, 1,1,3-trimethyl- (TIC)       TIC       422       10.0       mg/kg       05/04/12 22:49       D274       10000         Cyclohexane, 1,1,3-trimethyl- (TIC)       TIC       301       10.0       mg/kg       05/04/12 22:49	1,2,4-Trimethylbenzene	95-63-6	5160	500	mg/l	g 05/04/12 23:11	D2	100000			
Vinyl Chloride         75-01-4         BRL         20.0         mg/kg         05/04/12         D1         10000           o-Xylene         95-47-6         1270         50.0         mg/kg         05/04/12         22:49         D2         10000           m,p-Xylenes         179601-23-1         2340         100         mg/kg         05/04/12         22:49         D2         10000           Cyclohexane, methyl- (TIC)         TIC         500         10.0         mg/kg         05/04/12         22:49         D2         10000           Heptane, 2-methyl- (TIC)         TIC         362         10.0         mg/kg         05/04/12         22:49         D274         10000           Gotane, 3-methyl- (TIC)         TIC         747         10.0         mg/kg         05/04/12         22:49         D274         10000           Gotane, 3-methyl- (TIC)         TIC         500         10.0         mg/kg         05/04/12         22:49         D274         10000           Heptane, 4-methyl- (TIC)         TIC         422         10.0         mg/kg         05/04/12         22:49         D274         10000           Cyclohexane, 1,1,3-trimethyl- (TIC)         TIC         301         10.0         mg/kg	1.3.5-Trimethylbenzene	108-67-8	1240	50.0	mg/l	g 05/04/12 22:49	D2	10000			
o-Xylene         95-47-6         1270         50.0         mg/kg         05/04/12         D2         1000           m,p-Xylenes         179601-23-1         2340         100         mg/kg         05/04/12         D2         10000           Cyclohexane, methyl- (TIC)         TIC         500         10.0         mg/kg         05/04/12         D2         10000           Heptane, 2-methyl- (TIC)         TIC         362         10.0         mg/kg         05/04/12         D2:49         D2         10000           Hexyl octyl ether (TIC)         TIC         362         10.0         mg/kg         05/04/12         D2:49         D2:4         10000           Octane, 3-methyl- (TIC)         TIC         747         10.0         mg/kg         05/04/12         22:49         D2:4         10000           Getane, 3-methyl- (TIC)         TIC         500         10.0         mg/kg         05/04/12         22:49         D2:4         10000           Cyclohexane, 1,1,3-trimethyl- (TIC)         TIC         301         10.0         mg/kg         05/04/12         22:49         D2:4         10000           Cyclohexane, 1,1,3-trimethyl- (TIC)         TIC         1050         10.0         mg/kg         05/04/12         D2:4	Vinvl Chloride	75-01-4	BRL	20.0	mg/l	g 05/04/12 22:49	D1	10000			
Imp-Xylnes         179601-23-1         2340         100         mg/kg         05/04/12 22:49         D2         10000           Cyclohexane, methyl- (TIC)         TIC         500         10.0         mg/kg         05/04/12 22:49         D2         10000           Heptane, 2-methyl- (TIC)         TIC         362         10.0         mg/kg         05/04/12 22:49         D21         10000           Hexyl octyl ether (TIC)         TIC         362         10.0         mg/kg         05/04/12 22:49         D214         10000           Octane, 3-methyl- (TIC)         TIC         747         10.0         mg/kg         05/04/12 22:49         D214         10000           Octane, 3-methyl- (TIC)         TIC         500         10.0         mg/kg         05/04/12 22:49         D214         10000           Cyclohexane, 1,1,3-trimethyl- (TIC)         TIC         422         10.0         mg/kg         05/04/12 22:49         D214         10000           Cyclohexane, propyl- (TIC)         TIC         301         10.0         mg/kg         05/04/12 22:49         D214         10000           Cyclohexane, propyl- (TIC)         TIC         1050         10.0         mg/kg         05/04/12 22:49         D214         10000	o-Xvlene	95-47-6	1270	50.0	mg/l	g 05/04/12 22:49	D2	10000			
Cyclohexane, methyl- (TIC)         TIC         500         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Heptane, 2-methyl- (TIC)         TIC         362         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Hexyl octyl ether (TIC)         TIC         362         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Octane, 3-methyl- (TIC)         TIC         747         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Octane, 3-methyl- (TIC)         TIC         500         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Heptane, 3-methyl- (TIC)         TIC         422         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Cyclohexane, propyl- (TIC)         TIC         301         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Cyclohexane, propyl- (TIC)         TIC         1050         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Cyclohexane, (IS,3S)-(+)- (TIC)         TIC         555         10.0         mg/kg         05/04/12 22:49         D2T4         10000	m.p-Xylenes	179601-23-1	2340	100	mg/l	g 05/04/12 22:49	D2	10000			
Instrumentation         Instrumentatis         Instrumentation         Instrumenta	Cyclohexane, methyl- (TIC)	TIC	500	10.0	mg/l	g 05/04/12 22:49	D2T4	10000			
Hexyl octyl ether (TIC)         TIC         747         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Octane, 3-methyl- (TIC)         TIC         500         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Heptane, 3-methyl- (TIC)         TIC         500         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Cyclohexane, 1,1,3-trimethyl- (TIC)         TIC         422         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Cyclohexane, roppl- (TIC)         TIC         301         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Cyclohexane, roppl- (TIC)         TIC         1050         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Octane (TIC)         TIC         1050         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Octane (TIC)         TIC         555         10.0         mg/kg         05/04/12 22:49         D2T4         10000           m-Menthane, (IS,3S)-(+)- (TIC)         TIC         1580         10.0         mg/kg         05/04/12 22:49         D2T4         10000	Heptane, 2-methyl- (TIC)	TIC	362	10.0	mg/l	g 05/04/12 22:49	D2T4	10000			
Action of the property	Hexyl octyl ether (TIC)	TIC	747	10.0	mg/l	g 05/04/12 22:49	D2T4	10000			
Heptane, 3-methyl- (TIC)         TIC         422         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Cyclohexane, 1,1,3-trimethyl- (TIC)         TIC         301         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Cyclohexane, propyl- (TIC)         TIC         1050         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Octane (TIC)         TIC         1050         10.0         mg/kg         05/04/12 22:49         D2T4         10000           m-Menthane, (1S,3S)-(+)- (TIC)         TIC         555         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Nonane, 3-methyl- (TIC)         TIC         1580         10.0         mg/kg         05/04/12 22:49         D2T4         10000	Octane, 3-methyl- (TIC)	TIC	500	10.0	mg/l	g 05/04/12 22:49	D2T4	10000			
Cyclohexane, 1,1,3-trimethyl- (TIC)         TIC         301         10.0         mg/kg         05/04/12         22:49         D2T4         10000           Cyclohexane, propyl- (TIC)         TIC         1050         10.0         mg/kg         05/04/12         22:49         D2T4         10000           Octane (TIC)         TIC         1050         10.0         mg/kg         05/04/12         22:49         D2T4         10000           octane (TIC)         TIC         555         10.0         mg/kg         05/04/12         22:49         D2T4         10000           Nonane, 3-methyl- (TIC)         TIC         1580         10.0         mg/kg         05/04/12         22:49         D2T4         10000	Heptane, 3-methyl- (TIC)	TIC	422	10.0	mg/l	g 05/04/12 22:49	D2T4	10000			
Cyclohexane, propyl- (TIC)         TIC         1050         10.0         mg/kg         050/w1/2 22:49         D2T4         10000           Octane (TIC)         TIC         555         10.0         mg/kg         05/04/12 22:49         D2T4         10000           m-Menthane, (15,35)-(+)- (TIC)         TIC         870         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Nonane, 3-methyl- (TIC)         TIC         1580         10.0         mg/kg         05/04/12 22:49         D2T4         10000	Cyclohexane, 1,1,3-trimethyl- (TIC	C) TIC	301	10.0	mg/l	g 05/04/12 22:49	D2T4	10000			
Octane (TIC)         TIC         555         10.0         mg/kg         05/04/12 22:49         D2T4         10000           m-Menthane, (15,35)-(+)- (TIC)         TIC         870         10.0         mg/kg         05/04/12 22:49         D2T4         10000           Nonane, 3-methyl- (TIC)         TIC         1580         10.0         mg/kg         05/04/12 22:49         D2T4         10000	Cyclohexane, propyl- (TIC)	TIC	1050	10.0	mg/l	g 05/04/12 22:49	D2T4	10000			
m-Menthane, (15,35)-(+)- (TIC) TIC 870 10.0 mg/kg 05/04/12 22:49 D2T4 10000 Nonane, 3-methyl- (TIC) TIC 1580 10.0 mg/kg 05/04/12 22:49 D2T4 10000	Octane (TIC)	TIC	555	10.0	mg/l	g 05/04/12 22:49	D2T4	10000			
Nonane, Smethyl-(TIC) TIC <b>1580</b> 10.0 mg/kg 05/04/12 22:49 D214 10000	m-Menthane, (18.38)-(+)- (TI)	C) TIC	870	10.0	mg/l	g 05/04/12 22:49	D2T4	10000			
	Nonane, 3-methyl- (TIC)	TIC	1580	10.0	mg/l	g 05/04/12 22:49	D2T4	10000			
Surrogate Cas Number % Recovery Units Limits Analysis Date Flag	Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag				
4-Bromofluorobenzene 460-00-4 137 % 58-152 05/04/12 22:49	4-Bromofluorobenzene	460-00-4	137	%	58-152	05/04/12 22:49					
Dibromofluoromethane 1868-53-7 97 % 74-126 05/04/12 22:49	Dibromofluoromethane	1868-53-7	97	%	74-126	05/04/12 22:49					
1,2-Dichloroethane-D4 17060-07-0 98 % 80-120 05/04/12 22:49	1,2-Dichloroethane-D4	17060-07-0	98	%	80-120	05/04/12 22:49					
Toluene-D8 2037-26-5 119 % 73-132 05/04/12 22:49	Toluene-D8	2037-26-5	119	%	73-132	05/04/12 22:49					

Project: Standard List of Methods

Page 15 of 23



### QC Summary 441475



# Southwest Research Institute, San Antonio, TX

17149.26.001

Analytical Method:	SVOAs by	SW-846	8270C						Р	rep Meth	od: SW:	3580A	
Seq Number:	886890		Matrix: Oil					Date Prep: 04/30/2012					
MB Sample Id:	621152-1-E	21152-1-BLK		LCS Sample Id: 621152-1-BKS				LCSD Sample Id: 621152-1-BSD			152-1-BSD		
Parameter		MB Result	Spike Amount	LCS Result	LCS % Rec	LCSD Result	LCSD % Rec	Limits	% RP D	RPD Limit	Units	Analysis Date	Flag
Acenaphthene		<15.0	50.0	50.1	100	51.1	102	41-134	2	25	mg/kg	04/30/12 16:47	
Acenaphthylene		<15.0	50.0	49.0	98	50.5	101	65-135	3	25	mg/kg	04/30/12 16:47	
Aniline (Phenylamine, Ami	inobenzene)	<15.0	50.0	29.4	59	29.4	59	2-145	0	25	mg/kg	04/30/12 16:47	
Anthracene		<15.0	50.0	48.9	98	48.7	97	65-135	0	25	mg/kg	04/30/12 16:47	
Benzo(a)anthracene		<15.0	50.0	51.6	103	53.0	106	44-126	3	25	mg/kg	04/30/12 16:47	
Benzo(a)pyrene		<15.0	50.0	48.9	98	48.9	98	65-135	0	25	mg/kg	04/30/12 16:47	
Benzo(b)fluoranthene		<15.0	50.0	46.9	94	48.3	97	65-135	3	25	mg/kg	04/30/12 16:47	
Benzo(g,h,i)perylene		<15.0	50.0	46.8	94	47.9	96	65-135	2	25	mg/kg	04/30/12 16:47	
Benzo(k)fluoranthene		<15.0	50.0	50.5	101	47.6	95	25-125	6	25	mg/kg	04/30/12 16:47	
Benzoic Acid		<150	150	186	124	206	137	50-125	10	25	mg/kg	04/30/12 16:47	L1
bis(2-chloroethoxy) me	thane	<15.0	50.0	50.4	101	50.6	101	65-135	0	25	mg/kg	04/30/12 16:47	
bis(2-chloroethyl) ether		<15.0	50.0	51.6	103	52.1	104	65-135	1	25	mg/kg	04/30/12 16:47	
bis(2-chloroisopropyl)	ether	<15.0	50.0	45.1	90	43.9	88	65-135	3	25	mg/kg	04/30/12 16:47	
bis(2-ethylhexyl) phthal	ate	<15.0	50.0	56.4	113	55.5	111	65-135	2	25	mg/kg	04/30/12 16:47	
4-Bromophenyl-phenyl	ether	<15.0	50.0	50.7	101	47.3	95	65-135	7	25	mg/kg	04/30/12 16:47	
Di-n-butylphthalate		<15.0	50.0	53.7	107	52.2	104	65-135	3	25	mg/kg	04/30/12 16:47	
4-chloro-3-methylpheno	ol	<15.0	50.0	47.0	94	45.2	90	28-134	4	25	mg/kg	04/30/12 16:47	
4-Chloroaniline		<15.0	50.0	37.7	75	36.1	72	4-149	4	25	mg/kg	04/30/12 16:47	
2-Chloronaphthalene		<15.0	50.0	70.8	142	70.4	141	65-135	1	25	mg/kg	04/30/12 16:47	L1
2-Chlorophenol		<15.0	50.0	50.0	100	51.2	102	25-140	2	25	mg/kg	04/30/12 16:47	
4-Chlorophenyl Phenyl	Ether	<15.0	50.0	50.8	102	51.7	103	65-135	2	25	mg/kg	04/30/12 16:47	
Chrysene		<15.0	50.0	52.9	106	52.5	105	65-135	1	25	mg/kg	04/30/12 16:47	
Dibenz(a,h)anthracene		<15.0	50.0	48.8	98	48.9	98	65-135	0	25	mg/kg	04/30/12 16:47	
Dibenzofuran		<15.0	50.0	51.9	104	51.6	103	65-135	1	25	mg/kg	04/30/12 16:47	
1.2-Dichlorobenzene		<15.0	50.0	51.3	103	48.8	98	65-135	5	25	mg/kg	04/30/12 16:47	
1.3-Dichlorobenzene		<15.0	50.0	49.1	98	50.5	101	65-135	3	25	mg/kg	04/30/12 16:47	
1.4-Dichlorobenzene		<15.0	50.0	49.8	100	51.0	102	36-134	2	25	mg/kg	04/30/12 16:47	
3.3-Dichlorobenzidine		<15.0	50.0	46.9	94	47.6	95	20-140	1	25	mg/kg	04/30/12 16:47	
2,4-Dichlorophenol		<15.0	50,0	47.4	95	41.4	83	65-135	14	25	mg/kg	04/30/12 16:47	
Diethylphthalate		<15.0	50.0	52.9	106	51.2	102	37-125	3	25	mg/kg	04/30/12 16:47	
2,4-Dimethylphenol		<15.0	50.0	47.3	95	46.1	92	65-135	3	25	mg/kg	04/30/12 16:47	
4,6-dinitro-2-methyl pho	enol	<15.0	50.0	<15.0	0	<15.0	0	65-135	NC	25	mg/kg	04/30/12 16:47	L2
2,4-Dinitrophenol		<15.0	50.0	<15.0	0	<15.0	0	65-135	NC	25	mg/kg	04/30/12 16:47	L2
2,4-Dinitrotoluene		<15.0	50.0	46.1	92	43.6	87	40-130	6	25	mg/kg	04/30/12 16:47	
2,6-Dinitrotoluene		<15.0	50.0	46.9	94	46.0	92	28-89	2	25	mg/kg	04/30/12 16:47	L1
Fluoranthene		<15.0	50.0	51.8	104	52.4	105	65-135	1	25	mg/kg	04/30/12 16:47	
Fluorene		<15.0	50.0	49.8	100	51.0	102	65-135	2	25	mg/kg	04/30/12 16:47	
Hexachlorobenzene		<15.0	50.0	52.2	104	51.6	103	65-135	1	25	mg/kg	04/30/12 16:47	
Hexachlorobutadiene		<15.0	50.0	49.3	99	52.4	105	65-135	6	25	mg/kg	04/30/12 16:47	
Hexachlorocyclopentadi	iene	<15.0	50.0	<15.0	0	<15.0	0	65-135	NC	25	mg/kg	04/30/12 16:47	L2
Hexachloroethane		<15.0	50.0	43.8	88	43.8	88	65-135	0	25	mg/kg	04/30/12 16:47	
Indeno(1,2,3-c,d)Pyrene	e	<15.0	50.0	44.4	89	45.8	92	65-135	3	25	mg/kg	04/30/12 16:47	
Isophorone		<15.0	50.0	49.7	99	48.7	97	65-135	2	25	mg/kg	04/30/12 16:47	
2-Methylnaphthalene		<15.0	50.0	52.0	104	49.6	99	25-175	5	25	mg/kg	04/30/12 16:47	
2-methylphenol		<15.0	50.0	47.6	95	47.8	96	65-135	0	25	mg/kg	04/30/12 16:47	
3&4-Methylphenol		<15.0	50.0	45.0	90	43.4	87	65-135	4	25	mg/kg	04/30/12 16:47	
- 1											00		

Page 16 of 23




### Southwest Research Institute, San Antonio, TX

17149.26.001

Analytical Method:	SVOAs b	y SW-846	8270C						F	Prep Meth	od: SW.	3580A	
Seq Number:	886890				Matrix:	Oil				Date Pr	rep: 04/3	0/2012	
MB Sample Id:	621152-1	-BLK		LCS Sar	nple Id:	621152-1	BKS		LCSD Sample Id: 621152-1-BSD				
Parameter		MB Result	Spike Amount	LCS Result	LCS % Rec	LCSD Result	LCSD % Rec	Limits	% RP D	RPD Limit	Units	Analysis Date	Flag
Naphthalene		<15.0	50.0	50.0	100	50.8	102	65-135	2	25	mg/kg	04/30/12 16:47	
4-Nitroaniline		<15.0	50.0	54.4	109	55.5	111	65-135	2	25	mg/kg	04/30/12 16:47	
3-Nitroaniline		<15.0	50.0	46.7	93	47.9	96	65-135	3	25	mg/kg	04/30/12 16:47	
2-Nitroaniline		<15.0	50.0	45.2	90	49.3	99	65-135	9	25	mg/kg	04/30/12 16:47	
Nitrobenzene		<15.0	50.0	49.2	98	47.3	95	65-135	4	25	mg/kg	04/30/12 16:47	
2-Nitrophenol		<15.0	50.0	46.2	92	43.6	87	65-135	6	25	mg/kg	04/30/12 16:47	
4-Nitrophenol		<15.0	50.0	64.5	129	53.8	108	13-106	18	25	mg/kg	04/30/12 16:47	L1
N-Nitrosodi-n-Propylan	nine	<15.0	50.0	49.6	99	48.2	96	53-130	3	25	mg/kg	04/30/12 16:47	
N-Nitrosodiphenylamin	e	<15.0	50.0	46.6	93	49.0	98	65-135	5	25	mg/kg	04/30/12 16:47	
di-n-Octyl Phthalate		<15.0	50.0	53.3	107	53.3	107	65-135	0	25	mg/kg	04/30/12 16:47	
Pentachlorophenol		<15.0	50.0	39.9	80	36.3	73	14-111	9	25	mg/kg	04/30/12 16:47	
Phenanthrene		<15.0	50.0	49.2	98	49.8	100	65-135	1	25	mg/kg	04/30/12 16:47	
Phenol		<15.0	50.0	47.0	94	48.6	97	27-127	3	25	mg/kg	04/30/12 16:47	
Pyrene		<15.0	50.0	47.2	94	46.4	93	41-144	2	25	mg/kg	04/30/12 16:47	
Pyridine		<15.0	50.0	50.4	101	48.5	97	39-98	4	25	mg/kg	04/30/12 16:47	L1
1,2,4-Trichlorobenzene		<15.0	50.0	51.6	103	51.2	102	37-133	1	25	mg/kg	04/30/12 16:47	
2,4,6-Trichlorophenol		<15.0	50.0	53.3	107	53.9	108	65-135	1	25	mg/kg	04/30/12 16:47	
2,4,5-Trichlorophenol		<15.0	50.0	53.0	106	51.8	104	65-135	2	25	mg/kg	04/30/12 16:47	
Surrogate		MB %Rec	MB Flag	L4 %]	CS Rec	LCS Flag	LCSD % Rec	LCSI Flag	) I	imits	Units	Analysis Date	
2-Fluorobiphenyl		98		1	00		98		3	0-115	%	04/30/12 16:47	
2-Fluorophenol		119		1	18		115		2	5-121	%	04/30/12 16:47	
Nitrobenzene-d5		95		9	97		95		2	3-120	%	04/30/12 16:47	
Phenol-d6		104		1	14	S1	115	S1	2	4-113	%	04/30/12 16:47	
Terphenyl-D14		99		ç	97		91		1	8-137	%	04/30/12 16:47	
2,4,6-Tribromophenol		116		1	28	<b>S</b> 1	121		1	9-122	%	04/30/12 16:47	

Page 17 of 23





#### Southwest Research Institute, San Antonio, TX

17149.26.001

Analytical Method: VOAs by SW-846 8260 Prep Method: SW5030B Seq Number: 887395 Matrix: Solid Date Prep: 05/04/2012 LCS Sample Id: 621552-1-BKS MB Sample Id: 621552-1-BLK MB Spike LCS LCS Limits Units Analysis Flag Parameter Result Amount Result % Rec Date 05/04/12 13:28 <0.000450 0.0539 108 66-142 Benzene 0.0500 mg/kg Bromobenzene < 0.000259 0.0500 0.0512 102 75-125 05/04/12 13:28 mg/kg < 0.000645 0.0541 73-125 05/04/12 13:28 Bromochloromethane 0.0500 108 mg/kg 05/04/12 13:28 < 0.000364 0.0500 0.0517 103 75-125 Bromodichloromethane mg/kg 05/04/12 13:28 Bromoform < 0.000442 0.0500 0.0512 102 75-125 mg/kg Methyl bromide < 0.000811 0.0500 0.0460 92 65-135 mg/kg 05/04/12 13:28 05/04/12 13:28 MTBE < 0.000166 0.0500 0.0558 112 65-135 mg/kg 05/04/12 13:28 tert-Butvlbenzene < 0.000223 0.0500 0.0514 75-125 103 mg/kg 05/04/12 13:28 Sec-Butylbenzene < 0.0000840 0.0500 0.0517 103 75-125 mg/kg 05/04/12 13:28 n-Butylbenzene < 0.000297 0.0500 0.0496 00 75-125 mg/kg < 0.000161 05/04/12 13:28 Carbon Tetrachloride 0.0500 0.0499 100 62-125 mg/kg 05/04/12 13:28 < 0.000290 Chlorobenzene 0.0500 0.0540 108 60-133 mg/kg 05/04/12 13:28 Chloroethane < 0.000757 0.0500 0.0392 78 65-135 mg/kg Chloroform < 0.000398 0.0500 0.0512 102 74-125 05/04/12 13:28 mg/kg 05/04/12 13:28 Methyl Chloride < 0.000362 0.0500 0.0395 79 65-135 mg/kg 05/04/12 13:28 < 0.000247 0.0500 0.0536 107 73-125 2-Chlorotoluene mg/kg 05/04/12 13:28 4-Chlorotoluene < 0.000183 0.0500 0.0497 99 74-125 mg/kg p-Cymene (p-Isopropyltoluene) < 0.000171 0.0500 0.0508 102 75-125 05/04/12 13:28 mg/kg < 0.00290 59-125 05/04/12 13:28 1,2-Dibromo-3-Chloropropane 0.0500 0.0451 90 mg/kg < 0.000532 05/04/12 13:28 Dibromochloromethane 0.0500 0.0535 107 73-125 mg/kg 05/04/12 13:28 1.2-Dibromoethane <0.000480 0.0500 0.0537 107 73-125 mg/kg Methylene bromide < 0.000553 0.0500 0.0570 114 69-127 mg/kg 05/04/12 13:28 1,2-Dichlorobenzene < 0.000329 0.0500 0.0531 106 75-125 05/04/12 13:28 mg/kg 05/04/12 13:28 1.3-Dichlorobenzene < 0.000270 0.0500 0.0515 103 75-125 mg/kg 05/04/12 13:28 1.4-Dichlorobenzene < 0.00100 0.0500 0.0515 103 75-125 mg/kg 05/04/12 13:28 Dichlorodifluoromethane < 0.000248 0.0500 0.0437 87 65-135 mg/kg < 0.000523 68-127 05/04/12 13:28 1,2-Dichloroethane 0.0500 0.0495 99 mg/kg 05/04/12 13:28 < 0.000281 0.0500 0.0505 101 1,1-Dichloroethane 72-125 mg/kg 05/04/12 13:28 trans-1.2-dichloroethylene < 0.000227 0.0500 0.0508 102 75-125 mg/kg cis-1,2-Dichloroethylene < 0.000413 0.0500 0.0552 110 75-125 05/04/12 13:28 mg/kg 05/04/12 13:28 1.1-Dichloroethene < 0.000445 0.0500 0.0525 105 59-172 mg/kg 05/04/12 13:28 < 0.000380 0.0471 75-125 2,2-Dichloropropane 0.0500 94 mg/kg 05/04/12 13:28 1,3-Dichloropropane < 0.000304 0.0500 0.0517 103 75-125 mg/kg 05/04/12 13:28 1,2-Dichloropropane < 0.000348 0.0500 0.0512 102 74-125 mg/kg < 0.00108 05/04/12 13:28 trans-1,3-dichloropropene 0.0500 0.0449 90 66-125 mg/kg 05/04/12 13:28 < 0.000366 103 1,1-Dichloropropene 0.0500 0.0515 75-125 mg/kg 05/04/12 13:28 < 0.000315 0.0500 74-125 cis-1,3-Dichloropropene 0.0467 93 mg/kg Ethylbenzene < 0.000200 0.0500 0.0535 107 75-125 05/04/12 13:28 mg/kg < 0.000270 05/04/12 13:28 Hexachlorobutadiene 0.0500 0.0506 101 75-125 mg/kg 05/04/12 13:28 Isopropylbenzene < 0.000228 0.0500 0.0518 104 75-125 mg/kg 05/04/12 13:28 Naphthalene < 0.00100 0.0500 0.0490 98 70-130 mg/kg Methylene Chloride 0.00228 0.0500 0.0596 119 75-125 05/04/12 13:28 mg/kg < 0.000233 75-125 05/04/12 13:28 n-Propylbenzene 0.0500 0.0521 104 mg/kg < 0.000201 0.0500 0.0514 103 75-125 05/04/12 13:28 Styrene mg/kg 05/04/12 13:28 1.1.1.2-Tetrachloroethane 72-125 < 0.000325 0.0500 0.0525 105 mg/kg 1,1,2,2-Tetrachloroethane < 0.000214 0.0500 0.0516 103 74-125 05/04/12 13:28 mg/kg

Page 18 of 23





#### Southwest Research Institute, San Antonio, TX

17149.26.001

Analytical Method: VOAs by SW-846 8260 Prep Method: SW5030B Seq Number: 887395 Matrix: Solid Date Prep: 05/04/2012 MB Sample Id: 621552-1-BLK LCS Sample Id: 621552-1-BKS MB Spike LCS LCS Limits Units Analysis Flag Parameter Result Amount Result % Rec Date 0.00108 0.0556 111 71-125 05/04/12 13:28 Tetrachloroethylene 0.0500 mg/kg Toluene < 0.000321 0.0500 0.0505 101 59-139 mg/kg 05/04/12 13:28 1,2,4-Trichlorobenzene < 0.000348 0.0500 0.0488 98 75-135 05/04/12 13:28 mg/kg 05/04/12 13:28 < 0.000347 0.0492 98 75-137 1,2,3-Trichlorobenzene 0.0500 mg/kg 05/04/12 13:28 1,1,2-Trichloroethane < 0.000380 0.0500 0.0504 101 75-127 mg/kg 05/04/12 13:28 1,1,1-Trichloroethane < 0.000276 0.0500 0.0519 104 75-125 mg/kg Trichloroethylene < 0.000440 0.0500 0.0520 104 62-137 05/04/12 13:28 mg/kg 05/04/12 13:28 Trichlorofluoromethane < 0.000248 0.0500 0.0573 115 67-125 mg/kg 05/04/12 13:28 < 0.000384 0.0500 1,2,3-Trichloropropane 0.0472 94 75-125 mg/kg 05/04/12 13:28 1,2,4-Trimethylbenzene < 0.000142 0.0500 0.0515 103 75-125 mg/kg 1,3,5-Trimethylbenzene < 0.000131 0.0500 0.0515 103 70-130 05/04/12 13:28 mg/kg 05/04/12 13:28 < 0.000500 0.0500 0.0434 87 65-135 Vinvl Chloride mg/kg 05/04/12 13:28 < 0.000206 0.0500 0.0546 109 75-125 o-Xylene mg/kg 05/04/12 13:28 m,p-Xylenes < 0.000321 0.100 0.105 105 75-125 mg/kg MB MB LCS LCS Limits Units Analysis Surrogate Flag %Rec %Rec Date Flag 4-Bromofluorobenzene 95 95 58-152 % 05/04/12 13:28 05/04/12 13:28 Dibromofluoromethane 104 107 74-126 % 05/04/12 13:28 1,2-Dichloroethane-D4 103 108 80-120 % Toluene-D8 103 103 73-132 % 05/04/12 13:28

Analytical Method:	VOAs by	y SW-846 82	260					Prep Meth	nod: SW5	5030B	
Seq Number:	887436			Matrix: Solid				Date Prep: 05/07/2012			
MB Sample Id:	621569-1	I-BLK		LCS Sa	mple Id	: 621569-1-BKS					
Parameter		MB Result	Spike Amount	LCS Result	LCS % Rec		Limits		Units	Analysis Date	Flag
p-Cymene (p-Isopropyl	toluene)	< 0.000171	0.0500	0.0550	110		75-125		mg/kg	05/07/12 15:46	
Surrogate		MB %Rec	MB Flag	L %	CS Rec	LCS Flag		Limits	Units	Analysis Date	
4-Bromofluorobenzene		110			99			58-152	%	05/07/12 15:46	
Dibromofluoromethane		93			105			74-126	%	05/07/12 15:46	
1,2-Dichloroethane-D4		101			106			80-120	%	05/07/12 15:46	
Toluene-D8		100			102			72 122	0/	05/07/12 15:46	
rolaene bo		109			102			/3-132	70	05/07/12 15.40	

Page 19 of 23





# Southwest Research Institute, San Antonio, TX

17149.26.001

Analytical Method:	VOAs by S	SW-846 8	260						Prep Method: SW5030B					
Seq Number:	887395				Matrix:	Solid			Date Prep: 05/04/2012					
Parent Sample Id:	441276-004	4		MS Sa	mple Id:	441276-00	04 S		MS	D Sampl	e Id: 4412	276-004 SD		
Parameter		Parent Result	Spike Amount	MS Result	MS % Rec	MSD Result	MSD % Rec	Limits	% RP D	RPD Limit	Units	Analysis Date	Flag	
Benzene		<4.50	500	505	101	505	101	66-142	0	25	mg/kg	05/04/12 18:22		
Bromobenzene		<2.59	500	511	102	529	106	75-125	3	25	mg/kg	05/04/12 18:22		
Bromochloromethane		<6.45	500	488	98	483	97	73-125	1	25	mg/kg	05/04/12 18:22		
Bromodichloromethane		<3.64	500	455	91	449	90	75-125	1	25	mg/kg	05/04/12 18:22		
Bromoform		<4.42	500	386	77	368	74	75-125	5	25	mg/kg	05/04/12 18:22	M2	
Methyl bromide		<8.11	500	275	55	260	52	65-135	6	25	mg/kg	05/04/12 18:22	M2	
MTBE		61.1	500	621	112	576	103	65-135	8	25	mg/kg	05/04/12 18:22		
tert-Butylbenzene		<2.23	500	541	108	557	111	75-125	3	25	mg/kg	05/04/12 18:22		
Sec-Butylbenzene		< 0.840	500	534	107	532	106	75-125	0	25	mg/kg	05/04/12 18:22		
n-Butvlbenzene		<2.97	500	507	101	513	103	75-125	1	25	mg/kg	05/04/12 18:22		
Carbon Tetrachloride		<1.61	500	412	82	396	79	62-125	4	25	mg/kg	05/04/12 18:22		
Chlorobenzene		<2.90	500	521	104	519	104	60-133	0	25	mg/kg	05/04/12 18:22		
Chloroethane		<7.57	500	329	66	287	57	65-135	14	25	mg/kg	05/04/12 18:22	M2	
Chloroform		4.80	500	466	92	473	94	74-125	1	25	mg/kg	05/04/12 18:22		
Methyl Chloride		<3.62	500	316	63	308	62	65-135	3	25	mg/kg	05/04/12 18:22	M2	
2-Chlorotoluene		<2.47	500	510	102	518	104	73-125	2	25	mg/kg	05/04/12 18:22		
4-Chlorotoluene		<1.83	500	507	101	518	104	74-125	2	25	mg/kg	05/04/12 18:22		
p-Cymene (p-Isopropylt	oluene)	<1.71	500	555	111	544	109	75-125	2	25	mg/kg	05/04/12 18:22		
1.2-Dibromo-3-Chlorop	ropane	<29.0	500	435	87	385	77	59-125	12	25	mg/kg	05/04/12 18:22		
Dibromochloromethane		< 5.32	500	417	83	421	84	73-125	1	25	mg/kg	05/04/12 18:22		
1.2-Dibromoethane		<4.80	500	529	106	492	98	73-125	7	25	mg/kg	05/04/12 18:22		
Methylene bromide		< 5.53	500	532	106	513	103	69-127	4	25	mg/kg	05/04/12 18:22		
1.2-Dichlorobenzene		<3.29	500	513	103	506	101	75-125	1	25	mg/kg	05/04/12 18:22		
1.3-Dichlorobenzene		<2.70	500	513	103	510	102	75-125	1	25	mg/kg	05/04/12 18:22		
1.4-Dichlorobenzene		<10.0	500	499	100	503	101	75-125	1	25	mg/kg	05/04/12 18:22		
Dichlorodifluoromethan	e	<2.48	500	312	62	294	59	65-135	6	25	mg/kg	05/04/12 18:22	M2	
1.2-Dichloroethane		<5.23	500	467	93	440	88	68-127	6	25	mg/kg	05/04/12 18:22		
1.1-Dichloroethane		<2.81	500	469	94	463	93	72-125	1	25	mg/kg	05/04/12 18:22		
trans-1.2-dichloroethyle	ne	<2.27	500	432	86	428	86	75-125	1	25	mg/kg	05/04/12 18:22		
cis-1.2-Dichloroethylene		<4.13	500	498	100	493	99	75-125	1	25	mg/kg	05/04/12 18:22		
1,1-Dichloroethene		<4.45	500	517	103	500	100	59-172	3	25	mg/kg	05/04/12 18:22		
2,2-Dichloropropane		<3.80	500	448	90	451	90	75-125	1	25	mg/kg	05/04/12 18:22		
1,3-Dichloropropane		<3.04	500	533	107	513	103	75-125	4	25	mg/kg	05/04/12 18:22		
1.2-Dichloropropane		<3.48	500	467	93	463	93	74-125	1	25	mg/kg	05/04/12 18:22		
trans-1,3-dichloroproper	ne	<10.8	500	410	82	414	83	66-125	1	25	mg/kg	05/04/12 18:22		
1.1-Dichloropropene		<3.66	500	498	100	491	98	75-125	1	25	mg/kg	05/04/12 18:22		
cis-1,3-Dichloropropene		<3.15	500	463	93	459	92	74-125	1	25	mg/kg	05/04/12 18:22		
Ethylbenzene		2.20	500	525	105	530	106	75-125	1	25	mg/kg	05/04/12 18:22		
Hexachlorobutadiene		<2.70	500	534	107	529	106	75-125	1	25	mg/kg	05/04/12 18:22		
Isopropylbenzene		7.80	500	531	105	535	105	75-125	1	25	mg/kg	05/04/12 18:22		
Naphthalene		<10.0	500	525	105	485	97	70-130	8	25	mg/kg	05/04/12 18:22		
Methylene Chloride		14500	500	14100	0	13500	0	75-125	4	25	mg/kg	05/04/12 18:22	M3	
n-Propylbenzene		<2.33	500	547	109	544	109	75-125	1	25	mg/kg	05/04/12 18:22		
Styrene		<2.01	500	512	102	495	99	75-125	3	25	mg/kg	05/04/12 18:22		
1,1,1,2-Tetrachloroethan	e	<3.25	500	434	87	430	86	72-125	1	25	mg/kg	05/04/12 18:22		
1,1,2,2-Tetrachloroethan	e	<2.14	500	487	97	458	92	74-125	6	25	mg/kg	05/04/12 18:22		
_,_,_, <b>_</b> . <b>e</b> u uenner 0 <b>e</b> unun			200	.57				=-						

Page 20 of 23





# Southwest Research Institute, San Antonio, TX

17149.26.001

Analytical Method:	VOAs by SW-84	6 8260						1	Prep Meth	od: SW	5030B		
Seq Number:	887395			Matrix:	Solid				Date Pr	rep: 05/0	4/2012		
Parent Sample Id:	441276-004		MS S	ample Id:	441276-0	04 S		MSD Sample Id: 441276-004 SD					
Parameter	Pare Res	nt Spike dt Amount	e MS Result	MS % Rec	MSD Result	MSD % Rec	Limits	% RP D	RPD Limit	Units	Analysis Date	Flag	
Tetrachloroethylene	1	7.9 50	0 543	105	572	111	71-125	5	25	mg/kg	05/04/12 18:22		
Toluene	4	43 50	0 901	92	896	91	59-139	1	25	mg/kg	05/04/12 18:22		
1,2,4-Trichlorobenzene	<3	.48 50	0 521	104	508	102	75-135	3	25	mg/kg	05/04/12 18:22		
1,2,3-Trichlorobenzene	<3	.47 50	0 505	101	485	97	75-137	4	25	mg/kg	05/04/12 18:22		
1,1,2-Trichloroethane	<3	.80 50	0 490	98	458	92	75-127	7	25	mg/kg	05/04/12 18:22		
1,1,1-Trichloroethane	<2	.76 50	0 463	93	464	93	75-125	0	25	mg/kg	05/04/12 18:22		
Trichloroethylene	<4	.40 50	0 501	100	489	98	62-137	2	25	mg/kg	05/04/12 18:22		
Trichlorofluoromethane	<2	.48 50	0 569	114	529	106	67-125	7	25	mg/kg	05/04/12 18:22		
1,2,3-Trichloropropane	<3	.84 50	0 449	90	435	87	75-125	3	25	mg/kg	05/04/12 18:22		
1,2,4-Trimethylbenzene	2	.10 50	0 533	106	534	106	75-125	0	25	mg/kg	05/04/12 18:22		
1,3,5-Trimethylbenzene	<1	.31 50	0 532	106	532	106	70-130	0	25	mg/kg	05/04/12 18:22		
Vinyl Chloride	<5	.00 50	0 396	79	376	75	65-135	5	25	mg/kg	05/04/12 18:22		
o-Xylene	3	.30 50	0 522	104	521	104	75-125	0	25	mg/kg	05/04/12 18:22		
m,p-Xylenes	8	.20 100	0 1030	102	1060	105	75-125	3	25	mg/kg	05/04/12 18:22		
Surrogate			%	MS 6 Rec	MS Flag	MSD % Rec	MSD Flag	1	limits	Units	Analysis Date		
4-Bromofluorobenzene				99		101		5	8-152	%	05/04/12 18:22		
Dibromofluoromethane				100		99		7	4-126	%	05/04/12 18:22		
1,2-Dichloroethane-D4				189	S10	198	S10	8	0-120	%	05/04/12 18:22		
Toluene-D8				101		100		7	3-132	%	05/04/12 18:22		

Page 21 of 23



139 Approved for public release; distribution unlimited.



### **XENCO** Laboratories



### Prelogin/Nonconformance Report- Sample Log-In

Client: Southwest Research Institute	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 04/26/2012 09:30:00 AM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 441475	Temperature Measuring device used : R-66

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	20	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	No	
#4 *Custody Seals intact on shipping container/ cooler?	N/A	
#5 Custody Seals intact on sample bottles/ container?	N/A	
#6 *Custody Seals Signed and dated for Containers/coolers	N/A	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Custody?	Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ received?	Yes	
#11 Chain of Custody agrees with sample label(s)?	Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Custody?	Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	No	
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	N/A	
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	No	
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst: AM

PH Device/Lot#:

Angel Artforethe Angel Morales Checklist completed by:

Date: 04/27/2012

Checklist reviewed by:

Date: 04/27/2012

Page 23 of 23

# Appendix BK EPA Testing Report: CL12-3883



Page 1 of 17

Final 1.001

141 Approved for public release; distribution unlimited.





02-JUL-12

Project Manager: **Scott Hutzler Southwest Research Institute** 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228

Reference: XENCO Report No: 444478 16246.05.001 Project Address:

#### Scott Hutzler :

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 444478. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 444478 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Skip Harden Project Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 17

Final 1.001

142 Approved for public release; distribution unlimited.



### CASE NARRATIVE

Client Name: Southwest Research Institute Project Name: 16246.05.001



Project ID: Work Order Number: 444478 Report Date: 02-JUL-12 Date Received: 06/14/2012

# Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

#### Analytical non nonformances and comments:

Batch: LBA-891280 SVOAs by SW-846 8270C S10: The surrogate was above acceptance criteria due to matrix interference.

Page 3 of 17



### Flagging Criteria



#### Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 3.0 9/20/2007. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- D1 Sample required dilution due to matrix.
- D2 Sample required dilution due to high concentration of target analyte.
- L1 The associated blank spike recovery was above laboratory acceptance limits.
- L2 The associated blank spike recovery was below laboratory acceptance limits.
- M1 Matrix spike recovery was high; the associated blank spike recovery was acceptable.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.
- R5 MS/MSD RPD exceeded the laboratory acceptance limit. Recovery met acceptance criteria.
- S10 Surrogate recovery was above laboratory and method acceptance limits. See case narrative.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Page 4 of 17



Page 5 of 17





### Southwest Research Institute, San Antonio, TX

16246.05.001

Sample Id: CL12-	-3883	Matrix	: Product	Da	ate Received: Jur	eceived: Jun-14-12 10:24					
Lab Sample Id: 444478	8-001	Date Collected	: Jun-13-12 00:00								
Analytical Method:	SVOAs by SW-846 8270C			ł	Prep Method: SW	/3580A					
Tech:	LEB				% Moisture:						
Analyst:	MCH	Dat	e Prep: Jun-26-12	10:24							
Seq Number:	891280										
Parameter	Cas Number	Result	PI	Units	Analysis Date	Flag	Dil				
Acananhthana	82.22.0	<240	240	malka	06/29/12 22:07	DI	5				
Acenaphthylene	208-96-8	<240	240	mg/kg	06/29/12 22:07	DI	5				
Aniline (Phenylamine, Aminobenze	zene) 62-53-3	<240	240	mg/kg	06/29/12 22:07	DI	5				
Anthracene	120-12-7	<240	240	mg/kg	06/29/12 22:07	DI	5				
Benzo(a)anthracene	56-55-3	<240	240	mg/kg	06/29/12 22:07	DI	5				
Benzo(a)pyrene	50-32-8	<240	240	mg/kg	06/29/12 22:07	DI	5				
Benzo(h)fluoranthene	205-99-2	<240	240	mg/kg	06/29/12 22:07	DI	5				
Benzo(a h i)pervlene	191-24-2	<240	240	mg/kg	06/29/12 22:07	DI	5				
Benzo(k)fluoranthene	207-08-9	<240	240	mg/kg	06/29/12 22:07	DI	5				
Benzoia Agid	65 85 0	<1440	1440	mg/kg	06/29/12 22:07	DI	5				
Banzul Butul Phthalata	85.69.7	<240	240	mg/kg	06/29/12 22:07	DI	5				
bis(2 chloroethoxy) methane	111.01.1	<240	240	mg/kg	06/29/12 22:07	DI	5				
bis(2-chloroathyl) ather	111-44-4	<240	240	mg/kg	06/29/12 22:07	DI	5				
bis(2-chloroisopropyl) ether	108-60-1	<240	240	mg/kg	06/29/12 22:07	DI	5				
his(2-ethylheyyl) phthalate	117-81-7	<240	240	mg/kg	06/29/12 22:07	DI	5				
4 Promonhanul phonylathar	101 55 3	<240	240	mg/kg	06/29/12 22:07	DI	5				
Di n butylphthalata	84 74 2	<240	240	mg/kg	06/29/12 22:07	DI	5				
4 chloro 3 methylphenol	59 50 7	<240	240	mg/kg	06/29/12 22:07	DI	5				
4-chlorooniline	106 47 8	<240	240	mg/kg	06/29/12 22:07	DI	5				
2 Chlorononhthalana	01 59 7	<240	240	mg/kg	06/29/12 22:07	DI	5				
2-Chlorophonol	91-36-7	<240	240	mg/kg	06/29/12 22:07	DI	5				
4 Chlorenhand Dhand Ethan	7005 72 2	<240	240	mg/kg	06/29/12 22:07	DI	5				
4-Chlorophenyl Phenyl Ether	218 01 0	<240	240	mg/kg	06/29/12 22:07	DI	5				
Dihang(a h)anthrasana	218-01-9	<240	240	mg/kg	06/29/12 22:07		5				
Dibenz(a,i)anuiracene	122 64 0	<240	240	mg/kg	06/29/12 22:07	DIL2	5				
1.2 Dishlarahangana	152-04-9	<240	240	mg/kg	06/29/12 22:07	DI	5				
1.2 Dichlorobenzene	541 72 1	<240	240	mg/kg	06/29/12 22:07	DI	5				
1.4 Dishlarahanzena	106 46 7	<240	240	mg/kg	06/29/12 22:07	DI	5				
3.3 Dichlorobenzidine	01.04.1	<240	240	mg/kg	06/29/12 22:07	DI	5				
2.4 Dichlorophonol	120, 82, 2	<240	240	mg/kg	06/29/12 22:07	DI	5				
2,4-Dichlorophenor	120-85-2 84 66 2	<240	240	mg/kg	06/29/12 22:07	DI	5				
Diemytphiliaiae	121 11 2	<240	240	mg/kg	06/29/12 22:07	DI	5				
2.4 Dimethylphenol	105.67.9	<240	240	mg/kg	06/29/12 22:07	DI	5				
4.6-dinitro-2-methyl phenol	534-52-1	<240	240	mg/kg	06/29/12 22:07	DI 2	5				
2.4-Dinitronhanol	51-28-5	<240	240	mg/kg	06/29/12 22:07	DIL2	5				
2,4-Dinitrotoluana	121-14-2	<240	240	mg/kg	06/29/12 22:07	DIL2	5				
2,4-Dinitrotoluene	606-20-2	<240	240	mg/kg	06/29/12 22:07	DI	5				
Eluoranthene	206 44 0	~240	240	mg/kg	06/29/12 22:07	DI	5				
Fluorana	<240	240	mg/kg	06/29/12 22:07	DI	5					
Havashlarahanzana	119 74 1	<240	240	mg/kg	06/29/12 22:07	DI	5				
nexaciliorobenzene	110-/4-1	~240	240	mg/kg	00/29/12 22:07	DI	3				

Project: 16246.05.001

Page 6 of 17





### Southwest Research Institute, San Antonio, TX

16246.05.001

Sample Id: CL12-3883	Matrix	: Product		Date Received: Jun-14-12 10:24					
Lab Sample Id: 444478-001		Date Collected	:Jun-13-12	00:00					
Analytical Method: SVOAs	by SW-846 8270C					Pren Method: SW	/3580A		
Tech: LEB	oj o n o lo o <u>2</u> roc					% Moisture:	000011		
Analyst: MCH		Det	Duene lun	26 12 10:24		/ 0 112010141 00			
Analyst: Merr		Date	e Prep: Jun-	-20-12 10:24					
<b>Seq Number:</b> 891280									
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Hexachlorobutadiene	87-68-3	<240	240		mg/kg	06/29/12 22:07	D1	5	
Hexachlorocyclopentadiene	77-47-4	<240	240		mg/kg	06/29/12 22:07	D1L2	5	
Hexachloroethane	67-72-1	<240	240		mg/kg	06/29/12 22:07	D1	5	
Indeno(1,2,3-c,d)Pyrene	193-39-5	<240	240		mg/kg	06/29/12 22:07	D1	5	
Isophorone	78-59-1	<240	240		mg/kg	06/29/12 22:07	D1	5	
2-Methylnaphthalene	91-57-6	349	240		mg/kg	06/29/12 22:07	D2	5	
2-methylphenol	95-48-7	<240	240		mg/kg	06/29/12 22:07	D1	5	
3&4-Methylphenol	15831-10-4	<240	240		mg/kg	06/29/12 22:07	D1	5	
Naphthalene	91-20-3	958	240		mg/kg	06/29/12 22:07	D2	5	
4-Nitroaniline	100-01-6	<240	240		mg/kg	06/29/12 22:07	D1	5	
3-Nitroaniline	99-09-2	<240	240		mg/kg	06/29/12 22:07	D1	5	
2-Nitroaniline	88-74-4	<240	240		mg/kg	06/29/12 22:07	D1	5	
Nitrobenzene	98-95-3	<240	240		mg/kg	06/29/12 22:07	D1	5	
2-Nitrophenol	88-75-5	<240	240		mg/kg	06/29/12 22:07	D1	5	
4-Nitrophenol	100-02-7	<240	240		mg/kg	06/29/12 22:07	D1L2	5	
N-Nitrosodi-n-Propylamine	621-64-7	<240	240		mg/kg	06/29/12 22:07	D1	5	
N-Nitrosodiphenylamine	86-30-6	<240	240		mg/kg	06/29/12 22:07	D1	5	
di-n-Octyl Phthalate	117-84-0	<240	240		mg/kg	06/29/12 22:07	D1	5	
Pentachlorophenol	87-86-5	<240	240		mg/kg	06/29/12 22:07	D1	5	
Phenanthrene	85-01-8	<240	240		mg/kg	06/29/12 22:07	D1	5	
Phenol	108-95-2	<240	240		mg/kg	06/29/12 22:07	D1	5	
Pyrene	129-00-0	<240	240		mg/kg	06/29/12 22:07	D1	5	
Pyridine	110-86-1	<240	240		mg/kg	06/29/12 22:07	D1L1	5	
1,2,4-Trichlorobenzene	120-82-1	<240	240		mg/kg	06/29/12 22:07	D1	5	
2.4.6-Trichlorophenol	88-06-2	<240	240		mg/kg	06/29/12 22:07	D1	5	
2.4.5-Trichlorophenol	95-95-4	<240	240		mg/kg	06/29/12 22:07	D1	5	
Benzene, 1,2-diethyl- (CAS); 1,2-D (TIC) *	TIC	22800			mg/kg	06/29/12 22:07	D2T4	5	
Nonane, 2-methyl-; 2-Methylnonane (TIC) *	TIC	14500			mg/kg	06/29/12 22:07	D2T4	5	
Nonane (CAS); n-Nonane; Shellsol 1 (TIC) *	TIC	13100			mg/kg	06/29/12 22:07	D2T4	5	
Decane; n-Decane; n-C10H22; UN 224 (TIC)	TIC	41500			mg/kg	06/29/12 22:07	D2T4	5	
Benzene, 1-ethyl-2-methyl- (CAS); (TIC) *	TIC	22000			mg/kg	06/29/12 22:07	D2T4	5	
Cyclohexane, 1-methyl-3-propyl-; 1 (TIC) *	TIC	13800			mg/kg	06/29/12 22:07	D2T4	5	
Benzene, 1,2,4-trimethyl- (CAS); 1 (TIC) *	TIC	17600			mg/kg	06/29/12 22:07	D2T4	5	
Nonane, 3-methyl- (TIC) *	TIC	12600			mg/kg	06/29/12 22:07	D2T4	5	
Indane; 1H-Indene, 2,3-dihydro-; I (TIC) *	TIC	22100			mg/kg	06/29/12 22:07	D2T4	5	
Benzene, 1-methyl-2-propyl- (CAS); (TIC) *	TIC	15900			mg/kg	06/29/12 22:07	D2T4	5	
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag		
2-Eluorohinhenvl	112	0/0	30-115		06/29/12 22:07				
2-Fluorophenol	367-12-4	20	0/0	25-121		06/29/12 22:07			
2-1 1001001101	507-12-4	29	/0	23-121		00/27/12 22.07			

Project: 16246.05.001

Page 7 of 17





#### Southwest Research Institute, San Antonio, TX

16246.05.001

Sample Id: CL12- Lab Sample Id: 444478	3883 3-001	Matrix: Date Collected:	Product Jun-13-	12 00:00	Date Received: Jun-14-12 10:24				
Analytical Method:	SVOAs by SW-846 8270C				Prep Method: SW	/3580A			
Tech:	LEB				% Moisture:				
Analyst:	MCH	Date	Prep: J	un-26-12 10:24					
Seq Number:	891280								
Surrogate	Cas Number	% Recovery			Analysis Date	Flag			
Nitrobenzene-d5	4165-60-0	526	%	23-120	06/29/12 22:07	S10			
Phenol-d6	13127-88-3	29	%	24-113	06/29/12 22:07				
Terphenyl-D14	1718-51-0	82	%	18-137	06/29/12 22:07				
2,4,6-Tribromophenol	118-79-6	80	%	19-122	06/29/12 22:07				

Project: 16246.05.001

Page 8 of 17





### Southwest Research Institute, San Antonio, TX

16246.05.001

Sample Id: CL12-3	Matrix	: Product	Da	te Received: Jur	-14-12 1	0:24				
Lab Sample Id: 444478-	001	Date Collected	: Jun-13-12 00:00							
-										
Analytical Method:	VOAs by SW-846 8260			I	Prep Method: SW	/5030B				
Tech:	ROL				% Moisture:					
Analyst:	ROL	Dat	e Prep: Jun-28-12	10:54	54 Basis: Wet Weight					
Seq Number:	891213		•							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil			
Benzene	71-43-2	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
Bromobenzene	108-86-1	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
Bromochloromethane	74-97-5	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
Bromodichloromethane	75-27-4	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
Bromoform	75-25-2	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
Bromomethane	74-83-9	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
MTBE	1634-04-4	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
tert-Butylbenzene	98-06-6	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
Sec-Butylbenzene	135-98-8	243	49.6	mg/kg	06/28/12 20:14	D2	10000			
n-Butylbenzene	104-51-8	652	49.6	mg/kg	06/28/12 20:14	D2	10000			
Carbon Tetrachloride	56-23-5	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
Chlorobenzene	108-90-7	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
Chloroethane	75-00-3	<99.2	99.2	mg/kg	06/28/12 20:14	D1	10000			
Chloroform	67-66-3	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
Chloromethane	74-87-3	<99.2	99.2	mg/kg	06/28/12 20:14	D1	10000			
2-Chlorotoluene	95-49-8	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
4-Chlorotoluene	106-43-4	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
p-Cymene (p-Isopropyltoluene)	99-87-6	376	49.6	mg/kg	06/28/12 20:14	D2	10000			
1,2-Dibromo-3-Chloropropane	96-12-8	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
Dibromochloromethane	124-48-1	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
1,2-Dibromoethane	106-93-4	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
Dibromomethane	74-95-3	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
1.2-Dichlorobenzene	95-50-1	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
1.3-Dichlorobenzene	541-73-1	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
1.4-Dichlorobenzene	106-46-7	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
Dichlorodifluoromethane	75-71-8	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
1.2-Dichloroethane	107-06-2	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
1.1-Dichloroethane	75-34-3	<49.6	49.6	mg/kg	06/28/12 20:14	D1	10000			
trans-1.2-dichloroethene	156-60-5	<49.6	49.6	mg/kg	06/28/12 20:14	DI	10000			
cis-1 2-Dichloroethene	156-59-2	<49.6	49.6	mg/kg	06/28/12 20:14	DI	10000			
1 1-Dichloroethene	75-35-4	<49.6	49.6	mg/kg	06/28/12 20:14	DI	10000			
2 2-Dichloropropane	594-20-7	<49.6	49.6	mg/kg	06/28/12 20:14	DI	10000			
1.3-Dichloropropane	142-28-9	<49.6	49.6	mg/kg	06/28/12 20:14	DI	10000			
1.2-Dichloropropane	78-87-5	<49.6	49.6	mg/kg	06/28/12 20:14	DI	10000			
trans-1 3-dichloropropene	10061-02-6	<40.6	49.6	mg/kg	06/28/12 20:14	DI	10000			
1 1-Dichloropropene	563-58-6	<49.6	49.6	mg/kg	06/28/12 20:14	DI	10000			
ais 1.3 Dichloropropene	10061 01 5	~47.0	49.0	mg/kg	06/28/12 20.14	DI	10000			
Ethylbongono	100 41 4	~47.0 75 F	49.0	mg/kg	06/28/12 20:14	D1	10000			
Havashlarabuts	100-41-4	/3.3	49.0	ing/kg	06/28/12 20:14	D2	10000			
Hexachiorobutadiene	8/-08-3	<49.0	49.0	mg/kg	06/28/12 20:14		10000			
isopropyibenzene	98-82-8	113	49.6	mg/kg	06/28/12 20:14	D2	10000			

