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Abstract 

This report introduces a mixture distribution approach to modeling the 

probability density function for lead time demand (LTD) in problems where a 

continuous review inventory system is implemented.  The method differs from the 

typical “moment-matching” approach by focusing on building up an accurate, closed-

form approximation to the LTD distribution from its components by using mixtures of 

truncated exponential (MTE) functions.  First, construction of the lead time 

distribution is illustrated and the approach is compared to two other possible lead 

time distributions.  This distribution is then utilized to determine optimal order 

policies in cases where a buyer makes its decisions alone, and later in a situation 

where members of a two-level supply chain coordinate their actions.  Next, a mixture 

of polynomials (MOP) approach is introduced and utilized to model the LTD 

distribution for the case of discrete lead time and a daily demand distribution that 

assumes a standard form.  Finally, the MOP model is extended to model an LTD 

distribution from empirical lead time and daily demand data. 

Keywords: modeling, supply chain management, lead time demand 
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Modeling Uncertainty in Military Supply 

Chain Management Decisions 

Numerous probability models have been suggested for representing uncertain 

demand during lead time in continuous-review inventory management systems when 

both lead time and demand per unit time are variable.  A common approach to 

finding a distribution for lead time demand involves modeling lead time (LT) and 

demand per unit time (DPUT) with standard probability density functions (PDFs).  

Based on the distributions assigned, a compound probability distribution is 

determined for demand during lead time, or lead time demand (LTD).  The latter 

distribution is used to determine reorder point and safety stock policies, and may be 

used to estimate inventory costs.  In some cases, analytical formulas for optimal 

reorder point, safety stock, or stockout costs are available in terms of the compound 

distribution's parameters, while in other situations the values associated with certain 

percentiles of the compound LTD distribution are estimated to provide these values. 

While the problem of finding an appropriate LTD distribution has been well-studied, 

papers written in recent years have continued to pursue methods that overcome 

unrealistic distributional assumptions (Ruiz-Torres and Mahmoodi, 2010; Vernimmen 

et al, 2008).   

This paper illustrates an approach for constructing a mixture distribution for 

LTD that allows the LT and DPUT distributions to be state-dependent.  This method 

also allows input distributions that take any standard or empirical form.  Use of the 

mixture distribution technique is first demonstrated in the context described by Cobb 

(2013), which is a single item continuous-review inventory model for one buyer.  For 

single-firm operating in a continuous-review inventory system, the mixture 

distribution method for modeling the LTD distribuition differs from the typical 

“moment-matching” approach. The method focuses on building up an accurate, 

closed-form approximation to the LTD distribution from its components by using 

mixtures of truncated exponential (MTE) functions. 

After the mixture distribution approach is described, a two-level supply chain 

model where the buyer operates under uncertain demand and utilizes a continuous 

review inventory system will be considered.  In this two-echelon supply chain model, 

credit terms (Chaharsooghi and Heydari, 2010), quantity discounts (Li and Liu, 2006; 

Chaharsooghi et al., 2011), and rebates (Cobb and Johnson, 2014) have been 

suggested as coordinating incentives that allow the supply chain members to divide 

the cost savings resulting from coordinating their order quantity and reorder point 

decisions.  In each of these cases, LTD is assumed to be normally distributed. This 

assumption is not always realistic, particularly when demand per unit time and lead 
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time are each random variables such that LTD has a compound probability 

distribution (Eppen and Martin, 1988; Lau and Lau, 2003; Lin, 2008).  This paper will 

incorporate the previously described model (Cobb, 2013) into the two-echelon 

supply chain problem to show that this model can obviate the need to assume that 

demand for the entire lead time period is normally distributed.   

Mixture of polynomials (MOP) models (Shenoy and West, 2011) are an 

alternative to the MTE model for approximating PDFs.  These models are 

implemented in the two-level supply chain model in two situations.  First, MOPs are 

used to fit LTD distributions given each possible lead time value when the PDFs 

have a standard functional form.  Next, these distributions are approximated from 

historical data.  In each case, the mixture distribution approach can be applied to 

calculate a closed-form approximation to the LTD distribution. 

The next section describes lead time demand distributions and uses an 

example dataset to show how standard PDFs can be used as approximations to the 

LTD distribution. The mixture distribution method is also used for the example 

problem.  Next, the different approximations to the LTD distribution are used to find 

optimal inventory order quantity and reorder point policies.  This is followed by an 

illustration of how the mixture distribution approach can allow more complicated LTD 

distributions to be incorporated into such problems.  The two-level supply chain 

model is then introduced, and the mixture distribution approach is used to model 

LTD in the context of decentralized, centralized, and coordinated supply chains.  In 

the next two sections, the MOP approximations are described for the standard PDF 

case and the situation where the MOP distributions are estimated from historical 

data.  The final section concludes the paper. 

Lead Time Demand Distributions 

LTD in a continuous-review inventory system is often assumed to follow a 

compound probability distribution.  Suppose L is a random variable for lead time (LT) 

and D represents random demand per unit of time (DPUT).  LTD is a random 

variable X determined as 

                       (1) 

Therefore, X is a sum of random, independent and identically distributed 

(i.i.d.) instances of demand.  The mean and variance of X can be calculated as 

 ( )   ( )   ( )            ( )   ( )     ( )  [ ( )]     ( ) (2) 

Suppose the data in Table 1 is available to estimate a LTD distribution.  This 

table contains 50 observations of daily demand for an inventory item and 10 

observations for lead time on orders of the same item.  The expected value of daily 

demand is E(D)=2.88 and the variance of this random variable is Var(D)=2.84.  Lead 
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time has an expected value and variance of E(L)=5.3 and Var(L)=6.9, respectively.  

