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Relationship between sea surface salinity from L-band radiometer and 
optical features in the East China Sea 

Bumjun Kil*^ Derek Burrage'', Joel Wesson'' and Stephan Howden^ 
^Department of Marine Science, University of Southern Mississippi, Stennis Space Center, MS, USA; 

'T^aval Research Laboratory, Oceanography Division, Stennis Space Center, MS, USA 

ABSTRACT 

The East China Sea (ECS) is often obscured from space in the visible and near-visible bands by cloud cover, which 
prevents remote sensing retrieval of optical properties. However, clouds are transparent to microwaves, and satellites 
with L-band radiometers have recently been put into orbit to monitor sea surface salinity (SSS). Previous studies have 
used the mixing of fluvial colored dissolved organic matter (CDOM) near coasts, where the mixing is approximately 
conservative over short time scales, to estimate SSS. In this study, the usual relationship between CDOM and salinity in 
the ECS has been used in reverse to estimate CDOM from remotely sensed SSS in the ECS and compare that CDOM 
with MODIS data. The SSS data used are 7 day composites from NASA's Aquarius/SAC-D satellite which has an L- 
band radiometer. The challenges in using this approach are that 1) Aquarius SSS has coarse spatial resolution (150 km), 
and 2) the ECS has numerous anthropogenic sources of radiofrequency interference which adds noise to the L-band 
signal for the SSS retrievals. Despite the limits in the method, CDOM distribution in the ECS can be estimated under 
cloudy conditions. In addition to all-weather retrievals, an additional advantage of the approach is that the algorithm 
provides an estimate of CDOM absorption that is unaffected by the spectrally similar detritus absorption that can 
confound optical remote sensing estimates of CDOM. 

Keywords: East China Sea, Sea surface salinity. Colored dissolved organic matter, Aquarius/SAC-D 

1. INTRODUCTION 

The East China Sea (ECS; mean depth <I00 m), one of the largest marginal seas, extends from the southwestern area off 
Cheju Island to the northern area off Taiwan Island, and is bounded on the east by Japan and on the west by mainland 
China from which it receives the huge outflow from the Changjiang River (CR). Because of its large drainage basin, the 
CR contributes the majority of freshwater input to the coastal waters of China '. The CR plume spreads eastward over 
the broad ECS during the late spring through summer, reaching as far as Cheju Island and the shelf-break, where the 
Kuroshio Warm Current (KWC) flows northward to the Tsushima Strait I This leads to extensive water exchange 
between the ECS and KWC across the shelf break through frontal and other oceanic processes '. Because the rivers are 
the main sources of colored dissolved organic matter (CDOM) in coastal regions, an inverse correlation between CDOM 
concentration and salinity can usually be found (i.e. CDOM is high where salinity is low) '*. 

Since CDOM can be estimated from optical remote sensing ^ several empirical algorithms have been investigated, to 
retrieve sea surface salinity (SSS) from CDOM absorption at 400 nm, in the ECS '■ *"■''. However, there are two 
challenges for remote sensing of CDOM in the ECS. First, the ECS is well known to have frequent cloud cover, which 
hampers collecting optical features for particular seasons '"'. Secondly, because the absorption coefficient due to CDOM 
(ag;i.e. gelbstoff) and non-algal particles (a^, i.e. detritus) have similar spectral curves *, under highly turbid conditions 
detritus can significantly affect, or even dominate the total light absorption and confound the retrieval of CDOM '•'". 
The combined absorption due to detritus and gelbstoff (a^g) is what is actually estimated from the satellite measurements. 
The aj in the shelf waters of the ECS has been observed to be very high in the winter season '" (Table 1). It has also been 
found that the ratio of ad/a<jg can be greater than 0.1 in the regions close to estuaries and coasts, where the concentrations 
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of non-algal particles (e.g. suspended sediment) is higher than in the open ocean *■ ". Under these conditions, estimations 
of SSS from CDOM can be contaminated by detritus. The use of SSS to infer CDOM, based upon empirical 

relationships between in situ measured salinity and CDOM is a possible solution for estimating realistic CDOM under 
these conditions. 