Project: 16246.05.001

Page 9 of 17





#### Southwest Research Institute, San Antonio, TX

16246.05.001

Sample Id: CL12- Lab Sample Id: 44447	Matrix Date Collected	: Product : Jun-13-12	2 00:00	Date Received: Jun-14-12 10:24							
Analytical Method:	VOAs by SW-846 8260				J	Prep Method: SW	/5030B				
Tech:	ROL					% Moisture:					
Analyst:	ROL	Date	Pren Im	n-28-12 10:5	4	Basis: We	t Weight				
Sea Number:	891213	Dat	errep. ou	1 20 12 10.5		District in eight					
Seq Pumber.	071210										
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil			
Naphthalene	91-20-3	243	99.2		mg/kg	06/28/12 20:14	D2	10000			
Methylene Chloride	75-09-2	<198	198		mg/kg	06/28/12 20:14	D1	10000			
n-Propylbenzene	103-65-1	764	49.6		mg/kg	06/28/12 20:14	D1	10000			
Styrene	100-42-5	<49.6	49.6		mg/kg	06/28/12 20:14	D1	10000			
1,1,1,2-Tetrachloroethane	630-20-6	<49.6	49.6		mg/kg	06/28/12 20:14	D1	10000			
1,1,2,2-Tetrachloroethane	79-34-5	<49.6	49.6		mg/kg	06/28/12 20:14	D1	10000			
Tetrachloroethylene	127-18-4	<49.6	49.6		mg/kg	06/28/12 20:14	D1	10000			
Toluene	108-88-3	<49.6	49.6		mg/kg	06/28/12 20:14	D1	10000			
1,2,4-Trichlorobenzene	120-82-1	<49.6	49.6		mg/kg	06/28/12 20:14	D1	10000			
1,2,3-Trichlorobenzene	87-61-6	<49.6	49.6		mg/kg	06/28/12 20:14	D1	10000			
1,1,2-Trichloroethane	79-00-5	<49.6	49.6		mg/kg	06/28/12 20:14	D1	10000			
1,1,1-Trichloroethane	71-55-6	<49.6	49.6		mg/kg	06/28/12 20:14	D1	10000			
Trichloroethene	79-01-6	<49.6	49.6		mg/kg	06/28/12 20:14	D1	10000			
Trichlorofluoromethane	75-69-4	<49.6	49.6		mg/kg	06/28/12 20:14	D1	10000			
1,2,3-Trichloropropane	96-18-4	<49.6	49.6		mg/kg	06/28/12 20:14	D1	10000			
1,2,4-Trimethylbenzene	95-63-6	2410	496		mg/kg	06/29/12 17:13	D2	100000			
1,3,5-Trimethylbenzene	108-67-8	511	49.6		mg/kg	06/28/12 20:14	D2	10000			
Vinyl Chloride	75-01-4	<19.8	19.8		mg/kg	06/28/12 20:14	D1	10000			
o-Xylene	95-47-6	255	49.6		mg/kg	06/28/12 20:14	D2	10000			
m,p-Xylenes	179601-23-1	289	99.2		mg/kg	06/28/12 20:14	D2	10000			
Total Xylenes	1330-20-7	544	49.6		mg/kg	06/28/12 20:14	D2	10000			
Napthalene derivated (TIC)	TIC	1110	9.92		mg/kg	06/28/12 20:14	D2T4	10000			
Benzene derivated (TIC)	TIC	864	9.92		mg/kg	06/28/12 20:14	D2T4	10000			
Cyclohexane-propyl (TIC)	TIC	2260	9.92		mg/kg	06/28/12 20:14	D2T4	10000			
Undecane (TIC)	TIC	1850	9.92		mg/kg	06/28/12 20:14	D2T4	10000			
Dodecane (TIC)	TIC	1210	9.92		mg/kg	06/28/12 20:14	D2T4	10000			
Benzene derivated (TIC)	TIC	942	9.92		mg/kg	06/28/12 20:14	D2T4	10000			
Benzene derivated (TIC)	TIC	833	9.92		mg/kg	06/28/12 20:14	D2T4	10000			
Benzene derivated (TIC)	TIC	2280	9.92		mg/kg	06/28/12 20:14	D2T4	10000			
Octane, 2,6-dimethyl (TIC)	TIC	865	9.92		mg/kg	06/28/12 20:14	D2T4	10000			
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag				
4-Bromofluorobenzene	460-00-4	104	%	68-152		06/28/12 20:14					
Dibromofluoromethane	1868-53-7	94	%	53-142		06/28/12 20:14					
1,2-Dichloroethane-D4	17060-07-0	95	%	56-150		06/28/12 20:14					
Toluene-D8	2037-26-5	103	%	70-130		06/28/12 20:14					

Project: 16246.05.001

Page 10 of 17





### Southwest Research Institute, San Antonio, TX

16246.05.001

Analytical Method:	SVOAs by	SW-846	8270C					Р	rep Metho	od: SW3	3580A						
Seq Number:	891280				Matrix:	Oil				Date Pr	ep: 06/2	6/2012					
MB Sample Id:	623705-1-B	BLK		LCS Sa	mple Id:	623705-1-	BKS		LCS	D Sample	ample Id: 623705-1-BSD						
Parameter		MB Result	Spike Amount	LCS Result	LCS % Rec	LCSD Result	LCSD %Rec	Limits	% RP D	RPD Limit	Units	Analysis Date	Flag				
Acenaphthene		<15.0	50.0	46.0	92	44.3	89	41-134	4	25	mg/kg	06/29/12 21:18					
Acenaphthylene		<15.0	50.0	43.5	87	42.4	85	65-135	3	25	mg/kg	06/29/12 21:18					
Aniline (Phenylamine, Ami	nobenzene)	<15.0	50.0	40.2	80	39.6	79	2-145	2	25	mg/kg	06/29/12 21:18					
Anthracene		<15.0	50.0	45.4	91	42.4	85	65-135	7	25	mg/kg	06/29/12 21:18					
Benzo(a)anthracene		<15.0	50.0	46.5	93	45.1	90	44-126	3	25	mg/kg	06/29/12 21:18					
Benzo(a)pyrene		<15.0	50.0	40.7	81	39.0	78	65-135	4	25	mg/kg	06/29/12 21:18					
Benzo(b)fluoranthene		<15.0	50.0	45.0	90	44.3	89	65-135	2	25	mg/kg	06/29/12 21:18					
Benzo(g,h,i)perylene		<15.0	50.0	37.4	75	35.7	71	65-135	5	25	mg/kg	06/29/12 21:18					
Benzo(k)fluoranthene		<15.0	50.0	43.6	87	40.5	81	25-125	7	25	mg/kg	06/29/12 21:18					
Benzoic Acid		<150	150	151	101	156	104	50-125	3	25	mg/kg	06/29/12 21:18					
bis(2-chloroethoxy) met	hane	<15.0	50.0	43.9	88	43.8	88	65-135	0	25	mg/kg	06/29/12 21:18					
bis(2-chloroethyl) ether		<15.0	50.0	43.9	88	45.4	91	65-135	3	25	mg/kg	06/29/12 21:18					
bis(2-chloroisopropyl) e	ether	<15.0	50.0	50.7	101	47.4	95	65-135	7	25	mg/kg	06/29/12 21:18					
bis(2-ethylhexyl) phthal	ate	<15.0	50.0	41.8	84	41.1	82	65-135	2	25	mg/kg	06/29/12 21:18					
4-Bromophenyl-phenyle	ether	<15.0	50.0	41.4	83	40.6	81	65-135	2	25	mg/kg	06/29/12 21:18					
Di-n-butylphthalate		<15.0	50.0	43.2	86	41.2	82	65-135	5	25	mg/kg	06/29/12 21:18					
4-chloro-3-methylpheno	ol	<15.0	50.0	43.5	87	45.2	90	28-134	4	25	mg/kg	06/29/12 21:18					
4-Chloroaniline		<15.0	50.0	40.7	81	42.7	85	4-149	5	25	mg/kg	06/29/12 21:18					
2-Chloronaphthalene		<15.0	50.0	48.4	97	47.4	95	65-135	2	25	mg/kg	06/29/12 21:18					
2-Chlorophenol		<15.0	50.0	44.9	90	43.2	86	25-140	4	25	mg/kg	06/29/12 21:18					
4-Chlorophenyl Phenyl	Ether	<15.0	50.0	44.7	89	42.8	86	65-135	4	25	mg/kg	06/29/12 21:18					
Chrysene		<15.0	50.0	43.9	88	41.5	83	65-135	6	25	mg/kg	06/29/12 21:18					
Dibenz(a,h)anthracene		<15.0	50.0	33.0	66	32.1	64	65-135	3	25	mg/kg	06/29/12 21:18	L2				
Dibenzofuran		<15.0	50.0	45.8	92	44.2	88	65-135	4	25	mg/kg	06/29/12 21:18					
1,2-Dichlorobenzene		<15.0	50.0	47.8	96	46.0	92	65-135	4	25	mg/kg	06/29/12 21:18					
1,3-Dichlorobenzene		<15.0	50.0	46.4	93	45.5	91	65-135	2	25	mg/kg	06/29/12 21:18					
1,4-Dichlorobenzene		<15.0	50.0	48.4	97	46.4	93	36-134	4	25	mg/kg	06/29/12 21:18					
3,3-Dichlorobenzidine		<15.0	50.0	36.6	73	35.6	71	20-140	3	25	mg/kg	06/29/12 21:18					
2,4-Dichlorophenol		<15.0	50.0	44.1	88	41.9	84	65-135	5	25	mg/kg	06/29/12 21:18					
Diethylphthalate		<15.0	50.0	43.6	87	42.6	85	37-125	2	25	mg/kg	06/29/12 21:18					
2,4-Dimethylphenol		<15.0	50.0	47.7	95	42.6	85	65-135	11	25	mg/kg	06/29/12 21:18					
4,6-dinitro-2-methyl pho	enol	<15.0	50.0	<15.0	0	<15.0	0	65-135	NC	25	mg/kg	06/29/12 21:18	L2				
2,4-Dinitrophenol		<15.0	50.0	<15.0	0	<15.0	0	65-135	NC	25	mg/kg	06/29/12 21:18	L2				
2,4-Dinitrotoluene		<15.0	50.0	45.0	90	42.6	85	40-130	5	25	mg/kg	06/29/12 21:18					
2,6-Dinitrotoluene		<15.0	50.0	42.0	84	41.6	83	28-89	1	25	mg/kg	06/29/12 21:18					
Fluoranthene		<15.0	50.0	46.1	92	42.0	84	65-135	9	25	mg/kg	06/29/12 21:18					
Fluorene		<15.0	50.0	43.9	88	42.7	85	65-135	3	25	mg/kg	06/29/12 21:18					
Hexachlorobenzene		<15.0	50.0	42.6	85	41.6	83	65-135	2	25	mg/kg	06/29/12 21:18					
Hexachlorobutadiene		<15.0	50.0	45.2	90	43.8	88	65-135	3	25	mg/kg	06/29/12 21:18					
Hexachlorocyclopentadi	ene	<15.0	50.0	<15.0	0	<15.0	0	65-135	NC	25	mg/kg	06/29/12 21:18	L2				
Hexachloroethane		<15.0	50.0	45.6	91	45.2	90	65-135	1	25	mg/kg	06/29/12 21:18					
Indeno(1,2,3-c,d)Pyrene		<15.0	50.0	40.4	81	38.1	76	65-135	6	25	mg/kg	06/29/12 21:18					
Isophorone		<15.0	50.0	46.3	93	43.9	88	65-135	5	25	mg/kg	06/29/12 21:18					
2-Methylnaphthalene		<15.0	50.0	43.9	88	42.3	85	25-175	4	25	mg/kg	06/29/12 21:18					
2-methylphenol		<15.0	50.0	42.3	85	40.2	80	65-135	5	25	mg/kg	06/29/12 21:18					
3&4-Methylphenol		<15.0	50.0	46.7	93	47.6	95	65-135	2	25	mg/kg	06/29/12 21:18					

Page 11 of 17





### Southwest Research Institute, San Antonio, TX

16246.05.001

Analytical Method:	SVOAs by SW-84	6 8270C						F	Prep Meth	od: SW	3580A	
Seq Number:	891280			Matrix:	Oil				Date Pr	ep: 06/2	6/2012	
MB Sample Id:	623705-1-BLK		LCS Sa	mple Id:	623705-1-	BKS		LCS	SD Sampl	e Id: 623	705-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS % Rec	LCSD Result	LCSD % Rec	Limits	% RP D	RPD Limit	Units	Analysis Date	Flag
Naphthalene	<15.0	50.0	47.6	95	44.8	90	65-135	6	25	mg/kg	06/29/12 21:18	
4-Nitroaniline	<15.0	50.0	44.5	89	40.9	82	65-135	8	25	mg/kg	06/29/12 21:18	
3-Nitroaniline	<15.0	50.0	42.2	84	37.2	74	65-135	13	25	mg/kg	06/29/12 21:18	
2-Nitroaniline	<15.0	50.0	41.5	83	41.4	83	65-135	0	25	mg/kg	06/29/12 21:18	
Nitrobenzene	<15.0	50.0	47.9	96	43.7	87	65-135	9	25	mg/kg	06/29/12 21:18	
2-Nitrophenol	<15.0	50.0	38.0	76	35.4	71	65-135	7	25	mg/kg	06/29/12 21:18	
4-Nitrophenol	<15.0	50.0	<15.0	0	<15.0	0	13-106	NC	25	mg/kg	06/29/12 21:18	L2
N-Nitrosodi-n-Propylan	nine <15.0	50.0	47.4	95	46.4	93	53-130	2	25	mg/kg	06/29/12 21:18	
N-Nitrosodiphenylamin	e <15.0	50.0	45.0	90	42.7	85	65-135	5	25	mg/kg	06/29/12 21:18	
di-n-Octyl Phthalate	<15.0	50.0	39.8	80	39.2	78	65-135	2	25	mg/kg	06/29/12 21:18	
Pentachlorophenol	<15.0	50.0	34.3	69	35.0	70	14-111	2	25	mg/kg	06/29/12 21:18	
Phenanthrene	<15.0	50.0	45.1	90	43.4	87	65-135	4	25	mg/kg	06/29/12 21:18	
Phenol	<15.0	50.0	44.3	89	46.1	92	27-127	4	25	mg/kg	06/29/12 21:18	
Pyrene	<15.0	50.0	44.7	89	42.6	85	41-144	5	25	mg/kg	06/29/12 21:18	
Pyridine	<15.0	50.0	50.1	100	49.5	99	39-98	1	25	mg/kg	06/29/12 21:18	L1
1,2,4-Trichlorobenzene	<15.0	50.0	45.2	90	43.5	87	37-133	4	25	mg/kg	06/29/12 21:18	
2,4,6-Trichlorophenol	<15.0	50.0	41.9	84	38.5	77	65-135	8	25	mg/kg	06/29/12 21:18	
2,4,5-Trichlorophenol	<15.0	50.0	45.2	90	42.4	85	65-135	6	25	mg/kg	06/29/12 21:18	
Surrogate	MB %Re	MB c Flag	L %	CS Rec	LCS Flag	LCSD % Rec	LCSI Flag		limits	Units	Analysis Date	
2-Fluorobiphenyl	103			98		90		3	0-115	%	06/29/12 21:18	
2-Fluorophenol	124	S10	1	07		106		2	5-121	%	06/29/12 21:18	
Nitrobenzene-d5	103		9	99		91		2	3-120	%	06/29/12 21:18	
Phenol-d6	89		1	11		107		2	4-113	%	06/29/12 21:18	
Terphenyl-D14	96		1	88		84		1	8-137	%	06/29/12 21:18	
2,4,6-Tribromophenol	95		1	03		97		1	9-122	%	06/29/12 21:18	

Page 12 of 17





### Southwest Research Institute, San Antonio, TX

16246.05.001

Analytical Method:	VOAs by SW-8	46 8260				Prep Method:	SW	5030B	
Seq Number:	891213			Matrix:	Solid	Date Prep:	06/2	8/2012	
MB Sample Id:	623909-1-BLK		LCS Sa	ample Id:	623909-1-BKS				
Parameter	Res	AB Spike Sult Amount	e LCS Result	LCS % Rec	Limits	U	nits	Analysis Date	Flag
Benzene	< 0.000	450 0.050	0 0.0449	90	66-142	m	g/kg	06/28/12 10:50	
Bromobenzene	< 0.000	0.050	0 0.0580	116	75-125	m	g/kg	06/28/12 10:50	
Bromochloromethane	< 0.000	645 0.050	0 0.0464	93	73-125	m	g/kg	06/28/12 10:50	
Bromodichloromethane	< 0.000	0.050	0 0.0476	95	75-125	m	g/kg	06/28/12 10:50	
Bromoform	< 0.000	0.050	0 0.0501	100	75-125	m	g/kg	06/28/12 10:50	
Bromomethane	< 0.000	811 0.050	0 0.0411	82	65-135	m	g/kg	06/28/12 10:50	
MTBE	< 0.000	0.10	0 0.0862	86	65-135	m	g/kg	06/28/12 10:50	
tert-Butylbenzene	< 0.000	0.050	0 0.0596	119	75-125	m	g/kg	06/28/12 10:50	
Sec-Butylbenzene	< 0.0000	0.050	0 0.0575	115	75-125	m	g/kg	06/28/12 10:50	
n-Butylbenzene	< 0.000	0.050	0 0.0544	109	75-125	m	g/kg	06/28/12 10:50	
Carbon Tetrachloride	< 0.000	0.050	0 0.0454	91	62-125	m	g/kg	06/28/12 10:50	
Chlorobenzene	< 0.000	0.050	0 0.0544	109	60-133	m	g/kg	06/28/12 10:50	
Chloroethane	< 0.000	0.050 0.050	0 0.0518	104	65-135	m	g/kg	06/28/12 10:50	
Chloroform	< 0.000	398 0.050	0.0488	98	74-125	m	g/kg	06/28/12 10:50	
Chloromethane	< 0.000	0.050	0 0.0450	90	65-135	m	g/kg	06/28/12 10:50	
2-Chlorotoluene	< 0.000	0.050	0.0587	117	73-125	m	g/kg	06/28/12 10:50	
4-Chlorotoluene	< 0.000	0.050	0 0.0575	115	74-125	m	g/kg	06/28/12 10:50	
p-Cymene (p-Isopropyl	toluene) <0.000	0.050	0 0.0575	115	75-125	m	g/kg	06/28/12 10:50	
1,2-Dibromo-3-Chlorop	ropane <0.00	0.050	0 0.0507	101	59-125	m	g/kg	06/28/12 10:50	
Dibromochloromethane	< 0.000	0.050 0.050	0 0.0547	109	73-125	m	g/kg	06/28/12 10:50	
1,2-Dibromoethane	< 0.000	480 0.050	0.0554	111	73-125	m	g/kg	06/28/12 10:50	
Dibromomethane	< 0.000	0.050	0 0.0470	94	69-127	m	g/kg	06/28/12 10:50	
1,2-Dichlorobenzene	< 0.000	0.050	0 0.0525	105	75-125	m	g/kg	06/28/12 10:50	
1,3-Dichlorobenzene	< 0.000	0.050	0 0.0553	111	75-125	m	g/kg	06/28/12 10:50	
1,4-Dichlorobenzene	< 0.00	0.050	0 0.0533	107	75-125	m	g/kg	06/28/12 10:50	
Dichlorodifluoromethan	e <0.000	0.050	0 0.0372	74	65-135	m	g/kg	06/28/12 10:50	
1,2-Dichloroethane	< 0.000	523 0.050	0 0.0446	89	68-127	m	g/kg	06/28/12 10:50	
1,1-Dichloroethane	< 0.000	0.050	0 0.0453	91	72-125	m	g/kg	06/28/12 10:50	
trans-1,2-dichloroethene	< 0.000	0.050	0 0.0391	78	75-125	m	g/kg	06/28/12 10:50	
cis-1,2-Dichloroethene	< 0.000	413 0.050	0 0.0481	96	75-125	m	g/kg	06/28/12 10:50	
1,1-Dichloroethene	< 0.000	445 0.050	0 0.0459	92	59-172	m	g/kg	06/28/12 10:50	
2,2-Dichloropropane	< 0.000	380 0.050	0 0.0397	79	75-125	m	g/kg	06/28/12 10:50	
1,3-Dichloropropane	< 0.000	0.050	0 0.0597	119	75-125	m	g/kg	06/28/12 10:50	
1,2-Dichloropropane	< 0.000	0.050	0 0.0485	97	74-125	m	g/kg	06/28/12 10:50	
trans-1,3-dichloroprope	ne <0.00	0.050	0 0.0530	106	66-125	m	g/kg	06/28/12 10:50	
1,1-Dichloropropene	< 0.000	0.050	0 0.0454	91	75-125	m	g/kg	06/28/12 10:50	
cis-1,3-Dichloropropend	< 0.000	0.050	0 0.0566	113	74-125	m	g/kg	06/28/12 10:50	
Ethylbenzene	< 0.000	0.050	0 0.0522	104	75-125	m	g/kg	06/28/12 10:50	
Hexachlorobutadiene	< 0.000	0.050	0 0.0507	101	75-125	m	g/kg	06/28/12 10:50	
Naphthalene	< 0.00	0.050	0 0.0540	108	70-130	m	g/kg	06/28/12 10:50	
isopropylbenzene	< 0.000	0.050	0 0.0558	112	75-125	m	g/kg	06/28/12 10:50	
Methylene Chloride	< 0.000	0.050	0 0.0408	82	75-125	m	g/kg	06/28/12 10:50	
n-Propylbenzene	< 0.000	0.050	0 0.0604	121	75-125	m	g/kg	06/28/12 10:50	
Styrene	< 0.000	0.050	0 0.0523	105	75-125	m	g/kg	06/28/12 10:50	
1,1,1,2-Tetrachloroethar	ne <0.000	0.050	0 0.0481	96	72-125	m	g/kg	06/28/12 10:50	
1,1,2,2-Tetrachloroethar	ne <0.000	0.050	0 0.0603	121	74-125	m	g/kg	06/28/12 10:50	

Page 13 of 17





### Southwest Research Institute, San Antonio, TX

16246.05.001

Analytical Method:	VOAs by SW-846 8	260					Pren Met	hod SW	5030B	
Sea Number:	891213			Matrix.	Solid		Date P	ren: 06/2	8/2012	
MB Sample Id:	623909-1-BLK		LCS Sat	mple Id:	623909-1-BKS		Dure	10p1 00.2		
Parameter	MB Result	Spike Amount	LCS Result	LCS % Rec		Limits		Units	Analysis Date	Flag
Tetrachloroethylene	0.000220	0.0500	0.0562	112		71-125		mg/kg	06/28/12 10:50	
Toluene	< 0.000321	0.0500	0.0484	97		59-139		mg/kg	06/28/12 10:50	
1,2,4-Trichlorobenzene	< 0.000348	0.0500	0.0522	104		75-135		mg/kg	06/28/12 10:50	
1,2,3-Trichlorobenzene	< 0.000347	0.0500	0.0523	105		75-137		mg/kg	06/28/12 10:50	
1,1,2-Trichloroethane	< 0.000380	0.0500	0.0515	103		75-127		mg/kg	06/28/12 10:50	
1,1,1-Trichloroethane	< 0.000276	0.0500	0.0390	78		75-125		mg/kg	06/28/12 10:50	
Trichloroethene	< 0.000440	0.0500	0.0486	97		62-137		mg/kg	06/28/12 10:50	
Trichlorofluoromethane	< 0.000248	0.0500	0.0515	103		67-125		mg/kg	06/28/12 10:50	
1,2,3-Trichloropropane	< 0.000384	0.0500	0.0586	117		75-125		mg/kg	06/28/12 10:50	
1,3,5-Trimethylbenzene	< 0.000131	0.0500	0.0577	115		70-130		mg/kg	06/28/12 10:50	
Vinyl Chloride	< 0.000500	0.0500	0.0525	105		65-135		mg/kg	06/28/12 10:50	
o-Xylene	< 0.000206	0.0500	0.0476	95		75-125		mg/kg	06/28/12 10:50	
m,p-Xylenes	< 0.000321	0.100	0.102	102		75-125		mg/kg	06/28/12 10:50	
Surrogate	MB %Rec	MB Flag	L/ %]	CS Rec	LCS Flag		Limits	Units	Analysis Date	
4-Bromofluorobenzene	103		1	10			68-152	%	06/28/12 10:50	
Dibromofluoromethane	90		5	88			53-142	%	06/28/12 10:50	
1,2-Dichloroethane-D4	93		8	89			56-150	%	06/28/12 10:50	
Toluene-D8	95		9	98			70-130	%	06/28/12 10:50	

Analytical Method:	VOAs by SW-846 8260				Prep Method: SW5030B					
Seq Number:	891270			Matrix:	Solid		Date Pr	ep: 06/2	9/2012	
MB Sample Id:	623949-1-BLK		LCS Sa	mple Id:	623949-1-BKS					
Parameter	MB Result	Spike Amount	LCS Result	LCS % Rec		Limits		Units	Analysis Date	Flag
1,2,4-Trimethylbenzene	< 0.000142	0.0500	0.0563	113		75-125		mg/kg	06/29/12 12:31	
Surrogate	MB %Rec	MB Flag	L %	CS Rec	LCS Flag		Limits	Units	Analysis Date	
4-Bromofluorobenzene	103		1	107			68-152	%	06/29/12 12:31	
Dibromofluoromethane	89			86			53-142	%	06/29/12 12:31	
1,2-Dichloroethane-D4	92			85			56-150	%	06/29/12 12:31	
Toluene-D8	96		1	100			70-130	%	06/29/12 12:31	

Page 14 of 17





# Southwest Research Institute, San Antonio, TX

16246.05.001

Analytical Method:	VOAs by	SW-846 8	Prep Method: SW5030B										
Seq Number:	891213				Matrix: Soil				Date Prep: 06/28/2012				
Parent Sample Id:	444290-0	02		MS Sa	mple Id:	444290-00	02 S		MS	D Sample	e Id: 4442	290-002 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS % Rec	MSD Result	MSD %Rec	Limits	% RP D	RPD Limit	Units	Analysis Date	Flag
Benzene		< 0.000554	0.0616	0.0503	82	0.0506	82	66-142	1	25	mg/kg	06/28/12 13:43	
Bromobenzene		< 0.000319	0.0616	0.0751	122	0.0760	123	75-125	1	25	mg/kg	06/28/12 13:43	
Bromochloromethane		< 0.000794	0.0616	0.0544	88	0.0571	93	73-125	5	25	mg/kg	06/28/12 13:43	
Bromodichloromethane		< 0.000448	0.0616	0.0527	86	0.0539	88	75-125	2	25	mg/kg	06/28/12 13:43	
Bromoform		< 0.000544	0.0616	0.0585	95	0.0615	100	75-125	5	25	mg/kg	06/28/12 13:43	
Bromomethane		< 0.000999	0.0616	0.0496	81	0.0479	78	65-135	3	25	mg/kg	06/28/12 13:43	
MTBE		< 0.000204	0.123	0.108	88	0.116	94	65-135	7	25	mg/kg	06/28/12 13:43	
tert-Butylbenzene		< 0.000275	0.0616	0.0686	111	0.0705	114	75-125	3	25	mg/kg	06/28/12 13:43	
Sec-Butylbenzene		< 0.000103	0.0616	0.0623	101	0.0632	103	75-125	1	25	mg/kg	06/28/12 13:43	
n-Butylbenzene		< 0.000366	0.0616	0.0491	80	0.0507	82	75-125	3	25	mg/kg	06/28/12 13:43	
Carbon Tetrachloride		< 0.000198	0.0616	0.0487	79	0.0488	79	62-125	0	25	mg/kg	06/28/12 13:43	
Chlorobenzene		< 0.000357	0.0616	0.0593	96	0.0591	96	60-133	0	25	mg/kg	06/28/12 13:43	
Chloroethane		< 0.000932	0.0616	0.0610	99	0.0608	99	65-135	0	25	mg/kg	06/28/12 13:43	
Chloroform		< 0.000490	0.0616	0.0542	88	0.0551	89	74-125	2	25	mg/kg	06/28/12 13:43	
Chloromethane		< 0.000446	0.0616	0.0511	83	0.0533	87	65-135	4	25	mg/kg	06/28/12 13:43	
2-Chlorotoluene		< 0.000304	0.0616	0.0724	118	0.0713	116	73-125	2	25	mg/kg	06/28/12 13:43	
4-Chlorotoluene		< 0.000225	0.0616	0.0686	111	0.0678	110	74-125	1	25	mg/kg	06/28/12 13:43	
p-Cymene (p-Isopropylto	oluene)	< 0.000211	0.0616	0.0599	97	0.0608	99	75-125	1	25	mg/kg	06/28/12 13:43	
1,2-Dibromo-3-Chloropr	opane	< 0.00357	0.0616	0.0783	127	0.0892	145	59-125	13	25	mg/kg	06/28/12 13:43	M1
Dibromochloromethane		< 0.000655	0.0616	0.0671	109	0.0683	111	73-125	2	25	mg/kg	06/28/12 13:43	
1,2-Dibromoethane		< 0.000591	0.0616	0.0746	121	0.0770	125	73-125	3	25	mg/kg	06/28/12 13:43	
Dibromomethane		< 0.000681	0.0616	0.0576	94	0.0590	96	69-127	2	25	mg/kg	06/28/12 13:43	
1,2-Dichlorobenzene		< 0.000405	0.0616	0.0547	89	0.0549	89	75-125	0	25	mg/kg	06/28/12 13:43	
1,3-Dichlorobenzene		< 0.000333	0.0616	0.0584	95	0.0586	95	75-125	0	25	mg/kg	06/28/12 13:43	
1,4-Dichlorobenzene		< 0.00123	0.0616	0.0553	90	0.0564	92	75-125	2	25	mg/kg	06/28/12 13:43	
Dichlorodifluoromethane	e	< 0.000305	0.0616	0.0446	72	0.0448	73	65-135	0	25	mg/kg	06/28/12 13:43	
1,2-Dichloroethane		< 0.000644	0.0616	0.0530	86	0.0549	89	68-127	4	25	mg/kg	06/28/12 13:43	
1,1-Dichloroethane		< 0.000346	0.0616	0.0519	84	0.0527	86	72-125	2	25	mg/kg	06/28/12 13:43	
trans-1,2-dichloroethene		< 0.000280	0.0616	0.0442	72	0.0444	72	75-125	0	25	mg/kg	06/28/12 13:43	M2
cis-1,2-Dichloroethene		< 0.000509	0.0616	0.0539	88	0.0545	88	75-125	1	25	mg/kg	06/28/12 13:43	
1,1-Dichloroethene		< 0.000548	0.0616	0.0523	85	0.0516	84	59-172	1	25	mg/kg	06/28/12 13:43	
2,2-Dichloropropane		< 0.000468	0.0616	0.0444	72	0.0445	72	75-125	0	25	mg/kg	06/28/12 13:43	M2
1,3-Dichloropropane		< 0.000374	0.0616	0.0781	127	0.0834	135	75-125	7	25	mg/kg	06/28/12 13:43	M1
1,2-Dichloropropane		< 0.000429	0.0616	0.0564	92	0.0566	92	74-125	0	25	mg/kg	06/28/12 13:43	
trans-1,3-dichloropropen	ne	< 0.00133	0.0616	0.0574	93	0.0595	97	66-125	4	25	mg/kg	06/28/12 13:43	
1,1-Dichloropropene		< 0.000451	0.0616	0.0495	80	0.0499	81	75-125	1	25	mg/kg	06/28/12 13:43	
cis-1,3-Dichloropropene		< 0.000388	0.0616	0.0589	96	0.0617	100	74-125	5	25	mg/kg	06/28/12 13:43	
Ethylbenzene		< 0.000246	0.0616	0.0576	94	0.0557	90	75-125	3	25	mg/kg	06/28/12 13:43	
Hexachlorobutadiene		< 0.000333	0.0616	0.0264	43	0.0311	50	75-125	16	25	mg/kg	06/28/12 13:43	M2
Naphthalene		< 0.00123	0.0616	0.0411	67	0.0442	72	70-130	7	25	mg/kg	06/28/12 13:43	M2
isopropylbenzene		< 0.000281	0.0616	0.0730	119	0.0741	120	75-125	1	25	mg/kg	06/28/12 13:43	
Methylene Chloride		< 0.000648	0.0616	0.0464	75	0.0478	78	75-125	3	25	mg/kg	06/28/12 13:43	
n-Propylbenzene		< 0.000287	0.0616	0.0728	118	0.0729	118	75-125	0	25	mg/kg	06/28/12 13:43	
Styrene		< 0.000248	0.0616	0.0538	87	0.0536	87	75-125	0	25	mg/kg	06/28/12 13:43	
1,1,1,2-Tetrachloroethan	e	< 0.000400	0.0616	0.0543	88	0.0548	89	72-125	1	25	mg/kg	06/28/12 13:43	
1,1,2,2-Tetrachloroethan	e	< 0.000264	0.0616	0.101	164	0.109	177	74-125	8	25	mg/kg	06/28/12 13:43	M1

Page 15 of 17





# Southwest Research Institute, San Antonio, TX

16246.05.001

Analytical Method:	VOAs by SW-846 8	As by SW-846 8260				Prep Method: SW5030B						
Seq Number:	891213			Matrix:	Soil				Date Pr	rep: 06/2	8/2012	
Parent Sample Id:	444290-002		MS Sai	mple Id:	444290-00	02 S		MS	SD Sampl	e Id: 4442	290-002 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS % Rec	MSD Result	MSD %Rec	Limits	% RP D	RPD Limit	Units	Analysis Date	Flag
Tetrachloroethylene	0.000244	0.0616	0.118	191	0.0667	108	71-125	56	25	mg/kg	06/28/12 13:43	M1R5
Toluene	< 0.000395	0.0616	0.0508	82	0.0500	81	59-139	2	25	mg/kg	06/28/12 13:43	
1,2,4-Trichlorobenzene	< 0.000429	0.0616	0.0303	49	0.0324	53	75-135	7	25	mg/kg	06/28/12 13:43	M2
1,2,3-Trichlorobenzene	< 0.000427	0.0616	0.0285	46	0.0296	48	75-137	4	25	mg/kg	06/28/12 13:43	M2
1,1,2-Trichloroethane	< 0.000468	0.0616	0.0604	98	0.0625	101	75-127	3	25	mg/kg	06/28/12 13:43	
1,1,1-Trichloroethane	< 0.000340	0.0616	0.0439	71	0.0440	71	75-125	0	25	mg/kg	06/28/12 13:43	M2
Trichloroethene	< 0.000542	0.0616	0.0576	94	0.0525	85	62-137	9	25	mg/kg	06/28/12 13:43	
Trichlorofluoromethand	< 0.000305	0.0616	0.0597	97	0.0597	97	67-125	0	25	mg/kg	06/28/12 13:43	
1,2,3-Trichloropropane	< 0.000473	0.0616	0.0929	151	0.102	166	75-125	9	25	mg/kg	06/28/12 13:43	M1
1,3,5-Trimethylbenzene	< 0.000161	0.0616	0.0687	112	0.0700	114	70-130	2	25	mg/kg	06/28/12 13:43	
Vinyl Chloride	< 0.000616	0.0616	0.0601	98	0.0612	99	65-135	2	25	mg/kg	06/28/12 13:43	
o-Xylene	< 0.000254	0.0616	0.0518	84	0.0512	83	75-125	1	25	mg/kg	06/28/12 13:43	
m,p-Xylenes	< 0.000395	0.123	0.110	89	0.109	89	75-125	1	25	mg/kg	06/28/12 13:43	
Surrogate			N %]	1S Rec	MS Flag	MSD %Rec	MSE Flag	) L R	imits	Units	Analysis Date	
4-Bromofluorobenzene			1	24		129		6	8-152	%	06/28/12 13:43	
Dibromofluoromethane			9	90		90		5	3-142	%	06/28/12 13:43	
1,2-Dichloroethane-D4			9	95		101		5	6-150	%	06/28/12 13:43	
Toluene-D8			9	96		95		7	0-130	%	06/28/12 13:43	

Analytical Method:	VOAs by SW-846 8260 Prep Method: SW5030B								030B				
Seq Number:	891270				Matrix:	Soil				Date Pr	ep: 06/2	9/2012	
Parent Sample Id:	444290-003			MS Sa	mple Id:	444290-00	03 S		MS	D Sample	e Id: 4442	90-003 SD	
Parameter	Par Re	rent esult	Spike Amount	MS Result	MS % Rec	MSD Result	MSD % Rec	Limits	% RP D	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trimethylbenzene	0.00	0215	0.0540	0.0475	88	0.0473	87	75-125	0	25	mg/kg	06/29/12 16:08	
Surrogate				N %	1S Rec	MS Flag	MSD %Rec	MSD Flag	L	imits	Units	Analysis Date	
4-Bromofluorobenzene				1	39		144		68	3-152	%	06/29/12 16:08	
Dibromofluoromethane					99		93		53	3-142	%	06/29/12 16:08	
1,2-Dichloroethane-D4				1	07		100		50	5-150	%	06/29/12 16:08	
Toluene-D8					92		90		70	)-130	%	06/29/12 16:08	

Page 16 of 17



# **XENCO** Laboratories



### Prelogin/Nonconformance Report- Sample Log-In

Client: Southwest Research Institute	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 06/11/2012 10:24:00 AM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 444478	Temperature Measuring device used :

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		20	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		No	
#4 *Custody Seals intact on shipping cont	ainer/ cooler?	No	
#5 Custody Seals intact on sample bottles	/ container?	No	
#6 *Custody Seals Signed and dated for C	Containers/coolers	No	
#7 *Chain of Custody present?		No	
#8 Sample instructions complete on Chair	n of Custody?	N/A	
#9 Any missing/extra samples?		No	
#10 Chain of Custody signed when relingu	uished/ received?	N/A	
#11 Chain of Custody agrees with sample	label(s)?	N/A	
#12 Container label(s) legible and intact?		Yes	
#13 Sample matrix/ properties agree with	Chain of Custody?	N/A	
#14 Samples in proper container/ bottle?		Yes	
#15 Samples properly preserved?		Yes	
#16 Sample container(s) intact?		Yes	
#17 Sufficient sample amount for indicated	d test(s)?	Yes	
#18 All samples received within hold time?	?	Yes	
#19 Subcontract of sample(s)?		N/A	
#20 VOC samples have zero headspace (	less than 1/4 inch bubble)?	N/A	
#21 <2 for all samples preserved with HN0	03,HCL, H2SO4?	N/A	
#22 >10 for all samples preserved with Na	AsO2+NaOH, ZnAc+NaOH?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst: tt PH Device/Lot#:

Checklist completed by:

Tanyo Tanya Torres

Date: 06/22/2012

Checklist reviewed by:

Date: 06/22/2012

Page 17 of 17

# Appendix BL EPA Testing Report: CL12-4367



Page 1 of 19

Final 1.000

158 Approved for public release; distribution unlimited.



07-NOV-12

Project Manager: **Scott Hutzler Southwest Research Institute** 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228

Reference: XENCO Report No: **451437 SO091904E** Project Address:

#### Scott Hutzler :

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 451437. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 451437 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Skip Harden Project Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 19

### CASE NARRATIVE



Client Name: Southwest Research Institute Project Name: SO091904E

Project ID: CL12-4367 Work Order Number: 451437 *Report Date:* 07-NOV-12 *Date Received:* 10/26/2012

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Page 3 of 19

# Flagging Criteria



#### Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 3.0 9/20/2007. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- D1 Sample required dilution due to matrix.
- D2 Sample required dilution due to high concentration of target analyte.
- L1 The associated blank spike recovery was above laboratory acceptance limits.
- M1 Matrix spike recovery was high; the associated blank spike recovery was acceptable.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.
- S4 Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the sample.
- S8 The analysis of the sample required a dilution such that the surrogate recovery calculation does not provide any useful information. The associated blank spike recovery was acceptable.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Page 4 of 19



### Sample Cross Reference 451437



Southwest Research Institute, San Antonio, TX

SO091904E

Sample Depth

**Sample Id** CL12-4367 
 Matrix
 Date Collected

 L
 10-25-12 00:00

Lab Sample Id 451437-001

Page 5 of 19



### Southwest Research Institute, San Antonio, TX

SO091904E

Sample Id:         CL12-4367           Lab Sample Id:         451437-001		Matrix Date Collected	: Produc : 10.25.1	t 2 00.00	D	ate Received: 10.	26.12 09.	00
Analytical Method: SVOCs by E Tech: LEB	PA 8270C					Prep Method: SW % Moisture:	3550	
Analyst: WEW		Date P	rep:	10.30.12 09.53		Basis: We	t Weight	
Seq Number: 899835								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
1,2,4-Trichlorobenzene	120-82-1	<500	500		mg/kg	10.30.12 18.07	D1	100
1,2-Dichlorobenzene	95-50-1	<500	500		mg/kg	10.30.12 18.07	D1	100
1,3-Dichlorobenzene	541-73-1	<500	500		mg/kg	10.30.12 18.07	D1	100
1,4-Dichlorobenzene	106-46-7	<500	500		mg/kg	10.30.12 18.07	D1	100
2,4,5-Trichlorophenol	95-95-4	<500	500		mg/kg	10.30.12 18.07	D1	100
2,4,6-Trichlorophenol	88-06-2	<500	500		mg/kg	10.30.12 18.07	D1	100
2,4-Dichlorophenol	120-83-2	<500	500		mg/kg	10.30.12 18.07	D1	100
2,4-Dimethylphenol	105-67-9	<500	500		mg/kg	10.30.12 18.07	D1	100
2,4-Dinitrophenol	51-28-5	<1000	1000		mg/kg	10.30.12 18.07	D1	100
2,4-Dinitrotoluene	121-14-2	<500	500		mg/kg	10.30.12 18.07	D1	100
2,6-Dinitrotoluene	606-20-2	<500	500		mg/kg	10.30.12 18.07	D1	100
2-Chloronaphthalene	91-58-7	<500	500		mg/kg	10.30.12 18.07	D1	100
2-Chlorophenol	95-57-8	<500	500		mg/kg	10.30.12 18.07	D1	100
2-Methylnaphthalene	91-57-6	1670	500		mg/kg	10.30.12 18.07	D2	100
2-methylphenol	95-48-7	<500	500		mg/kg	10.30.12 18.07	D1	100
2-Nitroaniline	88-74-4	<1000	1000		mg/kg	10.30.12 18.07	D1	100
2-Nitrophenol	88-75-5	<500	500		mg/kg	10.30.12 18.07	D1	100
3&4-Methylphenol	15831-10-4	<500	500		mg/kg	10.30.12 18.07	D1	100
3,3-Dichlorobenzidine	91-94-1	<1000	1000		mg/kg	10.30.12 18.07	D1	100
3-Nitroaniline	99-09-2	<1000	1000		mg/kg	10.30.12 18.07	D1	100
4,6-dinitro-2-methyl phenol	534-52-1	<1000	1000		mg/kg	10.30.12 18.07	D1	100
4-Bromophenyl-phenylether	101-55-3	<500	500		mg/kg	10.30.12 18.07	D1	100
4-chloro-3-methylphenol	59-50-7	<500	500		mg/kg	10.30.12 18.07	D1	100
4-Chloroaniline	106-47-8	<1000	1000		mg/kg	10.30.12 18.07	D1	100
4-Chlorophenyl-phenyl ether	7005-72-3	<500	500		mg/kg	10.30.12 18.07	D1	100
4-Nitroaniline	100-01-6	<1000	1000		mg/kg	10.30.12 18.07	D1	100
4-Nitrophenol	100-02-7	<1000	1000		mg/kg	10.30.12 18.07	D1	100
Acenaphthene	83-32-9	<500	500		mg/kg	10.30.12 18.07	D1	100
Acenaphthylene	208-96-8	<500	500		mg/kg	10.30.12 18.07	D1	100
Aniline (Phenylamine, Aminobenzene)	62-53-3	<1000	1000		mg/kg	10.30.12 18.07	D1	100
Anthracene	120-12-7	<500	500		mg/kg	10.30.12 18.07	D1	100
Benzo(a)anthracene	56-55-3	<500	500		mg/kg	10.30.12 18.07	D1	100
Benzo(a)pyrene	50-32-8	<500	500		mg/kg	10.30.12 18.07	D1	100
Benzo(b)fluoranthene	205-99-2	<500	500		mg/kg	10.30.12 18.07	D1	100
Benzo(g,h,i)pervlene	191-24-2	<500	500		mg/kg	10.30.12 18.07	D1	100
Benzo(k)fluoranthene	207-08-9	<500	500		mg/kg	10.30.12 18.07	D1	100
Benzoic Acid	65-85-0	<3000	3000		mg/kg	10.30.12 18.07	D1	100
Benzyl Butyl Phthalate	85-68-7	<500	500		mg/kg	10.30.12.18.07	DI	100
his(2-chloroethoxy) methane	111-91-1	<500	500		mø/ko	10.30.12 18.07	DI	100
his(2-chloroethyl) ether	111-44-4	<500	500		mo/ko	10 30 12 18 07	DI	100
his(2-chloroisopropyl) ether	108-60-1	<500	500		mø/kø	10 30 12 18 07	DI	100
and a moroisopropyi) their	100-00-1	~500	500		m ₆ /kg	10.00.12 10.07	DI	100

Page 6 of 19



#### Southwest Research Institute, San Antonio, TX SO091904E

Matrix: Product CL12-4367 Date Received: 10.26.12 09.00 Sample Id: Lab Sample Id: 451437-001 Date Collected: 10.25.12 00.00 Analytical Method: SVOCs by EPA 8270C Prep Method: SW3550 LEB % Moisture: Tech: Analyst: WEW Basis: Wet Weight Date Prep: 10.30.12 09.53 899835 Seq Number: Parameter Analysis Date Flag Units Dil Cas Number Result RL bis(2-ethylhexyl) phthalate 117-81-7 <500 500 mg/kg 10.30.12 18.07 D1 100 Chrysene 218-01-9 <500 500 10.30.12 18.07 D1 100 mg/kg Dibenz(a,h)Anthracene 53-70-3 <500 500 mg/kg 10.30.12 18.07 D1 100 Dibenzofuran 132-64-9 <500 500 mg/kg 10.30.12 18.07 D1 100 Diethyl Phthalate 84-66-2 <500 500 mg/kg 10.30.12 18.07 D1 100 <500 10.30.12 18.07 Dimethyl Phthalate 131-11-3 500 mg/kg D1 100 <500 di-n-Butvl Phthalate 84-74-2 500 10.30.12 18.07 100 mg/kg D1 di-n-Octyl Phthalate 117-84-0 <500 500 10.30.12 18.07 100 mg/kg D1 Fluoranthene 206-44-0 <500 500 10.30.12 18.07 D1 100 mg/kg Fluorene 86-73-7 <500 500 10.30.12 18.07 D1 100 mg/kg Hexachlorobenzene 118-74-1 <500 500 10.30.12 18.07 100 mg/kg D1 Hexachlorobutadiene 87-68-3 <500 500 mg/kg 10.30.12 18.07 D1 100 Hexachlorocyclopentadiene 77-47-4 <500 500 10.30.12 18.07 D1 100 mg/kg Hexachloroethane 67-72-1 <500 500 mg/kg 10.30.12 18.07 D1 100 Indeno(1,2,3-c,d)Pyrene 193-39-5 <500 500 mg/kg 10.30.12 18.07 D1 100 78-59-1 <500 10.30.12 18.07 Isophorone 500 mg/kg D1 100 Naphthalene 91-20-3 1210 500 10.30.12 18.07 D2 100 mg/kg Nitrobenzene 98-95-3 <500 500 mg/kg 10.30.12 18.07 D1 100 N-Nitrosodi-n-Propylamine 621-64-7 <500 500 mg/kg 10.30.12 18.07 D1 100 <500 500 10.30.12 18.07 100 N-Nitrosodiphenvlamine 86-30-6 D1 mg/kg Pentachlorophenol 87-86-5 <1000 1000 mg/kg 10.30.12 18.07 D1 100 Phenanthrene 85-01-8 < 500 500 10.30.12 18.07 100 mg/kg D1 Phenol 108-95-2 <1000 1000 mg/kg 10.30.12 18.07 D1 100 129-00-0 <500 Pvrene 500 mg/kg 10.30.12 18.07 D1 100 Pyridine 110-86-1 <1000 1000 mg/kg 10.30.12 18.07 D1 100 Decane, 4-methyl- (CAS); 4-Methyldecane (TIC) TIC 6990 10.30.12 18.07 D2T4 100 mg/kg Cyclohexane, propyl- (TIC) TIC 11600 mg/kg 10.30.12 18.07 D2T4 100 Undecane (CAS); n-Undecane; Hendecane; n-C11 TIC 10600 10.30.12 18.07 D2T4 100 mg/kg 1-Pentene, 2,3-dimethyl- (TIC) 10.30.12 18.07 7630 D2T4 100 TIC mg/kg Pentadecane (CAS); n-Pentadecane; CH3(CH2)1: TIC 6630 mg/kg 10.30.12 18.07 D2T4 100 Decane (TIC) TIC 21000 10.30.12 18.07 D2T4 100 mg/kg Cyclopentane, 1-ethyl-3-methyl-; 1-Methyl-3- (TI-TIC 8630 mg/kg 10.30.12 18.07 D2T4 100 Nonane (CAS); n-Nonane; Shellsol 140; n-C9H2 ( TIC 14200 mg/kg 10.30.12 18.07 D2T4 100 Tetradecane (CAS); n-Tetradecane; Isotetrade (T TIC 10000 mg/kg 10.30.12 18.07 D2T4 100 Surrogate Cas Number Analysis Date Flag % Recovery Limits Units 2-Fluorophenol 367-12-4 25-121 10.30.12 18.07 % **S8** 0 Phenol-d6 13127-88-3 0 % 24-113 10.30.12 18.07 **S8** Nitrobenzene-d5 4165-60-0 0 % 23-120 10.30.12 18.07 **S**8 2-Fluorobiphenyl 321-60-8 % 30-115 10.30.12 18.07 0 **S**8 2.4.6-Tribromophenol 118-79-6 0 % 19-122 10.30.12 18.07 **S**8

Page 7 of 19



#### Southwest Research Institute, San Antonio, TX SO091904E

Sample Id: Lab Sample Id:	CL12-4367 451437-001		Matrix: P Date Collected: 1	roduc 0.25.1	t .2 00.00	Date Received: 10	.26.12 09.00
Analytical Method Tech: Analyst: Seq Number:	E SVOCs by EPA LEB WEW 899835	8270C	Date Prep	):	10.30.12 09.53	Prep Method: SV % Moisture: Basis: W	W3550 et Weight
Surrogate Terphenyl-D14		<b>Cas Number</b> 1718-51-0	% Recovery 0	%	18-137	<b>Analysis Date</b> 10.30.12 18.07	Flag S8

Analytical Method: Tech: Analyst: Seq Number:	rtical Method: TPH DRO by SW846-8015 PJB rst: VIC lumber: 899987			ep:	10.31.12 17.09		Prep Method: SW3550 % Moisture: Basis: Wet Weight			
Parameter TPH-DRO		Cas Number 68334-30-5	Result 769000	<b>RL</b> 10000		Units mg/kg	Analysis Date 11.01.12 13.34	Flag D2	<b>Dil</b> 200	
Surrogate Pentacosane		<b>Cas Number</b> 629-99-2	% Recovery 111	Units %	5 <b>Limits</b> 40-130		Analysis Date 11.01.12 13.58	Flag		

Page 8 of 19



#### Southwest Research Institute, San Antonio, TX SO091904E

CL12-4367 Matrix: Product Date Received: 10.26.12 09.00 Sample Id: Lab Sample Id: 451437-001 Date Collected: 10.25.12 00.00 Analytical Method: VOAs by SW-846 8260 Prep Method: SW5030B MCH % Moisture: Tech: Analyst: MCH Basis: Wet Weight 10.31.12 14.22 Date Prep: Seq Number: 899983 Parameter Analysis Date Flag Units Dil Cas Number Result RL 1,1,1,2-Tetrachloroethane 630-20-6 <125 125 mg/kg 10.31.12 16.12 D1 25000 1,1,1-Trichloroethane 71-55-6 <125 125 10.31.12 16.12 D1 25000 mg/kg 1,1,2,2-Tetrachloroethane 79-34-5 <125 125 mg/kg 10.31.12 16.12 D1 25000 1,1,2-Trichloroethane 79-00-5 <125 125 mg/kg 10.31.12 16.12 D1 25000 1 1-Dichloroethane 75-34-3 <125 125 mg/kg 10.31.12 16.12 D1 25000 <125 10.31.12 16.12 25000 1,1-Dichloroethene 75-35-4 125 D1 mg/kg 1.1-Dichloropropene 563-58-6 <125 125 10.31.12 16.12 25000 mg/kg D1 1,2,3-Trichlorobenzene 87-61-6 <125 125 10.31.12 16.12 25000 mg/kg D1 1.2.3-Trichloropropane 96-18-4 <125 125 10.31.12 16.12 D1 25000 mg/kg 1,2,4-Trichlorobenzene 120-82-1 <125 125 10.31.12 16.12 D1 25000 mg/kg 95-63-6 1960 125 10.31.12 16.12 25000 1.2.4-Trimethylbenzene mg/kg D2 1,2-Dibromo-3-Chloropropane 96-12-8 <125 125 mg/kg 10.31.12 16.12 D1 25000 1,2-Dibromoethane 106-93-4 <125 125 10.31.12 16.12 D1 25000 mg/kg 1 2-Dichlorobenzene 95-50-1 <125 125 mg/kg 10.31.12 16.12 D1 25000 1,2-Dichloroethane 107-06-2 <125 125 mg/kg 10.31.12 16.12 D1 25000 <125 25000 1,2-Dichloropropane 78-87-5 125 mg/kg 10.31.12 16.12 D1 108-67-8 772 125 10.31.12 16.12 25000 1,3,5-Trimethylbenzene mg/kg D2 541-73-1 1.3-Dichlorobenzene <125 125 mg/kg 10.31.12 16.12 D1 25000 1,3-Dichloropropane 142-28-9 <125 125 mg/kg 10.31.12 16.12 D1 25000 <125 125 10.31.12 16.12 25000 1.4-Dichlorobenzene 106-46-7 D1 mg/kg 2,2-Dichloropropane 594-20-7 <125 125 mg/kg 10.31.12 16.12 D1 25000 2-Butanone 78-93-3 <1250 1250 10.31.12 16.12 25000 mg/kg D1 2-Chlorotoluene 95-49-8 <125 125 mg/kg 10.31.12 16.12 D1 25000 <1250 1250 25000 2-Hexanone 591-78-6 mg/kg 10.31.12 16.12 D1 4-Chlorotoluene 106-43-4 <125 125 mg/kg 10.31.12 16.12 D1 25000 67-64-1 <2500 2500 10.31.12 16.12 25000 Acetone mg/kg D1 <125 Benzene 71-43-2 125 mg/kg 10.31.12 16.12 D1 25000 Bromobenzene 108-86-1 <125 125 10.31.12 16.12 D1 25000 mg/kg 74-97-5 <125 10.31.12 16.12 25000 Bromochloromethane 125 D1 mg/kg Bromodichloromethane 75-27-4 <125 125 mg/kg 10.31.12 16.12 D1 25000 Bromoform 75-25-2 <125 125 10.31.12 16.12 D1 25000 mg/kg Bromomethane 74-83-9 <125 125 mg/kg 10.31.12 16.12 D1 25000 Carbon Disulfide 75-15-0 <1250 1250 10.31.12 16.12 D1 25000 mg/kg Carbon Tetrachloride 56-23-5 <125 125 mg/kg 10.31.12 16.12 D1 25000 Chlorobenzene 108-90-7 <125 125 mg/kg 10.31.12 16.12 D1 25000 <250 Chloroethane 75-00-3 250 10.31.12 16.12 25000 mg/kg D1 Chloroform 67-66-3 <125 125 mg/kg 10.31.12 16.12 D1 25000 Chloromethane 74-87-3 <250 250 10.31.12 16.12 25000 D1 mg/kg cis-1,2-Dichloroethene 156-59-2 <125 125 mg/kg 10.31.12 16.12 D1 25000 10061-01-5 <125 125 10.31.12 16.12 25000 cis-1,3-Dichloropropene D1 mg/kg Dibromochloromethane 124-48-1 <125 125 mg/kg 10.31.12 16.12 D1 25000

