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ABSTRACT

Application of optical forces in microhptonic systems

Report Title

Optical forces represent an exciting new approach for manipulating

microphotonic devices. In this thesis, the overall goal is to invent and demonstrate

novel microphotonic device functionalities based on optical forces. There are two

major tasks. One is to explore how optical forces can be used to achieve highly

tunable, on-chip photonic devices. The other task is to utilize optical forces for light assisted,

template self-assembly of nanoparticles.



Optical forces are numerically investigated in different configurations.

Attractive forces exist between a suspended one-dimensional periodic photonic

crystal waveguide and underlying substrate in a silicon-on-insulator platform. It is

shown that the optical force can be enhanced by designing the waveguide cross

section to make the mode approach the band edge or substrate light line. For periodic

waveguides, the optical force is non-monotonic with waveguide-substrate separation.

This effect may enable the design of compact, integrated optical power limiters.

An analytical method is proposed to calculate optical forces between silicon

waveguides based on the perturbation of effective index at fixed frequency. The

method is used to investigate the mechanical Kerr effect in a coupled-waveguide

system with bipolar forces. It is shown that positive mechanical Kerr coefficient

results from either an attractive or repulsive force. An enhanced mechanical Kerr

coefficient several orders of magnitude larger than the intrinsic Kerr coefficient is

obtained in waveguides for which the optical mode approaches the air light line,

given appropriate design of the waveguide dimensions.



Optical forces are proposed to tune phase and group birefringence in parallel

silicon strip waveguides. Widely tunable phase and group birefringence can be

achieved by varying the pump power, with maximum values of 0.026 and 0.13,

respectively. The giant phase birefringence allows linear to circular polarization

conversion within 30 ?m for a pump power of 67 mW. The group birefringence

gives a tunable differential group delay of 6 fs between orthogonal polarizations.



A novel photonic crystal lattice is proposed for assembling a two-dimensional

array of particles by optical forces with low power. The lattice is created by

introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance

the light confinement of guided resonance modes. Large quality factors on the order

of 10^5 are predicted in the lattice. A significant decrease of the optical power

required for optical trapping can be achieved compared to the previous design based

on square lattice. Experiments are carried out to optically characterize the high-Q

guided resonance modes with slot confinement. The evolution of the measured

wavelengths and quality factors follows the trend predicted by the simulations.



The intrinsic, radiation loss of a coupled resonator optical waveguide (CROW) is

studied by the tight binding approximation (TBA). The TBA predicts that the quality

factor of the CROW increases with that of the isolated cavity. The results provide a

method to design CROWs with low intrinsic loss across the entire waveguide band.

The method may facilitate the design of large-area, coupled-cavity modes with high

quality factor that nevertheless couple to normally-incident radiation for assembly.
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Abstract 

Optical forces represent an exciting new approach for manipulating 

microphotonic devices. In this thesis, the overall goal is to invent and demonstrate 

novel microphotonic device functionalities based on optical forces. There are two 

major tasks. One is to explore how optical forces can be used to achieve highly 

tunable, on-chip photonic devices. The other task is to utilize optical forces for light-

assisted, template self-assembly of nanoparticles.  

Optical forces are numerically investigated in different configurations.  

Attractive forces exist between a suspended one-dimensional periodic photonic 

crystal waveguide and underlying substrate in a silicon-on-insulator platform. It is 

shown that the optical force can be enhanced by designing the waveguide cross 

section to make the mode approach the band edge or substrate light line. For periodic 

waveguides, the optical force is non-monotonic with waveguide-substrate separation. 

This effect may enable the design of compact, integrated optical power limiters. 

An analytical method is proposed to calculate optical forces between silicon 

waveguides based on the perturbation of effective index at fixed frequency. The 

method is used to investigate the mechanical Kerr effect in a coupled-waveguide 

system with bipolar forces. It is shown that positive mechanical Kerr coefficient 

results from either an attractive or repulsive force. An enhanced mechanical Kerr 

coefficient several orders of magnitude larger than the intrinsic Kerr coefficient is 
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obtained in waveguides for which the optical mode approaches the air light line, 

given appropriate design of the waveguide dimensions. 

Optical forces are proposed to tune phase and group birefringence in parallel 

silicon strip waveguides. Widely tunable phase and group birefringence can be 

achieved by varying the pump power, with maximum values of 0.026 and 0.13, 

respectively. The giant phase birefringence allows linear to circular polarization 

conversion within 30 µm for a pump power of 67 mW. The group birefringence 

gives a tunable differential group delay of 6 fs between orthogonal polarizations.  

 A novel photonic crystal lattice is proposed for assembling a two-dimensional 

array of particles by optical forces with low power. The lattice is created by 

introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance 

the light confinement of guided resonance modes. Large quality factors on the order 

of 105 are predicted in the lattice. A significant decrease of the optical power 

required for optical trapping can be achieved compared to the previous design based 

on square lattice. Experiments are carried out to optically characterize the high-Q 

guided resonance modes with slot confinement. The evolution of the measured 

wavelengths and quality factors follows the trend predicted by the simulations. 

The intrinsic, radiation loss of a coupled resonator optical waveguide (CROW) is 

studied by the tight binding approximation (TBA). The TBA predicts that the quality 

factor of the CROW increases with that of the isolated cavity. The results provide a 

method to design CROWs with low intrinsic loss across the entire waveguide band. 
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The method may facilitate the design of large-area, coupled-cavity modes with high 

quality factor that nevertheless couple to normally-incident radiation for assembly.
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Chapter 1: Introduction  

1.1 Background 

 It has long been known that light can exert a force on objects, an effect known as radiation 

pressure. Back in the 16th century, it was suggested that mechanical effects from solar radiation 

cause comet tails to point away from the sun. In 2010, Japanese Aerospace Exploration Agency 

successfully launched a spacecraft with radiation pressure from sunlight as propulsion force.  

 Under most everyday circumstances, optical forces are too weak to cause noticeable effects. 

For nano- and micro-scale objects, however, optical forces can have significant effects. One 

well-known application of optical forces is optical trapping [1, 2], a technique that uses laser 

light to trap and position small particles. The objective of this thesis is to explore the applications 

of optical forces in nano- and micro-scale region.  

 Dr. Povinelli [3] has introduced the idea of using optical forces to precisely control the 

positions of microscale optical waveguides and resonators. Optical waveguides, which act like 

“photonic wires,” and microresonators, devices that confine light to the scale of the wavelength, 

are important elements for developing photonic integrated circuits [4-6]. Ultimately, photonic 

integrated circuits may manipulate photons in the way that electronic circuits manipulate 

electrons. The development of photonic circuits that can filter, buffer, and reroute optical signals 

is expected to transform optical communications [7], enable high-speed optical interconnects 

between multi-chip computer processors [8], and provide a platform for quantum communication 

[9]. However, current photonic circuits are largely static; methods for reconfiguring their 

response are limited. Optical forces in integrated photonics, or optomechanical effects, represent 
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an exciting new approach for achieving flexible, all-optical tuning and reconfiguration of on-chip 

microphotonic devices. 

 

1.2 Optical Forces in Microphotonic Systems 

In 2005, Povinelli et al. theoretically investigated the optical forces between parallel 

waveguides [3], shown in Figure 1-1 (a). A mechanical force arises from the overlap of the 

guided waves propagating in the two waveguides. The sign of the force can be either attractive or 

repulsive, depending on the relative phase of light in the waveguides. The “bonding” mode, 

which is symmetric with respect to the two waveguides, gives an attractive optical force, whereas 

the “anti-bonding,” or anti-symmetric mode, is repulsive. By controlling which mode is input 

into the waveguides, input light can be used to pull the waveguides together or push them apart. 

Physically, the force originates from the interaction of dipoles induced in the dielectric 

waveguides by the electromagnetic field of the light wave. The optical force scales linearly with 

input power. 

The calculated optical force in a typical system is shown in Figure 1-1 (b). The waveguides 

each have cross sections of 310 nm by 310 nm, and the wavelength in air is 1550 nm. In the 

figure, the force per unit length of the waveguide is divided by the input power and plotted as a 

function of waveguide separation. For waveguide separations larger than ~60 nm, the symmetric 

and antisymmetric modes correspond to attractive (positive sign) and repulsive (negative sign) 

forces, respectively. The magnitude of the optical force decays monotonically with increasing 

separation. The decay is due to reduced optical coupling between the waveguides, that is, 

reduced overlap between the evanescent tails of the individual waveguide modes. For smaller 
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waveguide separations, strong coupling between the waveguides can significantly perturb the 

individual waveguide modes. In this regime, the optical force of the antisymmetric mode 

changes sign.  

 

 

Figure 1-1 Optical forces between parallel waveguides. (a) schematic structure; 
multicolored arrow indicates the direction of light propagation. (b) calculated, 

normalized, optical force as a function of waveguide separation. Insets show modal 
profiles, with red/blue indicating positive/negative values of the electric field 

component parallel to the air gap. 

 

In Figure 1-1 (b), it can be seen that for the symmetric (attractive) mode, the optical force 

increases with decreasing gap. However, if the gap is too small, the Casimir force becomes 

comparable to, or larger than, the optical force [10]. Devices with gaps as small as ~80 nm have 

been used in experiments [11].  

Interestingly, the optical force between waveguides is in a direction perpendicular to the 

direction of light propagation. This is different than the traditional case of radiation pressure, 

where the optical force on a surface is parallel to the direction of light propagation. The radiation 
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pressure can be simply derived from momentum conservation arguments: reflection of a photon 

from a surface must correspond to transfer of mechanical momentum to the surface. Similarly, 

the optical force on the mirrors of a Fabry-Perot cavity acts perpendicular to the direction of light 

propagation [12]. For parallel waveguides, the situation is notably different: the momentum 

acquired by each individual waveguide is perpendicular to the propagation direction, and the 

momenta of the two waveguides are equal and opposite. 

 

1.2.1 Early Experiments 

Initial theoretical work on optical forces was followed rapidly by experimental 

demonstrations.  

 

Figure 1-2 Optical forces (a) between waveguide and substrate, and (b) between 
vertically-stacked microrings. Light is coupled into the rings by a bus waveguide. For 
both (a) and (b), the structure is shown on top, with a multicolored arrow labeling the 

direction of light propagation. The modal profiles are shown on the bottom, with 
red/blue indicating positive/negative values of the electric field component 

perpendicular to the air gap. Yellow arrows show the direction of the optical force. The 
system in (a) has an attractive mode only, whereas (b) has both symmetric (attractive) 

and anti-symmetric (repulsive) modes. 
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In 2008, a suspended waveguide coupled to an underlying substrate was designed [13] and 

fabricated [14] by Li et al. A schematic is shown in Figure 1-2 (a). The authors demonstrated an 

attractive optical force that is induced by the overlap between the evanescent tail of waveguide 

mode and the underlying oxide substrate. Waveguide displacement was inferred from the optical 

transmission using an on-chip interferometer scheme. Further experiments demonstrated 

attractive and repulsive forces in coupled microresonators, shown in Figure 1-2 (b).  

 

1.2.2 Other Configurations 

Following initial work on waveguide and microresonator systems, a variety of alternate 

microphotonic device geometries have been investigated. Various mechanisms have been studied 

for enhancing the optical force. These include tailoring the overlap between photonic and 

mechanical modes, exploiting guided resonance modes, and incorporating plasmonic materials.  

 

 

Figure 1-3 Schematic of photonic crystal cavities showing opto-mechanical coupling. (a) 
“zipper” cavity, (b) nanobeam cavity, and (c) double-layer photonic crystal slab cavities. 
In (a) and (b), the lattice constant near the center of the device is decreased slightly (not 

shown) to form a microcavity. 
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Photonic-crystal microcavities can be designed to confine light in ultra-small mode volumes 

and exhibit high optical quality factors, Q [15-18]. Recent work has exploited these attributes to 

achieve strong optomechanical effects. Painter and co-workers [19, 20] have designed and 

experimentally demonstrated a “zipper” system with large optomechanical coupling. The zipper 

is made up of two parallel, patterned nanobeams (shown in Figure 1-3 (a)) each of which is 

designed to support an optical microcavity mode. Coupling between the modes gives rise to 

attractive and repulsive forces. A relevant figure of merit in the structure is the optomechanical 

coupling length, , where  is the optical resonance frequency. Experimental 

values lower than 3 microns were obtained.  

In this system, optomechanical coupling results in an “optical spring effect:” due to the 

presence of optical forces, the mechanical resonance frequency and spring constant are shifted. 

In experiments, a modified stiffness of five times the intrinsic mechanical stiffness of the 

nanobeam was observed. 

In Reference [21], Painter and co-workers designed and experimentally demonstrated a 

nanobeam structure (in Figure 1-3 (b)) that confines both the optical modes and the mechanical 

vibration modes to the scale of the optical wavelength. Localized mechanical modes are created 

using a phononic band gap microcavity, analogous to the optical case. The authors suggest that 

the strong optomechanical coupling between optical modes (200 THz optical resonance 

frequency) and high-frequency mechanical modes (2 GHz mechanical resonance frequency) will 

allow extremely sensitive mass detection via optical readout. 

Notomi and coworkers have theoretically analyzed microcavities in parallel photonic-crystal 

slabs [22]. A schematic double-layer cavity is shown in Figure 1-3 (c). Intriguingly, the authors 
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suggest that if the mechanical displacement between the structures occurs faster than the 

response time of the optical cavity (proportional to the optical period times the optical Q), 

wavelength conversion will occur [23]. This phenomenon is analogous to the frequency shifts 

predicted and measured in microphotonic systems with time-varying linear refractive index [24, 

25]. 

 

Figure 1-4 Guided-resonance optomechanical devices: (a) double-layer photonic crystal 
slab supporting guided resonances, and (b) asymmetric guided resonant structure 

composed of photonic crystal slab and silicon-silica substrate. 

 

Other than microcavities, optical forces have been demonstrated in guided resonance systems. 

When light is normally incident upon a 1D- or 2D-periodically patterned slab, it can excite 

guided resonance modes, which propagate in the plane of the slab while leaking partially to the 

surrounding air [26]. Early work examined forces between identical, parallel photonic-crystal 

slabs (Figure 1-4 (a)). Liu et al. [27] showed theoretically that optical forces are enhanced near 

guided resonances. In an ideal system, infinite-Q resonances, or “dark states” can be designed, 

and the force will diverge as 1/Q near the resonant frequency. Experiments on a similar system 

were reported by Roh et al. [28]. Changes in separation between the slabs due to optical forces 
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were inferred from the optical reflection spectrum. Displacements of approximately 3.6 nm were 

obtained for ~20 mW of power. The force per photon, 0.051 pN/photon, was similar to values 

obtained in double-layer disk cavities [29] and zipper cavities [20].  

Rodriguez et al. [30] have theoretically studied asymmetric systems consisting of a photonic-

crystal slab above an unpatterned, layered substrate, shown in Figure 1-4 (b). This system may 

offer advantages in terms of fabrication. The asymmetric system supports both quasi-symmetric 

and quasi-antisymmetric modes with opposite signs of the force. As for symmetric structures, the 

sign of the force can be changed by tuning the frequency of the incident light. Assuming the 

photonic-crystal slab can move, changing the separation between slab and substrate, bistable 

behavior is predicted [31]. The precise conditions for bistability are affected by the Casimir force, 

suggesting that observations of bistability could be used to infer the magnitude of the Casmir 

force. In addition, the optical force might be used as a way of controlling or preventing stiction, 

which results from Casimir attraction.  

One advantage of such guided-resonant devices is that light can be coupled into the mode at 

normal incidence using free-space optics, potentially allowing ease of alignment. However, the 

mass of guided-resonant slabs is usually bigger than that of photonic crystal cavity devices, 

which may reduce the mechanical resonance frequency and hence increase the characteristic 

response time for an optical force.   

Surface Plasmon Polaritons (SPP’s) are propagating electromagnetic modes formed at 

metallic-dielectric interfaces [32] that offer the ability to confine light to the deep subwavelength 

scale. There has been interest in determining whether the enhanced light intensity in SPP can be 

exploited to yield large optical forces. Woolf et al. [33] have theoretically analyzed the forces 
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generated by SPP’s between metal slabs. They determined that semi-infinite metal waveguides 

separated by an air gap (MIM geometry as shown by Figure 1-5 (a)) give rise to an attractive 

force, while finite-thickness metal waveguides separated by an air gap (IMIMI geometry as 

shown by Figure 1-5 (b)) yield either attractive or repulsive forces, depending on the mode. The 

authors focus consideration on modes with long-range propagation characteristics, for which the 

field overlap with the metal, and consequently the loss, is relatively low. 

 

 

Figure 1-5 Optical forces generated in plasmonic devices: (a) finite-thickness metal 
waveguides separated by a dielectric gap,  (b) semi-infinite metal plates separated by a 

dielectric gap, and (c) a hybrid plasmonic system with a dielectric waveguide and a 
metallic substrate. 

 

Two papers have calculated force enhancements in hybrid plasmonic waveguides consisting 

of dielectric waveguides coupled to metallic substrates (Figure 1-5 (c)). References [34] and [35] 

show that the force between a silicon waveguide and a metal substrate is up to an order of 

magnitude larger than the force between the same waveguide and a dielectric substrate, given the 

same cross-sectional power. However, this conclusion applies only for relatively small 

27



 

10 

 

waveguide-substrate gaps. The plasmonic enhancement is non-resonant, and thus can be used for 

a broad range of wavelengths. However, due to ohmic loss, the hybrid plasmonic mode decays in 

the propagation direction. As a result, the enhancement will only be maintained for distances 

shorter than the plasmon decay length, typically on the order of 10’s of microns.  

In Chapter 2, the effect of slow light on optical force enhancement will be examined. The 

optical force is proportional to the light intensity in the propagating mode. Under conditions of 

fixed power input to a guided-wave mode, the light intensity scales as the input power over the 

group velocity. Consequently, reducing the group velocity of a mode increases the optical force 

for fixed input power. In the extreme case, as the light group velocity approaches zero, the 

optical force diverges.  

 

1.3 Applications for On-chip Manipulation of Light Signals 

As discussed above, optical forces have been calculated for a range of microphotonic device 

geometries, and mechanical motion arising from optical forces has been measured in a variety of 

experiments. This section will discuss some of the applications of these effects in on-chip 

information processing, such as filtering, switching, and other operations. 

Optomechanical techniques offer particular advantages and disadvantages relative to other 

methods for tuning the response of a microphotonic system. Mechanical motion results in a large 

change in the effective index of a microphotonic structure, as compared to other tuning 

mechanisms such as thermal, electrooptic, and carrier injection. Thermal tuning through 10 

degrees kelvin, for example, changes the index of silicon by less than 0.07%. Mechanical motion 
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changes the refractive index by order unity, due to the large index difference between silicon and 

air. The characteristic time scale for optomechanical effects is determined by the mechanical 

motion. If the device is operated in steady state, the time scale is determined by the mechanical 

period (proportional to the inverse mechanical resonance frequency). This number sets a lower 

limit on the time scale for response. If the optical signal is switched on abruptly, the mechanical 

displacement will equilibrate on a time scale determined by the product of the mechanical period 

and the mechanical quality factor. 

With these general features, optomechanical effects can be used to construct novel, tunable, 

on-chip optical components. These include devices for wavelength filtering, self-adaptive 

microcavities, slow-light effects, and tunable lasers. 

 

1.3.1. Tunable Directional Coupler 

One example of a waveguide switch is a directional coupler [36]. The standard directional 

coupler design consists of two parallel waveguides. Light input to one waveguide transfers to the 

other waveguide over a characteristic length scale called the coupling length. For proper 

adjustment of the device length, L, all input light is transferred to the drop port. Tuning the 

effective index of the waveguides changes the coupling length, also changing the fraction of 

power that is output at the through and drop ports. 
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Figure 1-6: Optically-tunable directional coupler, in which the effective index of each 
arm is tuned via an adjustable slot width. Figure adapted from [37]. 