Until recently, with the exception of an experiment on Skylab in the I970's ^''.measuring SSS from L-band (1.4 GHz, 21 
cm) radiometers were only used from aircraft. For example, measurements of SSS using the Salinity, Temperature and 

Roughness Remote Scanner (STARRS), over Mobile Bay and Mississippi Sound '^- '\ have been compared with SSS 
estimates derived from optically-sensed CDOM in Louisianan coastal waters '■*■ '^. In the East China Sea, it was pointed 
out in 2004 that CDOM could be estimated from SSS using the Scanning Low-Frequency Microwave Radiometer 
(SLFMR - predecessor to STARRS) flown on an aircraft '. Currently there are two satellites with L-band radiometers, in 

orbit about the earth for measuring SSS. There is the Aquarius/SAC-D satellite ", which is operated by NASA, and the 

Soil Moisture and Ocean Salinity (SMOS) satellite operated by the European Space Agency (ESA). In the East China 
Sea, data from the Aquarius/SAC-D satellite (here after referred to as Aquarius) is available as a leveO (L3). 

Table 1. The previously studied ag(440) and ad(440) '". The 3^,(400) was approximated from 3^(440) (Spectral slope: 0.017nm"'; LEI 
Hui et al., 2012) using exponential decay function ' ■ to be employed as a reference value in this research. 

Season 
Mid shelf Outer Shelf Approximated ag(400) 

ag(440) ad(440) ag(440) ad(440) Mid shelf Outer Shelf 

Summer 0.070±0.047m"' 0.005±O.0O5m' 0.05l±0.03lm"' 0.004±0.005m'' O.I38±0.093m"' 0.10±0.06lm'' 

Winter 0.037±0.018m-' 0,052±0.045m-' 0.025±O.OI4m-' 0.004±0.002m"' 0.073±0.035m-' 0.049±0.028m"' 

However, it is challenging to estimate SSS from Aquarius in marginal seas, and the ECS in particular, for two reasons: 

First, SSS is negatively biased in this region due to persistent low levels of Radio Frequency Interference (RFI) from the 
coastal areas (e.g. North Atlantic and Asia-Pacific regions), despite the process of RFI filtering in the L3 processing ". 
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Figure. I The map of data collection and time series analysis area (A; Mid shelf B: Outer shelO for MODIS and Aquarius data. The 
white colored dots represent the in situ SSS and optical data from SeaBASS, the gray colored dots are the in situ SSS from KODC 
which are collocated with single pixel of Aquarius SSS. 
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Secondly, the coarse spatial resolution (-150 km) and long revisit time (3 days or more) of Aquarius '* is not as optimal 

for coastal and marginal seas applications as is ocean color, such as from the Aqua MODIS satellite '. 

2. DATA AND ANALYSIS 

The SSS data used is the 7 days composite L3 V.2 data from Aquarius, and it was acquired from the Physical 

Oceanography Distributed Active Archive Center (PODAAC) at http://podaac.jpl.nasa.gov/SeaSurfaceSalinity/Aquarius. 
We retrieved Aqua-MOIDS 8 days composite remote sensing reflectance at 412, 555 nm (Rrs412, Rrs555) and 
absorption coefficient due to detritus and gelbstoff at 443 nm (adg(443)), available as level 3 production (QAA algorithm 

^'), via MODIS Ocean Color Web " at http://oceancolor.gsfc.nasa.gov. In situ SSS and absorption coefficient due to 
gelbstoff at 400nm (ag(400)) were collected by the National Fisheries Research and Development Institute (NFRDI) and 

were downloaded from the Korea Oceanographic Data Center (KODC) at http://kodc.nfrdi.re.kr. Sixty annual stations in 
the coastal region around the Korean Peninsula ^'' were collocated with Aquarius pixels. These collocated SSS from 
Aquarius and NFRDI were employed to correct the bias in Aquarius SSS (Table 2). In order to select the algorithms to 

estimate aj,(400) from SSS (ag(400)sss)» we obtained 39 observations of in situ ag(400) and SSS in the Yellow Sea and 
the southern area of Cheju Island collected by GEO-CAPE and GOCI mission via SeaWiFS Bio-optical Archive and 
Storage System (SeaBASS; available at http://seabass.gsfc.nasa.gov/) ^^ (Table 2; Figure I). 

Table 2. The lists of ship board (situ) and remote sensing measurement (satellite) in this research. 