Page 9 of 19



#### Southwest Research Institute, San Antonio, TX SO091904E

Matrix: Product CL12-4367 Date Received: 10.26.12 09.00 Sample Id: Lab Sample Id: 451437-001 Date Collected: 10.25.12 00.00 Analytical Method: VOAs by SW-846 8260 Prep Method: SW5030B MCH % Moisture: Tech: Analyst: MCH Basis: Wet Weight Date Prep: 10.31.12 14.22 899983 Seq Number: Parameter Analysis Date Flag Units Dil Cas Number Result RL Dibromomethane 74-95-3 <125 125 mg/kg 10.31.12 16.12 D1 25000 Dichlorodifluoromethane 75-71-8 <125 125 10.31.12 16.12 D1 25000 mg/kg Ethylbenzene 100-41-4 294 125 mg/kg 10.31.12 16.12 D2 25000 Hexachlorobutadiene 87-68-3 <125 125 mg/kg 10.31.12 16.12 D1 25000 Iodomethane (Methyl Iodide) 74-88-4 <499 499 mg/kg 10.31.12 16.12 D1 25000 <125 125 10.31.12 16.12 25000 isopropylbenzene 98-82-8 mg/kg D1 179601-23-1 250 10.31.12 16.12 25000 m,p-Xylenes 1610 mg/kg D2 Methylene Chloride 75-09-2 <499 499 10.31.12 16.12 25000 mg/kg D1 MTBE 1634-04-4 <125 125 10.31.12 16.12 D1 25000 mg/kg Naphthalene 91-20-3 575 250 10.31.12 16.12 D1 25000 mg/kg 104-51-8 125 10.31.12 16.12 25000 n-Butvlbenzene 290 mg/kg D2 n-Propylbenzene 103-65-1 219 125 mg/kg 10.31.12 16.12 D2 25000 10.31.12 16.12 95-47-6 560 125 D2 25000 o-Xylene mg/kg p-Cymene (p-Isopropyltoluene) 99-87-6 165 125 mg/kg 10.31.12 16.12 D225000 Sec-Butylbenzene 135-98-8 138 125 mg/kg 10.31.12 16.12 D2 25000 100-42-5 <125 10.31.12 16.12 25000 Styrene 125 mg/kg D1 tert-Butylbenzene 98-06-6 <125 125 10.31.12 16.12 D1 25000 mg/kg Tetrachloroethylene 127-18-4 <125 125 mg/kg 10.31.12 16.12 D1 25000 Toluene 108-88-3 551 125 mg/kg 10.31.12 16.12 D2 25000 1330-20-7 2170 125 10.31.12 16.12 25000 D2 **Total Xylenes** mg/kg trans-1,2-dichloroethene 156-60-5 <125 125 mg/kg 10.31.12 16.12 D1 25000 trans-1,3-dichloropropene 10061-02-6 <125 125 10.31.12 16.12 D1 25000 mg/kg Trichloroethene 79-01-6 <125 125 mg/kg 10.31.12 16.12 D1 25000 75-69-4 <125 10.31.12 16.12 25000 Trichlorofluoromethane 125 mg/kg D1 Vinvl Acetate 108-05-4 <1250 1250 mg/kg 10.31.12 16.12 D1 25000 Vinyl Chloride 75-01-4 <49.9 10.31.12 16.12 25000 49.9 mg/kg D1 Benzene, 1-ethyl-3-methyl- (TIC) TIC D2T4 25000 1510 mg/kg 10.31.12 16.12 Cyclohexane, propyl- (TIC) TIC 4460 10.31.12 16.12 D2T4 25000 mg/kg TIC 10.31.12 16.12 D2T4 25000 Octane (TIC) 2640 mg/kg Octane, 3-methyl- (TIC) TIC 1080 mg/kg 10.31.12 16.12 D2T4 25000 TIC 1150 10.31.12 16.12 D2T4 25000 Cyclohexane, butyl- (TIC) mg/kg Octane, 4-methyl- (TIC) TIC 2160 mg/kg 10.31.12 16.12 D2T4 25000 Benzene, 1,2,3-trimethyl- (TIC) TIC 893 mg/kg 10.31.12 16.12 D2T4 25000 Benzene, 1-methyl-3-(1-methylethyl)- (TIC) TIC 993 mg/kg 10.31.12 16.12 D2T4 25000 Undecane (TIC) TIC 983 mg/kg 10.31.12 16.12 D2T4 25000 Cyclohexane, ethyl- (TIC) TIC 1580 10.31.12 16.12 D2T4 25000 mg/kg Surrogate Analysis Date Cas Number % Recovery Units Limits Flag Dibromofluoromethane 1868-53-7 92 % 53-142 10.31.12 16.12 1.2-Dichloroethane-D4 17060-07-0 95 % 56-150 10.31.12 16.12 Toluene-D8 2037-26-5 103 % 70-130 10.31.12 16.12

Page 10 of 19



#### Southwest Research Institute, San Antonio, TX SO091904E

Sample Id:CLab Sample Id:4	CL12-4367 451437-001		Matrix: Pro Date Collected: 10.2	duct 25.12 00.	Date Received: 10.26.12 09.00			
Analytical Method: Tech: Analyst: Seq Number:	<b>VOAs by SW-8</b> MCH MCH 899983	46 8260	Date Prep:	10.31	.12 14.22	Prep Method: % Moisture: Basis:	SW5030B Wet Weight	
Surrogate 4-Bromofluorobenzen	9	<b>Cas Number</b> 460-00-4	% Recovery 97	%	68-152	Analysis Da	te Flag 2	

Page 11 of 19



# Southwest Research Institute, San Antonio, TX

SO091904	ŧΕ
----------	----

Analytical Method: S	VOCs by EPA 82	70C						Pr	ep Method	: SW	73550	
Seq Number: 8	99835			Matrix:	Solid				Date Prep	: 10/	30/2012	
MB Sample Id: 6	29237-1-BLK		LCS Sar	nple Id:	629237-1-	BKS		LCSI	O Sample I	d: 629	9237-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trichlorobenzene	< 0.0303	1.66	1.64	99	1.60	96	55-106	2	30	mg/kg	10/30/12 12:14	
1,2-Dichlorobenzene	< 0.0360	1.66	1.41	85	1.39	84	54-104	1	30	mg/kg	10/30/12 12:14	
1,3-Dichlorobenzene	< 0.0304	1.66	1.37	83	1.36	82	53-105	1	30	mg/kg	10/30/12 12:14	
1,4-Dichlorobenzene	< 0.0327	1.66	1.36	82	1.34	81	52-104	1	30	mg/kg	10/30/12 12:14	
2,4,5-Trichlorophenol	< 0.0389	1.66	1.75	105	1.68	101	53-128	4	30	mg/kg	10/30/12 12:14	
2,4,6-Trichlorophenol	< 0.0267	1.66	1.72	104	1.69	102	58-119	2	30	mg/kg	10/30/12 12:14	
2,4-Dichlorophenol	< 0.0313	1.66	1.75	105	1.70	102	58-113	3	30	mg/kg	10/30/12 12:14	
2,4-Dimethylphenol	< 0.0781	1.66	1.79	108	1.75	105	56-112	2	30	mg/kg	10/30/12 12:14	
2,4-Dinitrophenol	< 0.0688	1.66	1.77	107	1.63	98	38-136	8	40	mg/kg	10/30/12 12:14	
2,4-Dinitrotoluene	< 0.0317	1.66	1.81	109	1.69	102	59-115	7	30	mg/kg	10/30/12 12:14	
2,6-Dinitrotoluene	< 0.0318	1.66	1.73	104	1.65	99	58-114	5	30	mg/kg	10/30/12 12:14	
2-Chloronaphthalene	< 0.0263	1.66	1.72	104	1.65	99	40-132	4	30	mg/kg	10/30/12 12:14	
2-Chlorophenol	< 0.0322	1.66	1.44	87	1.39	84	53-109	4	30	mg/kg	10/30/12 12:14	
2-Methylnaphthalene	< 0.0340	1.66	1.75	105	1.72	104	53-108	2	30	mg/kg	10/30/12 12:14	
2-methylphenol	< 0.0431	1.66	1.50	90	1.46	88	48-118	3	30	mg/kg	10/30/12 12:14	
2-Nitroaniline	< 0.0292	1.66	1.87	113	1.77	107	54-116	5	40	mg/kg	10/30/12 12:14	
2-Nitrophenol	< 0.0227	1.66	1.69	102	1.69	102	54-113	0	30	mg/kg	10/30/12 12:14	
3&4-Methylphenol	< 0.0755	1.66	1.54	93	1.49	90	53-115	3	30	mg/kg	10/30/12 12:14	
3.3-Dichlorobenzidine	< 0.0455	1.66	1.78	107	1.65	99	55-129	8	40	mg/kg	10/30/12 12:14	
3-Nitroaniline	< 0.0345	1.66	1.85	111	1.73	104	57-119	7	40	mg/kg	10/30/12 12:14	
4.6-dinitro-2-methyl pheno	< 0.0270	1.66	1.77	107	1.71	103	56-117	3	40	mg/kg	10/30/12 12:14	
4-Bromophenvl-phenvlethe	er <0.0338	1.66	1.76	106	1.72	104	57-118	2	30	mg/kg	10/30/12 12:14	
4-chloro-3-methylphenol	< 0.0349	1.66	1.91	115	1.84	111	55-114	4	30	mg/kg	10/30/12 12:14	L1
4-Chloroaniline	< 0.0665	1.66	1.77	107	1.72	104	54-112	3	40	mg/kg	10/30/12 12:14	
4-Chlorophenyl-phenyl eth	er <0.0334	1.66	1.64	99	1.57	95	57-111	4	30	mg/kg	10/30/12 12:14	
4-Nitroaniline	< 0.0299	1.66	1.86	112	1.72	104	56-121	8	40	mg/kg	10/30/12 12:14	
4-Nitrophenol	< 0.0310	1.66	2.23	134	2.00	120	42-134	11	40	mg/kg	10/30/12 12:14	
Acenaphthene	< 0.0356	1.66	1.70	102	1.64	99	54-112	4	30	mg/kg	10/30/12 12:14	
Acenaphthylene	< 0.0336	1.66	1.73	104	1.67	101	54-113	4	30	mg/kg	10/30/12 12:14	
Aniline (Phenylamine, Aminob	enzene) <0.111	1.66	1.50	90	1.45	87	50-112	3	40	mg/kg	10/30/12 12:14	
Anthracene	< 0.0256	1.66	1.93	116	1.84	111	57-118	5	30	mg/kg	10/30/12 12:14	
Benzo(a)anthracene	< 0.0279	1.66	1.77	107	1.66	100	58-119	6	30	mg/kg	10/30/12 12:14	
Benzo(a)pyrene	< 0.0290	1.66	2.06	124	1.68	101	58-127	20	30	mg/kg	10/30/12 12:14	
Benzo(b)fluoranthene	< 0.0269	1.66	1.82	110	1.60	96	50-122	13	30	mg/kg	10/30/12 12:14	
Benzo(g,h,i)pervlene	< 0.0292	1.66	1.94	117	1.62	98	57-125	18	30	mg/kg	10/30/12 12:14	
Benzo(k)fluoranthene	< 0.0388	1.66	2.04	123	1.65	99	59-126	21	30	mg/kg	10/30/12 12:14	
Benzoic Acid	< 0.0481	4.98	4.58	92	5.26	105	31-133	14	50	mg/kg	10/30/12 12:14	
Benzyl Butyl Phthalate	<0.0258	1.66	1.82	110	1.75	105	55-129	4	30	mg/kg	10/30/12 12:14	
bis(2-chloroethoxy) methar	ne <0.0371	1.66	1.80	108	1.77	107	49-112	2	30	mg/kg	10/30/12 12:14	
bis(2-chloroethvl) ether	< 0.0356	1.66	1.50	90	1.48	89	50-108	1	30	mg/kg	10/30/12 12:14	
bis(2-chloroisopropyl) ethe	r <0.0333	1.66	1.52	92	1.48	89	45-111	3	30	mg/kg	10/30/12 12:14	
bis(2-ethylhexvl) phthalate	< 0.0265	1.66	1.82	110	1.74	105	54-134	4	30	mg/kg	10/30/12 12:14	
Chrysene	< 0.0301	1.66	1.82	110	1.69	102	58-120	7	30	mg/kg	10/30/12 12:14	
Dibenz(a,h)Anthracene	< 0.0349	1.66	1.84	111	1.60	96	60-121	14	30	mg/kg	10/30/12 12:14	
Dibenzofuran	< 0.0327	1.66	1.70	102	1.62	98	56-110	5	30	mg/kg	10/30/12 12:14	
Diethyl Phthalate	< 0.0344	1.66	1.75	105	1.65	99	58-113	6	30	mg/kg	10/30/12 12:14	
Dimethyl Phthalate	< 0.0342	1.66	1.70	102	1.61	97	58-112	5	30	mg/kg	10/30/12 12:14	
di-n-Butyl Phthalate	< 0.0286	1.66	1.98	119	1.87	113	58-126	6	30	mg/kg	10/30/12 12:14	
di-n-Octyl Phthalate	< 0.0315	1.66	1.92	116	1.69	102	54-130	13	30	mg/kg	10/30/12 12:14	

Page 12 of 19


# Southwest Research Institute, San Antonio, TX

SO091904E

Analytical Method:	SVOCs by EPA 82	70C						Pr	ep Metho	od: SW:	3550	
Seq Number:	899835		1	Matrix:	Solid				Date Pre	ep: 10/3	0/2012	
MB Sample Id:	629237-1-BLK		LCS San	nple Id:	629237-1	-BKS		LCSI	O Sample	Id: 6292	237-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Fluoranthene	< 0.0314	1.66	2.03	122	1.86	112	59-119	9	30	mg/kg	10/30/12 12:14	L1
Fluorene	< 0.0355	1.66	1.73	104	1.65	99	56-112	5	30	mg/kg	10/30/12 12:14	
Hexachlorobenzene	< 0.0291	1.66	1.80	108	1.71	103	58-119	5	30	mg/kg	10/30/12 12:14	
Hexachlorobutadiene	< 0.0312	1.66	1.57	95	1.56	94	55-105	1	30	mg/kg	10/30/12 12:14	
Hexachlorocyclopentadi	ene <0.0146	1.66	1.17	70	1.16	70	18-119	1	30	mg/kg	10/30/12 12:14	
Hexachloroethane	< 0.0372	1.66	1.38	83	1.38	83	54-105	0	30	mg/kg	10/30/12 12:14	
Indeno(1,2,3-c,d)Pyrene	< 0.0308	1.66	1.96	118	1.61	97	59-118	20	30	mg/kg	10/30/12 12:14	
Isophorone	< 0.0297	1.66	1.79	108	1.74	105	46-116	3	30	mg/kg	10/30/12 12:14	
Naphthalene	< 0.0343	1.66	1.70	102	1.67	101	54-106	2	30	mg/kg	10/30/12 12:14	
Nitrobenzene	< 0.0290	1.66	1.67	101	1.67	101	44-118	0	30	mg/kg	10/30/12 12:14	
N-Nitrosodi-n-Propylam	ine <0.0397	1.66	1.56	94	1.51	91	50-111	3	30	mg/kg	10/30/12 12:14	
N-Nitrosodiphenylamine	< 0.0248	1.66	1.85	111	1.79	108	55-119	3	30	mg/kg	10/30/12 12:14	
Pentachlorophenol	< 0.0220	1.66	1.89	114	1.79	108	38-128	5	40	mg/kg	10/30/12 12:14	
Phenanthrene	< 0.0330	1.66	1.90	114	1.79	108	56-118	6	30	mg/kg	10/30/12 12:14	
Phenol	< 0.0357	1.66	1.52	92	1.47	89	50-114	3	40	mg/kg	10/30/12 12:14	
Pyrene	< 0.0332	1.66	1.78	107	1.72	104	56-125	3	30	mg/kg	10/30/12 12:14	
Pyridine	< 0.0425	1.66	1.36	82	1.30	78	44-102	5	40	mg/kg	10/30/12 12:14	
Surrogate	MB %Rec	MB Flag	L4 %]	CS Rec	LCS Flag	LCSE %Rec	) LCS c Flag	D Li g	mits	Units	Analysis Date	
2-Fluorophenol	112		8	36		85		25	-121	%	10/30/12 12:14	
Phenol-d6	121	<b>S</b> 4	9	94		92		24	-113	%	10/30/12 12:14	
Nitrobenzene-d5	123	<b>S</b> 4	1	05		105		23	-120	%	10/30/12 12:14	
2-Fluorobiphenyl	119	<b>S</b> 4	1	01		97		30	-115	%	10/30/12 12:14	
2,4,6-Tribromophenol	114		1	09		106		19	-122	%	10/30/12 12:14	
Terphenyl-D14	137		1	07		105		18	-137	%	10/30/12 12:14	

Page 13 of 19



# Southwest Research Institute, San Antonio, TX

SO091904E

Analytical Method: Seq Number:	SVOCs by EPA 82 899835	70C		Matrix:	Soil			Pr	ep Metho Date Pro	od: SW3	3550 0/2012	
Parent Sample Id:	451440-001		MS Sar	nple Id:	451440-00	01 S		MSI	) Sample	Id: 4514	440-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trichlorobenzene	< 0.0371	2.03	1.29	64	1.45	71	37-133	12	30	mg/kg	10/30/12 13:48	
1,2-Dichlorobenzene	< 0.0441	2.03	1.26	62	1.39	68	65-135	10	30	mg/kg	10/30/12 13:48	M2
1,3-Dichlorobenzene	< 0.0372	2.03	1.24	61	1.37	67	65-135	10	30	mg/kg	10/30/12 13:48	M2
1,4-Dichlorobenzene	< 0.0401	2.03	1.24	61	1.36	67	36-134	9	30	mg/kg	10/30/12 13:48	
2,4,5-Trichlorophenol	< 0.0477	2.03	1.65	81	1.71	84	65-135	4	30	mg/kg	10/30/12 13:48	
2,4,6-Trichlorophenol	< 0.0327	2.03	1.56	77	1.64	81	65-135	5	30	mg/kg	10/30/12 13:48	
2,4-Dichlorophenol	< 0.0383	2.03	1.42	70	1.55	76	65-135	9	30	mg/kg	10/30/12 13:48	
2,4-Dimethylphenol	< 0.0956	2.03	1.45	71	1.56	77	65-135	7	30	mg/kg	10/30/12 13:48	
2,4-Dinitrophenol	< 0.0842	2.03	1.52	75	1.52	75	65-135	0	40	mg/kg	10/30/12 13:48	
2,4-Dinitrotoluene	< 0.0388	2.03	1.62	80	1.69	83	40-130	4	30	mg/kg	10/30/12 13:48	
2,6-Dinitrotoluene	< 0.0389	2.03	1.53	75	1.60	79	28-89	4	30	mg/kg	10/30/12 13:48	
2-Chloronaphthalene	< 0.0322	2.03	1.47	72	1.47	72	65-135	0	30	mg/kg	10/30/12 13:48	
2-Chlorophenol	< 0.0394	2.03	1.32	65	1.41	69	25-140	7	30	mg/kg	10/30/12 13:48	
2-Methylnaphthalene	< 0.0417	2.03	1.42	70	1.55	76	25-175	9	30	mg/kg	10/30/12 13:48	
2-methylphenol	< 0.0528	2.03	1.38	68	1.49	73	65-135	8	30	mg/kg	10/30/12 13:48	
2-Nitroaniline	< 0.0358	2.03	1.72	85	1.75	86	65-135	2	40	mg/kg	10/30/12 13:48	
2-Nitrophenol	< 0.0278	2.03	1.35	67	1.49	73	65-135	10	30	mg/kg	10/30/12 13:48	
3&4-Methylphenol	< 0.0925	2.03	1.43	70	1.52	75	65-135	6	30	mg/kg	10/30/12 13:48	
3,3-Dichlorobenzidine	< 0.0557	2.03	1.67	82	1.70	84	20-140	2	40	mg/kg	10/30/12 13:48	
3-Nitroaniline	< 0.0422	2.03	1.70	84	1.70	84	65-135	0	40	mg/kg	10/30/12 13:48	
4,6-dinitro-2-methyl pher	nol <0.0331	2.03	1.64	81	1.69	83	65-135	3	40	mg/kg	10/30/12 13:48	
4-Bromophenyl-phenylet	her <0.0414	2.03	1.59	78	1.65	81	65-135	4	30	mg/kg	10/30/12 13:48	
4-chloro-3-methylphenol	< 0.0427	2.03	1.60	79	1.70	84	28-134	6	30	mg/kg	10/30/12 13:48	
4-Chloroaniline	< 0.0815	2.03	1.42	70	1.52	75	4-149	7	40	mg/kg	10/30/12 13:48	
4-Chlorophenyl-phenyl e	ther <0.0409	2.03	1.50	74	1.57	77	65-135	5	30	mg/kg	10/30/12 13:48	
4-Nitroaniline	< 0.0366	2.03	1.70	84	1.69	83	65-135	1	40	mg/kg	10/30/12 13:48	
4-Nitrophenol	< 0.0379	2.03	1.82	90	1.93	95	13-106	6	40	mg/kg	10/30/12 13:48	
Acenaphthene	< 0.0436	2.03	1.48	73	1.57	77	41-134	6	30	mg/kg	10/30/12 13:48	
Acenaphthylene	< 0.0412	2.03	1.51	74	1.61	79	65-135	6	30	mg/kg	10/30/12 13:48	
Aniline (Phenylamine, Amin	obenzene) <0.136	2.03	1.34	66	1.47	72	2-145	9	40	mg/kg	10/30/12 13:48	
Anthracene	< 0.0313	2.03	1.73	85	1.76	87	65-135	2	30	mg/kg	10/30/12 13:48	
Benzo(a)anthracene	< 0.0342	2.03	1.73	85	1.77	87	44-126	2	30	mg/kg	10/30/12 13:48	
Benzo(a)pyrene	< 0.0355	2.03	1.76	87	1.82	90	65-135	3	30	mg/kg	10/30/12 13:48	
Benzo(b)fluoranthene	< 0.0329	2.03	1.70	84	1.79	88	65-135	5	30	mg/kg	10/30/12 13:48	
Benzo(g,h,i)perylene	< 0.0358	2.03	1.65	81	1.71	84	65-135	4	30	mg/kg	10/30/12 13:48	
Benzo(k)fluoranthene	< 0.0476	2.03	1.69	83	1.90	94	25-125	12	30	mg/kg	10/30/12 13:48	
Benzoic Acid	0.940	6.10	5.07	68	5.22	70	50-125	3	50	mg/kg	10/30/12 13:48	
Benzyl Butyl Phthalate	< 0.0316	2.03	1.80	89	1.89	93	65-135	5	30	mg/kg	10/30/12 13:48	
bis(2-chloroethoxy) meth	ane <0.0454	2.03	1.42	70	1.56	77	65-135	9	30	mg/kg	10/30/12 13:48	
bis(2-chloroethyl) ether	< 0.0436	2.03	1.33	66	1.49	73	65-135	11	30	mg/kg	10/30/12 13:48	
bis(2-chloroisopropyl) et	her <0.0407	2.03	1.35	67	1.54	76	65-135	13	30	mg/kg	10/30/12 13:48	
bis(2-ethylhexyl) phthala	te 0.0336	2.03	1.82	88	1.94	94	65-135	6	30	mg/kg	10/30/12 13:48	
Chrysene	< 0.0369	2.03	1.75	86	1.80	89	65-135	3	30	mg/kg	10/30/12 13:48	
Dibenz(a,h)Anthracene	< 0.0428	2.03	1.70	84	1.75	86	65-135	3	30	mg/kg	10/30/12 13:48	
Dibenzofuran	< 0.0401	2.03	1.52	75	1.58	78	65-135	4	30	mg/kg	10/30/12 13:48	
Diethyl Phthalate	< 0.0421	2.03	1.62	80	1.70	84	37-125	5	30	mg/kg	10/30/12 13:48	
Dimethyl Phthalate	< 0.0419	2.03	1.53	75	1.61	79	65-135	5	30	mg/kg	10/30/12 13:48	
di-n-Butyl Phthalate	0.0520	2.03	1.79	86	1.85	89	65-135	3	30	mg/kg	10/30/12 13:48	
di-n-Octyl Phthalate	<0.0386	2.03	1.83	90	1.93	95	65-135	5	30	mg/kg	10/30/12 13:48	

Page 14 of 19



## Southwest Research Institute, San Antonio, TX

SO091904E

Analytical Method:	SVOCs by	EPA 827	'0C						Pr	ep Metho	od: SW	3550	
Seq Number:	899835			N	fatrix:	Soil				Date Pro	ep: 10/3	30/2012	
Parent Sample Id:	451440-001	L .		MS Samp	ple Id:	451440-00	01 S		MSI	) Sample	e Id: 451	440-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Fluoranthene		< 0.0384	2.03	1.75	86	1.75	86	65-135	0	30	mg/kg	10/30/12 13:48	
Fluorene		< 0.0434	2.03	1.54	76	1.62	80	65-135	5	30	mg/kg	10/30/12 13:48	
Hexachlorobenzene		< 0.0356	2.03	1.59	78	1.66	82	65-135	4	30	mg/kg	10/30/12 13:48	
Hexachlorobutadiene		< 0.0382	2.03	1.24	61	1.39	68	65-135	11	30	mg/kg	10/30/12 13:48	M2
Hexachlorocyclopentadi	iene	< 0.0179	2.03	1.07	53	1.16	57	65-135	8	30	mg/kg	10/30/12 13:48	M2
Hexachloroethane		< 0.0455	2.03	1.27	63	1.42	70	65-135	11	30	mg/kg	10/30/12 13:48	M2
Indeno(1,2,3-c,d)Pyrene		< 0.0377	2.03	1.64	81	1.73	85	65-135	5	30	mg/kg	10/30/12 13:48	
Isophorone		< 0.0364	2.03	1.42	70	1.55	76	65-135	9	30	mg/kg	10/30/12 13:48	
Naphthalene		< 0.0420	2.03	1.35	67	1.48	73	65-135	9	30	mg/kg	10/30/12 13:48	
Nitrobenzene		< 0.0355	2.03	1.36	67	1.46	72	65-135	7	30	mg/kg	10/30/12 13:48	
N-Nitrosodi-n-Propylan	nine	< 0.0486	2.03	1.37	67	1.53	75	53-130	11	30	mg/kg	10/30/12 13:48	
N-Nitrosodiphenylamin	e	< 0.0304	2.03	1.65	81	1.71	84	65-135	4	30	mg/kg	10/30/12 13:48	
Pentachlorophenol		< 0.0269	2.03	1.79	88	1.84	91	14-111	3	40	mg/kg	10/30/12 13:48	
Phenanthrene		< 0.0405	2.03	1.71	84	1.73	85	65-135	1	30	mg/kg	10/30/12 13:48	
Phenol		< 0.0437	2.03	1.41	69	1.50	74	27-127	6	40	mg/kg	10/30/12 13:48	
Pyrene		< 0.0406	2.03	1.76	87	1.84	91	41-144	4	30	mg/kg	10/30/12 13:48	
Pyridine		<0.0520	2.03	1.17	58	1.31	65	39-98	11	40	mg/kg	10/30/12 13:48	
Surrogate				MS %R	S ec	MS Flag	MSD %Rec	o MSD c Flag	) Li	mits	Units	Analysis Date	
2-Fluorophenol				64	l.		68		25	-121	%	10/30/12 13:48	
Phenol-d6				70	0		75		24	-113	%	10/30/12 13:48	
Nitrobenzene-d5				69	)		75		23	-120	%	10/30/12 13:48	
2-Fluorobiphenyl				71			75		30	-115	%	10/30/12 13:48	
2,4,6-Tribromophenol				87			86		19	-122	%	10/30/12 13:48	
Terphenyl-D14				87			89		18	-137	%	10/30/12 13:48	

Analytical Method:	TPH DRO by SW8	RO by SW846-8015						Prep Method: SW3550					
Seq Number:	899987		1	Matrix:	Solid				Date Pre	p: 10/3	1/2012		
MB Sample Id:	629323-1-BLK		LCS San	nple Id:	629323-1-	-BKS		LCSI	O Sample	Id: 6293	323-1-BSD		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
TPH-DRO	<312	1000	1100	110	1080	108	70-130	2	35	mg/kg	11/01/12 12:45		
Surrogate	MB %Rec	MB Flag	L/ %	CS Rec	LCS Flag	LCSI %Ree	) LCS c Flag	D Li g	mits	Units	Analysis Date		
Pentacosane	68		8	80		79		40	-130	%	11/01/12 12:45		

Page 15 of 19



#### Southwest Research Institute, San Antonio, TX SO091904E

Analytical Method:	VOAs by S	W-846 8	3260							Prep Method: SW5030B			
Seq Number:	899983				Matrix:	Solid				Date Pre	p: 10/3	1/2012	
MB Sample Id:	629372-1-E	BLK		LCS Sar	nple Id:	629372-1-	BKS		LCSI	) Sample	Id: 6293	372-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethan	ie <	0.000148	0.0500	0.0547	109	0.0515	103	81-127	6	25	mg/kg	10/31/12 09:47	
1,1,1-Trichloroethane	<	0.000602	0.0500	0.0561	112	0.0468	94	71-124	18	25	mg/kg	10/31/12 09:47	
1,1,2,2-Tetrachloroethan	ie <	0.000194	0.0500	0.0565	113	0.0521	104	75-133	8	25	mg/kg	10/31/12 09:47	
1,1,2-Trichloroethane	<	0.000225	0.0500	0.0539	108	0.0523	105	75-131	3	25	mg/kg	10/31/12 09:47	
1,1-Dichloroethane	$\leq$	0.000125	0.0500	0.0584	117	0.0500	100	73-124	15	25	mg/kg	10/31/12 09:47	
1,1-Dichloroethene	$\leq$	0.000192	0.0500	0.0568	114	0.0449	90	68-119	23	25	mg/kg	10/31/12 09:47	
1,1-Dichloropropene	<	0.000198	0.0500	0.0541	108	0.0475	95	72-118	13	25	mg/kg	10/31/12 09:47	
1,2,3-Trichlorobenzene	<	0.000106	0.0500	0.0561	112	0.0531	106	75-131	5	25	mg/kg	10/31/12 09:47	
1,2,3-Trichloropropane	<	0.000359	0.0500	0.0531	106	0.0522	104	75-131	2	25	mg/kg	10/31/12 09:47	
1,2,4-Trichlorobenzene	<	0.000191	0.0500	0.0565	113	0.0517	103	79-128	9	25	mg/kg	10/31/12 09:47	
1,2,4-Trimethylbenzene	<	0.000103	0.0500	0.0565	113	0.0529	106	60-159	7	25	mg/kg	10/31/12 09:47	
1,2-Dibromo-3-Chlorop	ropane	< 0.00107	0.0500	0.0548	110	0.0483	97	58-133	13	25	mg/kg	10/31/12 09:47	
1,2-Dibromoethane	<	0.000193	0.0500	0.0556	111	0.0538	108	80-127	3	25	mg/kg	10/31/12 09:47	
1,2-Dichlorobenzene	<	0.000129	0.0500	0.0541	108	0.0517	103	84-121	5	25	mg/kg	10/31/12 09:47	
1,2-Dichloroethane	<	0.000177	0.0500	0.0525	105	0.0485	97	70-123	8	25	mg/kg	10/31/12 09:47	
1,2-Dichloropropane	<	0.000162	0.0500	0.0527	105	0.0500	100	75-122	5	25	mg/kg	10/31/12 09:47	
1,3,5-Trimethylbenzene	<	0.000166	0.0500	0.0576	115	0.0535	107	61-160	7	25	mg/kg	10/31/12 09:47	
1,3-Dichlorobenzene	<	0.000159	0.0500	0.0551	110	0.0523	105	84-124	5	25	mg/kg	10/31/12 09:47	
1,3-Dichloropropane	<	0.000227	0.0500	0.0560	112	0.0532	106	82-131	5	25	mg/kg	10/31/12 09:47	
1,4-Dichlorobenzene	<0.	.0000970	0.0500	0.0515	103	0.0486	97	82-120	6	25	mg/kg	10/31/12 09:47	
2,2-Dichloropropane	<	0.000127	0.0500	0.0601	120	0.0505	101	67-137	17	25	mg/kg	10/31/12 09:47	
2-Butanone	-	< 0.00173	0.600	0.567	95	0.528	88	46-137	7	25	mg/kg	10/31/12 09:47	
2-Chlorotoluene	<	0.000217	0.0500	0.0572	114	0.0525	105	83-129	9	25	mg/kg	10/31/12 09:47	
2-Hexanone	-	< 0.00112	0.600	0.562	94	0.566	94	52-137	1	25	mg/kg	10/31/12 09:47	
4-Chlorotoluene	<	0.000118	0.0500	0.0541	108	0.0501	100	83-125	8	25	mg/kg	10/31/12 09:47	
Acetone		0.00521	0.600	0.567	95	0.521	87	33-148	8	25	mg/kg	10/31/12 09:47	
Benzene	$\leq$	0.000300	0.0500	0.0553	111	0.0498	100	71-119	10	25	mg/kg	10/31/12 09:47	
Bromobenzene	<	0.000198	0.0500	0.0552	110	0.0517	103	84-123	7	25	mg/kg	10/31/12 09:47	
Bromochloromethane	<	0.000215	0.0500	0.0543	109	0.0475	95	71-120	13	25	mg/kg	10/31/12 09:47	
Bromodichloromethane	<	0.000186	0.0500	0.0550	110	0.0510	102	78-126	8	25	mg/kg	10/31/12 09:47	
Bromoform	$\leq$	0.000393	0.0500	0.0546	109	0.0512	102	63-136	6	25	mg/kg	10/31/12 09:47	
Bromomethane	<	0.000274	0.0500	0.0438	88	0.0414	83	57-118	6	25	mg/kg	10/31/12 09:47	
Carbon Disulfide	<0.	.0000880	0.550	0.617	112	0.500	91	55-136	21	25	mg/kg	10/31/12 09:47	
Carbon Tetrachloride	$\leq$	0.000132	0.0500	0.0533	107	0.0453	91	63-135	16	25	mg/kg	10/31/12 09:47	
Chlorobenzene	<	0.000104	0.0500	0.0541	108	0.0498	100	83-121	8	25	mg/kg	10/31/12 09:47	
Chloroethane	<	0.000254	0.0500	0.0426	85	0.0389	78	57-122	9	25	mg/kg	10/31/12 09:47	
Chloroform	<	0.000139	0.0500	0.0553	111	0.0478	96	74-118	15	25	mg/kg	10/31/12 09:47	
Chloromethane	<	0.000322	0.0500	0.0435	87	0.0394	79	58-110	10	25	mg/kg	10/31/12 09:47	
cis-1,2-Dichloroethene	<	0.000165	0.0500	0.0603	121	0.0525	105	72-131	14	25	mg/kg	10/31/12 09:47	
cis-1,3-Dichloropropene	<	0.000128	0.0500	0.0571	114	0.0535	107	74-135	7	25	mg/kg	10/31/12 09:47	
Dibromochloromethane	<	0.000422	0.0500	0.0545	109	0.0522	104	77-130	4	25	mg/kg	10/31/12 09:47	
Dibromomethane	<	0.000260	0.0500	0.0525	105	0.0493	99	73-126	6	25	mg/kg	10/31/12 09:47	
Dichlorodifluoromethan	e <	0.000484	0.0500	0.0473	95	0.0415	83	54-122	13	25	mg/kg	10/31/12 09:47	
Ethylbenzene	<	0.000104	0.0500	0.0552	110	0.0509	102	80-123	8	25	mg/kg	10/31/12 09:47	
Hexachlorobutadiene	<	0.000346	0.0500	0.0572	114	0.0513	103	77-130	11	25	mg/kg	10/31/12 09:47	
Iodomethane (Methyl Io	dide) <	0.000200	0.0500	0.0543	109	0.0467	93	63-116	15	25	mg/kg	10/31/12 09:47	
isopropylbenzene	<	0.000112	0.0500	0.0541	108	0.0488	98	55-155	10	25	mg/kg	10/31/12 09:47	
m,p-Xylenes	<	0.000185	0.100	0.113	113	0.104	104	78-127	8	25	mg/kg	10/31/12 09:47	
Methylene Chloride	(	0.000650	0.0500	0.0507	101	0.0437	87	57-134	15	25	mg/kg	10/31/12 09:47	

Page 16 of 19



#### Southwest Research Institute, San Antonio, TX SO091904E

Analytical Method:	VOAs by SW-846 8260					Prep				ep Metho	ep Method: SW5030B			
Seq Number: 8	899983			1	Matrix:	Solid				Date Pr	ep:	10/3	1/2012	
MB Sample Id: 6	529372-	1-BLK		LCS San	nple Id:	629372-1-	BKS		LCSI	) Sample	e Id:	6293	72-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Un	its	Analysis Date	Flag
MTBE		< 0.000142	0.100	0.113	113	0.102	102	64-148	10	25	mg	kg	10/31/12 09:47	
Naphthalene		< 0.000148	0.0500	0.0529	106	0.0498	100	53-162	6	25	mg	kg	10/31/12 09:47	
n-Butylbenzene		<0.0000990	0.0500	0.0557	111	0.0500	100	82-127	11	25	mg	kg	10/31/12 09:47	
n-Propylbenzene		< 0.000137	0.0500	0.0586	117	0.0533	107	84-131	9	25	mg	kg	10/31/12 09:47	
o-Xylene		< 0.000149	0.0500	0.0570	114	0.0524	105	79-125	8	25	mg	kg	10/31/12 09:47	
p-Cymene (p-Isopropyltol	uene)	<0.0000800	0.0500	0.0582	116	0.0527	105	84-130	10	25	mg	kg	10/31/12 09:47	
Sec-Butylbenzene		< 0.000121	0.0500	0.0577	115	0.0522	104	84-131	10	25	mg	kg	10/31/12 09:47	
Styrene		< 0.000158	0.0500	0.0572	114	0.0530	106	80-126	8	25	mg	kg	10/31/12 09:47	
tert-Butylbenzene		<0.0000900	0.0500	0.0582	116	0.0521	104	83-132	11	25	mg	kg	10/31/12 09:47	
Tetrachloroethylene		< 0.000173	0.0500	0.0593	119	0.0525	105	79-124	12	25	mg	kg	10/31/12 09:47	
Toluene		< 0.000117	0.0500	0.0544	109	0.0491	98	74-122	10	25	mg	kg	10/31/12 09:47	
trans-1,2-dichloroethene		< 0.000123	0.0500	0.0572	114	0.0482	96	63-110	17	25	mg	kg	10/31/12 09:47	L1
trans-1,3-dichloropropene		< 0.000361	0.0500	0.0513	103	0.0485	97	73-125	6	25	mg	kg	10/31/12 09:47	
Trichloroethene		< 0.000147	0.0500	0.0526	105	0.0475	95	78-119	10	25	mg	kg	10/31/12 09:47	
Trichlorofluoromethane		< 0.000186	0.0500	0.0571	114	0.0496	99	71-148	14	25	mg	kg	10/31/12 09:47	
Vinyl Acetate		< 0.000213	0.500	0.570	114	0.505	101	40-154	12	25	mg	kg	10/31/12 09:47	
Vinyl Chloride		< 0.000193	0.0500	0.0445	89	0.0397	79	60-123	11	25	mg	kg	10/31/12 09:47	
Surrogate		MB %Rec	MB Flag	L/ %	CS Rec	LCS Flag	LCSE %Rec	) LCSI : Flag	) Lii ;	mits	Uni	ts	Analysis Date	
Dibromofluoromethane		100		1	01		96		53	-142	%		10/31/12 09:47	
1,2-Dichloroethane-D4		105		1	05		99		56	-150	%		10/31/12 09:47	
Toluene-D8		100		1	01		102		70	-130	%		10/31/12 09:47	
4-Bromofluorobenzene		100		9	98		97		68	-152	%		10/31/12 09:47	

Page 17 of 19



### Southwest Research Institute, San Antonio, TX

SO091904E

Analytical Method:	VOAs by SW-846	8260						Pr	ep Metho	d: SW	75030B	
Seq Number:	899983			Matrix:	Oil				Date Pre	p: 10/	31/2012	
Parent Sample Id:	451386-002		MS Sar	nple Id:	451386-00	02 S		MSI	O Sample	Id: 451	1386-002 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethan	e <0.0148	4.99	5.00	100	4.73	95	72-125	6	25	mg/kg	10/31/12 17:24	
1,1,1-Trichloroethane	< 0.0601	4.99	5.04	101	4.55	91	75-125	10	25	mg/kg	10/31/12 17:24	
1,1,2,2-Tetrachloroethan	ne <0.0194	4.99	6.01	120	5.30	106	74-125	13	25	mg/kg	10/31/12 17:24	
1,1,2-Trichloroethane	< 0.0225	4.99	8.59	172	7.83	157	75-127	9	25	mg/kg	10/31/12 17:24	M1
1,1-Dichloroethane	< 0.0125	4.99	5.52	111	4.91	98	72-125	12	25	mg/kg	10/31/12 17:24	
1,1-Dichloroethene	< 0.0192	4.99	5.23	105	4.67	94	59-172	11	25	mg/kg	10/31/12 17:24	
1,1-Dichloropropene	< 0.0198	4.99	5.11	102	4.57	92	75-125	11	25	mg/kg	10/31/12 17:24	
1,2,3-Trichlorobenzene	< 0.0106	4.99	4.50	90	4.40	88	75-137	2	25	mg/kg	10/31/12 17:24	
1,2,3-Trichloropropane	< 0.0358	4.99	5.50	110	5.04	101	75-125	9	25	mg/kg	10/31/12 17:24	
1,2,4-Trichlorobenzene	< 0.0191	4.99	4.55	91	4.34	87	75-135	5	25	mg/kg	10/31/12 17:24	
1,2,4-Trimethylbenzene	9.35	4.99	14.5	103	14.2	97	75-125	2	25	mg/kg	10/31/12 17:24	
1,2-Dibromo-3-Chlorop	ropane <0.106	4.99	6.14	123	5.92	119	59-125	4	25	mg/kg	10/31/12 17:24	
1,2-Dibromoethane	< 0.0193	4.99	5.44	109	5.12	103	73-125	6	25	mg/kg	10/31/12 17:24	
1,2-Dichlorobenzene	< 0.0129	4.99	5.18	104	4.88	98	75-125	6	25	mg/kg	10/31/12 17:24	
1,2-Dichloroethane	< 0.0177	4.99	5.05	101	4.38	88	68-127	14	25	mg/kg	10/31/12 17:24	
1,2-Dichloropropane	< 0.0162	4.99	5.24	105	4.66	93	74-125	12	25	mg/kg	10/31/12 17:24	
1,3,5-Trimethylbenzene	2.49	4.99	7.98	110	7.52	101	70-130	6	25	mg/kg	10/31/12 17:24	
1,3-Dichlorobenzene	< 0.0159	4.99	5.30	106	4.95	99	75-125	7	25	mg/kg	10/31/12 17:24	
1.3-Dichloropropane	< 0.0227	4.99	5.54	111	5.02	101	75-125	10	25	mg/kg	10/31/12 17:24	
1,4-Dichlorobenzene	< 0.00968	4.99	4.96	99	4.69	94	75-125	6	25	mg/kg	10/31/12 17:24	
2,2-Dichloropropane	< 0.0127	4.99	5.04	101	4.65	93	75-125	8	25	mg/kg	10/31/12 17:24	
2-Butanone	2.17	59.9	62.0	100	51.9	83	75-125	18	25	mg/kg	10/31/12 17:24	
2-Chlorotoluene	< 0.0217	4.99	5.76	115	5.39	108	73-125	7	25	mg/kg	10/31/12 17:24	
2-Hexanone	< 0.112	59.9	54.0	90	50.1	84	75-125	7	25	mg/kg	10/31/12 17:24	
4-Chlorotoluene	< 0.0118	4.99	5.47	110	5.21	104	74-125	5	25	mg/kg	10/31/12 17:24	
Acetone	1.05	59.9	58.9	97	47.1	77	50-150	22	25	mg/kg	10/31/12 17:24	
Benzene	0.166	4.99	5.42	105	4.89	95	66-142	10	25	mg/kg	10/31/12 17:24	
Bromobenzene	< 0.0198	4.99	5.58	112	5.21	104	75-125	7	25	mg/kg	10/31/12 17:24	
Bromochloromethane	< 0.0215	4.99	5.25	105	4.68	94	60-140	11	25	mg/kg	10/31/12 17:24	
Bromodichloromethane	< 0.0186	4.99	5.13	103	4.55	91	75-125	12	25	mg/kg	10/31/12 17:24	
Bromoform	< 0.0392	4.99	4.81	96	4.47	90	75-125	7	25	mg/kg	10/31/12 17:24	
Bromomethane	< 0.0273	4.99	1.42	28	1.40	28	60-140	1	25	mg/kg	10/31/12 17:24	M2
Carbon Disulfide	< 0.00878	54.9	56.4	103	50.3	92	60-140	11	25	mg/kg	10/31/12 17:24	
Carbon Tetrachloride	< 0.0132	4.99	4.50	90	4.13	83	62-125	9	25	mg/kg	10/31/12 17:24	
Chlorobenzene	< 0.0104	4.99	5.27	106	4.97	100	60-133	6	25	mg/kg	10/31/12 17:24	
Chloroethane	< 0.0253	4.99	3.70	74	3.38	68	60-140	9	25	mg/kg	10/31/12 17:24	
Chloroform	< 0.0139	4.99	5.19	104	4.52	91	74-125	14	25	mg/kg	10/31/12 17:24	
Chloromethane	< 0.0321	4.99	4.92	99	4.36	87	60-140	12	25	mg/kg	10/31/12 17:24	
cis-1,2-Dichloroethene	< 0.0165	4.99	5.86	117	5.20	104	75-125	12	25	mg/kg	10/31/12 17:24	
cis-1,3-Dichloropropene	< 0.0128	4.99	5.46	109	4.87	98	74-125	11	25	mg/kg	10/31/12 17:24	
Dibromochloromethane	< 0.0421	4.99	5.16	103	4.69	94	73-125	10	25	mg/kg	10/31/12 17:24	
Dibromomethane	< 0.0259	4.99	5.21	104	4.51	90	69-127	14	25	mg/kg	10/31/12 17:24	
Dichlorodifluoromethan	e <0.0483	4.99	5.38	108	4.55	91	65-135	17	25	mg/kg	10/31/12 17:24	
Ethylbenzene	2.65	4.99	7.85	104	7.55	98	75-125	4	25	mg/kg	10/31/12 17:24	
Hexachlorobutadiene	< 0.0345	4.99	2.77	56	2.60	52	75-125	6	25	mg/kg	10/31/12 17:24	M2
Iodomethane (Methyl Io	dide) <0.0200	4.99	5.33	107	4.72	95	75-125	12	25	mg/kg	10/31/12 17:24	
isopropylbenzene	0.631	4.99	5.94	106	5.64	100	75-125	5	25	mg/kg	10/31/12 17:24	
m,p-Xylenes	8.28	9.98	18.7	104	18.1	98	75-125	3	25	mg/kg	10/31/12 17:24	
Methylene Chloride	0.0529	4.99	4.85	96	4.28	85	75-125	12	25	mg/kg	10/31/12 17:24	

Page 18 of 19



### Southwest Research Institute, San Antonio, TX

SO091904E

Analytical Method:	VOAs by SW-846 8260					Prep Method: SW5030B							
Seq Number:	899983				Matrix:	Oil				Date Pr	ep: 10/3	1/2012	
Parent Sample Id:	451386-002			MS San	nple Id:	451386-00	02 S		MSI	O Sample	e Id: 4513	386-002 SD	
Parameter	Pa R	rent esult	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE	<0.	.0142	9.98	11.2	112	9.85	99	60-140	13	25	mg/kg	10/31/12 17:24	
Naphthalene		1.85	4.99	7.08	105	6.84	100	70-130	3	25	mg/kg	10/31/12 17:24	
n-Butylbenzene		2.44	4.99	6.90	89	6.72	86	75-125	3	25	mg/kg	10/31/12 17:24	
n-Propylbenzene		2.54	4.99	8.29	115	7.78	105	75-125	6	25	mg/kg	10/31/12 17:24	
o-Xylene		4.16	4.99	9.34	104	9.17	100	75-125	2	25	mg/kg	10/31/12 17:24	
p-Cymene (p-Isopropylte	oluene)	0.594	4.99	5.66	102	5.43	97	75-125	4	25	mg/kg	10/31/12 17:24	
Sec-Butylbenzene		0.849	4.99	6.07	105	5.72	98	75-125	6	25	mg/kg	10/31/12 17:24	
Styrene	<0.	.0158	4.99	5.66	113	5.36	107	75-125	5	25	mg/kg	10/31/12 17:24	
tert-Butylbenzene	<0.0	0898	4.99	5.50	110	5.20	104	75-125	6	25	mg/kg	10/31/12 17:24	
Tetrachloroethylene		4.50	4.99	9.98	110	9.57	102	71-125	4	25	mg/kg	10/31/12 17:24	
Toluene		5.21	4.99	10.4	104	9.69	90	59-139	7	25	mg/kg	10/31/12 17:24	
trans-1,2-dichloroethene	<0.	.0123	4.99	5.45	109	4.82	97	75-125	12	25	mg/kg	10/31/12 17:24	
trans-1,3-dichloropropen	e <0.	.0360	4.99	4.65	93	4.32	87	66-125	7	25	mg/kg	10/31/12 17:24	
Trichloroethene	<0.	.0147	4.99	5.10	102	4.65	93	62-137	9	25	mg/kg	10/31/12 17:24	
Trichlorofluoromethane	<0.	.0186	4.99	6.06	121	5.38	108	67-125	12	25	mg/kg	10/31/12 17:24	
Vinyl Acetate	<0.	.0213	49.9	43.9	88	35.7	72	60-140	21	25	mg/kg	10/31/12 17:24	
Vinyl Chloride	<0.	.0193	4.99	5.03	101	4.55	91	60-140	10	25	mg/kg	10/31/12 17:24	
Surrogate				N %	1S Rec	MS Flag	MSD %Rec	MSD r Flag	Li	mits	Units	Analysis Date	
Dibromofluoromethane				9	99		96		53	-142	%	10/31/12 17:24	
1,2-Dichloroethane-D4				9	99		97		56	-150	%	10/31/12 17:24	
Toluene-D8				1	03		101		70	-130	%	10/31/12 17:24	
4-Bromofluorobenzene				1	05		104		68	-152	%	10/31/12 17:24	

Page 19 of 19

# Appendix BM EPA Testing Report: CL13-4826



Page 1 of 20

Final 1.000

177 Approved for public release; distribution unlimited.





28-FEB-13

Project Manager: **Scott Hutzler Southwest Research Institute** 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228

Reference: XENCO Report No(s): **457983** Jet Fuel Project Address:

#### Scott Hutzler :

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 457983. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 457983 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfor

Skip Harden Project Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 20



### CASE NARRATIVE

Client Name: Southwest Research Institute Project Name: Jet Fuel



Project ID:CL12-4367Work Order Number(s):457983

Report Date: 28-FEB-13 Date Received: 02/20/2013

# Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Page 3 of 20



### Flagging Criteria



#### Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 3.0 9/20/2007. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- D1 Sample required dilution due to matrix.
- D2 Sample required dilution due to high concentration of target analyte.
- M1 Matrix spike recovery was high; the associated blank spike recovery was acceptable.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.
- M3 The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to spike level. The associated blank spike recovery was acceptable.
- S8 The analysis of the sample required a dilution such that the surrogate recovery calculation does not provide any useful information. The associated blank spike recovery was acceptable.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Page 4 of 20



### Sample Cross Reference 457983



### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CL13-4826	W	02-19-13 00:00		457983-001
CL13-4826	S	02-19-13 00:00		457983-001

Page 5 of 20





### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-4826		Matrix	:: Product	D	ate Received: 02.	20.13 12.	00
Lab Sample Id: 457983-001		Date Collected	: 02.19.13 00.00				
Analytical Method: SVOCs by S	SW-846 8270C				Prep Method: SW	/3550	
Tech: COR					% Moisture		
Analyst: WEW		Data I	02 21 12 10	0.02	Basis: We	t Weight	
		Date	Tep: 02.21.15 TC	0.03	Dasis. we	a weight	
Seq Number: 907636					SUB: TX104704	4215	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,2,4-Trichlorobenzene	120-82-1	<500	500	mg/kg	02.26.13 15.14	D1	100
1,2-Dichlorobenzene	95-50-1	<500	500	mg/kg	02.26.13 15.14	D1	100
1,3-Dichlorobenzene	541-73-1	<500	500	mg/kg	02.26.13 15.14	D1	100
1,4-Dichlorobenzene	106-46-7	<500	500	mg/kg	02.26.13 15.14	D1	100
2,4,5-Trichlorophenol	95-95-4	<500	500	mg/kg	02.26.13 15.14	D1	100
2,4,6-Trichlorophenol	88-06-2	<500	500	mg/kg	02.26.13 15.14	D1	100
2,4-Dichlorophenol	120-83-2	<500	500	mg/kg	02.26.13 15.14	D1	100
2,4-Dimethylphenol	105-67-9	<500	500	mg/kg	02.26.13 15.14	D1	100
2,4-Dinitrophenol	51-28-5	<1000	1000	mg/kg	02.26.13 15.14	D1	100
2,4-Dinitrotoluene	121-14-2	<500	500	mg/kg	02.26.13 15.14	D1	100
2,6-Dinitrotoluene	606-20-2	<500	500	mg/kg	02.26.13 15.14	D1	100
2-Chloronaphthalene	91-58-7	<500	500	mg/kg	02.26.13 15.14	D1	100
2-Chlorophenol	95-57-8	<500	500	mg/kg	02.26.13 15.14	D1	100
2-Methylnaphthalene	91-57-6	551	500	mg/kg	02.26.13 15.14	D2	100
2-methylphenol	95-48-7	<500	500	mg/kg	02.26.13 15.14	D1	100
2-Nitroaniline	88-74-4	<1000	1000	mg/kg	02.26.13 15.14	D1	100
2-Nitrophenol	88-75-5	<500	500	mg/kg	02.26.13 15.14	D1	100
3&4-Methylphenol	15831-10-4	<500	500	mg/kg	02.26.13 15.14	D1	100
3,3-Dichlorobenzidine	91-94-1	<1000	1000	mg/kg	02.26.13 15.14	D1	100
3-Nitroaniline	99-09-2	<1000	1000	mg/kg	02.26.13 15.14	D1	100
4,6-dinitro-2-methyl phenol	534-52-1	<1000	1000	mg/kg	02.26.13 15.14	D1	100
4-Bromophenyl-phenylether	101-55-3	<500	500	mg/kg	02.26.13 15.14	D1	100
4-chloro-3-methylphenol	59-50-7	<500	500	mg/kg	02.26.13 15.14	D1	100
4-Chloroaniline	106-47-8	<1000	1000	mg/kg	02.26.13 15.14	D1	100
4-Chlorophenyl-phenyl ether	7005-72-3	<500	500	mg/kg	02.26.13 15.14	D1	100
4-Nitroaniline	100-01-6	<1000	1000	mg/kg	02.26.13 15.14	D1	100
4-Nitrophenol	100-02-7	<1000	1000	mg/kg	02.26.13 15.14	D1	100
Acenaphthene	83-32-9	<500	500	mg/kg	02.26.13 15.14	D1	100
Acenaphthylene	208-96-8	<500	500	mg/kg	02.26.13 15.14	D1	100
Aniline (Phenylamine, Aminobenzene)	62-53-3	<1000	1000	mg/kg	02.26.13 15.14	D1	100
Anthracene	120-12-7	<500	500	mg/kg	02.26.13 15.14	D1	100
Benzo(a)anthracene	56-55-3	<500	500	mg/kg	02.26.13 15.14	D1	100
Benzo(a)pyrene	50-32-8	<500	500	mg/kg	02.26.13 15.14	D1	100
Benzo(b)fluoranthene	205-99-2	<500	500	mg/kg	02.26.13 15.14	D1	100
Benzo(g,h,i)pervlene	191-24-2	<500	500	mg/kg	02.26.13 15.14	D1	100
Benzo(k)fluoranthene	207-08-9	<500	500	mg/kg	02.26.13 15.14	D1	100
Benzoic Acid	65-85-0	<3000	3000	mg/kg	02.26.13 15.14	D1	100
Benzyl Butyl Phthalate	85-68-7	<500	500	mg/kg	02.26.13 15.14	DI	100
bis(2-chloroethoxy) methane	111-91-1	<500	500	mg/kg	02.26.13 15.14	D1	100
bis(2-chloroethyl) ether	111-44-4	<500	500	mg/kg	02.26.13 15.14	DI	100
bis(2-chloroisopropyl) ether	39638-32-9	<500	500	mg/kg	02 26 13 15 14	DI	100
ensie enterersopropyr) etter	57656-52-7	-500		mg/kg	· · · · · · · · · · · · · · · · · · ·		100