 

 

Fong et al [37] have used optical forces to demonstrate an all-optically tunable directional 

coupler. Each of the waveguides is a slot waveguide (Figure 1-6). An optical pump signal is used 

to induce an optical force, which reduces the slot width. The change in slot width causes a 

change in effective index of each slot waveguide, changing the behavior of the coupler. The 

authors demonstrated that the output power of a probe signal at the drop port could be tuned 

from 0.1% to 70% using 1.3 mW pump power. Dynamic modulation was also demonstrated. 

 

1.3.2. Wavelength Filtering 

Optical forces provide a method to achieve wideband tuning of microcavity resonances, with 

potential applications to filtering and routing.  

In an early paper, Eichenfield et al. [38] demonstrated an all-optical tunable filter based on a 

high-Q silicon nitride microresonator coupled to a movable silica waveguide. The optical force 
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due to a strong pump beam pulls the waveguide toward the microresonator, changing the 

resonance frequency at a probe wavelength. The pump wavelength was tuned to change the 

waveguide-resonator separation, shifting the probe transmission spectrum. 

Two papers have demonstrated tunable filters based on power tuning of a pump beam. 

Conceptually, the devices used are similar to Figure 1-2 (b); stacked microrings support coupled 

optical modes. The rings are mechanically supported by hub-and-spoke structures (not shown), 

which can be tailored to control the effective spring constant of the mechanical modes. 

Rosenberg et al. [29] demonstrated the use of optical forces to tune the microcavity 

resonance in a double-ring, silica “spiderweb” structure. The optical force changes the separation 

between the rings, shifting the resonance. Static tuning was demonstrated with an efficiency of 

2.5nm/mW. Dynamic tuning was demonstrated with a switching time less than 200 ns.  

Wiederhecker et al. [39] later used optical forces to tune the optical resonance of a silicon 

nitride “double wheel” microcavity. Tuning of 30 nm was achieved with an efficiency of 

2.3nm/mW. The authors argue that the tuning range is ultimately limited by the onset of 

mechanical regeneration.  

In both these papers, the transmission line shape is a dip, or rejection filter. It has been 

suggested that modified devices and measurement configurations could be used to demonstrate 

related functions, such as routing, switching, buffering, dispersion compensation, pulse trapping 

and release, and tunable lasing [29]. The wide tunability suggests these functions could be 

achieved over the full telecom C- or L-bands [39].  
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1.3.3 Self-adaptive Microcavity 

Rakich et al. [40] have proposed theoretically that optical forces can be used to design self-

adaptive microcavities, cavities which tune themselves to the incident laser frequency. This 

behavior is achieved by careful design of the optomechanical potential in a modified, double-ring 

system, shown in Figure 1-7. The waveguide on the right is used to couple light into the rings. 

The force between rings is attractive at large separations and repulsive at small ones. As a result, 

the ring separation will adjust to a stable, intermediate separation value. Using the optical forces 

between an additional pair of coupled waveguides (shown on the left) to further shape the 

optomechanical potential, the system can be designed so that the stable ring separation always 

corresponds to a resonance frequency equal to the incident laser frequency. 

 

 

Figure 1-7 Schematic design of a self-tuning resonator, adapted from Reference [40]. 

 

The concept of a self-aligning microcavity may provide a route to more robust on-chip 

microcavity devices [41]. Temperature variations, fabrication error, and other factors all 

influence the resonant frequencies of microcavities. Using optomechanical effects, a reference 
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laser could be used to lock multiple microcavity devices on a chip (such as filters) to a standard 

frequency. 

The main challenge in demonstrating self-adaptive behavior is fabrication feasibility. The 

design of Reference [40] requires two device layers. Each layer contains at least one waveguide 

and microring, and all devices within the layer must move together. Creative approaches and/or 

modified designs may be required to demonstrate self-adaptive concepts experimentally. 

 

1.3.4 Slow Light  

Recent papers by Painter and coworkers have suggested the use of optomechanical effects to 

achieve slowing of light [42, 43]. Motivated by the dramatic demonstration of stopped light in 

atomic gasses [44], resulting from electromagnetically-induced transparency (EIT), much recent 

work has attempted to demonstrate slow light in practical, on-chip microphotonic systems [45-

47]. Applications of slow light, such as buffering and optical memories, are found in both 

classical and quantum information processing.  

The maximum pulse delay that can be achieved in a slow light system is fundamentally 

limited by the lifetime of a “dark state,” a resonance of the system that is weakly coupled to the 

outside world. The dark-state lifetime scales as the product of the resonance period times the 

quality factor. Painter and coworkers have suggested the use of a mechanical resonance as the 

dark state; the mechanical period is typically much longer than the optical period. In Reference 

[42], the authors experimentally demonstrated a reflection spectrum characteristic of EIT in a 

optomechanical device. The structure is similar to Figure 1-3 (b), however, the microcavity is 

formed by changing the hole size and shape near the center of the device. At low temperature 
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(8.7 kelvin), an optically tunable delay of 50 nanoseconds with near-unity optical transparency 

was achieved. A method for tunable control of the optomechanical constant in time would 

further allow trapping and release of finite-bandwidth pulses. 

 

1.3.5  Tunable Lasers 

The ability to tune the operating wavelength of a semiconductor laser by mechanically 

modifying the optical cavity is an intriguing application of optomechanical devices. Alegre et al. 

[48] have analyzed laser tuning in photonic crystal “zipper” cavities (similar to Figure 1-3 (a)). 

They propose to use two optical resonances, one corresponding to a master (or pump) frequency, 

and the other to the slave (or lasing) frequency. The optical force resulting from pump light 

would be used to adjust the separation between two nanobeams that make up the zipper. The 

change in separation will shift the frequency of the lasing mode. A particular advantage of the 

zipper structure is the ability to obtain large optomechanical coupling constants [48]; the shift in 

the lasing frequency scales as the product of the optomechanical coupling constants for the pump 

and lasing modes. However, wavelength-tunable lasers could also be realized through other 

microscale resonant photonic topologies with optomechanically adjustable air gaps. Tradeoffs 

between considerations such as output power, wavelength tunability, frequency stability, and 

mode profile will affect the choice of design. 
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1.3.6.  Our Contributions 

In Chapter 2, 3 and 4, more applications of optical forces will be discussed. In Chapter 2, it 

will be proposed that optomechanical response also offers the opportunity to control or regulate 

transmitted power levels. Optical forces have been calculated between a periodically-patterned, 

movable silicon waveguide and a substrate. For a given wavelength of operation, the separation 

between waveguide and substrate will determine whether light propagates or falls in the photonic 

bandgap of the device. For proper design, increasing the optical power will pull the waveguide 

toward the substrate, moving the waveguide into the bandgap and prohibiting propagation. This 

effect should limit the total amount of power that can be transmitted through the device. The 

design of novel devices that perform the reverse function, only allowing transmission above 

certain power levels, will allow the regulation of power levels on chip. In combination with gain 

elements, optomechanical elements could thus provide a way to adaptively shape the average 

power of signal bit streams. 

In Chapter 3, an effective Kerr nonlinearity will be studied in coupled coupled-waveguide 

systems, where the force between waveguides can be either attractive or repulsive. The essence 

of an optical nonlinearity is that the propagation characteristics of a device change with incident 

power. This is the case for optomechanical effects. Light results in a force that physically moves 

the device, affecting light propagation. The effective Kerr nonlinearity is named as “mechanical 

Kerr nonlinearity” [49]. It will be shown that either sign of the force results in a positive, giant 

mechanical Kerr coefficient and how the magnitude can be optimized with appropriate device 

parameters. The mechanical Kerr coefficient is several orders of magnitude larger than the 

ordinary Kerr coefficient of silicon.  
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In Chapter 4, it will be theoretically proposed that optomechanical effects could be used to 

achieve all-optically tunable birefringence. The birefringence in a system of two coupled 

waveguides (Figure 1-1 (a)) will be analyzed. By tuning the pump power injected in the 

waveguide, the separation between the waveguides can be adjusted. The change in separation 

affects the relative phase between TE and TM polarized modes. For appropriate values of the 

pump power, the device acts as a polarization converter, changing linear to circularly polarized 

light. 

The ability to achieve mechanical Kerr effects and optically-tunable polarization rotation 

suggest that optomechanical effects can be used in a variety of switching configurations. The use 

of non-resonant devices should allow wide bandwidth response. 

 

1.4 Applications for Assembly of Nanoparticles 

The force of light on objects provides tremendous flexibility for microscale or nanoscale 

manipulation. As discussed above, optical forces can be used to construct novel, tunable, on-chip 

optical components for information processing. Other than repositioning elements of integrated 

photonics, optical forces can be utilized to manipulate particles. One famous example is optical 

tweezer [50-52], which use the optical gradient force of a focused laser.  

Recent work has leveraged the strong field gradients near microphotonic devices for particle 

trapping [53-64]. However, such work has focused on trapping single or few particles. Our group 

have proposed to use optical forces near microphotonic devices for a fundamentally different 

purpose: to assemble periodic arrays of nanoparticles resembling synthetic, reconfigurable two 

dimensional (2D) crystals [65]. This approach, called light-assisted, templated self-assembly 
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(LATS), exploits photonic-crystal slabs to create resonantly enhanced optical forces orders of 

magnitude larger than radiation pressure.  

The LATS process is shown schematically in Figure 1-8. Light is incident from below on a 

photonic-crystal slab, which consists of a silicon device layer patterned with a periodic array of 

air holes. The slab is designed to support guided-resonance modes, electromagnetic modes for 

which the light intensity near the slab is strongly enhanced [26]. The previous work has 

theoretically predicted [65] that when the incident laser is tuned to the wavelength of a guided-

resonance mode, nanoparticles will be attracted toward the slab. The attractive, optical force 

arises from a strong electric-field gradient just above the slab surface. In addition, the 

nanoparticles will experience lateral optical forces due to the electromagnetic field structure of 

the guided resonance mode, resulting in the assembly of a nanoparticle array. 

 

 

Figure 1-8 Schematic of light-assisted, templated self-assembly (LATS). Incident light 
from below excites a guided-resonance mode of a photonic-crystal slab, giving rise to 

optical forces on nanoparticles in solution. Under the influence of the forces, the 
nanoparticles self assemble into regular, crystalline patterns [66]. 
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In the first experiment of LATS [66], a square array of over 100 polystyrene particles was 

assembled near a silicon photonic-crystal slab. The photonic crystal was fabricated on silicon-on-

insulator wafer. A square lattice of 300-nm-diamter holes with periodicity of 860 nm were 

etched through 250-nm-deep silicon device layer. The slab was immersed in a suspension of 

520-nm-diameter polystyrene particles and illuminated from below with a laser. The particles 

floating above the crystal were then moved into the holes by optical forces, forming a square 

crystal lattice measuring 13 µm on each side.  

Figure 1-9 shows snapshots of the LATS process. When the laser beam is turned on, 

nanoparticles are attracted to the slab and begin to occupy sites of the square lattice (Figure 1-9 

(a)). As time progresses, additional particles diffuse into the region where the beam intensity is 

high and begin to form a cluster (Figure 1-9 (b)). Eventually, a regular array of particles is 

formed (Figure 1-9 (c)). The square symmetry of the assembled particles is evident from the 

picture. When the laser beam is turned off, the particles immediately begin to disperse and 

diffuse away from the slab (Figure 1-9 (d)). 
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Figure 1-9 Light-assisted, templated self-assembly of 520 nm diameter particles above a 
photonic-crystal slab. (a−c) Sequential snapshots taken with the light beam on. (d) 

Snapshot taken after the beam is turned off. 

 

Nanoparticle arrays assembled using LATS can be viewed as “programmable optical matter” 

[67]: turning the laser on and off will reversibly assemble or disassemble the structure. 

Moreover, exciting different resonance modes of the photonic crystal, by adjusting the 

wavelength of the input laser, should allow different crystalline structures to be formed [65]. 

Light-driven assembly of multiparticle patterns has previously been achieved using 

structured light fields generated by interference fringes, holography, spatial light modulators, or 

other methods [68]. The LATS approach differs crucially from previous work in that it exploits 

near-field, rather than farfield effects. Rather than generating a structured light beam via free-

space optics, a simple, Gaussian input beam is used. The structured light field responsible for 

trapping is generated by the interaction of light with the photonic-crystal device. Ultimately,  

however, LATS could be carried out using a photonic-crystal laser, allowing the integration of 

the light source with the trapping device and making our approach highly suitable for on-chip 
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integration. Thus a wide range of applications can be expected from all-optically tunable 

photonic devices, to materials assembly, to biological trapping and manipulation. 

In the previous work, a simple, square-lattice design for the photonic crystal is considered. It 

is envisioned that the LATS technique can be extended to assemble larger numbers of particles 

by designing the photonic-crystal slab to reduce the input power per area required for trapping. 

The input beam can then be spread over a larger area, resulting in a larger cluster. One approach 

to reducing the required power per area is to use a mode with a higher quality factor. Another 

approach is to strongly localize the field in the trapping regions. With these two principles, novel 

lattices will be proposed in Chapter 5 and 6. By judicious design, guided resonance modes with 

high quality factors and mode localization can be achieved in the novel photonic crystal lattice. It 

is expected that the new design will allow assembly of larger numbers of particles.   

 

1.5 Force Calculation 

Accurate calculations of optical forces in realistic, 3D structures can be performed using 

electromagnetic modeling techniques. 

 

1.5.1. Maxwell Stress Tensor 

One method for force calculation is to evaluate the Maxwell stress tensor (MST) numerically 

[69]. This general, flexible technique allows one to directly calculate the force based on the full 

electromagnetic field distributions, which can be obtained from an appropriate full-vectorial 

electromagnetic solver. The MST method has been used to evaluate optical forces in many 
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contexts [22, 70-73]. To compute the optical forces acting on a movable component, the 

Maxwell stress tensor is numerically integrated over a closed surface surrounding the component:   

  (1-1) 

where α and β indicate direction x, y or z, n is the outward normal to the closed surface S, and 

the stress tensor,  

 . 

Typically, the time scale for mechanical response is longer than the optical period, and the time-

averaged force over the optical period may be considered [73]. The disadvantage of the MST 

method is that since it requires the knowledge of the full electromagnetic fields, it is 

computationally intensive and can become prohibitive for large system size. 

 

1.5.2 Derivative Method 

It has been shown previously [3] that for infinitely long waveguides with no radiation loss, 

the force between two waveguides can be calculated from the derivative of the eigenmode 

frequency with respect to separation. This relationship follows from expressing the force as a 

derivative of the electromagnetic energy U with respect to waveguide separation, g:  

  ,   
(1-2) 

where N is the number of photons, ω is the eigenmode frequency, and k is the wave vector.  
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An optomechanical coupling constant can be defined as .
 
The value of gOM is 

proportional to the force per photon (F/N) on the mechanical system. Larger values of gOM 

indicate a larger change in the optical properties of the system for a given mechanical 

displacement. 

It is often convenient to consider the force per unit length of the waveguide, normalized to 

the input power P. Under conditions of fixed power input to a guided-wave mode, the 

electromagnetic field energy U scales as the input power over the group velocity: U=PL/vg. The 

normalized force is: 
  

       (1-3) 

Consequently, reducing the group velocity of a mode tends to increase the optical force per 

unit waveguide length at fixed input power. The force may alternately be written as a derivative 

of the effective index neff  with respect to separation [13]: 

       
(1-4) 

In Equations (1-3) and (1-4), the derivatives are taken at fixed wave vector.  

Derivative methods generally assume that the optomechanical system is closed and does not 

exchange energy with the surrounding media. The force between two microcavities can also be 

calculated as a derivative of the cavity mode frequency with respect to separation, provided that 

the cavity quality factor is large [22, 74]. For microresonator systems, the optical force is 

proportional to the electromagnetic field energy stored in the resonators.  
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Rakich et al. have shown that for general linear, lossless systems, the force can be written in 

terms of the scattering matrix [75]. This method is particularly useful for systems that can be 

accurately described by coupled-mode theory [76], such as systems of multiple microresonators 

coupled to waveguides, in which full-field calculations can prove prohibitive. 

Given the value of the optical force at a given optical power level, a resulting static 

displacement can be calculated by solving the corresponding mechanical problem. A typical 

approach is to use finite element software, such as COMSOL, for this purpose.  

In the following chapters, the force calculation will be discussed in more detail in specific 

systems.  

 

1.6 Thesis Overview 

Since the initial theoretical studies on optical forces between microphotonic devices, 

experimental progress has been rapid. The goal of this thesis is to explore applications of optical 

forces in micro-photonics systems. There are two major tasks. One is to exploit effects of optical 

forces in highly tunable, on-chip devices, and the corresponding discuss will be in Chapter 2, 3 

and 4. The other task is to utilize optical forces for light-assisted, template self-assembly (LATS) 

of nanoparticles. A novel photonic crystal template is designed in Chapter 5 for lower-power 

assembly. In Chapter 6, experiments are carried out to characterize optical performance of a new 

photonic crystal lattice potential for lower-power LATS. In Chapter 7, a method is proposed to 

predict the radiation loss of coupled resonator optical waveguides in photonic crystal slabs. The 

method may facilitate the design of large-area, coupled-cavity modes with high quality factor 

that nevertheless couple to normally-incident radiation for LATS.  

43



 

26 

 

In Chapter 2, the attractive optical force is numerically investigated between a suspended 

one-dimensional periodic photonic crystal waveguide and underlying substrate in a silicon-on-

insulator platform. It is shown that the optical force can be enhanced by designing the waveguide 

cross section to make the mode approach the band edge or substrate light line. For periodic 

waveguides, the optical force is non-monotonic with waveguide-substrate separation. This effect 

may enable the design of compact, integrated optical power limiters. 

In Chapter 3, an analytical method is proposed to calculate optical forces between silicon 

waveguides based on the perturbation of effective index at fixed frequency. The method is used 

to investigate the mechanical Kerr effect in a coupled-waveguide system with bipolar forces. It is 

shown that  positive mechanical Kerr coefficient results from either an attractive or repulsive 

force. An enhanced mechanical Kerr coefficient several orders of magnitude larger than the 

intrinsic Kerr coefficient is obtained in waveguides for which the optical mode approaches the 

air light line, given appropriate design of the waveguide dimensions. 

In Chapter 4, an optomechanical method is presented to tune phase and group birefringence 

in parallel silicon strip waveguides. The deformation of suspended, parallel strip waveguides due 

to optical forces is calculated. The frequency and polarization of the pump light is optimized to 

obtain a 9nm deformation for an optical power of 20 mW. Widely tunable phase and group 

birefringence can be achieved by varying the pump power, with maximum values of 0.026 and 

0.13, respectively. The giant phase birefringence allows linear to circular polarization conversion 

within 30µm for a pump power of 67mW. The group birefringence gives a tunable differential 

group delay of 6fs between orthogonal polarizations. The tuning performance of waveguides is 

evaluated with different cross sections. 
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In Chapter 5, a novel photonic crystal lattice is proposed for trapping a two-dimensional 

array of particles. The lattice is created by introducing a rectangular slot in each unit cell of the 

Suzuki-Phase lattice to enhance the light confinement of guided resonance modes. Large quality 

factors on the order of 105 are predicted in the lattice. A significant decrease of the optical power 

required for optical trapping can be achieved compared to the previous design based on square 

lattice. 

In Chapter 6, experiments are carried out to optically characterize a new photonic crystal 

structure. This photonic crystal device is generated by using regular graphite lattice as the base 

and adding a slot into the center of each unit cell for enhancing field confinement. The lattice has 

been optimized to obtain guided resonant modes with high quality factor over 4×105. The 

evolution of the measured wavelengths and quality factors follows the trend predicted by the 

simulations. 

