
Collaborative Systems
and

Multi-user Interfaces

Gregg Foster

Report No UCB/CSD 87/326

October 1986

Computer Science Division (EECS)
University of California
Berkeley, California 94 720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1986 2. REPORT TYPE

3. DATES COVERED
 00-00-1986 to 00-00-1986

4. TITLE AND SUBTITLE
Collaborative Systems and Multi-user Interfaces: Computer-based Tools
for Cooperative Problem Solving

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A collaborative system is a real-time computer-based environment for cooperative work. Computer
systems have been available for some time to assist individuals with their work, but the use of computers
by groups is underdeveloped. The thesis of this dissertation is that a collaborative system can be built in a
principled way using network-connected workstations and that such a system can enhance group work.
Previous systems to support group work have generally either avoided computers, as in teleconferencing,
or have relied on long-haul networks to support asynchronous message-passing, as in computer
conferencing. This dissertation focuses on real-time software tools to support groups working together in
the same room. The Colab system and its tools explore the following properties of computer-based
cooperation: the structure of the problem-solving process, the design of multi-user interfaces, social
coordination, simultaneous activity, maintenance of consistent views of shared objects, and uses for
digitally captured meetings. To better understand and evaluate computer-based collaborative tools and
their uses, the Colab system and the Cognoter presentation tool were implemented and used for both real
and posed idea organization tasks. To test the system design and its effect on structured problem-solving,
many early Colab/Cognoter meetings were monitored and a series of preliminary experiments were
performed. These early observations indicated that people can and do work more efficiently and in parallel
if they are given tools that help them stay focused and that help manage the added complexity of multi-user
interactions.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

208

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Collaborative Systems

and

Multi-user Interfaces

by

Gregg Foster

All Hallow Even 1986

Computer Science Division

Electrical Engineering and Computer Sciences Department

University of California, Berkeley
94720

Copyright (c) 1986 Gregg Foster, All Rights Reserved

This research was supported by the Knowledge Systems Area of the

Intelligent Systems Laboratory at the Xerox Palo Alto Research Center; by

the state of California's MICRO program; and by Army Research Office

grant DAAG29-85-K-0070, through the Center for Pure and Applied

Mathematics, University of California, Berkeley.

Collaborative Systems and Multi-user Interfaces

Computer-based Tools for Cooperative Problem Solving

Gregg Foster

Submitted to the Computer Science Division October 31, 1986 in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

ABSTRACT

A collaborative system is a real-time computer-based environment for

cooperative work. Computer systems have been available for some time to

assist individuals with their work, but the use of computers by groups is

underdeveloped. The thesis of this dissertation is that a collaborative system

can be built in a principled way using network-connected workstations and

that such a system can enhance group work.

Previous systems to support group work have generally either avoided

computers, as in teleconferencing, or have relied on long-haul networks to

support asynchronous message-passing, as in computer conferencing.

This dissertation focuses on real-time software tools to support groups

working together in the same room. The Colab system and its tools explore

the following properties of computer-based cooperation: the structure of the

problem-solving process, the design of multi-user interfaces, social

coordination, simultaneous activity, maintenance of consistent views of

shared objects, and uses for digitally captured meetings.

To better understand and evaluate computer-based collaborative tools

and their uses, the Colab system and the Cognoter presentation tool were

implemented and used for both real and posed idea organization tasks. To

test the system design and its effect on structured problem-solving, many

early Colab/Cognoter meetings were monitored and a series of preliminary

experiments were performed. These early observations indicated that people

can and do work more efficiently and in parallel if they are given tools that

help them stay focused and that help manage the added complexity of

multi-user interactions.

to what there is of what I imagine there to be

Acknowledgments

Through the last few years, I have been fortunate to be associated with two

great institutions: the University of California at Berkeley and the Xerox Palo

Alto Research Center. People at both places demonstrate the value of

collaboration.

At Xerox PARC:

Mark Stefik, manager of the Knowledge Systems Area, introduced me to the

Co lab meme and set this work in motion. His advice, direction, and enthusiam

have been invaluable to me. I hope to repay him as he has repaid his best

teachers. Stan Lanning and Daniel G. Bobrow programmed portions of the

Colab and served as idea generators (many of them were good too). Steve

Levy did early work on locks and keys for the Colab. John Seely Brown, head

of the Intelligent Systems Laboratory, consistently encouraged the Colab

project. Lucy Suchman made insightful early Colab observations and Lissa

Monty made suggestions about the experimental design. Thanks also to Stan

for rides, conversation, and system guruism.

At UC Berkeley:

I am grateful to my research advisor, Richard Fateman, for his support

throughout my graduate career. I have appreciated his advice and his

availablity for discussion of relevant or irrelevant (or irreverent) topics.

Donald Glaser and Randy Katz, the other two members of my thesis

committee, made incisive suggestions at critical times in my work. Gaetano

Borriello and Margaret Butler read an early draft of this dissertation and

improved it with their comments. Kathryn Crabtree helped me navigate the

rocks and shoals of the Berkeley bureaucracy.

My Roma friends and other sophists made my stay here personally

worthwhile. Especially valuable to me was the cooperation and b'!!nign

competition within my prelim study group: Tony DeRose, Susan Eggers, and

Mark Hill. We made it.

And Chris, she knows why.

Table of Contents

1. Introduction and Overview

Introduction

The Colab Meeting Room

The Thesis
A Map of this Dissertation

2. Related Work

Introduction

Early Work
Computer-Based Communication Systems

Cooperative Problem-Solving

Real-time Systems

Now

3. Multi-user Interfaces

Introduction
Multi-user Interfaces

User Interface Principles and Multi-User Interfaces

Dimensions of Multi-user Software Tools

Implementation of a Multi-user Interface

Meta-programming and Programming Pragmatics

Summary

4. Cognoter, a Colab Tool

Introduction
Cognoter's Problem-solving process

Cognoter as a Multi-user Interface

Cognoter and Meeting Processes

Design Evolution

Summary

11
12
14
16
18

21
22
22
25
27
29
30

32
33
34
35
40
48
60
65

67
68
71
85
87
89
90

5. Implementation and System Objects

Introduction
Colab Implementation and Objects

Cognoter Implementation and Objects

Shared Objects and Database Consistency

Summary

6. Experiences and Experiments with Cognoter

Introduction
A Little History
Organizing Ideas
Phasing the Process
Equal Opportunity

Group Focus
The Experiments
Experimental Results
Future Experiments
Summary

7. Conclusion and Future Work

Goals and Concepts
Future Directions
Contributions of this Thesis

Appendix A: Glossary

Appendix B: Existing Multi-user Systems

Appendix C: Cognot~r Users Guide

Appendix D: Experimental Paraphernalia

References

92
93
94

100
118
129

130
131
132
133
135
136
137
140
144
153
154

157
158
162
166

168
171
174
181

186

Table of Figures

1.1 Colab Meeting room 15

3.1 Model-View-Controller 36

3.2 WYSIWIS 44

3.3 Relaxed WYSIWIS 45

3.4 ActiveRegion Diagram 49

3.5 ActiveRegion and ActiveWindow Class Lattice so
3.6 CursorMovedFN 51

3.7 A Mouse Event in an ActiveWindow 51

3.8 Denoter, a Colab Pointing Tool 53

3.9 Association/Associates 54

3.10 Layers of Abstraction 55

3.11 Noter, the Colab Note Passing Tool 58

3.12 Communication Protocol Diagram 59

3.13 BroadcastMethod Code 60

3.14 Semantic-actions, Display-actions, User-actions 62

3.15 U-S-D example 63

4.1 Tabula Rasa 70

4.2 Cognoter in Action: Brainstorming 73

4.3 Supporting Text 74

4.4 Links Establish the Order of Presentation 76

4.5 Groups Describe the Hierarchy of Ideas 78

4.6 Items Ambiguously Ordered can be Highlighted 79

4.7 Portion of a Cognoter outline 82

4.8 Evaluation of an idea graph 83

4.9 A Busy Item 87

5.1 D1agram of Illustrative Class Connections 94

5.2 High-Level Class Lattice 95

5.3 ColabExec Icon 96

5.4 Colab Executive Class 97

5.5 Conversation Class 98

5.6 Collaborator Class 99

5.7 Cognoter Object Class Lattice 100

5.8 Parts of Cognoter's Interface 101

5.9 Cognoter Class 102

5.10 CognoterWindow Class 103

5.11 Items: Model and Views 104

5.12 Group Item and its contents 105

5.13 Item link Object 106

5.14 Links in Grouping 108

5.15 Outline Algorithm 109

5.16 Outline and 0-tree 110

5.17 Cognoter graph and C-graph 112

5.18 Cognoter graph I Outline Venn Diagram 114

5.19 Ambiguity Algorithm 115

5.20 Ambiguity Algorithm Example 116

5.21 Linearized Cognoter Graph 117

5.22 Centralized Database Model 119

5.23 Centralized-Lock Model 121

5.24 Roving-Locks Model 123

5.25 Cooperative Model 126

6.1 The Experimental Protocol 141

Table of Tables

4.1 Brainstorming Phase Operations 75

4.2 Ordering Phase Operations 80

4.3 Evaluation Phase Operations 84

5.1 Communication Times (REMOTEVAL) 124

5.2 Communication Times (Courier) 125

6.1 Topics for the Experiments 142

6.2 Results of the Experiments 145

6.3 Topic Comparison 146

8.1 Communication Media 172

8.2 Communication Media Continued 173

1

All for one, and one for all; that is our device.
-Alexander Dumas, the elder

Introduction and Overview

In this chapter it is argued that meetings are an important part

of the problem-solving and decision-making process of

human organizations, and that computers can be used to

support real-time face-to-face meetings. The Colab meeting

room at Xerox PARC and its accoutrements are presented as

backdrop before spelling out the thesis of this dissertation.

The research strategy of this dissertation has been to build a

prototype system and use it to explore software dimensions

and meeting behavior. This chapter ends by presenting a road

map to the rest of this dissertation.

11

12

Introduction

Collaborative System: a real-time computer-based

cooperative work environment.

Most human enterprises require cooperation and communication. In

any task that calls for the coordination or agreement of several people- as

most complex tasks and many simple tasks do - face-to-face interactions

dominate the information flow and, therefore, determine the success of the

enterprise. The media used to support an activity has a strong effect on its

course. In group problem-solving activities the supporting media effect the

participants' ability to think, communicate, and remember. Mismatches

between support media and the participants' capabilities and interests

account for the all-too-familiar boredom and frustration of unproductive

meetings.

Technology for supporting meetings has advanced little in the last

several thousand years: from sticks in the dirt and charcoal on stones to

blackboards, and flip-charts. Computers are used increasingly to support and

amplify the work of individuals, and yet when we want to work as a group we

typically leave this active medium behind and move to traditional passive

media.

Why have blackboards been the long-time technology of choice for

meeting support? The ubiquitous blackboard brings many useful capabilities

to group work. It provides a shared and focused memory: additions are

visible, as they happen, to the entire group. A blackboard also serves as an

area for flexible placement of text and figures, and this complements the

human capability for manipulating spatial memories.

What are the limitations of blackboards as a meeting support medium?

Space - both on the blackboard and in human short-term memory - is

limited. Items disappear when their space is needed for something else.

Rearranging items on a blackboard is inconvenient: they must be redrawn

and then the originals erased. Blackboards are also an unreliable medium for

storing information. They are used in rooms that are often shared by many

groups and the next group to use the room may reasonably want to use the

communication and storage media, including the blackboard, and will need

to clear off the work of the previous group.

Many of the things that are awkward to do with a blackboard are easy

to do with appropriately programmed computers. Almost any existing

computer system has a large and reliable memory when compared to

blackboards or human short-term memory. Many computers have bitplanes

and sketching programs with windows and other drawing aids. These systems

provide much greater flexibility for rearranging text and sketches, and are

capable of displaying text clearly in a variety of fonts.

Other benefits arise when the interesting events of a meeting are

captured digitally and stored in a computer manipulable format. A

computer-based problem-solving session can be extended in both space and

time. File systems and reliable memory makes is possible to stop and start a

meeting without loss of computational state. Arguments and discussions can

be resumed where they left off. The history of an issue can be reviewed.

