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1. Introduction and Background 

Since the discovery of graphene in 2004, extensive research has been performed to investigate 
uses for its excellent thermal, mechanical, and electrical properties.1–4 Top-down approaches 
such as mechanical exfoliation and chemical reduction along with bottom-up approaches such as 
chemical vapor deposition (CVD) and molecular beam epitaxy are techniques that have been 
used to synthesize graphene and other 2-dimensional materials.5,6 Nickel substrates played an 
important role in initial synthesis studies because of their close lattice match with graphene. The 
high carbon solubility, however, made it difficult to synthesize single monolayers because of 
surface segregation and subsequent precipitation of absorbed carbon species.7–10 More recently, 
CVD of carbon precursors on copper substrates have risen to the forefront of graphene synthesis 
because of low cost and surface-mediated self-limited growth.11–15 Characterizing the number of 
layers deposited can be a time-consuming process involving specialized techniques such as 
atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron 
microscopy , Raman spectroscopy, and X-ray diffraction.16–19 Several of these techniques, such 
as AFM and SEM, can be performed directly on the copper surface; however, further 
characterization of graphene usually requires transfer of the monolayer to another substrate such 
as glass or SiO2.20–22 Several early studies were done to characterize and model the number of 
graphene layers based on the contrast over the visible spectrum with an underlying dielectric 
substrate.23–26 Again, a tedious transfer process was required to “see” the graphene. Another 
study focused on graphene’s contrast with dielectric, metal, and semiconductor substrates and 
enhancing that contrast by altering the thickness of polymethyl methacrylate deposited on top.27 
More recently, direct observation of graphene on copper using white light optical microscopy has 
been accomplished using a thermal annealing technique. This work allowed graphene to be 
imaged due to the increasing contrast between copper oxide and the copper protected by the 
grapheme.28 Although the contrast imaging with graphene and copper oxide has been 
investigated, further work has yet to be completed on characterizing the changing contrast with 
respect to wavelength. The impact of oxide layer thickness and oxide layer growth on graphene 
contrast has also yet to be further characterized.   

Herein, we report the observation of graphene on copper using a wide array of optical imaging 
techniques along with modeling the graphene contrast as a function of incident wavelength. 
Using a confocal laser scanning microscope (CLSM) and a broadband optical microscope, 
graphene has been imaged using different excitation wavelengths in the visible spectrum. The 
change in contrast over the visible spectrum further illustrates graphene’s unique optical 
properties. These optical methods allow quick observation of graphene domains and layers based 
on the contrast with the oxide layer. Graphene contrast was also modeled in Matlab using Fresnel 
theory equations. To verify the validity of the model, several wavelengths over the visible 



 

2 
 

spectrum were used to experimentally quantify the contrast. The model is in good agreement 
with the experimental data suggesting that this model can be used for calculating graphene 
contrast on other metal catalyst substrates. 

2. Materials and Methods 

2.1 Electropolishing of Copper Foils 

Copper foils (Alfa Aesar, 25 µm, 99.8%) were cleaned and degreased using an acetone, 
isopropyl alcohol, and milli-Q water rinse process prior to use. Reducing the copper surface 
roughness was carried out using a Struers Lectropol 5 automatic electropolishing unit. A mixture 
comprised of 330 mL deionized, distilled water, 167 mL ortho-phosphoric acid, 167 mL ethanol, 
33 mL isopropyl alcohol, and 3.3 g of urea was used as the polishing electrolyte solution. Copper 
foils were prepared with an electropolished sample area of 5 cm2. Electropolishing was 
performed across a potential of 8 V with a constant flow rate for the designated polishing time. 
After polishing, samples were rinsed with deionized, distilled water followed by a final rinse 
with isopropyl alcohol. Samples were then dried with a soft stream of nitrogen.   

2.2 CVD Synthesis of Graphene 

Graphene was synthesized using low-pressure chemical vapor deposition. The electropolished 
copper foils were transferred to a 1-inch-diameter tube furnace at 1,050 °C with pressure below 
10E-6 Torr. Sample foils were annealed below 10E-6 Torr for 5 min under a 20-sccm argon and 
10-sccm hydrogen gas mixture. Nucleated graphene growth is then achieved with the 
introduction of 5 sccm methane for 3 min. 

2.3 CLSM and AFM Characterization 

CLSM was performed using an Olympus OLS3100. Laser intensity was adjusted based on 
sample reflectance and 100× objectives were used as the primary means of imaging. A 405-nm 
laser was used as the excitation source. A Cypher SPM in noncontact mode was used for 
topography and phase imaging characterization.   

2.4 Broadband Optical Microscope Characterization 

Imaging over the visible spectrum was performed using a Zeiss Imager ZM2. Lamps with 
wavelengths of 385, 405, 455, and 530 nm were used as excitation sources. 
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3. Results and Discussion 

3.1 Characterization of Graphene on Copper Using CLSM 

Rapid optical characterization of graphene is dependent upon several factors. Most notably, the 
incoming light source plays a pivotal role in the contrast between the graphene and copper oxide. 
Figure 1 shows a CLSM image of graphene on copper using a 405-nm laser as the excitation 
source. 