In Chapter 7, the tight binding approximation (TBA) is used to relate the intrinsic, radiation 

loss of a coupled resonator optical waveguide (CROW) to that of a single constituent resonator 

within a light cone picture. The validity of the TBA is verified via direct, full-field simulation of 

CROWs based on the L2 photonic crystal cavity. The TBA predicts that the quality factor of the 

CROW increases with that of the isolated cavity. Moreover, the results provide a method to 

design CROWs with low intrinsic loss across the entire waveguide band. 
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Chapter 2:  Effect of Periodicity on Optical Forces  

2.1 Background 

In the last few years, intense research has been carried out on optical forces induced by the 

strongly enhanced gradient of the electromagnetic field close to micro- and nanophotonic devices 

[1-11]. The forces provide a way to reconfigure microphotonic elements with experimentally 

measurable deflection [12-14]. This mechanical actuation allows a number of important device 

functionalities, such as all-optically controlled filters [15], wavelength routers [16], and 

polarization rotators [17], as well as optomechanical Kerr effects [18]. One structure that is 

particularly amenable to fabrication is a suspended, microbridge waveguide over a substrate [19].  

For appropriately designed devices, it has been predicted and verified experimentally that the 

optical force is dominant over other effects, such as thermo-optical effects, Casimir and van der 

Waals forces [19, 20]. Previous theoretical and experimental work has demonstrated that light 

traveling through an unpatterned waveguide induces an attractive optical force between the 

waveguide and substrate [19, 21]. Introducing a periodic pattern into the waveguide to form a 

one-dimensional (1D) periodic photonic crystal should introduce additional flexibility in tuning 

the behavior of the optical force.  

Here we numerically investigate the effects of periodicity on optical forces between a 

microphotonic waveguide and substrate. While previous work has analyzed 1D-periodic 

photonic crystal microcavities [22, 23], we consider light propagation in the pass band of a 1D-

periodic periodic crystal. We show that the optical force on a 1D-periodic photonic crystal 

waveguide is enhanced due to several different physical effects: delocalization near the substrate 

light line, effective reduction of the waveguide refractive index, and slow-light enhancement 
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near the band gap. We find that, in contrast to unpatterned waveguides, the optical force shows a 

non-monotonic dependence with waveguide-substrate separation. The force behavior near the 

photonic band edge may enable the design of optical switches that transmit only below a certain 

power threshold, i.e. power limiters. 

 

2.2  Band Edge Effects 

We investigate the optical force between a patterned, 1D-periodic photonic crystal silicon 

waveguide and an underlying silica substrate, as shown in Figure 2-1 (a). In the paper, the 

physical wavelength is fixed to 1550 nm. We assume one period of the waveguide is a cube of 

side length a with a circular air hole of radius r=0.3a. The modes of the waveguide-substrate 

system can be characterized as even or odd with respect to the mirror plane at y=0, according to 

the symmetry of the vector field [24].  We refer to the y-even mode as TM; the electric field is 

primarily in the z-direction. We refer to the y-odd mode as TE; the electric field is primarily in 

the y-direction. 

In Figure 2-1 (b), we plot the dispersion curves for the two lowest TM bands and the lowest 

TE band. The two lowest TM bands are separated by a band gap. For TE polarization, the second 

lowest band does not couple strongly to a linearly polarized source and is not shown in the figure. 

We use the MIT Photonic Bands package [25] to calculate the full vectorial electromagnetic 

fields for one period of the infinite structure. From the fields, we calculate the force using the 

Maxwell Stress Tensor [26]. We plot the force per unit length per unit power (F/L/P), where we 

assume P= Uvg /L. vg is the group velocity, and U is the electromagnetic field energy [2]. We 

confine our calculation to the values of the period a for which the modes are guided (lie below 
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the gray region in Figure 2-1(b)). All three of the modes shown give rise to an attractive optical 

force.  

 

 

Figure 2-1 (a) Patterned, 1D-periodic photonic crystal Si waveguide with period a 
is separated from the SiO2 substrate by a distance d =100 nm. r is the hole radius. 

(b) Dispersion relation for TM (blue solid curve) and TE (red dashed curve) 
modes in waveguide with r=0.3a, and h=w=a. The gray region shows the 

substrate light cone. The point where the TE/TM mode crosses the light line is 
indicated by an orange/yellow circle. 

 

Figure 2-2 (a) shows force per unit length per unit power as a function of the side length a for 

the TM modes (blue circles). The waveguide-substrate separation d = 100 nm. The yellow circle 

indicates the value of a (~365nm) for which the TM mode enters the light line. The blue box 

indicates the range of a for which 1550nm light falls within the band gap of the TM modes. In 

this range, no light can propagate along the waveguide, and thus, no optical force is induced. We 

observe from the figure that the force increases near the light line and near the band edge. To 

understand these trends, we plot the force for an unpatterned strip waveguide with the same 

dimensions but no air holes (black squares). For the strip waveguide, the mode crosses the light 
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line at a value of a~280nm, shown by the yellow circle. Like the patterned waveguide, the force 

increases as the mode approaches the light line, due to stronger coupling between the waveguide 

and substrate. Overall, the force curve for the patterned waveguide is shifted to the right with 

respect to the strip waveguide. This effect can be interpreted as a reduction of the effective index 

due to the air holes. We plot the force curve for a strip waveguide with reduced index equal to 

2.79 with pink triangles. Away from the band gap, the force curve for the patterned waveguide 

follows that of the reduced-index waveguide. Near the band gap, the enhancement of force can 

be interpreted as a slow-light effect [1]. For fixed power, the energy in the mode increases 

proportionally to 1/vg, where vg is the group velocity. Since the force is proportional to mode 

energy, the force per length per unit power goes to infinity for an ideal slow-light waveguide. 

 

 

Figure 2-2  The attractive force per length per unit power as a function of period a 
for (a) TM and (b) TE modes at wavelength λ =1550 nm. One period of the 

waveguide (wv.) is a cube of side length a with a circular air hole of radius r=0.3a. 
The separation d between the suspended waveguide and substrate is 100 nm. 
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We plot the force for TE modes for values of a between 340 nm and 375 nm in Figure 2-2 (b). 

The light wavelength is 1550 nm. As for TM light, the force is enhanced near the light line and 

band edge. Away from the slow-light region, the force curve follows that of a strip waveguide 

with reduced refractive index equal to 2.97, (green triangles).  

We next consider the dependence of the force on the waveguide-substrate separation, d.  In a 

conventional strip waveguide, the force increases monotonically with decreasing distance [19]. 

In the patterned waveguide, however, a change in distance can move a mode in or out of the 

photonic band gap, yielding quite different force behavior. 

We consider a waveguide with a = 428nm. From Figure 2-2 (a), we can infer that the TM 

mode lies just above the band gap for d = 100nm. We plot the force as a function of separation in 

Figure 2-3 (a) (blue triangles). The force initially decreases with increasing distance, then 

increases as the mode approaches the band edge. For d > 120nm, the mode lies in the band gap. 

The transmission, and thus force, are zero.  

For a waveguide with a = 408nm, we can see from Figure 2-2 (a) that the mode lies just 

below the band gap for d = 100nm. The force (red circles) is zero for distances below ~80nm, 

where the mode falls into the band gap, and decreases as a function of distance for d > 80nm. 

The behavior should allow the design of an optical power limiter. If the device is designed with 

an initial waveguide-substrate distance > 80nm, light can be transmitted through the waveguide. 

As the optical power is increased, the optical force will attract the waveguide to the substrate 

more strongly. In the center of the double-clamped waveguide, where the displacement is largest, 

the local mode will approach or enter the band gap, resulting in reflection, and reducing the 

transmitted power.  
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Figure 2-3 (b) gives the force induced by near band edge TE light for a waveguide with 

a=376 nm. When a is less than 60 nm, the fundamental mode is no longer guided, and we set the 

force to zero. While non-negligible force values may be obtained for leaky modes with long 

propagation lengths, the force will decay as a function of length along the waveguide. 

 

 

Figure 2-3 The attractive force per length per unit power as a function of distance d 
for (a) TM and (b) TE modes at wavelength λ =1550 nm. 

 

The displacement can be obtained from the calculated force values in Figure 2-3 using the 

analytical expression  for a doubly-clamped beam [27], where E is Young's 

modulus for bulk silicon. For a 60-µm long beam with cross section 376×376 nm2, if the 

waveguide-substrate separation is 100 nm,  TE-polarized light with power P=50 mW results in a 

F/L/P of 2.8×10-3, and the displacement at the center of the waveguide is estimated to be 14.3 nm. 

We have verified using COMSOL finite element simulations that the displacement of the 

waveguide with hole radius r=112.8 nm is 15 nm. The discrepancy is likely due to the fact that 

the holes modify the beam flexibility [28]. 
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2.3  Potential Application 

In conclusion, we have studied the attractive optical force between a 1D-periodic photonic 

crystal waveguide and underlying silica substrate. The optical force increases as the mode 

approaches the light line, as for an unpatterned strip waveguide. However, the periodicity 

introduces two additional mechanisms for enhancing the force: reduction of the waveguide 

effective index and slow light enhancement near the band edge. Moreover, the shift of the 

waveguide mode in and out of the band gap with changes in waveguide-substrate separation give 

rise to non-monotonic force behavior and may enable compact optical power limiters. It is 

intriguing to consider whether optomechanical coupling can be used more widely to tailor optical 

power response. The coupling of dielectric waveguides to substrates with loss or gain, 

incorporating plasmonic or quantum-confined structures, may enable a variety of devices to 

tailor power response, such as threshold-activated switches, which only transmit above a certain 

power, or power regulators, which self-adjust to maintain the output transmission within a 

specified range. 
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Chapter  3:  Mechanical Kerr Nonlinearity  

3.1 Background 

In the last few years, intense research has been carried out on optical forces induced by the 

strongly enhanced gradient of the electromagnetic field close to micro- and nanophotonic devices 

[1-14]. Optical forces provide a novel way to tune the properties of microphotonic devices by 

changing the separation between their components. This mechanical actuation allows a number 

of important device functionalities, such as all-optically controlled filters [15], wavelength 

routers [16], polarization rotators [17], and power limiters[18].  

It has previously been suggested that optomechanical coupling in macroscale Fabry-Perot 

cavities can be viewed as an effective nonlinearity [19]. The concept can be generalized to other 

types of devices that move in response to optical forces. A mechanical Kerr effect has been 

predicted in a microphotonic Si waveguide with a suspended, movable section [20]. The 

mechanical Kerr coefficient  is several orders of magnitude larger than the intrinsic Kerr 

coefficient of silicon. The origin of the mechanical Kerr effect lies in optical coupling between 

the waveguide and substrate. Coupling results in an attractive optical force that pulls the 

waveguide closer to the substrate, changing the effective index of the waveguide mode. Since the 

optical force is proportional to the optical power in the waveguide, the shift in effective index 

depends on intensity; for this system, the mechanical Kerr coefficient is positive. 

It is intriguing to explore whether microphotonic devices can be designed to tailor the value 

and sign of the mechanical Kerr coefficient, yielding “customizable” nonlinear materials. In this 

paper, we examine a coupled, two-waveguide system in which the forces can be either attractive 

or repulsive. We show that the mechanical Kerr coefficient scales as the optical force squared. 
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As a result, the mechanical Kerr coefficient is positive for either an attractive or repulsive force. 

The force can be expressed as a derivative of the effective index with respect to separation at 

fixed frequency. We calculate the mechanical Kerr coefficient numerically for varying 

waveguide cross sections. We find that  is greatest when the modes are neither too delocalized 

nor too confined in deformable waveguides. Under these conditions, the force which is enhanced 

by strong evanescent-wave coupling and the increased displacement give rise to the largest shift 

in effective index. 

 

3.2 Coupled Waveguides Exhibiting Bipolar Optical Forces 

We consider the coupled waveguides shown in Figure 3-1 (a). Two parallel, silicon strip 

waveguides (refractive index n = 3.45) are separated by a distance d. Both ends of the 

waveguides rest on a SiO2 (refractive index n = 1.5) substrate. The suspended section has length 

L. Each waveguide has a cross section of dimensions w×h. From previous work [2], it is known 

that optical coupling between the waveguides gives rise to a mechanical force. The magnitude of 

the force is proportional to the optical power, and the sign is either attractive or repulsive, 

depending on the relative phase of light in the two waveguides. The force per unit length in the 

suspended section can be calculated from the full-vectorial eigenmodes of the coupled 

waveguides using the Maxwell Stress Tensor method, as in Reference [2]. 
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Figure 3-1 (a) Two coupled silicon waveguides, each with cross section w×h, separated by 
a distance d and resting on a SiO2 substrate with suspended length L. (b) Dispersion 

relation for modes of the suspended section. The two lowest modes with electric field 
vectors primarily in the z-direction are plotted for separations d=100 nm and d=1000 nm. 

The cross section of each waveguide is 350×350 nm2. The gray region shows the light 
cone for air. 

 

Figure 3-1 (b) shows the dispersion relation for the two lowest-order modes that have an 

electric field primarily in the z-direction. Calculations were performed using the MIT Photonic 

Bands (MPB) package [21]. To illustrate the dependence on waveguide separation, the 

dispersion relation is plotted for a smaller (100nm) and larger (1000nm) value of separation d. 

For the lowest mode, the electric field component Ez is symmetric in the two waveguides. The 

symmetric mode corresponds to an attractive force. Decreasing separation shifts the dispersion 

relation to a larger k value, in the direction shown by the blue, solid arrow. For the second lowest 

mode, Ez is antisymmetric and the force is repulsive. Increasing separation also shifts the 

dispersion relation to larger k value, in the direction shown by the blue, dashed arrow. Below, we 

relate the shift in dispersion relation at fixed frequency to the optical force. 
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Figure 3-2 introduces notation to describe the shift in dispersion relation ω(k) resulting from a 

small change in waveguide separation δd. The solid and dashed lines are the initial and shifted 

bands, respectively. For constant frequency operation at frequency ω0, the magnitude of the 

wave vector shifts from k0 to k2. If we consider a constant wave vector k0, the dispersion relation 

shifts from ω0 to ω1.  

 

 

Figure 3-2 Schematic diagram showing a shift in the dispersion relation due to a change in 
separation between waveguides d. The solid and dashed lines represent the initial and 

shifted dispersion relation, respectively. 
 

 

3.3 Calculation of Optical Force 

For infinitely long waveguides with no radiation loss, the optical force may be calculated as a 

derivative of the eigenmode frequency with respect to separation [2]: 

 

        

   (3-1) 
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where F/(LP) represents the force per length per unit power, ng is the group index, and c is the 

speed of light in vacuum. Note that the derivative is taken at constant k. Equation (3-1) has been 

shown to agree well with direct calculations via the Maxwell Stress Tensor (MST) [22] for the 

coupled waveguide system [2].  

        By substituting ω=ck/neff into Equation (3-1), the force may alternately be expressed as a 

function of the effective index neff  [23]: 

  .   (3-2)  

We may recast the force in terms of a derivative at fixed frequency as follows. As shown by 

the dashed arrow in Figure 3-2, for fixed wave vector k0, a small change in separation δd moves 

the eigenmode from (k0, ω0) to (k0, ω1), corresponding to a shift of neff:  

 
 

 (3-3) 

where δω=ω1-ω0. For fixed frequency ω0, the shift of the dispersion relation changes the wave 

vector from k0 to k2. The change of neff  for fixed ω is:   

    (3-4) 

where δk = k2 - k0. By comparing Equation (3-3) and (3-4), we find: 

    (3-5) 

If the band is shifted by a small amount, the ratio δω /δk can be estimated by –c/ng. (The 

negative sign results from the fact that δω= ω1-ω0 is defined to be negative in Figure 3-2. 

Equation (3-5) can then be rewritten as:
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    (3-6) 

For finite shift, Equation (3-2) can be approximated by 

 
  

 (3-7) 

 

Substituting Equation (3-6) into Equation (3-7) and taking the limit as  yields the result 

 

,   (3-8) 

showing that the optical force can be calculated in terms of the effective index neff(d) at a fixed 

optical frequency. Negative values here correspond to attractive forces. Reference [13] used a 

different derivation, based on energy and photon-number conservation, to arrive at the same 

expression.  

We compared force values calculated with Equation (3-8) to those calculated using the MST 

method. The wavelength was fixed to 1550 nm and the waveguide dimensions to h=w=350 nm. 

The derivative in Equation (3-8) was approximated as a finite difference, using values of neff(d) 

calculated with the MPB package. Figure 3-3 (a) shows neff (d) for the symmetric mode (black 

line). The force calculated using Equation (3-8) is plotted in Figure 3-3 (a) (red triangles). It 

agrees well with the force calculated using the MST method (red curve). The MST was evaluated 

using the full vectorial eigenmodes obtained from MPB. As predicted by Equation (3-8), the 

force is attractive (negative), corresponding to a decreasing neff(d).  

Figure 3-3 (b) shows neff (black curve) and F/(LP) for the antisymmetric mode. Forces 

calculated by Equation (3-8) (red triangles) agree well with values calculated using the MST 
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method (red curve). Note that the value of neff first decreases and then increases as a function of 

d. Correspondingly, the derivative  turns from negative to positive, and the optical 

force changes from negative (attractive) to positive (repulsive) as a function of separation. We 

emphasize that the sign of the force can be easily inferred from the slope of neff. 

 

 

Figure 3-3 For fixed wavelength 1550 nm and waveguide dimensions h=w=350 nm: (a) 
Symmetric mode: neff as a function of d (black curve); F/(LP) calculated by the MST 

method (red curve) and by Equation (3-8) (red triangles). (b) Antisymmetric mode: neff as a 
function of d (black curve); F/(LP) calculated by the MST method (red curve) and by 

Equation (3-8) (red triangles). 
 

3.4 Calculation of Mechanical Kerr Coefficient 

The mechanical Kerr effect arises from the change in effective index due to waveguide 

deformation. We consider static deformations. The optical force between the waveguides is 

proportional to the power, P, and causes the waveguides to deform. For the symmetric mode, the 

force is attractive and the waveguides are pulled together. For the antisymmetric mode, the force 

is repulsive and the waveguides are pushed apart. The maximum deformation will be at the 

center of the waveguide, since the ends of the waveguides are fixed to the silica substrate. We 
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consider the case where the deformation is small compared to the initial separation. The 

magnitude of the deformation is also much smaller than the length of the suspended region, L. 

Under deformation, the effective index neff varies along the length of the waveguides, according 

to the local separation. Following Reference [10], we define the mechanical Kerr coefficient  

through the relation , where  is the change in the effective index at the 

center of the suspended region, and I is the light intensity. Specifically, we take I=P/A, where A 

is the mode area, equal to . 

Using Equation (3-8), which relates the force to the derivative of the effective index with 

respect to separation, we can show that either an attractive or repulsive force gives rise to a 

positive mechanical Kerr coefficient. Figure 3-3 (a) shows that for the symmetric mode, neff 

decreases with d. From Equation (3-8), the force is negative (attractive) and pulls the waveguides 

closer together. The separation at the center of the suspended length decreases, resulting in an 

increase in neff. The mechanical Kerr coefficient  is thus positive. For the antisymmetric 

mode, in the region where neff decreases with d, the same argument shows that  is positive. In 

the region where neff increases with d, the force is positive (repulsive), which increases the 

separation at the center of the suspended region and increases neff. Again, a positive mechanical 

Kerr coefficient  is obtained. 

The mechanical Kerr coefficient can be evaluated numerically from the value of the optical 

force. When the deformation is small with respect to the initial separation, the change of the 

effective index for a signal with fixed frequency can be approximated by: 

 ,   (3-9) 
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where Δd is the change in separation, equal to twice the deformation of a single waveguide, 

which can be modeled as a double-clamped beam [24]:  

 ,   (3-10)
 

where E is the Young's modulus of silicon. By manipulating Equations (3-8), (3-9) and (3-10), 

we get  

 ,     (3-11)
  

or
 

  
    (3-12) 

The mechanical Kerr coefficient is 

    (3-13)
   

Note that F/(LP) depends on the initial separation d and the waveguide cross section parameters, 

h and w. The parameter  also explicitly depends on the waveguide geometry parameters h, w, 

and L.  