According to the formulas in (2), the expected value and variance of LTD are 

E(X)=15.26 and Var(X)=72.3, respectively. 

The remainder of this section will illustrate three possible methods for 

approximating the LTD distribution underlying the data in Table 1. 

Normal Approximation 

The service level is defined as the percentage of replenishment order cycles 

where demand during lead time is satisfied.  To determine the reorder point (R) 

required to achieve a desired service level, a typical textbook approach is to assume 

the LTD distribution is normal and use normal distribution tables or Excel formulas.  

For example, to find the R needed to achieve a 95% service level for the LTD 

distribution with expected value and variance described in Table 1, the Excel formula 

NORM.INV(0.95,15.26,72.3^0.5) can be used to find R=29.25. 

Table 1. Observations for Daily Demand and Lead Time 
Daily demand (DPUT) 1 2 2 1 4 1 1 1 1 1 

 3 5 3 2 5 4 2 2 3 2 

 2 3 3 3 1 3 6 3 6 2 

 5 1 5 3 2 6 1 2 4 1 

 3 2 2 2 6 5 5 1 3 7 

Lead time (LT) 3 5 3 4 4 5 5 10 5 10 

The normal approximation to the LTD distribution and the reorder point 

R=29.25 are illustrated graphically in Figure 1.  By implementing this policy, we 

would expect to stockout on 5% of replenishment order cycles. 
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Figure 1. LTD Distribution and Reorder Point. 

Negative Binomial Approximation 

While the normal approximation to the LTD distribution is popular, there are 

numerous other approximations that have been suggested in the literature.  For 

example, Taylor (1961) suggests using the negative binomial (NB) distribution for 

the case where the Poisson distribution is a good fit for DPUT and LT has a gamma 

distribution.  Denote the approximate LTD distribution by  ̂.  Here we assume the 

NB(r,p) distribution for LTD is 

 ̂(     )  
 (   )

    ( )
(   )                         (3) 

where  ( ) is the gamma function.  Given this formulation,  ( )     (   ) and 

   ( )   ( ) (   ).  There are two ways of finding a reorder point that will 

provide an appropriate service level with this NB formulation.  Taylor (1961) provides 

a formula to calculate stockout probabilities as a function of the underlying Poisson 

and Gamma distributions.  These can be calculated for possible reorder point values 

until a suitable value that meets the service level objective is found.  Excel can also 

be used to enumerate the probabilities of achieving a certain service level with 

various possible values of R.  Unfortunately, the built-in NEGBINOM.DIST function 

only accepts integer values of the r parameter, so these probabilities must be 

calculated using the formula in (3) and the GAMMALN function.    

For the data in Table 1, we can use the empirical expected value and 

variance to solve two equations and two unknowns and obtain r=4.08 and p=0.79.  

This NB distribution is shown in Figure 2.  The value of R that provides 

approximately a 95% service level is R=31. 
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Figure 2. Negative Binomial Distribution for LTD. 

This solution is essentially the same as the one found using Taylor’s (1961) 

analytical formulas.  In this case, the Poisson daily demand assumption may be 

reasonable, because E(D) and Var(D) are very similar, a feature of the Poisson 

distribution. 

Mixtures of Truncated Exponentials (MTE) Approximation 

The functional form of some PDFs, such as the negative binomial PDF in (3) 

do not permit integration in closed-form.  The means the result of an expected value 

calculation with such a PDF does not have a functional form that can be used for 

further computation.  These calculations could include, for example, building a cost 

function to perform nonlinear optimization to find optimal inventory policies.  One 

approach suggested to overcome this limitation is the MTE model (Moral et al., 

2001). 

An example of a 4-piece, 2-term (ignoring the constant) MTE function that can 

be used to model LTD given a lead time of L=3 for the problem in the previous 

section is: 

 ̂       ( )   

{
 

 
                                                if        

                                                if      

       (        )        (        )          if         

                            if            

    ( ) 

This function was found by simulating 500 series of three observations for 

daily demand from values in Table 1 using a bootstrapping approach.  The 
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constants—coefficients on the exponential terms and coefficients on the variable 

X—were determined by fitting a function to the simulated histogram.  There is an 

established literature on fitting MTE functions to historical data; in this case, the 

method suggested by Moral et al. (2002) was utilized.  A graphical view of the MTE 

function overlaid on the simulated histogram is shown in Figure 3. 

 

Figure 3. MTE Distribution for LTD Given a Lead Time of 3 days. 

Similar functions  ̂        can be constructed for the other possible lead time 

values, L=4, 5, and 10.  From the data on lead time observations in Table 1, we can 

estimate P(L=3)= P(L=4) = P(L=10) = 0.2 and P(L=5)=0.4.  A mixture distribution 

approach (Cobb, 2013) can be employed to find the LTD distribution.  Here, the LTD 

distribution is determined as 

 ̂ ( )   (   )    ̂       ( )   (   )    ̂       ( )   (   )    ̂       ( )     ( ) 

               (    )    ̂        ( )      

The MTE function is shown in Figure 4 overlaid on the previously described 

NB distribution.  This MTE function has 17 pieces and up to six terms in each piece.  

For illustrative purposes, a continuous NB parameterization is displayed.  Since the 

class of MTE functions is closed under addition, multiplication, and integration (Moral 

et al., 2001), the mixture distribution resulting from the calculation above is also an 

MTE function.  Thus, it retains the same desirable mathematical properties. 

We can perform closed-form integrations of the MTE LTD distribution to find a 

reorder point that achieves a desired service level.  In this case,  

∫  ̂ ( )   

    

 

        

so we can set R=33.3 to obtain a 95% service level. 
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Figure 4. MTE LTD Distribution Overlaid on a NB Approximation. 