Page 6 of 20





### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id:	CL13-4826		Matrix	: Product		Date Received: 02	.20.13 12.0	00
Lab Sample Id:	457983-001		Date Collected	1: 02.19.13 (	00.00			
Analytical Metho	od: SVOCs by	SW-846 8270C				Prep Method: SV	V3550	
Tech:	COR					% Moisture:		
Analyst:	WEW		Date F	Prep: 02.	21.13 10.03	Basis: We	et Weight	
Sea Number:	907636					SUD: TV10470	1215	
Seq Planten.	507050					50D. 1710470	+215	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
bis(2-ethylhexyl) ph	thalate	117-81-7	<500	500	mg/kg	02.26.13 15.14	D1	100
Chrysene		218-01-9	<500	500	mg/kg	02.26.13 15.14	D1	100
Dibenz(a,h)Anthrac	ene	53-70-3	<500	500	mg/kg	02.26.13 15.14	D1	100
Dibenzofuran		132-64-9	<500	500	mg/kg	02.26.13 15.14	D1	100
Diethyl Phthalate		84-66-2	<500	500	mg/kg	02.26.13 15.14	D1	100
Dimethyl Phthalate		131-11-3	<500	500	mg/kg	02.26.13 15.14	D1	100
di-n-Butyl Phthalate	e	84-74-2	<500	500	mg/kg	02.26.13 15.14	D1	100
di-n-Octyl Phthalate	•	117-84-0	<500	500	mg/kg	02.26.13 15.14	D1	100
Fluoranthene		206-44-0	<500	500	mg/kg	02.26.13 15.14	D1	100
Fluorene		86-73-7	<500	500	mg/kg	02.26.13 15.14	D1	100
Hexachlorobenzene		118-74-1	<500	500	mg/kg	02.26.13 15.14	D1	100
Hexachlorobutadien	ie	87-68-3	<500	500	mg/kg	02.26.13 15.14	D1	100
Hexachlorocycloper	ntadiene	77-47-4	<500	500	mg/kg	02.26.13 15.14	D1	100
Hexachloroethane		67-72-1	<500	500	mg/kg	02.26.13 15.14	D1	100
Indeno(1,2,3-c,d)Py	rene	193-39-5	<500	500	mg/kg	02.26.13 15.14	D1	100
Isophorone		78-59-1	<500	500	mg/kg	02.26.13 15.14	D1	100
Naphthalene		91-20-3	<500	500	mg/kg	02.26.13 15.14	D1	100
Nitrobenzene		98-95-3	<500	500	mg/kg	02.26.13 15.14	D1	100
N-Nitrosodi-n-Prop	ylamine	621-64-7	<500	500	mg/kg	02.26.13 15.14	D1	100
N-Nitrosodiphenyla	mine	86-30-6	<500	500	mg/kg	02.26.13 15.14	D1	100
Pentachlorophenol		87-86-5	<1000	1000	mg/kg	02.26.13 15.14	D1	100
Phenanthrene		85-01-8	<500	500	mg/kg	02.26.13 15.14	D1	100
Phenol		108-95-2	<1000	1000	mg/kg	02.26.13 15.14	D1	100
Pyrene		129-00-0	<500	500	mg/kg	02.26.13 15.14	D1	100
Pyridine		110-86-1	<1000	1000	mg/kg	02.26.13 15.14	D1	100
3-Octyne, 2,2-dime	ethyl- (TIC)	TIC	16100		mg/kg	02.26.13 15.14	D2T4	100
Benzene, 1-ethyl-2-	-methyl- (TIC)	TIC	14200		mg/kg	02.26.13 15.14	D2T4	100
Benzene, propyl- (*	TIC)	TIC	18000		mg/kg	02.26.13 15.14	D2T4	100
Cyclohexane, (2-meth	ylpropyl)- (TIC)	TIC	22100		mg/kg	02.26.13 15.14	D2T4	100
Cyclohexane, 1-ethyl-	-2-methyl-, tr (TIC)	TIC	8860		mg/kg	02.26.13 15.14	D2T4	100
Cyclohexane, ethyl	- (TIC)	TIC	17400		mg/kg	02.26.13 15.14	D2T4	100
Cyclohexane, prop	yl- (TIC)	TIC	29000		mg/kg	02.26.13 15.14	D2T4	100
Cyclooctane, 1,2-di	imethyl- (TIC)	TIC	20000		mg/kg	02.26.13 15.14	D2T4	100
Cyclopentane, hex	yl- (TIC)	TIC	12900		mg/kg	02.26.13 15.14	D2T4	100
Cyclopentane, non	yl- (TIC)	TIC	12800		mg/kg	02.26.13 15.14	D2T4	100
Cyclopentanone, 2,4,4	4-trimethyl- (TIC)	TIC	9490		mg/kg	02.26.13 15.14	D2T4	100
Decane (TIC)		TIC	79800		mg/kg	02.26.13 15.14	D2T4	100
Ethylbenzene (TIC	C)	TIC	12200		mg/kg	02.26.13 15.14	D2T4	100
Hexadecane (TIC)		TIC	10600		mg/kg	02.26.13 15.14	D2T4	100
Indane (TIC)		TIC	7380		mg/kg	02.26.13 15.14	D2T4	100
Nonane (TIC)		TIC	79500		mg/kg	02.26.13 15.14	D2T4	100

Page 7 of 20





### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: Lab Sample Id:	Matrix Date Collected	: Product : 02.19.1	3 00.00	1	Date Received: 02	2.20.13 12.00	)		
Analytical Metho	d: SVOCs by	SW-846 8270C					Prep Method: SV	W3550	
Tech:	COR						% Moisture:		
Analyst:	WEW		Date P	rep: (	02.21.13 10.03		Basis: W	et Weight	
Seq Number:	907636			1			SUB: TX10470	)4215	
Parameter		Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Octane (TIC)		TIC	31900			mg/kg	02.26.13 15.14	D2T4	100
Undecane (TIC)		TIC	89600			mg/kg	02.26.13 15.14	D2T4	100
n-Nonylcyclohexan	e (TIC)	TIC	7430			mg/kg	02.26.13 15.14	D2T4	100
o-Xylene (TIC)		TIC	9060			mg/kg	02.26.13 15.14	D2T4	100
Surrogate		Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
2-Fluorophenol		367-12-4	0	%	25-121		02.26.13 15.14	<b>S</b> 8	
Phenol-d6		13127-88-3	0	%	24-113		02.26.13 15.14	<b>S</b> 8	
Nitrobenzene-d5		4165-60-0	0	%	23-120		02.26.13 15.14	<b>S</b> 8	
2-Fluorobiphenyl		321-60-8	108	%	30-115		02.26.13 15.14		
2,4,6-Tribromopher	nol	118-79-6	94	%	19-122		02.26.13 15.14		
Terphenyl-D14		1718-51-0	110	%	18-137		02.26.13 15.14		

Page 8 of 20





### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id:	CL	13-4826		Matrix	x: Produc	et	Date Received: 02.20.13 12.00			
Lab Sample Id:	457	7983-001		Date Collected	1: 02.19.	13 00.00				
Analytical Metho	od:	VOAs by S	W-846 8260B					Prep Method: SW	5030B	
Tech:		ZHO						% Moisture:		
Analyst:		ZHO		Date I	Pren	02 22 13 15 56		Basis: We	t Weight	
Sea Number		007617		Date	rep.	02.22.15 15.50		CUD. TV10470	1015	
Seq Number.		907017						SUB: 1X104704	1215	
Parameter			Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroe	thane	•	630-20-6	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,1,1-Trichloroethar	ne		71-55-6	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,1,2,2-Tetrachloroe	thane	•	79-34-5	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,1,2-Trichloroethar	ne		79-00-5	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,1-Dichloroethane			75-34-3	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,1-Dichloroethene			75-35-4	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,1-Dichloropropend	e		563-58-6	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,2,3-Trichlorobenz	ene		87-61-6	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,2,3-Trichloropropa	ane		96-18-4	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,2,4-Trichlorobenz	ene		120-82-1	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,2,4-Trimethylben	zene		95-63-6	1480	125		mg/kg	02.22.13 16.13	D2	5000
1,2-Dibromo-3-Chlo	oropro	opane	96-12-8	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,2-Dibromoethane			106-93-4	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,2-Dichlorobenzen	e		95-50-1	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,2-Dichloroethane			107-06-2	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,2-Dichloropropan	e		78-87-5	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,3,5-Trimethylben	zene		108-67-8	216	125		mg/kg	02.22.13 16.13	D2	5000
1,3-Dichlorobenzen	e		541-73-1	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,3-Dichloropropano	e		142-28-9	<125	125		mg/kg	02.22.13 16.13	D1	5000
1,4-Dichlorobenzen	e		106-46-7	<125	125		mg/kg	02.22.13 16.13	D1	5000
2,2-Dichloropropan	e		594-20-7	<125	125		mg/kg	02.22.13 16.13	D1	5000
2-Butanone			78-93-3	<1250	1250		mg/kg	02.22.13 16.13	D1	5000
2-Chlorotoluene			95-49-8	<125	125		mg/kg	02.22.13 16.13	D1	5000
2-Hexanone			591-78-6	<1250	1250		mg/kg	02.22.13 16.13	D1	5000
4-Chlorotoluene			106-43-4	<125	125		mg/kg	02.22.13 16.13	D1	5000
Acetone			67-64-1	<2500	2500		mg/kg	02.22.13 16.13	D1	5000
Benzene			71-43-2	<125	125		mg/kg	02.22.13 16.13	D1	5000
Bromobenzene			108-86-1	<125	125		mg/kg	02.22.13 16.13	D1	5000
Bromochloromethar	ne		74-97-5	<125	125		mg/kg	02.22.13 16.13	D1	5000
Bromodichlorometh	ane		75-27-4	<125	125		mg/kg	02.22.13 16.13	D1	5000
Bromoform			75-25-2	<125	125		mg/kg	02.22.13 16.13	D1	5000
Bromomethane			74-83-9	<125	125		mg/kg	02.22.13 16.13	D1	5000
Carbon Disulfide			75-15-0	<1250	1250		mg/kg	02.22.13 16.13	D1	5000
Carbon Tetrachlorid	e		56-23-5	<125	125		mg/kg	02.22.13 16.13	D1	5000
Chlorobenzene			108-90-7	<125	125		mg/kg	02.22.13 16.13	D1	5000
Chloroethane			75-00-3	<250	250		mg/kg	02.22.13 16.13	D1	5000
Chloroform			67-66-3	<125	125		mg/kg	02.22.13 16.13	D1	5000
Chloromethane			74-87-3	<250	250		mg/kg	02.22.13 16.13	D1	5000
cis-1,2-Dichloroethe	ene		156-59-2	<125	125		mg/kg	02.22.13 16.13	D1	5000
cis-1,3-Dichloroprop	pene		10061-01-5	<125	125		mg/kg	02.22.13 16.13	D1	5000
Dibromochlorometh	ane		124-48-1	<125	125		mg/kg	02.22.13 16.13	D1	5000

Page 9 of 20





### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id:	CL13-4826		Matrix	: Product		Date Received: 02.20.13 12.00			
Lab Sample Id:	457983-001		Date Collected	: 02.19.13	3 00.00				
Analytical Method	od: VOAs by SV	W-846 8260B					Prep Method: SW	5030B	
Tech:	ZHO						% Moisture:		
Analyst:	ZHO		Date P	rep: 0	2.22.13 15.56		Basis: We	t Weight	
Seq Number:	907617			p			SUB: TX104704	215	
Parameter		Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Dibromomethane		74-95-3	<125	125		mg/kg	02.22.13 16.13	D1	5000
Dichlorodifluorome	thane	75-71-8	<125	125		mg/kg	02.22.13 16.13	D1	5000
Ethylbenzene		100-41-4	2230	125		mg/kg	02.22.13 16.13	D2	5000
Hexachlorobutadier	ie	87-68-3	<125	125		mg/kg	02.22.13 16.13	D1	5000
Iodomethane (Meth	yl Iodide)	74-88-4	<500	500		mg/kg	02.22.13 16.13	D1	5000
isopropylbenzene	· · · · · · · · · · · · · · · · · · ·	98-82-8	270	125		mg/kg	02.22.13 16.13	D2	5000
m.p-Xvlenes		179601-23-1	2960	250		mg/kg	02.22.13 16.13	D2	5000
Methylene Chloride	,	75-09-2	<500	500		mg/kg	02.22.13 16.13	D1	5000
MTBE		1634-04-4	<125	125		mg/kg	02.22.13 16.13	D1	5000
Naphthalene		91-20-3	340	250		mg/kg	02.22.13 16.13	D2	5000
n-Butylbenzene		104-51-8	2190	125		mg/kg	02.22.13 16.13	D2	5000
n-Propylbenzene		103-65-1	2670	125		mg/kg	02.22.13 16.13	D2	5000
o-Xvlene		95-47-6	3110	125		mg/kg	02.22.13 16.13	D2	5000
p-Cymene (p-Isop)	ropyltoluene)	99-87-6	165	125		mg/kg	02.22.13 16.13	D2	5000
Sec-Butylbenzene		135-98-8	160	125		mg/kg	02.22.13 16.13	D2	5000
Styrene		100-42-5	<125	125		mg/kg	02.22.13 16.13	D1	5000
tert-Butylbenzene		98-06-6	<125	125		mg/kg	02.22.13 16.13	D1	5000
Tetrachloroethylene		127-18-4	<125	125		mg/kg	02.22.13 16.13	D1	5000
Toluene		108-88-3	231	125		mg/kg	02.22.13 16.13	D2	5000
Total Xylenes		1330-20-7	6070	125		mg/kg	02.22.13 16.13	D2	5000
trans-1.2-dichloroet	hene	156-60-5	<125	125		mg/kg	02.22.13 16.13	D1	5000
trans-1.3-dichlorop	opene	10061-02-6	<125	125		mg/kg	02.22.13 16.13	D1	5000
Trichloroethene	- F	79-01-6	<125	125		mg/kg	02.22.13 16.13	D1	5000
Trichlorofluorometh	ane	75-69-4	<125	125		mø/kø	02 22 13 16 13	D1	5000
Vinvl Acetate		108-05-4	<1250	1250		mg/kg	02.22.13 16.13	D1	5000
Vinyl Chloride		75-01-4	<50.0	50.0		mg/kg	02.22.13 16.13	D1	5000
Benzene, 1-ethyl-2	-methyl- (TIC)	TIC	5910	0 010		mg/kg	02.22.13.16.13	D2T4	5000
Benzene, 1-propen	vl- (TIC)	TIC	4320			mø/kø	02 22 13 16 13	D2T4	5000
Benzene, nentyl- (		TIC	4500			mg/kg	02.22.13 16.13	D2T4	5000
Cyclohexane, penty	vl- (TIC)	TIC	3900			mg/kg	02.22.13 16.13	D2T4	5000
Cyclohexane, pron	vl- (TIC)	TIC	7440			mø/kø	02 22 13 16 13	D2T4	5000
Dodecane (TIC)	<i>(</i> 110 <i>)</i>	TIC	8870			mg/kg	02.22.13 16.13	D2T4	5000
Indan, 1-methyl- (	TIC)	TIC	4550			mg/kg	02.22.13 16.13	D2T4	5000
Octane (TIC)	ne)	TIC	9210			mg/kg	02.22.13 16.13	D2T4	5000
Tridecane (TIC)		TIC	5090			mg/kg	02.22.13 16.13	D2T4	5000
Undecane (TIC)		TIC	20600			mg/kg	02.22.13 16.13	D2T4	5000
Surrogate		Cas Number	% Decover	Umit-	Limite		Analysis Data	Flog	
	1		76 Recovery	Units	Limits 52, 142		Analysis Date	riag	
Dibromofluoromet	nane	1808-53-7	92	%	55-142		02.22.13 16.13		
Toluona D8	-04	2027 26 5	99	70 0/	70 120		02.22.13 10.13		
roluene-Do		2057-20-5	101	/0	/0-150		02.22.13 10.13		

Page 10 of 20





## Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: Lab Sample Id:	CL13-4826 457983-001		Matrix: Proc Date Collected: 02.1	luct 9.13 00.00	Date Received: 02.20.13 12.00				
Analytical Method	: VOAs by S	W-846 8260B			Prep Method: SW5030B				
Tech:	ZHO				% Moisture:				
Analyst:	ZHO		Date Prep:	02.22.13 15.56	Basis: Wet Weight				
Seq Number:	907617				SUB: TX104704215				
Surrogate		Cas Number	% Recovery		Analysis Date Flag				
4-Bromofluorobenze	ne	460-00-4	113 %	68-152	02 22 13 16 13				

Page 11 of 20





### Southwest Research Institute

Jet Fuel

Analytical Method: S	VOCs by SW-846	8270C						Pr	ep Metho	od: SW3	3550	
Seq Number: 90	07636			Matrix:	Solid				Date Pre	ep: 02/2	1/2013	
MB Sample Id: 63	34141-1-BLK		LCS Sar	nple Id:	634141-1-	-BKS		LCSI	D Sample	Id: 634	141-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trichlorobenzene	< 0.0304	1.67	1.25	75	1.19	71	55-106	5	30	mg/kg	02/22/13 14:43	
1,2-Dichlorobenzene	< 0.0362	1.67	1.33	80	1.29	77	54-104	3	30	mg/kg	02/22/13 14:43	
1,3-Dichlorobenzene	< 0.0305	1.67	1.29	77	1.25	75	53-105	3	30	mg/kg	02/22/13 14:43	
1,4-Dichlorobenzene	< 0.0329	1.67	1.30	78	1.28	77	52-104	2	30	mg/kg	02/22/13 14:43	
2,4,5-Trichlorophenol	< 0.0391	1.67	1.49	89	1.50	90	53-128	1	30	mg/kg	02/22/13 14:43	
2,4,6-Trichlorophenol	< 0.0268	1.67	1.41	84	1.39	83	58-119	1	30	mg/kg	02/22/13 14:43	
2,4-Dichlorophenol	< 0.0314	1.67	1.39	83	1.37	82	58-113	1	30	mg/kg	02/22/13 14:43	
2,4-Dimethylphenol	< 0.0784	1.67	1.39	83	1.39	83	56-112	0	30	mg/kg	02/22/13 14:43	
2,4-Dinitrophenol	< 0.0691	1.67	1.88	113	1.91	114	38-136	2	40	mg/kg	02/22/13 14:43	
2,4-Dinitrotoluene	< 0.0318	1.67	1.53	92	1.51	90	59-115	1	30	mg/kg	02/22/13 14:43	
2,6-Dinitrotoluene	< 0.0319	1.67	1.37	82	1.38	83	58-114	1	30	mg/kg	02/22/13 14:43	
2-Chloronaphthalene	< 0.0264	1.67	1.34	80	1.32	79	40-132	2	30	mg/kg	02/22/13 14:43	
2-Chlorophenol	< 0.0323	1.67	1.38	83	1.37	82	53-109	1	30	mg/kg	02/22/13 14:43	
2-Methylnaphthalene	< 0.0342	1.67	1.33	80	1.29	77	53-108	3	30	mg/kg	02/22/13 14:43	
2-methylphenol	< 0.0433	1.67	1.51	90	1.48	89	48-118	2	30	mg/kg	02/22/13 14:43	
2-Nitroaniline	< 0.0294	1.67	1.21	72	1.23	74	54-116	2	40	mg/kg	02/22/13 14:43	
2-Nitrophenol	< 0.0228	1.67	1.35	81	1.35	81	54-113	0	30	mg/kg	02/22/13 14:43	
3&4-Methylphenol	< 0.0758	1.67	1.58	95	1.55	93	53-115	2	30	mg/kg	02/22/13 14:43	
3,3-Dichlorobenzidine	< 0.0457	1.67	1.45	87	1.45	87	55-129	0	40	mg/kg	02/22/13 14:43	
3-Nitroaniline	< 0.0346	1.67	1.38	83	1.40	84	57-119	1	40	mg/kg	02/22/13 14:43	
4,6-dinitro-2-methyl pheno	1 <0.0271	1.67	1.62	97	1.63	98	56-117	1	40	mg/kg	02/22/13 14:43	
4-Bromophenyl-phenylethe	er <0.0339	1.67	1.33	80	1.31	78	57-118	2	30	mg/kg	02/22/13 14:43	
4-chloro-3-methylphenol	< 0.0350	1.67	1.49	89	1.40	84	55-114	6	30	mg/kg	02/22/13 14:43	
4-Chloroaniline	< 0.0668	1.67	1.36	81	1.35	81	54-112	1	40	mg/kg	02/22/13 14:43	
4-Chlorophenyl-phenyl eth	er <0.0335	1.67	1.43	86	1.46	87	57-111	2	30	mg/kg	02/22/13 14:43	
4-Nitroaniline	< 0.0300	1.67	1.46	87	1.41	84	56-121	3	40	mg/kg	02/22/13 14:43	
4-Nitrophenol	< 0.0311	1.67	1.18	71	1.26	75	42-134	7	40	mg/kg	02/22/13 14:43	
Acenaphthene	< 0.0358	1.67	1.41	84	1.37	82	54-112	3	30	mg/kg	02/22/13 14:43	
Acenaphthylene	< 0.0338	1.67	1.42	85	1.40	84	54-113	1	30	mg/kg	02/22/13 14:43	
Aniline (Phenylamine, Aminob	enzene) <0.111	1.67	1.41	84	1.38	83	50-112	2	40	mg/kg	02/22/13 14:43	
Anthracene	< 0.0257	1.67	1.36	81	1.32	79	57-118	3	30	mg/kg	02/22/13 14:43	
Benzo(a)anthracene	< 0.0280	1.67	1.40	84	1.43	86	58-119	2	30	mg/kg	02/22/13 14:43	
Benzo(a)pyrene	< 0.0291	1.67	1.47	88	1.49	89	58-127	1	30	mg/kg	02/22/13 14:43	
Benzo(b)fluoranthene	< 0.0270	1.67	1.50	90	1.49	89	50-122	1	30	mg/kg	02/22/13 14:43	
Benzo(g,h,i)perylene	< 0.0294	1.67	1.46	87	1.47	88	57-125	1	30	mg/kg	02/22/13 14:43	
Benzo(k)fluoranthene	< 0.0390	1.67	1.36	81	1.43	86	59-126	5	30	mg/kg	02/22/13 14:43	
Benzoic Acid	< 0.0483	5.00	6.19	124	5.95	119	31-133	4	50	mg/kg	02/22/13 14:43	
Benzyl Butyl Phthalate	< 0.0259	1.67	1.52	91	1.51	90	55-129	1	30	mg/kg	02/22/13 14:43	
bis(2-chloroethoxy) methan	ne <0.0372	1.67	1.40	84	1.38	83	49-112	1	30	mg/kg	02/22/13 14:43	
bis(2-chloroethyl) ether	< 0.0358	1.67	1.49	89	1.43	86	50-108	4	30	mg/kg	02/22/13 14:43	
bis(2-chloroisopropyl) ethe	r <0.0334	1.67	1.61	96	1.54	92	45-111	4	30	mg/kg	02/22/13 14:43	
bis(2-ethylhexyl) phthalate	< 0.0266	1.67	1.59	95	1.58	95	54-134	1	30	mg/kg	02/22/13 14:43	
Chrysene	< 0.0303	1.67	1.45	87	1.38	83	58-120	5	30	mg/kg	02/22/13 14:43	
Dibenz(a,h)Anthracene	< 0.0351	1.67	1.48	89	1.48	89	60-121	0	30	mg/kg	02/22/13 14:43	
Dibenzofuran	< 0.0329	1.67	1.43	86	1.43	86	56-110	0	30	mg/kg	02/22/13 14:43	
Diethyl Phthalate	< 0.0345	1.67	1.42	85	1.43	86	58-113	1	30	mg/kg	02/22/13 14:43	
Dimethyl Phthalate	< 0.0344	1.67	1.43	86	1.43	86	58-112	0	30	mg/kg	02/22/13 14:43	
di-n-Butyl Phthalate	< 0.0287	1.67	1.37	82	1.40	84	58-126	2	30	mg/kg	02/22/13 14:43	
di-n-Octyl Phthalate	< 0.0316	1.67	1.53	92	1.59	95	54-130	4	30	mg/kg	02/22/13 14:43	

Page 12 of 20





### Southwest Research Institute

Jet Fuel

Analytical Method:	SVOCs by SW-846	8270C						Pr	ep Metho	d: SW.	3550	
Seq Number:	907636		Μ	latrix:	Solid				Date Pre	p: 02/2	21/2013	
MB Sample Id:	634141-1-BLK		LCS Samp	ole Id:	634141-1	-BKS		LCSI	D Sample	Id: 634	141-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Fluoranthene	< 0.0315	1.67	1.30	78	1.32	79	59-119	2	30	mg/kg	02/22/13 14:43	
Fluorene	< 0.0356	1.67	1.40	84	1.41	84	56-112	1	30	mg/kg	02/22/13 14:43	
Hexachlorobenzene	< 0.0292	1.67	1.28	77	1.28	77	58-119	0	30	mg/kg	02/22/13 14:43	
Hexachlorobutadiene	< 0.0313	1.67	1.23	74	1.20	72	55-105	2	30	mg/kg	02/22/13 14:43	
Hexachlorocyclopentadi	ene <0.0147	1.67	0.683	41	0.644	39	18-119	6	30	mg/kg	02/22/13 14:43	
Hexachloroethane	< 0.0373	1.67	1.30	78	1.28	77	54-105	2	30	mg/kg	02/22/13 14:43	
Indeno(1,2,3-c,d)Pyrene	< 0.0309	1.67	1.44	86	1.46	87	59-118	1	30	mg/kg	02/22/13 14:43	
Isophorone	< 0.0299	1.67	1.44	86	1.43	86	46-116	1	30	mg/kg	02/22/13 14:43	
Naphthalene	< 0.0344	1.67	1.30	78	1.27	76	54-106	2	30	mg/kg	02/22/13 14:43	
Nitrobenzene	< 0.0291	1.67	1.32	79	1.29	77	44-118	2	30	mg/kg	02/22/13 14:43	
N-Nitrosodi-n-Propylam	ine <0.0399	1.67	1.56	93	1.53	92	50-111	2	30	mg/kg	02/22/13 14:43	
N-Nitrosodiphenylamine	< 0.0249	1.67	1.39	83	1.35	81	55-119	3	30	mg/kg	02/22/13 14:43	
Pentachlorophenol	< 0.0221	1.67	1.38	83	1.38	83	38-128	0	40	mg/kg	02/22/13 14:43	
Phenanthrene	< 0.0332	1.67	1.31	78	1.33	80	56-118	2	30	mg/kg	02/22/13 14:43	
Phenol	< 0.0358	1.67	1.47	88	1.45	87	50-114	1	40	mg/kg	02/22/13 14:43	
Pyrene	< 0.0333	1.67	1.51	90	1.49	89	56-125	1	30	mg/kg	02/22/13 14:43	
Pyridine	< 0.0427	1.67	1.30	78	1.27	76	44-102	2	40	mg/kg	02/22/13 14:43	
Surrogate	MB %Rec	MB Flag	LC: %R	S ec	LCS Flag	LCSE %Rec	) LCS c Fla	D Li g	mits	Units	Analysis Date	
2-Fluorophenol	74		79			79		25	-121	%	02/22/13 14:43	
Phenol-d6	81		88			89		24	-113	%	02/22/13 14:43	
Nitrobenzene-d5	65		71			72		23	-120	%	02/22/13 14:43	
2-Fluorobiphenyl	67		74			76		30	-115	%	02/22/13 14:43	
2,4,6-Tribromophenol	72		79			81		19	-122	%	02/22/13 14:43	
Terphenyl-D14	76		78			79		18	-137	%	02/22/13 14:43	

Page 13 of 20





### Southwest Research Institute

Jet Fuel

Analytical Method:	SVOCs by S	SW-846	8270C						Pr	ep Metho	d: SW:	3550	
Seq Number:	907636				Matrix:	Soil				Date Pre	p: 02/2	1/2013	
Parent Sample Id:	457936-001			MS Sa	mple Id:	457936-00	01 S		MSI	O Sample	Id: 457	936-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trichlorobenzene		< 0.0304	1.67	1.18	71	1.15	69	37-133	3	30	mg/kg	02/22/13 15:32	
1,2-Dichlorobenzene		< 0.0362	1.67	1.25	75	1.19	71	65-135	5	30	mg/kg	02/22/13 15:32	
1,3-Dichlorobenzene	<	< 0.0305	1.67	1.21	72	1.16	69	65-135	4	30	mg/kg	02/22/13 15:32	
1,4-Dichlorobenzene	-	< 0.0329	1.67	1.24	74	1.18	71	36-134	5	30	mg/kg	02/22/13 15:32	
2,4,5-Trichlorophenol		<0.0391	1.67	1.49	89	1.48	89	65-135	1	30	mg/kg	02/22/13 15:32	
2,4,6-Trichlorophenol		<0.0268	1.67	1.41	84	1.38	83	65-135	2	30	mg/kg	02/22/13 15:32	
2,4-Dichlorophenol	-	< 0.0314	1.67	1.35	81	1.35	81	65-135	0	30	mg/kg	02/22/13 15:32	
2,4-Dimethylphenol		< 0.0784	1.67	1.38	83	1.37	82	65-135	1	30	mg/kg	02/22/13 15:32	
2,4-Dinitrophenol	-	<0.0691	1.67	2.04	122	2.07	124	65-135	1	40	mg/kg	02/22/13 15:32	
2,4-Dinitrotoluene	~	< 0.0318	1.67	1.57	94	1.57	94	40-130	0	30	mg/kg	02/22/13 15:32	
2,6-Dinitrotoluene		< 0.0319	1.67	1.39	83	1.39	83	28-89	0	30	mg/kg	02/22/13 15:32	
2-Chloronaphthalene		< 0.0264	1.67	1.30	78	1.28	77	65-135	2	30	mg/kg	02/22/13 15:32	
2-Chlorophenol	<	< 0.0323	1.67	1.33	80	1.28	77	25-140	4	30	mg/kg	02/22/13 15:32	
2-Methylnaphthalene		< 0.0342	1.67	1.27	76	1.24	74	25-175	2	30	mg/kg	02/22/13 15:32	
2-methylphenol		< 0.0433	1.67	1.44	86	1.40	84	65-135	3	30	mg/kg	02/22/13 15:32	
2-Nitroaniline	-	< 0.0294	1.67	1.25	75	1.23	74	65-135	2	40	mg/kg	02/22/13 15:32	
2-Nitrophenol		<0.0228	1.67	1.33	80	1.31	78	65-135	2	30	mg/kg	02/22/13 15:32	
3&4-Methylphenol		< 0.0758	1.67	1.51	90	1.48	89	65-135	2	30	mg/kg	02/22/13 15:32	
3,3-Dichlorobenzidine	<	< 0.0457	1.67	1.56	93	1.54	92	20-140	1	40	mg/kg	02/22/13 15:32	
3-Nitroaniline	-	< 0.0346	1.67	1.45	87	1.41	84	65-135	3	40	mg/kg	02/22/13 15:32	
4,6-dinitro-2-methyl phe	nol	< 0.0271	1.67	1.76	105	1.76	105	65-135	0	40	mg/kg	02/22/13 15:32	
4-Bromophenyl-phenyle	ther	< 0.0339	1.67	1.33	80	1.33	80	65-135	0	30	mg/kg	02/22/13 15:32	
4-chloro-3-methylphenol		< 0.0350	1.67	1.44	86	1.42	85	28-134	1	30	mg/kg	02/22/13 15:32	
4-Chloroaniline		<0.0668	1.67	1.37	82	1.36	81	4-149	1	40	mg/kg	02/22/13 15:32	
4-Chlorophenyl-phenyl e	ther	< 0.0335	1.67	1.39	83	1.42	85	65-135	2	30	mg/kg	02/22/13 15:32	
4-Nitroaniline	~	< 0.0300	1.67	1.44	86	1.53	92	65-135	6	40	mg/kg	02/22/13 15:32	
4-Nitrophenol		< 0.0311	1.67	1.43	86	1.35	81	13-106	6	40	mg/kg	02/22/13 15:32	
Acenaphthene	-	< 0.0358	1.67	1.34	80	1.34	80	41-134	0	30	mg/kg	02/22/13 15:32	
Acenaphthylene	-	< 0.0338	1.67	1.39	83	1.36	81	65-135	2	30	mg/kg	02/22/13 15:32	
Aniline (Phenylamine, Amir	iobenzene)	< 0.111	1.67	1.36	81	1.29	77	2-145	5	40	mg/kg	02/22/13 15:32	
Anthracene		< 0.0257	1.67	1.41	84	1.39	83	65-135	1	30	mg/kg	02/22/13 15:32	
Benzo(a)anthracene		0.0387	1.67	1.57	92	1.47	86	44-126	7	30	mg/kg	02/22/13 15:32	
Benzo(a)pyrene		0.0340	1.67	1.60	94	1.48	87	65-135	8	30	mg/kg	02/22/13 15:32	
Benzo(b)fluoranthene		0.0450	1.67	1.66	97	1.39	81	65-135	18	30	mg/kg	02/22/13 15:32	
Benzo(g,h,i)perylene		<0.0294	1.67	1.59	95	1.50	90	65-135	6	30	mg/kg	02/22/13 15:32	
Benzo(k)fluoranthene		< 0.0390	1.67	1.52	91	1.55	93	25-125	2	30	mg/kg	02/22/13 15:32	
Benzoic Acid		< 0.0483	5.00	4.38	88	4.69	94	50-125	7	50	mg/kg	02/22/13 15:32	
Benzyl Butyl Phthalate		< 0.0259	1.67	1.60	96	1.59	95	65-135	1	30	mg/kg	02/22/13 15:32	
bis(2-chloroethoxy) meth	nane -	< 0.0372	1.67	1.35	81	1.32	79	65-135	2	30	mg/kg	02/22/13 15:32	
bis(2-chloroethyl) ether		< 0.0358	1.67	1.38	83	1.35	81	65-135	2	30	mg/kg	02/22/13 15:32	
bis(2-chloroisopropyl) et	her	< 0.0334	1.67	1.51	90	1.43	86	65-135	5	30	mg/kg	02/22/13 15:32	
bis(2-ethylhexyl) phthala	ite -	<0.0266	1.67	1.68	101	1.62	97	65-135	4	30	mg/kg	02/22/13 15:32	
Chrysene		0.0370	1.67	1.52	89	1.51	88	65-135	1	30	mg/kg	02/22/13 15:32	
Dibenz(a,h)Anthracene	*	< 0.0351	1.67	1.59	95	1.52	91	65-135	5	30	mg/kg	02/22/13 15:32	
Dibenzofuran	-	< 0.0329	1.67	1.41	84	1.39	83	65-135	1	30	mg/kg	02/22/13 15:32	
Diethyl Phthalate		< 0.0345	1.67	1.46	87	1.44	86	37-125	1	30	mg/kg	02/22/13 15:32	
Dimethyl Phthalate		< 0.0344	1.67	1.45	87	1.42	85	65-135	2	30	mg/kg	02/22/13 15:32	
di-n-Butyl Phthalate	~	<0.0287	1.67	1.51	90	1.41	84	65-135	7	30	mg/kg	02/22/13 15:32	
di-n-Octyl Phthalate		< 0.0316	1.67	1.69	101	1.59	95	65-135	6	30	mg/kg	02/22/13 15:32	

Page 14 of 20





### Southwest Research Institute

Jet Fuel

Analytical Method:	SVOCs by	SW-846	8270C						Pr	ep Metho	d: SW.	3550	
Seq Number:	907636			Ν	fatrix:	Soil				Date Pre	p: 02/2	21/2013	
Parent Sample Id:	457936-001			MS Sam	ple Id:	457936-00	01 S		MSI	O Sample	Id: 457	936-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Fluoranthene		0.0637	1.67	1.48	85	1.37	78	65-135	8	30	mg/kg	02/22/13 15:32	
Fluorene		< 0.0356	1.67	1.42	85	1.37	82	65-135	4	30	mg/kg	02/22/13 15:32	
Hexachlorobenzene		< 0.0292	1.67	1.32	79	1.31	78	65-135	1	30	mg/kg	02/22/13 15:32	
Hexachlorobutadiene		< 0.0313	1.67	1.17	70	1.14	68	65-135	3	30	mg/kg	02/22/13 15:32	
Hexachlorocyclopentadi	ene	< 0.0147	1.67	0.593	36	0.589	35	65-135	1	30	mg/kg	02/22/13 15:32	M2
Hexachloroethane		< 0.0373	1.67	1.25	75	1.17	70	65-135	7	30	mg/kg	02/22/13 15:32	
Indeno(1,2,3-c,d)Pyrene		< 0.0309	1.67	1.57	94	1.50	90	65-135	5	30	mg/kg	02/22/13 15:32	
Isophorone		< 0.0299	1.67	1.44	86	1.41	84	65-135	2	30	mg/kg	02/22/13 15:32	
Naphthalene		< 0.0344	1.67	1.26	75	1.22	73	65-135	3	30	mg/kg	02/22/13 15:32	
Nitrobenzene		< 0.0291	1.67	1.27	76	1.25	75	65-135	2	30	mg/kg	02/22/13 15:32	
N-Nitrosodi-n-Propylam	ine	< 0.0399	1.67	1.49	89	1.50	90	53-130	1	30	mg/kg	02/22/13 15:32	
N-Nitrosodiphenylamine	ð	< 0.0249	1.67	1.41	84	1.41	84	65-135	0	30	mg/kg	02/22/13 15:32	
Pentachlorophenol		< 0.0221	1.67	1.56	93	1.52	91	14-111	3	40	mg/kg	02/22/13 15:32	
Phenanthrene		< 0.0332	1.67	1.42	85	1.39	83	65-135	2	30	mg/kg	02/22/13 15:32	
Phenol		< 0.0358	1.67	1.41	84	1.35	81	27-127	4	40	mg/kg	02/22/13 15:32	
Pyrene		0.0590	1.67	1.63	94	1.54	89	41-144	6	30	mg/kg	02/22/13 15:32	
Pyridine		< 0.0427	1.67	1.20	72	1.23	74	39-98	2	40	mg/kg	02/22/13 15:32	
Surrogate				M % R	S lec	MS Flag	MSD %Rec	MSI Flag	) Li g	mits	Units	Analysis Date	
2-Fluorophenol				7:	5		73		25	-121	%	02/22/13 15:32	
Phenol-d6				80	5		84		24	-113	%	02/22/13 15:32	
Nitrobenzene-d5				6	)		68		23	-120	%	02/22/13 15:32	
2-Fluorobiphenyl				7:	3		72		30	-115	%	02/22/13 15:32	
2,4,6-Tribromophenol				80	)		83		19	-122	%	02/22/13 15:32	
Terphenyl-D14				82	2		81		18	-137	%	02/22/13 15:32	

Page 15 of 20





### Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SW-846 8	8260B	Metaline Calid					Prep Method: SW5030B				
Seq Number:	907617			Matrix:	Solid				Date Pro	ep: 02/2	2/2013	
MB Sample Id:	634196-1-BLK		LCS Sar	nple Id:	634196-1-	-BKS		LCSI	O Sample	Id: 634	196-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethan	e <0.000148	0.0500	0.0542	108	0.0500	100	81-127	8	25	mg/kg	02/22/13 11:36	
1,1,1-Trichloroethane	< 0.000602	0.0500	0.0496	99	0.0459	92	71-124	8	25	mg/kg	02/22/13 11:36	
1,1,2,2-Tetrachloroethan	e <0.000194	0.0500	0.0520	104	0.0468	94	75-133	11	25	mg/kg	02/22/13 11:36	
1,1,2-Trichloroethane	< 0.000225	0.0500	0.0514	103	0.0481	96	75-131	7	25	mg/kg	02/22/13 11:36	
1,1-Dichloroethane	< 0.000125	0.0500	0.0497	99	0.0462	92	73-124	7	25	mg/kg	02/22/13 11:36	
1,1-Dichloroethene	< 0.000192	0.0500	0.0431	86	0.0398	80	68-119	8	25	mg/kg	02/22/13 11:36	
1,1-Dichloropropene	< 0.000198	0.0500	0.0475	95	0.0438	88	72-118	8	25	mg/kg	02/22/13 11:36	
1,2,3-Trichlorobenzene	< 0.000106	0.0500	0.0524	105	0.0514	103	75-131	2	25	mg/kg	02/22/13 11:36	
1,2,3-Trichloropropane	< 0.000359	0.0500	0.0583	117	0.0529	106	75-131	10	25	mg/kg	02/22/13 11:36	
1,2,4-Trichlorobenzene	< 0.000191	0.0500	0.0515	103	0.0510	102	79-128	1	25	mg/kg	02/22/13 11:36	
1,2,4-Trimethylbenzene	< 0.000103	0.0500	0.0543	109	0.0505	101	60-159	7	25	mg/kg	02/22/13 11:36	
1,2-Dibromo-3-Chloropro	opane <0.00107	0.0500	0.0479	96	0.0458	92	58-133	4	25	mg/kg	02/22/13 11:36	
1,2-Dibromoethane	< 0.000193	0.0500	0.0520	104	0.0482	96	80-127	8	25	mg/kg	02/22/13 11:36	
1,2-Dichlorobenzene	< 0.000129	0.0500	0.0502	100	0.0464	93	84-121	8	25	mg/kg	02/22/13 11:36	
1,2-Dichloroethane	< 0.000177	0.0500	0.0491	98	0.0445	89	70-123	10	25	mg/kg	02/22/13 11:36	
1,2-Dichloropropane	< 0.000162	0.0500	0.0483	97	0.0446	89	75-122	8	25	mg/kg	02/22/13 11:36	
1,3,5-Trimethylbenzene	< 0.000166	0.0500	0.0548	110	0.0503	101	61-160	9	25	mg/kg	02/22/13 11:36	
1.3-Dichlorobenzene	< 0.000159	0.0500	0.0509	102	0.0475	95	84-124	7	25	mg/kg	02/22/13 11:36	
1.3-Dichloropropane	< 0.000227	0.0500	0.0514	103	0.0480	96	82-131	7	25	mg/kg	02/22/13 11:36	
1.4-Dichlorobenzene	<0.0000970	0.0500	0.0490	98	0.0461	92	82-120	6	25	mg/kg	02/22/13 11:36	
2.2-Dichloropropane	< 0.000127	0.0500	0.0502	100	0.0491	98	67-137	2	25	mg/kg	02/22/13 11:36	
2-Butanone	< 0.00173	0,600	0.612	102	0.542	90	46-137	12	25	mg/kg	02/22/13 11:36	
2-Chlorotoluene	< 0.000217	0.0500	0.0525	105	0.0478	96	83-129	9	25	mg/kg	02/22/13 11:36	
2-Hexanone	< 0.00112	0.600	0.650	108	0.583	97	52-137	11	25	mg/kg	02/22/13 11:36	
4-Chlorotoluene	< 0.000118	0.0500	0.0517	103	0.0471	94	83-125	9	25	mg/kg	02/22/13 11:36	
Acetone	0.00535	0.600	0.533	89	0.476	79	33-148	11	25	mg/kg	02/22/13 11:36	
Benzene	< 0.000300	0.0500	0.0475	95	0.0433	87	71-119	9	25	mg/kg	02/22/13 11:36	
Bromobenzene	< 0.000198	0.0500	0.0505	101	0.0462	92	84-123	9	25	mg/kg	02/22/13 11:36	
Bromochloromethane	< 0.000215	0.0500	0.0458	92	0.0426	85	71-120	7	25	mg/kg	02/22/13 11:36	
Bromodichloromethane	< 0.000186	0.0500	0.0554	111	0.0509	102	78-126	8	25	mg/kg	02/22/13 11:36	
Bromoform	< 0.000393	0.0500	0.0471	94	0.0429	86	63-136	9	25	mg/kg	02/22/13 11:36	
Bromomethane	< 0.000274	0.0500	0.0405	81	0.0374	75	57-118	8	25	mg/kg	02/22/13 11:36	
Carbon Disulfide	0.000280	0.550	0.590	107	0.546	99	55-136	8	25	mg/kg	02/22/13 11:36	
Carbon Tetrachloride	< 0.000132	0.0500	0.0494	99	0.0455	91	63-135	8	25	mg/kg	02/22/13 11:36	
Chlorobenzene	< 0.000104	0.0500	0.0493	99	0.0456	91	83-121	8	25	mg/kg	02/22/13 11:36	
Chloroethane	< 0.000254	0.0500	0.0421	84	0.0384	77	57-122	9	25	mg/kg	02/22/13 11:36	
Chloroform	0.000140	0.0500	0.0498	100	0.0455	91	74-118	9	25	mg/kg	02/22/13 11:36	
Chloromethane	< 0.000322	0.0500	0.0437	87	0.0398	80	58-110	9	25	mg/kg	02/22/13 11:36	
cis-1,2-Dichloroethene	< 0.000165	0.0500	0.0509	102	0.0472	94	72-131	8	25	mg/kg	02/22/13 11:36	
cis-1,3-Dichloropropene	< 0.000128	0.0500	0.0564	113	0.0520	104	74-135	8	25	mg/kg	02/22/13 11:36	
Dibromochloromethane	< 0.000422	0.0500	0.0453	91	0.0418	84	77-130	8	25	mg/kg	02/22/13 11:36	
Dibromomethane	< 0.000260	0.0500	0.0500	100	0.0459	92	73-126	9	25	mg/kg	02/22/13 11:36	
Dichlorodifluoromethane	< 0.000484	0.0500	0.0505	101	0.0463	93	54-122	9	25	mg/kg	02/22/13 11:36	
Ethylbenzene	< 0.000104	0.0500	0.0509	102	0.0466	93	80-123	9	25	mg/kg	02/22/13 11:36	
Hexachlorobutadiene	< 0.000346	0.0500	0.0504	101	0.0495	99	77-130	2	25	mg/kg	02/22/13 11:36	
Iodomethane (Methyl Iod	lide) <0.000200	0.0500	0.0457	91	0.0421	84	63-116	8	25	mg/kg	02/22/13 11:36	
isopropylbenzene	< 0.000112	0.0500	0.0499	100	0.0464	93	55-155	7	25	mg/kg	02/22/13 11:36	
m,p-Xylenes	< 0.000185	0.100	0.106	106	0.0979	98	78-127	8	25	mg/kg	02/22/13 11:36	
Methylene Chloride	0.00649	0.0500	0.0515	103	0.0486	97	57-134	6	25	mg/kg	02/22/13 11:36	

Page 16 of 20





### Southwest Research Institute

Jet Fuel

Analytical Method: N	OAs by	SW-846 8	260B						Pr	ep Meth	od: SW3	5030B	
Seq Number: 9	07617				Matrix:	Solid				Date Pr	ep: 02/2	2/2013	
MB Sample Id: 6	34196-1-	BLK		LCS Sar	nple Id:	634196-1-	BKS		LCSI	O Sample	e Id: 634	196-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE	<	< 0.000142	0.100	0.114	114	0.107	107	64-148	6	25	mg/kg	02/22/13 11:36	
Naphthalene	<	<0.000148	0.0500	0.0491	98	0.0481	96	53-162	2	25	mg/kg	02/22/13 11:36	
n-Butylbenzene	<	0.0000990	0.0500	0.0527	105	0.0494	99	82-127	6	25	mg/kg	02/22/13 11:36	
n-Propylbenzene	<	< 0.000137	0.0500	0.0538	108	0.0496	99	84-131	8	25	mg/kg	02/22/13 11:36	
o-Xylene	<	<0.000149	0.0500	0.0512	102	0.0473	95	79-125	8	25	mg/kg	02/22/13 11:36	
p-Cymene (p-Isopropyltol	uene) <(	0.0000800	0.0500	0.0548	110	0.0513	103	84-130	7	25	mg/kg	02/22/13 11:36	
Sec-Butylbenzene	<	< 0.000121	0.0500	0.0535	107	0.0494	99	84-131	8	25	mg/kg	02/22/13 11:36	
Styrene	<	< 0.000158	0.0500	0.0554	111	0.0508	102	80-126	9	25	mg/kg	02/22/13 11:36	
tert-Butylbenzene	<	0.0000900	0.0500	0.0529	106	0.0490	98	83-132	8	25	mg/kg	02/22/13 11:36	
Tetrachloroethylene	<	< 0.000173	0.0500	0.0493	99	0.0455	91	79-124	8	25	mg/kg	02/22/13 11:36	
Toluene	<	< 0.000117	0.0500	0.0475	95	0.0442	88	74-122	7	25	mg/kg	02/22/13 11:36	
trans-1,2-dichloroethene	<	< 0.000123	0.0500	0.0456	91	0.0420	84	63-110	8	25	mg/kg	02/22/13 11:36	
trans-1,3-dichloropropene	<	< 0.000361	0.0500	0.0440	88	0.0418	84	73-125	5	25	mg/kg	02/22/13 11:36	
Trichloroethene	<	<0.000147	0.0500	0.0519	104	0.0468	94	78-119	10	25	mg/kg	02/22/13 11:36	
Trichlorofluoromethane	<	<0.000186	0.0500	0.0448	90	0.0409	82	71-148	9	25	mg/kg	02/22/13 11:36	
Vinyl Acetate	<	< 0.000213	0.500	0.553	111	0.498	100	40-154	10	25	mg/kg	02/22/13 11:36	
Vinyl Chloride	<	<0.000193	0.0500	0.0411	82	0.0371	74	60-123	10	25	mg/kg	02/22/13 11:36	
Surrogate		MB %Rec	MB Flag	L %	CS Rec	LCS Flag	LCSD %Rec	D LCSI Flag	D Li	mits	Units	Analysis Date	
Dibromofluoromethane		92		1	02		102		53	-142	%	02/22/13 11:36	
1,2-Dichloroethane-D4		101		1	01		98		56	-150	%	02/22/13 11:36	
Toluene-D8		100		1	01		101		70	-130	%	02/22/13 11:36	
4-Bromofluorobenzene		103		1	01		99		68	-152	%	02/22/13 11:36	

Page 17 of 20





### Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SV	W-846 8	260B						Pr	ep Metho	d: SW	5030B	
Seq Number:	907617				Matrix:	Product				Date Pre	p: 02/2	22/2013	
Parent Sample Id:	457697-002			MS Sar	nple Id:	457697-00	02 S		MSI	O Sample	Id: 457	697-002 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethan	e	<3.70	1250	1150	92	1160	93	72-125	1	25	mg/kg	02/22/13 14:28	
1,1,1-Trichloroethane		<15.1	1250	1100	88	1110	89	75-125	1	25	mg/kg	02/22/13 14:28	
1,1,2,2-Tetrachloroethan	e	<4.85	1250	2560	205	2760	221	74-125	8	25	mg/kg	02/22/13 14:28	M1
1,1,2-Trichloroethane		< 5.63	1250	1400	112	1460	117	75-127	4	25	mg/kg	02/22/13 14:28	
1,1-Dichloroethane		<3.13	1250	1120	90	1140	91	72-125	2	25	mg/kg	02/22/13 14:28	
1,1-Dichloroethene		<4.80	1250	992	79	998	80	59-172	1	25	mg/kg	02/22/13 14:28	
1,1-Dichloropropene		<4.95	1250	1060	85	1060	85	75-125	0	25	mg/kg	02/22/13 14:28	
1,2,3-Trichlorobenzene		<2.65	1250	1340	107	1400	112	75-137	4	25	mg/kg	02/22/13 14:28	
1,2,3-Trichloropropane		<8.98	1250	1230	98	1270	102	75-125	3	25	mg/kg	02/22/13 14:28	
1,2,4-Trichlorobenzene		<4.78	1250	1310	105	1340	107	75-135	2	25	mg/kg	02/22/13 14:28	
1,2,4-Trimethylbenzene		13500	1250	13200	0	14200	56	75-125	7	25	mg/kg	02/22/13 14:28	M3
1,2-Dibromo-3-Chloropr	opane	<26.7	1250	1430	114	1530	122	59-125	7	25	mg/kg	02/22/13 14:28	
1,2-Dibromoethane		<4.83	1250	1180	94	1190	95	73-125	1	25	mg/kg	02/22/13 14:28	
1,2-Dichlorobenzene		<3.23	1250	1140	91	1160	93	75-125	2	25	mg/kg	02/22/13 14:28	
1,2-Dichloroethane		<4.43	1250	1070	86	1090	87	68-127	2	25	mg/kg	02/22/13 14:28	
1,2-Dichloropropane		<4.05	1250	1100	88	1130	90	74-125	3	25	mg/kg	02/22/13 14:28	
1,3,5-Trimethylbenzene		3790	1250	4590	64	4830	83	70-130	5	25	mg/kg	02/22/13 14:28	M3
1,3-Dichlorobenzene		<3.98	1250	1150	92	1160	93	75-125	1	25	mg/kg	02/22/13 14:28	
1,3-Dichloropropane		<5.68	1250	1170	94	1200	96	75-125	3	25	mg/kg	02/22/13 14:28	
1,4-Dichlorobenzene		<2.43	1250	1120	90	1130	90	75-125	1	25	mg/kg	02/22/13 14:28	
2,2-Dichloropropane		<3.18	1250	1030	82	1120	90	75-125	8	25	mg/kg	02/22/13 14:28	
2-Butanone		<43.2	15000	13700	91	14100	94	75-125	3	25	mg/kg	02/22/13 14:28	
2-Chlorotoluene		< 5.43	1250	1180	94	1190	95	73-125	1	25	mg/kg	02/22/13 14:28	
2-Hexanone		<28.0	15000	13900	93	15900	106	75-125	13	25	mg/kg	02/22/13 14:28	
4-Chlorotoluene		<2.95	1250	1490	119	1510	121	74-125	1	25	mg/kg	02/22/13 14:28	
Acetone		212	15000	11900	78	12400	81	50-150	4	25	mg/kg	02/22/13 14:28	
Benzene		13.3	1250	1070	85	1100	87	66-142	3	25	mg/kg	02/22/13 14:28	
Bromobenzene		<4.95	1250	1140	91	1150	92	75-125	1	25	mg/kg	02/22/13 14:28	
Bromochloromethane		< 5.38	1250	1020	82	1060	85	60-140	4	25	mg/kg	02/22/13 14:28	
Bromodichloromethane		<4.65	1250	1190	95	1210	97	75-125	2	25	mg/kg	02/22/13 14:28	
Bromoform		<9.83	1250	926	74	921	74	75-125	1	25	mg/kg	02/22/13 14:28	M2
Bromomethane		<6.85	1250	845	68	857	69	60-140	1	25	mg/kg	02/22/13 14:28	
Carbon Disulfide		4.50	13800	13300	96	13500	98	60-140	1	25	mg/kg	02/22/13 14:28	
Carbon Tetrachloride		<3.30	1250	1070	86	1090	87	62-125	2	25	mg/kg	02/22/13 14:28	
Chlorobenzene		<2.60	1250	1110	89	1120	90	60-133	1	25	mg/kg	02/22/13 14:28	
Chloroethane		< 6.35	1250	892	71	893	71	60-140	0	25	mg/kg	02/22/13 14:28	
Chloroform		<3.48	1250	1100	88	1130	90	74-125	3	25	mg/kg	02/22/13 14:28	
Chloromethane		<8.05	1250	968	77	1000	80	60-140	3	25	mg/kg	02/22/13 14:28	
cis-1,2-Dichloroethene		<4.13	1250	1130	90	1160	93	75-125	3	25	mg/kg	02/22/13 14:28	
cis-1,3-Dichloropropene		<3.20	1250	1250	100	1290	103	74-125	3	25	mg/kg	02/22/13 14:28	
Dibromochloromethane		<10.6	1250	965	77	984	79	73-125	2	25	mg/kg	02/22/13 14:28	
Dibromomethane		<6.50	1250	1100	88	1140	91	69-127	4	25	mg/kg	02/22/13 14:28	
Dichlorodifluoromethan	e	<12.1	1250	1110	89	1140	91	65-135	3	25	mg/kg	02/22/13 14:28	
Ethylbenzene		1570	1250	2540	78	2640	86	75-125	4	25	mg/kg	02/22/13 14:28	
Hexachlorobutadiene		<8.65	1250	1240	99	1240	99	75-125	0	25	mg/kg	02/22/13 14:28	
Iodomethane (Methyl Io	dide)	<5.00	1250	1030	82	1040	83	75-125	1	25	mg/kg	02/22/13 14:28	
isopropylbenzene		684	1250	1720	83	1780	88	75-125	3	25	mg/kg	02/22/13 14:28	
m,p-Xylenes		6510	2500	7940	57	8340	73	75-125	5	25	mg/kg	02/22/13 14:28	M2
Methylene Chloride		170	1250	1120	76	1150	78	/5-125	3	25	mg/kg	02/22/13 14:28	

Page 18 of 20





### Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by S	W-846 8	8260B						Pr	ep Meth	od: SW5	5030B	
Seq Number:	907617			1	Matrix:	Product				Date Pr	rep: 02/2	2/2013	
Parent Sample Id:	457697-002			MS Sam	nple Id:	457697-00	02 S		MSI	D Sample	e Id: 4576	697-002 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE		<3.55	2500	2590	104	2690	108	60-140	4	25	mg/kg	02/22/13 14:28	
Naphthalene		1350	1250	2540	95	2740	111	70-130	8	25	mg/kg	02/22/13 14:28	
n-Butylbenzene		1730	1250	2780	84	2960	98	75-125	6	25	mg/kg	02/22/13 14:28	
n-Propylbenzene		2010	1250	3030	82	3180	94	75-125	5	25	mg/kg	02/22/13 14:28	
o-Xylene		3440	1250	4190	60	4400	77	75-125	5	25	mg/kg	02/22/13 14:28	M2
p-Cymene (p-Isopropylte	oluene)	708	1250	1850	91	1930	98	75-125	4	25	mg/kg	02/22/13 14:28	
Sec-Butylbenzene		799	1250	1930	90	1990	95	75-125	3	25	mg/kg	02/22/13 14:28	
Styrene		<3.95	1250	1370	110	1390	111	75-125	1	25	mg/kg	02/22/13 14:28	
tert-Butylbenzene		42.5	1250	1270	98	1280	99	75-125	1	25	mg/kg	02/22/13 14:28	
Tetrachloroethylene		<4.33	1250	1100	88	1110	89	71-125	1	25	mg/kg	02/22/13 14:28	
Toluene		662	1250	1670	81	1710	84	59-139	2	25	mg/kg	02/22/13 14:28	
trans-1,2-dichloroethene		<3.08	1250	1020	82	1040	83	75-125	2	25	mg/kg	02/22/13 14:28	
trans-1,3-dichloroproper	ie	< 9.03	1250	969	78	1020	82	66-125	5	25	mg/kg	02/22/13 14:28	
Trichloroethene		<3.68	1250	1130	90	1140	91	62-137	1	25	mg/kg	02/22/13 14:28	
Trichlorofluoromethane		<4.65	1250	947	76	983	79	67-125	4	25	mg/kg	02/22/13 14:28	
Vinyl Acetate		< 5.33	12500	12000	96	12400	99	60-140	3	25	mg/kg	02/22/13 14:28	
Vinyl Chloride		<4.83	1250	879	70	890	71	60-140	1	25	mg/kg	02/22/13 14:28	
Surrogate				M %I	IS Rec	MS Flag	MSD %Ree	o MSI c Flag	D Li g	mits	Units	Analysis Date	
Dibromofluoromethane				10	00		101		53	-142	%	02/22/13 14:28	
1,2-Dichloroethane-D4				10	00		98		56	-150	%	02/22/13 14:28	
Toluene-D8				10	05		104		70	-130	%	02/22/13 14:28	
4-Bromofluorobenzene				10	09		108		68	-152	%	02/22/13 14:28	