Note that Equation (3-13) provides another means of seeing that both attractive and repulsive 

forces give positive mechanical Kerr coefficient:  depends on (F/(LP))2. 
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3.5 Symmetric Mode 

In this section, we discuss how to design the waveguide cross section parameters h and w to 

enhance F/(LP) and  for the symmetric mode. We set λ = 1550 nm, L = 20 µm, initial 

separation d = 100 nm, and P = 10 mW.  

 

 

Figure 3-4 Symmetric mode: (a) Band structure. The gray region represents the air light 
cone. The red line shows fixed wavelength 1550 nm (frequency 193.55 THz). (b) 

Attractive force per length per unit power F/(LP). The initial separation d=100 nm, 
suspended length L=20 µm, optical power P = 10 mW, and the signal wavelength is 1550 

nm. (c) Mechanical Kerr coefficient . 
 
 

Figure 3-4 (b) shows F/(LP) for the symmetric mode in waveguides with various heights and 

widths.  

The strongest attractive force is shown by the darkest region, which corresponds to 

waveguides with large heights and small widths. To understand the mechanism behind the force 

enhancement, we plot the dispersion relation of the mode in Figure 3-4 (a). For a waveguide with 

h = 260 nm and w = 350 nm, marked by the circle in Figure 3-4 (b), F/(LP) has a relatively large, 

negative value of -4.1×10-3 N/m/W. The corresponding point in the dispersion relation is below 

and close to the air light line, as indicated by the circle in Figure 3-4 (a).  
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Figure 3-4 (b) shows that if the waveguide cross section is too large, the attractive force is 

decreased (yellow region). As marked by the square in Figure 3-4 (b), when h = 540 nm and w = 

350 nm, F/(LP) is reduced to -2.7×10-3 N/m/W. The mode in such a system is well below the air 

light line. The light is confined in the two waveguides, with minimal optical coupling between 

them, and the magnitude of the force is decreased.  

The white region of Figure 3-4 (b) shows that when the waveguide cross section is too small, 

the force magnitude is less than 10-3 N/m/W. For example, F/(LP) on the waveguide with h = 

110 nm and w = 350 nm (marked by the star) is on the order of 10-5 N/m/W. Figure 3-4 (a) shows 

that the mode is on the asymptote of the light line. The mode energy spreads into the surrounding 

air, giving rise to a small force. In order to achieve a larger attractive force, we can design the 

waveguide cross section to make the optical mode approach the air light line but not overlap with 

the light line, as indicated by the circle in Figure 3-4 (a).  

The mechanical Kerr coefficient  can be determined from the force by using Equation (3-

13) and is shown in Figure 3-4 (c). The biggest  in Figure 3-4 (c) is over 40,000 times bigger 

than the intrinsic Kerr coefficient of silicon, equal to 4.5×10-18 m2/W. The value of  is largest 

when the optical force is strong and the waveguide width is small. A thin waveguide is more 

deformable to the optical force along the y direction. For example, F/(LP) for a waveguide of h = 

400 nm and w = 200 nm is -6.7×10-3 N/m/W, which has the same order of magnitude as F/(LP) = 

-7.2×10-3 N/m/W for a waveguide of h = 400 nm and w = 100 nm. However, by reducing w from 

200 nm to 100 nm, we can increase  from 2.4×10-14 m2/W to 1.7×10-13 m2/W.  
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3.6 Antisymmetric Mode 

We calculated F/(LP) and  for the antisymmetric mode for waveguides with various 

heights and widths. We only consider guided (non-leaky) modes, lying underneath the light cone. 

Figure 3-5 (b) shows F/(LP). The force is positive (repulsive). The bright region indicates the 

combination of waveguide heights and widths that result in relatively large optical force for 

1550-nm light. The blue curve indicates the conditions for mode cutoff: a guided mode exists 

only above and to the right of the curve. Large forces can be obtained by choosing cross-

sectional parameters on the upper, right boundary of the curve. For example, for h = 320 nm and 

w = 250 nm, marked by the circle in Figure 3-5 (b), F/(LP) is 9.5×10-3 N/m/W. The 

corresponding mode in the dispersion relation lies close to and below the light line, as indicated 

by the circle in Figure 3-5 (a).  

The repulsive force decreases for waveguides with cross-sectional dimensions much larger 

than cutoff. As marked by the square in Figure 3-5 (b), when h = 540 nm and w = 250 nm, 

F/(LP) is reduced to 5.7×10-3 N/m/W. The mode energy is confined in the waveguides, and the 

light intensity in the air gap is reduced, decreasing the optical force. If the waveguide cross-

sectional dimension is too small, as marked by the star in Figure 3-5 (b) for h = 110 nm and w = 

250 nm, the mode becomes leaky.  

Figure 3-5 (c) shows that the sign of  induced by a repulsive force is positive for various 

cross-sectional dimensions.  In order to increase , we should choose dimensions on the right 

boundary of the blue curve and reduce w to make the waveguides more deformable. For 

example, if we choose h=540 nm and w=140 nm, is approximately 8.1×10-13 m2/W, which is 

more than 150,000 times larger than the intrinsic Kerr coefficient of silicon.  
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Figure 3-5 Anti-symmetric mode: (a) Band structure. The gray region represents the air 
light cone. The red line shows fixed wavelength 1550 nm (frequency 193.55 THz). (b) 

Repulsive force per length per unit power F/(LP). The initial separation d=100 nm, 
suspended length L = 20 µm, optical power P = 10 mW, and the signal wavelength is 1550 

nm. (c) Mechanical Kerr coefficient . 
 

3.7 Discussion 

Above, we have shown that for fixed waveguide length and initial separation, we can 

increase the mechanical Kerr coefficient  by adjusting the waveguide width and height. From 

Equations (3-8) and (3-9), we may infer that  is proportional to the product of the optical 

force F and the waveguide displacement Δd. The mechanical Kerr nonlinearity can thus be 

enhanced by i), increasing the optical force and ii), making the waveguide more deformable.  

Figures 3-4 (b) and 3-5 (b) show that the force depends on waveguide cross-section 

dimensions. For either the symmetric or anti-symmetric modes, decreasing the waveguide height 

at fixed width shifts the mode closer to the light line. For the symmetric mode, the largest force 

is obtained when the mode is close to, but not too close to, the light line. For the anti-symmetric 

mode, the largest force is obtained when the mode approaches the cut-off geometry (blue line), 

where the mode crosses the light line. We may interpret both these conditions as meaning that 
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the modes should be neither too delocalized in the surrounding air, nor too confined inside the 

waveguides, to optimize coupling between the waveguides and produce a large force. Meanwhile, 

the waveguide can also be made more deformable by adjusting waveguide dimensions. Equation 

(3-10) indicates that Δd is inversely proportional to  . Overall, the largest  values are 

obtained for small values of the width w (Figures 3-4 (c) and 3-5 (c)).  

We have presented results for both the symmetric and anti-symmetric mode. Both modes 

give positive mechanical Kerr coefficients , and the maximum values are both on the order of 

10-13 m2/W. Comparing Figures 3-4 (c) and 3-5 (c), we observe that the symmetric mode has a 

bigger, brighter region representing  greater than 10-14 m2/W. In other words, to realize the 

same value of , there is greater flexibility in waveguide dimensions using the symmetric 

mode. Another reason to choose the symmetric mode is that exciting the antisymmetric mode 

increases device complexity; for example, it has been demonstrated that a Mach-Zender 

interferometer can be used to control the phase difference between light incident in the two 

waveguides [10, 14]. 

Note that the optical frequency is many orders of magnitude larger than the mechanical 

resonance frequency, which is in the MHz range. Because the instantaneous optical force 

oscillates much faster than the mechanical motion, we consider the effect of the time-averaged, 

or “smoothed,” optical force on the waveguides, where the average is taken over the optical 

cycle. Assume the incident power is switched on and remains fixed. Driven by the optical force, 

the waveguides will start to deform. A steady-state displacement will be reached after a period of 

time proportional to the mechanical quality factor divided by the mechanical resonance 

frequency. In this paper, we focus on the static mechanical Kerr coefficient  caused by the 
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steady-state displacement. However, for fixed power, larger displacements can be obtained by 

modulating the incident optical power at the mechanical resonance frequency [20]. The 

displacement will vary as a function of time throughout the period of mechanical vibration. At 

the peak displacement value, the instantaneous  reaches its maximum. The coefficient  

will be increased by a factor of  with respect to the case of static displacement, where 

 is the mechanical quality factor. However, if the average mechanical displacement is zero, 

the average value of  will also be zero.  

 

3.8 Summary 

We have investigated mechanical Kerr effects in a coupled-waveguide system exhibiting both 

attractive and repulsive forces. The optical force can be related to the change in effective index 

with separation at frequency. This formulation makes it clear that either an attractive or repulsive 

force gives rise to a positive mechanical Kerr coefficient. Values several orders of magnitude 

larger than the intrinsic Kerr coefficient are obtained for waveguides in which the optical mode 

approaches the air light line. 

Since the mechanical Kerr effect results from physical motion, the time scale for response will 

be slower than for the intrinsic Kerr nonlinearity. At the same time, however, the magnitude is 

orders of magnitude larger. This suggests the potential for the design of ultra-low threshold, 

integrated optical devices such as all-optical transistors and isolators [25] that use the mechanical 

Kerr effect. Such devices might respond to the average power in an optical data stream, where 
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the time-average is related to the time scale for mechanical response, and ultimately find use in 

the regulation of on-chip optical networks. 
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Chapter 4:  Large Tuning of Birefringence  

4.1 Background 

Optical forces have recently been investigated as a way of repositioning microphotonic 

elements such as waveguides [1-4] and microcavities [5-8]. In coupled waveguides or 

microcavities, the force can show either attractive or repulsive behavior depending on the 

relative phase of the incident light in each waveguide or microcavity. As a result, waveguide (or 

cavity) separation can be adjusted by tuning the power and/or polarization of input light. 

Experiments have now demonstrated motion induced by optical forces in a variety of 

microphotonic systems. Eichenfield et al. [9] achieved micron-scale displacement of a 

micrometer-scale waveguide evanescently coupled to a high-Q optical microresonator at 

milliwatt optical powers. Li et al. demonstrated attractive and repulsive optical forces between a 

suspended waveguide and dielectric substrate, actuated by a pulsed light source [10-12]. 

Attractive and repulsive forces have also been observed in stacked microring structures [13], 

where Wiederhecker et al. achieved static displacements up to 12 nm. Optomechanical modes 

have been analyzed [14] and measured [15] in doubly-clamped beam structures with linear 

arrays of etched air holes forming optically resonant cavities. As the field of optical forces in 

integrated photonic devices matures, it is important to map out the novel functionalities that this 

relatively new form of mechanical actuation allows. 

In this section, we study the use of optical forces to achieve highly tunable birefringence in a 

coupled waveguide system. Birefringence refers to differences in propagation between 

orthogonally polarized modes. Phase birefringence, the difference between the phase indices, 
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induces a relative phase shift between orthogonal components of incident light, which may be 

used for polarization rotators in optical communication systems. Group birefringence, defined as 

the difference between the group indices of different polarizations, leads to a polarization-

dependent time delay and can be exploited to realize polarization-sensitive delay lines, splitters, 

and multiplexers. It has previously been observed that silicon waveguides with multiple etched 

slots exhibit giant birefringence behavior, with a group index difference as large as 1.5 between 

TE and TM polarized light [16]. The magnitude of birefringence depends on the slot width, as 

well as other design parameters. However, after the device is fabricated, the slot width is fixed, 

as is the value of the birefringence. Here, we present an optomechanically-controlled system 

which resembles a suspended one-slot waveguide with an adjustable slot width that depends on 

the optical force and exhibits highly tunable birefringence. 

A variety of methods have been used to achieve tunable birefringence, including thermal and 

stress tuning. However, the achievable tuning range is generally small. For example, thermal 

tuning of polymer-filled microstructured fibers [17, 18] and photonic liquid crystal fibers [19] 

yields changes in birefringence on the order of 10-4. For microphotonic devices, Tsia et al. [20] 

demonstrated dynamic control of birefringence on the order of 10-4 in a silicon waveguide by 

electrically tuning the stress on the waveguide core using an integrated piezoelectric film. 

Recently, Kumar et al. [21] varied the air-core thickness in a 3D hollow waveguide via MEMS 

acutation to offer a large birefringence of 0.012 with a tuning range of 0.01. This result points to 

the relatively large changes in birefringence that can be achieved using mechanical motion to 

physically change the waveguide geometry. 
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In this work, we calculate the tunable birefringence that can be achieved by using an optical 

force to adjust the separation between parallel, suspended, strip silicon waveguides. The force 

arising from the evanescent coupling between the modes of the two waveguides deforms both 

waveguides, changing the air-slot width. Such behavior results in all-optically adjustable giant 

birefringence. In Subsection 4.2, we characterize the two-waveguide system, and optimize the 

frequency and polarization of input light to achieve a considerable optical force at a moderate 

laser power. We calculate the resultant displacement of both waveguides based on the finite-

element method (FEM). In Subsections 4.3 and 4.4, we respectively evaluate the performance of 

the optimized optical force in tuning phase and group birefringence. We show that the 

optomechanical approach is characterized by widely tunable birefringence. We explore the 

applications of the two-waveguide system for tunable linear-to-circular polarization conversion 

and polarization-dependent delay. 

 

4.2 Design Method 

Figure 4-1 (a) shows two parallel silicon strip waveguides (refractive index n=3.45) 

separated by a distance d. Both ends of the waveguides rest on a SiO2 substrate, with a free-

standing section of length L. Each waveguide has a cross section of dimensions w×h. We 

consider the transverse electric (TE) mode with electric field vector primarily parallel to the air 

slot (Ey), and the transverse magnetic (TM) mode with electric field vector primarily 

perpendicular to the slot (Ez). We first consider the case where the cross section of each 

waveguide is square (w=h=a). Figure 4-1 (b) shows the dispersion relation calculated by the 

MIT Photonic Bands package for the lowest TE and TM mode for several different separations. 
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We only consider the guided modes lying below the light cone (yellow). The insets illustrate the 

Ey field distribution of the TE mode and the Ez field distribution of the TM mode, respectively. 

TM-polarized light is concentrated in the air region, satisfying the continuity condition on the 

normal component of the displacement field at the silicon-air interface [22, 23]. 

 

 

Figure 4-1 (a) Two coupled Si waveguides, each with cross section w×h separated by a 
distance d, rest on a SiO2 substrate with a free-standing section of length L. (b) Dispersion 
relation for the lowest-frequency TE mode (solid lines) and TM mode (dashed lines) of the 

coupled waveguides for several separations. Insets respectively show the Ey field 
distribution of the TE mode and the Ez field distribution of the TM mode with d=0.2a at 

frequency ωa/2πc=0.18 (darker shades correspond to larger magnitudes of the electric field 
at a snapshot in time). The yellow region shows the light cone. 

 

TE and TM modes have different propagation characteristics. The group birefringence is 

obtained by taking the difference between the group indices , where  and  

are the group indices of the TE and TM modes, respectively, at a fixed frequency ω. The group 

index is calculated as  and is proportional to the reciprocal of the slope 

of the dispersion curve in Figure 4-1 (b). Phase birefringence is , where  and 

84



 

67 

 

 respectively denote the phase indices of the TE and TM modes at a fixed frequency ω. The 

phase index is calculated by . For small separation (d=0.2a), the optical fields 

in the two strips are strongly coupled. The bands for TE and TM light are significantly different. 

It can be inferred from the figure that group and phase birefringence are relatively large in some 

frequency ranges. If the separation is increased (d=0.4a or d=0.6a), the coupling between the 

strips becomes weaker, and the dispersion curves of TE and TM modes are closer to one another. 

Group and phase birefringence are reduced. For infinite waveguide separation (d=∞), no 

coupling occurs. Modes propagate independently in each single-strip waveguide. The bands of 

the TE and TM modes overlap, and the birefringence vanishes. 

Coupling between the strips gives rise to an optical force on the waveguides. The force 

depends on the frequency of light propagating in the waveguides (pump frequency), the incident 

power, and the waveguide separation. For fixed incident power and waveguide separation, we 

optimize the force magnitude by selecting an appropriate frequency and polarization of pump 

light. As in previous work [1], we calculate the force as a function of frequency using the 

Maxwell Stress Tensor formulation [24], which gives the force as an integral expression over the 

electric and magnetic fields of the waveguides. We solve for the full vectorial fields using the 

MIT Photonic Bands package. Figure 4-2 (a) shows the force magnitude as a function of the 

pump frequency for a waveguide separation d = 0.35a. We focus on the dimensionless frequency 

(ωa/2πc) range from 0.15 to 0.21. For lower frequencies, the bands are closer to the light line, 

and the waveguide modes spread out in the surrounding air. For frequencies larger than 0.21, 

there are at least two symmetric TE (or TM) modes for a single frequency, resulting in 

multimodal coupling. We compare the force induced by TM (red) and TE (black) modes. The 
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strongest force is obtained for TM-polarized light at frequency ωpa/2πc=0.165. According to 

Equation (4-1), 

     (4-1) 

which indicates the mechanical force F is proportional to the derivative of frequency ω with 

respect to waveguide separation ξ for conserved wave vector k and energy U. In Figure 4-1 (b), 

we see that for a fixed wave vector k, if the waveguide separation is reduced, the frequency of 

the TM mode changes more than that of the TE mode. Therefore, the TM mode induces a bigger 

force. In the remainder of the paper, we will assume that TM pump light is used to exert force on 

the waveguides and deform their shape. We will consider the effects of the deformation on the 

propagation of both TE and TM signal light. 

 

 

Figure 4-2 (a) Normalized force per unit area for the lowest-frequency TE (red) and TM 
(black) modes as a function of pump light frequency, at fixed separation d=0.35a. (b) 
Force per unit area as a function of separation (red triangles), at optimized frequency 
ωpa/2π c=a/λp=0.165. The right and top axes are in physical units with incident power 
P=20 mW, w=h=a=263.5 nm, and L=30 µm. The blue solid line is the second-order 

polynomial fit of the force per unit area. 
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On the left and bottom axes of Figure 4-2 (b), we plot the dimensionless force per unit area 

(F/Lh)(a2c/P) as a function of the normalized separation d/a at the optimized frequency 

ωpa/2πc=0.165. The symbol c represents the speed of light in vacuum, and P denotes the incident 

power. Substituting the values P=20mW, w=h=a=263.5nm, and pump wavelength λp=1597nm, 

we plot the force per unit area versus separation on the right and top axes in Figure 4-2 (b). 

We perform FEM numerical simulations to calculate the deformation of waveguides caused 

by the attractive force using COMSOL Multiphysics software. We simulate the full three-

dimensional structure consisting of two silicon waveguides, each with a square cross section of 

263.5×263.5 nm2 and a length of 30µm. The ends of each waveguide are fixed. We assume an 

initial waveguide separation d=0.35a=92.2 nm. The waveguide ends are fixed at this separation. 

The optical force pulls the waveguides toward one another. As the waveguides deform, the 

magnitude of the force increases. We use a second-order polynomial to approximate the force 

density for waveguide separation d between 0.2a and 0.35a, as shown by the solid blue line in 

Figure 4-2 (b). For the mechanical parameters of Si, we take the mass density ρ=2330 kg/m3 and 

Young’s modulus E=131 GPa. Figure 4-3 shows the waveguide deformation as a function of 

position along the waveguides with L=30 µm, w=h=a=263.5 nm, d=92.2 nm, and P=20 mW. 

The biggest displacement (9 nm) is obtained at the waveguide center. The smallest distance 

between the two waveguides is 74.2 nm. Following [25], we estimate the van der Waals force 

per unit area to be approximately 25 N/m2 between two parallel infinitely extended Si slabs of 

thickness 263.5 nm and separation 74.2 nm. For this separation, the van der Waals force is 

several orders of magnitude less than the optically-induced force and can therefore be neglected. 
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It is interesting to note that experiments have been done in a similar coupled system, showing 

that pulsed light can obtain a comparable displacement at a lower power of a few milliwatts [10]. 