The next section discusses the use of the MTE function for finding inventory 

policies in a continuous-review inventory system. 

Calculating Inventory Policies 

Suppose that we want to determine an optimal order quantity and reorder 

point in a continuous-review inventory system (a “(Q,R)” policy).  We will consider 

four models that could be used to find the best policy given the data available (see 

Table 1): 1) a normal approximation to the LTD distribution; 2) the NB approximation 

to the LTD distribution; 3) the MTE mixture distribution; and 4) a simulation-

optimization model that simulates lead time and demand values from the empirical 

distributions developed from Table 1.  We term the latter model the “actual” solution. 

A simple cost function with no backordering allowed (Johnson and 

Montgomery, 1974) for this problem is 

  (   )    
 

 
 

      

 
   (        ( )) .    (5) 

In this equation, K is the fixed cost per order, Y is the expected annual demand, h is 

the holding cost per unit per year, and π is the stockout cost per unit.  The average 

inventory includes safety stock of R-E(X).  The shape of the distribution for LTD 

determines the expected shortage per cycle, SR.  For a given reorder point,  

   ∫ (   )   ̂ ( )    
 

 
      (6) 

Suppose Y=E(D) ∙ 250 working days = 720, K=30, h= , and π=5.  The key to finding 

an optimal (Q,R) combination is to evaluate SR as part of constructing the total cost 

function in (5).  With the MTE function, the calculation in (6) can be performed in 

closed-form, and the result substituted into (5) to obtain a closed-form total cost 
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function.  The expected shortage per cycle as a function of R is an 8-piece 

expression, with selected terms shown below: 

 ̂ ( )

 

{
 
 
 
 

 
 
 
 
                                           

                                               

                                           

                                                               

                                            

                                             

 
                                                   

 

Optimization over the resulting cost function is fast.  The example here was solved in  

Mathematica 9.0 by using the ArgMin function.  The results obtained using the four 

methods under consideration are shown in Table 2.  An iterative approach (Hadley 

and Whitin, 1961) in combination with numerical integration was implemented to find 

the solutions using the normal or NB approximations.   The table shows the values 

Q* and R* which—when implemented simultaneously—minimize annual total cost.  

The computing (CPU) times required to obtain the solutions are also shown.  The 

simulation-optimization solution was simply stopped after running for several hours, 

and the values obtained were assumed to be the best possible solution. 

Table 2. Results for Inventory Policies Determined Using Four 
Approaches. 

Method Q* R* TC CPU (sec.) 

Normal Approximation 108 25 482.99 3.57 

NB Approximation 110 25 482.89 3.76 

MTE Mixture Distribution 110 27 481.10 1.26 

Simulation-Optimization 108 27 480.82 ∞ 

Table 2 shows that the MTE mixture distribution works equally as well as the other 

approaches when implemented to obtain an optimal (Q,R) policy.  The next section 

illustrates that the mixture distribution approach can be used to model more 

complicated LTD distributions. 

State-Dependent Variables 

The advantage of the mixture distribution approach (Cobb, 2013) in inventory 

management problems is that more complex LTD distributions can be constructed 

by building the model from its components while still maintaining a closed-form 

representation.  In some cases, expert knowledge can be used to assign state-

dependent distributions for DPUT and/or LT.   

As an illustration, suppose the first row of 10 observations in Table 1 can be 

associated with replenishment orders where a significant number of missions were 
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canceled due to weather, creating reduced demand.  This reduced demand is 

assumed to occur on 20% of replenishment orders; thus, demand can be considered 

to have two states: regular (with 80% probability) and low (20% of the time). 

To demonstrate another approach to finding MTE approximations, the dataset 

in Table 1 will be used in this example to first determine a standard PDF that best 

fits the empirical data for each demand state.  In this case, the log-normal 

distribution with        and         is selected for the regular state and the 

N(0.27,0.19) is chosen for state 2.  The demand in each state for a given lead time 

period is then a sum of i.i.d. log-normal random variables.  This sum has no known 

distribution, but approximations for the PDF of a sum of log-normal random variables 

exist.  Following Cobb et al. (2013), the Fenton-Wilkinson approximation (Fenton, 

1960) is implemented and MTE distributions are fit to these approximations for each 

state and each possible lead time value.  For state 1 and state 2, these functions are 

denoted by  ̂       
( )

 and  ̂       
( )

, respectively.  The conditional PDF for LTD given 

    is then calculated as 

 ̂       ( )       ̂       
( ) ( )       ̂       

( ) ( ). 

The PDF for LTD is constructed as in equation (4).  The new LTD distribution is bi-

model, as shown in Figure 5.   

 

Figure 5. Mixture Distribution for LTD With State-dependent Demand 

Suppose the state-dependent, bi-modal distribution shown in Figure 5 is the correct 

PDF for LTD.  Using this distribution as part of the total cost function to find the 

optimal (Q,R) policy results in a 21% savings when compared to implementing the 

policies found earlier using the MTE distribution shown in Figure 4 (or one of the 

other approximations).  The mixture distribution approach still yields a closed-form 

function for SR and the optimization is still fast. 
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Coordinated Supply Chains 

In this section, we consider a two-echelon supply chain as depicted in Figure 

6.  A buyer experiencing random demand places its orders for inventory with the 

supplier.   