Network communications make it possible for the state of a meeting to be

considered or extended by other, perhaps geographically separated, groups.

A digitally captured meeting record can also be used in research to record and

analyze the represented activities that occurred.

In a distributed multi-station computer system, like the Colab,

concurrent actions on objects of shared interest can be supported. The usual

turn-taking and sequential social mechanisms are altered and can be speeded

up by exploiting fast communication and parallelism. By putting all

participants on an equal footing and keeping them in touch with each other,

computer support of a group activity can promote a sense of community -

participation in such a meeting can be less like suffering through committee

work and more like pitching in at a barn-raising.

13

14

John Seely Brown [Brown83] pointed out the need, in the context of

computer-based learning environments, to differentiate between the process

of a creative effort and the product of such work. He also signaled the current

technological opportunity to use computers in recording, representing, and

communicating these underlying processes.

Computer-based meeting tools provide an opportunity to influence

group problem-solving processes - to create computational support that

encourages particular decision procedures, particular kinds of visualization,

particular kinds of argumentation, particular kinds of interaction between the

meeting participants. As it turns out, the same tools that provide new

opportunities to influence meeting processes also provide unprecedented

power for recording and studying meeting processes and set the stage for a

more detailed and profound understanding of what makes meetings work.

The Colab project is an experimental collaborative system that attempts

to understand and enhance the process of some kinds of real-time group

work. To give a concrete setting for the discussion that follows, the Colab

meeting room at Xerox PARC is described next.

The Colab Meeting Room

The most immediately visible facet of the Colab project is the special

meeting room (see figure 1.1). The meeting room is designed for face-to-face

meetings of two to six people -the size of most meetings in which group

problem-solving takes place. The major portion of the room is taken up by a

reconfigurable conference table with recessed workstations that are

connected by a network. Each workstation has a bitmapped display, a

keyboard, and a mouse. At the front of the room is a large electronic

blackboard callec. the liveboard. The liveboard is touch sensitive and provides

an alternative station for drawing figures or printing short pieces of text- to

the system it is just another workstation. For entering large pieces of text at

the liveboard, an elevated keyboard and mouse are provided on an adjacent

electern.

[OJ
Live board

Electern

8
8

Figure 1.1. The Colab meeting room. Across the middle of the room is a semicircular

conference table with communicating workstations interconnected by Ethernet. Each

workstation is equipped with a recessed display, keyboard, and mouse. At the front of the

room is a 1.5 meter by 2 meter electronic blackboard called the livebo_ard. The image on the

liveboard is coordinated with the images on the workstations. The liveboard is touch

sensitive and can be used for entering figures and short pieces of text. For entering

substa'1tial amounts of text, an elevated keyboard and mouse are provided at the adjacent

electern.

15

16

An Ethernete network is the primary means of communication among

workstations. This has been augmented with a video network that allows the

screen image of any machine to be displayed on any of the bitplanes in the

room (including the liveboard). Although the video network was originally

intended for ancillary uses of the Colab meeting room such as software

demonstrations to large groups, it has proved useful in Co lab meetings as well

{see chapter six).

The Colab system does not depend on the special meeting room

described above. It can be used anywhere with appropriate workstations

connected by Ethernet. The benefits and flexibility of the pleasant

surroundings, the Liveboard, and the video switch are lost, but the structure

and leverage provided by the software environment {the focus of this

dissertation) are still there.

The Thesis

This dissertation argues that software tools running on a network of

workstations can enhance group work. The high-level goal is to explore how

collaborative systems can augment usual group problem-solving practices and

enable new, more effective, techniques.

I believe that the true power of computers is as a communication

medium. Just as number crunching came to be seen as a special case of symbol

processing, symbol processing can be thought of as a special case of

communication. Related to this is the further belief that it is more important

for computer systems to enhance the effective parts of the processes human

beings have evolved over the centuries than it is for computer systems to

suppress human failings.

Expressed throughout this work is the overarching ideal that, given the

right tools, several people can coherently participate in a problem-solving or

decision-making process, avoid the "committee failure problem" and yield a

high quality result. In addition to physical media like blackboards and

computer screens, "meeting support" can include more subtle elements such

as "process structuring".

Collaborative systems move us forward along a path of ever-expanding

communication between people and other intelligent agents. While helping

people to work together more effectively is a worthy goal in and of itself, it is

my opinion that collaborative systems, as an assistance to Natural Intelligence,

will be a fruitful step through hybrid systems toward useful Artificial

Intelligence.

Research Strategy and Scope. Three questions have guided this work:

Which facets and processes of cooperative work can computer systems

effectively augment? What software tool features, underlying system

organization, and interface presentations best support these facets and

processes? And what effects do these systems have on the collaborators that

use them for their work?

This dissertation is concerned with the implementation and effect of

computer support for a small, but important, subset of meetings:

face-to-face group problem-solving involving motivated and cooperative

participants. There are several other classes of meetings not directly

considered here: meetings to disseminate information, meetings to air

opinions, meetings to assign blame, and so on. There is also a wide variety of

meeting behavior goals: informative, obstructive, congratulatory, etc. Since

this area of research is new, the pragmatic focus in this dissertation has been

on the group activities that computer scientists, especially those of us working

on the Colab, often participate in: meetings where participants with basically

harmonious individual goals gather to make progress on a shared problem.

While it is hoped that many of the ideas developed here are extensible

to other classes of meetings, detailed extensions and studies of meeting

behavior in general are beyond the scope of this work. There are also many

subtleties in the human factors issues: lighting, lines of sight, screen angles,

distance between workstations, etc. - these things are not the immediate

concern of this dissertation (though they are part of the Colab project). In

17

18

contrast to teleconferencing and computer conferencing (see chapter two),

research on computer-supported face-to-face meetings focuses on

problem-solving, interfaces, and communication rather than on the

distribution of images and information to distributed sites (though this

necessarily is considered as well).

Providing computer support for groups involves writing a lot of

software: software to present a multi-user interface to several participants

and software to keep distributed data consistent in a highly interactive

environment. Specific requirements for software tools to support such

face-to-face meetings and their implications are one of the foci of this

dissertation. Software tools also use and provide models of cooperative

problem-solving processes. Designers of Colab software tools script the

meetings that use their software: subtly or obviously; intentionally or not.

This is better done in a principled manner. These ideas were explored through

a much iterated test-redesign cycle of the Colab system and the Cognoter tool

for presentation design (see chapterfour).

The Colab project is, appropriately, a collaborative project. My primary

contributions have been the exploration of multi-user interface issues as

described in chapter three and the design and implementation of the

Cognoter meeting tool as described in chapters four and five. I also

conducted the Cognoter/Colab experiments and data collection observations

at UC Berkeley described in chapter six. I contributed substantially to the

overall design and implementation of the Colab system and was a main

participant in the experimental uses and observations that took place at Xerox

PARC. The tangible evidence of my implementation effort is some thousands

of lines of lnterlisp/Loops code. In the few places where continuity of

exposition requires presentation of work done primarily by others I have tried

to make that clear.

A Map of this Dissertation

In this introduction I have outlined the motivations that led to the

Colab project and to this dissertation, briefly described the Colab meeting

room, and presented my thesis and research strategy.

Chapter two surveys related work that does not fit naturally into the

following chapters. This chapter focuses on work dealing with computer

communication and computer-based systems for group work.

In chapter three I discuss multi-user software and collaborative systems.

I consider the design dimensions for software tools that support the group use

of computers for cooperative work. This chapter also includes

implementation details and features relevant to the design of multi-user

systems in general.

Cognoter, a Colab tool for organizing and developing material for

presentation, is introduced in chapter four. It is the first full-fledged tool for

the Colab. The chapter explores the theory and practice of Cognoter and the

motivating decisions that went into its design.

Implementation details and design tradeoffs are discussed in chapter

five. I discuss the design of Cognoter, the Colab's main system entities, and

some approaches to shared object consistency.

In chapter six I describe early uses of Colab and Cognoter. Cognoter

was used informally and semi-formally for several months while it was being

redesigned and debugged. Through this period some general principles

became apparent as well as many questions about what the tools were doing

·and what they should be doing. These observations· lead to a set of

experiments using Cognoter as a test bed for the exploration of

computer-based group problem-solving. The purpose of these experiments

was not to prove the superiority of Cognoter over other techniques, but to

lend plausibility to some of the claims made in this dissertation and to guide

further understanding and development of Cognoter and future tools.

19

20

Chapter seven is the conclusion. Therein are speculations about the

effects of collaborative systems on group problem-solving and about areas

expected to be fruitful for further research.

Note:

1 The term blackboard is used generically to refer to any wall-mounted erasable writing

surface commonly used in meeting rooms. The word blackboard, in this work, is not

intended to refer to commercially-available teleconferencing products or to programming

organization techniques for artificial intelligence systems (which have adapted and

redefined this term).

2

Far better an approximate answer to the right

question, which is often vague, than an exact

answer to the wrong question, which can always be

made precise.
-John W. Tukey

Related Work

This chapter surveys several early works that inspired or

indirectly contributed to this dissertation. Computers have

already found wide use as communication devices, especially

in electronic mail systems. Computers have been used to a

smaller extent in research projects involving more

sophisticated systems including: computer-conferencing,

hypertext, and multi-media mail conferencing. Various

projects exploring cooperative work processes have also been

useful to the present work. There have been a few real-time

systems that share many similarities with Colab, including

RTCAL, Electronic Blackboards, and the general ~rea of

Computer Conference Rooms.

21

22

Introduction

The research described in this dissertation has benefited from previous

work in several disciplines. Nevertheless, there has been, so far, no

comparable system dealing with computer-based real-time support for

collaborative problem-solving in face-to-face situations. The main purpose

of this chapter is to survey work that is significant to this dissertation, but does

not arise naturally in the following chapters.

Early Work

A few observers of technology and the human condition foresaw the

utility of computers in augmenting and supporting group problem-solving

years before such systems were technically practicable. The following

subsections highlight these early insights and projects.

Memex. In 1945, Vannevar Bush, in the course of speculating about

how "we may think" in the future, introduced an imaginary system he called

the "memex" [Bush45]. The memex was an early conception of the personal

workstation. It included an interactive database that could save associative

trails of excursions into a global encyclopedic database and recall and revisit

them at a later time. Bush predicted that such a device would revolutionize

human problem-solving. His description of the memex is strangely familiar:

On the top are slanting translucent screens, on which material can be

projected for convenient reading. There is a keyboard, and sets of buttons

and levers. Otherwise it looks like an ordinary desk.

Human-Computer Symbiosis. Licklider was another early thinker

concerned with the computer augmentation of individuals and groups, and

how computers would change the way people worked. Among his many

insights and predictions was a precursor to the Liveboard [Licklider60]:

The large wall display and its associated system are relevant, of course, to

symbiotic cooperation between a computer and a team of men [sic].

Laboratory experiments have indicated repeatedly that informal, parallel

arrangements of operators, coordinating their activities through reference to

a large situation display, have important advantages over the arrangement,

more widely used, that locates the operators at individual consoles and

attempts to correlate their actions through the agency of a computer. This is

one of several operator-team problems in need of careful study.

NLS/AUGMENT. Inspired by Bush's vision, Douglas Engelbart began, in

the early 1960's, to experiment with systems using computers to support

collaboration. By the late 1960's, NLS (for oN-Line-System, later called

AUGMENn supported terminal linking, electronic mail, and the sharing of

files [Engelbart68,84]. The general idea behind NLS was to provide a working

environment for "knowledge workers". Quoting Engelbart [Engelbart84]:

[AUGMENT] permits a user to call an on-line conference of two or more

people, view and edit files, add and remove conferees, pass the gavel, and

transparently connect to other machines via TYMNET or ARPANET.

Televiewing is usually done in conjunction with a telephone connection, and

is often used to support document review and revision in a synchronous

mode, where all conferees can see and discuss changes as they are made.