Page 19 of 20



### **XENCO** Laboratories



Comments

### Prelogin/Nonconformance Report- Sample Log-In

Client: Southwest Research Institute	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 02/20/2013 12:00:00 PM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 457983	Temperature Measuring device used : r-31

#### Sample Receipt Checklist

#1 *Temperature of cooler(s)?	20
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	No
#5 Custody Seals intact on sample bottles?	No
#6 *Custody Seals Signed and dated?	No
#7 *Chain of Custody present?	Yes
#8 Sample instructions complete on Chain of Custody?	Yes
#9 Any missing/extra samples?	No
#10 Chain of Custody signed when relinquished/ received?	Yes
#11 Chain of Custody agrees with sample label(s)?	Yes
#12 Container label(s) legible and intact?	Yes
#13 Sample matrix/ properties agree with Chain of Custody?	Yes
#14 Samples in proper container/ bottle?	Yes
#15 Samples properly preserved?	N/A
#16 Sample container(s) intact?	Yes
#17 Sufficient sample amount for indicated test(s)?	Yes
#18 All samples received within hold time?	Yes
#19 Subcontract of sample(s)?	N/A
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	N/A
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	N/A
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst: tt PH Device/Lot#:

Checklist completed by:

Tanyo Tanya Torres

Date: 02/21/2013

Checklist reviewed by:

Date: 02/21/2013

Page 20 of 20

# Appendix BN EPA Testing Reports: CL12-4716 and CL12-4717



Page 1 of 29



25-FEB-13

Project Manager: **Scott Hutzler Southwest Research Institute** 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228

Reference: XENCO Report No(s): **457697** Jet Fuel Project Address:

#### Scott Hutzler :

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 457697. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 457697 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Skip Harden Project Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 29



### CASE NARRATIVE

Client Name: Southwest Research Institute Project Name: Jet Fuel

 Project ID:
 CL12-4367

 Work Order Number(s):
 457697

Report Date: 25-FEB-13 Date Received: 02/14/2013

# Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Page 3 of 29





#### Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 3.0 9/20/2007. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- D1 Sample required dilution due to matrix.
- D2 Sample required dilution due to high concentration of target analyte.
- M1 Matrix spike recovery was high; the associated blank spike recovery was acceptable.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.
- M3 The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to spike level. The associated blank spike recovery was acceptable.
- S8 The analysis of the sample required a dilution such that the surrogate recovery calculation does not provide any useful information. The associated blank spike recovery was acceptable.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Page 4 of 29



### Sample Cross Reference 457697

### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CL12-4716	W	02-13-13 00:00		457697-001
CL12-4717	W	02-13-13 00:00		457697-002

Page 5 of 29



### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL12	-4716	Matrix	: Product	D	ate Received: 02.	14.13 09	.30
Lab Sample Id: 45769	7-001	Date Collected	: 02.13.13 0	0.00			
Analytical Method: S	WOCs by SW-846 8270C				Prep Method: SW	/3550	
Tech: C	'OR				% Moisture		
Analyst: W	VEW	Deter	00	19 12 09 20	Pagio: W/	Woight	
Analysi. W		Date P	rep: 02.	18.13 08.30	Dasis. we	a weight	
Seq Number: 9	07226				SUB: AZ0765		
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,2,4-Trichlorobenzene	120-82-1	<500	500	mg/kg	02.18.13 18.09	D1	3000
1,2-Dichlorobenzene	95-50-1	<500	500	mg/kg	02.18.13 18.09	D1	3000
1,3-Dichlorobenzene	541-73-1	<500	500	mg/kg	02.18.13 18.09	D1	3000
1,4-Dichlorobenzene	106-46-7	<500	500	mg/kg	02.18.13 18.09	<b>D</b> 1	3000
2,4,5-Trichlorophenol	95-95-4	<500	500	mg/kg	02.18.13 18.09	D1	3000
2,4,6-Trichlorophenol	88-06-2	<500	500	mg/kg	02.18.13 18.09	<b>D</b> 1	3000
2,4-Dichlorophenol	120-83-2	<500	500	mg/kg	02.18.13 18.09	D1	3000
2,4-Dimethylphenol	105-67-9	<500	500	mg/kg	02.18.13 18.09	D1	3000
2,4-Dinitrophenol	51-28-5	<1000	1000	mg/kg	02.18.13 18.09	<b>D</b> 1	3000
2,4-Dinitrotoluene	121-14-2	<500	500	mg/kg	02.18.13 18.09	D1	3000
2,6-Dinitrotoluene	606-20-2	<500	500	mg/kg	02.18.13 18.09	<b>D</b> 1	3000
2-Chloronaphthalene	91-58-7	<500	500	mg/kg	02.18.13 18.09	<b>D</b> 1	3000
2-Chlorophenol	95-57-8	<500	500	mg/kg	02.18.13 18.09	<b>D</b> 1	3000
2-Methylnaphthalene	91-57-6	1470	500	mg/kg	02.18.13 18.09	D2	3000
2-methylphenol	95-48-7	<500	500	mg/kg	02.18.13 18.09	<b>D</b> 1	3000
2-Nitroaniline	88-74-4	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
2-Nitrophenol	88-75-5	<500	500	mg/kg	02.18.13 18.09	<b>D</b> 1	3000
3&4-Methylphenol	15831-10-4	<500	500	mg/kg	02.18.13 18.09	<b>D</b> 1	3000
3,3-Dichlorobenzidine	91-94-1	<1000	1000	mg/kg	02.18.13 18.09	<b>D</b> 1	3000
3-Nitroaniline	99-09-2	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
4,6-dinitro-2-methyl phenol	534-52-1	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
4-Bromophenyl-phenylether	101-55-3	<500	500	mg/kg	02.18.13 18.09	D1	3000
4-chloro-3-methylphenol	59-50-7	<500	500	mg/kg	02.18.13 18.09	D1	3000
4-Chloroaniline	106-47-8	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
4-Chlorophenyl-phenyl ether	r 7005-72-3	<500	500	mg/kg	02.18.13 18.09	D1	3000
4-Nitroaniline	100-01-6	<1000	1000	mg/kg	02.18.13 18.09	<b>D</b> 1	3000
4-Nitrophenol	100-02-7	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
Acenaphthene	83-32-9	<500	500	mg/kg	02.18.13 18.09	D1	3000
Acenaphthylene	208-96-8	<500	500	mg/kg	02.18.13 18.09	D1	3000
Aniline (Phenylamine, Aminober	nzene) 62-53-3	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
Anthracene	120-12-7	<500	500	mg/kg	02.18.13 18.09	D1	3000
Benzo(a)anthracene	56-55-3	<500	500	mg/kg	02.18.13 18.09	D1	3000
Benzo(a)pyrene	50-32-8	<500	500	mg/kg	02.18.13 18.09	D1	3000
Benzo(b)fluoranthene	205-99-2	<500	500	mg/kg	02.18.13 18.09	<b>D</b> 1	3000
Benzo(g,h,i)perylene	191-24-2	<500	500	mg/kg	02.18.13 18.09	<b>D</b> 1	3000
Benzo(k)fluoranthene	207-08-9	<500	500	mg/kg	02.18.13 18.09	D1	3000
Benzoic Acid	65-85-0	<3000	3000	mg/kg	02.18.13 18.09	D1	3000
Benzyl Butyl Phthalate	85-68-7	<500	500	mg/kg	02.18.13 18.09	D1	3000
bis(2-chloroethoxy) methane	e 111-91-1	<500	500	mg/kg	02.18.13 18.09	D1	3000
bis(2-chloroethyl) ether	111-44-4	<500	500	mg/kg	02.18.13 18.09	D1	3000
bis(2-chloroisopropyl) ether	39638-32-9	<500	500	mg/kg	02.18.13 18.09	D1	3000

Page 6 of 29



#### Southwest Research Institute, San Antonio, TX

Jet Fuel

CL12-4716 Matrix Product Date Received: 02.14.13 09.30 Sample Id: Lab Sample Id: 457697-001 Date Collected: 02.13.13 00.00 Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3550 COR % Moisture Tech: WEW Analyst: 02.18.13 08.30 Basis: Wet Weight Date Prep: 907226 Seq Number: SUB: AZ0765 Parameter Analysis Date **Cas Number** Units Flag Dil Result RL bis(2-ethylhexyl) phthalate 117-81-7 <500 500 mg/kg 02.18.13 18.09 D1 3000 Chrysene 218-01-9 <500 500 02.18.13 18.09 D1 3000 mg/kg Dibenz(a,h)Anthracene 53-70-3 <500 500 mg/kg 02.18.13 18.09 D1 3000 Dibenzofuran 132-64-9 <500 500 mg/kg 02.18.13 18.09 D1 3000 **Diethyl Phthalate** 84-66-2 <500 500 mg/kg 02 18 13 18 09 D1 3000 Dimethyl Phthalate 131-11-3 <500 500 02.18.13 18.09 3000 mg/kg D1 di-n-Butvl Phthalate 84-74-2 < 500 500 02.18.13 18.09 3000 mg/kg D1 di-n-Octyl Phthalate 117-84-0 <500 500 02.18.13 18.09 D1 3000 mg/kg Fluoranthene 206-44-0 <500 500 02.18.13 18.09 D1 3000 mg/kg Fluorene 86-73-7 <500 500 02.18.13 18.09 D1 3000 mg/kg Hexachlorobenzene 118-74-1 <500 500 02.18.13 18.09 3000 mg/kg Dl Hexachlorobutadiene 87-68-3 <500 500 mg/kg 02.18.13 18.09 D1 3000 Hexachlorocyclopentadiene 77-47-4 <500 500 02.18.13 18.09 Dl 3000 mg/kg 67-72-1 <500 3000 Hexachloroethane 500 mg/kg 02 18 13 18 09 D1 Indeno(1,2,3-c,d)Pyrene 193-39-5 <500 500 mg/kg 02.18.13 18.09 D1 3000 78-59-1 <500 500 3000 Isophorone mg/kg 02.18.13 18.09 D1 Naphthalene 91-20-3 1770 500 02.18.13 18.09 D2 3000 mg/kg 98-95-3 3000 Nitrobenzene <500 500 mg/kg 02.18.13 18.09 D1 N-Nitrosodi-n-Propylamine 621-64-7 <500 500 mg/kg 02.18.13 18.09 Dl 3000 86-30-6 <500 500 02.18.13 18.09 D1 3000 N-Nitrosodiphenvlamine mg/kg Pentachlorophenol 87-86-5 <1000 1000 mg/kg 02.18.13 18.09 D1 3000 Phenanthrene 85-01-8 <500 500 02.18.13 18.09 D1 3000 mg/kg Phenol 108-95-2 <1000 1000 mg/kg 02 18 13 18 09 D1 3000 129-00-0 <500 02.18.13 18.09 3000 Pvrene 500 mg/kg D1 1000 3000 Pvridine 110-86-1 <1000 mg/kg 02.18.13 18.09 D1 2-Octenal, (E)- (TIC) TIC 2040 02.18.13 18.09 D2T4 3000 mg/kg Benzene, 1,3-dimethyl- (TIC) TIC 1520 02.18.13 18.09 D2T4 3000 mg/kg Benzene, 1-ethyl-2-methyl- (TIC) TIC 4570 02.18.13 18.09 D2T4 3000 mg/kg TIC 2120 02.18.13 18.09 D2T4 3000 Benzene, 1-ethyl-2-methyl- (TIC) mg/kg Benzene, 1-methyl-2-(1-methylethyl)- (TIC) TIC 1610 mg/kg 02.18.13 18.09 D2T4 3000 Benzene, 1-methyl-3-propyl- (TIC) TIC 2820 02.18.13 18.09 D2T4 3000 mg/kg Benzene, 1-methyl-4-(1-methylethyl)- (TIC) 3000 TIC 2250 mg/kg 02 18 13 18 09 D2T4 Cycloheptane, methyl- (TIC) TIC 3060 02.18.13 18.09 3000 mg/kg D2T4 Cvclohexane, propyl- (TIC) TIC 2120 D2T4 3000 mg/kg 02.18.13 18.09 Cyclooctane, 1,4-dimethyl-, cis- (TIC) TIC 1520 mg/kg 02.18.13 18.09 D2T4 3000 Decane (TIC) TIC 8650 02.18.13 18.09 D2T4 3000 mg/kg Decane, 3-methyl- (TIC) TIC 2350 mg/kg 02.18.13 18.09 D2T4 3000 Ether, hexyl pentyl (TIC) TIC 1500 02.18.13 18.09 D2T4 3000 mg/kg Naphthalene, 2,6-dimethyl- (TIC) TIC 1840 mg/kg 02.18.13 18.09 D2T4 3000 Nonane (TIC) TIC 6800 mg/kg 02.18.13 18.09 D2T4 3000 Nonane, 4-methyl- (TIC) TIC 2870 D2T4 3000 mg/kg 02.18.13 18.09

Page 7 of 29



### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: Lab Sample Id:	CL12-4 457697-	Matrix: Product Date Collected: 02.13.13 00.00				Date Received: 02.14.13 09.30			
Analytical Metho	d: SV	OCs by SW-846 8270C					Prep Method: SW	/3550	
Tech:	CO	R					% Moisture:		
Analyst:	WE	EW	Date P	rep:	02.18.13 08.30		Basis: We	t Weight	
Seq Number:	Seq Number: 907226						SUB: AZ0765		
Parameter		Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Octane, 2,6-dimethy	yl- (TIC)	TIC	3280			mg/kg	02.18.13 18.09	D2T4	3000
Tridecane (TIC)		TIC	1860			mg/kg	02.18.13 18.09	D2T4	3000
Tridecane (TIC)		TIC	6040			mg/kg	02.18.13 18.09	D2T4	3000
Undecane (TIC)		TIC	5610			mg/kg	02.18.13 18.09	D2T4	3000
Surrogate		Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
2-Fluorophenol		367-12-4	0	%	25-121		02.18.13 18.09	<b>S</b> 8	
Phenol-d6		13127-88-3	0	%	24-113		02.18.13 18.09	<b>S</b> 8	
Nitrobenzene-d5		4165-60-0	0	%	23-120		02.18.13 18.09	<b>S</b> 8	
2-Fluorobiphenyl		321-60-8	66	%	30-115		02.18.13 18.09		
2,4,6-Tribromopher	nol	118-79-6	70	%	19-122		02.18.13 18.09		
Terphenyl-D14		1718-51-0	88	%	18-137		02.18.13 18.09		

Page 8 of 29



#### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id:         CL12-4716           Lab Sample Id:         457697-001		Matrix: Pro Date Collected: 02.1	duct 13.13 00.00	Date Received: 02.14.13 09.30		
Analytical Method	VOAs by SW-846 8260B			Prep Method: SW5030B		
Tech:	MCH			% Moisture:		
Analyst:	ZHO	Date Prep:	02.21.13 17.10	Basis: Wet Weight		
Seq Number:	907536			SUB: AZ0765		

#### **Dilution Analysis:**

Seq#: 907536 Date Analyzed: 02/21/13 18:32 Date Prep: 02/21/13 17:12

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,1,1-Trichloroethane	71-55-6	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,1,2,2-Tetrachloroethane	79-34-5	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,1,2-Trichloroethane	79-00-5	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,1-Dichloroethane	75-34-3	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,1-Dichloroethene	75-35-4	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,1-Dichloropropene	563-58-6	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,2,3-Trichlorobenzene	87-61-6	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,2,3-Trichloropropane	96-18-4	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,2,4-Trichlorobenzene	120-82-1	<125	125	mg/kg	02.21.13 18.10	<b>D</b> 1	25000
1,2,4-Trimethylbenzene	95-63-6	5630	625	mg/kg	02.21.13 18.32	D2	125000
1,2-Dibromo-3-Chloropropane	96-12-8	<125	125	mg/kg	02.21.13 18.10	<b>D</b> 1	25000
1,2-Dibromoethane	106-93-4	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,2-Dichlorobenzene	95-50-1	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,2-Dichloroethane	107-06-2	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,2-Dichloropropane	78-87-5	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,3,5-Trimethylbenzene	108-67-8	2690	125	mg/kg	02.21.13 18.10	D2	25000
1,3-Dichlorobenzene	541-73-1	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,3-Dichloropropane	142-28-9	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,4-Dichlorobenzene	106-46-7	<125	125	mg/kg	02.21.13 18.10	D1	25000
2,2-Dichloropropane	594-20-7	<125	125	mg/kg	02.21.13 18.10	D1	25000
2-Butanone	78-93-3	<1250	1250	mg/kg	02.21.13 18.10	<b>D</b> 1	25000
2-Chlorotoluene	95-49-8	<125	125	mg/kg	02.21.13 18.10	D1	25000
2-Hexanone	591-78-6	<1250	1250	mg/kg	02.21.13 18.10	D1	25000
4-Chlorotoluene	106-43-4	<125	125	mg/kg	02.21.13 18.10	D1	25000
Acetone	67-64-1	<2500	2500	mg/kg	02.21.13 18.10	D1	25000
Benzene	71-43-2	<125	125	mg/kg	02.21.13 18.10	D1	25000
Bromobenzene	108-86-1	<125	125	mg/kg	02.21.13 18.10	D1	25000
Bromochloromethane	74-97-5	<125	125	mg/kg	02.21.13 18.10	D1	25000
Bromodichloromethane	75-27-4	<125	125	mg/kg	02.21.13 18.10	D1	25000
Bromoform	75-25-2	<125	125	mg/kg	02.21.13 18.10	D1	25000
Bromomethane	74-83-9	<125	125	mg/kg	02.21.13 18.10	D1	25000
Carbon Disulfide	75-15-0	<1250	1250	mg/kg	02.21.13 18.10	D1	25000
Carbon Tetrachloride	56-23-5	<125	125	mg/kg	02.21.13 18.10	D1	25000
Chlorobenzene	108-90-7	<125	125	mg/kg	02.21.13 18.10	D1	25000
Chloroethane	75-00-3	<250	250	mg/kg	02.21.13 18.10	D1	25000
Chloroform	67-66-3	<125	125	mg/kg	02.21.13 18.10	D1	25000
Chloromethane	74-87-3	<250	250	mg/kg	02.21.13 18.10	Dl	25000

Page 9 of 29


#### Southwest Research Institute, San Antonio, TX

Jet Fuel

CL12-4716 Matrix Product Date Received: 02.14.13 09.30 Sample Id: Lab Sample Id: 457697-001 Date Collected: 02.13.13 00.00 Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B MCH % Moisture Tech: ZHO Analyst: 02.21.13 17.10 Basis: Wet Weight Date Prep: 907536 Seq Number: SUB: AZ0765 Parameter Analysis Date Cas Number Units Flag Dil Result RL cis-1,2-Dichloroethene 156-59-2 <125 125 mg/kg 02.21.13 18.10 D1 25000 cis-1,3-Dichloropropene 10061-01-5 <125 125 02.21.13 18.10 D1 25000 mg/kg Dibromochloromethane 124-48-1 <125 125 mg/kg 02.21.13 18.10 D1 25000 Dibromomethane 74-95-3 <125 125 mg/kg 02.21.13 18.10 D1 25000 Dichlorodifluoromethane 75-71-8 <125 125 mg/kg 02.21.13.18.10 D1 25000 100-41-4 1130 125 02.21.13 18.10 25000 Ethylbenzene mg/kg D2 87-68-3 Hexachlorobutadiene <125 125 02.21.13 18.10 25000 mg/kg D1 Iodomethane (Methyl Iodide) 74-88-4 <500 500 02.21.13 18.10 D1 25000 mg/kg isopropylbenzene 98-82-8 481 125 02.21.13 18.10 D2 25000 mg/kg m,p-Xylenes 179601-23-1 4660 250 mg/kg 02.21.13 18.10 D2 25000 Methylene Chloride 75-09-2 <500 500 02.21.13 18.10 25000 mg/kg Dl MTBE 1634-04-4 <125 125 mg/kg 02.21.13 18.10 D1 25000 Naphthalene 91-20-3 1010 250 02.21.13 18.10 D2 25000 mg/kg 104-51-8 25000 n-Butylbenzene 1230 125 mg/kg 02 21 13 18 10 D2 n-Propylbenzene 103-65-1 1410 125 mg/kg 02.21.13 18.10 D2 25000 95-47-6 125 02.21.13 18.10 D2 25000 o-Xylene 2440 mg/kg p-Cymene (p-Isopropyltoluene) 99-87-6 497 125 02.21.13 18.10 D2 25000 mg/kg 135-98-8 25000 Sec-Butylbenzene 568 125 mg/kg 02.21.13 18.10 D2 Styrene 100-42-5 <125 125 mg/kg 02.21.13 18.10 Dl 25000 98-06-6 <125 125 02.21.13 18.10 D1 25000 tert-Butylbenzene mg/kg Tetrachloroethylene 127-18-4 <125 125 mg/kg 02.21.13 18.10 D1 25000 Toluene 108-88-3 493 125 02.21.13 18.10 D2 25000 mg/kg **Total Xylenes** 1330-20-7 7100 125 mg/kg 02 21 13 18 10 D2 25000 156-60-5 <125 125 02.21.13 18.10 25000 trans-1.2-dichloroethene mg/kg D1 25000 trans-1.3-dichloropropene 10061-02-6 <125 125 mg/kg 02.21.13 18.10 D1 Trichloroethene 79-01-6 <125 125 02.21.13 18.10 D1 25000 mg/kg Trichlorofluoromethane 75-69-4 <125 125 02.21.13 18.10 D1 25000 mg/kg Vinyl Acetate 108-05-4 <1250 1250 02.21.13 18.10 D1 25000 mg/kg Vinyl Chloride 75-01-4 <50.0 02.21.13 18.10 25000 50.0 D1 mg/kg Benzene, 1,2,3-trimethyl- (TIC) TIC 3140 mg/kg 02.21.13 18.10 D2T4 25000 Benzene, 1,2,4,5-tetramethyl- (TIC) TIC 3040 02.21.13 18.10 D2T4 25000 mg/kg Benzene, 1-ethyl-2-methyl- (TIC) 25000 TIC 3110 mg/kg 02 21 13 18 10 D2T4 Benzene, 1-ethyl-3-methyl- (TIC) TIC 6870 02.21.13 18.10 D2T4 25000 mg/kg TIC Benzene, 1-methyl-3-propyl- (TIC) 3110 D2T4 25000 mg/kg 02.21.13 18.10 Cyclohexane, propyl- (TIC) TIC 4100 mg/kg 02.21.13 18.10 D2T4 25000 **Dodecane** (TIC) TIC 4650 02.21.13 18.10 D2T4 25000 mg/kg Dodecane, 2,6,10-trimethyl- (TIC) TIC 11200 mg/kg 02.21.13 18.10 D2T4 25000 Nonane, 3-methyl- (TIC) TIC 3660 mg/kg 02.21.13 18.10 D2T4 25000 Undecane (TIC) TIC 6890 mg/kg 02.21.13 18.10 D2T4 25000

Page 10 of 29



# Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: Lab Sample Id:	CL12-4716 457697-001		Matrix: Date Collected:	Produc 02.13.1	t 3 00.00	Date Received: 02.14.13 09.30				
Analytical Method	: VOAs by	y SW-846 8260B				Prep Method: SW	5030B			
Tech:	MCH					% Moisture:				
Analyst:	ZHO		Date Pr	ep:	02.21.13 17.10	Basis: We	Weight			
Seq Number:	907536					SUB: AZ0765				
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag			
Dibromofluorometha	ane	1868-53-7	97	%	53-142	02.21.13 18.10				
1,2-Dichloroethane-	D4	17060-07-0	100	%	56-150	02.21.13 18.10				
Toluene-D8		2037-26-5	103	%	70-130	02.21.13 18.10				
4-Bromofluorobenze	ene	460-00-4	103	%	68-152	02.21.13 18.10				

Page 11 of 29



# Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL12	-4717	Matrix	Product	Da	te Received: 02.	14.13 09	.30
Lab Sample Id: 45769	7-002	Date Collected	02.13.13 00.00				
Analytical Method: S	WOCs by SW-846 8270C			I	Prep Method: SW	/3550	
Tech: C	OR				% Moisture:		
Analyst: W	VEW	Data P	ron: 02 18 12 (	08.22	Basis We	t Weight	
Analysi. V	07226	Date P	rep: 02.18.13 (	08.33	Dasis. we	a weight	
Seq Number: 9	07226				SUB: AZ0765		
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,2,4-Trichlorobenzene	120-82-1	<500	500	mg/kg	02.18.13 18.25	D1	3000
1,2-Dichlorobenzene	95-50-1	<500	500	mg/kg	02.18.13 18.25	D1	3000
1,3-Dichlorobenzene	541-73-1	<500	500	mg/kg	02.18.13 18.25	D1	3000
1,4-Dichlorobenzene	106-46-7	<500	500	mg/kg	02.18.13 18.25	<b>D</b> 1	3000
2,4,5-Trichlorophenol	95-95-4	<500	500	mg/kg	02.18.13 18.25	D1	3000
2,4,6-Trichlorophenol	88-06-2	<500	500	mg/kg	02.18.13 18.25	<b>D</b> 1	3000
2,4-Dichlorophenol	120-83-2	<500	500	mg/kg	02.18.13 18.25	D1	3000
2,4-Dimethylphenol	105-67-9	<500	500	mg/kg	02.18.13 18.25	D1	3000
2,4-Dinitrophenol	51-28-5	<1000	1000	mg/kg	02.18.13 18.25	<b>D</b> 1	3000
2,4-Dinitrotoluene	121-14-2	<500	500	mg/kg	02.18.13 18.25	D1	3000
2,6-Dinitrotoluene	606-20-2	<500	500	mg/kg	02.18.13 18.25	<b>D</b> 1	3000
2-Chloronaphthalene	91-58-7	<500	500	mg/kg	02.18.13 18.25	<b>D</b> 1	3000
2-Chlorophenol	95-57-8	<500	500	mg/kg	02.18.13 18.25	<b>D</b> 1	3000
2-Methylnaphthalene	91-57-6	4270	500	mg/kg	02.18.13 18.25	D2	3000
2-methylphenol	95-48-7	<500	500	mg/kg	02.18.13 18.25	<b>D</b> 1	3000
2-Nitroaniline	88-74-4	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
2-Nitrophenol	88-75-5	<500	500	mg/kg	02.18.13 18.25	<b>D</b> 1	3000
3&4-Methylphenol	15831-10-4	<500	500	mg/kg	02.18.13 18.25	<b>D</b> 1	3000
3,3-Dichlorobenzidine	91-94-1	<1000	1000	mg/kg	02.18.13 18.25	<b>D</b> 1	3000
3-Nitroaniline	99-09-2	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
4,6-dinitro-2-methyl phenol	534-52-1	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
4-Bromophenyl-phenylether	101-55-3	<500	500	mg/kg	02.18.13 18.25	D1	3000
4-chloro-3-methylphenol	59-50-7	<500	500	mg/kg	02.18.13 18.25	D1	3000
4-Chloroaniline	106-47-8	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
4-Chlorophenyl-phenyl ether	r 7005-72-3	<500	500	mg/kg	02.18.13 18.25	D1	3000
4-Nitroaniline	100-01-6	<1000	1000	mg/kg	02.18.13 18.25	<b>D</b> 1	3000
4-Nitrophenol	100-02-7	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
Acenaphthene	83-32-9	<500	500	mg/kg	02.18.13 18.25	D1	3000
Acenaphthylene	208-96-8	<500	500	mg/kg	02.18.13 18.25	D1	3000
Aniline (Phenylamine, Aminobe	nzene) 62-53-3	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
Anthracene	120-12-7	<500	500	mg/kg	02.18.13 18.25	D1	3000
Benzo(a)anthracene	56-55-3	<500	500	mg/kg	02.18.13 18.25	D1	3000
Benzo(a)pyrene	50-32-8	<500	500	mg/kg	02.18.13 18.25	D1	3000
Benzo(b)fluoranthene	205-99-2	<500	500	mg/kg	02.18.13 18.25	<b>D</b> 1	3000
Benzo(g,h,i)perylene	191-24-2	<500	500	mg/kg	02.18.13 18.25	<b>D</b> 1	3000
Benzo(k)fluoranthene	207-08-9	<500	500	mg/kg	02.18.13 18.25	D1	3000
Benzoic Acid	65-85-0	<3000	3000	mg/kg	02.18.13 18.25	D1	3000
Benzyl Butyl Phthalate	85-68-7	<500	500	mg/kg	02.18.13 18.25	D1	3000
bis(2-chloroethoxy) methane	e 111-91-1	<500	500	mg/kg	02.18.13 18.25	D1	3000
bis(2-chloroethyl) ether	111-44-4	<500	500	mg/kg	02.18.13 18.25	D1	3000
bis(2-chloroisopropyl) ether	39638-32-9	<500	500	mg/kg	02.18.13 18.25	DI	3000
		2.00					

Page 12 of 29



#### Southwest Research Institute, San Antonio, TX

Jet Fuel

CL12-4717 Matrix Product Date Received: 02.14.13 09.30 Sample Id: Lab Sample Id: 457697-002 Date Collected: 02.13.13 00.00 Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3550 COR % Moisture Tech: WEW Analyst: 02.18.13 08.33 Basis: Wet Weight Date Prep: 907226 Seq Number: SUB: AZ0765 Parameter Analysis Date **Cas Number** Units Flag Dil Result RL bis(2-ethylhexyl) phthalate 117-81-7 <500 500 mg/kg 02.18.13 18.25 D1 3000 Chrysene 218-01-9 <500 500 02.18.13 18.25 D1 3000 mg/kg Dibenz(a,h)Anthracene 53-70-3 <500 500 mg/kg 02.18.13 18.25 D1 3000 Dibenzofuran 132-64-9 <500 500 mg/kg 02.18.13 18.25 D1 3000 **Diethyl Phthalate** 84-66-2 <500 500 mg/kg 02 18 13 18 25 D1 3000 Dimethyl Phthalate 131-11-3 <500 500 02.18.13 18.25 3000 mg/kg D1 3000 di-n-Butvl Phthalate 84-74-2 < 500 500 02.18.13 18.25 mg/kg D1 di-n-Octyl Phthalate 117-84-0 <500 500 02.18.13 18.25 D1 3000 mg/kg Fluoranthene 206-44-0 <500 500 02.18.13 18.25 D1 3000 mg/kg Fluorene 86-73-7 <500 500 mg/kg 02.18.13 18.25 D1 3000 Hexachlorobenzene 118-74-1 <500 500 02.18.13 18.25 3000 mg/kg Dl Hexachlorobutadiene 87-68-3 <500 500 mg/kg 02.18.13 18.25 D1 3000 Hexachlorocyclopentadiene 77-47-4 <500 500 02.18.13 18.25 Dl 3000 mg/kg 67-72-1 <500 3000 Hexachloroethane 500 mg/kg 02 18 13 18 25 D1 Indeno(1,2,3-c,d)Pyrene 193-39-5 <500 500 mg/kg 02.18.13 18.25 D1 3000 78-59-1 <500 500 02.18.13 18.25 3000 Isophorone mg/kg D1 Naphthalene 91-20-3 4760 500 02.18.13 18.25 D2 3000 mg/kg 98-95-3 3000 Nitrobenzene <500 500 mg/kg 02.18.13 18.25 D1 N-Nitrosodi-n-Propylamine 621-64-7 <500 500 mg/kg 02.18.13 18.25 Dl 3000 86-30-6 <500 500 02.18.13 18.25 D1 3000 N-Nitrosodiphenvlamine mg/kg Pentachlorophenol 87-86-5 <1000 1000 mg/kg 02.18.13 18.25 D1 3000 85-01-8 Phenanthrene <500 500 02.18.13 18.25 D1 3000 mg/kg Phenol 108-95-2 <1000 1000 mg/kg 02 18 13 18 25 D1 3000 129-00-0 <500 02.18.13 18.25 3000 Pvrene 500 mg/kg D1 1000 3000 Pvridine 110-86-1 <1000 mg/kg 02.18.13 18.25 D1 Benzene, 1-ethyl-2-methyl- (TIC) TIC 5660 02.18.13 18.25 D2T4 3000 mg/kg Benzene, 1-ethyl-2-methyl- (TIC) TIC 3120 02.18.13 18.25 D2T4 3000 mg/kg Benzene, 1-methyl-3-propyl- (TIC) TIC 3820 02.18.13 18.25 D2T4 3000 mg/kg Benzene, 1-methyl-4-(1-methylethyl (TIC) TIC 2280 02.18.13 18.25 D2T4 3000 mg/kg Benzene, 4-ethyl-1,2-dimethyl- (TIC) TIC 2810 mg/kg 02.18.13 18.25 D2T4 3000 Benzene, 4-ethyl-1,2-dimethyl- (TIC) TIC 2170 02.18.13 18.25 D2T4 3000 mg/kg TIC 3000 Benzene, propyl- (TIC) 2880 mg/kg 02 18 13 18 25 D2T4 Cyclohexane, butyl- (TIC) TIC 2700 02.18.13 18.25 D2T4 3000 mg/kg Decane (TIC) TIC 02.18.13 18.25 D2T4 3000 9690 mg/kg Decane, 3-methyl- (TIC) TIC 3310 mg/kg 02.18.13 18.25 D2T4 3000 Hexadecane (TIC) TIC 2490 02.18.13 18.25 D2T4 3000 mg/kg Hexadecane (TIC) TIC 6140 mg/kg 02.18.13 18.25 D2T4 3000 Hexanal, 3,5,5-trimethyl- (TIC) TIC 2490 02.18.13 18.25 D2T4 3000 mg/kg Naphthalene, 2,3-dimethyl- (TIC) TIC 4240 mg/kg 02.18.13 18.25 D2T4 3000 Nonane (TIC) TIC 8730 mg/kg 02.18.13 18.25 D2T4 3000 Octane, 2,6-dimethyl- (TIC) TIC D2T4 3000 4360 mg/kg 02.18.13 18.25

Page 13 of 29



# Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: Lab Sample Id:		Date C	Matrix: Collected:	Produc 02.13.	et 13 00.00	Date Received: 02.14.13 09.30							
Analytical Method	d:	SVOCs by SW	-846 8270C					Prep Method: SW3550					
Tech: COR									% Moisture:				
Analyst:	vst: WEW				Date Pr	rep:	02.18.13 08.33	Basis: Wet Weight					
Seq Number:					SUB: AZ0765								
Parameter			Cas Number	Re	esult	RL		Units	Analysis Date	Flag	Dil		
Octane, 4-methyl- (1	TIC)		TIC		2100			mg/kg	02.18.13 18.25	D2T4	3000		
Tetradecane (TIC)			TIC		4470			mg/kg	02.18.13 18.25	D2T4	3000		
Tetradecane (TIC)			TIC	1	0600			mg/kg	02.18.13 18.25	D2T4	3000		
p-Xylene (TIC)			TIC		2260			mg/kg	02.18.13 18.25	D2T4	3000		
Surrogate			Cas Number	% Re	covery	Units	Limits		Analysis Date	Flag			
2-Fluorophenol			367-12-4		0	%	25-121		02.18.13 18.25	<b>S</b> 8			
Phenol-d6			13127-88-3		0	%	24-113		02.18.13 18.25	<b>S</b> 8			
Nitrobenzene-d5			4165-60-0		0	%	23-120		02.18.13 18.25	<b>S</b> 8			
2-Fluorobiphenyl			321-60-8		52	%	30-115		02.18.13 18.25				
2,4,6-Tribromophen	nol		118-79-6		64	%	19-122		02.18.13 18.25				
Terphenyl-D14			1718-51-0		86	%	18-137		02.18.13 18.25				

Page 14 of 29



#### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: Lab Sample Id:	CL12-4717 457697-002	Matrix: Produ Date Collected: 02.13	.13 00.00	Date Received: 02.14.13 09.30
Analytical Method	UOAs by SW-846 8260B			Prep Method: SW5030B
Tech:	ZHO			% Moisture:
Analyst:	ZHO	Date Prep:	02.22.13 13.14	Basis: Wet Weight
Seq Number:	907617			SUB: AZ0765

#### **Dilution Analysis:**

Seq#: 907617 Date Analyzed: 02/22/13 14:06 Date Prep: 02/22/13 13:42

Parameter	Cas Number	Result	RL	Unit	s Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,1,1-Trichloroethane	71-55-6	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,1,2,2-Tetrachloroethane	79-34-5	<125	125	mg/kg	02.22.13 13.31	D1M1	25000
1,1,2-Trichloroethane	79-00-5	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,1-Dichloroethane	75-34-3	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,1-Dichloroethene	75-35-4	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,1-Dichloropropene	563-58-6	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2,3-Trichlorobenzene	87-61-6	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2,3-Trichloropropane	96-18-4	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2,4-Trichlorobenzene	120-82-1	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2,4-Trimethylbenzene	95-63-6	15400	625	mg/kg	02.22.13 14.06	D2M2	125000
1,2-Dibromo-3-Chloropropane	96-12-8	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2-Dibromoethane	106-93-4	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2-Dichlorobenzene	95-50-1	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2-Dichloroethane	107-06-2	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2-Dichloropropane	78-87-5	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,3,5-Trimethylbenzene	108-67-8	4350	625	mg/kg	02.22.13 14.06	D2M2	125000
1,3-Dichlorobenzene	541-73-1	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,3-Dichloropropane	142-28-9	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,4-Dichlorobenzene	106-46-7	<125	125	mg/kg	02.22.13 13.31	D1	25000
2,2-Dichloropropane	594-20-7	<125	125	mg/kg	02.22.13 13.31	D1	25000
2-Butanone	78-93-3	<1250	1250	mg/kg	02.22.13 13.31	D1	25000
2-Chlorotoluene	95-49-8	<125	125	mg/kg	02.22.13 13.31	D1	25000
2-Hexanone	591-78-6	<1250	1250	mg/kg	02.22.13 13.31	D1	25000
4-Chlorotoluene	106-43-4	<125	125	mg/kg	02.22.13 13.31	D1	25000
Acetone	67-64-1	<2500	2500	mg/kg	02.22.13 13.31	D1	25000
Benzene	71-43-2	<125	125	mg/kg	02.22.13 13.31	D1	25000
Bromobenzene	108-86-1	<125	125	mg/kg	02.22.13 13.31	D1	25000
Bromochloromethane	74-97-5	<125	125	mg/kg	02.22.13 13.31	D1	25000
Bromodichloromethane	75-27-4	<125	125	mg/kg	02.22.13 13.31	D1	25000
Bromoform	75-25-2	<125	125	mg/kg	02.22.13 13.31	D1M2	25000
Bromomethane	74-83-9	<125	125	mg/kg	02.22.13 13.31	D1	25000
Carbon Disulfide	75-15-0	<1250	1250	mg/kg	02.22.13 13.31	D1	25000
Carbon Tetrachloride	56-23-5	<125	125	mg/kg	02.22.13 13.31	D1	25000
Chlorobenzene	108-90-7	<125	125	mg/kg	02.22.13 13.31	D1	25000
Chloroethane	75-00-3	<250	250	mg/kg	02.22.13 13.31	D1	25000
Chloroform	67-66-3	<125	125	mg/kg	02.22.13 13.31	D1	25000
Chloromethane	74-87-3	<250	250	mg/kg	02.22.13 13.31	D1	25000

Page 15 of 29



#### Southwest Research Institute, San Antonio, TX

Jet Fuel

CL12-4717 Matrix Product Date Received: 02.14.13 09.30 Sample Id: Lab Sample Id: 457697-002 Date Collected: 02.13.13 00.00 Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B ZHO % Moisture Tech: ZHO Analyst: 02.22.13 13.14 Basis: Wet Weight Date Prep: 907617 Seq Number: SUB: AZ0765 Parameter Analysis Date Cas Number Units Flag Dil Result RL cis-1,2-Dichloroethene 156-59-2 <125 125 mg/kg 02.22.13 13.31 D1 25000 cis-1,3-Dichloropropene 10061-01-5 <125 125 02.22.13 13.31 D1 25000 mg/kg Dibromochloromethane 124-48-1 <125 125 mg/kg 02.22.13 13.31 D1 25000 Dibromomethane 74-95-3 <125 125 mg/kg 02.22.13 13.31 D1 25000 Dichlorodifluoromethane 75-71-8 <125 125 mg/kg 02.22.13 13.31 D1 25000 100-41-4 1570 125 02.22.13 13.31 D2 25000 Ethylbenzene mg/kg 87-68-3 02.22.13 13.31 Hexachlorobutadiene <125 125 25000 mg/kg D1 Iodomethane (Methyl Iodide) 74-88-4 <500 500 02.22.13 13.31 D1 25000 mg/kg isopropylbenzene 98-82-8 684 125 02.22.13 13.31 D2 25000 mg/kg m,p-Xylenes 179601-23-1 6510 250 mg/kg 02.22.13 13.31 D2M2 25000 Methylene Chloride 75-09-2 <500 500 02.22.13 13.31 25000 mg/kg D1 MTBE 1634-04-4 <125 125 mg/kg 02.22.13 13.31 D1 25000 Naphthalene 91-20-3 1350 250 mg/kg 02.22.13 13.31 D2 25000 104-51-8 02 22 13 13 31 25000 n-Butylbenzene 1730 125 mg/kg D2 n-Propylbenzene 103-65-1 2010 125 mg/kg 02.22.13 13.31 D2 25000 95-47-6 125 02.22.13 13.31 D2M2 25000 o-Xylene 3440 mg/kg p-Cymene (p-Isopropyltoluene) 99-87-6 708 125 02.22.13 13.31 D2 25000 mg/kg 135-98-8 125 25000 Sec-Butylbenzene 799 mg/kg 02.22.13 13.31 D2 Styrene 100-42-5 <125 125 mg/kg 02.22.13 13.31 Dl 25000 98-06-6 <125 125 02.22.13 13.31 D1 25000 tert-Butylbenzene mg/kg Tetrachloroethylene 127-18-4 <125 125 mg/kg 02.22.13 13.31 D1 25000 Toluene 108-88-3 662 125 02.22.13 13.31 D2 25000 mg/kg **Total Xylenes** 1330-20-7 9950 125 mg/kg 02 22 13 13 31 D2 25000 156-60-5 <125 125 02.22.13 13.31 25000 trans-1.2-dichloroethene mg/kg D1 25000 trans-1.3-dichloropropene 10061-02-6 <125 125 mg/kg 02.22.13 13.31 D1 Trichloroethene 79-01-6 <125 125 02.22.13 13.31 D1 25000 mg/kg 25000 Trichlorofluoromethane 75-69-4 <125 125 02.22.13 13.31 D1 mg/kg Vinyl Acetate 108-05-4 <1250 1250 mg/kg 02.22.13 13.31 D1 25000 Vinyl Chloride 75-01-4 <50.0 02.22.13 13.31 25000 50.0 D1 mg/kg Benzene, 1-ethyl-2-methyl- (TIC) TIC 3850 mg/kg 02.22.13 13.31 D2T4 25000 Benzene, 1-ethyl-3-methyl- (TIC) TIC 8150 02.22.13 13.31 D2T4 25000 mg/kg TIC 02 22 13 13 31 25000 Benzene, 1-methyl-3-propyl- (TIC) 3780 mg/kg D2T4 TIC 6490 02.22.13 13.31 D2T4 25000 Cyclohexane, propyl- (TIC) mg/kg Dodecane (TIC) TIC 4920 02.22.13 13.31 D2T4 25000 mg/kg Nonane, 3,7-dimethyl- (TIC) TIC 5890 mg/kg 02.22.13 13.31 D2T4 25000 Nonane, 4,5-dimethyl- (TIC) TIC 4720 02.22.13 13.31 D2T4 25000 mg/kg Octane, 3,6-dimethyl- (TIC) TIC 5710 mg/kg 02.22.13 13.31 D2T4 25000 Octane, 3-methyl- (TIC) TIC 3760 mg/kg 02.22.13 13.31 D2T4 25000 Undecane (TIC) TIC 8500 mg/kg 02.22.13 13.31 D2T4 25000

Page 16 of 29



# Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: Lab Sample Id:	CL12 4576	2-4717 97-002		Matr Date Collecte	ix: Pro ed: 02.	duct 13.13 00	.00	Date Received: 02.14.13 09.30				
Analytical Method	d: N	VOAs by SW-8	846 8260B					Prep Method: SW	5030B			
Tech:	Z	ZHO						% Moisture:				
Analyst:	Z	ZHO		Date	Prep:	02.22	2.13 13.14	Basis: We	t Weight			
Seq Number:	9	007617						SUB: AZ0765				
Surrogate			Cas Number	% Recovery	U	nits	Limits	Analysis Date	Flag			
Dibromofluorometh	ane		1868-53-7	90		%	53-142	02.22.13 13.31				
1,2-Dichloroethane-	·D4		17060-07-0	96		%	56-150	02.22.13 13.31				
Toluene-D8			2037-26-5	106		%	70-130	02.22.13 13.31				
4-Bromofluorobenze	ene		460-00-4	105		%	68-152	02.22.13 13.31				

Page 17 of 29



### Southwest Research Institute

Jet Fuel

Analytical Method: SV	OCs by SW-846	8270C						Pr	ep Metho	d: SW	3550	
Seq Number: 90	7226			Matrix:	Solid				Date Pre	p: 02/	18/2013	
MB Sample Id: 63	3898-1-BLK		LCS Sar	nple Id:	633898-1-	-BKS		LCS	D Sample	Id: 633	898-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trichlorobenzene	< 0.0304	1.67	1.02	61	1.05	63	55-106	3	30	mg/kg	02/18/13 16:16	
1,2-Dichlorobenzene	< 0.0362	1.67	1.08	65	1.15	69	54-104	6	30	mg/kg	02/18/13 16:16	
1,3-Dichlorobenzene	< 0.0305	1.67	1.07	64	1.15	69	53-105	7	30	mg/kg	02/18/13 16:16	
1,4-Dichlorobenzene	< 0.0329	1.67	1.08	65	1.14	68	52-104	5	30	mg/kg	02/18/13 16:16	
2,4,5-Trichlorophenol	< 0.0391	1.67	1.22	73	1.21	72	53-128	1	30	mg/kg	02/18/13 16:16	
2,4,6-Trichlorophenol	< 0.0268	1.67	1.12	67	1.16	69	58-119	4	30	mg/kg	02/18/13 16:16	
2,4-Dichlorophenol	< 0.0314	1.67	1.13	68	1.15	69	58-113	2	30	mg/kg	02/18/13 16:16	
2,4-Dimethylphenol	< 0.0784	1.67	1.17	70	1.19	71	56-112	2	30	mg/kg	02/18/13 16:16	
2,4-Dinitrophenol	< 0.0691	1.67	1.24	74	1.27	76	38-136	2	40	mg/kg	02/18/13 16:16	
2,4-Dinitrotoluene	< 0.0318	1.67	1.28	77	1.25	75	59-115	2	30	mg/kg	02/18/13 16:16	
2,6-Dinitrotoluene	< 0.0319	1.67	1.16	69	1.14	68	58-114	2	30	mg/kg	02/18/13 16:16	
2-Chloronaphthalene	< 0.0264	1.67	1.11	66	1.13	68	40-132	2	30	mg/kg	02/18/13 16:16	
2-Chlorophenol	< 0.0323	1.67	1.13	68	1.18	71	53-109	4	30	mg/kg	02/18/13 16:16	
2-Methylnaphthalene	< 0.0342	1.67	1.11	66	1.14	68	53-108	3	30	mg/kg	02/18/13 16:16	
2-methylphenol	< 0.0433	1.67	1.22	73	1.24	74	48-118	2	30	mg/kg	02/18/13 16:16	
2-Nitroaniline	< 0.0294	1.67	1.03	62	1.19	71	54-116	14	40	mg/kg	02/18/13 16:16	
2-Nitrophenol	< 0.0228	1.67	0.943	56	1.06	63	54-113	12	30	mg/kg	02/18/13 16:16	
3&4-Methylphenol	< 0.0758	1.67	1.29	77	1.29	77	53-115	0	30	mg/kg	02/18/13 16:16	
3,3-Dichlorobenzidine	< 0.0457	1.67	1.39	83	1.30	78	55-129	7	40	mg/kg	02/18/13 16:16	
3-Nitroaniline	< 0.0346	1.67	1.25	75	1.20	72	57-119	4	40	mg/kg	02/18/13 16:16	
4,6-dinitro-2-methyl phenol	< 0.0271	1.67	1.22	73	1.18	71	56-117	3	40	mg/kg	02/18/13 16:16	
4-Bromophenyl-phenylether	< 0.0339	1.67	1.19	71	1.10	66	57-118	8	30	mg/kg	02/18/13 16:16	
4-chloro-3-methylphenol	< 0.0350	1.67	1.18	71	1.19	71	55-114	1	30	mg/kg	02/18/13 16:16	
4-Chloroaniline	< 0.0668	1.67	1.17	70	1.18	71	54-112	1	40	mg/kg	02/18/13 16:16	
4-Chlorophenyl-phenyl ethe	er <0.0335	1.67	1.19	71	1.15	69	57-111	3	30	mg/kg	02/18/13 16:16	
4-Nitroaniline	< 0.0300	1.67	1.29	77	1.23	74	56-121	5	40	mg/kg	02/18/13 16:16	
4-Nitrophenol	< 0.0311	1.67	1.41	84	1.33	80	42-134	6	40	mg/kg	02/18/13 16:16	
Acenaphthene	< 0.0358	1.67	1.17	70	1.15	69	54-112	2	30	mg/kg	02/18/13 16:16	
Acenaphthylene	< 0.0338	1.67	1.14	68	1.15	69	54-113	1	30	mg/kg	02/18/13 16:16	
Aniline (Phenylamine, Aminobe	enzene) <0.111	1.67	1.24	74	1.28	77	50-112	3	40	mg/kg	02/18/13 16:16	
Anthracene	< 0.0257	1.67	1.28	77	1.14	68	57-118	12	30	mg/kg	02/18/13 16:16	
Benzo(a)anthracene	< 0.0280	1.67	1.34	80	1.24	74	58-119	8	30	mg/kg	02/18/13 16:16	
Benzo(a)pyrene	< 0.0291	1.67	1.36	81	1.27	76	58-127	7	30	mg/kg	02/18/13 16:16	
Benzo(b)fluoranthene	< 0.0270	1.67	1.33	80	1.31	78	50-122	2	30	mg/kg	02/18/13 16:16	
Benzo(g,h,i)perylene	< 0.0294	1.67	1.35	81	1.26	75	57-125	7	30	mg/kg	02/18/13 16:16	
Benzo(k)fluoranthene	< 0.0390	1.67	1.34	80	1.17	70	59-126	14	30	mg/kg	02/18/13 16:16	
Benzoic Acid	< 0.0483	5.00	3.81	76	4.09	82	31-133	7	50	mg/kg	02/18/13 16:16	
Benzyl Butyl Phthalate	< 0.0259	1.67	1.35	81	1.28	77	55-129	5	30	mg/kg	02/18/13 16:16	
bis(2-chloroethoxy) methan	e <0.0372	1.67	1.15	69	1.18	71	49-112	3	30	mg/kg	02/18/13 16:16	
bis(2-chloroethyl) ether	< 0.0358	1.67	1.14	68	1.20	72	50-108	5	30	mg/kg	02/18/13 16:16	
bis(2-chloroisopropyl) ether	< 0.0334	1.67	1.29	77	1.33	80	45-111	3	30	mg/kg	02/18/13 16:16	
bis(2-ethylhexyl) phthalate	< 0.0266	1.67	1.45	87	1.35	81	54-134	7	30	mg/kg	02/18/13 16:16	
Chrysene	< 0.0303	1.67	1.34	80	1.26	75	58-120	6	30	mg/kg	02/18/13 16:16	
Dibenz(a,h)Anthracene	< 0.0351	1.67	1.35	81	1.26	75	60-121	7	30	mg/kg	02/18/13 16:16	
Dibenzofuran	< 0.0329	1.67	1.16	69	1.16	69	56-110	0	30	mg/kg	02/18/13 16:16	
Diethyl Phthalate	< 0.0345	1.67	1.24	74	1.18	71	58-113	5	30	mg/kg	02/18/13 16:16	
Dimethyl Phthalate	< 0.0344	1.67	1.21	72	1.15	69	58-112	5	30	mg/kg	02/18/13 16:16	
di-n-Butyl Phthalate	< 0.0287	1.67	1.33	80	1.22	73	58-126	9	30	mg/kg	02/18/13 16:16	
di-n-Octyl Phthalate	< 0.0316	1.67	1.38	83	1.30	78	54-130	6	30	mg/kg	02/18/13 16:16	

Page 18 of 29



### Southwest Research Institute

Jet Fuel

Analytical Method:	SVOCs by SW-846	8270C						Pr	ep Metho	d: SW	3550	
Seq Number:	907226		1	Matrix:	Solid				Date Pre	p: 02/1	8/2013	
MB Sample Id:	633898-1-BLK		LCS San	nple Id:	633898-1	-BKS		LCSI	O Sample	Id: 633	898-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Fluoranthene	< 0.0315	1.67	1.28	77	1.16	69	59-119	10	30	mg/kg	02/18/13 16:16	
Fluorene	< 0.0356	1.67	1.19	71	1.16	69	56-112	3	30	mg/kg	02/18/13 16:16	
Hexachlorobenzene	< 0.0292	1.67	1.19	71	1.10	66	58-119	8	30	mg/kg	02/18/13 16:16	
Hexachlorobutadiene	< 0.0313	1.67	0.986	59	1.05	63	55-105	6	30	mg/kg	02/18/13 16:16	
Hexachlorocyclopentad	iene <0.0147	1.67	0.576	34	0.620	37	18-119	7	30	mg/kg	02/18/13 16:16	
Hexachloroethane	< 0.0373	1.67	1.07	64	1.14	68	54-105	6	30	mg/kg	02/18/13 16:16	
Indeno(1,2,3-c,d)Pyrene	< 0.0309	1.67	1.35	81	1.24	74	59-118	8	30	mg/kg	02/18/13 16:16	
Isophorone	< 0.0299	1.67	1.19	71	1.18	71	46-116	1	30	mg/kg	02/18/13 16:16	
Naphthalene	< 0.0344	1.67	1.10	66	1.13	68	54-106	3	30	mg/kg	02/18/13 16:16	
Nitrobenzene	< 0.0291	1.67	1.10	66	1.16	69	44-118	5	30	mg/kg	02/18/13 16:16	
N-Nitrosodi-n-Propylan	nine <0.0399	1.67	1.32	79	1.31	78	50-111	1	30	mg/kg	02/18/13 16:16	
N-Nitrosodiphenylamin	e <0.0249	1.67	1.23	74	1.17	70	55-119	5	30	mg/kg	02/18/13 16:16	
Pentachlorophenol	< 0.0221	1.67	1.36	81	1.26	75	38-128	8	40	mg/kg	02/18/13 16:16	
Phenanthrene	< 0.0332	1.67	1.22	73	1.15	69	56-118	6	30	mg/kg	02/18/13 16:16	
Phenol	< 0.0358	1.67	1.17	70	1.21	72	50-114	3	40	mg/kg	02/18/13 16:16	
Pyrene	< 0.0333	1.67	1.37	82	1.28	77	56-125	7	30	mg/kg	02/18/13 16:16	
Pyridine	< 0.0427	1.67	1.17	70	1.27	76	44-102	8	40	mg/kg	02/18/13 16:16	
Surrogate	MB %Rec	MB Flag	L0 %1	CS Rec	LCS Flag	LCSD %Rec	LCS Fla	D Li g	mits	Units	Analysis Date	
2-Fluorophenol	70		6	6		70		25	-121	%	02/18/13 16:16	
Phenol-d6	73		7	5		76		24	-113	%	02/18/13 16:16	
Nitrobenzene-d5	57		5	8		60		23	-120	%	02/18/13 16:16	
2-Fluorobiphenyl	58		6	51		60		30	-115	%	02/18/13 16:16	
2,4,6-Tribromophenol	55		7	2		66		19	-122	%	02/18/13 16:16	
Terphenyl-D14	69		7	'1		67		18	-137	%	02/18/13 16:16	