 

Figure 6. The Cost Function for the Buyer in This Problem is as Follows  
(Hadley and Whitin, 1963; Johnson and Montgomery, 1974): 

   (     )  (    )  
 

 
 

      

 
    (        ( )).   (7) 

Most of the notation is the same as for the cost function defined in equation (5).  The 

subscript b has been added to the fixed cost per order, annual unit holding cost, and 

total cost to identify this amount with the buyer.  The subscript s will similarly 

represent the seller.  The quantity V is a rebate provided by the seller to the buyer 

on a per order basis as an incentive for the buyer to adopt policies that benefit both 

parties (Cobb and Johnson, 2014).  As discussed in the introduction, credit options 

and price discounts have also been considered in this two-level supply chain as 

coordination incentives (Chaharsooghi and Heydari, 2010; Chaharsooghi et al., 

2011; Li and Liu, 2006). 

The cost function for the supplier in this problem is: 

   (     )  (
  

 
  )  

 

 
   (   )    .    (8) 

In this two-level supply chain model, the buyer selects an order quantity and 

reorder point.  The supplier receives orders of size Q from the buyer and purchases 

inventory from its vendors in a quantity that is an integer multiple N of the buyer’s 

order size.   

The supply chain can operate in one of three modes.  First, the buyer can 

select Qd and Rd without considering the effect of its selection on the supplier’s 

costs.  In response, the supplier selects Nd to minimize its own costs.  This is 

referred to as the decentralized mode and since there is no coordination, the rebate 

amount is V=0.  Total costs in the supply chain are TCd 
 = 

TCb(Qd,Rd,0)+TCs(Qd,Nd,0).  Second, the buyer and supplier can agree on values for 

Qc, Rc, and Nc that minimize the sum of the cost functions in equations (7) and (8).  
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Since the members cooperate fully and are centralized, there is again no 

requirement for the supplier to provide a coordination incentive and V=0.  Total costs 

in this mode are denoted by TCc
 = TCb(Qc,Rc,0)+TCs(Qc,Nc,0).   

If the parties are not centralized but can coordinate their policies, the potential 

exists to divide cost savings of TC+ = TCd-TCc.  An interval [Vmin,Vmax] can be 

calculated (Cobb and Johnson, 2013) such that any value for the rebate V in the 

interval reduces the total costs in the supply chain to centralized levels.  The 

smallest value of the rebate the buyer will accept can be found by solving 

TCb(Qc,Rc,V) = TCb(Qd,Rd,0) for V.  This value is denoted by Vmin.  The largest value 

of the rebate the seller will accept can be found by solving TCs(Qc,Nc,V) = 

TCs(Qd,Nd,0) for V.  This value is denoted by Vmax.  For the example in this paper, 

we will assume that if the parties agree to coordinate their policies (and implement 

Qc, Rc, and Nc), the value of the rebate they select is  ̅=( Vmin+Vmax)/2. 

All of the two-echelon supply chain models referenced previously assume that 

demand for the entire lead time period is normally distributed.  For the case where 

both Q and R are selected to minimize total costs, Charharsooghi and Heydari 

(2010) derive expressions that state the optimal value for Q (in either the 

decentralized or centralized mode) as a function of the optimal value for R (and vice 

versa) and the standard normal cumulative density function.  The optimal values can 

be found by iterating between these two expressions.  The supplier selects the 

integer value for N that minimizes its costs subject to the choices of the buyer. 

By implementing the mixture distribution approach, we can develop closed-

form expressions for the cost functions in (7) and (8) and find optimal solutions in the 

same manner as the solutions presented earlier in the paper for the (Q,R) inventory 

model. For illustration, assume Y=E(D) ∙ 250 working days = 720, Ks=Kb=30, 

hs=hb= , and π=5.  These parameters are the same as used in the earlier example 

and the supplier has the same cost structure as the buyer (obviously this may not 

always be true in practice). 

For the previous example, employing the MTE mixture distribution in Figure 4 

gives the same results in Table 2 for the decentralized case—Qd=110 and Rd=27.  In 

this mode, the supplier selects the multiple of the buyer’s order quantity that 

minimizes its costs.  Since TCs(110,1,0)=197 and TCs(110,2,0)=316, the supplier 

selects Nd=1.  Total supply chain costs in the decentralized mode are TCd 
 = 678. 

In the centralized mode, we find the optimal order quantity and reorder point 

that minimizes TCb(Q,R,0)+TCs(Q,N,0) for several possible values of N, then choose 

the optimal values that give the lowest combined supply chain cost.  Again, using the 

MTE mixture distribution allows the construction of a closed-form total cost function, 

and optimization over this function in Mathematica is fast.  Using the MTE mixture 

distribution, we find that Qc=154, Rc=24, and Nc=1.  Total supply chain costs in the 
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centralized mode are TCd 
 = 648.  Table 3 summarizes the optimal values for the 

decision variables in each mode and the total costs for each party and the supply 

chain.  The answers obtained with the mixture distribution approach are compared 

with those obtained by using the solutions shown by Chaharsooghi and Heydari 

(2010). 

Table 3. Optimal Solutions and Total Costs for the Supply Chain in Three 
Modes of Operation 

Normal Q R N V TCb TCs TC 

Decentralized 108 25 1 0 483 200 683 

Centralized 151 23 1 0 506 143 649 

Coordinated 151 23 1 8.53 466 183 649 

        

MTE Mixture Q R N V TCb TCs TC 

Decentralized 110 27 1 0 481 197 678 

Centralized 154 24 1 0 507 141 648 

Coordinated 154 24 1 8.51 467 181 648 

A comparison of the solutions in the decentralized and centralized models 

shows that the costs in the entire supply chain can be reduced by TC+ = TCd-TCc= 

30 if the centralized order quantity and reorder point are implemented.  However, 

these policies increase costs for the buyer  by 507-481=26.  By using the solutions in 

Cobb and Johnson (2013) to find the value  ̅ that divides the cost savings of 

operating in the centralized mode between the buyer and the seller, the buyer is 

adequately compensated for increasing its order quantity.  The rebate amount for 

this problem is 8.51 per order cycle.  Both members experience costs that are lower 

than in the decentralized mode. 