Engel bart's guiding concern was to build environments to augment the

human intellect. He was one of the first to understand the potential of

computers as a medium for communication. He is also known also for the

development of novel input devices, especially the mouse.

The Briefing Room. In the mid 1960's, Gene Roddenberry and the set

designers for the classic television program Star Trek, envisioned (and built a

mock-up of) the Briefing Room of the future [Gerrold73]. The Briefing Room

(supposedly installed on the starship Enterprise - NCC 1701) consisted of a

conference table with miniature computer screens set into it (the use of the

individual workstations was never demonstrated -the screens and keyboards

appear to be too small}. In the middle of the conference table was a

three-sided video display of remote participants. On one wall was a large

screen for displaying data and images from remote sites. This room was used

for (fictional) crisis problem-solving and group communication.

Electronic Mail and the New Literacy. The advent of time-shared

systems such as TENEX [Bobrow72] brought file sharing, and network

communications to the computer system armamentarium. This in turn made

electronic mail feasible. The Advanced Research Projects Agency network

(ARPANET), for example, was established so that government-funded

23

24

researchers could have access to host computers at other locations, although it

came to be used predominantly for the exchange of messages among the

researchers [licklider78]. Soon after these features became generally available,

observers such as Joshua Lederberg and J. C. R. Licklider reported qualitative

differences in the ways that they were approaching problems and interacting

with colleagues [Lederberg78] [Licklider68]. Lederberg, writing about "the New

Literacy" [Lederberg78]:

Computer communication networks ... permit a new form of informal

communication between scientists and often provide motivation and reward

for timely sharing of research results. In addition, computer-based support to

large distributed segments of a scientific community is made possible via users

and computers interconnected by computer controlled networks.

Terminal Linking. Once operating systems had features to support

several users, various researchers began exploring system utilities to slave,

split, and share terminals and display screens. Slaving one screen to another is

easy to do if the terminals are close together (say, in the same building). This

has been done for as long as video display terminals have existed. It is

primarily useful for making a single display visible to larger audiences.

Some features of NLS/AUGMENT, TENEX Link, and MIT ITS system

Output Spy (OS) simply direct machine output to more than one terminal and

accepts input from all linked terminals. Terminals in these schemes share a

single computational environment. Characters typed from any linked

terminal will appear on all linked screens; characters typed simultaneously

from two terminals will interleave (and appear to the machine as a single,

fast, but probably incoherent, type stream). These systems have been used to

advantage for collaborative debugging.

The talk and write utilities in UNIX both allow text typed on one

terminal to appear on another, but with no access to the remote

environment. Write buffers lines of text and ships them c71 to the (loosely)

connected target device. More interesting is talk (and similarly TALKOMA TIC,

CDC Plato): it splits both connected terminal screens into two parts, allowing

simultaneous typing and displaying each character on both screens as it is

typed. No sharing of environment is allowed in talk, write, or TALKOMA TIC.

These utilities are generally used for messages or short negotiations lasting a

few seconds or minutes.

Slave terminals and split screens allow a degree of collaboration, but

primarily in a sequential fashion. True concurrency is difficult in these utilities.

With Link and write, messages share the same screen space and can obscure

each other. Most of these features are only used when the terminals are

physically remote: they are useless in a face-to-face environment. For

real-time collaborative work of any complexity, these utilities are at too low a

level (keyboard input events).

Computer-based Communication Systems

Teleconferencing. Teleconferencing uses the transmission of video

signals to simulate a face-to-face meeting by displaying people at

geographically separated locations on one or more video monitors in a

conference room. This is useful when gestures and facial features are

important. There are many differences between a face-to-face meeting and a

teleconference; and many more differences between a computer-based

face-to-face meeting and a teleconference (most teleconferencing systems

make little use of computers, though this is changing). For an overview of

teleconferencing see Johansen [Johansen84] and Johansen, Vallee, and

Spangler [Johansen19].

The high cost of transmitting video images has probably been the main

factor preventing wider use of teleconferencing {and picture phones, etc.).

Slow-scan television, which transmits only a fraction of the display field

thereby greatly lowering the required video data bandwic;:ith, is a promising

innovation for teleconferencing applications. The Systems Concepts

Laboratory at Xerox PARC (Palo Alto, California) has demonstrated this by

holding meetings regularly with its satellite group in Portland, Oregon using a

slow-scan system for video images of remote conference rooms.

25

26

Computer Conferencing. There has been considerable literature on the

subject of computer conferencing. This sub-section draws on the surveys of

Hiltz and Turoff [Hiltz78], Kraemer and King [Kraemer83], and Rice [Rice84).

Computer conferencing systems use computers as a communication

medium, usually ignoring video images. They can be thought of as extending

electronic mail by adding features such as special purpose editors, voting

mechanisms, shared files, distribution and interest lists, and automatic

archiving. Like teleconferencing, computer conferencing supports

communication with geographically separated participants. It also lets

participants respond in their own time; logging onto the system, viewing any

new contributions, reviewing any old contributions, and composing any

desired responses. Computer conferencing works better for on-going,

long-term discussions than it does for short-term decision-making or

real-time cooperation since the turn around time for messages is at least

seconds (usually much longer} and electronic folders of messages are

cumbersome to use in a real-time interaction.

Computer conferencing, despite its name, is only an indirect ancestor to

this dissertation. It shares similar goals but is asynchronous rather than

real-time and does not attempt to provide structure for the participants

based on models of group problem-solving processes.

The main computer conferencing systems (and there have been many}

are EIES [Hiltz81] (various incarnations of EIES have been used by the

Department of Energy for several years), CONFER [Parnes77] (used for

discussion of social issues), FORUM and PLANET [Vallee76] (now called NotePad,

has been used in a variety of situations), and COM [Palme84] (fo~ public use in

Sweden}.

Hypertext. Hypertext refers to systems that support the arrangement

and re-arrangement of pieces of annotated and catalogued text into

documents (i.e., a paper might be built from existing paragraphs gleaned

from several sources in a hypertext network}. In addition to the work of

Douglas Engelbart, who saw early on the potential of organizing and

indexing disassociated text, hypertext systems include Xanadu [TNelson81),

TextNet [Trigg83), and, at Xerox PARC, NoteCards [Halasz86] and Annoland. The

work in hypertext and the Colab share an interest in organizing information

in explicit knowledge structures for collaborative tools.

Multi-Media Conferencing. Multi-media conferencing is essentially

electronic mail with protocols and peripherals to support voice, graphics, etc.

Diamond, a multi-media message system, has facilities for creating, editing,

transmitting, and managing multi-media documents [Forsdick85) [Thomas83]. A

Diamond multi-media document may contain text, graphics, images

(bitmaps}, and speech. Other media, such as spread-sheets, are also possible.

An example of a Diamond multi-media document is a map in the form of a

drawing with accompanying voice directions. Users without powerful

bitmapped workstations and other media peripherals, such as vocoders, will

not be able to take advantage of all of Diamond's capabilities.

Cooperative Problem Solving

The Evolution of Cooperation. Evidence for the general value of

immediate feedback and cooperation in face-to-face situations can be found

in the Prisoner's Dilemma competition run by Axelrod [Axelrod81). In this

competition programs embodying different strategies for dealing with the

game-theoretic Prisoner's Dilemma 1 problem ran against each other in a

Round Robin tournament. "TIT FOR TAT", using a very simple reactive

immediate feedback strategy (it did whatever the other guy did last time),

was the overall winning program. Interestingly, TIT FOR TAT cannot beat any

other strategy in a single encounter: it won the tournament by consistently

doing well against all of the other strategies.

Structuring Group Decision-making. There have been attempts to

establish effective techniques for group decision-making. Two examples that

have seen actual use (with and without computer assistance) are the Delphi

method [Linstone75] and the Nominal Group method [Kraemer83]. The Delphi

method has been used for forecasting by a medium sized group (10 to 100)

27

28

dispersed in space and time [Turoff72]. The basic techniques consists of a series

of questionnaires asking the participants to estimate the values of variables

affecting the larger decision. Nominal Group is a consensus-forming process

intended for small groups in face-to-face meetings. These meetings enforce

four phases: silent generating of ideas and suggestions, presentation of the

suggestions, discussion, and ranking of the ideas. The phases are related to

the phases of Cognoter, but are more restrictive and rigid.

Lateral Thinking. DeBono suggests lateral thinking as a tool for

enhancing creativity [DeBono70]. The central idea is to occasionally stop trying

to think of the next step in a logical progression and to intentionally consider

a tangent for a while- even a random one- to gain fresh perspective and to

uncover new ideas. DeBono:

Lateral Thinking makes quite a different use of information from logical (vertical)

thinking. For instance the need to be right at every step is absolutely essential to

logical thinking but quite unnecessary in lateral thinking. It may sometimes be

necessary to be wrong in order to dislocate a pattern sufficiently for it to re-form in a

new way. With logical thinking one makes immediate judgements, with Lateral

Thinking one may delay judgements in order to allow information to interact and

generate new ideas.

Mutual Protocols. Whimbley and Lochhead, in describing the theory

behind their course in problem-solving techniques, argue that comparison of

strategies is extremely important [BransfordBS]. Their goal is the teaching of

problem-solving strategies. Since any problem-solving involves some

on-the-fly learning, their work applies to problem-solving competence as

well. In their course, Whimbley and Lochhead divide the process of learning

problem-solving strategies into three stages: 1. examining expert protocols;

2. working in student pairs with one taking the role of listener/checker and

the other taking the role of solver; 3. devising problems for others to solve

("seeing problems from the inside out"). These stages are stages in learning

and have little to Jo with the three phases of interaction embodied in

Cognoter (see chapter four). Mutual protocols are related to Colab in that

they are both concerned with face-to-face real-time interactions and the

synergetic and corrective effects of group interaction.

Real-Time Systems

Interactive On-Line Conferences. RTCAL (Real-Time CAlendar),

developed at MIT by Sarin and Greif allows a group of users to "exchange

information from personal calendar databases in order to schedule a future

meeting" [Sarin84a,BS). MBLINK, another tool built on the same underlying

architecture, allows a group to cooperatively edit a bitmap [Sarin84). This work

is "concerned with implementing real-time conferences, in which groups of

users at interconnected workstations can collectively view and manipulate

on-line information" [Sarin84a].

These systems have much in common with Colab. They share the

domain of real-time meetings and they maintain consistent views of mutable

shared data by sending messages over a local network. Sarin's work differs

from Colab in that there is no attempt to explicitly support or test process

models for cooperative problem-solving and that the target groups for RTCAL

and MBLINK are distributed (though usually in voice communication via

telephone for negotiation and discussion) [Sarin84].

Computer Conference Rooms. In 1983 Kraemer and King surveyed

computer supported conference rooms [Kraemer83]. Computer conference

rooms are roughly at the halfway point between computer conferencing and

teleconferencing. Narrowly defined, they are meeting rooms with terminals

running "decision support software" (often a database system, sometimes

including some group process software like Nominal Group). Kramer and

King's overall impression was that hardware difficulties were preventing

these projects from finding acceptance. They cited the inaccessibility of

computing resources, the unreliability of video projectors, and limited

graphics capabilities as the primary obstacles to the success of these efforts.

However, in the past few years, computing and projection technology have

become much more reliable and much less expensive.

Electronic Blackboards. Electronic blackboards have been developed at

a few research labs (AT&T and NEC have product versions). They consist of a

few electronically connected glass "blackboards", thereby supplying a shared

29

30

resource. Any drawing on the board- made by someone using a special pen

-is displayed on all boards. The main advance represented by these devices

is that they can serve as a way to digitally capture whatever has been written

on them {and broadcast the actions or markings). Otherwise, they have the

usual limitations of blackboards: they are difficult to re-arrange, only simple

sketches and small amounts of text can be represented, and they are

computationally passive.

Now

Work in real-time cooperative systems has been hampered by lack of

computational power and networking. Several recent advances in technology

- including powerful personal workstations, local area networks, advanced

programming environments, and distributed programming and interface

technology - make it possible to develop prototype systems rapidly and to

experiment readily with new computer-based tools for meetings [Sheil83].