Page 19 of 29



### Southwest Research Institute

Jet Fuel

Analytical Method: S	VOCs by SW-846	8270C						Pr	ep Metho	od: SW	3550	
Seq Number: 90	07226			Matrix:	Soil				Date Pre	ep: 02/1	8/2013	
Parent Sample Id: 43	57734-001		MS Sar	nple Id:	457734-00	01 S		MSI	D Sample	Id: 457	734-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trichlorobenzene	< 0.0334	1.83	1.08	59	1.05	57	37-133	3	30	mg/kg	02/18/13 17:04	
1,2-Dichlorobenzene	< 0.0397	1.83	1.17	64	1.10	60	65-135	6	30	mg/kg	02/18/13 17:04	M2
1,3-Dichlorobenzene	< 0.0335	1.83	1.14	62	1.06	58	65-135	7	30	mg/kg	02/18/13 17:04	M2
1,4-Dichlorobenzene	< 0.0360	1.83	1.14	62	1.07	58	36-134	6	30	mg/kg	02/18/13 17:04	
2,4,5-Trichlorophenol	< 0.0429	1.83	1.39	76	1.32	72	65-135	5	30	mg/kg	02/18/13 17:04	
2,4,6-Trichlorophenol	< 0.0294	1.83	1.30	71	1.22	67	65-135	6	30	mg/kg	02/18/13 17:04	
2,4-Dichlorophenol	< 0.0344	1.83	1.23	67	1.17	64	65-135	5	30	mg/kg	02/18/13 17:04	M2
2,4-Dimethylphenol	< 0.0860	1.83	1.29	70	1.22	67	65-135	6	30	mg/kg	02/18/13 17:04	
2,4-Dinitrophenol	< 0.0758	1.83	1.46	80	1.32	72	65-135	10	40	mg/kg	02/18/13 17:04	
2,4-Dinitrotoluene	< 0.0349	1.83	1.43	78	1.30	71	40-130	10	30	mg/kg	02/18/13 17:04	
2,6-Dinitrotoluene	< 0.0350	1.83	1.33	73	1.24	68	28-89	7	30	mg/kg	02/18/13 17:04	
2-Chloronaphthalene	< 0.0290	1.83	1.22	67	1.18	64	65-135	3	30	mg/kg	02/18/13 17:04	M2
2-Chlorophenol	< 0.0354	1.83	1.24	68	1.18	64	25-140	5	30	mg/kg	02/18/13 17:04	
2-Methylnaphthalene	< 0.0375	1.83	1.22	67	1.17	64	25-175	4	30	mg/kg	02/18/13 17:04	
2-methylphenol	< 0.0475	1.83	1.35	74	1.27	69	65-135	6	30	mg/kg	02/18/13 17:04	
2-Nitroaniline	< 0.0322	1.83	1.16	63	1.29	70	65-135	11	40	mg/kg	02/18/13 17:04	M2
2-Nitrophenol	< 0.0250	1.83	1.08	59	1.07	58	65-135	1	30	mg/kg	02/18/13 17:04	M2
3&4-Methylphenol	< 0.0832	1.83	1.46	80	1.35	74	65-135	8	30	mg/kg	02/18/13 17:04	
3,3-Dichlorobenzidine	< 0.0501	1.83	1.54	84	1.34	73	20-140	14	40	mg/kg	02/18/13 17:04	
3-Nitroaniline	< 0.0380	1.83	1.36	74	1.27	69	65-135	7	40	mg/kg	02/18/13 17:04	
4,6-dinitro-2-methyl phenol	< 0.0298	1.83	1.33	73	1.21	66	65-135	9	40	mg/kg	02/18/13 17:04	
4-Bromophenyl-phenylethe	er <0.0372	1.83	1.29	70	1.18	64	65-135	9	30	mg/kg	02/18/13 17:04	M2
4-chloro-3-methylphenol	< 0.0384	1.83	1.33	73	1.24	68	28-134	7	30	mg/kg	02/18/13 17:04	
4-Chloroaniline	< 0.0733	1.83	1.30	71	1.27	69	4-149	2	40	mg/kg	02/18/13 17:04	
4-Chlorophenyl-phenyl eth	er <0.0368	1.83	1.34	73	1.27	69	65-135	5	30	mg/kg	02/18/13 17:04	
4-Nitroaniline	< 0.0329	1.83	1.37	75	1.25	68	65-135	9	40	mg/kg	02/18/13 17:04	
4-Nitrophenol	< 0.0341	1.83	1.57	86	1.39	76	13-106	12	40	mg/kg	02/18/13 17:04	
Acenaphthene	< 0.0392	1.83	1.31	72	1.22	67	41-134	7	30	mg/kg	02/18/13 17:04	
Acenaphthylene	< 0.0370	1.83	1.31	72	1.24	68	65-135	5	30	mg/kg	02/18/13 17:04	
Aniline (Phenylamine, Aminob	enzene) <0.122	1.83	1.37	75	1.31	72	2-145	4	40	mg/kg	02/18/13 17:04	
Anthracene	< 0.0282	1.83	1.38	75	1.24	68	65-135	11	30	mg/kg	02/18/13 17:04	
Benzo(a)anthracene	< 0.0307	1.83	1.42	78	1.24	68	44-126	14	30	mg/kg	02/18/13 17:04	
Benzo(a)pyrene	< 0.0319	1.83	1.47	80	1.30	71	65-135	12	30	mg/kg	02/18/13 17:04	
Benzo(b)fluoranthene	< 0.0296	1.83	1.52	83	1.17	64	65-135	26	30	mg/kg	02/18/13 17:04	M2
Benzo(g,h,i)perylene	< 0.0322	1.83	1.45	79	1.26	69	65-135	14	30	mg/kg	02/18/13 17:04	
Benzo(k)fluoranthene	< 0.0428	1.83	1.36	74	1.37	75	25-125	1	30	mg/kg	02/18/13 17:04	
Benzoic Acid	< 0.0529	5.48	4.76	87	4.36	79	50-125	9	50	mg/kg	02/18/13 17:04	
Benzyl Butyl Phthalate	< 0.0284	1.83	1.47	80	1.32	72	65-135	11	30	mg/kg	02/18/13 17:04	
bis(2-chloroethoxy) methar	e <0.0408	1.83	1.24	68	1.20	66	65-135	3	30	mg/kg	02/18/13 17:04	
bis(2-chloroethyl) ether	< 0.0392	1.83	1.22	67	1.17	64	65-135	4	30	mg/kg	02/18/13 17:04	M2
bis(2-chloroisopropyl) ethe	r <0.0366	1.83	1.39	76	1.34	73	65-135	4	30	mg/kg	02/18/13 17:04	
bis(2-ethylhexyl) phthalate	< 0.0292	1.83	1.55	85	1.36	74	65-135	13	30	mg/kg	02/18/13 17:04	
Chrysene	< 0.0332	1.83	1.48	81	1.31	72	65-135	12	30	mg/kg	02/18/13 17:04	
Dibenz(a,h)Anthracene	< 0.0385	1.83	1.45	79	1.29	70	65-135	12	30	mg/kg	02/18/13 17:04	
Dibenzofuran	< 0.0360	1.83	1.35	74	1.25	68	65-135	8	30	mg/kg	02/18/13 17:04	
Diethyl Phthalate	< 0.0379	1.83	1.37	75	1.25	68	37-125	9	30	mg/kg	02/18/13 17:04	
Dimethyl Phthalate	< 0.0377	1.83	1.38	75	1.26	69	65-135	9	30	mg/kg	02/18/13 17:04	
di-n-Butyl Phthalate	< 0.0314	1.83	1.39	76	1.23	67	65-135	12	30	mg/kg	02/18/13 17:04	
di-n-Octyl Phthalate	< 0.0347	1.83	1.51	83	1.33	73	65-135	13	30	mg/kg	02/18/13 17:04	

Page 20 of 29



### Southwest Research Institute

Jet Fuel

Analytical Method:	SVOCs by	SW-846	8270C						Pr	ep Metho	od: SW:	3550	
Seq Number:	907226			Ν	Aatrix:	Soil				Date Pre	ep: 02/1	8/2013	
Parent Sample Id:	457734-00	I.		MS Sam	ple Id:	457734-00	01 S		MSI	O Sample	Id: 457	734-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Fluoranthene		< 0.0346	1.83	1.34	73	1.18	64	65-135	13	30	mg/kg	02/18/13 17:04	M2
Fluorene		< 0.0390	1.83	1.35	74	1.27	69	65-135	6	30	mg/kg	02/18/13 17:04	
Hexachlorobenzene		< 0.0320	1.83	1.29	70	1.16	63	65-135	11	30	mg/kg	02/18/13 17:04	M2
Hexachlorobutadiene		< 0.0343	1.83	1.05	57	1.03	56	65-135	2	30	mg/kg	02/18/13 17:04	M2
Hexachlorocyclopentad	iene	< 0.0161	1.83	0.587	32	0.579	32	65-135	1	30	mg/kg	02/18/13 17:04	M2
Hexachloroethane		< 0.0409	1.83	1.14	62	1.09	60	65-135	4	30	mg/kg	02/18/13 17:04	M2
Indeno(1,2,3-c,d)Pyrene		< 0.0339	1.83	1.44	79	1.27	69	65-135	13	30	mg/kg	02/18/13 17:04	
Isophorone		< 0.0328	1.83	1.32	72	1.25	68	65-135	5	30	mg/kg	02/18/13 17:04	
Naphthalene		< 0.0377	1.83	1.18	64	1.13	62	65-135	4	30	mg/kg	02/18/13 17:04	M2
Nitrobenzene		< 0.0319	1.83	1.17	64	1.14	62	65-135	3	30	mg/kg	02/18/13 17:04	M2
N-Nitrosodi-n-Propylan	nine	< 0.0437	1.83	1.47	80	1.37	75	53-130	7	30	mg/kg	02/18/13 17:04	
N-Nitrosodiphenylamin	e	< 0.0273	1.83	1.37	75	1.23	67	65-135	11	30	mg/kg	02/18/13 17:04	
Pentachlorophenol		< 0.0242	1.83	1.45	79	1.29	70	14-111	12	40	mg/kg	02/18/13 17:04	
Phenanthrene		< 0.0364	1.83	1.31	72	1.20	66	65-135	9	30	mg/kg	02/18/13 17:04	
Phenol		< 0.0393	1.83	1.29	70	1.23	67	27-127	5	40	mg/kg	02/18/13 17:04	
Pyrene		< 0.0365	1.83	1.49	81	1.32	72	41-144	12	30	mg/kg	02/18/13 17:04	
Pyridine		< 0.0468	1.83	1.23	67	1.17	64	39-98	5	40	mg/kg	02/18/13 17:04	
Surrogate				M %R	S lec	MS Flag	MSD %Rec	MSD Flag	) Li	mits	Units	Analysis Date	
2-Fluorophenol				6.	3		61		25	-121	%	02/18/13 17:04	
Phenol-d6				7.	3		71		24	-113	%	02/18/13 17:04	
Nitrobenzene-d5				50	6		56		23	-120	%	02/18/13 17:04	
2-Fluorobiphenyl				59	9		59		30	-115	%	02/18/13 17:04	
2,4,6-Tribromophenol				69	9		64		19	-122	%	02/18/13 17:04	
Terphenyl-D14				70	0		62		18	-137	%	02/18/13 17:04	

Page 21 of 29



### Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SW-846	8260B						Pr	ep Metho	od: SW:	5030B	
Seq Number:	907536			Matrix:	Solid				Date Pre	ep: 02/2	1/2013	
MB Sample Id:	634151-1-BLK		LCS Sar	nple Id:	634151-1-	-BKS		LCSI	D Sample	Id: 634	151-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethan	e <0.000148	0.0500	0.0533	107	0.0529	106	81-127	1	25	mg/kg	02/21/13 12:15	
1,1,1-Trichloroethane	< 0.000602	0.0500	0.0515	103	0.0528	106	71-124	2	25	mg/kg	02/21/13 12:15	
1,1,2,2-Tetrachloroethan	e <0.000194	0.0500	0.0475	95	0.0459	92	75-133	3	25	mg/kg	02/21/13 12:15	
1,1,2-Trichloroethane	< 0.000225	0.0500	0.0476	95	0.0479	96	75-131	1	25	mg/kg	02/21/13 12:15	
1,1-Dichloroethane	< 0.000125	0.0500	0.0494	99	0.0495	99	73-124	0	25	mg/kg	02/21/13 12:15	
1,1-Dichloroethene	< 0.000192	0.0500	0.0465	93	0.0468	94	68-119	1	25	mg/kg	02/21/13 12:15	
1,1-Dichloropropene	< 0.000198	0.0500	0.0491	98	0.0501	100	72-118	2	25	mg/kg	02/21/13 12:15	
1,2,3-Trichlorobenzene	< 0.000106	0.0500	0.0486	97	0.0500	100	75-131	3	25	mg/kg	02/21/13 12:15	
1,2,3-Trichloropropane	< 0.000359	0.0500	0.0523	105	0.0511	102	75-131	2	25	mg/kg	02/21/13 12:15	
1,2,4-Trichlorobenzene	< 0.000191	0.0500	0.0507	101	0.0522	104	79-128	3	25	mg/kg	02/21/13 12:15	
1,2,4-Trimethylbenzene	< 0.000103	0.0500	0.0560	112	0.0567	113	60-159	1	25	mg/kg	02/21/13 12:15	
1,2-Dibromo-3-Chloropr	opane <0.00107	0.0500	0.0420	84	0.0407	81	58-133	3	25	mg/kg	02/21/13 12:15	
1,2-Dibromoethane	< 0.000193	0.0500	0.0484	97	0.0471	94	80-127	3	25	mg/kg	02/21/13 12:15	
1,2-Dichlorobenzene	< 0.000129	0.0500	0.0492	98	0.0501	100	84-121	2	25	mg/kg	02/21/13 12:15	
1,2-Dichloroethane	< 0.000177	0.0500	0.0455	91	0.0448	90	70-123	2	25	mg/kg	02/21/13 12:15	
1,2-Dichloropropane	< 0.000162	0.0500	0.0473	95	0.0472	94	75-122	0	25	mg/kg	02/21/13 12:15	
1,3,5-Trimethylbenzene	< 0.000166	0.0500	0.0563	113	0.0573	115	61-160	2	25	mg/kg	02/21/13 12:15	
1,3-Dichlorobenzene	< 0.000159	0.0500	0.0515	103	0.0520	104	84-124	1	25	mg/kg	02/21/13 12:15	
1,3-Dichloropropane	< 0.000227	0.0500	0.0488	98	0.0476	95	82-131	2	25	mg/kg	02/21/13 12:15	
1,4-Dichlorobenzene	< 0.0000970	0.0500	0.0494	99	0.0503	101	82-120	2	25	mg/kg	02/21/13 12:15	
2,2-Dichloropropane	< 0.000127	0.0500	0.0581	116	0.0621	124	67-137	7	25	mg/kg	02/21/13 12:15	
2-Butanone	< 0.00173	0.600	0.533	89	0.505	84	46-137	5	25	mg/kg	02/21/13 12:15	
2-Chlorotoluene	< 0.000217	0.0500	0.0534	107	0.0545	109	83-129	2	25	mg/kg	02/21/13 12:15	
2-Hexanone	< 0.00112	0.600	0.580	97	0.554	92	52-137	5	25	mg/kg	02/21/13 12:15	
4-Chlorotoluene	< 0.000118	0.0500	0.0529	106	0.0535	107	83-125	1	25	mg/kg	02/21/13 12:15	
Acetone	0.00315	0.600	0.457	76	0.439	73	33-148	4	25	mg/kg	02/21/13 12:15	
Benzene	< 0.000300	0.0500	0.0476	95	0.0474	95	71-119	0	25	mg/kg	02/21/13 12:15	
Bromobenzene	< 0.000198	0.0500	0.0503	101	0.0499	100	84-123	1	25	mg/kg	02/21/13 12:15	
Bromochloromethane	< 0.000215	0.0500	0.0434	87	0.0432	86	71-120	0	25	mg/kg	02/21/13 12:15	
Bromodichloromethane	< 0.000186	0.0500	0.0530	106	0.0537	107	78-126	1	25	mg/kg	02/21/13 12:15	
Bromoform	< 0.000393	0.0500	0.0424	85	0.0424	85	63-136	0	25	mg/kg	02/21/13 12:15	
Bromomethane	< 0.000274	0.0500	0.0446	89	0.0416	83	57-118	7	25	mg/kg	02/21/13 12:15	
Carbon Disulfide	< 0.0000880	0.550	0.638	116	0.659	120	55-136	3	25	mg/kg	02/21/13 12:15	
Carbon Tetrachloride	< 0.000132	0.0500	0.0515	103	0.0530	106	63-135	3	25	mg/kg	02/21/13 12:15	
Chlorobenzene	< 0.000104	0.0500	0.0495	99	0.0494	99	83-121	0	25	mg/kg	02/21/13 12:15	
Chloroethane	< 0.000254	0.0500	0.0454	91	0.0422	84	57-122	7	25	mg/kg	02/21/13 12:15	
Chloroform	< 0.000139	0.0500	0.0484	97	0.0483	97	74-118	0	25	mg/kg	02/21/13 12:15	
Chloromethane	< 0.000322	0.0500	0.0452	90	0.0426	85	58-110	6	25	mg/kg	02/21/13 12:15	
cis-1,2-Dichloroethene	< 0.000165	0.0500	0.0502	100	0.0508	102	72-131	1	25	mg/kg	02/21/13 12:15	
cis-1,3-Dichloropropene	< 0.000128	0.0500	0.0535	107	0.0544	109	74-135	2	25	mg/kg	02/21/13 12:15	
Dibromochloromethane	< 0.000422	0.0500	0.0422	84	0.0425	85	77-130	1	25	mg/kg	02/21/13 12:15	
Dibromomethane	< 0.000260	0.0500	0.0459	92	0.0457	91	73-126	0	25	mg/kg	02/21/13 12:15	
Dichlorodifluoromethan	e <0.000484	0.0500	0.0544	109	0.0510	102	54-122	6	25	mg/kg	02/21/13 12:15	
Ethylbenzene	< 0.000104	0.0500	0.0524	105	0.0525	105	80-123	0	25	mg/kg	02/21/13 12:15	
Hexachlorobutadiene	< 0.000346	0.0500	0.0537	107	0.0547	109	77-130	2	25	mg/kg	02/21/13 12:15	
Iodomethane (Methyl Io	dide) <0.000200	0.0500	0.0464	93	0.0489	98	63-116	5	25	mg/kg	02/21/13 12:15	
isopropylbenzene	< 0.000112	0.0500	0.0515	103	0.0522	104	55-155	1	25	mg/kg	02/21/13 12:15	
m,p-Xylenes	< 0.000185	0.100	0.110	110	0.109	109	78-127	1	25	mg/kg	02/21/13 12:15	
Methylene Chloride	0.00120	0.0500	0.0478	96	0.0472	94	57-134	1	25	mg/kg	02/21/13 12:15	

Page 22 of 29



### Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SW-846	8260B						Pr	ep Metho	d: SW	5030B	
Seq Number: 9	007536			Matrix:	Solid				Date Pre	p: 02/2	21/2013	
MB Sample Id: 6	534151-1-BLK		LCS San	nple Id:	634151-1-	BKS		LCSI	D Sample	Id: 634	151-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE	< 0.000142	0.100	0.107	107	0.108	108	64-148	1	25	mg/kg	02/21/13 12:15	
Naphthalene	< 0.000148	0.0500	0.0441	88	0.0440	88	53-162	0	25	mg/kg	02/21/13 12:15	
n-Butylbenzene	<0.0000990	0.0500	0.0555	111	0.0567	113	82-127	2	25	mg/kg	02/21/13 12:15	
n-Propylbenzene	< 0.000137	0.0500	0.0564	113	0.0576	115	84-131	2	25	mg/kg	02/21/13 12:15	
o-Xylene	< 0.000149	0.0500	0.0528	106	0.0528	106	79-125	0	25	mg/kg	02/21/13 12:15	
p-Cymene (p-Isopropyltol	uene) <0.0000800	0.0500	0.0573	115	0.0587	117	84-130	2	25	mg/kg	02/21/13 12:15	
Sec-Butylbenzene	< 0.000121	0.0500	0.0563	113	0.0570	114	84-131	1	25	mg/kg	02/21/13 12:15	
Styrene	< 0.000158	0.0500	0.0554	111	0.0559	112	80-126	1	25	mg/kg	02/21/13 12:15	
tert-Butylbenzene	<0.0000900	0.0500	0.0549	110	0.0559	112	83-132	2	25	mg/kg	02/21/13 12:15	
Tetrachloroethylene	< 0.000173	0.0500	0.0509	102	0.0517	103	79-124	2	25	mg/kg	02/21/13 12:15	
Toluene	< 0.000117	0.0500	0.0484	97	0.0492	98	74-122	2	25	mg/kg	02/21/13 12:15	
trans-1,2-dichloroethene	< 0.000123	0.0500	0.0469	94	0.0477	95	63-110	2	25	mg/kg	02/21/13 12:15	
trans-1,3-dichloropropene	< 0.000361	0.0500	0.0410	82	0.0416	83	73-125	1	25	mg/kg	02/21/13 12:15	
Trichloroethene	< 0.000147	0.0500	0.0517	103	0.0530	106	78-119	2	25	mg/kg	02/21/13 12:15	
Trichlorofluoromethane	< 0.000186	0.0500	0.0480	96	0.0444	89	71-148	8	25	mg/kg	02/21/13 12:15	
Vinyl Acetate	< 0.000213	0.500	0.514	103	0.498	100	40-154	3	25	mg/kg	02/21/13 12:15	
Vinyl Chloride	< 0.000193	0.0500	0.0433	87	0.0406	81	60-123	6	25	mg/kg	02/21/13 12:15	
Surrogate	MB %Re	MB c Flag	L %	CS Rec	LCS Flag	LCSE %Ree	LCS Fla	D Li g	mits	Units	Analysis Date	
Dibromofluoromethane	88		9	99		100		53	-142	%	02/21/13 12:15	
1,2-Dichloroethane-D4	89		9	96		90		56	-150	%	02/21/13 12:15	
Toluene-D8	105		1	00		101		70	-130	%	02/21/13 12:15	
4-Bromofluorobenzene	104		1	03		101		68	-152	%	02/21/13 12:15	

Page 23 of 29



### Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SW-846 8	3260B						Pr	ep Metho	d: SW	5030B	
Seq Number:	907617			Matrix:	Solid				Date Pre	p: 02/2	2/2013	
MB Sample Id:	634196-1-BLK		LCS Sar	nple Id:	634196-1-	-BKS		LCSI	O Sample	Id: 634	196-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethan	e <0.000148	0.0500	0.0542	108	0.0500	100	81-127	8	25	mg/kg	02/22/13 11:36	
1,1,1-Trichloroethane	< 0.000602	0.0500	0.0496	99	0.0459	92	71-124	8	25	mg/kg	02/22/13 11:36	
1,1,2,2-Tetrachloroethan	e <0.000194	0.0500	0.0520	104	0.0468	94	75-133	11	25	mg/kg	02/22/13 11:36	
1,1,2-Trichloroethane	< 0.000225	0.0500	0.0514	103	0.0481	96	75-131	7	25	mg/kg	02/22/13 11:36	
1,1-Dichloroethane	< 0.000125	0.0500	0.0497	99	0.0462	92	73-124	7	25	mg/kg	02/22/13 11:36	
1,1-Dichloroethene	< 0.000192	0.0500	0.0431	86	0.0398	80	68-119	8	25	mg/kg	02/22/13 11:36	
1,1-Dichloropropene	< 0.000198	0.0500	0.0475	95	0.0438	88	72-118	8	25	mg/kg	02/22/13 11:36	
1,2,3-Trichlorobenzene	< 0.000106	0.0500	0.0524	105	0.0514	103	75-131	2	25	mg/kg	02/22/13 11:36	
1,2,3-Trichloropropane	< 0.000359	0.0500	0.0583	117	0.0529	106	75-131	10	25	mg/kg	02/22/13 11:36	
1,2,4-Trichlorobenzene	< 0.000191	0.0500	0.0515	103	0.0510	102	79-128	1	25	mg/kg	02/22/13 11:36	
1,2,4-Trimethylbenzene	< 0.000103	0.0500	0.0543	109	0.0505	101	60-159	7	25	mg/kg	02/22/13 11:36	
1,2-Dibromo-3-Chlorop	opane <0.00107	0.0500	0.0479	96	0.0458	92	58-133	4	25	mg/kg	02/22/13 11:36	
1,2-Dibromoethane	< 0.000193	0.0500	0.0520	104	0.0482	96	80-127	8	25	mg/kg	02/22/13 11:36	
1,2-Dichlorobenzene	< 0.000129	0.0500	0.0502	100	0.0464	93	84-121	8	25	mg/kg	02/22/13 11:36	
1,2-Dichloroethane	< 0.000177	0.0500	0.0491	98	0.0445	89	70-123	10	25	mg/kg	02/22/13 11:36	
1,2-Dichloropropane	< 0.000162	0.0500	0.0483	97	0.0446	89	75-122	8	25	mg/kg	02/22/13 11:36	
1,3,5-Trimethylbenzene	< 0.000166	0.0500	0.0548	110	0.0503	101	61-160	9	25	mg/kg	02/22/13 11:36	
1,3-Dichlorobenzene	< 0.000159	0.0500	0.0509	102	0.0475	95	84-124	7	25	mg/kg	02/22/13 11:36	
1,3-Dichloropropane	< 0.000227	0.0500	0.0514	103	0.0480	96	82-131	7	25	mg/kg	02/22/13 11:36	
1.4-Dichlorobenzene	< 0.0000970	0.0500	0.0490	98	0.0461	92	82-120	6	25	mg/kg	02/22/13 11:36	
2,2-Dichloropropane	< 0.000127	0.0500	0.0502	100	0.0491	98	67-137	2	25	mg/kg	02/22/13 11:36	
2-Butanone	< 0.00173	0.600	0.612	102	0.542	90	46-137	12	25	mg/kg	02/22/13 11:36	
2-Chlorotoluene	< 0.000217	0.0500	0.0525	105	0.0478	96	83-129	9	25	mg/kg	02/22/13 11:36	
2-Hexanone	< 0.00112	0.600	0.650	108	0.583	97	52-137	11	25	mg/kg	02/22/13 11:36	
4-Chlorotoluene	< 0.000118	0.0500	0.0517	103	0.0471	94	83-125	9	25	mg/kg	02/22/13 11:36	
Acetone	0.00535	0.600	0.533	89	0.476	79	33-148	11	25	mg/kg	02/22/13 11:36	
Benzene	< 0.000300	0.0500	0.0475	95	0.0433	87	71-119	9	25	mg/kg	02/22/13 11:36	
Bromobenzene	< 0.000198	0.0500	0.0505	101	0.0462	92	84-123	9	25	mg/kg	02/22/13 11:36	
Bromochloromethane	< 0.000215	0.0500	0.0458	92	0.0426	85	71-120	7	25	mg/kg	02/22/13 11:36	
Bromodichloromethane	< 0.000186	0.0500	0.0554	111	0.0509	102	78-126	8	25	mg/kg	02/22/13 11:36	
Bromoform	< 0.000393	0.0500	0.0471	94	0.0429	86	63-136	9	25	mg/kg	02/22/13 11:36	
Bromomethane	< 0.000274	0.0500	0.0405	81	0.0374	75	57-118	8	25	mg/kg	02/22/13 11:36	
Carbon Disulfide	0.000280	0.550	0.590	107	0.546	99	55-136	8	25	mg/kg	02/22/13 11:36	
Carbon Tetrachloride	< 0.000132	0.0500	0.0494	99	0.0455	91	63-135	8	25	mg/kg	02/22/13 11:36	
Chlorobenzene	< 0.000104	0.0500	0.0493	99	0.0456	91	83-121	8	25	mg/kg	02/22/13 11:36	
Chloroethane	< 0.000254	0.0500	0.0421	84	0.0384	77	57-122	9	25	mg/kg	02/22/13 11:36	
Chloroform	0.000140	0.0500	0.0498	100	0.0455	91	74-118	9	25	mg/kg	02/22/13 11:36	
Chloromethane	< 0.000322	0.0500	0.0437	87	0.0398	80	58-110	9	25	mg/kg	02/22/13 11:36	
cis-1,2-Dichloroethene	< 0.000165	0.0500	0.0509	102	0.0472	94	72-131	8	25	mg/kg	02/22/13 11:36	
cis-1,3-Dichloropropene	< 0.000128	0.0500	0.0564	113	0.0520	104	74-135	8	25	mg/kg	02/22/13 11:36	
Dibromochloromethane	< 0.000422	0.0500	0.0453	91	0.0418	84	77-130	8	25	mg/kg	02/22/13 11:36	
Dibromomethane	< 0.000260	0.0500	0.0500	100	0.0459	92	73-126	9	25	mg/kg	02/22/13 11:36	
Dichlorodifluoromethan	e <0.000484	0.0500	0.0505	101	0.0463	93	54-122	9	25	mg/kg	02/22/13 11:36	
Ethvlbenzene	< 0.000104	0.0500	0.0509	102	0.0466	93	80-123	9	25	mg/kg	02/22/13 11:36	
Hexachlorobutadiene	< 0.000346	0.0500	0.0504	101	0.0495	99	77-130	2	25	mg/kg	02/22/13 11:36	
Iodomethane (Methyl Io	dide) <0.000200	0.0500	0.0457	91	0.0421	84	63-116	8	25	mg/kg	02/22/13 11:36	
isopropylbenzene	< 0.000112	0.0500	0.0499	100	0.0464	93	55-155	7	25	mg/kg	02/22/13 11:36	
m,p-Xylenes	< 0.000185	0.100	0.106	106	0.0979	98	78-127	8	25	mg/kg	02/22/13 11:36	
Methylene Chloride	0.00649	0.0500	0.0515	103	0.0486	97	57-134	6	25	mg/kg	02/22/13 11:36	
										00		

Page 24 of 29



### Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by	SW-846 8	260B						Pr	ep Metho	od: SW5	5030B	
Seq Number: 9	907617				Matrix:	Solid				Date Pr	ep: 02/2	2/2013	
MB Sample Id: 6	534196-1-	BLK		LCS San	nple Id:	634196-1-	BKS		LCSI	O Sample	e Id: 6341	96-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE		< 0.000142	0.100	0.114	114	0.107	107	64-148	6	25	mg/kg	02/22/13 11:36	
Naphthalene	8	< 0.000148	0.0500	0.0491	98	0.0481	96	53-162	2	25	mg/kg	02/22/13 11:36	
n-Butylbenzene	<	0.0000990	0.0500	0.0527	105	0.0494	99	82-127	6	25	mg/kg	02/22/13 11:36	
n-Propylbenzene		< 0.000137	0.0500	0.0538	108	0.0496	99	84-131	8	25	mg/kg	02/22/13 11:36	
o-Xylene	<i></i>	< 0.000149	0.0500	0.0512	102	0.0473	95	79-125	8	25	mg/kg	02/22/13 11:36	
p-Cymene (p-Isopropyltol	uene) <	0.0000800	0.0500	0.0548	110	0.0513	103	84-130	7	25	mg/kg	02/22/13 11:36	
Sec-Butylbenzene	2	< 0.000121	0.0500	0.0535	107	0.0494	99	84-131	8	25	mg/kg	02/22/13 11:36	
Styrene	8	< 0.000158	0.0500	0.0554	111	0.0508	102	80-126	9	25	mg/kg	02/22/13 11:36	
tert-Butylbenzene	<	0.0000900	0.0500	0.0529	106	0.0490	98	83-132	8	25	mg/kg	02/22/13 11:36	
Tetrachloroethylene		< 0.000173	0.0500	0.0493	99	0.0455	91	79-124	8	25	mg/kg	02/22/13 11:36	
Toluene	2	< 0.000117	0.0500	0.0475	95	0.0442	88	74-122	7	25	mg/kg	02/22/13 11:36	
trans-1,2-dichloroethene	2.	< 0.000123	0.0500	0.0456	91	0.0420	84	63-110	8	25	mg/kg	02/22/13 11:36	
trans-1,3-dichloropropene	6 8	< 0.000361	0.0500	0.0440	88	0.0418	84	73-125	5	25	mg/kg	02/22/13 11:36	
Trichloroethene	10	< 0.000147	0.0500	0.0519	104	0.0468	94	78-119	10	25	mg/kg	02/22/13 11:36	
Trichlorofluoromethane		< 0.000186	0.0500	0.0448	90	0.0409	82	71-148	9	25	mg/kg	02/22/13 11:36	
Vinyl Acetate	5	< 0.000213	0.500	0.553	111	0.498	100	40-154	10	25	mg/kg	02/22/13 11:36	
Vinyl Chloride	8	< 0.000193	0.0500	0.0411	82	0.0371	74	60-123	10	25	mg/kg	02/22/13 11:36	
Surrogate		MB %Rec	MB Flag	L %	CS Rec	LCS Flag	LCSD %Rec	LCSI Flag	) Li	mits	Units	Analysis Date	
Dibromofluoromethane		92		1	02		102		53	-142	%	02/22/13 11:36	
1,2-Dichloroethane-D4		101		1	01		98		56	-150	%	02/22/13 11:36	
Toluene-D8		100		1	01		101		70	-130	%	02/22/13 11:36	
4-Bromofluorobenzene		103		1	01		99		68	-152	%	02/22/13 11:36	

Page 25 of 29



### Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SW-846	8260B						Pr	ep Method	SW	5030B	
Seq Number:	907536			Matrix:	Soil				Date Prep	: 02/	21/2013	
Parent Sample Id:	457772-004		MS Sar	nple Id:	457772-00	04 S		MSI	) Sample I	d: 457	772-004 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethan	e <0.00102	0.345	0.381	110	0.367	106	72-125	4	25	mg/kg	02/21/13 17:03	
1,1,1-Trichloroethane	< 0.00416	0.345	0.324	94	0.298	86	75-125	8	25	mg/kg	02/21/13 17:03	
1,1,2,2-Tetrachloroethan	e <0.00134	0.345	0.394	114	0.373	108	74-125	5	25	mg/kg	02/21/13 17:03	
1,1,2-Trichloroethane	< 0.00155	0.345	0.358	104	0.342	99	75-127	5	25	mg/kg	02/21/13 17:03	
1.1-Dichloroethane	< 0.000864	0.345	0.326	94	0.294	85	72-125	10	25	mg/kg	02/21/13 17:03	
1,1-Dichloroethene	< 0.00133	0.345	0.261	76	0.236	68	59-172	10	25	mg/kg	02/21/13 17:03	
1.1-Dichloropropene	< 0.00137	0.345	0.279	81	0.261	76	75-125	7	25	mg/kg	02/21/13 17:03	
1,2,3-Trichlorobenzene	< 0.000732	0.345	0.372	108	0.358	104	75-137	4	25	mg/kg	02/21/13 17:03	
1.2.3-Trichloropropane	< 0.00248	0.345	0.399	116	0.372	108	75-125	7	25	mg/kg	02/21/13 17:03	
1.2.4-Trichlorobenzene	< 0.00132	0.345	0.355	103	0.347	101	75-135	2	25	mg/kg	02/21/13 17:03	
1.2.4-Trimethylbenzene	< 0.000712	0.345	0.348	101	0.347	101	75-125	0	25	mg/kg	02/21/13 17:03	
1.2-Dibromo-3-Chloropr	opane <0.00737	0.345	0.368	107	0.327	95	59-125	12	25	mg/kg	02/21/13 17:03	
1.2-Dibromoethane	<0.00133	0.345	0.340	99	0.325	94	73-125	5	25	mg/kg	02/21/13 17:03	
1.2-Dichlorobenzene	< 0.000891	0.345	0.351	102	0.346	100	75-125	1	25	mg/kg	02/21/13 17:03	
1.2-Dichloroethane	<0.00122	0 345	0 330	96	0 307	89	68-127	7	25	mo/ko	02/21/13 17:03	
1.2-Dichloropropage	<0.00112	0.345	0.339	98	0.319	92	74-125	6	25	mo/ko	02/21/13 17:03	
1.3.5-Trimethylbenzene	<0.00115	0.345	0.348	101	0.347	101	70-130	0	25	mg/kg	02/21/13 17:03	
1 3-Dichlorobenzene	<0.00110	0.345	0.342	99	0.339	98	75-125	1	25	mo/ko	02/21/13 17:03	
1.3-Dichloropropage	<0.00117	0.345	0.335	97	0.321	93	75-125	4	25	mo/ko	02/21/13 17:03	
1.4-Dichlorobenzene	<0.00137	0.345	0.335	97	0.321	96	75-125	2	25	mg/kg	02/21/13 17:03	
2.2-Dichloropropage	<0.000878	0.345	0.337	90	0.323	94	75-125	4	25	mg/kg	02/21/13 17:03	
2-Butanone	<0.000878	4 15	3.63	87	3 20	79	75-125	10	25	mg/kg	02/21/13 17:03	
2-Chlorotoluene	<0.0119	0.345	0 345	100	0 349	101	73-125	1	25	mg/kg	02/21/13 17:03	
2-Hexanone	<0.00130	4 15	3 78	91	3 31	80	75-125	13	25	mg/kg	02/21/13 17:03	
4-Chlorotoluene	<0.000915	0.345	0 330	08	0.336	07	74-125	1	25	mg/kg	02/21/13 17:03	
Acetone	0.000815	4.15	3.40	81	3.00	72	50-150	13	25	mg/kg	02/21/13 17:03	
Panzana	<0.0207	0.245	0.207	86	0.284	82	66 142	4	25	mg/kg	02/21/13 17:03	
Bromohanzana	<0.00207	0.345	0.297	00	0.234	07	75-125	2	25	mg/kg	02/21/13 17:03	
Bromochloromathana	<0.00137	0.345	0.341	99	0.333	97	60-140	14	25	mg/kg	02/21/13 17:03	
Bromodiabloromethana	<0.00149	0.345	0.332	110	0.255	102	75 125	7	25	mg/kg	02/21/13 17:03	
Bromoform	<0.00123	0.345	0.331	06	0.307	105	75 125	0	25	mg/kg	02/21/13 17:03	
Bromomathana	<0.00272	0.345	0.332	60	0.307	50	60 140	15	25	mg/kg	02/21/13 17:03	M2
Carbon Digulfida	<0.00189	2.80	1.80	47	1.50	12	60 140	13	25	mg/kg	02/21/13 17:03	M2
Carbon Tatrachlorida	<0.000084	0.245	0.211	47	0.283	42	62-125	0	25	mg/kg	02/21/13 17:03	IVIZ
Chlorobanzana	<0.000912	0.345	0.311	90	0.203	90	60.133	4	25	mg/kg	02/21/13 17:03	
Chloroothono	<0.000719	0.345	0.323	72	0.312	62	60 140	15	25	mg/kg	02/21/13 17:03	
Chloroform	<0.00176	0.345	0.249	102	0.213	02	74 125	10	25	mg/kg	02/21/13 17:03	
Chloromathana	<0.000900	0.345	0.330	103	0.521	53	60 140	10	25	mg/kg	02/21/13 17:03	MO
chioromethane	<0.00222	0.345	0.199	30	0.178	32	75 125	11	25	mg/kg	02/21/13 17:03	IVI2
cis-1,2-Dichloropenene	<0.00114	0.345	0.332	106	0.298	00	75-125	7	25	mg/kg	02/21/13 17:03	
Dibergroup clishes and a second second	<0.000884	0.345	0.365	106	0.341	99	74-125		25	mg/kg	02/21/13 17:03	
Dibromocniorometnane	<0.00292	0.345	0.316	92	0.299	87	/3-125	0	25	mg/kg	02/21/13 17:03	
Dibromomethane	<0.00180	0.345	0.331	96	0.304	88	69-127	9	25	mg/kg	02/21/13 17:03	1.0
Dichlorodifiuoromethan	< < 0.00334	0.345	0.191	55	0.165	48	65-135	15	25	mg/kg	02/21/13 17:03	M2
Eunyibenzene	< 0.000719	0.345	0.321	93	0.313	91	75-125	3	25	mg/kg	02/21/13 17:03	
Hexachiorobutadiene	<0.00239	0.345	0.327	95	0.330	96	75-125	1	25	mg/kg	02/21/13 17:03	1.0
Iodomethane (Methyl Io	11de) <0.00138	0.345	0.270	78	0.240	70	75-125	12	25	mg/kg	02/21/13 17:03	M2
isopropylbenzene	< 0.000774	0.345	0.346	100	0.332	96	75-125	4	25	mg/kg	02/21/13 17:03	
m,p-Xylenes	< 0.00128	0.691	0.659	95	0.638	92	75-125	3	25	mg/kg	02/21/13 17:03	
Methylene Chloride	0.0332	0.345	0.297	76	0.267	68	75-125	11	25	mg/kg	02/21/13 17:03	M2

Page 26 of 29



### Southwest Research Institute

Jet Fuel

Analytical Method: V	OAs by SW-846	8260B						Pr	ep Metho	od: SW:	5030B	
Seq Number: 9	07536			Matrix:	Soil				Date Pre	ep: 02/2	1/2013	
Parent Sample Id: 4	57772-004		MS Sar	nple Id:	457772-0	04 S		MSI	O Sample	e Id: 457	772-004 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE	< 0.000981	0.691	0.756	109	0.661	96	60-140	13	25	mg/kg	02/21/13 17:03	
Naphthalene	< 0.00102	0.345	0.343	99	0.327	95	70-130	5	25	mg/kg	02/21/13 17:03	
n-Butylbenzene	< 0.000684	0.345	0.343	99	0.339	98	75-125	1	25	mg/kg	02/21/13 17:03	
n-Propylbenzene	< 0.000947	0.345	0.331	96	0.328	95	75-125	1	25	mg/kg	02/21/13 17:03	
o-Xylene	< 0.00103	0.345	0.336	97	0.323	94	75-125	4	25	mg/kg	02/21/13 17:03	
p-Cymene (p-Isopropyltolu	iene) <0.000553	0.345	0.350	101	0.351	102	75-125	0	25	mg/kg	02/21/13 17:03	
Sec-Butylbenzene	< 0.000836	0.345	0.348	101	0.350	101	75-125	1	25	mg/kg	02/21/13 17:03	
Styrene	< 0.00109	0.345	0.369	107	0.350	101	75-125	5	25	mg/kg	02/21/13 17:03	
tert-Butylbenzene	< 0.000622	0.345	0.350	101	0.353	102	75-125	1	25	mg/kg	02/21/13 17:03	
Tetrachloroethylene	< 0.00120	0.345	0.273	79	0.271	79	71-125	1	25	mg/kg	02/21/13 17:03	
Toluene	< 0.000808	0.345	0.299	87	0.289	84	59-139	3	25	mg/kg	02/21/13 17:03	
trans-1,2-dichloroethene	< 0.000850	0.345	0.266	77	0.240	70	75-125	10	25	mg/kg	02/21/13 17:03	M2
trans-1,3-dichloropropene	< 0.00249	0.345	0.305	88	0.293	85	66-125	4	25	mg/kg	02/21/13 17:03	
Trichloroethene	< 0.00102	0.345	0.297	86	0.279	81	62-137	6	25	mg/kg	02/21/13 17:03	
Trichlorofluoromethane	< 0.00129	0.345	0.268	78	0.239	69	67-125	11	25	mg/kg	02/21/13 17:03	
Vinyl Acetate	< 0.00147	3.45	3.59	104	3.31	96	60-140	8	25	mg/kg	02/21/13 17:03	
Vinyl Chloride	< 0.00133	0.345	0.219	63	0.194	56	60-140	12	25	mg/kg	02/21/13 17:03	M2
Surrogate			N %	1S Rec	MS Flag	MSD %Ree	MSD Flag	) Li	mits	Units	Analysis Date	
Dibromofluoromethane			1	06		100		53	-142	%	02/21/13 17:03	
1,2-Dichloroethane-D4			1	04		101		56	-150	%	02/21/13 17:03	
Toluene-D8			1	00		102		70	-130	%	02/21/13 17:03	
4-Bromofluorobenzene			1	03		103		68	-152	%	02/21/13 17:03	

Page 27 of 29



### Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SV	W-846 8	260B						Pr	ep Metho	od: SW	5030B	
Seq Number:	907617				Matrix:	Product				Date Pre	ep: 02/2	22/2013	
Parent Sample Id:	457697-002			MS Sar	nple Id:	457697-00	02 S		MSI	O Sample	Id: 457	697-002 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethan	e	<3.70	1250	1150	92	1160	93	72-125	1	25	mg/kg	02/22/13 14:28	
1,1,1-Trichloroethane		<15.1	1250	1100	88	1110	89	75-125	1	25	mg/kg	02/22/13 14:28	
1,1,2,2-Tetrachloroethan	e	<4.85	1250	2560	205	2760	221	74-125	8	25	mg/kg	02/22/13 14:28	M1
1,1,2-Trichloroethane		< 5.63	1250	1400	112	1460	117	75-127	4	25	mg/kg	02/22/13 14:28	
1,1-Dichloroethane		<3.13	1250	1120	90	1140	91	72-125	2	25	mg/kg	02/22/13 14:28	
1,1-Dichloroethene		<4.80	1250	992	79	998	80	59-172	1	25	mg/kg	02/22/13 14:28	
1,1-Dichloropropene		<4.95	1250	1060	85	1060	85	75-125	0	25	mg/kg	02/22/13 14:28	
1,2,3-Trichlorobenzene		<2.65	1250	1340	107	1400	112	75-137	4	25	mg/kg	02/22/13 14:28	
1,2,3-Trichloropropane		<8.98	1250	1230	98	1270	102	75-125	3	25	mg/kg	02/22/13 14:28	
1,2,4-Trichlorobenzene		<4.78	1250	1310	105	1340	107	75-135	2	25	mg/kg	02/22/13 14:28	
1,2,4-Trimethylbenzene		13500	1250	13200	0	14200	56	75-125	7	25	mg/kg	02/22/13 14:28	M3
1,2-Dibromo-3-Chloropr	opane	<26.7	1250	1430	114	1530	122	59-125	7	25	mg/kg	02/22/13 14:28	
1,2-Dibromoethane		<4.83	1250	1180	94	1190	95	73-125	1	25	mg/kg	02/22/13 14:28	
1,2-Dichlorobenzene		<3.23	1250	1140	91	1160	93	75-125	2	25	mg/kg	02/22/13 14:28	
1,2-Dichloroethane		<4.43	1250	1070	86	1090	87	68-127	2	25	mg/kg	02/22/13 14:28	
1,2-Dichloropropane		<4.05	1250	1100	88	1130	90	74-125	3	25	mg/kg	02/22/13 14:28	
1,3,5-Trimethylbenzene		3790	1250	4590	64	4830	83	70-130	5	25	mg/kg	02/22/13 14:28	M3
1,3-Dichlorobenzene		<3.98	1250	1150	92	1160	93	75-125	1	25	mg/kg	02/22/13 14:28	
1,3-Dichloropropane		< 5.68	1250	1170	94	1200	96	75-125	3	25	mg/kg	02/22/13 14:28	
1,4-Dichlorobenzene		<2.43	1250	1120	90	1130	90	75-125	1	25	mg/kg	02/22/13 14:28	
2,2-Dichloropropane		<3.18	1250	1030	82	1120	90	75-125	8	25	mg/kg	02/22/13 14:28	
2-Butanone		<43.2	15000	13700	91	14100	94	75-125	3	25	mg/kg	02/22/13 14:28	
2-Chlorotoluene		< 5.43	1250	1180	94	1190	95	73-125	1	25	mg/kg	02/22/13 14:28	
2-Hexanone		<28.0	15000	13900	93	15900	106	75-125	13	25	mg/kg	02/22/13 14:28	
4-Chlorotoluene		<2.95	1250	1490	119	1510	121	74-125	1	25	mg/kg	02/22/13 14:28	
Acetone		212	15000	11900	78	12400	81	50-150	4	25	mg/kg	02/22/13 14:28	
Benzene		13.3	1250	1070	85	1100	87	66-142	3	25	mg/kg	02/22/13 14:28	
Bromobenzene		<4.95	1250	1140	91	1150	92	75-125	1	25	mg/kg	02/22/13 14:28	
Bromochloromethane		< 5.38	1250	1020	82	1060	85	60-140	4	25	mg/kg	02/22/13 14:28	
Bromodichloromethane		<4.65	1250	1190	95	1210	97	75-125	2	25	mg/kg	02/22/13 14:28	
Bromoform		<9.83	1250	926	74	921	74	75-125	1	25	mg/kg	02/22/13 14:28	M2
Bromomethane		< 6.85	1250	845	68	857	69	60-140	1	25	mg/kg	02/22/13 14:28	
Carbon Disulfide		4.50	13800	13300	96	13500	98	60-140	1	25	mg/kg	02/22/13 14:28	
Carbon Tetrachloride		<3.30	1250	1070	86	1090	87	62-125	2	25	mg/kg	02/22/13 14:28	
Chlorobenzene		<2.60	1250	1110	89	1120	90	60-133	1	25	mg/kg	02/22/13 14:28	
Chloroethane		< 6.35	1250	892	71	893	71	60-140	0	25	mg/kg	02/22/13 14:28	
Chloroform		<3.48	1250	1100	88	1130	90	74-125	3	25	mg/kg	02/22/13 14:28	
Chloromethane		<8.05	1250	968	77	1000	80	60-140	3	25	mg/kg	02/22/13 14:28	
cis-1,2-Dichloroethene		<4.13	1250	1130	90	1160	93	75-125	3	25	mg/kg	02/22/13 14:28	
cis-1,3-Dichloropropene		<3.20	1250	1250	100	1290	103	74-125	3	25	mg/kg	02/22/13 14:28	
Dibromochloromethane		<10.6	1250	965	77	984	79	73-125	2	25	mg/kg	02/22/13 14:28	
Dibromomethane		< 6.50	1250	1100	88	1140	91	69-127	4	25	mg/kg	02/22/13 14:28	
Dichlorodifluoromethan	e	<12.1	1250	1110	89	1140	91	65-135	3	25	mg/kg	02/22/13 14:28	
Ethylbenzene		1570	1250	2540	78	2640	86	75-125	4	25	mg/kg	02/22/13 14:28	
Hexachlorobutadiene		<8.65	1250	1240	99	1240	99	75-125	0	25	mg/kg	02/22/13 14:28	
Iodomethane (Methyl Io	dide)	< 5.00	1250	1030	82	1040	83	75-125	1	25	mg/kg	02/22/13 14:28	
isopropylbenzene		684	1250	1720	83	1780	88	75-125	3	25	mg/kg	02/22/13 14:28	
m,p-Xylenes		6510	2500	7940	57	8340	73	75-125	5	25	mg/kg	02/22/13 14:28	M2
Methylene Chloride		170	1250	1120	76	1150	78	75-125	3	25	mg/kg	02/22/13 14:28	

Page 28 of 29



### Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by S	W-846 8	260B						Pr	ep Metho	od: SW	5030B	
Seq Number:	907617			]	Matrix:	Product				Date Pre	ep: 02/2	22/2013	
Parent Sample Id:	457697-002	2		MS San	nple Id:	457697-00	02 S		MSI	O Sample	Id: 457	697-002 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE		<3.55	2500	2590	104	2690	108	60-140	4	25	mg/kg	02/22/13 14:28	
Naphthalene		1350	1250	2540	95	2740	111	70-130	8	25	mg/kg	02/22/13 14:28	
n-Butylbenzene		1730	1250	2780	84	2960	98	75-125	6	25	mg/kg	02/22/13 14:28	
n-Propylbenzene		2010	1250	3030	82	3180	94	75-125	5	25	mg/kg	02/22/13 14:28	
o-Xylene		3440	1250	4190	60	4400	77	75-125	5	25	mg/kg	02/22/13 14:28	M2
p-Cymene (p-Isopropylt	oluene)	708	1250	1850	91	1930	98	75-125	4	25	mg/kg	02/22/13 14:28	
Sec-Butylbenzene		799	1250	1930	90	1990	95	75-125	3	25	mg/kg	02/22/13 14:28	
Styrene		<3.95	1250	1370	110	1390	111	75-125	1	25	mg/kg	02/22/13 14:28	
tert-Butylbenzene		42.5	1250	1270	98	1280	99	75-125	1	25	mg/kg	02/22/13 14:28	
Tetrachloroethylene		<4.33	1250	1100	88	1110	89	71-125	1	25	mg/kg	02/22/13 14:28	
Toluene		662	1250	1670	81	1710	84	59-139	2	25	mg/kg	02/22/13 14:28	
trans-1,2-dichloroethene	•	<3.08	1250	1020	82	1040	83	75-125	2	25	mg/kg	02/22/13 14:28	
trans-1,3-dichloroproper	ne	<9.03	1250	969	78	1020	82	66-125	5	25	mg/kg	02/22/13 14:28	
Trichloroethene		<3.68	1250	1130	90	1140	91	62-137	1	25	mg/kg	02/22/13 14:28	
Trichlorofluoromethane		<4.65	1250	947	76	983	79	67-125	4	25	mg/kg	02/22/13 14:28	
Vinyl Acetate		< 5.33	12500	12000	96	12400	99	60-140	3	25	mg/kg	02/22/13 14:28	
Vinyl Chloride		<4.83	1250	879	70	890	71	60-140	1	25	mg/kg	02/22/13 14:28	
Surrogate				N %]	1S Rec	MS Flag	MSD %Rec	MSI Flag	) Li g	mits	Units	Analysis Date	
Dibromofluoromethane				1	00		101		53	-142	%	02/22/13 14:28	
1,2-Dichloroethane-D4				1	00		98		56	-150	%	02/22/13 14:28	
Toluene-D8				1	05		104		70	-130	%	02/22/13 14:28	
4-Bromofluorobenzene				1	09		108		68	-152	%	02/22/13 14:28	

Page 29 of 29

# Appendix BO EPA Testing Reports: CL13-5265



Page 1 of 21

Final 1.000

226 Approved for public release; distribution unlimited.





30-DEC-13

Project Manager: **Scott Hutzler Southwest Research Institute** 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228

Reference: XENCO Report No(s): 476075 Jet Fuel Project Address:

#### Scott Hutzler :

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 476075. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 476075 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Skip Harden Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 21



### CASE NARRATIVE



Client Name: Southwest Research Institute Project Name: Jet Fuel

Project ID: CL13-5265 Work Order Number(s): 476075 
 Report Date:
 30-DEC-13

 Date Received:
 12/18/2013

#### Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Page 3 of 21



# Flagging Criteria



#### Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 3.0 9/20/2007. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- D1 Sample required dilution due to matrix.
- D2 Sample required dilution due to high concentration of target analyte.
- L2 The associated blank spike recovery was below laboratory acceptance limits.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.
- S1 Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Page 4 of 21