 

Figure 4-3 Displacement of the suspended section of each waveguide as a function of 
position along the waveguide. The cross-sectional dimension is w=h=a=263.5nm, the 

initial waveguide separation is d=0.35a=92.2 nm, the pump frequency is 
ωpa/2πc=a/λp=0.165, the incident power is P=20 mW, and the suspended length is L=30 

µm. Note that the x and y axes differ in scale. 
 

4.3 Tunable Phase Birefringence 

The phase birefringence is a function of the separation between the strips. We consider the 

birefringence experienced by light at a signal frequency ω. We assume that the signal power is 

much weaker than the pump power, such that the optical force due to the signal can be neglected. 

We calculate the phase birefringence Δnp as a function of dimensionless signal frequency ωa/2πc 

for different separations from 0.2a to 0.35a, as shown in Figure 4-4 (a). The arrow indicates that 

at signal frequency ωsa/2πc=0.17 (a=263.5 nm, λs=1550 nm), the absolute value of Δnp increases 

as the waveguide separation decreases. 

When the waveguides are deformed by an attractive optical force, the separation varies along 

the waveguide length as shown in Figure 4-3. The propagating signal experiences a spatially-

varying birefringence. Figure 4-4 (b) shows the phase birefringence as a function of position 
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along waveguides for a CW pump at frequency ωpa/2πc=0.165 with power P=20 mW. For zero 

pump power (zero force), the waveguides are parallel and the birefringence is 0.067 throughout 

the whole free-standing section. With the pump on, the birefringence is increased. The maximum 

value is approximately 0.093 at the waveguide center. The difference between the maximum and 

the minimum of  is 0.026. 

 

Figure 4-4 (a) Phase birefringence Δnp as a function of signal frequency in the coupled 
waveguides with varying separations. The arrow shows that at a frequency ωsa/2πc=0.17, 

the absolute value of Δnp increases as the waveguide separation d decreases. (b) Phase 
birefringence Δnp as a function of position along the waveguides. The initial separation is 

d=0.35a=92.2 nm. The attractive force is induced by CW pump light at frequency 
ωpa/2πc=a/λp=0.165 and power P=20 mW. The difference between the maximum and the 

minimum of Δnp is 0.026. 
 

4.3.1 Tunable Relative Phase-shift 

A potential application of the system is to dynamically adjust the relative phase shift between 

TE and TM modes. The total phase shift between TE and TM modes is calculated as: 

 
 

  (4-2) 
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The phase shift in two parallel waveguides with a separation of 92.2 nm is estimated to be 

2π×30 µm×0.067/1.55 µm ≈2.59π, equal to 0.59π modulo 2π. When we input CW pump light 

with a power of 20 mW, the waveguides deform and the phase shift is changed to 3.11π, or 1.11π 

modulo 2π. The tuning range is about 0.5π. If we reduce the waveguide length to 23.05 µm, the 

total relative phase shift of a linear signal is 2π at the output of the un-deformed device. We plot 

the relative phase difference (phase difference modulo 2π) as a function of input pump power, as 

shown by black squares in Figure 4-5. By increasing the pump power, the phase difference can 

be adjusted from 0.12π to 0.51π. Taking the pump power to be about 67 mW, we obtain a total 

relative phase shift of 0.5π. Thus, an incoming signal of linear light whose E-field is at 0.25π to 

the y (or z) axes will emerge from the device circularly polarized. 

We note that a variety of approaches exist for polarization control in fiber [26] and on-chip 

microphotonic systems [27-30]. In microphotonic systems in particular, polarization rotators 

have been designed based on tapered waveguide cores [27] and asymmetric waveguides [28-30]. 

Reference [31] presented a linear-to-circular polarization converter based on a high-Q dielectric 

microring resonator. In contrast to these approaches, we take advantage of mechanical motion to 

yield a widely tunable phase shift that is also broadband (non-resonant) in response. For a device 

with fixed length, the phase birefringence and relative phase shift can be dynamically adjusted 

by varying pump light power. Unlike other polarization control schemes using semiconductor 

optical amplifiers [32, 33] or electrooptic materials, our approach is fully compatible with SOI 

materials systems. 

90



 

73 

 

 

Figure 4-5 Tuning the relative phase shift by increasing CW pump power from 20 mW to 
70 mW (black squares). The waveguide length is 23.05 µm. The red line is a 2nd –order 
polynomial fit of the phase shift. A power of approximately 67 mW yields a 0.5π phase 

difference. 
 

4.3.2 Other tuning configurations 

The dependence of phase birefringence on separation can be changed by altering the 

waveguide cross section. Figure 4-6 (a) depicts the birefringence versus signal frequency in two 

a×2a waveguides. The arrow indicates that the value of Δnp decreases with decreasing separation 

for frequencies from 0.11 to 0.16. The tuning trend is opposite from that in the system with two 

square waveguides. We can understand the trend by considering two extreme cases. For zero 

separation, light propagates in a square waveguide of cross section 2a×2a, which has no 

birefringence due to spatial symmetry. For infinite separation, light propagates in a single 

rectangular waveguide asymmetric with respect to the y and z axes, which has large 

birefringence. Figure 4-6 (b) shows another waveguide structure with a cross section a×0.5a. The 

effective index of the TE mode is less than that of the TM mode. The absolute value of Δnp 

increases with decreasing separation for frequencies from 0.20 to 0.25. 
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Figure 4-6 Phase birefringence Δnp as a function of signal frequency in the two-waveguide 
system with varying separations. (a) The cross section of each waveguide is a×2a. The 

arrow shows that Δnp decreases with decreasing separation. (b) The cross section of each 
waveguide is a×0.5a. The absolute value of Δnp increases with decreasing separation. 

 

4.4 Tunable Group Birefringence 

The group birefringence also depends on waveguide separation and can be tuned by 

deforming the waveguides via an optical force. We plot the group birefringence Δng as a function 

of dimensionless signal frequency ωa/2πc, for different separations from 0.2a to 0.35a in Figure 

4-7 (a). The birefringence increases with decreasing separation. The arrow indicates that the 

group birefringence Δng increases fastest at a frequency ωsa/2πc=0.17 (a=263.5 nm, λs=1550 

nm). We consider deformation due to an attractive optical force for CW pump light at frequency 

ωpa/2πc=0.165 and power P=20 mW, as above. Figure 4-7 (b)  shows the group birefringence of 

signal light as a function of length along the waveguides for L=30 µm. The initial value 1.09 

corresponds to the birefringence of the undeformed waveguides. The peak of the birefringence is 

approximately 1.22 at the waveguide center. The difference between the maximum and the 

minimum of Δng is 0.13. 
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Figure 4-7 (a) Group birefringence Δng as a function of signal frequency, in the 
coupled waveguides with varying separations. The arrow shows that as the 

waveguide separation d increases, the group birefringence Δng increases fastest at 
a frequency ωsa/2πc=0.17. (b) Group birefringence Δng as a function of position 

along the waveguides. The waveguides are deformed by an attractive force 
induced by a CW pump at frequency ωpa/2πc=a/λp=0.165, with a power P=20 
mW. The difference between the maximum and the minimum of Δng is 0.13. 

 

The system can be used to tune the polarization-selective delay between TE and TM pulses. 

The delay is tuned by adjusting the pump power. The differential time delay between TE and TM 

pulses is calculated as: 

    (4-3) 

For two parallel waveguides without deformation, the differential time delay is 

1.09×30µm/3×108=109 fs. By inputting CW pump light at a power of 20 mW, we increase the 

differential time delay to 115 fs. 

If we consider applications where the pulse width is comparable to the tunable delay range, 

we can take the pulse width T=6 fs. We can estimate the dispersion length as  [34], 
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where the dispersion coefficient is 2.2×10-25 s2/m. The parameter LD is around 164 

micrometers, much larger than the waveguide length. We can thus assume that minimal 

distortion occurs due to propagation through the 30-µm long suspended section. 

The tuning range can be increased by increasing the pump power. The tuning range can also 

be increased by fabricating longer suspended sections, which deform more easily for fixed 

power, or by fabricating multiple suspended sections in series. 

Note that this analysis also applies to vibrating waveguides actuated by pulsed pump light. 

The dynamic system experiences similar displacement as the static system for much smaller 

pump powers. While the waveguide beam vibrates in a period of a few hundred nanoseconds, the 

transmission time of a signal pulse through the 30µm waveguide is on the order of a 

femtosecond. The beam can thus be treated as static in the calculation of time delay, provided 

that the signal pulse is much shorter than the vibration period in time. 

 

4.5 Thermal Effects 

In addition to optical forces, thermal effects may also contribute to waveguide deformation. 

The waveguides absorb propagating light, experience thermal expansion, and are mechanically 

deformed. We performed FEM (finite element method) simulations to calculate the displacement 

caused by the photo-thermo-mechanical effect using COMSOL Multiphysics software. We 

considered two silicon waveguides with identical cross section 263.5×263.5 nm2 and separation 

92.2 nm sitting on top of a silicon dioxide substrate, as shown in Figure 4-1 (a). The free-section 

length of the beams is 30 µm. We used a similar simulation method to that introduced in the 
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supplementary methods of Reference [10]. The beams are assumed to be thermally isolated, 

except where they contact the substrate. The boundaries of the silicon dioxide substrate are 

assumed to be of constant temperature 300 K. The absorption constant of silicon α is estimated to 

be 0.0079 cm-1 at 1.597 µm pump wavelength by using the equation α=4πk/λ and the value of 

the extinction coefficient k. With 20mW incident optical power, the absorbed power is 

approximately 0.474 µW. After using the RF module to solve for the pump mode profile, we 

define a resistive heating power of 0.474 µW as the heating source in the thermal module. We 

obtain a calculated temperature profile that shows a peak temperature T-300=0.097 K near the 

center of the beams. The thermal simulation is followed by a mechanical simulation to solve for 

the mechanical stress that results from the thermal load. We are primarily concerned with the 

mechanical displacement in the z direction, which may introduce inaccuracy into the 

birefringence tuning. A peak z-displacement of 0.392 pm is reached at the waveguide center. The 

peak displacement in the y-direction was <5 pm. The thermally induced displacement is thus 

negligible compared with the displacement due to the optical force of 9 nm. 

Considering that the thermo-optical coefficient 1.86×10-4K-1 for silicon, we estimate that the 

refractive index change due to our calculated temperature increase is on the order of 10-5, which 

is far smaller than the index change caused by optomechanical deformation. 

We conclude that thermal effects can be neglected in the system studied here, in agreement 

with the conclusions found in Reference [10] for a similar experimental system. 
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4.6 Summary 

In this work, we present an optomechanically-controlled system which resembles a 

suspended one-slot waveguide with adjustable slot width depending on the optical force. The 

change in slot width corresponds to a change in the symmetry of the cross-section of the device, 

and therefore tunes both phase and group birefringence. We optimize the polarization and 

frequency of continuous pump light to obtain a considerable force at low operating power. The 

deformed 30 µm waveguide shows a maximum displacement of about 9 nm at the center for a 

power of 20 mW. Correspondingly, the phase (group) birefringence at the waveguide center is 

different from that at the clamped ends by 0.026 (0.13), which is larger than previous records. 

When used to tune the relative phase of two orthogonally polarized light signals, the device has a 

tuning range of around π/2. If the orthogonally polarized components have identical amplitudes, 

it is possible to rotate the polarization state from linear to circular in a distance of 30 µm. We 

show further that the dependence of phase birefringence on separation can be changed by 

altering the waveguide cross section. When used as a polarization-dependent tunable delay 

element, the two-waveguide system has a tuning range of 6fs. We note that the birefringence 

tuning trends studied here apply not only to a two-beam system deformed by an optical force, but 

also by other actuation methods, including static electrostatic forces used in micro-electro-

mechanical systems (MEMS). 

In the future, the potential to tune birefringence via an optical force may be applied to design 

novel microring resonator systems. Waveguide-coupled microrings exhibit a strong (static) 

birefringence, which can be used to realize polarization converters and polarization-sensitive 

delay devices [35-37]. Recent experiments have shown that the separation between vertically-
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stacked microrings can be adjusted via optical forces [13]. This capability may in the future be 

exploited to design highly-tunable birefringent devices along similar lines as studied here. 
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Chapter 5: Trapping in a Slot-Suzuki-phase Lattice 

5.1 Background 

Optical trapping of objects with micro- and nano-scale dimensions has opened up novel 

opportunities in areas from physics to biology [1-4]. While optical tweezers make use of free-

space beams, recent research has explored the use of integrated optical devices for particle 

trapping [5]. The strong evanescent fields in such micron-sized structures enable trapping on the 

sub-wavelength scale. Designs based on plasmonics [6], dielectric waveguides [7], and cavities 

[8-11] have been proposed and demonstrated for trapping of single particles. In a recent work 

[12], we have proposed a method to assemble 2D arrays of particles with particular, designable 

patterns. This process, which we call light assisted, templated self assembly, relies on the 

structured light fields above a photonic crystal slab to create an array of particle trapping 

locations. By changing the wavelength or polarization incident on the photonic crystal, the fields, 

and hence the trapping locations, can be reconfigured. This process can be used either to create 

tunable photonic filters or to fabricate ordered patterns of nanoparticles. In our previous work, as 

a proof of concept, we considered a simple, square-lattice design for the photonic crystal. The 

estimated power for trapping was 1mW/unit cell, limiting the feasibility of the method. However, 

it is known that in photonic-crystal microcavity structures, the introduction of a slot into the 

cavity can provide high field confinement, reducing the power required for single-particle 

trapping [10, 11]. In this work, we propose a novel 2D photonic crystal that exploits slot 

confinement to reduce the optical power for trapping of particle arrays by two orders of 

magnitude. 
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Below, we present our novel photonic crystal structure, designed for low-power optical 

trapping of particle arrays. The 2D periodic structure is created by introducing a rectangular slot 

at the center of each unit cell of the Suzuki-phase lattice [13]. When the incident light 

wavelength is tuned to excite a guided resonance mode (GRM), the optical field is confined and 

enhanced within the slot. Meanwhile, the quality (Q) factor is increased by orders of magnitude. 

Our numerical simulations show that for fixed incident power, the optical force on a particle 

above the lattice is also enhanced by orders of magnitude, significantly reducing the power 

required for stable trapping. For an ideal device, stable trapping of 25-nm radius particles 

requires a power as low as 27 µW per unit cell, around 40 times smaller than for the simple 

square-lattice structures studied in our previous work [12]. We predict that a particle with 

dimensions smaller than the slot will be pulled inside and stably trapped, with a required power 

of only 3 µW per unit cell, 300 times smaller than in our previous work. The novel lattice 

structure and corresponding low power requirements also open up an opportunity for 

experimental implementation in active structures. Using a 2D photonic crystal surface-emitting 

laser based on the slot Suzuki-phase design, we expect that self-adaptive trapping of 2D particle 

arrays may be demonstrated. 

 

5.2 Structure Design 

The Slot-Suzuki-phase photonic crystal lattice we propose is based on the conventional 

Suzuki-phase (SP) lattice shown in Figure 5-1 (a). The Suzuki-phase lattice is obtained by 

starting with a triangular lattice of holes and removing selected holes to generate a rectangular 

lattice of H1 cavities [13, 14]. The Suzuki-phase lattice has different periodicities in the x and y 
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directions, equal to sx = 2a and sy = a respectively, where a is the lattice constant of the 

reference triangular lattice. 

 

 

Figure 5-1 (a) Diagram of the Suzuki-Phase photonic crystal lattice. (b) Normalized 
transmission spectra calculated by the transfer-matrix method. Red line for x-polarization, 
blue for y-polarization. (c) Hz-field profile (left) and E2 (right) of o1 resonance. d) Hz-field 

profile (left) and E2 (right) of e2 resonance. 

 

Figure 5-1 (b) illustrates the normalized transmission spectrum for vertically incident light, 

calculated by the Transfer Matrix Method (TMM) [15]. We assume a high-refractive index 

Suzuki-phase lattice with relative dielectric constant ε = 11.9, hole radius r/a =0.3 and slab 

thickness t/a = 0.5 resting on an oxide substrate (ε = 2.1), and immersed in a fluid with dielectric 

constant ε f = 1.7. Due to the periodic modulation of the photonic crystal (PhC) slab, incident 

light can couple to the GRM’s. Guided resonance modes are strongly confined to the slab and 
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appear in the transmission spectrum as Fano line shapes superimposed on a Fabry-Perot 

background [16].We focus in particular on Γ-point modes that are not symmetry-forbidden [17, 

18]. Figure 5-1 (b) shows the four GRM’s we are interested in. We label the four modes by o1, 

o2, e1, and e2. Figures 5-1 (c) and (d) show the magnetic field component Hz and electric field 

intensity E2 of the o1 and e2 resonance, respectively, in the z = 0 plane. These two, dipole-like 

modes are characteristic of the set. Modes were calculated by the three-dimensional (3D) finite 

difference time-domain (FDTD) method [19] and normalized to the maximum value in the z = 0 

plane. The o1 mode exhibits odd vector symmetry [20] with respect to the x= 0 mirror plane (Hz 

is even) and couples to a plane wave with electric field polarized along the x direction; the e1 

mode exhibits even vector symmetry with respect to the x = 0 mirror plane (Hz is odd) and 

couples to a plane wave with electric field polarized in the y direction, as has been shown 

experimentally [21]. 

We calculate Q factor for the four modes in Figure 5-1 (b) using 3D FDTD calculations. For 

a real photonic device with finite lateral size, the total Q factor depends on both vertical and 

lateral losses. However, for large enough structures and laser excitation spots, it is reasonable to 

consider only the effect of vertical loss on the Q factor [22, 23]. We model the PhC structure as 

infinitely periodic in the lateral direction by imposing periodic boundary conditions along the x 

and y directions of the unit cell in the FDTD simulation. The corresponding Q factors of the o1 

and e2 modes are 118 and 262, respectively. In order to trap a particle in the near field of the 

PhC, it is desirable to concentrate the optical power in a small surface area and to have a large Q 

factor [5], so as to enhance the trapping force for fixed input power. However, Figures 5-1 (c) 

and (d) show that the electric field intensity E2 in the z = 0 plane of both the x –polarized and y-

polarized dipole modes is relatively spread out across the unit cell. In order to 
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increase the Q factor and reduce the mode area, we propose a Slot-Suzuki-phase (SSP) hybrid 

lattice, shown in Figure 5-2 (a). Rectangular slots with cross-sectional dimensions of wx×wy are 

positioned in the middle of each unit cell of the conventional SP lattice. The symbol wx and wy 

represent the slot length along the x and y axes, respectively. In the slot, the component of 

electric field normal to the slot boundary is enhanced due to the Maxwell continuity law [24, 25]. 

If the smaller dimension of the rectangular slot is along the y direction (wy < wx), the electric 

field of the y-polarized e1 and e2 modes will be enhanced. To obtain enhancement of the x -

polarized o1 and o2 modes, the slot should be designed with wx <wy. In the following discussion, 

we focus on the case where wy < wx. 

 

Figure 5-2 (a) Diagram of the Slot-Suzuki-phase hybrid lattice. (b) Normalized 
transmission spectra. Red line for x -polarization, blue for y-polarization. (c) Hz-field 

profile of se2 resonance. d) E2 field profile of se2 resonance. 