Now that it has become less expensive to construct large systems from

collections of computers connected via networks, it has become more

interesting to design special programming languages to support distributed

applications. For example, Liskov has designed and implemented Argus, a

language with features that support preservation and manipulation of

long-lived data [Liskov8S]. Argus includes atomic actions and atomic

data-types which simplify the handling of concurrency and failures and which

ensure serializability and recoverability. Greif, Seliger, and Weihl used Argus

to implement Seliger's CES, a distributed Collaborative Editing System [Greif86].

Other related research, especially that concerned with implementation,
. .

problem-solving techniques, and design issues, is described later in context.

Note:

1 The Prisoner's Dilemma is a two-player game where each player makes a decision to

"cooperate" or "defect" in the absence of information about what the other player is

doing. In the version run in the tournament if player A cooperates and 8 defects then 8

wins 4 units and A loses 1 unit. If both cooperate then each wins 2 units. If both defect

then neither gets anything. An encounter consisted of several decisions and interactions

where the history of each player was available.

31

3

Gentlemen, I do not mind being contradicted, and I

am unperturbed when I am attacked, but I confess I

have slight misgivings when I hear myself being

explained.
-Lord Balfour

Multi-user Interfaces

Central to collaborative systems is the concept of a multi-user

interface, a user interface for several simultaneously active

users and machines. In this chapter the basic principles of

traditional single-user interfaces are considered in the context

of multi-user systems. This chapter then explores specific

design dimensions and concerns for multi-user software tools

for interacting groups. The main ideas include task process

structuring, parallel activity, mutual protocols, and WYSIWIS.

Finally, generally applicable implementation techniques for

multi-user interfaces are discussed. These include UIDs,

BroadcastMethods, Associations, ActiveBegions,

ActiveWindows, underlying communication protocols, and

disciplined ways of partitioning distributed programs- ways

that are easier to write and understand: user-actions,

semantic-actions, and display-actions.

33

34

Introduction

As discussed in chapter one, computer systems and applications have

generally been designed for single users. Computers are now being used

extensively for communication, but such computer-based communications

are still usually sequential and synchronous. If computer systems are to be

used for parallel and synergetic cooperative work, something beyond the

basics of accurate memory, computational underpinnings, and

communication primitives is needed. A computer system that provides the

right kind of "something more" is a collaborative system.

The general goal of a collaborative system design is to provide new

kinds of leverage and organization to a group of people focusing

simultaneously on a common objective. The effectiveness of a group working

with a blackboard can be taken as the standard by which the effectiveness of

a collaborative system is measured (see chapter six).

A collaborative system ideally gives each user the illusion of having

immediate access to all shared objects and the ability to manipulate them at

will. To stay current and avoid conflict or redundancy in this situation each

participant must be ab~e to see what everyone else is doing. All users should

have equal access to shared conceptual objects (i.e., the database) and should

be able to simultaneously act upon (different) portions of them.

The flexibility and potential power offered by collaborative systems

don't come free. They come at the cost of more complexity in the underlying

software and increased network internal communication traffic.

Collaborative systems are distributed systems and any implementation must

respond to the following questions. How is the data represented internally?

How is the data presented and how are the presentations of the data kept up

to date? How is the shared data kept in a consistent state for all users?

It is also important for a collaborative system designer to understand

the effect of a system on both the communication and the communicators. In

addition to understanding the system primitives (the operations, objects and

data structures), a system designer needs to identify and formalize pragmatic

knowledge of meetings and group problem-solving processes. A

collaborative system design inevitably expresses a group process structure.

Computer-based collaboration tools provide an environment for study

of the activities of groups making decisions and solving problems. The

underlying computer system is a convenient place to install automatic data

gathering tools (this should only be part of an experimental system).

This chapter explores the vaguely characterized "something more"

mentioned at the beginning: the interface issues and process structuring

aspects of software intended for use by groups- especially as they relate to

the Col~b collaborative system. This chapter also presents some generally

useful multi-user interface implementation issues.

Multi-user Interfaces

A multi-user interface is a human-machine interface coordinated for

several users sharing information at the same time. This notion is different

from traditional time-sharing in that with a multi-user interface any and all

of the users (probably on personal workstations) can act simultaneously and in

concert on parts _of the same thing - time-sharing systems are designed

expressly to avoid this.

For a single computer to support a multi-user interface as well as

separate workstations connected by network can, the mainframe would have

to have fast processors {or a very fast single processor- where "fast" means

"much faster than a workstation"), fast context switching, fast networking,

and facilities for remote mice and bit planes (implying a very large memory).

The hardware to support three people using a basic Colab system costs about

$30K {I hope this number looks absurdly high in the near future). A

sufficiently fast time-shared system would cost at least twice that amount. In

addition to the savings in cost, the workstation configuration supports

simultaneous local interactions and can be incrementally expanded.

35

36

User Interface Principles and Multi-user Interfaces

Let's back up a little and describe general human-machine interface

design principles and relate them to multi-user interfaces.

Time and Space. In any interface design the usual time and space

tradeoffs between design goals must be made (e.g., a more complete

command language may be more difficult to learn than a simpler, more

primitive one; or a single long flat menu may or may not be faster to use than

a tree of shorter menus). Multi-user interfaces put additional burdens on

designers trying to achieve these resource allocation goals since several agents

are ·commonly active at once.

For instance, on any computer terminal there is only so much screen

space. Windows were originally conceived as a solution to this problem -

they trade space multiplexing for time multiplexing. But even with windows

space problems remain. One solution may be to group windows and

applications together into screen groups using the Rooms technique of

Henderson and Card [Henderson86].

In multi-user applications the screen space problem is exacerbated by

several users competing for publicly shared space and by the correspondingly

greater need to have many windows visible and active at once. The simplest

approach to this problem is to get bigger screens, but this is usually not

feasible and may only create more problems by displaying too much

information, all of which may not be relevant to each user. Another approach

is to employ compressed versions of some windows in which general activity is

discernible but details are suppressed. Still another approach, _described in

more detail later, is to allow private views of shared data.

Models, Views and Controllers. In the Smalltalk world [Goldberg83] the

user interface concerns are partitioned in a particularly useful way: into

models, views, and controllers (see Figure 3. 1). A model is the internal

representation of an object in the system. A view1 is how a user sees the

model: it could be a window, some text, a graph, a holographic image, a

combination of these, or something else completely. The user acts on a model

via controllers: controllers can be directly attached to input devices like the

keyboard or the mouse; or they can be abstracted constructs like menus or

annotated values. In a multi-user interface the model is shared with other

users. Each user may have private views on and local controllers of the shared

model. The model is the shared database and the views are illusory

manifestations of shared objects.

~ controller /

Figure 3.1. Model-View-Controller. An interface can be divided into three areas of concern:

the underlying model (data), the view (of the data) that each user sees, and controllers that

act on the data.

Point of View. How is the user injected into the data space? One way is

by supporting different points of view. This implies that relationships

between objects are part of the model. Participants are free to move their

viewpoints around in the data space, but actually moving an object {i.e.,

changing its relationship to other objects- spatial or otherwise) is reflected

globally in all viewpoints. This is directly analogous to physical intuition.

37

38

Attention. An interface should be designed so that attention is focused

on the ideas and facets of the task and not on the interface itself. Interface

tools and functions should sink below the level of consciousness. They should

be on the user's side of the divide between the user and the outside world

rather than entities out there somewhere to be manipulated in the hope that

the proffered invocations and gyrations will produce the desired results. This

is the difference between having a pencil and paper on your desk and having

a pencil in your hand poised over the paper. Again, in a multi-user

environment, each participant needs to be able to see what the others are

doing.

Deixis. Humans almost always prefer to use pointing (literally or

figuratively) and pronouns to refer to objects rather than having to compose

descriptive phrases that specify objects [BoltSOJ. Fundamentally, these human

biases are what is behind the perceived power of menus and mice. In a

multi-user environment problems of pointing and of referring to location

loom large. They are discussed later in this chapter {see pointing) and in

chapter five.

Immediacy. Rapid feedback is required for any real-time interface. The

acronym WYSIWYG {What You See Is What You Get) was coined to describe text

editors which normally display text as it will appear when printed. An

analogous acronym can be used to describe an important abstraction of

multi-user interfaces: WYStWtS (What You See Is What I See). WYSIWIS, its

variations and ramifications are discussed briefly in the WYSIWIS subsection

under Dimensions of Multi-user Software tools below, and at length in Stefik

et al [Stefik86) .

. Direct Manipulation. Thousands of existing programs for personal

computers covering a wide variety of tasks create the useful illu~ion that data

is being manipulated directly. This is true for text editing programs, figure

drawing programs and many others. The illusion that a data object is changed

immediately and directly when a user interacts with a program displaying a

stylized image of the data is a powerful one (Schneiderman83]. The underlying

system needs to perform the necessary computational gymnastics to maintain

the d1rect manipulation illusion without troubling the user. The appeal and

simplicity of direct manipulation interfaces (also called icon driven interfaces)

draws heavily on their ability to support this illusion.

When a system makes directly manipulable the concepts of an application,

programs become more understandable. For example, some bookkeeping

and accounting concepts are represented and manipulated directly in

spread-sheet programs. While the state of the art has no dependable

cognitive metric for how much this helps, the issue is a recurring theme in the

design of languages and knowledg~based systems. It has to do with reducing

the levels of abstraction that must be penetrated in order to understand

system behavior [Bobrow86].

The direct manipulation illusion is no less important in multi-user

interfaces. Users should be able to use their personal interface skills and tools

in a multi-user interface world. But, there will certainly be some differences.

For instance, if two participants begin to make conflicting changes to a shared

object or database, it would be counterproductive to keep them unaware of

the conflict. In such cooperative situations the participants need to be able to

observe what the others are doing so that they can coordinate their activities.

In a direct manipulation environment the image of an object and its

visible relationship to other objects should signal relevant state information.

Recalling the barn-raising metaphor from the introduction, if a participant

wants to move a piece of lumber, a look at the piece of lumber will reveal

whether or not the contemplated act is feasible. If someone else is currently

doing something with the lumber, that will be immediately obvious. In the

same way, multi-user interfaces must provide visual clues showing where the

other participants are working.

Illusions. As mentioned above, users should have the illusion that they

are directly manipulating objects and data. A consequence of this is that users

make their own internal models of the machine side of the interface. For

instance, a user moving (an image of) an object to (an image of) a trash can

may reasonably assume it has been thrown away. Ideally the interface is so

constructed that the users' guesses are valid.

39

40

Whereas a user's internal analogy or an interface designer's conscious

use of a metaphor may help a user guess correctly, such abstractions may also

confuse or blind the trusting user [Halasz82]. Continuing with the object in the

trash can: the user may have any of several internal models of what goes on

when something is put in the trash can. He may assume that, once in the can,

the trash is gone forever. He may assume that the trash is still retrievable

should he change his mind about it. He may assume that no further action is

necessary and that the object will (somehow) be collected early some

morning. He may assume that some further action is necessary to truly rid

himself of the trash. Any of these assumptions may or may not be correct.

Benign user illusions should be as little effected as possible by extending them

to multi-user environments. The extension should be completely transparent.

Modes. There are two related aspects of modality relevant to user

interfaces. Commands that work in one place should work in another and one

should be able to start new commands without having to clean up after an old

one. Like most things, the degree of modality is a matter of perspective and

grainsize. For instance, a so-called "modeless" interface may very well use

pop-up menus that monopolize the processor while waiting for the user to

make a selection from the menu. Applying modality goals to the multi-user

case, one participant should not, in general, be able to put the system into a

mode that alters the semantics of other user's actions.

Activity. Computer systems and user-interfaces have evolved. Early

systems, typified by batch mode systems, expected users to perform many

actions before the machine gave any sort of feedback. Most current systems

are of the reactive type: they will quickly respond to user actions (quite

possibly with an error, but this is much better than silence). Future systems

will be interactive, that is they will not only respond to user actions but will be

intelligent enough to suggest future actions or to act on implication as well as

on command. It is not important to draw a careful distinction· between

"reaction" and "interaction", but in a collaborative system it is important to

be aware that there are two levels of activity: with other users (true

interaction) and with the communication tools (reactive).