Alternative Approach 

This section introduces an alternative approach to modeling the LTD 

distribution, the mixture of polynomials (MOP) model. 

To illustrate the formation of the LTD distribution, we will utilize the following 

example from McClain and Thomas (1985) that has also been used by Eppen and 

Martin (1988).  Demand in each time period is normally distributed with mean   =40 

and variance   
 =30.  Lead time (in periods of one day) may take on the values 7, 

12, 14, 15, 16, and 25, and each value has a probability of 1/6. 

Normal Approximation 

Because the possible values for LT are dispersed over the range from 7 to 

25, the distribution for LTD will be multi-modal.  As such, there is no one standard 

PDF that is a good fit.  The typical “textbook” approach to modeling the LTD 

distribution in this case is a normal approximation, and the normal distribution has 
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been used exclusively in the two-stage supply chain model under continuous review 

assumptions that will be presented later in the paper. 

The normal approximation to the compound LTD distribution has a mean and 

variance as defined in equation (2).  In the example under consideration, E(L) = 

14.83 days and LT has a variance of Var(L)=29.14.  The formulas in (2) are used to 

determine that E(X)=593.33 and Var(X)=47047.2.  If we want to find the reorder 

point (R) associated with a certain service level, say 95%, we can use the Excel 

function NORM.INV(0.95,593.33,47047.2^0.5) to find R=950.  The service level is 

the probability that all customer orders are filled in given order cycle. 

Eppen and Martin (1988) demonstrate that for this example, implementing 

R=950 will actually lead to very different service level than 95%.  This is because the 

true distribution of LTD is a mixture of normal distributions.  This is discussed in the 

next section. 

Mixture of Normal Distributions 

In this section and for the remainder of the paper, the distribution of LTD is 

denoted by   .  The distribution of LTD conditional on a specific value     for lead 

time is denoted by            Similarly, the cumulative distribution function (CDF) for 

lead time demand is denoted by   , while the CDF conditional on a specific lead 

time     is denoted by         . 

In the example problem, if lead time is     days, the distribution          is a 

normal PDF with mean 7∙ 0=280 and variance 7∙ 0=210.  The means and variances 

of all the conditional LTD distributions can be similarly calculated.  The marginal 

distribution for LTD is the mixture of normal distributions calculated as  

  ( )  
 

 
(        ( )           ( )            ( )              ( )   

         ( )            ( ) )   

The mixture of normal distributions for LTD is shown in Figure 7 overlaid on 

the normal approximation with mean 593.33 and variance 47047.2. 
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Figure 7. LTD Distribution and Normal Approximation 

Consider the reorder point R=950.  We can find the service level (SL) associated 

with this reorder point by evaluating the conditional CDFs FX|{L=l} at 950 and 

weighting the results (Eppen and Martin, 1988).  This is done as follows 

  (   )  
 

 
(        (   )           (   )            (   )              (   )  

          (   )            (   ) )  

  (   )  
 

 
(                  )               

The conditional values for SL given a certain LT are calculated using the 

NORM.DIST formula in Excel; for example, the SL given L=25 is 

NORM.DIST(950,7·40,(7·30)^0.5,1).  Calculation of the reorder point associated with 

a desired service level cannot be done directly with the exact LTD distribution, but a 

function such as Goal Seek in Excel can be implemented to find that R=1014 

provides a 95% SL. 

Mixture of Polynomials Approximation 

If the functional form of    permits closed-form integration, the SL associated 

with a given reorder point, R, can be determined as 

  ( )  ∫   ( )   

 

 

  

Since the functional form of the mixture of normal distributions for the example 

problem cannot be integrated in this way, built-in Excel functions for the normal CDF 

were used to calculate the service level.  This required weighting the results from the 

conditional distributions for each possible lead time value. 
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One method for obtaining a closed-form distribution for LTD is the mixture of 

polynomials (MOP) model (Shenoy and West, 2011).  The MOP model can be used 

to approximate PDFs by piecewise polynomials defined on hypercubes. MOP 

approximations of standard PDFs, such as the normal distribution, can be developed 

by using Lagrange interpolating polynomials with Chebyshev points (Shenoy, 2012).  

This method was used to define a 2-piece, 4th-degree MOP function that 

approximates the standard normal PDF as  

 ( )  {                                             
                                              

 

All piecewise functions in this paper are assumed to equal zero in undefined regions.  

Using this approximation, the PDF for lead time demand conditional on     can be 

determined as 

 ̂       ( )  
 

√    
 
 (

      

√    
 
). 

The MOP function  ̂  that approximates the PDF      for LTD is determined as  

 ̂ ( )  ∑ (    )   ̂       ( ) 

 

   

 

The index   has been added to the   possible values for lead time.  This 

method can be used when the DPUT distribution is normal, or at least in any 

situation where we are willing to approximate the DPUT distribution with a normal 

distribution.  Notice, this would be very different (and more accurate) than 

approximating the distribution for demand over the entire lead time with a normal 

distribution. 

For the example problem,  ̂  is calculated as 

 ̂ ( )  
 

 
 (

  ̂       ( )   ̂        ( )    ̂        ( )    ̂        ( )

   ̂        ( )    ̂        ( )
)  

The MOP approximation to the LTD distribution is a relatively compact 15-piece, 4th-

degree polynomial defined as  

 ̂ ( )

 {

                                                            
                                                             
  
                                                                 

 

This closed-form function for the lead time demand distribution is easy to 

manipulate.  It can be easily integrated to find a closed-form function for the CDF of 

lead time demand as follows: 
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Using this CDF to find the service level for a reorder point of 950 gives 

 ̂ (   )    ̂(   )         

Evaluating 950 gives  ̂  at each possible reorder point value between E(X) and the 

first value for R that provides a 95% service level gives R=1015 and this calculation 

requires 0.05 seconds of computing time. 