 

 

Fig. 1   CLSM image of graphene domains on electropolished copper. Inset shows 
corresponding white light image.  

The graphene domains are clearly present showing an array of different geometries. Another 
important aspect to note is the inset image showing the graphene reflection with white light. The 
contrast with the broadband excitation is much lower as compared to the contrast with the 
narrowband 405-nm laser. This is due to the saturation effect that is seen with broadband 
imaging. 
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3.2 Broadband Optical Characterization of Graphene Domains 

To further investigate the role of graphene contrast, narrowband LED light sources were used to 
map the contrast over the visible spectrum. Fig. 2 shows the graphene imaged with light 
wavelengths of 385, 405, 455, and 530 nm. 

 

Fig. 2   Narrow wavelength optical images of graphene domains on electropolished copper. 
Excitation wavelengths are A) 385 nm, B) 405 nm, C) 455 nm, and D) 530 nm. 

ImageJ, an image processing program, was used to determine the contrast between the graphene 
and copper oxide. Contrast was calculated using Eq. 1 where I represents the reflected intensity 
of the graphene and Ib represents the reflected intensity of the copper oxide.  

 𝐶 = 𝐼−𝐼𝑏
𝐼𝑏

 . (1) 

Intensity profiles were determined by placing a line over the region of interest. The values for 
intensity of the reflected light were calculated using gray number values. The intensity mapping 
over a graphene domain is shown in Fig. 3.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B 

C D 
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Fig. 3   Intensity profile for graphene domain with copper oxide as the background. Region of interest 
is outlined by the red square. 

Since the background intensity of the reflected light is not constant over the entire image, a 
normalization process was used to even out each of the intensity profiles. The contrast of the 
graphene domains with respect to the copper oxide as a function of excitation wavelength is 
given in Fig. 4.  

 

 
Fig. 4   Graphene contrast as a function of excitation wavelength 
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AFM was performed on the copper substrates to determine oxide layer thickness. Although the 
copper foil has surface striations as a result of the cold rolling process that makes height imaging 
difficult, the copper oxide thickness can be readily mapped using phase imaging. The height and 
phase image profiles are given in Fig. 5. 

 

Fig. 5   AFM height (left) and phase (right) imaging. The inset on the height image shows the profile 
across the graphene domain. 

AFM mapping confirmed the underlying copper surface that was covered by graphene was 
protected from oxidation while the unprotected copper surface was left to oxidize. It was found 
that the oxide thickness is approximately 10 nm.  

3.3 Optical Modeling with Matlab 

Because of graphene’s unique optical properties, the contrast with the oxide layer can be 
modeled based on the Fresnel equations. Prior modeling has been done to show graphene’s 
contrast with respect to an underlying dielectric substrate.23–26 To verify Matlab’s utility as a 
modeling tool in this study, a reflectance model was built to match what has been shown in 
literature. Fig. 6a shows graphene contrast with respect to wavelength and SiO2 thickness from 
Blake et al.23 In comparison, Fig. 6b shows the same graphene contrast calculations using an 
in-house Matlab model.   
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Fig. 6   a) Graphene contrast modeling from Blake et al.23 compared with b) graphene contrast using in-house 

Matlab model  

To understand how light interacts with the graphene, copper oxide, and underlying copper 
substrate, it was first necessary to build a graphical template to understand the problem. Figure 7 
shows the light interaction with the proposed model.  

 

Fig. 7   Light interaction with copper oxide, graphene, 
and underlying copper surface 

Eq. 2 shows the relationship for calculating the intensity of reflected light based on optical 
differences in the materials where Δ1 is the phase shift and r1 and r2 represent the refractive 
indices of the materials.  

 

 𝑅 = 𝑟12+ 𝑟12+2𝑟1𝑟2cos (∆1)
1+𝑟12𝑟22+2𝑟1𝑟2cos (∆1)

 (2) 

 

By coupling Eq. 2 with Eq. 1, a value for contrast can then be determined from the modeled data. 
After determining the values for contrast from the modeled data, the model was compared with 
the contrast values that were determined experimentally. Figure 8 shows the model compared 
with the experimental data.

 
(a) (b) 
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Fig. 8   Experimental contrast values compared with the Matlab 

contrast model 

Figure 8 shows that the model is in good agreement with the experimental data. There is an 
overall decrease in contrast with reducing light energy, which infers that higher energy 
wavelengths in the visible spectrum are necessary for quality contrast imaging. Narrowband 
wavelengths are needed for contrast imaging due to the saturation effect that can be seen with 
broadband white light excitation.   

4. Summary and Conclusions 

In this report, graphene contrast with copper oxide has been calculated experimentally and 
modeled using Matlab. Using reflected light intensity and ImageJ processing software, contrast 
values over the visible spectrum were calculated based on the gray number value. A model was 
built in Matlab using reflection equations based on Fresnel theory to determine the change in 
contrast with respect to excitation wavelength. It was determined that incoming light energy 
plays a pivotal role in graphene contrast. As light energy is reduced, graphene contrast is also 
diminished, whereas higher energy wavelengths provide graphene with good optical contrast 
with respect to the copper oxide surface. Future work will focus on correlating oxide thickness to 
changes in contrast as well as modeling contrast as a function of the number of graphene layers. 
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