Extensibility. It is generally desirable for users to have the ability to

customize the way information is presented and the way a system behaves

toward them. In the multi-user situation things are more difficult. In general,

personal extensions should not propagate across machines since

personalizations on one machine may conflict with another participant's

personal extensions. The related notion of private and public views is

discussed below in Dimensions of Multi-user Software.

Exploration. It should be possible to start up the system quickly and just

mess around without fear of breaking something or upsetting somebody. It

should be possible to learn about the system this way, though perhaps

inefficiently [Malone82]. This implies an easy to learn system with an undo

facility and some protection from easily doing destructive things. In

multi-user system it is important that the system be quick and easy to start­

a system that takes a long time to bring up will get little use.

Communication. In a single user interface, the primary concern is that

the human and the machine understand each other (or at least communicate

to the extent that the machine follows orders). What happens when the goal

is to provide a coherent interface for several people on several machines?

General user interface principles and practice still apply, but there are new

constraints and demands on the system. A well designed multi-user interface

needs also to address the concerns of machines understanding other machines

(networking and database consistency) and people understanding other

people (group dynamics and communication).

Dimensions of Multi-User Software Tools

This section provides an overview of the concepts involved in the design

of tools for collaborative systems. Some of the tradeoffs and goals inherent in

software intended to support group problem-solving are also discussed.

Meeting Tools. One definition of tool is an instrument, apparatus, or

construct used to perform an operation; a means to an end [Merriam69]. The

performance of a single task on a computer often involves invoking a variety

41

42

of utilities and subsystems. For instance, the creation of a document may

involve the use of a shell language, a text editor, a drawing program, and a

proof-reading utility. Similarly, different activities arise in the course of a

problem-solving session and these require different programs to support

them. Tools for groups are different from tools for individuals in many

profound ways. These tools may be called meeting tools.

In the Colab, a meeting tool embodies either a function, such as

providing a publicly visible cursor, or a process with associated functions, such

as Cognoter, a tool for organizing ideas (described in the next chapter).

Meeting tools must provide a coordinated interface, a multi-user interface,

for all participants. The word "coordinated" is intended to capture both the

basic user-interface issues explored earlier and the need for coherent and

consistent sharing of information.

The character of almost any task changes when two or three people

work on it instead of a single person. For example, when two people edit a

document together they have to take turns typing if they are working on a

single edit buffer. If two people edit asynchronously they have to save more

information than either one of them would have when editing alone (i.e.,

they must leave meta-messages asking each other questions, making

suggestions, or indicating who did what). Another example is brainstorming:

a group brainstorming needs to be concerned with various social coordination

cues in addition to generating ideas.

In general, these issues derive from the changed nature of the process

once it involves more than one person. They touch the potential need for

consensus, persuasion, disagreement, miscommunication, spee·ch acts, and

other things that are irrelevant when only one person is working.

Structuring the Process. Software tools inevitably structure the tasks

they are used for- from simple tools, like a spreadsheet program, to more

complex tools, like the meeting tools that are part of the Colab. This

inescapable structuring of process can be seen as an evil to be diminished or as

an opportunity for enlightened assistance. Colab and its tools cautiously lean

toward the latter. The tools are designed to allow experimentation with

meeting processes and the effects of computer interfaces and internal

structures on group work.

At first sight, the idea of any rules or principles being superimposed on the

creative mind seems more likely to hinder than to help, but this is quite untrue

in practice. Disciplined thinking focusses inspiration rather than blinkers it

[Giegg69].

Among other things, the following chapters argue that appropriate

group problem-solving techniques {whatever the supporting technology) can

be more effective and less confusing than the usual free-for-ails with

dominating personalities, individual fears, fuzzy or conflicting goals, and

repetitious arguments.

Social Coordination. There are three factors involved in coordinating

social activity in collaborative systems: access, participation, and

characterization of collaboration. All of these factors are pursued in more

detail in chapter six.

Access. In a single user system, or when a group uses traditional

support technology, access to the data is serial - only one agent interacts

with data objects at a time. In tools for collaborative systems, social

coordination is analogous to the conventions we use in conversation for

taking turns and handling interruptions. It is inherently more flexible, for

example, since a visual display easily provides a space multiplexed layout that

allows more than one participant to enter information at the same time. It is

an open question to what extent the coordinating signals can be stylized in

useful and easily recognizable ways in a computational medium across

different kinds of applications.

Participation. Since each participant using Colab has control of a

personal workstation and immediate access to shared objects, there is no need

to wait for a turn to add or alter an idea {unless the object is already being

altered at that instant- see the discussion of busy signals in chapter four).

43

44

When all participants can act freely on shared objects, it is more difficult for

any user to monopolize the session- unintentionally or otherwise.

The characterization of collaboration is elaborated in the following

subsections.

Parallel Activity. A key issue in the design of meeting tools is to

recognize and support those activities that can be decomposed for. parallel

action. For parallel action to work a task must be broken up into

appropriately-sized transactions that can be done more or less independently

by members of the group. If the transactions are too small then they will be

too interdependent and interference will preclude any substantial parallelism.

For example, if a group is creating a shared text, most interactions will not be

at the level of individual keystrokes (though chapter six delineates occasions

when this grainsize is desirable). If transactions are needlessly large, then

opportunities for synergy are lost and the participants may as well be working

alone.

With the ability to act in parallel on shared objects comes the ability to

come into conflict. Conflict resolution strategies will become necessary in

some cases, but often social constraints will coordinate the participant's

actions in a face-to-face meeting. A conflict detection system or "busy

signal" (see chapter four) can also graphically warn users that someone else is

already editing, or otherwise using, a shared item. Shared object and

database consistency strategies are discussed in chapter five.

WYSIWIS. What You See Is What I See. In its strictest interpretation,

wvstwts demands that all computer displays show exactly the same thing: the

views of all participants are sized and placed identically and the i·mages of all

cursors are visible - all participants have iden•ical points of view and

reference. Direct manipulation and WYStWtS together create the illusion that

each participant in a group has immediate and personal access to shared

objects. Wvstwts is the critical idea that makes possible the sense of teamwork

in the barn-raising metaphor. It recognizes the importance of being able to

see what work the other members have done and what work is in progress. It

lets each participant see from an object itself whether o~ not it is available for

interaction.

Strict WYSIWIS is a useful ideal, but in practice it is too limiting. Relaxed

versions of WYSIWIS turn out to be very useful (for more on this see Stefik et al

[Stefik86]}. For instance, relaxing the requirement that all pointers are

displayed violates strict WYSIWIS. Whereas pointing is an efficient way to refer

to things in conversation, displaying the cursors of all the active meeting

participants at once is usually unnecessary and distracting. A compromise

position would make public pointers visible on request (see Denoter below).

Stnct WYSIWIS tniplies
that all displays show
exactly the same thmg

Stnct WYSIWIS 1m piles
that all d1splays show
exactly the same thmg

.l\.

Figure 3.2. WYS/WIS. Strict WYSIWIS implies that all views are exactly the same.

Another WYSIWIS relaxation is to allow public views to appear at

different places on different screens. This freedom to personalize screen use

comes at a price: users will not necessarily have the same views of the shared

45

46

models. A participant cannot refer to screen objects by absolute position since

there is no guarantee that the other participants have objects analogously

placed. A related relaxation permits private views of public objects. These

relaxations of WYSIWIS can be thought of as giving users the ability to see what

everyone else is seeing without the necessity of seeing it (see Figures 3.2 and

3.3).

Relaxed WYSIWIS
allows vanous

useful V10iat1ons

"
', ',, ',,

',, ',, ',,

',, ',,

',, ' ,,

' ,,

',,

',,

•. ,,

Relaxed

D WYSIWIS
allows
vanous '

useful '
violat1ons

~
'

Figure 3.3. Relaxed WYSIWIS. Relaxed WYSIWIS allows various useful violations of WYSIWIS

such as private control of views and public cursors appearing only on demand.

Public and Private. In a multi-user environment with simultaneous

interaction there are two kinds of objects (and views of objects): private and

public. A public object is shared with the group. Everyone can see it and,

usually, do things with it. There can also be semi-public objects with access or

capability lists determining who can see the object, or who can do what to the

object, respectively. A window and its contents are an example of a view of

an object. There can also be private and public views of public objects. Private

views and objects violate the WYSIWIS ideal.

Mutual Protocols. A plausible benefit of multi-user interfaces and

face-to-face meeting support (like Colab) is the encouragement of mutual

protocols. Mutual protocols are the articulation of the problem solving

process by the participants. In a group using mutual protocols (consciously or

unconsciously) individuals talk aloud about their actions, plans and goals­

the group members don't just act (hopefully in concert), they discuss the

process, their problem-solving strategies and tactics, what they are doing and

why.

Why are mutual protocols helpful in the group problem solving

process? They focus attention - people aren't as likely to wander off the

point in a group setting since there is an implicit social contract to be at least

somewhat directional and sensible (going off on a tangent about what to

wear to the opera will usually be suppressed in a group working on an

unrelated problem). Others in a group may also notice holes in one person's

reasoning or facts. It is sometimes easier to criticize or edit what someone else

is doing than to generate new ideas. Participants can question one another's

assumptions or suggest alternatives. When each person articulates what he is

doing and why he is doing it, he exposes weakness in approach or knowledge

to himself and may well be drawn to more effective procedures. In an

effective group session, all of the members may feel that they are building

toward solutions by leaning on the others.

For mutual protocols to be an effective tool in real world

problem-solving requires a certain amount of ego protection. In a hostile

environment participants are less likely to participate or take chances like

suggesting possibly silly ideas. Therefore, for mutual protocols to work well,

the participants must be in a relatively safe environment. Such a benign

environment is rare in most of today's meetings, but may be more feasible in

computer mediated environments where anonymity and process structure can

be invoked when desired.

47

48

Group Memory. The computer memory and WYSIWIS function as the

group memory. WYSIWIS ensures a greater degree of equal access to shared

objects than traditional techniques. Since each participant has easy access to

anything the group has done, repetition of a point is usually unnecessary. If

something has been said previously, but in the measure of a very long

conversation it is now out of sight and feared to be forgotten, there should be

easy ways to look back over the session history and to browse relevant

contributions. The immediate public display of new ideas depersonalizes

contributions by keeping them active and available.

Space and Time Revisited. A collaborative system tool can make

hitherto difficult operations and options possible. For instance, meetings can

be extended in space and time: since the complete computational state of a

session, including history, is in the machines memory, the meeting can be

stopped, shipped (if desired), and restarted- by the originating group or by

another group.

Role-taking. A computer-based multi-user interface can support or

suppress specialized participation in a problem-solving session. People often

have preferred roles in a meeting - sometimes different roles at different

phases of a meeting. Some will feel best capturing and translating the ideas

of others and will function well as a scribe. Others have a critical facility (or

fault) and will enjoy the role of checker and correcter. Some people are good

at generating new or provocative ideas. Others are most effective extending

the ideas proposed by others. In many cases a degree of role specialization

will happen as a matter of course and personal preference. If the role-taking

is useful for the group it can be institutionalized in software tools, if not,

role-taking can be diffused throughout the tools.

Ar onymity and Authorship. Using the computer as a meeting

intermediary makes it possible to encourage either authorship of ideas or

anonymity. Most of us are used to working with authorship information.

Authorship establishes context for ideas and can be a valuable source of

information - we automatically count or discount ideas depending on their

source. However, in some kinds of collaborative problem-solving sessions it

may be more useful to emphasize the in~erent merits of the ideas themselves.

There will be places for both authored and anonymous ideas in collaborative

sys•ms.

Implementation of a Multi-user Interface

During the design and implementation of Colab and Cognoter, several

new concepts and subsystems were developed that appear to be of general

interest and utility for multi-user interfaces.

ActiveRegions and Active Windows. Active Regions and

ActiveWindows2 are subsystems capturing the useful notion of areas on the

screen that are sensitive to mouse actions. A Region object knows about its

screen position and extent. An ActiveRegion adds mouse sensitivity.