In summary, the LTD distribution can be modeled using one normal 

distribution as an approximation over the entire lead time period.  This method leads 

to poor results when calculating the service level for a given lead time and for finding 

a reorder point that achieves a targeted service level.  The actual distribution for the 

example problem is a mixture of normal distributions, and Excel formulas and built-in 

functions can be utilized to find service levels and reorder points, albeit indirectly.  

The MOP model offers an alternative to constructing a closed-form LTD distribution 

that can be directly integrated and evaluated to find a CDF for lead time demand, 

service levels, and reorder points.  As discussed in the remainder of the paper, this 

distribution can be utilized to find optimal inventory policies in a two-level supply 

chain under uncertain demand and continuous review assumptions. 

To implement the MOP mixture distribution approach to find an optimal order 

quantity/reorder point combination, we first develop a closed-form expression for the 

expected shortage per cycle in (6) using the previously defined PDF  ̂ .  This 

function is an 8-piece, 6th-degree polynomial defined as  

 ̂ ( )

 

{
  
 

  
 
                                   

                                                                    
                                   

                                                                   
  
                                   

                                                                      

 

Decentralized Solution 

This function for    shown above can be substituted into equation (5) to 

create a piecewise cost function for the buyer.  In this example, we will assume 
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            and      Expected annual demand is based on 150 working days 

and equals          = 150·40 = 6000.  This cost function is displayed as a 

function of Q for three values of R in Figure 8.  By inspection, we can see that the 

optimal order quantity is lower for smaller values of R.   In other words, we can 

better control costs by simultaneously selecting the order quantity and reorder point. 

 

Figure 8. Buyers’ Cost as a Function of Order Quantity for Three Values of 
the Reorder Point 

Optimization over the cost function developed using the MOP distribution for LTD is 

fast.  Notice that the function for expected shortage per cycle is a MOP.  When this 

expression is inserted in the cost function in (5), the result is a function with 

polynomial terms and some terms with Q in the denominator.   The example here 

was solved using Mathematica 9.0 by using the ArgMin function.  The resulting 

solutions are Qd =364 and Rd =1014 with TCb(Qd,Rd,0)= 92 .  The supplier’s best 

response is to set Nd=1 and incur costs of TCs(Qd,Nd,0)=2472, and total costs in the 

supply chain are TCd=6396. The computing time expended is less than one second.   

An iterative approach (Hadley and Whitin, 1961) in combination with 

numerical integration was implemented to find the solutions using the normal 

approximation to the LTD distribution using the partial solution provided by 

Chaharsooghi and Heydari (2010).   The solutions are   
      and   

     .  If 

these solutions are inserted in the “actual” cost function (the one developed with the 

MOP distribution for LTD), the result is    (  
    

   ) = 4454.  Using the MOP 

mixture distribution yields an improvement in costs of 4454 – 3924 = 530 or 12%. 

Centralized Solution 

The closed-form function SR for expected shortage per cycle developed using 

the MOP distribution for LTD can also be used to derive a cost function for the entire 
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supply chain in the centralized case.  In this example we assume, Ks=150 and 

hs=12.5. This function TCc(Q,R,N) is used to find the optimal combination (Qc, Rc) for 

several possible values of the supplier’s decision variable N.  The value of N 

producing the lowest total cost once the corresponding optimal values for order 

quantity and reorder point are selected is deemed the best supplier policy.  Typically, 

solving for the optimal (Qc, Rc) with N=1 then checking to see if N=2 or N=3 

produces a better solution is adequate.   

The best order quantity in the centralized model for a given reorder point is 

higher than the optimal order quantity in the decentralized case.  This is illustrated in 

Figure 9, where the total costs are graphed as a function of Q for the decentralized 

and centralized cases assuming a reorder point of R=1000.  Visually, the centralized 

cost function appears to reach a minimum at a larger value of Q.  

 

Figure 9. Decentralized and Centralized Costs as a Function of Order 
Quantity for a Reorder Point of 1000. 

The closed-form centralized cost function can again be easily utilized to find the 

optimal policy of (Qc,Rc,Nc) = (718,993,1).  The costs for the parties at the optimal 

solutions are as follows: TCb(Qc,Nc,0)=4333; TCs(Qc,Nc,V)=1254; TCc=5587.  The 

solution again takes around one second of computing time to obtain. 

The buyer incurs higher costs by 4333-3924=409 in the decentralized mode 

as compared to the centralized mode, where the supplier’s costs are reduced by 

2472-1254=1218.  Total costs in the supply chain are lower than in the decentralized 

mode by 6396-5587=809.   

The corresponding centralized solutions found using the normal 

approximation are   
      and   

     .  If these solutions are inserted in the 

“actual” cost function for the supply chain (the one developed with the MOP 
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distribution for LTD), the result is    
  = 5891.  Using the MOP mixture distribution 

yields an improvement in costs of 5891 – 5587 = 304 or 5% in the centralized mode. 

Coordinated Solution 

While the buyer would prefer that the supply chain operate in decentralized 

mode and the supplier wants a centralized solution, both parties can potentially 

compromise and coordinate to divide the centralized costs savings.  The closed-form 

cost functions developed using the MOP method again provide an approach to 

determine a supply chain coordination mechanism to make this work. 