Measurement Mission Data Dates of observation 

Ship board (In situ) 

NFRDI annual cruise 
(Stored in KODC) 

SSS which were collocated with 
Aquarius pixels (< 0.5 deg / 60 EA) 

2012.02.03- 11.29 

GEO-CAPE and GOCI 

(Stored in SeaBASS) 
ag(400), SSS (39 EA) 

2010.11.30- 12.01 

2011.04.15-04.17 
2011.08.10-08.12 

Remote sensing 
(satellite) 

NASA Aquarius/SAC-D SSS L3 V.2 (7 days) 2012.02.03- 11.29 

NASA Aqua MODIS 
Rrs(555), Rrs(412), 

adg(443) / 8 days 
2012.02.03- 11.29 

We evaluated (reversed) algorithms for ag(400)sss from previous studies by superimposing with the plot of/n situ ag(400) 
and SSS. For this study, that uses CDOM absorption from MODIS at 400 nm, the previously published data for ag(440) 
and ad(440)     in table 1, were converted to ag(400) using an exponential decay function ". The process shown in 
figure 2 was used to produce ag(400)sss from Aquarius SSS. First a bias correction is made by comparing Aquarius SSS 
with in situ SSS. Because the bias of Aquarius SSS has seasonal differences '^, we selected a particular season for which 
bias is at a minimum. The geomefric mean (GM) regression method ^' is employed to correct the negative bias of 

Aquarius SSS by comparing with in situ SSS from KODC. Next the bias corrected SSS is used in an inverted 
transformation of one of the published algorithms for deriving SSS from ag(400). The resultant ag(400) is mapped 

horizontally and compared with maps of ag(400) from MODIS (ag(400)MODis)- We estimated ag(400)MODis based on 
Moon et al (20I0)'s algorithm " : ag(400) = 0.2355x(Rrs412/Rrs555)"''". The resulting ag(400) may have pixels which 
are contaminated by absorption due to detritus. These pixels were identified by finding a threshold on adg(443), which 

corresponds approximately to ad(443) = O.lx a<ig(443) based on open ocean (case 1 waters) **•". Once the threshold was 
determined (see below), the pixels of ag(400) containing high ad(443) values were identified and eliminated to produce a 

data set with less contamination due to detritus (i.e. remaining defritus free ag(400)MODis)- 
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Finally, we evaluated both ag(400)Aqs and ag(400)AqsCorr by comparing them with detritus free ag(400)MODis- The 
comparisons were done for both time series and spatial maps. Time series comparisons were done over two different 
areas. The first area, area A (Figure 1), is characterized by turbid conditions on the shelf in depths of 50 - 100 m. The 

second area, area B (Figure 1), is characterized by less turbid in deeper waters of 100 - 500 m depths. Comparison of 

spatial maps, over one time period, was done for ag(400)Aqs, ag(400)AqsCorT, and detritus free ag(400)MODis (Figure 1). 

Aqua MODIS (Sdays) 

Aquarius/SAC-D 

SSS(7days) 

i 
Bias correction of Aquarius/SAC-D 

using in situ data 

i 
Estimating detritus free 

ae{400)MODis 
Selecting 3^(400)555 algorithm using in 

situ optical dataset 

1 
Time series comparison between 

aei400)Aquariu. a^d ag(400)MODis for different 
turbid condition 

i 
Mapping of ag{400)Aq„„i„, and 

comparing with ag{400)MODis 

Figure 2. The overall work process in this research to estimate and evaluate ag(400)sss from Aquarius. 

3. RESULT 

3.1 Production of ag(400)AqsCorr 

3.1.1. Correcting bias in Aquarius 

As stated in a previous report ", the mean difference between Aquarius SSS and in situ SSS (ASSS) is negative. In order 
to avoid severe contamination due to unfiltered RFI, we selected the Fall-winter season (September 2 - November 29, 

2012) which shows a relatively low bias (Figure 3a). Subsequently, we compared the selected 17 collocated pixels of 
Aquarius SSS with in situ SSS (< 0.5 deg) during that season. As shown in figure 3b, most Aquarius SSS showed a 
negative biased from the in situ SSS. To correct the bias, we established the equation to correct the original Aquarius 

SSS (SSSAqs) as an input source, and corrected one (SSSAqsCon-) as an output product by inverting the original equation 
obtained by GM regression of Aquarius SSS with the in situ data ^' (i.e. SSSAqs = 1.2357 x in situ SSS - 8.4621) as a 
following equation (Figure 3b). 