ActiveRegions notice mouse events: the cursor moving into the region, the

cursor moving inside them, the cursor moving out of them, and changes in the

state of mouse buttons. An ActiveRegionSet {not surprisingly) is a set of

Active Regions. Active Reg ion Sets are hierarchical: that is, they may contain

other ActiveRegionSets. An ActiveWindow contains an ActiveRegionSet and

establishes the coordinate context for contained ActiveRegions.

ActiveWindows, as windows, notice mouse events and pass them a:ona to the

enclosed regions under the cursor {see Figures 3.4 and 3.5).

49

50

ActtveWmdow

.................. ~-c:~~~~!9!?~~:
................ .

· ActtveRegton ,_.A:_:.:.ct:..'v:..e:..R_e;:..;gE..';;..o_n ___________ __,

I

Active Region

ActiveRegton

ActtveRegton

Figure 3.4. ActiveRegion diagram.

' .. ----- BitMapAR
__-- ActlveReglon ~

Region <:._ L&belledAR

~ ActlveReglonSet

Active Window

Figure 3.5. ActiveRegion and ActiveWindow class lattice. A Region knows about screen

position and extent. An ActiveRegion adds mouse sensitivity. An ActiveRegionSet contains

ActiveRegions and passes mouse events to any ActiveRegion affected. An ActiveWindow

contains an ActiveRegionSet and establishes the coordinate context for contained

Active Regions.

To determine which ActiveRegion, if any, sees a particular mouse event,

the appropriate message, for example CursorMovedFN, is passed down the

chain of ActiveRegionSets until it finally reaches an ActiveRegion. Figure 3.6

shows the general form of mouse sensitivity over an ActiveRegion. Each

object in the hierarchy (ActiveWindow, ActiveRegionSet, ... , ActiveRegion)

has a chance to respond to the mouse event and passes it along (see Figure

3.7).

51

52

CursorMovedFN:

(send se If Before ARCursor :\loved)

(if (GetiV self ActiveSubregion) then

(send (GetiV self ActiveSubregion) Cursor Moved))

(send self MterARCursorMoved)

Figure 3.6. CursorMovedFN. Translated into English: the CursorMoved method takes

whatever action desired (BeforeARCursorMoved), passes the event along to the

ActiveSubregion, if any, and finally takes any post-action desired (AfterARCursorMoved).

Act1veReg1onSet
r - •

ActiveRegion .

! . . :. ~- .:::: ---l~ ·:·~ ~: ~::::::::: .. '
· · · .. ':: :: :::, r·· · · · ·. ~.. . :

. 0········t-.······

Acti veWi ndow

--- -- ~:::::: ~ •• J

Figure 3.7. A mouse event in an ActiveWindow. Each object in the hierarchy (beginning with

ActiveWindow. and on to an ActiveRegion, if any) may respond to the mouse event and then

pass it along.

Pointing. In an early design of Colab the cursors of all participants were

visible on all screens all the time. This flexibility in pointing was deemed

important. There were two flaws with this idea. The first is purely pragmatic:

system performance deteriorated when several mice flooded the Ethernet

and process scheduler with position updates. This was doubly unacceptable

since displayed cursor positions lagged so far behind that it became

impossible to get acceptable cursor feedback or synchronization. Small

feedback delays can cause large problems for human hand/eye coordination.

Pointing must be immediate. The original motivation for displaying all cursors

was the WYSIWIS ideal- poor response time made it more like "What You See

Is What I Saw A While Ago".

The other problem with "constant cursors" was that most cursor

motion was incidental and essentially private. Even though cursor images

were personalized and could be readily distinguished, it turned out to be

distracting for other participants to see foreign cursors flitting around on

their screen while the owners were engaged in non-public activities. Multiply

this incidental (private) cursor movement by the number of participants and it

becomes unacceptably distracting. The confusion cost of this form of WYSIWJS

outweighs its benefits (even setting performance difficulties aside).

Another possible approach to group pointing is multiple control of a

single cursor. All users contend for a single public pointer. This fits strict

WYSJWIS but forces sequentiality and violates the idea of screen control. An

additional shared public cursor makes more sense (see Denoter below).

These early experiences with pointing showed that public pointing

must be on demand only and, until rescued by improvements in network and

scheduling technology, must minimize ethernet packets.

Denoter. To make a cursor display available on demand, the Denoter

special-purpose pointing tool was developed3 (see Figure 3.8). Denoter

appears as a box of arrows that can be picked up and carried with a cursor.

The arrow is personalized and appears on all machines registered with the

53

54

conversation. Even though the Denoter pointing tool can ignore position

updates when it gets behind, it still suffers from some feedback delays. The

screen-absolute positions of Denoter arrows highlights a drawback of

allowing private views of Colab models: you can't point at things that have

been privately placed or moved -one person's upper-right window may be

someone else's lower-left window. Denoter could have window-relative

positioning, but with the undesirable side-effect of discontinuous movement

between windows and still with no guarantee that a pointed-at object

actually appears in all private views.

·.·.::rbaliz a tic n~

·:r.,;cking

Figure 3.8. Denoter, a Colab pointing too/. The box of arrows will supply arrows that follow

the cursor constantly (broadcasting to associated conversations) or arrows that can be

dropped on the screen for long term highlighting.

Figure 3.9. Association/Associates. The shared model of an object is the association. The

individual views ofthe object at each node are the associates.

Associations. The shared model of a public object, in Colab parlance, is

called an association; an associate is an individual view of a public model

{Figure 3.9). In the strict WYSIWIS case, changes to an association, made

through an associate {or its controllers), will affect all other associates in the

association. In the relaxed WYSIWIS case, the associate views may or may not

be effected depending on what portion of the model they are displaying. An

association has a single name across machine boundaries, a unique identifier

55

56

(UID) - each associate can be referred to by the same UID. UIDs, as

implemented in loops, have potentially useful information like the time of

day, the local machine name, aod the user that created the object encoded in

them.

Communication protocols. The Colab communication protocol is

implemented by a combination of system facilities and programming

abstractions. Communication over the ethernet is supported by a layered

protocol {see Figure 3. 10). At the lowest level is the ethernet packet transport

protocol: PUP, NS, TCP/IP, etc. The implementation of Co lab has mainly

ignored this level and relied on higher level remote procedure call packages.

Applications

BroadcastMethod

~Associates

~Remote

Remote Procedure Call protocol (RPC, Courier, REMOTEVAL)

Ethernet packet protocol (PUP, NS, TCP/IP)

Figure 3.10. Layers of abstraction in Colab machine communications. The ethernet layer is

concerned with transport r-, otocols. The RPC layer supplies techniques for executing

functions in remote environments. t-Remote is the only method concerned with details of

the RPC layer. t-Associates uses t-Remote to broadcast changes to an entire association.

BroadcastMethod is the only layer seen by an application programmer: this specifies that the

method is to take effect on the association (using t-Associates) on all participating machines.

The lowest level of interest in the implementation of Colab is the

protocol for remote procedure calls (RPC) [Birrell83] [BNelson81]. RPC, with

appropriate preprocessing (Thompson's Lupine in Colab's case [Thompson84]),

allows execution of ordinary functions in remote environments invisibly. It is

not necessary for an application, or even an application programmer, to know

whether or not a given function is executing locally or remotely. lupine takes

an ordinary function, say "MagicWords", renames it, to perhaps

"OidMagicWords", and creates a new "MagicWords" that wraps the

necessary broadcast protocol around OldMagicWords. MagicWords will

henceforth execute in the specified remote environment. This RPC layer has

been further abstracted and encapsulated so that Colab applications

programmers are protected from changes in the particular choice of RPC

protocol used4 •

+-Remote and +-Associates. Pronounced "Send Remote" and "Send

Associates", these are lisp macros that do the right thing for the chosen

transport protocol (for instance, packing strings for RPC stubs). Running on

top of the RPC implementation, they supply a mechanism for sending

messages to an object on a remote machine and for sending messages to all

associates of an object, respectively. ~Remote is the only method affected by

details in the underlying RPC mechanisms. ~Associates is made up of

~Remotes. This is the only code directly dependent on the RPC protocol. It

only has to be debugged once (for each protocol) and then it can be used on

faith thereafter. In fact, applications programmers never have to use

~Remote or ~Associates directly: they use the higher-level

BroadcastMethods instead.

BroadcastMethods. This is the object-method-level abstraction that

application programmers need to think about. The idea behind

BroadcastMethods is that they extend of a basic object method in loops to a

method that broadcasts to all members of an association -a special method

with an implicit ~Associates. When a BroadcastMethod is invoked on one

machine the method is run on all machines involved in the conversation.

57

58

For example, suppose that MoveTo(newPosition window) is a

BroadcastMethod of an object that moves the object, say objectl, to a

specified newPosition in a specified window. If, as a result of some user

action, obj~l receives a MoveTo message on one machine, then objectl's

associates (for simplicity, take objectl as the association UID in this case) on all

the other participating machines will also receive the same message and

parameters (window, for instance, would be either a symbolic name or

another association name). The details of queuing the message for

broadcasting and the actual transmission to the correct machines are handled

invisibly by BroadcastMethod using association data structures and methods

of the enclosed method.

A BroadcastMethod works by adding an argument: an author flag that

specifies the originator of the message. This flag is primarily used to prevent

the message from being executed more than once by each machine and, more

importantly, it stops rebroadcasting. The BroadcastMethod then packages

the message and its parameters up and puts the packet on the broadcast

queue to be sent out to all participating machines via the RPC protocol.

By providing a layer of abstraction, BroadcastMethods greatly simplify

the organization of communication between replicated objects. For Colab a

programmer normally writes an ordinary method for an tool, debugs the

method for a single user on a single machine, and when satisfied that it works,
-\

simply changes the key wor1< "Method" to "BroadcastMethod" in the method

definition. This tiny change causes the method to be expanded as above with

the extra argument and inserts the necessary ~Remotes and ~Associates to

make all object associates find out what happened. Often the new

broadcasting method just works (though there may be unforeseen bugs

relating to machine interactions- usually in the multi-user interface).

Figures 3.11 through 3.13 illustrate an example concerning Noter, a

simple message passing tool.

Figure 3.11. Noter, the Colab note passing tool. There are three main windows: the message

editor, the most recently received message, and the message history. A fourth window for

private messages opens if necessary. In this example, User A is about to send a message to

User B ...

59

60

UID#13

"'" B-0 "'<'-._

r
machme

ethernet ,
machine

L

user A-----,~

UID#13

Figure 3.12. Communication protocol diagram. User A is sending a note to_ User B. User A

invokes the send command on Noter (with a simple UID # 13). Noter#13 passes the message

to its enclosing conversation (UID # 24- see chapter five for more conversations) which in

turn adds the message (containing the note) to an output queue. The message is eventually

sent over the Ethernet to B's machine. B's machine fields the message and puts it on its

conversation#24's input queue. B's conversation#24 gives the note display message to its

Noter# 13 which finally displays it for user B.

(BroadcastMethod
({Noter NoteToPrivate) self toCollaborator note)

(• colab: "25-Feb-85 17:44")

(• • Sends a private note to a collaborator.)

(LET {(me (@ ColabExec me)))

))

(COND ({OR (EQ me toCollaborator)
(EQ me (@ note sourceCollaborator)))

(~ self DisplayinPrivateWindow note)))

Figure 3.13. BroadcastMethod Code. This is the Loops code to send a private note to a

selected collaborator. Notice how BroadcastMethods hide most of the complexity in Figure

3.12. This code, in English, takes a collaborator and a note as arguments and prints the

private note in the source and target collaborator Noter private windows only.

Meta-programming and Programming Pragmatics

Programs that need to run in concert over several machines are difficult

to write and debug. This truism combined with the need in Colab to

experiment with the broadcast techniques themselves and to frequently

change basic system code has made the creation of programming techniques

and tools to simplify code development, testing, and revision essential. This

section discusses some of the programming and meta-programming

pragmatics developed during the implementation of Colab and Cognoter.