 

104



 

87 

 

In Figure 5-2 (b), we plot the transmission spectrum of the SSP lattice at normal incidence 

for slot dimensions wx/a = 0.9 and wy/a = 0.16. The other structural and material parameters are 

identical with the above-mentioned SP lattice. We label the four Fano transmission dips as so1, 

so2, se1, and se2. All four modes exhibit narrower lineshapes than those in the SP lattice (Figure 

5-1 (b)). Note that the width of the frequency window is the same for Figure 5-1 (b) and Figure 

5-2 (b). Thus, higher Q factors can be obtained which are inversely proportional to the resonance 

linewidths. We will focus our discussion of field localization on the se2 mode. Figures 5-2 (c) 

and (d) plot Hz and E2 for the se2 mode in the z = 0 plane of the SSP lattice. The electric field of 

the se2 mode is well confined around the center of the slot in the XY plane. In fact, the modal 

volume for the se2 mode in one unit cell is Ve f f = 2.4×10−2(λR/nf )3, where λR is the resonant 

wavelength and nf is the refractive index of the fluid. The mode volume per unit cell is 

comparable to that in PhC microcavities containing slot features [25], indicating strong 

confinement of the field by the slot within each unit cell of the SSP lattice. The decay length of 

the field intensity, for which the value of falls to 1/e of the value at the slot center, are 0.28a in 

the x -direction, 0.09a in the y-direction, and 0.3a in the z -direction (0.05a above the PhC slab). 
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Figure 5-3 (a) Evolution of the Q and wavelength λR as a function of slot width wy. b) 
Evolution of the Q and wavelength λR as a function of slot length wx. Red color indicates Q; 

blue color indicates wavelength. Dots correspond to calculated values; lines represent a 
guide for the eye. 

 

Adjusting the slot dimensions provides a flexible strategy for tuning the Q factor and 

resonant wavelength λR of the GRM’s. Varying the slot width (wy) can dramatically increase the 

Q factor of the mode. In Figure 5-3 (a), we plot the dependence of Q on wy for fixed wx = 0.9a 

for the se2 mode. In the limit where the slot vanishes, i.e., the conventional SP lattice with only 

circular holes, the Q factor for the e2 mode is 262. By adding a narrow slot of wy = 0.08a in the 

center of each unit cell, the Q factor is increased to 1750. The Q factor is further enhanced by 

increasing wy and reaches a peak value of around 123,000 at wy = 0.16a. This Q value is 

comparable to values obtained in square PhC lattices for coupled GRM’s [26]. If the slot width 

wy continues to increase beyond 0.16a, the Q factor decreases. 

The slot width also affects the resonant wavelength λR. The blue line in Figure 5-3 (a) shows 

that λR linearly decreases from 1605 nm for wy = 0.08a to 1510 nm for wy = 0.24a with a slope of 

approximately -1.2. The graph is plotted assuming a fixed lattice constant a of 515 nm. 
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Changing the slot length (wx) also affects the Q factor and resonant wavelength λR. We fix wy 

= 0.16a and adjust wx. As indicated by Figure 5-3 (b), the Q factor decreases from 123,000 when 

wx deviates from 0.9a, but remains above 20,000 for wx between 0.8a and 1.15a. The blue line 

shows that the wavelength λR remains relatively stable with a shift of less than 6 nm in the same 

wx range. This relatively low variation can be explained by the mode distribution shown in 

Figure 5-2 (d). The electric field is tightly confined in the slot with a decay length in the x 

direction of 0.28a, which is less than half of the slot length (wx/2 = 0.45a). Thus, the resonance 

profile is only lightly influenced by wx decreasing from 1.15a to 0.8a. The choice of wx can be 

considered as an approach for fine-tuning of the dipole mode Q factor and wavelength. 

 

5.3 Optical Forces 

When SSP lattices with different slot dimensions are compared, the Q factor changes by 

orders of magnitude, while the mode profile remains similar. The component Hz has a dipole 

distribution and the electric field intensity is concentrated in the slot. The SSP lattice thus offers 

the flexibility to design a broad range of Q factors and, therefore, trapping forces. The main 

objective of this section is to predict the trapping capabilities of the SSP lattice with lattice 

constant a = 515 nm on a dielectric particle (npoly = 1.60). The trapping forces exerted on the 

particle are computed by integrating the Maxwell stress tensor (MST) over a closed surface 

surrounding the particle. The forces are numerically calculated by 3D FDTD simulations. We 

take a rectangular solid with a surface several mesh points away from the nearest edge of the 

particle as the integration surface. Due to the high Q factor of the GRM, it is convenient to 

perform the force calculation in the time domain rather than the frequency domain. We excite the 
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mode using a dipole source inside the slab, record the instantaneous electromagnetic fields for 

several optical periods, and use them to calculate the time-dependent force. We then time-

average the force and normalize it to the power P coupled to the se2 mode.  

We calculate the optical force on a particle of radius varying from 25 nm to 100 nm. The 

particle is placed right above the center of the slot (at position x = 0, y = 0), with its bottom edge 

45 nm above the top surface of the slab. Due to symmetry, the transverse force (Fxy) on the 

particle vanishes. Figure 5-4 (a) shows the vertical force Fz/P above the SSP lattice for slot 

dimensions wx = 0.9a = 464 nm and wy between 0.08a (41 nm) and 0.24a (124 nm). The force is 

negative, meaning that it is directed towards the slab. For all radii, the force magnitude increases 

to a peak value and then decreases with increasing slot width (wy), following a similar trend as 

the Q factor. In the optimum case, a slot with wy = 0.16a = 82 nm enhances the force by two 

orders of magnitude compared to a slot with wy = 0.08a = 41 nm. The optical force increases 

with particle radius. For a particle of radius 25 nm, the maximum force magnitude reaches 46 pN 

for 1 mW power per unit cell. For a 100-nm-radius particle, the force increases to 46 pNmW−1, 

an order of magnitude enhancement. In Figure 5-4 (b) we plot the dependence of force on 

particle radius for a particle which is at (x = 0, y = 0) and has its bottom edge 45nm above the top 

surface of the slab. The force magnitude increases linearly with particle radius between 25 nm 

and 100 nm. 
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Figure 5-4 (a) Optical force Fz as a function of slot width wy for four different particle radii. 
The slot length wx is fixed to 464 nm. (b) Optical force Fz as a function of particle radius. 

Dots represent the calculated values. Lines represent a guide for the eye. In both (a) and (b), 
the particle is at (x = 0, y = 0) and has its bottom edge 45 nm above the top surface of the 

slab. 

 

To investigate the dependence of the force on particle position, we set the slot dimensions to 

464 nm × 82 nm (0.9a ×0.16a), for which Q achieves its optimal value of 123,000. We consider 

a particle of radius 25 nm. The lower edge of the particle is 45 nm above the top surface of the 

slab (see Figure 5-5 (a)). We calculate the vertical force (Fz) and transverse force (Fxy) on the 

particle for each position in the XY plane. The results are shown in Figures 5-5 (b) and (c). The 

maximum magnitude of Fz is approximately 46 pNmW−1, which is achieved when the particle is 

above the center (x = 0, y = 0). For all positions in the XY plane, the vertical force is directed 

towards the slab. The magnitude of the in-plane force Fxy is shown by the colormap in Figure 5-5 

(c), and the force direction is indicated by blue arrows. At the center (x = 0, y = 0), the in-plane 

force vanishes. The strongest in-plane forces point toward the center. The maximum in-plane 

force for the particle is 14 pNmW−1 and is weaker than the maximum vertical force of 46 

pNmW−1. The ability to stably trap particles is thus limited by the in-plane values. Given the 

spatial map of the in-plane forces Fxy in Figure 5-5 (c), we can calculate a potential map in the 
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XY plane. We calculate the potential depth ΔU by integrating the in-plane force from a reference 

position to each point in the XY plane. Here, the reference position is taken to be (-sx/2, sy/2). The 

choice of the reference position does not affect the relative potential depth. The potential map is 

shown in Figure 5-5 (d). The depth of the trapping potential is larger than 377 KBT for an 

incident power of 1 mW per unit cell, where KBT is the thermal energy at temperature 300 K. A 

figure of merit in the context of optical trapping is the stability factor S=ΔU/KBT, which reaches 

377 mW−1 per unit cell in our device. In order to achieve a stability factor equal to 10, generally 

considered sufficient to achieve stable trapping despite the presence of Brownian motion [27], 

the power needed in the SSP lattice is 27 µW per unit cell. The power required to realize stable 

trapping in the SSP lattice is reduced by about 40 times compared to the power requirement in 

the square lattice proposed in our previous work [12]. At the equilibrium point, the trap stiffness 

is defined as -∂ Fxy/∂ x along the x axis and -∂ Fxy/∂ y along the y axis. From Figure 5-5 (c), we 

estimate trap stiffnesses of 0.12 and 0.28 pNnm−1mW−1 for the 25 nm particle along the x and y 

axes, respectively, corresponding to a radial trap stiffness of 0.08 pNnm−1mW−1 in the XY plane. 

Greater trap stiffness results in lower uncertainty in the trapping position. The stability factor and 

the radial trap stiffness we obtained exceed the values reported for dielectric trapping structures 

in previous works [5]. 
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Figure 5-5 (a) Diagram of the Slot Suzuki-phase (SSP) lattice with a particle above. (b) 
Vertical force Fz as a function of particle position in the XY plane. (c) In-plane force Fxy as 
a function of position in the XY plane. The force magnitude is indicated by the colormap, 
and the force direction is shown by the blue arrows. (d) Potential map in the XY plane. To 
obtain the results shown in (b), (c), and (d), we assume that the particle has a radius of 25 

nm and is placed such that its bottom edge is 45 nm above the top surface of the slab. 

 

For particle diameters less than the slot width wy, particles can be trapped inside the slot. The 

particle is physically confined by the slot in the y direction. We calculate the force as a function 

of position in the XZ plane for y = 0. Results are shown in Figure 5-6 (a). The force Fy, which is 

normal to the XZ plane, vanishes due to symmetry, and thus, we only plot the in-plane force Fxz. 

The forces point to the center of the slot at (x = 0, z = 0) and have a maximum magnitude of 153 

pNmW−1. The corresponding potential map shown in Figure 5-6 (b) indicates that a strong 

trapping potential depth of more than 3500 KBT per milliwatt per unit cell is achieved within the 
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slot. For a particle within the slot, a power as low as 3 µW per unit cell is required for stable 

optical trapping. The radial trapping stiffness in the XZ plane is -0.34 pNnm−1mW−1. Within the 

slot, the stability and trapping stiffness are higher than outside the slot and comparable to 

reported values for particle trapping in other slot structures [10, 11]. 

The presence of a particle in the slot can affect the resonance wavelength. Our simulations 

show that when every unit cell of the structure contains one particle of radius 25 nm in the center 

of the slot, the resonance wavelength is shifted by 0.3 nm. Nevertheless, in a real experiment, the 

particles are likely to be trapped one by one, with the number increasing gradually over time. In 

this case, any given particle will create a negligible perturbation on the mode. As larger numbers 

of particles are trapped, a gradual shift of the resonance wavelength will take place, requiring a 

slow adjustment of the excitation laser (ΔλR ≤0.3 nm). 

 

 

Figure 5-6 (a) In-plane optical force Fxz for a particle with radius of 25 nm. (b) Optical 
potential map for the particle. 
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5.4  Summary 

We have proposed a new PhC lattice for optical trapping of two-dimensional arrays of 

nanoparticles. Our structure is created by using the 2D Suzuki-phase PhC lattice as a base and 

introducing a slot into each unit cell to localize the electromagnetic field. Optimizing the slot 

dimensions increases the Q factor of the resonance by orders of magnitude. Optical power values 

as low as 27 µW per unit cell are predicted for trapping of 25 nm radius beads, a reduction of 

power by about 40 times relative to our previous work. Once the particle is on the slot, optical 

power of 3 µW per unit cell is required for the stable optical trapping. Our Slot-Suzuki-Phase 

lattice is a promising candidate for carrying out light-assisted templated self assembly processes. 

The low power requirements for trapping suggest to use of active materials for this purpose. Slot 

photonic crystal microcavity lasers have been demonstrated with output optical power as high as 

150 µW, and some evidence suggests possible optical trapping effects in such structures [28, 29]. 

The Slot-Suzuki-phase structure we propose here provides a way of effectively combining 

multiple slot PhC microcavities into a high-Q structure with extended area. Further improvement 

of the design can be achieved by band engineering techniques, as well as by combining the 

photonic crystal with a bottom Bragg reflector [30, 31]. In such a device, we expect that the laser 

may self adapt, adjusting its own lasing wavelength in response to the resonance shift induced by 

trapped particles. 

 

5.5  Chapter References 

[1]. A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 
24, 156-159 (1970). 

113



 

96 

 

[2]. K. C. Neuman, and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 
(2004). 

[3]. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). 

[4]. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, 
"The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophysical Journal 81, 
767-784 (2001). 

[5]. D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, "Nanomanipulation using near field 
photonics," Lab on a Chip 11, 995-1009. 

[6]. M. L. Juan, M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nat Photon 5, 
349-356 (2011). 

[7]. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical 
manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 
457, 71-75 (2009). 

[8]. M. Barth, and O. Benson, "Manipulation of dielectric particles using photonic crystal 
cavities," Applied Physics Letters 89, 253114-253113 (2006). 

[9]. A. Rahmani, and P. C. Chaumet, "Optical trapping near a photonic crystal," Opt. Express 14, 
6353-6358 (2006). 

[10]. S. Lin, J. Hu, L. Kimerling, and K. Crozier, "Design of nanoslotted photonic crystal 
waveguide cavities for single nanoparticle trapping and detection," Opt. Lett. 34, 3451-3453 
(2009). 

[11]. X. Serey, S. Mandal, and D. Erickson, "Comparison of silicon photonic crystal resonator 
designs for optical trapping of nanomaterials," Nanotechnology 21, 305202. 

[12]. C. A. Mejia, A. Dutt, and M. L. Povinelli, "Light-assisted templated self assembly using 
photonic crystal slabs," Opt. Express 19, 11422-11428 (2011). 

[13]. A. R. Alija, L. J. Martinez, P. A. Postigo, J. Sanchez-Dehesa, M. Galli, A. Politi, M. 
Patrini, L. C. Andreani, C. Seassal, and P. Viktorovitch, "Theoretical and experimental study of 

114



 

97 

 

the Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy," 
Opt. Express 15, 704-713 (2007). 

[14]. C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. R. Romeo, P. Viktorovitch, 
M. L. V. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-
dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an 
InP membrane," Journal of Applied Physics 93, 23-31 (2003). 

[15]. M. Li, X. Hu, Z. Ye, K.-M. Ho, J. Cao, and M. Miyawaki, "Higher-order incidence transfer 
matrix method used in three-dimensional photonic crystal coupled-resonator array simulation," 
Opt. Lett. 31, 3498-3500 (2006). 

[16]. S. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano 
resonance in optical resonators," J. Opt. Soc. Am. A 20, 569-572 (2003). 

[17]. T. Ochiai, and K. Sakoda, "Dispersion relation and optical transmittance of a hexagonal 
photonic crystal slab," Physical Review B 63, 125107 (2001). 

[18]. M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. 
Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, "Spectroscopy of photonic 
bands in macroporous silicon photonic crystals," Physical Review B 65, 113111 (2002). 

[19]. A. Taflove, Advances in computational electrodynamics : the finite-difference time-domain 
method (Artech House, Boston, 1998). 

[20]. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals : molding the flow of 
light (Princeton University Press, Princeton, N.J., 1995). 

[21]. L. J. Martinez, A. R. Alija, P. A. Postigo, J. F. Galisteo-Lopez, M. Galli, L. C. Andreani, C. 
Seassal, and P. Viktorovitch, "Effect of implementation of a Bragg reflector in the photonic band 
structure of the Suzuki-phase photonic crystal lattice," Opt. Express 16, 8509-8518 (2008). 

[22]. X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, and P. Viktorovitch, 
"Switching Devices With Spatial and Spectral Resolution Combining Photonic Crystal and 
MOEMS Structures," J. Lightwave Technol. 21, 1691 (2003). 

115



 

98 

 

[23]. L. J. Martinez, B. Alen, I. Prieto, J. F. Galisteo-Lopez, M. Galli, L. C. Andreani, C. Seassal, 
P. Viktorovitch, and P. A. Postigo, "Two-dimensional surface emitting photonic crystal laser 
with hybrid triangular-graphite structure," Opt. Express 17, 15043-15051 (2009). 

[24]. V. Almeida, Q. Xu, C. Barrios, and M. Lipson, "Guiding and confining light in void 
nanostructure," Optics Letters 29, 1209-1211 (2004). 

[25]. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. 
Kuga, "Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic 
crystal slab," Opt. Express 16, 13809-13817 (2008). 

[26]. M. El Beheiry, V. Liu, S. Fan, and O. Levi, "Sensitivity enhancement in photonic crystal 
slab biosensors," Opt. Express 18, 22702-22714. 

[27]. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam 
gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). 

[28]. S. Kita, S. Hachuda, K. Nozaki, and T. Baba, "Nanoslot laser," Applied Physics Letters 97, 
161108-161103. 

[29]. S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, 
"Super-sensitivity in label-free protein sensing using a nanoslot nanolaser," Opt. Express 19, 
17683-17690. 

[30]. B. B. Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. 
Fedeli, "Surface-emitting microlaser combining two-dimensional photonic crystal membrane and 
vertical Bragg mirror," Applied Physics Letters 88, 081113-081113 (2006). 

[31]. L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, "Slow Bloch mode 
confinement in 2D photonic crystals for surface operating devices," Opt. Express 16, 3136-3145 
(2008). 
 

116



 

99 

 

Chapter 6: Characterization of Slot-graphite Photonic Crystal 

Lattice 

6.1  Background 

Photonic crystal structures have distinguished points with zero group velocity along the 

Brillouin boundary. The zero-group-velocity modes have been applied in many interesting fields, 

including laser emission [1-3], quantum optics [4],  and sensing [5]. One interesting point with 

zero group velocity along the Brillouin boundary is Γ-point. The Γ-point modes are above the 

light line. The modes can be coupled or uncoupled to an external plane wave depending on the 

mode symmetry [6]. When light is normally incident upon the periodically patterned slab, it can 

excite Γ-point modes or as so called, guided resonance modes, which propagate in the plane of 

the slab while leaking partially to the surrounding air [7].  

In the last Section, we have discussed utilizing Γ-point modes in a Slot-Suzuki-phase 

photonic crystal lattice for light-assisted, template assembly (LATS) of nanoparticles. We have 

pointed out that, for fixed input power, the optical forces can be enhanced by using a high-

quality-factor and well-confined guided resonance modes. In other words, the assembly 

capability is dependent on optical quality factors. In this Section, we experimentally 

demonstrated the high-Q guided resonance modes in Slot-graphite lattices. The lattice is created 

by using regular graphite lattice [8] as the base and placing a rectangular slot into the center of 

each unit cell. Quality factors over  are predicted by theory. The Slot-graphite lattices have 

been fabricated on silicon-on-insulator platforms and optically characterized by transmission 

spectroscopy. We have observed the dependence of resonant wavelengths and Q factors on the 
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slot dimension. Note that by fine control of slot geometry, we can tune the Q factors by orders of 

magnitude. The modes have a strong field confinement within the slots, proposing  potential 

applications in LATS. 

 

6.2  Structure Design 

The Slot-graphite photonic crystal lattice is created by using regular graphite lattice [8] as the 

base (See Figure 6-1 (a)). In the center of each unit cell, we place a rectangular slot oriented 

towards the middle point of two closest holes (see Figure 6-1 (b)). This novel structure uses the 

same Bravais lattice as the graphite lattice. Nevertheless the slot reduces the lattice symmetry 

from C6υ to C2υ [9], and the irreducible Brillouin zone changes from 1/12 of the first Brillouin 

zone (See Figure 6-2 (a) inset) to 1/4 (Figure 6-2 (b) inset). The irreducible Brillouin zone of 

graphite lattice is marked by Г-M-K- Г in Figure 6-2 (a) inset, while slot-graphite lattice is Г-M-

K-M1-K1- Г in Figure 6-2 (b) inset.  