SSSAqsCorr = 0.8092xSSSAqs+ 6.8479. (1) 
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30 32 34 
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Figure 3. a) The histogram represents the seasonal mean ASSS (Aquarius minus in situ SSS), b) The relation between in situ and 
Aquarius SSS in the September 2 - November 29 in 2012 which was selected in Figure 3a, the trend line represents the equation by 
GM regression. 

The SSS time series in areas A and B are shown in figure 4, along with the SSS corrected using Equation 1. The 
corrected SSS (blue colored solid line with star) in area A is reflecting coastal water (< 34 psu) (Figure 4a). Area B 
shows offshore saline condition of KWC ' ( > 34 psu) at times (Figure 4b). 

a) Area A (single pixel): 31.5N 126.5E 

Oct-18 Nov-07 
Year:2012 

Oec-17 

Area B (single pixel): 30.5N 127.5E 

Aug-19 Sep-08 Sep-28 Ocl-18 Nov-07 
Year; 2012 

Figure 4. Time series plot of Aquarius SSS (blue colored solid line with star : bias corrected SSS, green colored dashed line with dot: 
original SSS) in the Fall - Winter in 2012, the red solid line is the official minimum of Aquarius SSS "'. 

3.1.2. Selecting ag(400)s$$ algorithm for Aquarius 

We selected three algorithms from Bai et al. (2013)' and Gong (2004)' which seasonally represent the relation between 

ag(400) and SSS. Because Bai et al.'s algorithm (Cruise 908 (C908), and Cruise 973 (C973)) were established to estimate 
SSS from optical remote sensing of ag(400), for this research the equations were simply inverted to estimate ag(400) from 

SSS (Table 3). Each algorithm has different regional coverage. C908 of Bai et al.(2013) '' was developed for the CR 
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dominated region (inner shelf), and C973 of Bai et al (2013) ' was developed for the offshore region including CR 
effects (inner + mid shelf). The algorithm of Gong (2004) *: was developed for the southwestern region of the ECS. 

Table 3. The list of algorithms between SSS and ag(400) from previous studies in ECS. 

Researcher Equation R^ N 
Range of ag(400) 

Range of SSS 

C908:Baietal.(2013) ag(400)sss = -0.02887XSSS+1.084303 0.92 264 
0.0877-1.0823 m' 

34.52-0.07 psu 

C973:Baietal.(20l3) ag(400)sss = -0.04524xSSS+l .587794 0.81 163 
0.0215-0.4689m' 

34.62-24.73 psu 

Gong, 2004 ag(400)sss = -0.033xSSS+1.209 0.78 137 
0.017-0.444 m-' 

36.12-23.18 psu 

The three different algorithms were applied over the salinity range of the in situ SSS and plotted over the scatter plot of 

in situ ag(400)and SSS (Figure 5) obtained from the 28 casts taken from the mid shelf around South Cheju Island. The 
algorithm C973 of Bai et al (2013) ^ (red solid line) was selected since it is statistically closer to the data (i.e. low mean 
difference and RMSE). Using the C973 algorithm (Table 3), the algorithm of ag(400) from Aquarius (ag(400)Aqs) is: 

ag(400)Aqs = fc973(SSSAqs) 

= -0.04524X SSSAqsCorr +1.587794 (2) 

31.5 32 32.5 33 33.5 

In situ SSS (psu) 

34 34.5 35 

Figure 5. The algorithms which are superimposed over the scatter plots between in situ SSS and ag(400) in ECS from SeaBASS. The 
circled green "one": C908 of Bai et al.(2013) \ the circled purple "two" : Gong (2004) ', the circled red "three" : C973 of Bai et 
al(2013)'. 
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3.1.3. Estimation of detritus free ag(400)MODis 

As shown in Figure 6, tliere are three pixels of ag(400)MODis which are close to the in situ measurements over the Yellow 

Sea and the southern Cheju Island. The other ag(400)MODis pixels were greatly overestimated relative to in situ 

measurements (several pixels were excluded due to exceedingly overestimated ag(400)MODis)- The figure shows that 
those overestimates of 3^(400) from MODIS are associated with high adg(443) ( > 0.04 m'), indicating contamination by 
detritus. This threshold in adg(443) can be used to approximate a threshold for 3^(443) at 0.004 m"', which is similar with 

previously published 3^(440) in the outer shelf (Table 1). Therefore, in this research, we empirically determined the 
threshold of aag(443) as 0.04 m' to remove the overestimated ag(400)MODis values. 