### Sample Cross Reference 476075



Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id CL13-5265 Matrix W

Date Collected Sample Depth 12-17-13 00:00 Lab Sample Id 476075-001

Page 5 of 21





### Southwest Research Institute, San Antonio, TX

Jet Fuel

Lab Sample H:       type Collecter:       12,17,13 0.0.00         Analytical Method:       SVOCs by SW-846 8270C       Second Stress	Sample Id: CL13-5265		Matrix:	Product	D	ate Received: 12.1	8.13 10.00	
Analytical Method:         SVOCs by SW-846 8270C         Even Method:         SW3580A           Cehi         RIM         "Moisture"         Moisture         "Moisture"           Analyst         PKH         Date Prep:         12.24.13 12.09         Basis:         Wet Weight           Seq Number         930871         Cat Number         Ref         No         No           1.2-Dehtorbenzene         12.08.21-1          Sci         X.27.13 12.01         D1         50           1.2-Dehtorbenzene         54.07-1          2500         mg/kg         12.27.13 12.01         D1         50           1.2-Dehtorbenzene         106-67-7         <2500         2500         mg/kg         12.27.13 12.01         D1         50           2.4-57.16/hotorphenol         88-66-2         <2500         2500         mg/kg         12.27.13 12.01         D1         50           2.4-Deintorbenzene         106-67-9         <2500         2500         mg/kg         12.27.13 12.01         D1         50           2.4-Deintorbenzene         10.28-57         <5000         500         mg/kg         12.27.13 12.01         D1         50           2.4-Dintorbenzene         10.28-57         <500         2500         <	Lab Sample Id: 476075-001		Date Collect	ted: 12 17 13 00 00				
Analysic Website:         PKH         %Uset         %Uset           Ranky:         9K37         Sci         V         Sci         V         Sci         V         Sci         Sci         V         Sci	F		Dure conte					
Them     NM     PKH     Date Preprint     12.24.13 1.20:     Normalization of the second of	Analytical Method: SVOCs by SW-84	6 8270C			Р	rep Method: SW3	3580A	
Analysis       PKH org Number       Date Prep:       12.24.13 12.09       Basis:       Net Vest Statistics         Parameter       Ros Number	Tech: RIM				9/	Moisture:		
Seq Number:         SUB:	Analyst: PKH		Date Prep:	12.24.13 12.09	В	asis: Wet	Weight	
Parameter         Cas Number         Result         RL         Units         Analysis Date         Fing         Dil           1,2-Dichlorobenzene         120-82-1         <2500         2500         mg/kg         12.271.312.01         DI         50           1,3-Dichlorobenzene         541-73-1         <2500         2500         mg/kg         12.271.312.01         DI         50           1,3-Dichlorobenzene         164-66-7         <2500         2500         mg/kg         12.271.312.01         DI         50           2,4,5-Trichlorophenol         88-06-2         <2500         mg/kg         12.271.312.01         DI         50           2,4,6-Trichlorophenol         120-637-9         <2500         mg/kg         12.271.312.01         DI         50           2,4-Dintroblenene         121-42         <2500         2500         mg/kg         12.271.312.01         DI         50           2,4-Dintroblenene         121-42         <2500         2500         mg/kg         12.271.312.01         DI         50           2,4-Dintroblenene         12-14-2         <2500         mg/kg         12.271.312.01         DI         50           2,4-Dintroblenene         19-58-7         <2500         2500         mg/kg <th>Seg Number: 930871</th> <th></th> <th></th> <th></th> <th>S</th> <th>UB: TX10470421;</th> <th>5</th> <th></th>	Seg Number: 930871				S	UB: TX10470421;	5	
<table-container>ParameterCarboneReveRevIndexAndysioneReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveReveR</table-container>								
12,4-Trichlorobenzene       120-82-1 $-2500$ $mg/kg$ 12.21,112.01       D1       50         1,2-Dichlorobenzene       95-50-1 $-2500$ $2500$ $mg/kg$ 12.27,1312.01       D1       50         1,4-Dichlorobenzene       106-46-7 $-2500$ 2500 $mg/kg$ 12.27,1312.01       D1       50         2,4,5-Trichlorophenol       95-95-4 $-2500$ 2500 $mg/kg$ 12.27,1312.01       D1       50         2,4-Dintorophenol       120-83-2 $-2500$ 2500 $mg/kg$ 12.27,1312.01       D1       50         2,4-Dintorophenol       105-67-9 $-2500$ 2500 $mg/kg$ 12.27,1312.01       D1       50         2,4-Dintorophenol       12.18-8.5 $-5000$ 5000 $mg/kg$ 12.27,1312.01       D1       50         2,4-Dintorophenol       91-88.7 $-2500$ 2500 $mg/kg$ 12.27,1312.01       D1       50         2,choronphuhalene       91-57-6 $-2500$ 2500 $mg/kg$ 12.27,1312.01       D1       50         2-Methylphenol       94-57-5 $-2500$ $2500$ $mg/kg$ 12.27,1312.01       D1	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,2-Dichlorobenzene       95-50-1       -2500       2500       mg/kg       12,21,31,12.01       D1       50         1,3-Dichlorobenzene       106-46-7       -2500       2500       mg/kg       12,27,13,12.01       D1       50         2,4,5-Tichlorophenol       95-95-4       -2500       2500       mg/kg       12,27,13,12.01       D1       50         2,4,6-Tichlorophenol       1208-52       -2500       2500       mg/kg       12,27,13,12.01       D1       50         2,4-Dinitorophenol       105-67-9       -2500       2500       mg/kg       12,27,13,12.01       D1       50         2,4-Dinitorophenol       12,8-5       -5000       5000       mg/kg       12,27,13,12.01       D1       50         2,4-Dinitoroluene       11,4-2       -2500       2500       mg/kg       12,27,13,12.01       D1       50         2,6-Dinitoroluene       91-57-6       -2500       2500       mg/kg       12,27,13,12.01       D1       50         2-Albehorphenol       95-87       -2500       2500       mg/kg       12,27,13,12.01       D1       50         2,6-Dinitoroluene       91-57-6       -2500       2500       mg/kg       12,27,13,12.01       D1       50 </td <td>1,2,4-Trichlorobenzene</td> <td>120-82-1</td> <td>&lt;2500</td> <td>2500</td> <td>mg/kg</td> <td>12.27.13 12.01</td> <td>D1</td> <td>50</td>	1,2,4-Trichlorobenzene	120-82-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
1,4-Dichlorobenzene       541-73-1       <2500	1,2-Dichlorobenzene	95-50-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
1,4-Dicklorobhenzene       106-46-7       <2500	1,3-Dichlorobenzene	541-73-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
24,3-57.inclulorophenol       95-95-4       <2500	1,4-Dichlorobenzene	106-46-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2,4,6-Tricklorophenol       88-06-2       -2500       2500       mg/kg       12.27,13 12.01       D1       50         2,4-Dicklophenol       120-83-2       -2500       2500       mg/kg       12.27,13 12.01       D1       50         2,4-Dimcklyphenol       51-28-5       -5000       5000       mg/kg       12.27,13 12.01       D1       50         2,4-Dimityphenol       12.14.2       -2500       2500       mg/kg       12.27,13 12.01       D1       50         2,4-Dimityphenol       91-58-7       -2500       2500       mg/kg       12.27,13 12.01       D1       50         2,6-Dimitrobluene       91-58-7       -2500       2500       mg/kg       12.27,13 12.01       D1       50         2.Chlorophenol       95-57-8       -2500       2500       mg/kg       12.27,13 12.01       D1       50         2-Methylphenol       91-57-6       -2500       2500       mg/kg       12.27,13 12.01       D1       50         2-Methylphenol       158-11-0-4       -2500       2500       mg/kg       12.27,13 12.01       D1       50         3.4-Methylphenol       158-31-0-7       2500       5000       mg/kg       12.27,13 12.01       D1       50 <tr< td=""><td>2,4,5-Trichlorophenol</td><td>95-95-4</td><td>&lt;2500</td><td>2500</td><td>mg/kg</td><td>12.27.13 12.01</td><td>D1</td><td>50</td></tr<>	2,4,5-Trichlorophenol	95-95-4	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2,4-Dichlorophenol         120-83-2         -2500         2500         mg/kg         12.27.13 12.01         D1         50           2,4-Dimitrophenol         51-28-5         5000         5000         mg/kg         12.27.13 12.01         D1         50           2,4-Dimitrobluene         121-14-2         -2500         2500         mg/kg         12.27.13 12.01         D1         50           2,4-Dimitrobluene         606-20.2         -2500         2500         mg/kg         12.27.13 12.01         D1         50           2,Chlorophenol         91-58-7         -2500         2500         mg/kg         12.27.13 12.01         D1         50           2-Altehylphenol         91-57-6         -2500         2500         mg/kg         12.27.13 12.01         D1         50           2-Mitrophenol         88-74-4         -2500         2500         mg/kg         12.27.13 12.01         D1         50           3,4-Methylphenol         15831-10-4         -2500         2500         mg/kg         12.27.13 12.01         D1         50           3,3-Dichloroberxidine         90-92         -5000         5000         mg/kg         12.27.13 12.01         D1         50           4-Chinroz-amethylphenol         534-52-1	2,4,6-Trichlorophenol	88-06-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2,4-Dimethylphenol       105-67-9       -2500       2500       mg/kg       12.27.13       12.01       D1       50         2,4-Dimitorbhenol       51-28-5       -5000       5000       mg/kg       12.27.13       12.01       D1       50         2,4-Dimitorbluene       12.14-12       -2500       2500       mg/kg       12.27.13       12.01       D1       50         2,6-Dimitorbluene       91-58-7       -2500       2500       mg/kg       12.27.13       12.01       D1       50         2-Chloronphthalene       91-58-7       -2500       2500       mg/kg       12.27.13       12.01       D1       50         2-Methylphenol       95-48-7       -2500       2500       mg/kg       12.27.13       12.01       D1       50         2-Methylphenol       88-74-4       -500       5000       mg/kg       12.27.13       12.01       D1       50         2-Nitrophenol       88-74-4       -500       5000       mg/kg       12.27.13       12.01       D1       50         2-Nitrophenol       1831-10-4       -2500       2500       mg/kg       12.27.13       12.01       D1       50         3-J-Dichlorobenzidine       91-94-1       -50	2,4-Dichlorophenol	120-83-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2,4-Dinitrophenol       51-28-5       <5000	2,4-Dimethylphenol	105-67-9	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2,4-Dimitrotoluene         121-14-2         <2500         2500         mg/kg         12.27.13         12.01         D1         50           2,6-Dimitrotoluene         606-20-2         <2500	2,4-Dinitrophenol	51-28-5	<5000	5000	mg/kg	12.27.13 12.01	D1	50
2,6-Dimitrotoluene         606-20-2         <2500         2500         mg/kg         12.27.13         12.01         D1         50           2-Chloronaphthalene         91-58-7         <2500	2,4-Dinitrotoluene	121-14-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2-Chloronaphthalene91-58-7 $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 2-Chlorophenol95-57-8 $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 2-Methylphenol95-48-7 $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 2-methylphenol95-48-7 $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 2-Nitroniline88-74-4 $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 2-Nitrophenol88-75-5 $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 3.4-Methylphenol $15831-10-4$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 3.3-Dichlorobenzidine $91-94-1$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4.6-dinitro-2-methyl phenol $53-4-52-1$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-biron-3-methylphenol $59-50-7$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Chlorophenyl-phenylether $106-47-8$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitronniline $100-01-6$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitronniline $100-02-7$ $< 5000$ $5000$ $mg/kg$	2,6-Dinitrotoluene	606-20-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2-Chlorophenol       95-57-8       <2500	2-Chloronaphthalene	91-58-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2-Methylaphthalene         91-57-6         <2500         2500         mg/kg         12.27.13         12.01         D1         50           2-methylphenol         95-48-7         <2500	2-Chlorophenol	95-57-8	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2-methylphenol95-48-7 $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 2-Nitroaniline88-74-4 $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 2-Nitrophenol88-75-5 $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 3&4-Methylphenol15831-10-4 $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 3,3-Dichlorobenzidine $91-94-1$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 3,3-Dichlorobenzidine $99-09-2$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4,6-dinitro-2-methyl phenol $534-52.1$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-chloro-3-methylphenol $59-50-7$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Chloroaniline $106-47-8$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitrophenol $100-01-6$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ A-Nitroaniline $100-01-6$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthylene $100-02-7$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthylene $100-02-7$ $< 5000$ $5000$ $mg/kg$ <td>2-Methylnaphthalene</td> <td>91-57-6</td> <td>&lt;2500</td> <td>2500</td> <td>mg/kg</td> <td>12.27.13 12.01</td> <td>D1</td> <td>50</td>	2-Methylnaphthalene	91-57-6	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2-Nitroaniline         88-74-4         <5000         5000         mg/kg         12.27.13         12.01         D1         50           2-Nitrophenol         88-75-5         <2500	2-methylphenol	95-48-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2-Nitrophenol88-75-5 $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 3&4-Methylphenol15831-10-4 $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 3,3-Dichlorobenzidine $91-94-1$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 3,Nitroaniline $99-09-2$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4,6-dinitro-2-methyl phenol $534-52-1$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Bromophenyl-phenylether $101-55-3$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-chloro-3-methyl phenol $59-50-7$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-chloro-3-methyl phenol $106-47-8$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Chloroniline $106-47-8$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitroaniline $100-02-7$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthylene $208-96-8$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Anilne (Phenylamine, Aninobenzene) $62-53-3$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)nthracene $50-52-3$	2-Nitroaniline	88-74-4	<5000	5000	mg/kg	12.27.13 12.01	D1	50
3&4-Methylphenol15831-10-4 $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 3,3-Dichlorobenzidine91-94-1 $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 3.Nitroaniline99-09-2 $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4,6-dinitro-2-methyl phenol $534-52-1$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Bromophenyl-phenylether $101-55-3$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-chloro-3-methyl phenol $59-50-7$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-chlorophenyl-phenylether $106-47-8$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Chlorophenyl-phenyl ether $106-47-8$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitroaniline $100-01-6$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthene $83-32-9$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthylene $208-96-8$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Anilne (Phenylamine, Aminobenzene) $62-53-3$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)anthracene $120-12-7$ <t< td=""><td>2-Nitrophenol</td><td>88-75-5</td><td>&lt;2500</td><td>2500</td><td>mg/kg</td><td>12.27.13 12.01</td><td>D1</td><td>50</td></t<>	2-Nitrophenol	88-75-5	<2500	2500	mg/kg	12.27.13 12.01	D1	50
3.3-Dichlorobenzidine91-94-1<50005000mg/kg12.27.1312.01D1503-Nitroaniline99-09-2<5000	3&4-Methylphenol	15831-10-4	<2500	2500	mg/kg	12.27.13 12.01	D1	50
3-Nitroaniline99-09-2 $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4,6-dinitro-2-methyl phenol $534+52-1$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Bromophenyl-phenylether $101-55-3$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-chloro-3-methyl phenol $59-50-7$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Chloroaniline $106-47-8$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Chlorophenyl-phenyl ether $7005-72-3$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitroaniline $100-01-6$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitrophenol $100-02-7$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthene $83-32-9$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthylene $208-96-8$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Anthracene $120-12-7$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)anthracene $120-12-7$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)anthracene $50-55-3$ $< 2500$ $2500$	3,3-Dichlorobenzidine	91-94-1	<5000	5000	mg/kg	12.27.13 12.01	D1	50
4.6-dinitro-2-methyl phenol $534-52-1$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Bromophenyl-phenylether $101-55-3$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-chloro-3-methyl phenol $59-50-7$ $<22500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-chloro-3-methyl phenol $59-50-7$ $<22500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Chloroaniline $106-47-8$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Chlorophenyl-phenyl ether $7005-72-3$ $<2500$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitroaniline $100-01-6$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitrophenol $100-02-7$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthene $83-32-9$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthylene $208-96-8$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Aniline (Phenylamine, Aminobenzene) $62-53-3$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)anthracene $56-55-3$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(b)fluoranthene $205-99-2$ <td>3-Nitroaniline</td> <td>99-09-2</td> <td>&lt;5000</td> <td>5000</td> <td>mg/kg</td> <td>12.27.13 12.01</td> <td>D1</td> <td>50</td>	3-Nitroaniline	99-09-2	<5000	5000	mg/kg	12.27.13 12.01	D1	50
A-Bromophenyl-phenylether101-55-3 $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-chloro-3-methylphenol $59-50-7$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-chloro-3-methylphenol $106-47-8$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Chlorophenyl-phenyl ether $7005-72.3$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitroaniline $100-01-6$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitrophenol $100-02-7$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthene $83-32-9$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthylene $208-96-8$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Aniline (Phenylamine, Aminobenzene) $62-53-3$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Aniline (Phenylamine, Aminobenzene) $62-53-3$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)anthracene $56-55-3$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(b)fluoranthene $205-99-2$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k)fluoranthene <td>4.6-dinitro-2-methyl phenol</td> <td>534-52-1</td> <td>&lt;5000</td> <td>5000</td> <td>mg/kg</td> <td>12.27.13 12.01</td> <td>D1</td> <td>50</td>	4.6-dinitro-2-methyl phenol	534-52-1	<5000	5000	mg/kg	12.27.13 12.01	D1	50
4-chloro-3-methylphenol $59-50-7$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Chloroaniline $106-47-8$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Chlorophenyl-phenyl ether $7005-72-3$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitroaniline $100-01-6$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitrophenol $100-02-7$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthene $83-32-9$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthylene $208-96-8$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Aniline (Phenylamine, Aminobenzene) $62-53-3$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Anilracene $120-12-7$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)anthracene $56-55-3$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)pyrene $50-32-8$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(b)fluoranthene $205-99-2$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k)fluoranthene $207-08-9$ $< 2500$	4-Bromophenyl-phenylether	101-55-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
4-Chloroaniline $106-47-8$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Chlorophenyl-phenyl ether $7005-72-3$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitroaniline $100-01-6$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitrophenol $100-02-7$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthene $83-32-9$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthylene $208-96-8$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Aniline (Phenylamine, Aminobenzene) $62-53-3$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Aniline (Phenylamine, Aminobenzene) $62-53-3$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)anthracene $120-12-7$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)anthracene $50-55-3$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)pyrene $50-32-8$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(b)fluoranthene $205-99-2$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k)fluoranthene $207-08-9$ $<2500$ <td>4-chloro-3-methylphenol</td> <td>59-50-7</td> <td>&lt;2500</td> <td>2500</td> <td>mg/kg</td> <td>12.27.13 12.01</td> <td>D1</td> <td>50</td>	4-chloro-3-methylphenol	59-50-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
4-Chlorophenyl-phenyl ether7005-72-3 $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitroaniline100-01-6 $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitroaniline100-02-7 $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthene $83-32-9$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthylene $208-96-8$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Aniline (Phenylamine, Aminobenzene) $62-53-3$ $< 5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Anilracene $120-12-7$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)anthracene $56-55-3$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)pyrene $50-32-8$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(b)fluoranthene $205-99-2$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k)fluoranthene $207-08-9$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k)fluoranthene $207-08-9$ $< 2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k)fluoranthene $207-08-9$ $< 2500$ $25$	4-Chloroaniline	106-47-8	<5000	5000	mg/kg	12.27.13 12.01	D1	50
4-Nitroniline100-01-6 $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ 4-Nitrophenol100-02-7 $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthene83-32-9 $<22500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthylene $208-96-8$ $<22500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Aniline (Phenylamine, Aminobenzene) $62-53-3$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Anilracene $120-12-7$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)anthracene $56-55-3$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)pyrene $50-32-8$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(b)fluoranthene $205-99-2$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(b)fluoranthene $207-08-9$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k)fluoranthene $207-08-9$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k)fluoranthene $207-08-9$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k)fluoranthene $207-08-9$ $<2500$ $2500$ $mg/kg$ </td <td>4-Chlorophenyl-phenyl ether</td> <td>7005-72-3</td> <td>&lt;2500</td> <td>2500</td> <td>mg/kg</td> <td>12.27.13 12.01</td> <td>D1</td> <td>50</td>	4-Chlorophenyl-phenyl ether	7005-72-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
4-Nitrophenol $100-02-7$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthene $83-32-9$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Acenaphthylene $208-96-8$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Aniline (Phenylamine, Aminobenzene) $62-53-3$ $<5000$ $5000$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Anihracene $120-12-7$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)anthracene $56-55-3$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(a)apyrene $50-32-8$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(b)fluoranthene $205-99-2$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k),fluoranthene $207-08-9$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k),fluoranthene $207-08-9$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k),fluoranthene $207-08-9$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k),fluoranthene $207-08-9$ $<2500$ $2500$ $mg/kg$ $12.27.13$ $12.01$ $D1$ $50$ Benzo(k),fluoranthene $207-08-9$ $<2500$ $2500$ <	4-Nitroaniline	100-01-6	<5000	5000	mg/kg	12.27.13 12.01	D1	50
Acenaphthene         83-32-9         <2500         2500         mg/kg         12.27.13         12.01         D1         50           Acenaphthylene         208-96-8         <2500	4-Nitrophenol	100-02-7	<5000	5000	mg/kg	12.27.13 12.01	D1	50
Accamphthylene         208-96-8         <2500         2500         mg/kg         12.27.13         12.01         D1         50           Aniline (Phenylamine, Aminobenzene)         62-53-3         <5000	Acenaphthene	83-32-9	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Aniline (Phenylamine, Aminobenzene)         62-53-3         <5000         5000         mg/kg         12.27.13         12.01         D1         50           Anthracene         120-12-7         <2500	Acenaphthylene	208-96-8	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Anthracene         120-12-7         <2500         2500         mg/kg         12.27.13         12.01         D1         50           Benzo(a)anthracene         56-55-3         <2500	Aniline (Phenylamine, Aminobenzene)	62-53-3	<5000	5000	mg/kg	12.27.13 12.01	D1	50
Benzo(a)anthracene         56-55-3         <2500         2500         mg/kg         12.27.13         12.01         D1         50           Benzo(a)pyrene         50-32-8         <2500	Anthracene	120-12-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Benzo(a)pyrene         50-32-8         <2500         2500         mg/kg         12.27.13         12.01         D1         50           Benzo(a)pifuoranthene         205-99-2         <2500	Benzo(a)anthracene	56-55-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Benzo(b)fluoranthene         205-99-2         <2500         2500         mg/kg         12.27.13         12.01         D1         50           Benzo(g,h,i)perylene         191-24-2         <2500	Benzo(a)pyrene	50-32-8	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Benzo(g,h,i)perylene         191-24-2         <2500         2500         mg/kg         12.27.13         12.01         D1         50           Benzo(k)fluoranthene         207-08-9         <2500	Benzo(b)fluoranthene	205-99-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Benzo(k)fluoranthene         207-08-9         <2500         2500         mg/kg         12.27.13         12.01         D1         50           Benzoic Acid         65-85-0         <15000	Benzo(g.h.i)pervlene	191-24-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Benzoic Acid         65-85-0         <15000         mg/kg         12.27.13         12.01         D1L2         50           Demol D t i D i L i D i D i D i D i D i D i D i D	Benzo(k)fluoranthene	207-08-9	<2500	2500	mg/kg	12.27.13 12.01	D1	50
	Benzoic Acid	65-85-0	<15000	15000	mg/kg	12.27.13 12.01	D1L2	50
Benzyi Butyi Phinaiate 85-68-7 <2500 2500 mg/kg 12.27.13 12.01 D1 50	Benzyl Butyl Phthalate	85-68-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
bis(2-chloroethoxy) methane 111-91-1 <2500 2500 mg/kg 12.27.13 12.01 D1 50	bis(2-chloroethoxy) methane	111-91-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50

Page 6 of 21





### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-5265		Matrix:	Product	D	ate Received:12.	18.13 10.00	
Lab Sample Id: 476075-001		Date Collect	ed: 12.17.13 00.00				
Analytical Method: SVOCs by SW-84 Tech: RIM	6 8270C			P1 %	ep Method: SW Moisture:	3580A	
Analyst: PKH		Date Prep:	12.24.13 12.09	B	asis: We	t Weight	
Seq Number: 930871				SU	UB: TX10470421	5	
Parameter	Cas Number F	Result	RL	Units	Analysis Date	Flag	Dil
bis(2-chloroethyl) ether	111-44-4	<2500	2500	mg/kg	12.27.13 12.01	D1	50
bis(2-chloroisopropyl) ether	108-60-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
bis(2-ethylhexyl) phthalate	117-81-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Chrysene	218-01-9	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Dibenz(a,h)Anthracene	53-70-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Dibenzofuran	132-64-9	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Diethyl Phthalate	84-66-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Dimethyl Phthalate	131-11-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
di-n-Butyl Phthalate	84-74-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
di-n-Octyl Phthalate	117-84-0	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Fluoranthene	206-44-0	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Fluorene	86-73-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Hexachlorobenzene	118-74-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Hexachlorobutadiene	87-68-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Hexachlorocyclopentadiene	77-47-4	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Hexachloroethane	67-72-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Indeno(1,2,3-c,d)Pyrene	193-39-5	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Isophorone	78-59-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Naphthalene	91-20-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Nitrobenzene	98-95-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
N-Nitrosodi-n-Propylamine	621-64-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
N-Nitrosodiphenylamine	86-30-6	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Pentachlorophenol	87-86-5	<5000	5000	mg/kg	12.27.13 12.01	D1	50
Phenanthrene	85-01-8	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Phenol	108-95-2	<5000	5000	mg/kg	12.27.13 12.01	D1	50
Pyrene	129-00-0	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Pyridine	110-86-1	<5000	5000	mg/kg	12.27.13 12.01	D1	50
Benzene, 1,2,3-trimethyl- (TIC)	TIC	17300		mg/kg	12.27.13 12.01	D2T4	50
Benzene, 1,2,4,5-tetramethyl- (TIC)	TIC	9640		mg/kg	12.27.13 12.01	D2T4	50
Benzene, 1-ethyl-2,4-dimethyl- (TIC)	TIC	13200		mg/kg	12.27.13 12.01	D2T4	50
Benzene, 1-ethyl-3-methyl- (TIC)	TIC	47400		mg/kg	12.27.13 12.01	D2T4	50
Benzene, 2-propenyl- (TIC)	TIC	18200		mg/kg	12.27.13 12.01	D2T4	50
Cycloheptane, 1,3,5-tris(methylene)- (TIC)	TIC	22300		mg/kg	12.27.13 12.01	D2T4	50
Cyclohexane, 1,1,3-trimethyl- (TIC)	TIC	12100		mg/kg	12.27.13 12.01	D2T4	50
Cyclohexane, 1,4-dimethyl- (TIC)	TIC	11700		mg/kg	12.27.13 12.01	D2T4	50
Cyclohexanol, 2-(1,1-dimethylethyl)- (TIC)	TIC	8230		mg/kg	12.27.13 12.01	D2T4	50
Decane, 2,5,6-trimethyl- (TIC)	TIC	10700		mg/kg	12.27.13 12.01	D2T4	50
Decane, 2-methyl- (TIC)	TIC	12100		mg/kg	12.27.13 12.01	D2T4	50
Dodecane (TIC)	TIC	20600		mg/kg	12.27.13 12.01	D2T4	50

Page 7 of 21





### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id:         CL13-5265           Lab Sample Id:         476075-001	Matrix: Date Co	Produ llected: 12.17	uct 7.13 00.00		Date Received:	2.18.13 10.0	0	
Analytical Method: SVOCs by SV	V-846 8270C					Prep Method:	SW3580A	
And the DVII			12.2	12 12 00		76 Moisture:	¥7. + ¥¥7. ' - 1. +	
Analyst: PKH		Date Pre	p: 12.24	1.13 12.09		Basis:	wet weight	
Seq Number: 930871						SUB: TX10470	4215	
Parameter	Cas Number	Result	RL		Units	Analysis Dat	e Flag	Dil
Ethylbenzene (TIC)	TIC	9610			mg/kg	12.27.13 12.0	D2T4	50
Heptane, 3-ethyl-2-methyl- (TIC)	TIC	13800			mg/kg	12.27.13 12.0	D2T4	50
Nonane (TIC)	TIC	41500			mg/kg	12.27.13 12.0	D2T4	50
Octane (TIC)	TIC	8210			mg/kg	12.27.13 12.0	D2T4	50
Octane, 2,6-dimethyl- (TIC)	TIC	24900			mg/kg	12.27.13 12.0	D2T4	50
Tetradecane (TIC)	TIC	11800			mg/kg	12.27.13 12.0	D2T4	50
Undecane (TIC)	TIC	48100			mg/kg	12.27.13 12.0	D2T4	50
p-Xylene (TIC)	TIC	17800			mg/kg	12.27.13 12.0	D2T4	50
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Da	e Flag	
2-Fluorophenol		367-12-4	123	%	25-121	12.27.13 12.0	1 S1	
Phenol-d6		13127-88-3	108	%	24-113	12.27.13 12.0	1	
Nitrobenzene-d5		4165-60-0	116	%	23-120	12.27.13 12.0	1	
2-Fluorobiphenyl		321-60-8	114	%	30-115	12.27.13 12.0	1	
2,4,6-Tribromophenol		118-79-6	94	%	19-122	12.27.13 12.0	1	
Terphenyl-D14		1718-51-0	115	%	18-137	12.27.13 12.0	1	

Page 8 of 21





### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-5265		Matrix:	Product		Date Received:12.	18.13 10.0	00
Lab Sample Id: 476075-001		Date Collec	ted: 12.17.13 00.00				
Analytical Method: VOAs by SW-84	l6 8260B				Prep Method: SW	5030B	
Tech: MCH					% Moisture:		
Analyst: MCH		Date Prep:	12.20.13 12.20		Basis: We	t Weight	
Seq Number: 930572					SUB: TX10470421	5	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,1,1-Trichloroethane	71-55-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,1,2,2-Tetrachloroethane	79-34-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,1,2-Trichloroethane	79-00-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,1-Dichloroethane	75-34-3	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,1-Dichloroethene	75-35-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,1-Dichloropropene	563-58-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2,3-Trichlorobenzene	87-61-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2,3-Trichloropropane	96-18-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2,4-Trichlorobenzene	120-82-1	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2,4-Trimethylbenzene	95-63-6	3800	501	mg/kg	12.24.13 19.31	D2	100000
1,2-Dibromo-3-Chloropropane	96-12-8	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2-Dibromoethane	106-93-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2-Dichlorobenzene	95-50-1	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2-Dichloroethane	107-06-2	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2-Dichloropropane	78-87-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,3,5-Trimethylbenzene	108-67-8	2920	251	mg/kg	12.24.13 02.12	D2	50000
1,3-Dichlorobenzene	541-73-1	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,3-Dichloropropane	142-28-9	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,4-Dichlorobenzene	106-46-7	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
2,2-Dichloropropane	594-20-7	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
2-Butanone	78-93-3	<251	251	mg/kg	12.20.13 20.26	D1	5000
2-Chlorotoluene	95-49-8	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
2-Hexanone	591-78-6	<251	251	mg/kg	12.20.13 20.26	D1	5000
4-Chlorotoluene	106-43-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Acetone	67-64-1	<501	501	mg/kg	12.20.13 20.26	D1	5000
Benzene	71-43-2	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Bromobenzene	108-86-1	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Bromochloromethane	74-97-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Bromodichloromethane	75-27-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Bromoform	75-25-2	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Bromomethane	74-83-9	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Carbon Disulfide	75-15-0	<251	251	mg/kg	12.20.13 20.26	D1	5000
Carbon Tetrachloride	56-23-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Chlorobenzene	108-90-7	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Chloroethane	75-00-3	<50.1	50.1	mg/ko	12.20.13 20.26	D1	5000
Chloroform	67-66-3	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Chloromethane	74-87-3	<50.1	50.1	mg/kg	12.20.13 20.26	D1	5000
cis-1.2-Dichloroethene	156-59-2	<25.1	25.1	mg/ko	12.20.13 20.26	D1	5000
				B		~~ ~	

Page 9 of 21





### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-5265		Matrix:	Product		Date Received: 12.1	18.13 10.0	0
Lab Sample Id: 476075-001		Date Collec	ted: 12.17.13 00.00				
	02(0D					5020D	
Analytical Method: VOAs by SW-846	8260B				Prep Method: SW	5030B	
Tech: MCH					% Moisture:		
Analyst: MCH		Date Prep:	12.20.13 12.20		Basis: Wet	t Weight	
Seq Number: 930572					SUB: TX10470421	15	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
cis-1,3-Dichloropropene	10061-01-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Dibromochloromethane	124-48-1	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Dibromomethane	74-95-3	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Dichlorodifluoromethane	75-71-8	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Ethylbenzene	100-41-4	652	25.1	mg/kg	12.20.13 20.26	D2	5000
Hexachlorobutadiene	87-68-3	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Iodomethane (Methyl Iodide)	74-88-4	<100	100	mg/kg	12.20.13 20.26	D1	5000
isopropylbenzene	98-82-8	273	25.1	mg/kg	12.20.13 20.26	D2	5000
m,p-Xylenes	179601-23-1	3210	501	mg/kg	12.24.13 02.12	D2	50000
Methylene Chloride	75-09-2	<100	100	mg/kg	12.20.13 20.26	D1	5000
MTBE	1634-04-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Naphthalene	91-20-3	674	50.1	mg/kg	12.20.13 20.26	D2	5000
n-Butylbenzene	104-51-8	498	25.1	mg/kg	12.20.13 20.26	D2	5000
n-Propylbenzene	103-65-1	727	25.1	mg/kg	12.20.13 20.26	D2	5000
o-Xylene	95-47-6	2230	251	mg/kg	12.24.13 02.12	D2	50000
p-Cymene (p-Isopropyltoluene)	99-87-6	295	25.1	mg/kg	12.20.13 20.26	D2	5000
Sec-Butylbenzene	135-98-8	316	25.1	mg/kg	12.20.13 20.26	D2	5000
Styrene	100-42-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
tert-Butylbenzene	98-06-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Tetrachloroethylene	127-18-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Toluene	108-88-3	286	25.1	mg/kg	12.20.13 20.26	D2	5000
Total Xylenes	1330-20-7	5440	251	mg/kg	12.24.13 02.12	D2	50000
trans-1,2-dichloroethene	156-60-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
trans-1,3-dichloropropene	10061-02-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Trichloroethene	79-01-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Trichlorofluoromethane	75-69-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Vinyl Acetate	108-05-4	<251	251	mg/kg	12.20.13 20.26	D1	5000
Vinyl Chloride	75-01-4	<10.0	10.0	mg/kg	12.20.13 20.26	D1	5000
Benzene, 1-ethyl-2-methyl- (TIC)	TIC	551		mg/kg	12.20.13 20.26	D2T4	5000
Benzene, 1-ethyl-3-methyl- (TIC)	TIC	218		mg/kg	12.20.13 20.26	D2T4	5000
Cyclohexane, 1,2-dimethyl- (TIC)	TIC	280		mg/kg	12.20.13 20.26	D2T4	5000
Decane, 4-methyl- (TIC)	TIC	228		mg/kg	12.20.13 20.26	D2T4	5000
Heptane, 2-methyl- (TIC)	TIC	277		mg/kg	12.20.13 20.26	D2T4	5000
Heptane, 3-methyl- (TIC)	TIC	240		mg/kg	12.20.13 20.26	D2T4	5000
Hexadecane (TIC)	TIC	351		mg/kg	12.20.13 20.26	D2T4	5000
Octane, 3,5-dimethyl- (TIC)	TIC	258		mg/kg	12.20.13 20.26	D2T4	5000
Tridecane (TIC)	TIC	182		mg/kg	12.20.13 20.26	D2T4	5000
Undecane (TIC)	TIC	498		mg/kg	12.20.13 20.26	D2T4	5000

Page 10 of 21





### Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-5265 Lab Sample Id: 476075-001	Matrix: Date Co	Produ llected: 12.17	ct .13 00.00	Γ	Date Received: 1	2.18.13 10.00
Analytical Method: VOAs by SW-846 8260B Tech: MCH Analyst: MCH Seq Number: 930572	Date Pro	ep: 12.20	.13 12.20	P % E S	rep Method: S 6 Moisture: Basis: V UB: TX104704	W5030B Vet Weight 1215
Surrogate Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	<b>Cas Number</b> 1868-53-7 17060-07-0 2037-26-5 460-00-4	% Recovery 108 107 115 132	<b>Units</b> % % %	Limits 53-142 56-150 70-130 68-152	<b>Analysis Dat</b> 12.20.13 20.20 12.20.13 20.20 12.20.13 20.20 12.20.13 20.20	<b>e Flag</b> 5 5 5 5

Page 11 of 21





#### Southwest Research Institute Jet Fuel

Analytical Method: SVOCs	by SW-846	8270C						P	rep Metho	d: SW	3580A	
Seq Number: 930871				Matrix:	Solid				Date Pre	p: 12.2	26.13	
MB Sample Id: 648898-	1-BLK		LCS Sar	nple Id:	648898-1	-BKS		LCS	D Sample	Id: 648	898-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trichlorobenzene	<45.7	500	372	74	383	77	35-129	3	30	mg/kg	12.26.13 15:19	
1,2-Dichlorobenzene	<54.3	500	377	75	387	77	38-122	3	30	mg/kg	12.26.13 15:19	
1,3-Dichlorobenzene	<45.8	500	376	75	388	78	38-120	3	30	mg/kg	12.26.13 15:19	
1,4-Dichlorobenzene	<49.3	500	376	75	394	79	37-121	5	30	mg/kg	12.26.13 15:19	
2,4,5-Trichlorophenol	<58.7	500	374	75	408	82	40-135	9	30	mg/kg	12.26.13 15:19	
2,4,6-Trichlorophenol	<40.2	500	375	75	390	78	39-139	4	30	mg/kg	12.26.13 15:19	
2,4-Dichlorophenol	<47.1	500	369	74	378	76	36-135	2	30	mg/kg	12.26.13 15:19	
2,4-Dimethylphenol	<118	500	378	76	396	79	38-133	5	30	mg/kg	12.26.13 15:19	
2,4-Dinitrophenol	<104	500	529	106	547	109	19-131	3	40	mg/kg	12.26.13 15:19	
2,4-Dinitrotoluene	<47.7	500	362	72	373	75	48-131	3	30	mg/kg	12.26.13 15:19	
2,6-Dinitrotoluene	<47.9	500	352	70	377	75	42-136	7	30	mg/kg	12.26.13 15:19	
2-Chloronaphthalene	<39.6	500	327	65	341	68	32-138	4	30	mg/kg	12.26.13 15:19	
2-Chlorophenol	<48.5	500	388	78	392	78	38-125	1	30	mg/kg	12.26.13 15:19	
2-Methylnaphthalene	<51.3	500	379	76	390	78	36-126	3	30	mg/kg	12.26.13 15:19	
2-methylphenol	<65.0	500	394	79	401	80	37-128	2	30	mg/kg	12.26.13 15:19	
2-Nitroaniline	<44.1	500	351	70	363	73	30-133	3	40	mg/kg	12.26.13 15:19	
2-Nitrophenol	<34.2	500	360	72	367	73	33-142	2	30	mg/kg	12.26.13 15:19	
3&4-Methylphenol	<114	500	388	78	397	79	38-126	2	30	mg/kg	12.26.13 15:19	
3.3-Dichlorobenzidine	<68.6	500	339	68	353	71	35-134	4	40	mg/kg	12.26.13 15:19	
3-Nitroaniline	<52.0	500	337	67	363	73	41-135	7	40	mg/kg	12.26.13 15:19	
4,6-dinitro-2-methyl phenol	<40.7	500	321	64	334	67	30-146	4	40	mg/kg	12.26.13 15:19	
4-Bromophenyl-phenylether	<50.9	500	353	71	379	76	37-140	7	30	mg/kg	12.26.13 15:19	
4-chloro-3-methylphenol	<52.6	500	375	75	381	76	40-134	2	30	mg/kg	12.26.13 15:19	
4-Chloroaniline	<100	500	337	67	351	70	34-124	4	40	mg/kg	12.26.13 15:19	
4-Chlorophenyl-phenyl ether	<50.3	500	376	75	396	79	41-131	5	30	mg/kg	12.26.13 15:19	
4-Nitroaniline	<45.1	500	359	72	373	75	46-132	4	40	mg/kg	12.26.13 15:19	
4-Nitrophenol	<46.7	500	321	64	309	62	21-152	4	40	mg/kg	12.26.13 15:19	
Acenaphthene	<53.7	500	375	75	389	78	37-131	4	30	mg/kg	12.26.13 15:19	
Acenaphthylene	<50.7	500	372	74	385	77	39-129	3	30	mg/kg	12.26.13 15:19	
Aniline (Phenylamine, Aminobenzene)	<167	500	332	66	336	67	33-117	1	40	mg/kg	12.26.13 15:19	
Anthracene	<38.5	500	372	74	388	78	39-139	4	30	mg/kg	12.26.13 15:19	
Benzo(a)anthracene	<42.1	500	379	76	389	78	44-135	3	30	mg/kg	12.26.13 15:19	
Benzo(a)pyrene	<43.6	500	373	75	386	77	43-153	3	30	mg/kg	12.26.13 15:19	
Benzo(b)fluoranthene	<40.5	500	337	67	399	80	40-153	17	30	mg/kg	12.26.13 15:19	
Benzo(g,h,i)perylene	<44.1	500	379	76	395	79	40-153	4	30	mg/kg	12.26.13 15:19	
Benzo(k)fluoranthene	<58.5	500	415	83	368	74	33-156	12	30	mg/kg	12.26.13 15:19	
Benzoic Acid	<72.4	1500	249	17	252	17	31-135	1	50	mg/kg	12.26.13 15:19	L2
Benzyl Butyl Phthalate	<38.9	500	368	74	384	77	43-145	4	30	mg/kg	12.26.13 15:19	
bis(2-chloroethoxy) methane	<55.9	500	353	71	377	75	30-129	7	30	mg/kg	12.26.13 15:19	
bis(2-chloroethyl) ether	<53.7	500	380	76	392	78	33-127	3	30	mg/kg	12.26.13 15:19	
bis(2-chloroisopropyl) ether	<50.1	500	369	74	369	74	25-124	0	30	mg/kg	12.26.13 15:19	
bis(2-ethylhexyl) phthalate	<39.9	500	373	75	386	77	46-145	3	30	mg/kg	12.26.13 15:19	
Chrysene	<45.4	500	369	74	386	77	42-135	5	30	mg/kg	12.26.13 15:19	
Dibenz(a,h)Anthracene	<52.6	500	370	74	384	77	41-155	4	30	mg/kg	12.26.13 15:19	
Dibenzofuran	<49.3	500	364	73	387	77	39-132	6	30	mg/kg	12.26.13 15:19	
Diethyl Phthalate	<51.8	500	372	74	390	78	45-131	5	30	mg/kg	12.26.13 15:19	
Dimethyl Phthalate	<51.6	500	372	74	387	77	43-132	4	30	mg/kg	12.26.13 15:19	
di-n-Butyl Phthalate	<43.0	500	366	73	384	77	43-142	5	30	mg/kg	12.26.13 15:19	
di-n-Octyl Phthalate	<47.5	500	374	75	384	77	34-166	3	30	mg/kg	12.26.13 15:19	
Fluoranthene	<47.3	500	371	74	387	77	41-138	4	30	mg/kg	12.26.13 15:19	
Fluorene	<53.4	500	373	75	387	77	41-131	4	30	mg/kg	12.26.13 15:19	
Hexachlorobenzene	<43.8	500	368	74	388	78	36-142	5	30	mg/kg	12.26.13 15:19	

Page 12 of 21





#### Southwest Research Institute Jet Fuel

Analytical Method:	SVOCs by	SW-846	8270C						P	ep Metho	d: SW	3580A	
Seq Number:	930871			Ν	Aatrix:	Solid				Date Pre	p: 12.2	26.13	
MB Sample Id:	648898-1-E	BLK		LCS Sam	ple Id:	648898-1-	BKS		LCS	D Sample	Id: 648	898-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Hexachlorobutadiene		<47.0	500	363	73	384	77	35-129	6	30	mg/kg	12.26.13 15:19	
Hexachlorocyclopentadi	ene	<22.0	500	404	81	412	82	16-106	2	30	mg/kg	12.26.13 15:19	
Hexachloroethane		<56.0	500	370	74	384	77	36-121	4	30	mg/kg	12.26.13 15:19	
Indeno(1,2,3-c,d)Pyrene		<46.4	500	370	74	388	78	39-154	5	30	mg/kg	12.26.13 15:19	
Isophorone		<44.8	500	369	74	381	76	36-128	3	30	mg/kg	12.26.13 15:19	
Naphthalene		<51.6	500	370	74	384	77	35-128	4	30	mg/kg	12.26.13 15:19	
Nitrobenzene		<43.7	500	366	73	382	76	32-129	4	30	mg/kg	12.26.13 15:19	
N-Nitrosodi-n-Propylan	ine	<59.8	500	380	76	396	79	34-129	4	30	mg/kg	12.26.13 15:19	
N-Nitrosodiphenylamine		<37.4	500	373	75	388	78	27-155	4	30	mg/kg	12.26.13 15:19	
Pentachlorophenol		<33.1	500	280	56	284	57	14-148	1	40	mg/kg	12.26.13 15:19	
Phenanthrene		<49.8	500	372	74	387	77	37-139	4	30	mg/kg	12.26.13 15:19	
Phenol		<53.7	500	377	75	384	77	34-127	2	40	mg/kg	12.26.13 15:19	
Pyrene		<50.0	500	373	75	391	78	42-138	5	30	mg/kg	12.26.13 15:19	
Pyridine		<64.0	500	441	88	440	88	30-113	0	40	mg/kg	12.26.13 15:19	
Surrogate		MB %Rec	MB Flag	LC %R	CS Rec	LCS Flag	LCSE %Ree	) LCS	D Li g	mits	Units	Analysis Date	
2-Fluorophenol		85		70	6		77		25	-121	%	12.26.13 15:19	
Phenol-d6		75		79	9		78		24	-113	%	12.26.13 15:19	
Nitrobenzene-d5		80		73	3		74		23	-120	%	12.26.13 15:19	
2-Fluorobiphenyl		86		73	3		75		30	-115	%	12.26.13 15:19	
2,4,6-Tribromophenol		68		7	8		77		19	-122	%	12.26.13 15:19	
Terphenyl-D14		85		7:	5		74		18	-137	%	12.26.13 15:19	

Page 13 of 21





#### Southwest Research Institute Jet Fuel

Analytical Method:	VOAs by SW-84	6 8260B						P	ep Method	I: SW	5035A	
Seq Number:	930572			Matrix:	Solid				Date Prep	: 12.2	20.13	
MB Sample Id:	648873-1-BLK		LCS Sa	nple Id:	648873-1	-BKS		LCS	D Sample	d: 648	873-1-BSD	
Parameter	M Resu	B Spike lt Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethar	ne <0.00014	48 0.0500	0.0480	96	0.0491	98	81-127	2	25	mg/kg	12.20.13 09:58	
1,1,1-Trichloroethane	< 0.0006	0.0500	0.0493	99	0.0455	91	71-124	8	25	mg/kg	12.20.13 09:58	
1,1,2,2-Tetrachloroethar	ne <0.00019	0.0500	0.0472	94	0.0475	95	75-133	1	25	mg/kg	12.20.13 09:58	
1,1,2-Trichloroethane	< 0.00022	0.0500	0.0463	93	0.0462	92	75-131	0	25	mg/kg	12.20.13 09:58	
1,1-Dichloroethane	< 0.00012	0.0500	0.0471	94	0.0447	89	73-124	5	25	mg/kg	12.20.13 09:58	
1,1-Dichloroethene	< 0.0001	0.0500	0.0454	91	0.0419	84	68-119	8	25	mg/kg	12.20.13 09:58	
1,1-Dichloropropene	< 0.0001	0.0500	0.0452	90	0.0457	91	72-118	1	25	mg/kg	12.20.13 09:58	
1,2,3-Trichlorobenzene	< 0.0001	0.0500	0.0477	95	0.0495	99	75-131	4	25	mg/kg	12.20.13 09:58	
1,2,3-Trichloropropane	< 0.0003	0.0500	0.0504	101	0.0518	104	75-131	3	25	mg/kg	12.20.13 09:58	
1,2,4-Trichlorobenzene	< 0.0001	0.0500	0.0472	94	0.0480	96	79-128	2	25	mg/kg	12.20.13 09:58	
1,2-Dibromo-3-Chlorop	ropane <0.0010	0.0500	0.0469	94	0.0485	97	58-133	3	25	mg/kg	12.20.13 09:58	
1,2-Dibromoethane	< 0.0001	0.0500	0.0488	98	0.0486	97	80-127	0	25	mg/kg	12.20.13 09:58	
1,2-Dichlorobenzene	< 0.00012	0.0500	0.0473	95	0.0475	95	84-121	0	25	mg/kg	12.20.13 09:58	
1,2-Dichloroethane	< 0.0001	0.0500	0.0495	99	0.0473	95	70-123	5	25	mg/kg	12.20.13 09:58	
1,2-Dichloropropane	< 0.0001	62 0.0500	0.0475	95	0.0440	88	75-122	8	25	mg/kg	12.20.13 09:58	
1,3-Dichlorobenzene	< 0.0001	0.0500	0.0478	96	0.0489	98	84-124	2	25	mg/kg	12.20.13 09:58	
1,3-Dichloropropane	< 0.00022	0.0500	0.0483	97	0.0479	96	82-131	1	25	mg/kg	12.20.13 09:58	
1,4-Dichlorobenzene	< 0.00009	0.0500	0.0457	91	0.0467	93	82-120	2	25	mg/kg	12.20.13 09:58	
2,2-Dichloropropane	< 0.00012	0.0500	0.0493	99	0.0456	91	67-137	8	25	mg/kg	12.20.13 09:58	
2-Butanone	< 0.0017	0.600	0.511	85	0.508	85	46-137	1	25	mg/kg	12.20.13 09:58	
2-Chlorotoluene	< 0.0002	0.0500	0.0499	100	0.0501	100	83-129	0	25	mg/kg	12.20.13 09:58	
2-Hexanone	< 0.001	0.600	0.544	91	0.547	91	52-137	1	25	mg/kg	12.20.13 09:58	
4-Chlorotoluene	< 0.0001	0.0500	0.0510	102	0.0514	103	83-125	1	25	mg/kg	12.20.13 09:58	
Acetone	0.0028	33 0.600	0.491	82	0.481	80	33-148	2	25	mg/kg	12.20.13 09:58	
Benzene	< 0.0003	0.0500	0.0474	95	0.0459	92	71-119	3	25	mg/kg	12.20.13 09:58	
Bromobenzene	< 0.0001	0.0500	0.0455	91	0.0453	91	84-123	0	25	mg/kg	12.20.13 09:58	
Bromochloromethane	< 0.0002	0.0500	0.0452	90	0.0422	84	71-120	7	25	mg/kg	12.20.13 09:58	
Bromodichloromethane	< 0.0001	86 0.0500	0.0498	100	0.0471	94	78-126	6	25	mg/kg	12.20.13 09:58	
Bromoform	< 0.0003	0.0500	0.0486	97	0.0501	100	63-136	3	25	mg/kg	12.20.13 09:58	
Bromomethane	< 0.0002	0.0500	0.0468	94	0.0425	85	57-118	10	25	mg/kg	12.20.13 09:58	
Carbon Disulfide	< 0.00008	0.550	0.433	79	0.410	75	55-136	5	25	mg/kg	12.20.13 09:58	
Carbon Tetrachloride	< 0.0001	32 0.0500	0.0477	95	0.0470	94	63-135	1	25	mg/kg	12.20.13 09:58	
Chlorobenzene	< 0.0001	0.0500	0.0473	95	0.0477	95	83-121	1	25	mg/kg	12.20.13 09:58	
Chloroethane	< 0.0002	0.0500	0.0446	89	0.0402	80	57-122	10	25	mg/kg	12.20.13 09:58	
Chloroform	< 0.0001	0.0500	0.0465	93	0.0443	89	74-118	5	25	mg/kg	12.20.13 09:58	
Chloromethane	< 0.00032	0.0500	0.0421	84	0.0390	78	58-110	8	25	mg/kg	12.20.13 09:58	
cis-1,2-Dichloroethene	< 0.0001	65 0.0500	0.0467	93	0.0441	88	72-131	6	25	mg/kg	12.20.13 09:58	
cis-1,3-Dichloropropene	< 0.00012	0.0500	0.0502	100	0.0491	98	74-135	2	25	mg/kg	12.20.13 09:58	
Dibromochloromethane	< 0.00042	0.0500	0.0489	98	0.0518	104	77-130	6	25	mg/kg	12.20.13 09:58	
Dibromomethane	< 0.0002	60 0.0500	0.0479	96	0.0462	92	73-126	4	25	mg/kg	12.20.13 09:58	
Dichlorodifluoromethan	e <0.0004	84 0.0500	0.0438	88	0.0388	78	54-122	12	25	mg/kg	12.20.13 09:58	
Ethylbenzene	< 0.0001	0.0500	0.0496	99	0.0492	98	80-123	1	25	mg/kg	12.20.13 09:58	
Hexachlorobutadiene	< 0.00034	46 0.0500	0.0483	97	0.0475	95	77-130	2	25	mg/kg	12.20.13 09:58	
Iodomethane (Methyl Io	odide) <0.0002	0.0500	0.0437	87	0.0413	83	63-116	6	25	mg/kg	12.20.13 09:58	
isopropylbenzene	< 0.0001	0.0500	0.0534	107	0.0532	106	55-155	0	25	mg/kg	12.20.13 09:58	
Methylene Chloride	0.00082	0.0500	0.0448	90	0.0414	83	57-134	8	25	mg/kg	12.20.13 09:58	
MTBE	< 0.0001	42 0.100	0.0997	100	0.0966	97	64-148	3	25	mg/kg	12.20.13 09:58	
Naphthalene	< 0.0001	48 0.0500	0.0481	96	0.0506	101	53-162	5	25	mg/kg	12.20.13 09:58	
n-Butylbenzene	< 0.00009	0.0500	0.0530	106	0.0531	106	82-127	0	25	mg/kg	12.20.13 09:58	
n-Propylbenzene	< 0.0001	0.0500	0.0507	101	0.0512	102	84-131	1	25	mg/kg	12.20.13 09:58	
p-Cymene (p-Isopropylt	oluene) <0.00008	0.0500	0.0546	109	0.0545	109	84-130	0	25	mg/kg	12.20.13 09:58	
Sec-Butylbenzene	< 0.00012	0.0500	0.0516	103	0.0541	108	84-131	5	25	mg/kg	12.20.13 09:58	

Page 14 of 21





#### Southwest Research Institute Jet Fuel

Analytical Method:	VOAs by SW-846 8	260B						Pr	ep Meth	od: SW5	5035A	
Seq Number:	930572		1	Date Prep: 12.20.13								
MB Sample Id:	648873-1-BLK	LCS San	nple Id:	648873-1-		LCSD Sample Id: 648873-1-BSD						
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Styrene	< 0.000158	0.0500	0.0524	105	0.0532	106	80-126	2	25	mg/kg	12.20.13 09:58	
tert-Butylbenzene	< 0.0000900	0.0500	0.0517	103	0.0536	107	83-132	4	25	mg/kg	12.20.13 09:58	
Tetrachloroethylene	< 0.000173	0.0500	0.0445	89	0.0438	88	79-124	2	25	mg/kg	12.20.13 09:58	
Toluene	0.000140	0.0500	0.0464	93	0.0460	92	74-122	1	25	mg/kg	12.20.13 09:58	
trans-1,2-dichloroethene	< 0.000123	0.0500	0.0442	88	0.0431	86	63-110	3	25	mg/kg	12.20.13 09:58	
trans-1,3-dichloroproper	<pre>&lt;0.000361</pre>	0.0500	0.0523	105	0.0510	102	73-125	3	25	mg/kg	12.20.13 09:58	
Trichloroethene	< 0.000147	0.0500	0.0453	91	0.0441	88	78-119	3	25	mg/kg	12.20.13 09:58	
Trichlorofluoromethane	< 0.000186	0.0500	0.0475	95	0.0444	89	71-148	7	25	mg/kg	12.20.13 09:58	
Vinyl Acetate	< 0.000213	0.500	0.566	113	0.546	109	40-154	4	25	mg/kg	12.20.13 09:58	
Vinyl Chloride	< 0.000193	0.0500	0.0435	87	0.0394	79	60-123	10	25	mg/kg	12.20.13 09:58	
Surrogate	MB %Rec	MB Flag	L4 %]	CS Rec	LCS Flag	LCSD %Rec	LCSI Flag	D Li ;	mits	Units	Analysis Date	
Dibromofluoromethane	116		1	02		95		53	-142	%	12.20.13 09:58	
1,2-Dichloroethane-D4	113		1	02		91		56	-150	%	12.20.13 09:58	
Toluene-D8	98		1	00		100		70	-130	%	12.20.13 09:58	
4-Bromofluorobenzene	94		1	02		105		68	-152	%	12.20.13 09:58	

Analytical Method: Seq Number: MB Sample Id:	<b>VOAs by SW-846 8</b> 930651 648928-1-BLK	260B	Matrix: Solid LCS Sample Id: 648928-1-BKS				Prep Method: SW5030B Date Prep: 12.23.13 LCSD Sample Id: 648928-1-BSD					
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trimethylbenzene	< 0.000103	0.0500	0.0587	117	0.0580	116	60-159	1	25	mg/kg	12.23.13 16:13	
1,3,5-Trimethylbenzene	< 0.000166	0.0500	0.0590	118	0.0571	114	61-160	3	25	mg/kg	12.23.13 16:13	
m,p-Xylenes	< 0.000185	0.100	0.110	110	0.105	105	78-127	5	25	mg/kg	12.23.13 16:13	
o-Xylene	< 0.000149	0.0500	0.0580	116	0.0555	111	79-125	4	25	mg/kg	12.23.13 16:13	
Surrogate	MB %Rec	MB Flag	L4 %]	CS Rec	LCS Flag	LCSI %Re	) LCSI c Flag	D Li g	imits	Units	Analysis Date	
Dibromofluoromethane	100		9	97		98		53	3-142	%	12.23.13 16:13	
1,2-Dichloroethane-D4	97		9	98		106		56	5-150	%	12.23.13 16:13	
Toluene-D8	94		9	99		97		70	)-130	%	12.23.13 16:13	
4-Bromofluorobenzene	95		9	96		95		68	8-152	%	12.23.13 16:13	

Page 15 of 21





#### Southwest Research Institute Jet Fuel

Analytical Method:	VOAs by SW-846 8	260B						Prep Method: SW5035A				
Seq Number:	930791		Matrix: Solid					Date Prep: 12.24.13				
MB Sample Id:	649007-1-BLK	LCS Sample Id:		649007-1-BKS			LCS	D Sample	007-1-BSD			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trimethylbenzene	< 0.000103	0.0500	0.0553	111	0.0548	110	60-159	1	25	mg/kg	12.24.13 09:21	
1,3,5-Trimethylbenzene	< 0.000166	0.0500	0.0559	112	0.0553	111	61-160	1	25	mg/kg	12.24.13 09:21	
m,p-Xylenes	< 0.000185	0.100	0.105	105	0.106	106	78-127	1	25	mg/kg	12.24.13 09:21	
o-Xylene	< 0.000149	0.0500	0.0529	106	0.0536	107	79-125	1	25	mg/kg	12.24.13 09:21	
Surrogate	MB %Rec	MB Flag	L %	CS Rec	LCS Flag	LCSI %Re	) LCS c Flag	D Li g	imits	Units	Analysis Date	
Dibromofluoromethane	108		9	95		95		53	-142	%	12.24.13 09:21	
1,2-Dichloroethane-D4	104		9	€7		98		56	-150	%	12.24.13 09:21	
Toluene-D8	98		9	98		101		70	-130	%	12.24.13 09:21	
4-Bromofluorobenzene	97		1	00		97		68	3-152	%	12.24.13 09:21	