U-S-D . . As alluded to earlier, one desirable feature of a multi-user

programming effort is that it should be easy to convert a single-user tool

functions into a multi-user functions. The goal is to design and test a tool on

61

62

a single machine and then be able to trivially make it available to several

simultaneous users. This is not easily achieved in the general case, but if a

certain amount of programming discipline is practiced it becomes possible.

The factoring of concerns into functional categories clarifies the

programming effort by reducing complexity and exposing hidden

dependencies.

Object methods can be thought of in three categories: user-actions,

semantic-actions, and display-actions (U-S-0 - see Figure 3.14). This

partitioning of method responsibilities reflects the usual pattern of actions in

a single interaction with a Colab tool. It also, therefore, represents good

Colab programming style. It is reminiscent of the familiar Read-Evai-Print

top-level loop in Lisp systems and the Model-View-Controller partitioning

mentioned before. In the early Colab programming effort, most new

methods, in retrospect, tended to have aspects of these three categories

sprinkled throughout them. During debugging, these undisciplined methods

usually had to be extensively rewritten and refined. The useful refinements

tended empirically to express these categories.

\
\
~

\

user
act1on

user
act1on

~;·\
em ant~
act1on \

broadcast

Figure 3.14. Semantic-Actions, Display-Actions, User-Actions.

There are also enclosing methods that glue the others together and

control method transition. In existing code, the enclosing method is often the

user-action method, though it may prove to be a valid fourth category that

should be separated {see Figure 3:15).

63

64

Move(item window):

MoveUserAction(item window):

•User interactions yielding a new position•

MoveSemanticAction(item window newPosition):

•actual changes to database•

Display(item window)

·other display actions•

•cleanup display actions•

Figure 3.15. U-S-0 example. The three (four) method types are usually nested. The general

Move, enclosing method, is by a participant. Move invokes MoveUserAction which controls

the local user manipulation of the item. Once local interaction is finished,

MoveSemanticAction is called with the proposed changes to the database. The changes are

broadcast to all participants where they are installed and local displays are updated by the

general purpose Display method.

User-action methods. User-action methods are invoked at a user's

request, usually the res~lt of a mouse action on a displayed active object. In

general, through user-system-database interactions, they establish an

operator and parameters (position, label, new object, etc.) for a change to the

shared database. A user-action may consist of several actions (changes,

adjustments, inputs, etc.) and database accesses before reaching the desired

new state for broadcast. User-actions are not broadcast since the activity

concerns only the initiator of the action. For example: A user wishes to add a

new item to a window (taken from Co:noter, see chapter four). The user

buttons the window background, types in the desired label for the new item

and moves a shadow of the item's region to the desired position. Once the

new item is released, the user-action is over and the change to the tool model

can be broadcast.

Semantic-action methods. Semantic-action methods make the actual

changes to the shared database. These methods are broadcast to all

associates of the changed object so that changes will propagate and copies of

the shared database will be kept up to date. These are the only methods that

should broadcast. BroadcastMethods calling BroadcastMethods is not

allowed since this can circumvent the safeguards against circular

broadcasting.

A single semantic-action may change several things in the database

and may spawn several display-actions. For instance, a user-action may result

in a semantic action to redisplay all items proportionally in a smaller window.

This single semantic action could invoke dozens of display-actions. An

additional advantage to packaging up predictable operations in this way is

the evening out of the computational load over the network. However, it is

not always clear whether to broadcast a single high level semantic-action

with several side effects or to broadcast several smaller scale semantic-actions.

The single complex action is easier on the network traffic and the process

scheduler, but may be more difficult for the programmer. Continuing with

the new item example above: Once the new item is in place, the change is

broadcast to all associates, who update their copy of the session database.

Now that the database has reflected the change, the new item can be

displayed.

Display-action methods. Display-action methods update the machine

displays. They need execute only locally since each machine has a copy of the

session database and is the only controller of its screen. Again, a

semantic-action often causes many display-actions. There may be more than

one view on each datum, also causing more than one disp-lay-action. Back to

the new item example: All machines, including the originating machine,

individually display the new item as appropriate to the views they are

supporting.

Testing and Debugging Distributed Applications. The programming

discipline presented above helps make multi-user programs understandable,

but tools for tracing and intercepting messages on the network, direct

65

66

network debugging, are also needed. A ConversationViewer5 was created to

monitor message traffic. This viewer can be attached to any Colab tool. It

displays messages put onto the broadcast queues and monitors the processes

used to send messages between machines. The viewer has proved useful in

detecting cases of unnecessary or incorrect message sending, and especially in

bringing BroadcastMethod loops to light.

Another tool for debugging distributed applications is the

PatchCollaborators program. This program uses the RPC protocols already

established by the Colab environment to propagate changes to Colab objects

across machines. When debugging software running on more than one

machine, it is frequently useful to make changes on a single machine and

broadcast the changes to the other machines so debugging can continue (on

the rare occasions that all bugs weren't anticipated in the first iteration ...).

Summary

This chapter introduced collaborative systems, real-time

computer-based systems for cooperative work. Multi-user interfaces were

introduced and considered in the context of established user interface

principles and their implications. The major section of the chapter considered

the attributes of computer-based tools to support cooperative

problem-solving.

In the course of implementing the Colab system several ideas useful to

the design of multi-user interfaces were developed: ActiveRegions and

ActiveWindows for mouse sensitivity over screen regions, the Association

abstraction for treated shared models as local obje~s, and the

BroadcastMethod abstraction for object communication. The partitioning of

method functions into user-actions, semantic-actions, and display-:..ctions Jed

to a clearer and more maintainable system.

The next chapter describes Cognoter, a tool for planning presentations.

Cognoter is a multi-user Colab tool embodying many of the attributes (and

difficulties) described in this chapter. The following chapters discuss the issues

and concepts that arise in the design, implementation, and use of Colab and

Cognoter.

Notes:

1 According to Peter Deutsch, a view is" a function to compute something that could appear

on the screen". When the view is defined this way, there is a fourth partition to consider:

the display media. A medium in this context is the basic image transformations and

clipping. It is a bitmap, not necessarily the screen bitmap. Views always display through a

medium.

2 ActiveRegions and ActiveWindows are being superseded by the Wegion work going on at

Xerox PARC. Future versions of Co lab and Cognoter will likely take advantage of this work.

3 Stanley Lanning did most ofthe implementation of Denoter.

4 As this chapter was finished the system was converted to the Courier network

communication protocol with almost no effect on higher levels and no effect on

applications.

5 Kudos to Stanley again, for implementation of the ConversationViewer.

4

The best way to have a good idea is to have lots of

ideas.
-Linus Pauling

Cognoter, a Tool for the Co lab

Cognoter is a program that helps a cooperating group of

people to organizing their thoughts for a presentation, e.g., a

paper or talk. Cognoter provides a multi-user interface and a

structured meeting process. An annotated graph of ideas is

built up by the group in three phases: brainstorming for idea

generation, ordering for idea organization, and evaluation

for choosing what will be finally be presented. Interesting

aspects of Cognoter include direct spatial manipulation of

ideas and their order relationships, support of parallel activity,

and incremental progress toward a total ordering of ideas.

69

70

Introduction

Cognoter1 is a meeting tool for preparing presentations - talks,

papers, memos, anything in which ideas must be organized so that they can

be understood. At the end of a successful meeting using Cognoter the

participants will have an annotated outline of ordered ideas and associated

text. Cognoter has been used to prepare outlines for several talks and papers,

including this dissertation.

Many of the multi-user interface and collaborative system concepts

that were introduced in a general way in the previous chapter are reified

here. In addition to any actual usefulness that Cognoter might find as an

organization tool, the design of Cognoter was intended as a test-bed for

exploration of these concepts.

In an environment where there is little cost associated with trying

things out, things tend to get tried out. Meeting tools, such as Cognoter

make it easy to re-arrange items, and to alter their relationships to each

other. They encourage a breadth of approach. Such flexibility is useful over a

range of applications.

The underlying philosophy behind Cognoter is two-fold. On one hand

a tool should not be too prescriptive. People in a group should be able to jot

down ideas as they think of them, without regard to order or relevance, and

then play around with the ideas and their relationships until they are satisfied

with the overall content and organization. On the other hand, some active

assistance, a supportive environment that guides consensus and funnels

progress toward a co hE· ent organization, is also desirable. Cognoter

combines these two points of view.

Whereas the previous chapter was primarily prescriptive, this chapter is

mainly descriptive: it describes the theory and practice of Cognoter.

Implementation discussion is in the next chapter and discussion of Cognoter's

use in reai-Jife, its successes and failures, can be found in chapter six.

Comparison to Idea Processors. Cognoter is similar in some ways to

currently available "idea processors". These include commercially available

personal computer programs like ThinkTank"' [O'Connor84], and research

projects like the Notecards system developed at Xerox PARC [Halasz86]. All of

these share the goal of organizing ideas. All express an organizational model

and display ideas graphically.

The most important difference between Cognoter and most other idea

·processing tools is that Cognoter is designed for simultaneous use by multiple

participants {though the organization process it embodies is also useful for a

single user). It is also designed to manage the complexity of organizing ideas

in more direct ways than existing idea processors. Cognoter divides the

organization process into smaller and different kinds of steps. In Cognoter,

independent decisions can be made independently, ideas can be generated

and simply "put on the table" without concern about their position in relation

to other ideas. The steps for organizing ideas are incremental and efficient.

Cognoter separates the concerns of idea generation, ordering, and

evaluation.

In ThinkTank, ideas are always organized in an outline -there is no

place else to put them. When a new idea is added the user must also decide,

at creation time, where it comes in the scheme of things. In most idea

processors it is a simple matter to change an item's position, but it is not

readily apparent when an item is only provisionally placed. Items appearing

in nonsense order in an outline look no different than carefully ordered items.

ThinkTank and NoteCards support well-known metaphors for

organization {outlines and file cards, respectively). Whereas Cognoter can

display organized ideas in an outline format, a goal of its design was to find

more powerful ways to display, consider, and manipulate ideas. Cognoter

does more than supply an active reflection of a known model {such as an

outline), as shown in the next section it also assists the organization process.

Scenario. This chapter has a running example of Cognoter in action

concerning three mythical collaborators, planning to write a parallel version

71

72

of this chapter (see Figure 4.1). The example lives in the figure captions.

Whereas the example figures are actual screen snapshots of Cognoter, the

example session has been simplified to isolate the points being made. Also

the window arrangements have been simplified and overlapped to allow

compact figures.

Figure 4.1. Tabula Rasa. The tool is initialized. Example: Before starting their session, the trio

planned to wnte a chapter about Cognoter. They agree to meet in the Col~b. Since three

machines are r-eady, running fresh Colab environments, one of the collaborators starts

Cognoter and chooses "Cognoter, a Tool for the Colab" as the session title. The other two

collaborators are added to the tool conversation and the group s ready to brainstorm. The

above window is seen on all participating displays.

Cognoter's Problem-solving Process

The organizational techniques embodied by Cognoter are similar to

techniques that have long been used without computer support. Participants

come to the session with a general goal in mind, something like:· "Let's use

this tool to plan a paper about the stuff we've been talking about recently".

But a typical group will not have a clear notion of the best framework to

present their ideas or even what the key ideas are.

How does a group get past the blank page? Starting at the best guess

for a beginning and diving into a depth-first approach to an outline is almost

certainly wrong: "What's I?" "Now, what's I.A ?• Better, but similarly

misguided is a breadth-first approach where the group attempts to generate

the handful of major topics: "What's I?" "What's II?" A more flexible

approach, including bottom-up, top-down, and middle-out techniques, is

needed.

A group planning a presentation needs to do several things. First,

relevant ideas must be accumulated. The participants need to decide which

ideas are related and how the ideas go together. They need to determine the

presentation dependencies between ideas: which ideas should come before

which other ideas. Finally, they need to decide which ideas or groups of ideas

are at the wrong level of detail or are irrelevant to the presentation.