0016 

-w    0 01 
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^    0005 

(0 
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o 
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<TJ 

0 05- 

Removed data of a^j (443) > 0.04 m" 
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laj(400),„,i,„:0.1082rti'       { 
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a8(400)nroci5:0.0871m' 
ad(443)fc«jo„:0.0036Sm' 

a (400),   , (m"'') 

%(400)MOD<S<^"') 

Figure 6. The stem plot of ag(400);„ su„ and ag(400)MODis with a<,g(400)MODis- Z-axis farther left hand side represents 3^(443) 
approximated as 0.1 x ad|,(443) to compare previously published a<i(440) '° at tablel. The blue dashed line stem is empirically removed 
data of which adg(400)MODis is > 0.04 m' (i.e., likely contaminated by absorption due to detritus). 

3.2. Evaluation of ag(400)AqsCoiT 

3.2.1. Time series evaluation 

ag(400)AqsCorr was estimated by inputting SSSAqsCorrinto Equation 2, which was selected for the middle and outer shelf in 
ECS. In order to evaluate the improvement of ag(400)AqsCoiT over ag(400)Aqs, time series were plotted for the middle (area 
A) and outer (area B) shelves, along with detritus fi-ee ag(400)MODis for the fall-winter season in 2012 (Figure 7). There is 
a positive bias in ag(400)Aqs (dashed line with cyan colored dot) relative to ag(400)MODis for both middle and outer shelves, 
which is greatly reduced for ag(400)AqsCorT (solid line with blue colored star). The mean ag(400)AqsCorr was closer to the 
MODIS mean (red bar) for both areas. Consequently, the bias correction of Aquarius SSS improved the estimates of 

CDOM absorption. However, although the means of ag(400)AqsCorr are closer to the mean of ag(400)MODis, the variation 
about the mean for ag(400)AqsCorr matches ag(400)MODis better in area A on the mid shelf area, than it does in area B on 
the outer shelf Thus, more work needs to be done to improve the estimates of ag(400)AqsCorT in the outer shelf 
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Figure 7. Time series plot of CDOM absorption, cyan dot dashed line; ag(400)Aqs, blue star solid line : ag(400)AqsCom red dashed line : 

ag(400)MODis (the bar represents standard deviation of the ag(400)MODis for the a) area A (Mid shelf) and b) Area B (Outer shelf)), c) 

The histograin of mean ag(400) in order of ag(400)Aqs, ag(400)AqsCorT, and ag(400)MODis for Area A (Mid shelf) and Area B (Outer shelf). 
The values at the bottom of the histogram are the mean and standard deviations for ag(400) in tablel. 

3.2.2. Spatial evaluation 

The horizontal distribution of ag(400) was plotted to check the improvement from the bias correction of Aquarius by 
comparing with MODIS. The periods of October 28 - November 3, 2012 for Aquarius and October 31 - November 7, 
2012 for MODIS were selected for mapping because that period had the lowest differences for both middle and outer 

shelf in the time series comparisons in figure 7a and 7b. The ag(400)AqsCorr has lower values than aj,(400)Aqs (see gray 

dashed line in the figures 8a and 8b) and the features are similar looking to those of ag(400)MODis- Specifically, the 

ag(400)AqsCorr iH the southeast off of Cheju Island has a feature in ag(400)AqsCorr of less than O.Im"' which has been found 
to be a typical feature of the KWC '. 

^H     („ ob 

r fc {    SI      # ■J, * 
<22-£      )2<'e      I26'£      IJS-E      U0'£ 

Longitude (°E)      (m') 

r2J'£     t2<-E     <Jfe     MITE     MTE 

Longitude (°E)      (m») 
f2yE    )2<*E    »26'£    12S-E    MO^E 

Longitude (°E)       (m') 

Figure 8. The horizontal distribution of a) ag(400)Aqs, b) ag(400)AqsCo,T in October 28 - November 3, 2012, c) ag(400)MODis in October 
31 - November 7, 2012. The gray dashed line represents ag(400) > 0.12m"'. 