The buyer will accept a per order rebate as low as Vmin, which can be found 

by solving TCb(718,993,V) = 3924, or 4333-8.356v=3924.  The solution is Vmin=49.  

The supplier will accept a per order rebate as high as Vmax, which can be found by 

solving TCs(718,993,V) = 2472, or 1254+8.356v=2472.  The solution is Vmax=146. 

In this example, at the centralized optimal order quantity, there are 

Y/Qc=6000/718=8.356 order cycles per year, so the minimum incentive entails 

rebates of 8. 56∙ 9= 09 and the maximum incentive entails rebates of 

8. 56∙1 6=1218.  One solution is to implement  ̅=(Vmin+Vmax)/2=97.5 and require 

the supplier to provide 815 in rebates to the buyer.  This brings the buyer’s total 

costs to  518, the supplier’s total costs to 2069, and supply chain costs to 5587, 

which is the centralized level. 

Empirical MOP Distributions 

In previous sections of the report, we have seen the MTE approach 

implemented with empirical data, and the MOP approach implemented when the 

underlying LT and DPUT distributions were discrete and represented by a standard 

continuous PDF, respectively.  This section will illustrate an approach to estimating 

an MOP function to approximate the LTD distribution when empirical data is 

available. 

We suppose a modest amount of historical data is available for daily demand 

and lead times.  In this example, we use a dataset D of N = 500 observations for 

daily demand with sample mean 39.66 and sample variance 30.64.  These values 

are a random sample from the N(40,30) distribution.  Fifty observations (NL=50) of 

historical lead time values are available in dataset DL with sample mean 14.94 and 

sample variance 37.04.  There are values in the dataset for each possible lead time 

value.  Empirical histograms are displayed for this sample data in Figure 10. 
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Figure 10. Histograms for the Daily Demand and Lead Time Data. 

The datasets depicted in Figure 10 will be used to develop LTD distributions 

given each possible empirical lead time value.  We assume that the observations of 

daily demand are i.i.d.  Since this is the case, we use the dataset of N = 500 values 

to create six smaller datasets for daily demand given the possible values for L.  For 

example, the first seven values for daily demand are 40, 37, 47, 47, 45, 34, and 31.  

These are summed to 281 to determine the first sample value in the dataset for LTD 

demand given a lead time of 7 days.  The next seven consecutive values in the 

dataset sum to 263, so this is the second value in the L=7 dataset, and so on.  This 

smaller dataset has 71 observations. 

B-Spline Estimation of MOPs 

Lopez-Cruz et al. (2014) suggest using a linear combination of B-spline 

functions to construct MOP approximations from datasets where the parametric form 

of the underlying probability distribution is unknown.  B-spline functions are 

piecewise polynomial functions defined by the number of control points, n+1, and the 

degree of the polynomial, d.  The control points define a knot vector t = {t0,t1,t2, …, 

tn}. 

B-spline functions (Zong and Lam, 1998) have two definitions, one when d=1 

and another when d>1.  When d=1, the functions are defined as  

    ( )  {
          

            
 

For d >1, the functions are calculated as  

    ( )  (
    

         
)        ( )  (

      

         
)          ( )  

The control points are indexed by j=0,…,n and the degree of the functions are 

indexed by k=1,…,d.  For this example, we assume t0 is the smallest value in the 

dataset, tn is the largest value in the dataset, and that the intervals between all of the 
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knots are the same distance.  The resulting functions Bj,k are referred to as uniform 

B-splines.  The B-spline functions are used to form a n-piece MOP density function  

 ̂     ( )  ∑       ( )

 

   

                                                        (9) 

by selecting mixing coefficients αi, i=1,…,m, where m=n+d-1.  Thus, the PDF for LTD 

given a lead time L=l will be a mixture of the m B-splines of order d. 

Suppose a dataset D = {        
 } of observations of LTD, X, given a specific 

lead time     is available. Zong (2006) suggests using the following iterative 

formula for determining the maximum likelihood estimators, { ̂     ̂  }, for the 

mixing coefficients in (9): 

 ̂ 
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Beginning with equivalent values for each αi, the expression in (10) is used 

iteratively for i=1,…,m until |( ( )   (   ))  ( )|    where  ( ) is the log-likelihood 

of D given  ̂     (   ̂ 
( )

) at iteration q in the optimization process.  Using ε=10-6 

appears to be adequate for most applications (López-Cruz et al., 2014).   

The goal is to develop PDFs  ̂      for LTD given each possible value for L 

that are reasonably accurate; however, we would like the number of pieces and the 

degree of the polynomial functions comprising the MOP densities to be as small as 

possible to avoid overfitting and speed up computation of optimal inventory policies.  

Thus, we will consider several possible values for d and n for each PDF and select 

the approximation that maximizes the Bayesian information criterion (BIC) calculated 

as 

   ( ̂     ( )  )   (   ̂     ( ))  
(   )     

 
                  (11) 

The second term in the BIC expression is a penalty for adding parameters to 

the model.  The approach we will take is to find the values of d and n that maximize 

the BIC score for the PDF of LTD given the most likely value L=l, then use those 

parameters to estimate each of the conditional PDFs for LTD given each possible 

lead time value.  In practice, once we settle on good values for d and n, this step 

could be avoided.  Alternatively, we have found that d=3 and n=3 seem to be 

adequate for many problems. 

Notice from Figure 10 that L=7 is the lead time value that occurs most 

frequently in the empirical data.  Thus, we will begin by constructing the PDF  ̂      

for LTD given L=7 with an MOP function constructed from B-splines with the values 
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of d and n that maximize the BIC score.  We tested all possible combinations of 

parameter values where d and n are in the set {2,3,4,5,6}. 

The best value for the BIC score is –290.4 and is achieved for n=2 and d=3.  