Figure 6-2 (a) shows the 3D photonic band structure of a graphite lattice. The bands are 

calculated using  guide mode expansion method [10]. We assume a lattice constant a=800 nm, a 

hole radius r=0.157a and slab thickness of 250 nm laying on top of silica substrate. The device is 

immersed in a material of dielectric constant εb=1.77.  
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Figure 6-1 (a) Diagram of the graphite photonic crystal lattice. (b) Diagram of the 
Slot-graphite photonic crystal lattice. The arrows represent the primitive vectors 

of the Bravais lattice. 

 

In Figure 6-2 (a), we show the band structure of the graphite lattice. At Г-points as 

highlighted by dashed circles, the fourth and fifth bands are degenerate. The corresponding mode 

profiles are shown by Figure 6-2 (c). The Hz components of two degenerate modes have dipole-

like distribution with different orientation. And we call them dipole modes. The electric field of 

the fourth (fifth) modes is x (y) polarized. Note that the bands are the same for the two Г points 

in the M-Г-K boundary and M1-Г-K1 boundary. The reason has been given in the last paragraph: 

in the graphite lattice, the M-Г-K Brillouin zone is irreducible and contains all band information.  

 In Figure 6-2 (b), we show the band structure of our slot-graphite lattice. The slot dimension 

is wx=0.675a and wy=0.09a. The other geometries are identical with the graphite lattice. The 

degeneration of the fourth and fifth band of the graphite lattice at the Γ -point is removed due to 

the breaking symmetry created by the slot. By adding slot in each unit cell, a sharp discontinuity 

of the dielectric constant is created. Due to the Maxwell continuity condition, the normal 

components of εE are conserved along the slot boundary [11, 12], so that the Ey field of the fifth 

band is enhanced within the slot as shown by the upper part of Figure 6-2 (d). The light 
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confinement within slot is not obvious for the fourth band, since this band is polarized along x 

direction. In the slot device, we are going to refer to the fifth band as slot mode whereas the 

fourth band as dipole mode. Note that the slot-mode band around the Γ-point is flat, which can 

be very important for specific application [13].  

 

Figure 6-2 (a) Photonic band structure of the Graphite photonic crystal lattice. (b) Photonic 
band structure of the Slot-graphite photonic crystal lattice. The highlighted region 

represents the targeted bands. (c) Hz-field profile (left) and E2 (right) profile of the fifth 
band (down) and fourth band (up) of the graphite photonic crystal lattice. (d) Hz-field 
profile (left) and E2 (right) profile of the fourth band (down) and fifth band (up) of the 

Slot-graphite photonic crystal lattice. 
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We calculated the temporal confinement of the slot mode at the Γ-point. Figure 6-3 (a) shows 

the dependence of the Q factor (red curve) and wavelength (black line) on the slot height wy, 

with fixed width wx =0.675a. The simulation is performed by solving the Maxwell equations 

using a 3D finite difference time-domain (FDTD) code, Lumerical. Interestingly, the Q factor 

increases from 1970 for wy =0.06a until reaching 4.3×105 for wy=0.0925a. As we further increase 

the slot width, the Q factor decreases to 3100 for wy =0.1225a. On the other hand, the mode 

wavelength decreases as wy increases, following a linear trend.  

Figure 6-3 (b) shows the evolution of the Q factor (red curve) and wavelength (black line) 

with slot width wx, for fixed slot height wy=0.0925a. The Q factor decreases as wx is increasing. 

Note that the Q factor is less sensitive to wx than wy. For example, a change of wx of 20 nm with 

respect to the peak preserves a Q-factor over 85000 (20% of the peak value).  While changing 20 

nm of wy from the peak value decreases Q from 4.3×105 to 4300 (1% of the initial value). The 

evolution of the wavelength with wx has two regions clearly differentiated: one with wx <0.675a 

and another one with wx >0.675a. In the first region, the wavelength change is the 1 nm for a 

76 nm decrement in the slot length. In the second region, there is a change of 9 nm for a 78 nm 

increment in the slot length.  

After evaluating the temporal confinement, we evaluate the spatial confinement by calculating 

modal volume per unit cell. For the slot mode with the Q factor 4.3×105, we obtain a value of 

. This value of the spatial confinement compares well with the previous 

results obtained in PhC microcavities [14, 15]. 
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Figure 6-3 (a): Evolution of the Q and wavelength as function of wy. (b): Evolution of the 
Q and wavelength as function of wx. Red color for Q. Black for wavelength. Dots: 

Corresponds to the calculate values. Lines represents a guide for the eye. 
 
 

6.3  Fabrication and Optical Characterization 

We fabricate a group of slot-graphite photonic crystal devices in order to characterize the 

evolution of the slot modes with varying slot height wy. The devices are fabricated with fixed 

lattice constant a=820 nm, radius of air holes r/a=0.155, and slab thickness t=250 nm. We adjust 

the device parameters so that we have a relatively low Q˂105 for easier optical characterization. 

We expect to see the resonant wavelengths of slot modes fall in our tunable laser range, and the 

Q factor will show an increasing-then-decreasing trend with increasing wy. The computed Q 

factor is not far away of the highest values (Q-factor over 9800) we measured previously in the 

same set-up for uncoupled guided resonant modes [16].  
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Figure 6-4 SEM image of one fabricated Slot-graphite device. 

 
The devices have been fabricated using e-beam lithography and inductively-coupled plasma 

reactive ion etching (ICP-RIE). We use a 250 nm thick silicon layer on top of a 3 µm silica layer 

(SOITEC). The sample was spin-coated with PMMA-A4 950K. Using Raith150 e-beam system, 

a 50 µm diameter Slot-graphite pattern has been exposed with an acceleration voltage of 30KV. 

The pattern is transferred from the resist to the silicon layer by an ICP-RIE machine using a gas 

mixture SF6/C4F8. Finally the remaining resist was removed using O2 plasma etching and 

acetone. Figure 6-4 shows a Scanning-electron beam (SEM) image of one of the fabricated 

devices. We analyze the SEM images and extract geometrical parameters [17]. The slot width wx 

is fixed to 550 nm, and wy is increased gradually from 58 nm to 93 nm at 3.3 nm by each step. 

Note that the SEM inspection can introduce large systematic errors as much as 5–10% of the 

absolute dimension [18].  
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We characterize the transmission spectra of our fabricated samples using cross polarization 

configuration. The sample was immersed in deionized water. We measure the wavelength and Q 

factor of the slot modes using our experimental configuration as shown by Figure 6-5 (a). 

Incident light of a tunable laser (TL) in near-infrared range between 1500 nm and 1620 nm is 

collimated from fiber to free space by a lens (LS). The light is focused onto the sample on 

translation stage (TS) using a low numerical aperture microscope objective (MO). The light 

transmitted through the sample is collected using another microscope objective and focused onto 

a photodetector (PD). Note that two crossed polarizers (PC) are positioned before and after the 

microscope objectives, which can cancel out the Fabry-Perot background in the guided-

resonance transmission. With the cross-polarization setup, we measured slot modes as peaks in 

the transmission spectrum rather than dips on the Fabry-Perot background as shown by Figure 6-

5 (b) in the previous section. Figure 6-5 (b) shows a transmission spectrum measured in a slot-

graphite device. The slot mode corresponding to the fifth band and the dipole mode 

corresponding to the fourth band are clearly visible.  
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Figure 6-5 (a) Diagram of experimental setup used to characterize the optical properties of 
the guided resonant device. Two cross polarizers (PC) are applied before and after the 

device to cancel out Fabry-Perot noise. TL: tunable laser; MO: microscope objective; LS: 
lens; TS: translation stage; PD: photodiode. (b) One measured spectrum. The right 

transmission peak correspond to the slot mode, and the left peak shows the dipole mode 
with lower Q-factor. 

 
 
The tested Q-factor and wavelength of the slot modes are plotted by black spheres in Figure 

6-6. We did not plot the evolution of the dipole modes for simplicity. We compared the 

experimental data with the simulation shown by gray dashed curves in Figure 6-6. In FDTD 

simulation we take into account water absorption in the near-infrared range.  

As shown by Figure 6-6 (a), within our expectation, the measured Q-factor first increased 

and then decreased with increasing wy. The measured data are missing for devices with wy 

between 65 nm and 71 nm. The possible reason is that the slot modes in these devices have high 

Q factors. For high Q modes, it is more challenging for external light to couple into the mode. 

We see the intensity of the transmission peaks for guided resonance comparable with the 

background noises. Due to the low signal-to-noise ratio, we did not obtain corresponding Q 

factors and wavelengths. The highest Q we measured is around 5300. Note that compared with 
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simulation (gray dashed curve), the tested Q is lower by a factor of 2. This offset may be due to 

fabrication imperfection and surface roughness.  

Figure 6-6 (b) shows the tested wavelength evolution (black spheres) and the corresponding 

simulation (gray dashed curve). The measured wavelength monotonically decreases from 1613 

nm to 1560 nm with wy increasing from 58 nm to 93 nm. On average, the wavelength decreases 

by 1.5 nm if wy is increased by 1 nm.  

 

 

Figure 6-6 (a): Evolution of the Q factor as function of wy. (b): Evolution of the 
wavelength as function wy. Black spheres for experimental data. Gray dashed curves for 
simulation. Blue stars for experimental data when wy is increased by 10% by considering 

SEM system errors. 

 

The overall wavelength and Q-factor trends follow our simulation curves. However, the 

tested wavelength is smaller than simulated value by about 15 nm. One reason is that the 

wavelength is very sensitive to slot height wy, while the wy value we obtained through the SEM 
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images can have offset as much as 10% of the feature dimension [18]. We use the blue stars in 

Figure 6-6 to show the experimental data if the real slot height wy is increased by 10% of the 

SEM size. In this case, the tested and simulated wavelengths are in good agreement.    

 

6.4  Summary 

A new photonic crystal lattice has been proposed as slot-graphite lattice. The lattice is 

created by using the graphite lattice as the base and placing a slot in the center of unit cell. 

Quality factors over 4×105 are predicted for guided resonance modes with light well confined 

within slots. The structures have been fabricated on SOI wafer and immersed in D.I. water for 

measurement. The modes have been characterized by cross-polarization transmission 

spectroscopy. The evolution of the Q factors and wavelengths follows the trend predicted by our 

simulations. Quality factors up to 5300 have been measured.  Due to highly tunable Q factor and 

strong light confinement, the lattice is promising for lower-power light assisted, templated 

assembly.  
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Chapter 7:  Radiation Loss in Photonic Crystal CROW 

7.1  Background 

Coupled resonator optical waveguides (CROWs) [1], waveguides in which light propagates 

by “hopping” between localized resonator modes, have been widely studied for application to 

on-chip optical delays [2]. CROWs provide both slow group velocity and low dispersion [3], 

essential features for distortion-free signal delay. In dynamically-tuned CROWs, light pulses 

may be stopped, stored, and released on demand [4, 5]. CROWs based on various resonator types 

have been investigated, including microring resonators [6-8] and photonic-crystal microcavities 

[9-15]. We focus here on photonic-crystal microcavity CROWs, which provide both compact 

resonator size and high spatial confinement; the latter is useful, for example, for achieving 

nonlinear effects at low power levels [16]. 

Minimization of propagation loss is an important aspect of CROW design. Various 

approaches have been used to design low-loss CROWs, including coupled-mode theory [17] and 

the finite-element method [18]. CROWs formed by microcavities in photonic-crystal slabs are 

intrinsically lossy, because the CROW mode lies above the light line of air, the mode leaks light 

vertically as it propagates [19]. Moreover, if the loss is uneven across the CROW band for 

different wavevectors, the effective transmission bandwidth is reduced, and the transmitted 

signal is distorted. The intrinsic loss provides a lower bound on the total loss, which may also 

include contributions due to fabrication imperfections and scattering. 

Previous theoretical work has shown that intrinsic CROW loss can depend strongly on 

frequency and be up to an order of magnitude larger or smaller than that of an individual 
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resonator [20, 21]. At the same time, experiments have demonstrated particular CROW designs 

with low loss comparable to that of an individual resonator [22]. Given these considerations, it is 

important to understand theoretically how the CROW and resonator losses are related, as well as 

how to achieve low, flat loss across the entire CROW bandwidth. In this paper, we use a model 

based on the tight-binding approximation (TBA) to answer these questions. 

TBA approaches are advantageous, as they allow the calculation of the frequency-dependent 

loss of a CROW from a single, full-field simulation of an individual cavity. Previously, Fussell 

and Dignam have used a TBA model based on the complex dispersion relation of the CROW to 

calculate losses [21]. Another approach is to use the TBA to relate the electromagnetic fields of 

the CROW to those of the isolated cavity [15].  In this case, the spatial power spectrum of the 

CROW fields may be obtained from that of the isolated cavity by taking discrete samples in 

Fourier space, as experimentally demonstrated in [15]. Reference [15] has suggested that the 

losses may then be calculated from the power spectrum using a light-cone picture [23]. In this 

paper, we explicitly demonstrate the validity of this approach by comparing the predictions of 

the TBA light-cone model with direct calculations. We then show that within a particular family 

of photonic-crystal cavities, a decrease in cavity loss also results in a decrease in CROW loss. 

While the CROW loss generally varies across the CROW band, we show that the TBA predicts 

particular cavity separations for which the loss is flat. 

We expect our results to be useful for a range of applications. In the context of light-assisted 

self assembly above photonic-crystal slabs [24, 25], our method may facilitate the design of 

large-area, coupled-cavity modes with high quality factor that nevertheless couple to normally-

incident radiation. For slow- and stopped-light applications, the fidelity of signal transmission at 
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the end of a delay line depends on achieving low, flat loss across the signal bandwidth. In 

coupled-cavity lasers, the ability to tailor the Q(k) loss profile could provide a useful method to 

control the effects of mode competition and tune the directional output of the laser.  

 

7.2  Theoretical Formulation in the Tight-binding Approximation 

For concreteness, we first consider the CROW structure shown in Figure 7-1 (a). The 

photonic crystal slab is a triangular lattice of air holes with lattice constant a and hole radius  in a 

suspended, dielectric slab with height  and refractive index 1.55µm). The CROW waveguide 

consists of periodically spaced defects. Each defect is a micro-cavity with two adjacent missing 

holes, known as an L2 cavity. The center-to-center spacing of adjacent defects is 5a. The 

separation width S, the width of the region between defects that does not contain missing holes, 

is 3a. We denote the CROW as LmSn, with m being the number of missing holes of the 

constituent cavity and n the number of separation holes. We calculate the band structure by the 

guided-mode expansion method [26]. Figure 7-1 (b) shows the dispersion relations for L2S2, 

L2S3, and L2S4 CROWs, respectively. The band of each CROW mode displays a cosinusoidal 

shape [1, 3], with the center frequency close to the fundamental mode of the isolated L2 cavity, 

0.26992(2πc/a). The bandwidth of a CROW mode is proportional to the coupling strength 

between adjacent defects. Figure 7-1 (b) shows that the coupling strength decreases as the 

separation is increased.  
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Figure 7-1 (a) Schematic diagram of CROW structure L2S3. (b) Dispersion curve of 
CROW mode in L2S2 (red), L2S3 (blue) and L2S4 (magenta). Dashed line shows the 

fundamental mode of the isolated L2 cavity. 

 

For all three CROWs, the CROW band lies above the light line of air and is thus intrinsically 

lossy. The light line of air is given by , where k is the in-plane CROW wavevector. At the 

edge of the Brillouin zone,  and the light-line frequency ω=0.125(2πc/a), 

0.1(2πc/a), or 0.083(2πc/a) for D = 4a, D = 5a or D = 6a, respectively. In all three cases, the 

upper edge of the light line lies well below the frequency range shown in Figure 7-1(b). 

We define a waveguide quality factor Q(k) to describe the leakage of the CROW mode: 

    (7-1) 

where ω(k) is the dispersion relation of the CROW mode, and τ1/e is the time in which the power 

in the waveguide mode decays by 1/e. Q(k) can be converted to a 1/e power-decay length in the 

waveguide as , where  is the group velocity. Alternately, the loss 
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in dB/length is equal to -4.34dB/L1/e. While the loss per unit length diverges at k = 0 and 

0.5(2π/D) where vg=0, Q(k) is well defined over the entire Brillouin zone.  

 

7.2.1  Light Line Picture 

For isolated microcavities, it has been shown [23] that the cavity Q can be related to the 

Fourier transform of the electromagnetic fields above the surface of the slab. A similar relation is 

true for the waveguide quality factor Q(k).  

We can write: 

    (7-2) 

where  is the time-averaged electromagnetic field energy: 

 ,   (7-3) 

where  is the dielectric constant of the CROW, and  and  are 

the electric and magnetic fields of the CROW mode at wave vector k.  is the time-

averaged emitted power, 

 ,   (7-4) 

where the integral is over a closed surface that encloses the photonic crystal slab. For an 

infinitely long CROW, both  and  are infinite; however, the ratio  

is finite and equal to the value of the ratio for a single unit cell.  
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 can be rewritten in terms of the two-dimensional (2D) spatial power spectra of the 

free-space fields, on any surface above the structure [23] : 

    (7-5) 

where  and  and  are the 2D Fourier transforms of the 

ith component of  and , and : 

    

          (7-6) 

The Fourier-space integral includes all  within the light cone . Only these so-called 

“leaky components” contribute to radiation loss. We will refer to the quantities , 

, , and  appearing in Equation (7-5) as the Ex, Ey, Hx, 

and Hy power spectra, respectively.  

Due to the periodicity of the CROW waveguide in the x-direction, Fourier transforms of the 

field components are only nonzero for discrete values of . Using Bloch’s theorem, the CROW 

mode can be written as , where . An 

analogous statement is true for . It follows that the Fourier transforms 
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 except when . The Fourier transforms are nonzero 

over a continuous range of  values. 

 

7.2.2  Tight-binding Approximation 

The tight-binding approximation can be used to write the CROW quality factor in terms of 

the fields of the isolated cavity.  

First, we write the CROW fields in terms of the isolated cavity fields  and 

: 

      
   

 

   (7-7) 

where  and  are normalization constants [1]. Taking into account that 

 
   

 (7-8) 

It follows that 

        
 

  (7-9) 
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where the sum over m can be interpreted as a sum over unit cells. This relation is schematically 

depicted in Figure 7-2(a). The tight-binding approximation predicts that for fixed qy, the power 

spectrum of each field component of the CROW mode is given by a set of delta-function spikes 

weighted by the power spectrum of the isolated cavity. The spikes are shifted by k, and the 

separation between neighboring spikes is . 

 

 

Figure 7-2 (a) Schematic picture of tight-binding prediction for the power spectrum of a 
CROW mode. (b) CROW power spectrum giving a large value of Q(k) compared to the 
isolated cavity. (c) CROW Power spectrum giving a small value of Q(k) compared to the 

isolated cavity. 

 

Within the tight-binding approximation,  can be found by substituting Equation (7-9) 

into Equation (7-5).  can be found by substituting Equation (7-7) into Equation (7-3):  

  (7-10) 
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The m = n terms will dominate, leading to the approximation that 

 ,  (7-11) 

independent of k. For weak coupling between defects, we substitute εΩ, the dielectric function of 

the isolated cavity, for εCROW, and  

              (7-12) 

where UΩ is the field energy of the isolated cavity. 

Using the expressions for  and , the final result is that 

 (7-13) 

Here, we have assumed that the variation in ω across the CROW band, Δω, is small compared to 

the isolated cavity frequency ω0. In this case, ω(k) can be approximated by ω0 in Equation (7-

13). For the numerical examples presented below, Δω/ω0 is on the order of 10-3.  

Equation (7-13) implies that within the tight-binding approximation, increasing Q0 of the 

isolated cavity will tend to increase the Q(k) of the corresponding waveguide. This is because an 

increase in Q0 corresponds to a decrease in the power spectra values of the isolated cavity within 

the light cone. However, due to the discrete nature of the sum, Q(k) can have a strong 
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dependence on the wave vector. This is illustrated schematically in Figures 7-2 (b) and (c). For a 

particular value of k, it may happen that the spikes in the CROW power spectrum line up with 

minima (Figure 7-2 (b)) or maxima (Figure 7-2 (c)) of the isolated cavity power spectrum. The 

Q0 of the isolated cavity is inversely proportional to the area under the dashed line, while Q(k) of 

the CROW mode is inversely proportional to the red or blue dashed areas shown. It is apparent 

that the dashed area can either be smaller (Figure 7-2 (b)) or larger (Figure 7-2 (c)) than the area 

under the curve. As a result, Q(k) can be either larger or smaller than Q0.  