Proc. of SPIE Vol. 9111  91110A-8 

Downloaded From: littp://proceedings.spiedigitallibrary.org/ on 06/04/2014 Terms of Use: hnp://spiedl.org/terms 



In addition, the ag(400)Aqs which has values higher than 0.15 m"' in the center of ECS (Figure 8a) is reduced for 

ag(400)AqsCorr (Scc thc gray dashed line in figure 8a and 8b). Although ag(400)AqsCorr is larger than ag(400)MODis in outer 
shelf, this might be due to the coarse resolution of Aquarius, which cannot catch smaller features in ag(400) that MODIS 

can resolve. Figure 9a shows locations where ag(400)MODis is collocated with ag(400)Aqs and ag(400)AqsCorr- Scatter plots of 
the collocated ag(400)MODis with ag(400)Aqs, and ag(400)AqsCorr are shown in figures 9b and 9c, respectively. The scatter 
plot in figure 9b shows a larger bias and more scatter than that in figure 9c. Moreover, the reduced average of 
ag(400)AqsCorr (Figure 9c) satisfies the range of previously published ag(400) in the winter (Mid shelf: 0.073 ± 0.035m"', 

Outer shelf: 0.049 ± 0.028 m"'; see table 1) rather than ag(400)Aqs. Consequently, the results shown above emphasize the 
importance of correcting biased SSS in Aquarius. 

SS'N 
ag('<00)MODis in Oct. 31 -Nov.7, 2012 

0.25 

0.1 S 

0.05 

122'E    124''E    126''E    128'E    130'E 

Longitude (°E) (m') 

a^(400): MODIS vs. Aquarius/SAC-D (Original) 

b) 
Iy=aX+b 
I a: 1387 b  0.017 

0 15ISTD  0.028 +/ 
^~ "-^l Mean diff.: 0.038 '. 

Corr. coeff, ; 0.6253* 
N    18 

a (400): MODIS vs. Aquarlus/SAC-D (Bias corrected) 

MOOIS' 

Figure 9. a) The collocated positions of ag(400)MODis and ag(400)Aqs (Gray dots) over the ag(400)MODis (See Figure 8c), the regression 

plot between b) ag(400)Aqs and ag(400)MODis. c) ag(400)AqCorr and ag(400)MODis. the blue cross scatters are from gray dots in Figure 9a. 

4. Conclusion 

Estimation of CDOM from remotely sensed SSS was attempted in order to collect optical features of the ECS under 
conditions of cloud cover and turbid conditions where absorption due to detritus can affect apparent CDOM absorption. 

This study has made three significant advances: First, a method was developed to check and correct for bias in Aquarius 
retrievals of SSS, presumably due to unfiltered RFI. Secondly, the selection of the most appropriate published algorithm 

relating SSS with CDOM for the middle and outer shelf in ECS was done. Lastly, a method for estimating detritus free 
CDOM from MODIS was developed and applied. 
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The Fall-Winter season of 2012 was selected because of the relatively low bias during that season. The bias was then 
corrected for using an empirical approach. Subsequently, we selected the previously published algorithm for SSS from 

ag(400) that best fit the observations ("C973aH" cruise data by Bai et al.(2013)'). We estimated detritus free CDOM by 

empirically matching the relation between ag(400)/„j„„ and ag(400)MODis with a<ig(443)MODis using previously published 

aa/ajj, ratios in order to remove detritus contaminated ag(400)MODis- The ag(400)Aqs and ag(400)AqsCorr were estimated by 
inputting SSSAqs and SSSAqsCom respectively into the inverted algorithm of Bai et al.(2013) from the C973 cruise. These 

were then compared with detritus free ag(400)MODis- 

Accordingly, ag(400)AqsCorr better matched ag(400)MODis than did ag(400)Aqs. Despite the coarse spatial resolution of the 
Aquarius data, relative to MODIS, ag(400)AqsCorr showed similar patterns to ag(400)MODis where cloud free areas exist, 
over the high turbid mid shelf in the fall-winter season. Consequently, this approach is shown to be useful to provide 

information on CDOM in the ECS from L-band radiometry. Although this study demonstrated that Aquarius data is 
useftil for obtaining optical features in the ECS using passive microwave remote sensing, fiirther application of the 
higher spatial resolution data (30 - 50 km) from the L-band radiometer on SMOS satellite '*, combined with its shorter 
revisit time (~3 days) should be investigated in the future. 
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