The PDF is shown graphically in the left panel of Figure 11 overlaid on the 

N(7·40,7·30) distribution.  Recall that the MOP is not fit to the normal PDF, but 

rather a small sample of data generated from the normal PDF.  The four B-splines 

used to construct the MOP function are shown in the right panel of Figure 11.  The 

mixing coefficients determined via 37 iterations of equation (10) are α1=0.04, 

α2=0.07, α3=0.8 , and α4=0.06. 

 

Figure 11. PDF for LTD Given a Lead Time of 7 days (left) and B-splines 
Used to Construct the MOP Function (right) 

The MOP fitting process is repeated for l=12,14,15,16,25 to find each 

conditional PDF   ̂     .  The mixture distribution for LTD is then calculated (Cobb, 

2013) as  

 ̂ ( )  ∑ (   ( ))   ̂     ( )( ) 

 

   

 

The superscript ( ) has been added as an index for the number of possible LT 

values.  Here,  =1 corresponds with    ( )        corresponds with    ( )   

  , and so on.  The resulting distribution  ̂  is displayed in Figure 12 overlaid on the 

actual distribution for LTD.  Again,  ̂  was created from the sample data without 

knowledge of the underlying LTD distribution.  The function  ̂  is relatively compact--

-it contains 15 pieces and is a 2nd degree polynomial.  Since the class of MOP 

functions is closed under addition and multiplication, the resulting mixture distribution 

is also an MOP function. 
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Figure 12. MOP Mixture Distribution for LTD Overlaid on the Actual LTD 
Distribution. 

The MOP distribution for LTD is utilized to find a closed-form expression for 

expected shortage per cycle as   

 ̂ ( )  ∫ (   )  

    

 

 ̂ ( )       

The value Xmax is the largest value for which  ̂  is defined as non-zero.  In the 

previous example,  ̂  is a 9-piece, 5th degree polynomial.  Again, both (x-R) and  ̂  

are MOP functions, so the resulting expression for  ̂   is an MOP function because 

this class of functions is closed under multiplication and integration.  Since  ̂  has a 

closed-form, the cost function TCb can be derived and used to find optimal inventory 

policies.  The function TCb is a 9-piece function with polynomial terms in Q and R 

and some terms that have a polynomial numerator and a Q term in the denominator.  

An outline of the process for using empirical data on DPUT and LT to 

construct the LTD distribution  ̂   and buyer's cost function is as follows: 

1. Collect datasets of observations for DPUT and LT.  Each of the 

possible observations for LT form the set ΩL of values  (1), …,  ( ) 

2. Create datasets for LTD given each possible LT value by summing  ( ) 

consecutive values as many times as possible from the DPUT dataset.   

3. For the most likely LT value in the discrete empirical distribution, use 

the corresponding LTD dataset to calculate the MOP distribution 

 ̂     ( )  that maximizes the BIC score in (11) by testing different 

values of d and n and using equation (10) iteratively until convergence.   

4. Using the values of d and n that maximize BIC in the previous step for 

L=  ( ) create MOP distributions  ̂  for each additional value in ΩL. 
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5. Calculate the LTD distribution as 

 ̂ ( )  ∑ (   ( ))   ̂     ( )( )                                    (12)

 

   

 

6. Calculate the expected shortage per cycle function  ̂  and insert this in 

the buyer's cost function to create TCb. 

Optimal Policies and Results 

This example again assumes Kb=50, Ks=150, hb=5, hs=12.5, and  =6.  We 

assume 250 working days per year so Y = 250· 9.66 ≈ 10000.  The results obtained 

for optimal inventory policies using the MOP approximation developed from 

empirical data using the B-spline estimation method are again compared to the 

solution developed by Chaharsooghi and Heydari (2011) (the CH solution) that 

assumes a normal distribution for LTD.  The total costs are obtained by simulating 

the expected total costs on 10,000 simulation trials using the actual normal 

distributions for daily demand and the discrete distribution for lead time.  Clearly, the 

cost savings are dependent on the parameters. 

Table 4. Optimal Solutions and Total Costs for the Supply Chain 
Decentralized Q R N TCb % Dec. TC 

CH (Normal) 558 999 1 4531 -- 683 

MOP (Mixture Dist.) 455 1019 1 4455 2.0% 649 

       

Coordinated Q R N TC
c
 % Dec TC 

CH (Normal) 1012 926 1 6872 -- 678 

MOP (Mixture Dist.) 909 1004 1 6628 3.7% 648 

Conclusions 

This paper serves as an introduction to using a mixture distribution approach 

to modeling the probability density function for lead time demand in problems where 

a continuous review inventory system is implemented.  First, construction of the lead 

time distribution was illustrated.  This distribution was then utilized to determine 

optimal order policies in cases where a buyer makes its decisions alone, and then 

when members of a two-level supply chain coordinate their actions.   

Several approaches to modeling the LTD distribution were illustrated.  We 

first considered using the normal CDF for each possible lead time value and 

weighting the results with discrete probabilities.  This method allows calculation of 

service level probabilities, but does not provide a closed-form approximation to the 

LTD distribution that can be used for determining optimal inventory policies.  Next, a 

mixture of truncated exponentials approximation was utilized to model the LTD 

distribution.  The distributions for each possible lead time value were estimated, then 

the results were weighted to create a mixture distribution for LTD.  Finally, mixture of 
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polynomial approximations were considered.  The use of this model was 

demonstrated as an approximation to both standard probability density functions and 

as a fit to actual historical data.  Use of either approximation technique allows 

determination of optimal inventory policies and provides significant cost savings as 

compared to a solution where demand over the entire lead time period is assumed 

to be normal. 
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