In general, the validity of the TBA improves as the separation between cavities increases. For 

decreasing separation, as the fields of neighboring cavities interact more strongly, it becomes 

less accurate to write the CROW fields in terms of the isolated cavity mode (Equation (7-7)). We 

note that in the numerical examples below, we consider cavities in which the modes are well 

isolated and the spacing between modes is large compared to the width of the CROW band. In 

some CROW’s, the simple model of a well isolated mode is not sufficient, and coupling with 

other modes of the isolated cavity must be considered. In this case, Equation (7-7) would be 

modified to include a sum over multiple cavity modes. The expansion coefficients in the sum can 

be found as in Reference [27],  and Equations (7-10) and (7-13) would be similarly modified. In 

cases where nearest neighbour or next-nearest neighbor coupling are significant, the 

terms should be included in the calculation of  (Equation (7-10)). 

 

7.3  Numerical Validation of the Tight Binding Approximation 

To test the TBA model of the CROW quality factor, we perform three-dimensional finite-

difference time-domain (FDTD) simulations [28] of Q(k) for CROW structures and compare the 
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results with the TBA prediction of Equation (7-13). We start with CROW structures based on the 

L2 cavity, such as the one shown above in Figure 7-1 (a). 

 

 

Figure 7-3 (a) Mode distribution of the real part of Ey on the x-y plane 0.2a above the 
surface of the isolated L2 cavity. (b) Power spectrum of L2 cavity. The blue circle is the 
light cone. (c) Power spectrum of CROW mode in L2S3 structure with k = 0. (d) Visual 
test of tight-binding approximation via comparison of CROW power spectra to that of 

isolated L2 cavity. The blue dashed lines indicate light lines. 
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For the isolated cavity simulation, a computational cell of  was used. 

Perfectly-matched layer (PML) boundaries were used in all directions, and the grid resolution 

was 20 grid points per a. In Figure 7-3 (a), we plot Ey for the fundamental mode of the L2 cavity 

on a plane 0.2a above the slab surface. The mode is antisymmetric with respect to both the x-z 

plane and y-z planes. Figure 7-3 (b) shows the Ey power spectrum,  for the isolated 

cavity. We note that the power spectrum is zero along , due to the fact that  is odd 

with respect to . In Figures 7-3 (a) and (b), the field magnitude and power spectrum are 

each normalized to their maximum values. 

We next calculate the full CROW fields and corresponding power spectrum. We use the 

FDTD method to simulate a single unit cell of the L2S3 CROW. The boundary conditions are 

fixed to be Bloch-periodic in the x-direction with fixed wave vector k. In the y-direction, the 

length of the computational cell is chosen to be large enough ( ) for Q(k) to be 

independent of length. Perfectly-matched layer boundaries are applied in the y and z directions. 

The grid resolution was 20 points per a. We divide the calculated field components by  to 

obtain the periodic field envelopes. We then Fourier transform the envelopes and shift them by k 

in the qx-direction, a procedure that can easily be shown to yield  and . 

In Figure 7-3 (c), we plot the Ey power spectrum of the L2S3 CROW mode for k = 0. The 

CROW power spectrum is only nonzero at discrete values of qx separated by a distance 

. In this case, only three values of qx fall within the light cone, 

 and . The power spectrum is zero for , since  is odd with 

respect to . 
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Within the TBA, the CROW power spectrum can be found by using the Dirac delta function 

to sample the power spectrum of the isolated cavity mode (Equation (7-9)). To test this 

approximation quantitatively, we plot the values of the L2 isolated cavity power spectrum (red 

curve) and the L2S3 CROW power spectra (black dots) along  in Figure 7-3 (d). Multiple 

values of k are shown on the same plot, and the blue dashed lines indicate the position of the 

light lines. The overall agreement is quite good.  

As a further check of the TBA model, we quantitatively compare the results for Q(k) to those 

obtained by direct simulation of the full CROW structure. Figure 7-4 shows results for CROW 

waveguides with varying separation between cavities: Figures 7-4 (a-c) correspond to L2S2, 

L2S3, and L2S4 CROWs, respectively. Qo for the isolated cavity is shown by the red lines and 

has a value of 1440. 

The results labeled “FDTD” and “FDTD-LC” represent two different, direct methods for 

calculating Q(k) from the full CROW structure. In both cases, a Bloch periodic unit cell with 

fixed k was used, as described above. A narrowband, pulsed source was used to excite the mode 

of interest. In the first case (“FDTD,” black lines) Q(k) was calculated from the field decay time 

after source turn-off. In the second case (“FDTD-LC”, magenta lines), Q(k) was instead 

calculated from an integral over the CROW fields via the light-cone approach (Equations (7-2)-

(7-5)). The agreement between the two direct methods is good, indicating the validity of the 

light-cone formulation for CROW modes. For high-Q modes, one might expect the “FDTD” 

method to be more accurate than the “FDTD-LC” method, which depends on an integral over 

small field components and may therefore be more susceptible to numerical error than the 

extraction of a decay time.   
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The results labeled “TBA” are obtained by using the tight-binding approximation to calculate 

Q(k) from the isolated cavity mode, via Equation (7-13) (blue lines). The TBA is shown to 

predict the Q(k) well. The maximum difference between the TBA method and the FDTD method 

is 12% for L2S2, 7% for L2S3, and 3% for L2S4. As expected, the accuracy of the TBA 

improves with increasing cavity separation. Importantly, using the TBA allows the prediction of 

the entire Q(k) curve for all three CROWs from only a single calculation of the isolated cavity 

mode. 

 

Figure 7-4 Q(k) for L2 CROWs with varying cavity separations: (a) L2S2, (b) L2S3, and 
(c) L2S4. Dots represent calculated values. Lines represent guides for the eye. 

 

From Figure 7-4, we notice that the k-dependence of the CROW quality factor, Q(k), is not 

universal. Q may increase or decrease with k, depending on cavity separation. For all three cases 

shown (L2S2, L2S3, and L2S4), the minimum and maximum values of Q(k) occur at either 

 or . Depending on k, the CROW mode can have either a higher or 

lower quality factor than the isolated cavity. In the middle of the Brillouin zone, the quality 

factors are similar. At , the difference between Q(k) of the CROW and Qo of the 

isolated cavity is below 10% for all three cavity separations shown.  
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Interestingly, while the L2 cavity mode cannot emit light vertically due to symmetry 

considerations [29], the CROW can. For the isolated cavity, symmetry prohibits coupling to a 

plane wave propagating in the z-direction. However, leakage occurs in off-normal directions, 

yielding a finite quality factor. For the CROW mode at , symmetry again prohibits 

coupling to a z-propagating plane wave. However, translational symmetry requires that any 

leakage be in the z-direction.  The finite value of  indicates that vertical leakage does 

occur; in this case, it arises from interference between off-normal plane waves radiated from the 

individual cavities. 

 

7.4 Factors Influencing the CROW Quality Factor 

The results above verify that the TBA model is a good predictor of Q(k) in CROWs based on 

the L2 cavity. Using the TBA, we can gain insight into how the CROW quality factor depends 

on wave vector, cavity separation, and the quality factor of the isolated cavity.  

In Figure 7-5, we plot Q(k) for L2 CROWs as a function of cavity separation (black lines). 

Triangles indicate Q(0), and circles indicate Q(kBz). All values are calculated using the TBA. We 

see from the figure that Q(0) and Q(kBz) oscillate around the Qo of the isolated cavity, shown by 

the dashed line. Interestingly, Q(0) and Q(kBz) are always on opposite sides of Qo. As a result, it 

is never the case that Q(k) is larger or smaller than Qo for all k. As the number of separation 

holes is increased, both Q(0) and Q(kBz) approach Qo. This trend is intuitive; in the limit of large 

separation, the CROW can be viewed as a chain of isolated cavities.  

We next increase the length of the cavity. Results for L3 CROWs are shown by red lines in 

Figure 7-5 (a). It can be seen from the figure that Q(0) and Q(kBz) again oscillate around the 
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isolated cavity value. Moreover, the increase in the isolated cavity Qo between L2 and L3 

corresponds to an increase in Q(k). Similarly, we can form CROWs from L4 or L5 cavities (blue 

and magenta lines in Figure 7-5 (a)). Within the family of L2 to L5 cavities, the CROW quality 

factor increases with the quality factor of the isolated cavity. This result corresponds to the 

intuitive argument presented above in (Section 7.2). As the quality factor of the isolated cavity 

increases, the components of its power spectrum inside the light line decrease. This also tends to 

decrease the leaky components of CROW power spectrum, which may be obtained from the 

cavity power spectrum via Fourier component sampling.  

For each cavity length (or data color) shown in Figure 7-5 (a), we notice that there are nodes 

where Q(0) and Q(kBz) cross. At these points, we expect Q(k) to be flat. In Figure 7-5 (b), we plot 

Q(k) for CROWs designed with a number of separation holes equal to the first node in Figure 7-5 

(a). In all cases, the variation in Q(k) is small compared to Figure 7-5 (a). For L3 and L4, the 

number of separation holes is equal to 3. We thus obtain designs for CROWs whose loss is 

similar to the isolated cavity across the entire band. For L2 and L5, the ideal separation is non-

integer. While loss values can be calculated within the TBA, it is not obvious how to achieve 

non-integer separations in a real CROW structure. However, we have verified via direct FDTD 

simulations that for the L2 cavity, simply using a CROW unit cell of 4.4a and allowing a slight 

overlap of circular holes at each edge of the cell yields a similarly flat Q(k) trend to that pictured, 

though at somewhat higher values. We have also verified via FDTD simulations (not shown) that 

in L3, L4 and L5 cavities, the TBA method gives accurate results for Q(k) provided that the 

number of separation holes is greater than 2.  
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Figure 7-5 (a) Quality factor for CROWs based on different constituent cavities. Triangles 
indicate Q(0); circles indicate Q(kBz). Dashed lines show Q for single cavity. Calculations 

are performed using the TBA method. (b) Q(k) for CROWs designed with a number of 
separation holes equal to the first node in (a). 

 
 

7.5 Summary 

In conclusion, we have applied the tight-binding approximation (TBA) to predict the 

radiation loss of CROW waveguides in photonic crystal slabs. Our formulation shows that as the 

quality factor of the isolated cavity increases, the CROW quality factor tends to increase as well. 

This trend can be understood within the light-cone picture of radiation loss. For both isolated 

cavities and CROWs, the quality factor is related to the spatial power spectrum of the fields 

above the photonic crystal slab. As the magnitude of the components inside the light cone 

decrease, the quality factor increases. Within the TBA, the CROW power spectrum can be 

approximated by sampling the isolated cavity power spectrum in Fourier space. The loss of the 

CROW thus tends to follow that of the isolated cavity. We have verified the validity of the TBA 

by comparing predicted values of Q(k) for L2 CROWs with those obtained by direct simulation.  
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Importantly, our method allows the calculation of the wave-vector dependent CROW quality 

factor for a range of cavity separations from a single simulation of the isolated cavity fields. As a 

result, it is possible to scan various CROW configurations with minimal computational power. In 

particular, we demonstrate that it is possible to design waveguides with low, flat losses across the 

entire Brillouin zone, even at small intercavity separations. 

We expect our results to be useful for a range of applications. For slow- and stopped-light 

applications, the fidelity of signal transmission at the end of a delay line depends on achieving 

low, flat loss across the signal bandwidth. In coupled-cavity lasers, the ability to tailor the Q(k) 

loss profile could provide a useful method to control the effects of mode competition and tune 

the directional output of the laser. Lastly, in the context of light-assisted self assembly above 

photonic-crystal slabs [24, 25], our method may facilitate the design of large-area, coupled-

cavity modes with high quality factor that nevertheless couple to normally-incident radiation.  
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Appendix: 

Force Calculation in Time Domain 

The Maxwell stress tensor (MST) is a general formalism which allows to calculate the force 

exerted on an object for a given electromagnetic field distribution. To evaluate optical force 

exerting on a component, the MST is numerically integrated over a closed surface surrounding 

the object: 

       (A-1) 

where α and β indicate direction x, y or z, n is the outward normal to the closed surface S, and 

the stress tensor,  

                   .  

To calculate the stress tensor Tαβ, full electromagnetic field distributions are needed, which 

can be obtained from an appropriate full-vectorial electromagnetic solver.  We show an example 

of using a FDTD solver and the MST method to solve for optical force on polystyrene particle by 

the enhanced light of guided resonance mode in Slot-Suzuki-phase lattice. An artificial surface is 

taken to enclose the polystyrene nanoparticle. As shown by Figure A-1, here an integration cube 

is taken with 20 nm away from the particle (refractive index~1.60). It is highly recommended to 

check if the calculated force was significantly varied with different integration surface. A force 

dependence on surface indicates questionable modeling.  
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Figure A-1 Schematic of one unit cell of Slot-Suzuki-phase lattice. A cube is taken 
enclosing the particle as marked by blue dashed lines for integrating the Maxwell Stress 

tensor. 

 

Optical forces are correlated with optical performance. As a starting point, the device without 

particles are simulated to get an idea of critical optical performance including resonance 

wavelength, quality factor and mode profile. A test of mesh size should be conducted to check 

how parameters converge. Generally speaking, finer meshes are favorable for more accurate 

calculation in the cost of computational resource. By convergence test, a reasonable mesh size 

could be decided to achieve acceptable results without occupying too much resource.  

For force calculation, a particle is included in the computational cell. Finer meshes are 

required in the region of the particle and small features like slots in the device. In this case, it is 

advantageous to use a FDTD package which can define un-uniform meshes. One FDTD 

implementation, Lumerical, is applied in our modeling for force calculation of particles with 

radius of 25 nm.  

Light distribution varies with wavelength, and thus, optical force is dependent on wavelength.  

Using frequency-domain solver, a group of calculations are needed to scan over the wavelength 

of interest. By using time-domain solver like FDTD, we can obtain the entire frequency spectrum 
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of force in a single simulation, by Fourier-transforming the response to a short pulse. The 

frequency resolution is decided by the total running time. For narrow-bandwidth features like 

high-Q resonance, FDTD simulation needs to be run by long time to accurately compute the 

fields and forces. If the resonance is excited by achromatic light source with different 

frequencies, force at each frequency contributes to the effective force.  

For high-Q resonance mode, it is convenient to perform the force calculation in the time 

domain rather than the frequency domain. In FDTD, we excite the mode using a dipole source 

inside the slab. For efficient excitation, the bandwidth of the dipole source is larger than the 

resonance linewidth. A couple of dipole sources may be positioned at positions with expected 

strongest intensity. To have an idea of the mode profile, an eigenmode solver, e.g. MPB or GME, 

can be used before FDTD calculation. After the source is tuned off, the fields in the resonator 

start to decay. The decaying rate can be described by quality factor Q. The instantaneous 

electromagnetic fields on the integration cube are recorded for several optical periods. Equation 

(A-1) is utilized to calculate the time-dependent force. Typically, the time scale for mechanical 

response is longer than the optical period, and the time-averaged force over the optical periods 

may be considered. No long running time is needed. Another advantage of time-domain method 

is that all frequency components are taken into account for force calculation.  

The force can be normalized over electromagnetic field energy U. After the source is tuned 

off, the instantaneous electromagnetic fields in the unit cell are recorded for several optical 

periods. The time-dependent field energy is calculated by taking the volume integration over the 

unit cell:  

  (A-2) 
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The time-averaged energy over the optical periods can be calculated, and the corresponding F/U 

is obtained.   

The force can also be normalized by emission power P=ωU/Q.  

 
  (A-2) 

In steady state, the emission power is equal to incident power. The F/P can be calculated by 

the value of F/U and Equation (A-3). 

 

Manipulating Nanowires by Optical Forces 

In the thesis, different configurations have been discussed to achieve optical forces to either 

reposition waveguides, resonators and nanoparticles. It will be also interesting to manipulate 

nanowire arrays and tune optical performance by optomechanical effects.    

Nanowire arrays, as shown by Figure A-2, is a 2D grating structure. It is known that when 

light is normally incident upon a 1D- or 2D-periodically patterned structure, it can excite guided 

resonance modes with increased electromagnetic field intensity within the grating. It is expected 

that that the enhanced field intensity between two closely-positioned nanowires will give rise to 

an optical force on the nanowires.  

167



 

150 

 

 

Figure A-2 Schematic of square-lattice nanowire arrays standing on substrate. In 
each unit, there are two closely-positioned nanowires. Assume the material is InP. 

Light is normally incident into the array from free space. 

 

An example design is shown in Figure A-3 (a). For simplicity, one unit cell is plotted. An air 

gap of 68 nm is between two nanowires with dimensions of 135×135×2700 nm3. Assume the 

material is InP. The transmission spectrum (black curve in Figure A-3 (b)) is calculated by there-

dimensional FDTD method. Guided resonance modes are identified by transmission dips 

imposed on Fabry-perot fringes.  The optical force as function of wavelength is plotted by the 

red curve in Figure A-3 (b). The force is calculated by Maxwell Stress Tensor method. It is 

notable that force magnitude is significantly enhanced on guided resonance, especially for the 

resonance mode at 1550 nm. The negative sign means an attractive force. Figure A-3 (c) shows a 

side view of the Ex-component distribution at wavelength 1550 nm.  Note that the field intensity 

is enhanced in the air gap. It is expected the field confinement will generate large optical force 

on both nanowires.  
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Figure A-3 (a) Schematic of one unit cell. Dimensions are as given. The air gap 
between two nanowires is 68 nm. (b) Transmission (black curve) for normal 

incidence. Guided resonance modes are identified by transmission dips imposed 
on Fabry-perot fringes. Force spectrum (red curve) in the same wavelength 
window. (c) Side view. The blue and red color are for the Ex component. 

 

If 1550-nm laser light is normally incident with power of 1 mW per unit cell, the optical 

force is around -2 nN on each nanowire, causing a maximum bending of 2 nm at the nanowire 

top. The transmission spectrum can be modified by adjusting air gap. With the air gap reduced 

by 2 nm, the resonance wavelength will be red shifted by around 0.3 nm, one third of the 

resonance linewidth. Larger change in the air gap is desirable for easier optical probing by 

reading transmission shift. For fixed input power, larger displacements can be obtained by 

modulating the incident optical power at the mechanical resonance frequency. 
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Figure A-4 SEM image of top-down fabricated silicon (a) square lattice of 

nanowires, and (b) graphite lattice of nanowires.  

Nanowires can be fabricated by top-down method.  An array of 600-nm-tall silicon 

nanowires have been fabricated using e-beam lithography and inductively-coupled plasma 

reactive ion etching (ICP-RIE). We use a 2-µm thick silicon layer on top of a 2 µm silica layer 

(Ultrasil). The sample was spin-coated at 3000 rpm with HSQ (XR-1541), a negative e-beam 

resist. Using Raith150 e-beam system, a square-lattice pattern has been exposed with an 

acceleration voltage of 30 KV and dose of 2000 uA•s/cm2. The sample is developed in NaOH (1 

wt%) / NaCl (4 wt%). The pattern is transferred from the resist to the silicon layer by an ICP-

RIE machine using a gas mixture SF6/C4F8. HSQ is very sensitive to temperature and moisture. It 

is highly recommended to prepare, exposure and develop quickly. HSQ requires longer e-beam 

exposure time than PMMA. Under our etching conditions, the etching selectivity of HSQ over Si 

is 1:8.5. Figure A-4 (a) and (b) respectively show a square lattice and graphite lattice of nanowire 

arrays.  
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