Page 16 of 21


#### QC Summary 476075



#### Southwest Research Institute Jet Fuel

Analytical Method:	VOAs by SW-846 8	8260B						Pr	ep Metho	d: SW:	5035A	
Seq Number:	930572			Matrix:	Soil				Date Pre	p: 12.2	0.13	
Parent Sample Id:	476047-001		MS Sar	nple Id:	476047-00	01 S		MSI	O Sample	Id: 476	047-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethan	e <0.00554	1.87	1.77	95	1.68	90	72-125	5	25	mg/kg	12.20.13 14:48	
1,1,1-Trichloroethane	< 0.0225	1.87	1.55	83	1.42	76	75-125	9	25	mg/kg	12.20.13 14:48	
1,1,2,2-Tetrachloroethan	e <0.00726	1.87	1.66	89	1.74	93	74-125	5	25	mg/kg	12.20.13 14:48	
1,1,2-Trichloroethane	< 0.00842	1.87	1.64	88	1.71	91	75-127	4	25	mg/kg	12.20.13 14:48	
1,1-Dichloroethane	< 0.00468	1.87	1.58	84	1.46	78	72-125	8	25	mg/kg	12.20.13 14:48	
1,1-Dichloroethene	< 0.00719	1.87	1.59	85	1.43	76	59-172	11	25	mg/kg	12.20.13 14:48	
1,1-Dichloropropene	< 0.00741	1.87	1.63	87	1.57	84	75-125	4	25	mg/kg	12.20.13 14:48	
1,2,3-Trichlorobenzene	< 0.00397	1.87	1.74	93	1.66	89	75-137	5	25	mg/kg	12.20.13 14:48	
1,2,3-Trichloropropane	< 0.0134	1.87	1.72	92	1.88	101	75-125	9	25	mg/kg	12.20.13 14:48	
1,2,4-Trichlorobenzene	< 0.00715	1.87	1.66	89	1.63	87	75-135	2	25	mg/kg	12.20.13 14:48	
1.2-Dibromo-3-Chloropr	opane <0.0399	1.87	1.71	91	1.64	88	59-125	4	25	mg/kg	12.20.13 14:48	
1.2-Dibromoethane	< 0.00722	1.87	1.65	88	1.71	91	73-125	4	25	mg/kg	12.20.13 14:48	
1.2-Dichlorobenzene	< 0.00483	1.87	1.74	93	1.74	93	75-125	0	25	mg/kg	12.20.13 14:48	
1.2-Dichloroethane	< 0.00662	1.87	1.71	91	1.64	88	68-127	4	25	mg/kg	12.20.13 14:48	
1.2-Dichloropropane	< 0.00606	1.87	1.61	86	1.56	83	74-125	3	25	mg/kg	12.20.13 14:48	
1.3-Dichlorobenzene	< 0.00595	1.87	1.71	91	1.82	97	75-125	6	25	mg/kg	12.20.13 14:48	
1.3-Dichloropropane	<0.00850	1.87	1.71	91	1.80	96	75-125	5	25	mg/kg	12.20.13 14:48	
1 4-Dichlorobenzene	<0.00363	1.87	1.63	87	1.67	89	75-125	2	25	mø/kø	12.20.13 14:48	
2.2-Dichloropropane	<0.00475	1.87	1.48	79	1.36	73	75-125	8	25	mg/kg	12.20.13 14:48	M2
2-Butanone	<0.0646	22.5	17.0	76	17.4	77	75-125	2	25	mg/kg	12.20.13 14:48	
2-Chlorotoluene	<0.00812	1.87	1 79	96	1.80	96	73-125	1	25	mg/kg	12.20.13 14:48	
2-Hexanone	<0.0419	22.5	18.3	81	20.7	92	75-125	12	25	mg/kg	12.20.13 14:48	
4-Chlorotoluene	<0.00412	1.87	1 79	96	1.87	100	74-125	4	25	mg/kg	12.20.13 14:48	
Acetone	0.146	22.5	16.2	71	15.4	68	50-150	5	25	mg/kg	12.20.13 14:48	
Benzene	<0.0112	1.87	1.65	88	1.57	84	66-142	5	25	mg/kg	12.20.13 14:48	
Bromobenzene	<0.00741	1.87	1.00	91	1.57	95	75-125	4	25	mg/kg	12.20.13.14.48	
Bromochloromethane	<0.00741	1.87	1.60	86	1.77	79	60-140	8	25	mg/kg	12.20.13 14:48	
Bromodichloromethane	<0.00696	1.87	1.67	89	1.40	87	75-125	2	25	mg/kg	12.20.13 14:48	
Bromoform	<0.000000	1.87	1.07	91	1.80	96	75-125	5	25	mg/kg	12.20.13 14:48	
Bromomethane	<0.0103	1.87	1.18	63	1.03	55	60-140	14	25	mg/kg	12.20.13 14:48	M2
Carbon Disulfide	<0.00329	20.6	13.9	67	12.6	61	60-140	10	25	mg/kg	12.20.13 14:48	1412
Carbon Tetrachloride	<0.00322	1.87	161	86	1.52	81	62-125	6	25	mg/kg	12.2013 14:48	
Chlorobenzene	<0.00389	1.87	1.01	93	1.71	91	60-133	2	25	ma/ka	12.20.13 14:48	
Chloroethane	<0.00951	1.87	1.18	63	1.03	55	60-140	14	25	ma/ka	12.20.13 14:48	M2
Chloroform	<0.00520	1.87	1.10	82	1.05	76	74-125	8	25	mg/kg	12.20.13 14:48	1412
Chloromethane	<0.0121	1.87	1.54	76	1.42	68	60-140	10	25	mg/kg	12.20.13.14.48	
cis-1 2-Dichloroethene	<0.00618	1.87	1.50	85	1.20	78	75-125	0	25	ma/ka	12.2013 14:48	
cis-1.3-Dichloropropene	<0.00010	1.87	1.55	94	1.45	98	74-125	4	25	mg/kg	12 20 13 14:48	
Dibromochloromethane	<0.00479	1.87	1.75	97	1.80	96	73-125	1	25	mg/kg	12.20.13 14:48	
Dibromoentoromethana	<0.0138	1.87	1.61	87	1.50	85	60-127	2	25	mg/kg	12.2013 14:48	
Dichlorodifluoromethan	<0.00975	1.87	1.02	72	1.59	63	65-135	13	25	mg/kg	12.2013 14:48	M2
Ethylbenzene	<0.0181	1.87	1.54	03	1.16	94	75-125	1	25	mg/kg	12.20.13 14:48	1012
Havashlarabutadiana	<0.00389	1.07	1.74	93	1.75	94	75 125	1	25	mg/kg	12.20.13 14:48	
Indomethana (Mathyl Io	<0.0129	1.87	1.02	82	1.03	75	75-125	0	25	mg/kg	12.20.13 14:48	
isopropulbenzene	<0.00/49	1.87	1.55	101	1.40	103	75-125	3	25	mg/kg	12.20.13 14:48	
Nethylana Chlarida	<0.00419	1.07	1.00	101	1.95	105	75-125	3	25	mg/kg	12.20.13 14:48	142
MTRE	<0.0160	2.74	2.50	0.4	2.24	13	60-140	9	25	mg/kg	12 20 13 14.48	IVIZ
Nankthalana	<0.00551	3.74	3.50	94	3.24	0/	70 120	0	25	mg/kg	12.20.13 14.48	
n Butylbanzana	<0.00334	1.07	1.73	94	1.73	94	75 125	2	23	mg/kg	12 20 13 14.48	
n-ButyIOCHZCHC	<0.00512	1.07	1.02	97	1.85	101	75-125	4	25	mg/kg	12.20.13 14:48	
n-riopyioenzene	<0.00313	1.87	1.80	90	1.89	101	75 125	5	25	mg/kg	12.20.13 14:48	
p-cymene (p-Isopropylia	<0.00299	1.87	1.94	104	1.95	103	75 125	1	25	mg/kg	12.20.13 14.48	
Sec-ButyIbenzene	<0.00453	1.8/	1.84	98	1.80	99	13-123	1	25	ing/kg	12.20.13 14:48	

Page 17 of 21



#### QC Summary 476075



#### Southwest Research Institute Jet Fuel

Analytical Method:	VOAs by SW-846 8	260B						Pr	ep Meth	od: SW:	5035A	
Seq Number:	930572		1	Matrix:	Soil				Date Pr	ep: 12.2	0.13	
Parent Sample Id:	476047-001		MS Sam	ple Id:	476047-00	01 S		MSI	D Sample	e Id: 4760	047-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Styrene	< 0.00591	1.87	1.91	102	1.93	103	75-125	1	25	mg/kg	12.20.13 14:48	
tert-Butylbenzene	< 0.00337	1.87	1.89	101	1.93	103	75-125	2	25	mg/kg	12.20.13 14:48	
Tetrachloroethylene	< 0.00647	1.87	1.60	86	1.55	83	71-125	3	25	mg/kg	12.20.13 14:48	
Toluene	0.00785	1.87	1.66	88	1.67	89	59-139	1	25	mg/kg	12.20.13 14:48	
trans-1,2-dichloroethene	< 0.00460	1.87	1.46	78	1.31	70	75-125	11	25	mg/kg	12.20.13 14:48	M2
trans-1,3-dichloropropen	e <0.0135	1.87	1.84	98	1.87	100	66-125	2	25	mg/kg	12.20.13 14:48	
Trichloroethene	< 0.00550	1.87	1.64	88	1.59	85	62-137	3	25	mg/kg	12.20.13 14:48	
Trichlorofluoromethane	< 0.00696	1.87	1.49	80	1.35	72	67-125	10	25	mg/kg	12.20.13 14:48	
Vinyl Acetate	< 0.00797	18.7	16.4	88	17.5	94	60-140	6	25	mg/kg	12.20.13 14:48	
Vinyl Chloride	< 0.00722	1.87	1.39	74	1.24	66	60-140	11	25	mg/kg	12.20.13 14:48	
Surrogate			M %I	IS Rec	MS Flag	MSD %Rec	MSD Flag	) Li g	mits	Units	Analysis Date	
Dibromofluoromethane			9	3		87		53	-142	%	12.20.13 14:48	
1,2-Dichloroethane-D4			8	9		85		56	-150	%	12.20.13 14:48	
Toluene-D8			9	9		99		70	-130	%	12.20.13 14:48	
4-Bromofluorobenzene			10	01		103		68	-152	%	12.20.13 14:48	

Analytical Method: Seq Number: Parent Sample Id:	VOAs by SW-846 8260B 930651 476349-001			Matrix: Sludge MS Sample Id: 476349-001 S			Prep Method:         SW503(           Date Prep:         12.23.13           MSD Sample Id:         476349-				5030B 3.13 349-001 SD		
Parameter	P: R	arent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trimethylbenzene		0.217	2.50	2.85	105	2.84	105	75-125	0	25	mg/kg	12.23.13 20:29	
1,3,5-Trimethylbenzene	0	0.0891	2.50	2.66	103	2.67	103	70-130	0	25	mg/kg	12.23.13 20:29	
m,p-Xylenes	0	0.0180	5.01	4.68	93	4.81	96	75-125	3	25	mg/kg	12.23.13 20:29	
o-Xylene	0	0.0160	2.50	2.50	99	2.57	102	75-125	3	25	mg/kg	12.23.13 20:29	
Surrogate				N %]	1S Rec	MS Flag	MSD %Ree	MSD c Flag	) Li	mits	Units	Analysis Date	
Dibromofluoromethane				9	90		87		53	-142	%	12.23.13 20:29	
1,2-Dichloroethane-D4				9	99		93		56	-150	%	12.23.13 20:29	
Toluene-D8				5	98		95		70	-130	%	12.23.13 20:29	
4-Bromofluorobenzene				9	98		100		68	-152	%	12.23.13 20:29	

Page 18 of 21



#### QC Summary 476075



#### Southwest Research Institute Jet Fuel

Analytical Method: Seq Number: Parent Sample Id:	<b>VOAs by SW-846 8</b> 930791 476189-002	Matrix: Soil MS Sample Id: 476189-002 S			Prep Method:         SW5035A           Date Prep:         12.24.13           MSD Sample Id:         476189-002				5035A 4.13 189-002 <b>SD</b>			
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trimethylbenzene	< 0.00423	2.05	2.26	110	2.66	109	75-125	16	25	mg/kg	12.24.13 14:04	
1,3,5-Trimethylbenzene	< 0.00681	2.05	2.25	110	2.51	102	70-130	11	25	mg/kg	12.24.13 14:04	
m,p-Xylenes	< 0.00759	4.11	4.22	103	4.80	98	75-125	13	25	mg/kg	12.24.13 14:04	
o-Xylene	< 0.00612	2.05	2.25	110	2.48	101	75-125	10	25	mg/kg	12.24.13 14:04	
Surrogate			N %]	1S Rec	MS Flag	MSD %Re	o MSD c Flag	Li	mits	Units	Analysis Date	
Dibromofluoromethane			8	38		89		53	-142	%	12.24.13 14:04	
1,2-Dichloroethane-D4			9	03		94		56	-150	%	12.24.13 14:04	
Toluene-D8			9	97		95		70	-130	%	12.24.13 14:04	
4-Bromofluorobenzene			1	00		100		68	-152	%	12.24.13 14:04	

Page 19 of 21

476075-H

	Army Lab (Chem Lab)
	Work Instruction Form (SHIPPING)
WI No.	13-296
Requestor:	Scott Hutzler
Issue Date:	12/17/2013
Required Arrival Date:	12/20/2013
Requests for ov	etnight shipments must be received by 9 AM
Charge Number:	1.08.07.13.17149.36.001
Assigned To:	-
Authorized by (Initiator):	Scott Hutzler
Completed By:	Length and the second
Completion Date	
Completion Approved By:	

#### **Shipping Instructions**

Sample #	Container Volume	Sample Type	Notes
CL13-5265	100mL	Aviation	
	Surgelie - 1 - 1		
1		-	
· · · · · · · · · · · · · · · · · · ·			
			2

MSDS must be attached for all sample types

Point of Contact	Attn: Jose Londono
Address:	Xenco Laboratories
	4143 Greenbriar Dr.
_	Stafford, TX 77477

281-240-4280

**Telephone Number:** 

Lab Notes

Please run EPA 8260B and EPA 8270C

Al ChemLab Work Instruction

Page 20 of 21

		d'	SOUT	гнw	EST		SHIPPIN	S TICKET NO.
APINAZ-	1 and		RESEARC	H INS	STITUTE		*	73536
FILL.	ZN.	, 9503 W. (	COMMERCE - SA	AN ANT	ONIO, TX 7	8227-1301	(THIS IS N	DT A P.O. NO.1
	®	-	(210)	684-51			DATE: 1	2/17/13
PRIOR TO RE	PAIR OF ANY IT	EM MENTIONED BE	LOW, PLEASE CC	ONTACT	210/522-30	74 WITH ESTIMA	TE AND FOR P	.0. NO.
Xenco Laborator	ries or Dr				Ple Circle 200	ease check box fo to and fro cific method of sh	r method of sh om Vendor ipment by Air	ipment Freight or UPS
Stafford, TX 77	477				Circle spe		TO VENDOR	RETURN TO SV
S H Ph.# 281-240-4	1280				MOTOR FRE	GHT		
P					AIR FREIGHT	(PRIORITY AIR		
ō						General Cando		П
ATTN: Jose Lor	ndono				CEDEDAL 202	PDECC if days		
VENDOR PHONE N	10.	R.M.A. NO.			PEDEKAL EX	FRESS () day, 2 days		
PPD. X INSURE	FOR	DECLARED VALUE	GOVT.	DEPT	NO. PURC	HASE		
AIR BILL OR W/B NO.	00	0.00 ACCT. OR PRC	JECT NO.	08	SWRI REQ. N	D. RE	TURN INITIATED	BY EXT.
QUANTITY		17149.36.0	001	200000000000000000000000000000000000000		Hu	tzler/mwc	
	17.212.23	Kensen	<u>, δ, βά πι</u>			-		27 1711
					-100-10			
			No.					
S.W.R.I. BUYER				BUYE	R FIED	Please indicat	e if items	X YES
S.W.R.I. BUYER NO. OF PACKAGES			ĵ	BUYE NOTI WEIGHT	R FIED	Please indicat are HAZARDO DIMENSIONS	e if items DUS MATERIA	⊠ YES L □ NO
S.W.R.I. BUYER NO. OF PACKAGES			3	BUYE NOTI WEIGHT	R FIED	Please indicat are HAZARD( DIMENSIONS	e if items DUS MATERIA	⊠ YES I. □ NO
S.W.R.I. BUYER NO. OF PACKAGES INDICATE PROBL IN REMARKS ARI	I Ø BON EAN		DSON FOR SHIPMENT	BUYE NOTI WEIGHT I AND/OF	REMARKS	Please indicat are HAZARDO DIMENSIONS	e if items DUS MATERIA	YES     NO
S.W.R.I. BUYER NO. OF PACKAGES I REPAIR (INDICATE PROBL IN REMARKS ARI	I WAR		] SON FOR SHIPMENT REDIT	BUYE NOTI WEIGHT T AND/OF CREDIT RESTOC	REMARKS	Please indicat are HAZARDO DIMENSIONS	e if items DUS MATERIA	VES NO I NO IHER XPLAIN IN EMARKS AREA)
S.W.R.I. BUYER NO. OF PACKAGES INDICATE PROBL IN REMARKS ARI R E M A B	1 🛛 воэ [] WAR [A]			BUYE NOTI WEIGHT T AND/OF CREDIT RESTOR	R REMARKS	Please indicat are HAZARDO DIMENSIONS	e if items DUS MATERIA DUS MATERIA (E F	THER XPLAIN IN EMARKS AREA)
S.W.R.I. BUYER NO. OF PACKAGES INDICATE PROBLIN REMARKS ARI IN REMARKS ARI	I Ø BOY		] SON FOR SHIPMENT REDIT	BUYE NOTI WEIGHT T AND/OF CREDIT RESTOC	REMARKS	Please indicat are HAZARDO DIMENSIONS	e if items DUS MATERIA DUS MATERIA (E F	X YES L NO
S.W.R.I. BUYER NO. OF PACKAGES INDICATE PROBL IN REMARKS ARI R R K S DATE SHIPPED			D	BUYE NOTI WEIGHT I AND/OF CREDIT RESTOC	REMARKS	Please indicat are HAZARDO DIMENSIONS	e if items DUS MATERIA (E (E	VES L NO
S.W.R.I. BUYER NO. OF PACKAGES I REPAIR INDICATE PROBL IN REMARKS ARI R E E M A R K S DATE SHIPPED	1 Ø BOY	VENDOR RECEIPT BY: THIS FOR	SON FOR SHIPMENT REDIT	BUYE NOTI WEIGHT I AND/OF CREDIT RESTOC	REMARKS	Please indicat are HAZARDO DIMENSIONS	e if items DUS MATERIA C (E F	YES     NO     NO     THER     RPLAIN IN     EMARKS AREA)
S.W.R.I. BUYER NO. OF PACKAGES I REPAIR (INDICATE PROBL IN REMARKS ARI R E M A R K S DATE SHIPPED	EM EAJ	VENDOR RECEIPT BY: COPY) SHOULD BE	SON FOR SHIPMENT REDIT	BUYE NOTI WEIGHT T AND/OF CREDIT RESTOC		Please indicat are HAZABOO DIMENSIONS		VES NO NO NO NO NO NO NO NO NO NO
S.W.R.I. BUYER NO. OF PACKAGES INDICATE PROBL IN REMARKS ARI IN REMARKS ARI B M A R K S DATE SHIPPED PACKI OF	1 Ø BOS EM EA) UNG LIST (PINK SHIPPING TIC)	VENDOR RECEIPT BY: COPY) SHOULD BE R WILL BE RETUR	SON FOR SHIPMENT	ANYTHIC ANTHING ANTHING OF THE HIPPING OF THE	REMARKS LESS CKING CHG. USS CKING CHG. NG SHIPPED FF OUTSIDE O & RECEIVII ARTMENT F	Please indicat are HAZARDO DIMENSIONS	e if items DUS MATERIA	VES NO NO NO NDER Y)
S.W.R.I. BUYER NO. OF PACKAGES INDICATE PROBL IN REMARKS ARI R R K S DATE SHIPPED PACKI OF	I BOY		SON FOR SHIPMENT REDIT	ANYTHI ANT ANT ANT ANT O THE HIPPING OR DEP COPY	R REMARKS	Please indicat are HAZABOO DIMENSIONS DIMENSIONS	e if items DUS MATERIA	THER XPLAIN IN EMARKS AREA) IDER Y)

246 Approved for public release; distribution unlimited.

## Appendix BP Certificates of Analysis (CoA) by POSF Number

## SOUTHWEST RESEARCH INSTITUTE®

6220 CULEBRA ROAD 78238-5166 • P.O. DRAWER 28510 78228-0510 • SAN ANTONIO, TEXAS, USA • (210) 684-5111 • WWW.SWRI.ORG FUELS AND LUBRICANTS RESEARCH DIVISION ISO 9001 CERTIFIED ISO 14001 CERTIFIED

	AFPET LABORATORY REPORT AFPA/PTPLA 2430 C Street Building 70, Area B Wright-Datterson FFB 0H 45433-763	2			
Lab Report No:20121 Cust Sample No:POSF JON: GENERAL FUND	A36413001 Date Received:02/29/12 1330 hrs* 7708 Date Reported:03/02/12 1536 hrs*	Date Proto	Sampled: col:FU-AV	02/29/2012* /I-0019	*
Sample Submitter: Rhonda Cook AFRL/RZPF 1790 Loop Road N Bldg 490 Wright-Patterson AFF	3, OH 45433				
Reason for Submission Product: Aviation Tu Specification: MIL-	on: AFRL Research urbine Fuel, Kerosene DTL-03133H Grade:JP-0				
Source: AMYRIS Biot Batch/Lot/Origin: B	echnologies Qty Submitted: 2 gal IOFUEL				
Method	Test	Min	Max	Result	Fail
ASTM D 2622 - 10 MIL-STD-3004C	Sulfur (ug/g) Appearance			432 Pass	
MIL-DTL-83133H	Workmanship Color Soubolt			Pass	
ASIM D 6045 - 09	Color, Saybolt Total Acid Number (mg KOH/g)	Repor	0 015		
ASTM D 1219 - 10	Promatice (2 mol)		25.0	14 4	
ASTM D 3227 - 04a	Mercantan Sulfur (8 mass)		0.002	0.000	
ASTM D 86 - 11b	Distillation				
ADIA D CC TID	Initial Boiling Point (°C)			164	
	10% Recovered (°C)		205	177	
	20% Recovered (°C)			182	
	50% Recovered (°C)			200	
	90% Recovered (°C)			248	
	End Point (°C)		300	268	
	Residue (% vol)		1.5	1.2	
	Loss (% vol)		1.5	0.7	
ASTM D 93 - 11	Flash Point (°C)	38		52	
ASTM D 4052 - 11	API Gravity @ 60°F	37.0	51.0	44.8	
ASTM D 4052 - 11	Density @ 15°C (kg/L)	0.775	0.840	0.802	
ASTM D 5972 - 05el	Freesing Point (°C)		-47	-54	
ASTM D 976 - 06 (2011)	Cetane Index, Calculated	Repor	t Only	44	
ASIM D 3343 - 05	nyarogen Content (* mass) Suchs Doint (mu)	13.4		14.4	
ASIM D 1822 - 00 ASIM D 120 - 10	Conner Strip Corresion (2 h 6 100°C)	20.0	Max)	27.0	
ASTM D 130 10	Thermal Stability & 260°C	- 1	rier,		
ASIN D 8241 - 112	Tube Demonit Patient Viewal	~	(Mare)	,	
	Change in Pressure (mmHg)		25	-	
ASTM D 281 - 04	Existent Gum (mg/100 mL)		7.0	2.6	
ASTM D 5452 - 08	Particulate Matter (mg/L)		1.0	0.4	
MIL-DTL-83133H	Filtration Time (min)		15	4	
ASTM D 1094 - 07	Water Reaction Interface Rating	1ь	(Max)	1	
ASTM D 7224 - 08	WSIM	70		81	
ASTM D 2624 - 09	Conductivity (pS/m)	150	600	0	х
ASTM D 5001 - 10	Lubricity Test (BOCLE) Wear Scar (mm)	Repor	t Only	0.57	
ASTM D 3338 - 08	Net Heat of Combustion (MJ/kg)	42.8	-	43.6	
ASTM D 4809 - 09a	Net Heat of Combustion (MJ/kg)	42.8		43.2	
ASTM D 1319 - 10	Olefins (% vol)	Repor	t Only	1.5	
ASTM D 445 - 11a	Viscosity @ -20°C (mm²/s)		8.0	5.0	

* Date reflects Eastern Standard Time(EST)

** Date as provided by customer



Benefiting government, industry and the public through innovative science and technology

| Report Generated: 03/2/12 15:37*

#### AFPET LABORATORY REPORT AFPA/PTPLA

#### 2430 C Street Building 70, Area B Wright-Patterson AFB, OH 45433-7632 Lab Report No:2012LA36413001 Date Received:02/29/12 1330 hrs* Date Sampled: 02/29/2012** Cust Sample No: POSF 7708 Date Reported:03/02/12 1536 hrs* Protocol: FU-AVI-0019 JON: GENERAL FUND Sample Submitter: Rhonda Cook 1790 Loop Road N Wright-Patterson AFB, OH 45433

Reason for Submission: AFRL Research Product: Aviation Turbine Fuel, Kerosene Specification: MIL-DTL-83133H Grade:JP-8

#### Source: AMYRIS Biotechnologies Qty Submitted: 2 gal Batch/Lot/Origin: BIOFUEL

Method	Test	Min	Max	Result	Fail
ASTM D 445 - 11a	Viscosity @ 40°C (mm²/s)	Report	Only	1.4	1

#### Dispositions:

AFRL/RZPF

Bldg 490

For information purposes only.

Approved By	Date
Michael Cole	03/02/2012*
\\SIGNED\\	

This report was electronically delivered to: david.vowell@wpafb.af.mil, donald.minus@wpafb.af.mil, janet.stewart2@wpafb.af.mil, jennifer.engelman@wpafb.af.mil, linda.shafer@wpafb.af.mil, michael.cole@wpafb.af.mil, michael.thiede@wpafb.af.mil, raymond.bunch@wpafb.af.mil, rhonda.cook.ctr@wpafb.af.mil

Date reflects Eastern Standard Time(EST) ** Date as provided by customer

| Report Generated: 03/2/12 15:37*

#### AFPET LABORATORY REPORT

		AF 2430 Buildir Wright-Patterso	PA/PTPLA ) C Street 1g 70, Area B n AFB, OH 454	433-7632				
Lab Report No:20 Cust Sample No:77 JON: GENERAL FUND	12LA36126001 08	Date Received: Date Reported:	hrs* hrs*	Date S Protoc	Sampled: col:FU-A\	** 7I-0019		
Sample Submitter: AFRL/RZPF 1790 Loop Road N Bldg 490 WPAFB, OH 45433								
Reason for Submis Product: Aviation Specification: MD	sion: AFRL Re Turbine Fuel, IL-DTL-83133H	search Kerosene Grade:JP-8						
Batch/Lot/Origin:	BIOFUEL / JE BLEND	Qty Submitt T A	ed: 200 mL					
Method	Test			М	lin	Max	Result	
ASTM D 381 - 04	Existent G	um (mg/100 mL)				7.0	2.4	1
Dispositions: For information p	ourposes only.							

Approved By Michael Cole \\SIGNED\\ Date 02/10/2012*

This report was electronically delivered to: afpa.lab@wpafb.af.mil, donald.minus@wpafb.af.mil, jennifer.engelman@wpafb.af.mil, linda.shafer@wpafb.af.mil, michael.cole@wpafb.af.mil, rhonda.cook.ctr@wpafb.af.mil

* Date reflects Eastern Standard Time(EST) ** Date as provided by customer

| Report Generated: 02/10/12 15:25*

#### AFPET LABORATORY REPORT

		AFPA/PTPLJ 2430 C Stre Building 70, A Wright-Patterson AFB, (	A et rea B DH 45433-763	32			
Lab Report No:2012 Cust Sample No:812 JON: GENERAL FUND	2LA37315001 3	Date Received:04/13/1 Date Reported:04/19/1	2 1214 hrs* 2 1403 hrs*	Date Prote	Sampled: col:FU-AV	** /I-0019	
Sample Submitter: AFRL/RZPF 1790 Loop Road N Bldg 490 Wright-Patterson A	FB, OH 45433						
Reason for Submiss: Product: Aviation ? Specification: MIL	ion: AFRL Res Turbine Fuel, -DTL-83133H	search Kerosene Grade:JP-8					
Batch/Lot/Origin:	BIOFUEL / JEI	Qty Submitted: 1 L					
Method	Test			Min	Max	Result	Fail
ASTM D 3241 - 11a	Thermal Sta Tube Dep Change i	ubility @ 300°C cosit Rating, Visual n Pressure (mmHg)					2 0
ASTM D 1319 - 10	Aromatics (	ê vol)			25.0	26	.5 X
Dispositions: For information pu:	rposes only.						
Approved By	<u> </u>	ate					
uavid Craveroft		/4/13/2012 "					

Lead Chemist \\SIGNED\\

This report was electronically delivered to: david.craycroft@wpafb.af.mil, donald.minus@wpafb.af.mil, jennifer.engelman@wpafb.af.mil, linda.shafer@wpafb.af.mil, michael.thiede@wpafb.af.mil, rhonda.cook.ctr@wpafb.af.mil, richard.wilkes@wpafb.af.mil

* Date reflects Eastern Standard Time(EST) ** Date as provided by customer | Report Generated: 04/19/12 14:03*

## Appendix C

## Effect of FAME Contamination on Permittivity and Density

December 5, 2013

Energy Institute Attn: Mr. Martin Hunnybun 61 New Cavendish Street London W1G 7AR, UK

Via e-mail: MHunnybun@energyinst.org.uk

Subject: Letter Report for Southwest Research Institute[®] Project No. 08.17149.36.001, entitled, "*Effect of FAME Contamination on Permittivity and Density*"

Dear Mr. Hunnybun:

Please find attached the results for the permittivity study of FAME-contaminated jet fuel.

#### C.1.0 Introduction

A test plan was provided by Airbus which defined the requirements to determine the effect of Fatty Acid Methyl Ester (FAME) contamination within western commercial aviation turbine fuels, on the properties of relative permittivity and density across the useful fuel temperature range.

The evidence provided herein is necessary to satisfy the process of fuel additive / contamination level clearance, as stipulated by ASTM D4054 [1]. The evidence must be judged to be acceptable by airframe, engine and fuel system equipment manufacturers. The properties of permittivity and density are of particular importance in the measurement of fuel quantity using aircraft gauging systems. Their relationships against fuel temperature across the aircraft operating range, as well as their relationship to each other, are critically important to suppliers of fuel gauging system equipment to aircraft OEMs.

¹ "Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives"

#### C.2.0 Background

The Energy Institute (EI) is coordinating the clearance activity for western commercial aviation fuels with FAME contamination at a maximum concentration of 100 ppm. Clearance of this level requires the acquisition of test evidence at four times the desired cleared concentration. Consequently, testing at 400 ppm FAME contamination is required. There are four main types (sources) of FAME. The principle adopted for the ASTM D4054 process has been to use a cocktail of equal parts of these four types as the contaminant, added to the base fuel to give a FAME concentration of 400 ppm.

The EI had previously commissioned the testing of permittivity against temperature for fuel contaminated with FAME at 400 ppm. This particular testing did not include the testing of density. The results of the testing were presented in the EI report dated 10th October 2011 [2]. Review of these results identified significant anomalies, and Airbus concluded that the results were fallacious.

Consequently, the robustness of the ASTM D4054 process, for qualifying FAME to 100 ppm, has been undermined since the test plan for establishing the permittivity characteristics against temperature and density has not provided usable results, as required by ASTM D4054 Section 8.2. The previous EI report also contained test data for both density and permittivity against temperature for a military fuel grade (JP-8), with and without a singular type of FAME. This evidence is considered to be supplemental only, due to its limited scope, and the fact that it was not commissioned or performed specifically as part of this EI FAME approval initiative. The evidence is not the robust, primary data required by the ASTM D4054 process; this is a validation issue for the clearance activity. Furthermore, this evidence was evaluated by a fuel gauging system supplier who judged it to be insufficient to clear its equipment for FAME at 100 ppm. It should be noted that the ASTM D4054 principle of testing at a concentration of four times the desired clearance level presents a dilemma when considering fuel gauging system performance. The performance (e.g. accuracy of contents, propensity for out-of-range alerts), might be intrinsically related to the level of contamination. Consequently, the effect on system performance at 400 ppm could possibly be four times greater than that seen at 100 ppm. In other words, the consequences of accounting for 400 ppm (due to the approval process) may be onerous, compared to those for 100 ppm. An example of such an onerous consequence might be a requirement to increase the aircraft fuel reserves significantly to account for gauging inaccuracies, which would be an unwarranted penalty. Testing at concentrations of 0 ppm, 100 ppm, and 400 ppm would resolve this dilemma.

The majority of the testing of density reported in the previous EI report (with and without FAME contamination), was performed independently, and without any permittivity testing, by several fuel test houses (as part of a comprehensive analysis of fuel properties). Consequently, this testing of density was carried out on different base fuels and FAME contaminants. Furthermore, density was measured by these fuel test houses at single temperatures only. Characteristics of density against either temperature or permittivity cannot be determined from such results. The

² "Seeking Original Equipment Manufacturer (OEM) Approvals for 100 mg/kg Fatty Acid Methyl Ester (FAME) In Aviation Turbine Fuel," EI Research Report, 10 October 2011

issues presented above explain why it was considered necessary to re-commission robust testing for both permittivity and density against temperature. The results of such testing will allow the determination of valid characteristics both for these relationships, and for the density versus permittivity relationship. Additional testing at 100 ppm FAME concentration would contribute to a more insightful judgment on the acceptability of FAME in aviation fuel with respect to the performance for aircraft fuel gauging systems. The evidence obtained from such testing will contribute to the library of public domain knowledge, and the importance of its validity cannot be over-stressed.

## C.3.0 Test Materials

## C.3.1 Fuel

The following test fuel was provided by the Air Force Research Lab (AFRL)

• Jet A (POSF 9326, SwRI CL13-4804)

The provided fuel type was marked as "Jet A" but has a measured freeze point of  $-54^{\circ}$ C. Therefore, this fuel should be suitable as a Jet A-1. A copy of the Certificate of Analysis (CoA) is provided in Appendix C-1.

## C.3.2 FAME Contaminant

The FAME cocktail used to contaminate the Jet A consisted of an equal part by weight mixture of the following individual FAME components:

- Palm Oil Methyl Ester (POME)
- Rapeseed Methyl Ester (RME)
- Soy(bean) Methyl Ester (SME)
- Tallow Methyl Ester (TME)

The FAME cocktail was also provided by AFRL (SwRI CL13-4806).

## C.3.3 FAME Contaminated Jet A

Using the Jet A and FAME cocktail provided by AFRL, three samples were prepared in sufficient quantity to perform the full scope of work:

- Neat Jet A with 0 ppmw FAME cocktail (SwRI CL13-4804)
- Jet A with 100 ppmw FAME cocktail (SwRI CL13-4908)
- Fuel with 400 ppmw FAME cocktail (SwRI CL13-4909)

The samples were stored at ambient temperature (nominally 15-20°C) when not in use.

## C.4.0 Test equipment

The following equipment was used to perform this study:

Capacitance Cell

- Provided by Goodrich Sensors and Integrated Systems, Inc.
- o k-Cell (2-wire)
- Capacitance Bridge
  - o Andeen Hagerling AH 2700A Ultra-Precision Capacitance Bridge
  - Operated at 10 kHz
- Benchtop Densitometer
  - Anton Paar D4500 M
  - Operable Range: 0 to  $95^{\circ}$ C
  - Stated Accuracy:  $0.05 \text{ kg/m}^3$
- Thermocouple Reader
  - o Fluke 54 II
  - Type K Thermocouple

#### C.5.0 Technical Approach

#### C.5.1 Test Temperatures

The nominal test temperatures requested for this study were as follows:

- -40°C
- -25°C
- -10°C
- +20°C
- +35°C
- +50°C

Although it was requested that density and permittivity be performed simultaneously, this was not practical given the nature of the equipment used. However, the measurements were conducted in the same facility, on the same fuels, within a short timeframe. Further supporting evidence as to the stability of the individual measurements can be found in section below.

## C.5.2 Temperature Sequence Order

The following nominal test point sequence order was requested. The rationale for the specific order was to exercise the fuel and test apparatus across the dynamic range for temperature. This approach provides more independent measurements upon which the repeatability of each test point can be evaluated.

The specific objectives behind this rationale were:

- To obtain at least 2 results per nominal temperature point (for repeatability assessment)
- To acquire data to provide any evidence of any hysteresis characteristic
- To minimize the number of large temperature changes between test points for a particular fuel sample under test (for test cell practicalities)
- To minimize the number of test points to achieve all other objectives

The following twelve test point sequence was utilized:

- -40°C
- -25°C
- -10°C
- +20°C
- +35°C
- +50°C
- +35°C
- +20°C
- -10°C
- -25°C
- −40°C
- +50°C

Given the unlikely possibility that all test points could be completed in a single session for a given fuel, any deviations to the test point sequence were to be noted. The actual test point sequence recorded for each fuel is shown in Table C-1.

Neat Jet A	Jet A w/ 100 ppm FAME	Jet A w/ 400 ppm FAME
15.0*	16.0*	16.3*
-39.9	-40.0	-40.1
-24.9	-25.1	-25.0
-10.1	-10.1	-10.0
20.0	19.9	20.0
35.0	35.0	35.1
49.9	50.0	50.1
15.7*	16.9*	20.9*
35.1	35.1	34.9
19.9	19.9	20.0
-10.0	-9.9	-10.0
-25.0	-25.0	-25.1
-40.0	-40.0	-40.0
50.0	50.1	50.1

Table C-1. Test Point Sequence

* Beginning temperature at the start of each measurement session before continuing to the next test point in the prescribed sequence. No data from this temperature is reported.

#### C.5.3 Test Method

The test procedure utilized in this study is documented in Appendix C-2.

#### C.6.0 Results and Discussions

#### C.6.1 Measured Density Data

For each of the three fuels, the density values were measured according to ASTM D4052 as a curve over the range of  $5-85^{\circ}$ C in  $5^{\circ}$ C increments. The measured values are tabulated in Table C-2. The slope and intercept of the linear best-fit line for each sample is also shown and was used to extrapolate values from the curve for the actual test points measured during the permittivity runs.

Tomporature (°C)	NEAT Jet A	100 ppm	400 ppm
Temperature (C)	Density (kg/m ³ )	Density (kg/m ³ )	Density (kg/m ³ )
5	813.0	813.0	813.1
15	805.6	805.6	805.6
25	798.1	798.1	798.1
35	790.6	790.6	790.6
45	783.0	783.1	783.0
55	775.4	775.4	775.5
65	767.8	767.8	767.9
75	760.2	760.2	760.2
85	752.5	752.5	752.4
m	-0.756667	-0.756667	-0.757500
b	816.961111	816.972222	817.020833

#### C.6.2 Measured Permittivity Values and Corresponding Density Values

The measured permittivity values and the density values calculated from the corresponding density curves are shown below as follows:

•	Neat Jet A	Table C-3
•	Neat Jet A	Table C-J

- 100 ppm FAME Table C-4
- 400 ppm FAME Table C-5

Temperature (°C)	Permittivity	Density (kg/m ³ )
-39.9	2.212	847.2
-24.9	2.189	835.8
-10.1	2.167	824.6
20.0	2.125	801.8
35.0	2.107	790.5
49.9	2.086	779.2
35.1	2.105	790.4
19.9	2.125	801.9
-10.0	2.171	824.5
-25.0	2.193	835.9
-40.0	2.217	847.2
50.0	2.087	779.1

Table C-3. Measured Permittivity and Extrapolated Density ValuesNEAT Jet A

Table C-4. Measured Permittivity and Extrapolated Density Values100 ppm FAME in Jet A

Temperature (°C)	Permittivity	Density (kg/m ³ )
-40.0	2.216	847.2
-25.1	2.193	836.0
-10.1	2.171	824.6
19.9	2.127	801.9
35.0	2.107	790.5
50.0	2.088	779.1
35.1	2.108	790.4
19.9	2.128	801.9
-9.9	2.171	824.5
-25.0	2.192	835.9
-40.0	2.216	847.2
50.1	2.088	779.1

Temperature (°C)	Permittivity	Density (kg/m ³ )
-40.1	2.215	847.4
-25.0	2.192	836.0
-10.0	2.171	824.6
20.0	2.128	801.9
35.1	2.107	790.4
50.1	2.088	779.1
34.9	2.107	790.6
20.0	2.128	801.9
-10.0	2.170	824.6
-25.1	2.192	836.0
-40.0	2.216	847.3
50.1	2.087	779.1

Table C-5.	Measured Permittivity and Extrapolated Density V	alues
	400 ppm FAME in Jet A	

#### C.6.3 Permittivity vs. Temperature

The Permittivity vs. Temperature plots for each of the fuels are shown below in Figure C-1, Figure C-2, and Figure C-3 for Neat Jet A, 100 ppm FAME, and 400 ppm FAME, respectively. The upper and lower uncertainty range limits are shown on each plot in red.

Note on error analysis: For these and subsequent plots below, the uncertainty analysis was performed by first determining the linear best-fit line through the data (using MS Excel). Then, two data points, one above and one below, with the largest difference in the y-variable from the best fit line were selected. For each point, error bars were applied to both dimensions (permittivity = 0.005 and density =  $0.1 \text{ kg/m}^3$ ). For each point, the outermost vertex of the rectangular area formed by the errors bars was determined (upper right vertex for upper uncertainty and lower left vertex for lower uncertainty). A line having the same slope and passing through each of these respective vertices was determined and plotted as the upper and lower uncertainty range bars.



Figure C-1. Permittivity vs. Temperature – Neat Jet A



Figure C-2. Permittivity vs. Temperature - 100 ppmw FAME



Figure C-3. Permittivity vs. Temperature - 400 ppmw FAME

#### C.6.4 Density vs. Temperature

The Density vs. Temperature plots for each of the fuels are shown below in Figure C-4, Figure C-5, and Figure C-6 for Neat Jet A, 100 ppm FAME, and 400 ppm FAME, respectively. The linearity of the data provided a true, perfect fit line. No further error analysis was performed on this data.



Figure C-4. Density vs. Temperature – Neat Jet A

263 Approved for public release; distribution unlimited.







Figure C-6. Density vs. Temperature - 400 ppmw FAME

#### C.6.5 Density vs. Permittivity

The Density vs. Permittivity plots for each of the fuels are shown below in Figure C-7, Figure C-8, and Figure C-9 for Neat Jet A, 100 ppm FAME, and 400 ppm FAME, respectively. The upper and lower uncertainty error bars were determined in the same manner as before.



Figure C-7. Density vs. Permittivity – Neat Jet A



Figure C-8. Density vs. Permittivity - 100 ppmw FAME



Figure C-9. Density vs. Permittivity - 400 ppmw FAME

#### C.6.6 Permittivity vs. Temperature vs. FAME Concentration

A family of constant temperature curves for Permittivity vs. FAME is shown in Figure C-10.





#### C.6.7 Density vs. Temperature vs. FAME Concentration

A family of constant temperature curves for Density vs. FAME is shown in Figure C-11.

266 Approved for public release; distribution unlimited.



Figure C-11. Density vs. Temperature vs. FAME Concentration

## C.6.8 Density vs. Permittivity vs. FAME Concentration

A family of constant permittivity curves for Density vs. FAME is shown in Figure C-12.



Figure C-12. Density vs. Permittivity vs. FAME Concentration

#### C.6.9 Permittivity vs. FAME Concentration

A family of constant density curves for Permittivity vs. FAME is shown in Figure C-13.



Figure C-13. Permittivity vs. Density vs. FAME Concentration

#### C.6.10 Comparison of all the Results to CRC Data

Comparative plots of permittivity, density, and temperature are shown below with CRC minimum and maximum limits overlaid for reference. CRC limits were extracted from CRC report No. 647 (World Fuel Sampling Program). To the extent possible (as indicated in the CRC report), synthetic or partially synthetic fuels were avoided when establishing CRC limits. The synthetic fuels often lie at the extremes of the density and permittivity curves which would skew the true limits of the average global aviation fuel.

## C.6.10.1 Permittivity vs. Temperature

Permittivity vs. Temperature plots with CRC limits are shown below in Figure C-14, Figure C-15, and Figure C-16 for Neat Jet A, 100 ppm FAME, and 400 ppm FAME, respectively.



Figure C-14. Permittivity vs. Temperature – Neat Jet A (w/ CRC Limits)



Figure C-15. Permittivity vs. Temperature – 100 ppm FAME (w/ CRC Limits)



Figure C-16. Permittivity vs. Temperature – 400 ppm FAME (w/ CRC Limits)

#### C.6.10.2 Density vs. Temperature

Density vs. Temperature plots with CRC limits are shown below in Figure C-17, Figure C-18, and Figure C-19 for Neat Jet A, 100 ppm FAME, and 400 ppm FAME, respectively. The specification range limits (775-840 kg/m³ @ 15°C), common to both military and commercial fuel specifications, is indicated in the figures below.



Figure C-17. Density vs. Temperature – Neat Jet A (w/ CRC Limits)

270 Approved for public release; distribution unlimited.



Figure C-18. Density vs. Temperature – 100 ppm FAME (w/ CRC Limits)



Figure C-19. Density vs. Temperature – 400 ppm FAME (w/ CRC Limits)

## C.6.10.3 Density vs. Permittivity

Density vs. Permittivity plots with CRC limits are shown below in Figure C-20, Figure C-21, and Figure C-22 for Neat Jet A, 100 ppm FAME, and 400 ppm FAME, respectively.

Note that these limits were determined by plotting the Density vs. Permittivity for a given temperature for all fuels in the CRC report and then selecting the two fuels that appeared to lie at the extremes of that data set.



Figure C-20. Density vs. Permittivity – Neat Jet A (w/ CRC Limits)



Figure C-21. Density vs. Permittivity – 100 ppm FAME (w/ CRC Limits)



Figure C-22. Density vs. Permittivity – 400 ppm FAME (w/ CRC Limits)

#### C.6.11 Miscellaneous Supporting Data

Many of the concerns surrounding the dielectric values are related to the accuracy of the permittivity and density measurements themselves in addition to the extrapolation of density values to extreme temperatures. To address those concerns, the following sections provide data generated on hydrocarbon standards for those respective measurements.

## C.6.11.1 Density of n-hexane

A sample of n-hexane was measured on the benchtop densitometer at the highlighted temperatures shown in Table C-6. From those measurements, a linear curve fit was applied and then extrapolated to a range of -50°C to 70°C. Those values were then compared to literature values for n-hexane and found to have an average error of approximately 0.08%.

Temperature (°C)	Literature Values kg/m ³	Measured/Extrapolated kg/m ³	Absolute Difference	% Error
-50	722.7	723.4	0.6	0.09
-45	718.2	718.8	0.6	0.09
-40	713.7	714.3	0.6	0.09
-35	709.1	709.7	0.6	0.09
-30	704.6	705.2	0.6	0.09
-25	700.0	700.6	0.6	0.09
-20	695.5	696.1	0.6	0.09
-15	690.9	691.5	0.6	0.09
-10	686.4	687.0	0.6	0.09
-5	681.9	682.4	0.6	0.09
0	677.3	677.9	0.6	0.08
5	672.8	673.3	0.6	0.08
10	668.2	668.8	0.6	0.08
15	663.7	664.2	0.5	0.08
20	659.1	659.7	0.5	0.08
25	654.6	655.1	0.5	0.08
30	650.1	650.6	0.5	0.08
35	645.5	646.0	0.5	0.08
40	641.0	641.5	0.5	0.08
45	636.4	636.9	0.5	0.08
50	631.9	632.4	0.5	0.08
55	627.4	627.8	0.5	0.08
60	622.8	623.3	0.5	0.08
65	618.3	618.7	0.5	0.08
70	613.7	614.2	0.5	0.08

 Table C-6. Density Values for n-hexane

#### C.6.11.2 Permittivity of Cyclohexane

The permittivities for a sample of cyclohexane were measured at the temperatures shown in Table C-7. Those values were then compared to literature values, shown in Table C-8, and found to have an average error of approximately 0.04%. The permittivities of cyclohexane and the corresponding linear curve fit are shown in Figure C-23.

Temperature (°C)	Permittivity	Literature Value	% Error
15.0	2.031	2.032	0.05%
19.9	2.024	2.024	0.01%
25.1	2.015	2.016	0.04%
30.0	2.009	2.008	0.06%
35.2	2.000	1.999	0.05%
39.9	1.993	1.992	0.06%

 Table C-7. Permittivity of Cyclohexane

# Table C-8. Literature Values for Permittivity of<br/>Cyclohexane

Temperature (°C)	Permittivity
10	2.040
20	2.024
30	2.008
40	1.992
50	1.975
m	b
-0.00162	2.0564



Figure C-23. Permittivity vs. Temperature – Cyclohexane

275 Approved for public release; distribution unlimited.

#### C.7.0 Conclusions

Based on an initial assessment of the raw data, both the permittivity and density values appeared to be essentially identical for the neat jet fuel and FAME-additized fuels. The subsequent analysis, provided herein, shows strong linear relationships among permittivity, density, and temperature. There appears to be little hysteresis in the permittivity measurement technique across the full range of test points. The results also appear to fall well within the experience-base provided by the CRC World Fuel Sampling Program. Based on these results, it is a reasonable conclusion that FAME contamination up to 400 ppmw does not significantly affect the measurement of permittivity or density over a relatively wide-temperature range beyond the normal expected variation in the test methods themselves.

Based on the computed uncertainty range limits, approximate accuracy statements are as follows:

- Permittivity vs. Temperature: ±0.006
- Density vs. Temperature:  $\pm 0.1 \text{ kg/m}^3$
- Density vs. Permittivity:  $\pm 3.9 \text{ kg/m}^3$

We appreciate the opportunity to perform this testing for you. If you have any questions regarding this data, please do not hesitate to contact me at (210) 522-6978 or by e-mail at scott.hutzler@swri.org.

Prepared by:

Foot the

Scott A. Hutzler, Manager Fluids Filtration and Handling Research Fuels & Lubricants Technology Department

SH/kp/rs

cc: J. Edwards, AFRL (via e-mail) G. Wilson III, SwRI (via e-mail) D. Barrera, SwRI (via e-mail) rrecordcopyb, SwRI (via e-mail) Approved by:

Gary Bessee, Director Fuels & Lubricants Technology Department

r:\working\Report_EnergyInstitute_1714936001_120513

This report must be reproduced in full, unless SwRI approves a summary or abridgement.

## Appendix CA Jet A Certificate of Analysis

AFPET LABORATORY REPORT AFPA/PTPLA 2430 C Street Revidence 70 Apres R			
	Building 70, Area B Wright-Patterson AFB, OH 45433	7632	
Lab Report No:2012 Cust Sample No:9320 JON: GENERAL FUND	2LR40064001 Date Received:09/24/12 1028 hr 5 Date Reported:10/01/12 1331 hr	hrs* Date Sampled: ** hrs* Protocol:FU-AVI-0036	
Sample Submitter: AFRL/RZPF 1790 Loop Road N Bldg 490 Wright-Patterson A	FB, OH 45433		
Reason for Submiss: Product: Aviation Specification: AST	ion: AFRL Research Turbine Fuel, Kerosene M D 1655 - 12 Grade:Jet A		
Batch/Lot/Origin:	Qty Submitted: 2 gal JET A		
Method	Test	Min Max	Result Fail
ASTM D 3241 - 11a	Thermal Stability @ 290°C Tube Deposit Rating, Visual Change in Pressure (mmHg)		1A X
ASTM D 3241 - 11a	Thermal Stability @ 280°C Tube Deposit Rating, Visual Change in Pressure (mmHg)		1
ASTM D 3241 - 11a	Thermal Stability Breakpoint Tube Deposit Rating, Visual Change in Pressure (mmHq)		1
	Breakpoint (°C)		285
MIL-STD-3004C	Appearance Total Acid Worker (no MON(o)	0.10	Pass
ASTM D 3242 - 11 ASTM D 1319 - 10	Aromatics (% vol)	25	21
ASTM D 3227 - 04a	Mercaptan Sulfur (% mass)	0.003	0.002
ASTM D 4294 - 10	Total Sulfur (% mass)	0.30	0.06
ASTM D 86 - 11b	102 Recovered (°C)	205	164
	20% Recovered (°C)	Report Only	171
	50% Recovered (°C)	Report Only	194
	90≷ Recovered ( C)	Report Only	246
	End Point ("C) Paridua (5 mal)	300	269
	Loss (% vol)	1.5	0.5
ASTM D 56 - 05	Flash Point (*C)	38	43
ASTM D 4052 - 11	Density @ 15°C (kg/m³)	775 840	805
ASTM D 5972 - 05e1	Freesing Point (°C)	-40	-54
ASIM D 445 - 12 ASIM D 1222 - 08	Smoke Point	0.0	a.u
	Smoke Point (w/allowable Naphthalenes) (mm)	18	20
ASTM D 1840 - 07	Naphthalenes (% vol)	3.0	1.2
ASTM D 130 - 10 ASTM D 2241 - 115	Copper Strip Corrosion (2 h @ 100°C) Thermal Stability @ 260°C	1 (Ман)	14
	Change in Pressure (mmHg)	25	0
	Tube Deposit Rating, Visual	<3 (Max)	1
ASTM D 381 - 12	Existent Gum (mg/100 mL)	7	<1
ASIM D 1094 - 07 ASIM D 2948 - 11	water keaction interface Kating WSIM	16 (Max) 70	99
ASTM D 2624 - 09	Conductivity (pS/m)	50 600	0 X
ASTM D 5001 - 10 MIL-DTL-83133H	Lubricity Test (BOCLE) Wear Scar (mm) Filtration Time (min)	Report Only	0.66
* Date reflects E:	astern Standard Time(EST)	Report Generate	d: 10/1/12 13:31*

** Date as provided by customer
# Appendix CB SwRI Permittivity Procedure

#### Apparatus

- k-cell
- k-cell holder
- Andeen-Hagerling Ultra-Precision Capacitance Bridge (2700A), 50Hz-20kHz
- Thermocouple
- Thermocouple reader

The "system" shall refer to the combination of the capacitance bridge and k-cell.

# Materials

- 1000mL Beaker
- Isopropanol (Grade Certified ACS Plus or better)
- Cyclohexane, HPLC Grade or better
- Solvent bottle

# Cleaning the k-cell

To clean the k-cell, use the following procedure:

- Disconnect the k-cell from the capacitance bridge
- Allow the k-cell to drain thoroughly
- Perform an initial flush of the k-cell using isopropanol from a solvent bottle
- Allow the k-cell to drain thoroughly
- Submerge the k-cell into a beaker filled with isopropanol. Do not submerge the BNC connectors of the k-cell.
- Remove the k-cell from the isopropanol.
- Repeat steps 5-6 two more times
- Allow the k-cell to drain thoroughly.
- Submerge the k-cell into a second beaker filled with isopropanol. Do not submerge the BNC connectors of the k-cell.
- Remove the k-cell from the isopropanol.
- Repeat steps 9-10 two more times
- Allow the k-cell to drain thoroughly.
- Dry the k-cell using a stream of dry, oil-free air. The k-cell should be kept vertical so that fluid can drain.

#### **System Verification**

When verification of the system is required, the following procedure shall be followed.

- Determine the dielectric constant of cyclohexane at ambient temperature (18-25°C) according to the procedure below.
- The dielectric constant of cyclohexane shall not deviate by more than ±0.01 units from those established by the following curve:

$$\epsilon_r = -0.00162T + 2.0564$$

where,

 $\varepsilon_r$  = dielectric constant T = temperature (°C)

#### **Instrument Calibration**

Calibration of the capacitance bridge shall only be performed by the manufacturer.

### **Sample Preparation**

Other than equilibrating the sample to the appropriate test temperature, no sample preparation is required in the normal execution of this procedure.

### **Test Procedure**

The following procedures are used to measure the capacitance of an air or a liquid sample. Refer to the operating manual for instructions on using the capacitance bridge. For all procedures, allow the capacitance bridge at least 30 minutes of warm-up time prior to performing a measurement.

# Dielectric Constant of Air

- Ensure that the k-cell has been cleaned as described above.
- Connect the k-cell to the capacitance bridge (the cables are labeled to match the inputs on the rear of the bridge)
- Set the desired frequency of the capacitance bridge (e.g. 10 kHz)
- Air measurements should be performed at room temperature (18-23°C). Allow the k-cell and its holder to equilibrate to the room temperature for at least 30 minutes prior to running.
- Place the k-cell in its holder.
- Collect and record three separate capacitance and temperature readings within two minutes. The temperature should not deviate by more than 0.1°C.
- Calculate the average air capacitance.

### Dielectric Constant of a Liquid Sample

- Ensure that the k-cell has been cleaned as described above.
- Connect the k-cell to the capacitance bridge (the cables are labeled to match the inputs on the rear of the bridge).
- Set the desired frequency of the capacitance bridge (e.g. 10 kHz).
- Assemble the k-cell, k-cell holder, and sample under ambient conditions in a low humidity environment (50% non-condensing).
- Equilibrate the k-cell, k-cell holder, and sample together to the desired temperature. Under cold conditions, this prevents humid air from condensing out on the k-cell and k-cell holder which will affect the results.
- Collect and record three separate capacitance and temperature readings within two minutes. The temperature should not deviate by more than 0.1°C.
- Calculate the dielectric constant from each of the three capacitance readings using the average of the air capacitance as described below.

### Calculations

The dielectric constant,  $\varepsilon_r$ , is calculated as the ratio of the capacitance of the fuel-wetted k-cell to the capacitance of air (dry k-cell):

$$\varepsilon_{\rm r} = C_{\rm sample} / C_{\rm ain}$$

where,

 $\varepsilon_{\rm r}$  = dielectric constant  $C_{\rm sample}$  = capacitance of the sample (pF)  $C_{\rm air}$  = capacitance of air (dry cell) (pF)

The capacitance of air,  $C_{air}$ , is measured once per day, in triplicate, prior to samples being run. The final value is computed as an average of the three runs and used in all subsequent calculations for samples run that day.

#### Data to Be Recorded

- Capacitance of air (in triplicate) at ambient temperature (pF)
- Air temperature (°C)
- Capacitance of the sample (in triplicate) (pF)
- Sample temperature (°C)
- k-cell holder ID#
- Thermocouple S/N
- Thermocouple reader S/N

Capacitance values shall include all digits displayed by the capacitance bridge.