Phases. Cognoter organizes a meeting into three phases:

brainstorming, ordering, and evaluation. Each phase emphasizes different

kinds of activities. As the group advances through the phases, the set of

'
possible actions is expanded; for instance, brainstorming, emphasized in the

first phase, is still possible in the last phase. Groups that find the rigid

enforcement of phases too confining can skip immediately to the last phase

where all operations are possible.

One of the goals of work with Colab is to experiment with various

structures and techniques for group problem solving. The particular three

phases mentioned above are the current best guess, based on successful

traditional techniques and the expected strengths of computer-based tools.

73

74

These three phases are not useful for all kinds of problem-solving: different

meeting processes are needed.

Other""'researchers have described similar phases for problem-solving.

In their description of general writing tasks, Hayes and Flower independently

developed three analogous phases [HayesSO]. They refer to them as the

Generating, Organizing, and Translating phases. In his tecretarial (technical

secretary) group facilitation work, De Koven divides sessions into three phases

that he refers to as: Collect, Connect, and Correct [DeKoven86]. Von Oech

suggests that the germinal phase has been generally neglected in our

educations (vonOechSS]. According to von Oech, the germinal phase consists of

idea generation (brainstorming in Cognoter) and idea manipulation

(ordering). He goes on to describe the practical phase: critical evaluation

{evaluation) and execution (outline generation). Polya describes an approach

to solving mathematical problems in four phases: Understanding the Problem

-clearly understand what is required; Devising a Plan- see how the items

are connected and decide on an approach to the problem; Carrying out the

Plan - do it; Looking Back - review and discuss the solution {or lack of

solution) [Polya57].

Brainstorming phase. The goal of the brainstorming phase is to get

many ideas "on the table" for possible inclusion in the presentation. Too

many ideas are better than too few- it is easier to prune than to generate.

Since the goal is quantity, participation by all members of the group must be

encouraged and any actions that would inhibit the flow of ideas should be

discouraged. Ideas are represented in Cognoter by short descriptive items

that are displayed in a public window. Items are not evaluated or deleted in

this phase and, at first, little attention is paid to details of organization.

This theory of brainstorming is reflected in Cognoter's software and in

its "rules of the game". Participants can act simultaneously, adding new idea

items as they think of them to a Cognoter window {see Figure 4.2). In the

brainstorming phase there is only one window for all items {in later phases

any number of subwindows are permitted).

phasing

d!!i~n e·tolution

lin.-. algorithm

ai rules :f tt.e game

Figure 4.2. Cognoter in action: Brainstorming. This figure shows the main Cognoter window

early in the session. The goal of this phase is to generate as many ideas as possible with little

regard for their positi.oning. Example: Here, the collaborators have begun brainstorming.

They simultaneously add items by clicking the mouse in the background of the window and

typing in a short title or phrase that stands for the idea. As soon as items are entered, they

appear on all screens. If no one were actually typing at the moment of this snapshot, this

window would be seen just like this on all screens.

Participants may attach supporting text to any item by selecting the

item and using a private editor. Supporting text is used to clarify or amplify

an item appearing in the main idea window. Once text is attached to an item

it can be displayed publicly or further edited by any participant (see Figure

4.3). Items with text attached to them are displayed in a bold font.

75

76

pra~ing

bl"&instormlng
ora~~·r'o;,

idea orcce ~!;ng
e.a1uat1on

The g.:..;l .:.~ trof br.;in,t.:.rmir g

pha~~ i! to ;~et ·ot! or id~a!
en the ~abl~

in~ a

wyslwls

'vVrat 'fO.J He i! ·,.mat
1 '~e

rul~' ·::>fthe g~me

p,;ral el,,,.,.., ai
group pt"OCess

Figure 4.3. Supporting Text. In addition to adding new items, participants can also amplify

items by at:aching supporting text. Example: The collaborators have continued to

brainstorm. Supporting text explaining ideas in more detail is entered by selecting the item

with a mouse and then using a text editor in a separate window. Above, on the left, one of

the participa!1tS has just finished editing the text attached to the item brainstorming. Text

supporting item wysiwis is being publicly displayed to the right. Items with text attached to

them are disp'ayed in boldface. Notice in the upper left that the collaborators have moved or

placed related items "phasing", "brainstorming", "ordering", and "evaluation" together.

Items cannot be deleted in this phase, and it is against the rules of the

game to verbally criticize ideas. They can be moved freely, but there is little

other organ.zation during this phase. It is time to move on to the Ordering

phase when the main window is too full, a jumble of ideas begging for

organization.

Tool Operation

NextPhase

Help

Add Item

AddNewRelation

Display

RedisplayAII

Shape

ShapeToFit

Scrunch

Spread

Item Operation

Edit

Editlabel

Copy

Move

Show

Brainstorming Phase Operations

Description

Enter the next phase

Get some help

Add a new item

Add a new relation type item

Redisplay the items

Redisplay the entire association

Reshape the private view

Fit the display neatly around the items

Shrink the display window and ShapeToFit

Expand the display and ShapeToFit

Description

Edit this item's attached text

Edit this item's label

Copy this item

Move this item

Show the text attached to this item

Table 4.1. Brainstorming Phase Operations. Tool operations affect the tool in a global sense.

Item operations affect the item selected. Indentation in the table indicates submenu items.

There are accelerators (faster, but less obvious ways to do things) for the most frequently used

and time-<ritical operations, such as Add item and Move.

Ordering phase. Once a group of Cognoterers has a window full of

items, they are ready to put them into order. There are two basic operations

added in this phase: asserting that one idea should be presented before

another and asserting that several ideas belong together. Both of the

ordering operations, linking and grouping, support incremental

decision-making. An aggregate of small ordering decisions about what

comes before what and what goes with what can yield a total order of the

ideas being considered. A visual representation of ambiguities in the current

77

78

ordering constraints can serve as a guide to participants that more ordering

constraints are needed.

Figure 4.4. Links establish the order of presentation. The order of ideas is established

incremental!-,- by linking items. The semantics of a link are that the item at the tail should be

presented before the item at the head. Links can be added or removed through item

operations. Items will usually have one or more links to other items. Example: The

collaborators have begun ordering their ideas. One of the collaborators has decided that

group proces:s should be presented before rules of the game and connected them with a link.

The order of several has yet to be specified (group process and evaluation, for example, are

relatively unordered).

Participants indicate precedence by linking items: a link is a suggestion

that the item at the link tail should be presented before the item at the link

head. This may well be accompanied by verbal discussion: "I'm putting group

process before rules of the game since we'll need to motivate rules of the

game before we assert it." linking is represented visually by directed arrows

between items as shown in Figure 4.4.

The item moving operation makes it possible to discuss grouping

operations before actually doing them by moving items near each other

before clustering. Thus, spatial clustering provides a suggestive intermediate

indicator of organization before formal divisions are agreed upon.

Items can also be clustered into groups2 as shown in Figure 4.5. When

items are grouped, they are replaced in the Cognoter window by a single new

group item (surround by brackets). The items that were grouped can be

displayed and manipulated by opening the group item. An opened item

displays the contained subgraph of items in a separate window. A link to or

from a group item is treated like a link to or from the whole contained

subgraph. Items can be moved across group window boundaries with links

and display being adjusted accordingly.

79

80

(phulng)

br&lnstormlng
\
\
\
~

ordering \

·~.

th!ory

practice

re1ateo work ...
· evalu& tlon

para:led~m

.group process ----"7" :on~en!us

1 \ ..
bu~1 !ignal' •., \

'• \

' ' '-.;.._ \

retau.t1.ons of wyslwis

~~\ ai

rule~ cf t"'e ~ame

Figure 4.5. Groups describe the hierarchy of ideas. Items that should be taken toge;.~.e· can

be grouped. The items are replaced with a new item with brackets surrounding it to ,.,c:cate

that it is a co-.plex item. Each group has an associated window for displaying the ':e-ns it

contains. Example: A collaborator has converted "phasing" into a group item and ope,ed it

(upper right), showing the partially ordered ideas contained within it. Some of the original

ideas have bee-: moved into it and some new ones have been added.

Cognoter provides operations that allow items to be ordered

incrementally. The link-forming operation organizes the ordering task so

that a partial ordering of items is refined stepwise towards a cr1plete

ordering. Transitivity and grouping operations make it possible to organize

the ideas efficiently with a small number of links. Optionally the places where

the ordering is over- or under-constrained can be indicated (see Figure 4.6).

The groups and links are used collectively in the final phase to determine a

complete order of idea presentation. Circular or contradictory linkings can be

carried along and resolved when desired.

• •
bu~y !!gnal! ',

..... '

(group process]

Figure 4.6. Items ambiguously ordered can be automatically highlighted. Ambiguously

ordered items can be highlighted to guide linking and grouping. Example: The group has

continued to group and link. Ambiguity highlighting has been turned on inside the opened

item "group process". The order of the boxed items cannot be comple~ely determined by the

existing links. If a link were added from "rules ofthe game" to "user intervention", the order

of both of those items would then be determined. Boldly drawn links indicate a link to or

from a group item -these are treated specially in some cases.

81

82

Operation

Next Phase

Help

Add Item

AddNewRelation

Display

Redisplay All

Shape

ShapeToFit

Scrunch

Spread

Ambiguities

No Am bigu it ies

Neaten

Scramble

Group

Ungroup

Item Operation

Edit

EditLabel

Convert

ConvertToGroup

ConvertToRelation

ConvertToltem

Copy

Move

Show

Open

Link

UnLink

Ordering Phase Operations

Description

Enter the next phase

Get some help

Add a new item

Add a new relation type item

Redisplay the items

Redisplay the entire association

Reshape the private view

Fit the display neatly around the items

Shrink the display window and ShapeToFit

Expand the display and ShapeToFit

Highlight incompletely ordered items

Stop highlighting incompletely ordered items

Arrange items into pseudo-outline form

Arrange items randomly

Collect chosen items into a group item

Replace a group by its enclosed items

Description

Edit this item's attached text

Edit this item's label

Convert the type of this item

Convert this item to a group item

Convert this item to a relation type

Convert this item to a regular item

Copy this item

Move this item

Show the text attached to this item

Open up a group item

Link this item to the next chosen item

Unlink this item from the next chosen item

Table 4.2. Ordering Phase Operations. Tool operations affect the tool in a global sense. Item

operations affect the item selected. Indentation in the table indicates submenu items.

Entries in italics are new to the ordering phase.

Evaluation phase. In the evaluation phase the final form of the

presentation is determined. In this phase the participants prepare the

complete organization of the paper or talk. Participants should review the

overall structure, reorganizing the ideas as needed, filling in missing details,

and putting aside peripheral and irrelevant ideas. Critical analysis, deletion,

and outline generation are best considered after brainstorming and ordering

are mainly complete.

There are several reasons to delay deletion until this phase. One reason

is for the liberating effect it has on idea generation. Criticism or deletion in

the brainstorming phase tends to inhibit participation, since most people

don't like to be criticized and will feel that they must generate arguments to

defend their ideas henceforth. Another, related, reason is that arguing

against (or for) ideas too soon will slow the generation process down.

The evaluation phase is also a good time to consider re-organizations

of various kinds because there is a tangible basis for discussion. For instance,

an arg;Jment than an idea is in the wrong place is more compelling when

other places for it are visible. An argument to delete an idea because it is

irrelevant is much more compelling when it is obviously not linked to the rest

of the presentation. A claim that an idea is too trivial is more convincing

when competing ideas are right there displaying their virtues. A complaint

that there are too many ideas is more convincing when all the ideas can be

displayed.

Most of the ordering operations are based on local information. The

evaluation phase, with the ideas essentially ordered, is a good time to

consider the more global elements of the presentation: Does it cover the

right amount of material? Have key terms been defined? Is it too long? Is a

glossary or appendix needed?

Cognoter provides a facility for systematically generating an outline

(see Figure 4.7). Outline generation is delayed until this phase since it is not

useful until the item ordering is largely complete. Items with no incoming

links are potential starting points for the presentation. Cognoter can assist in

83

84

the ordering process by focusing attention on ambiguously ordered (or

unordered) items (see Figure 4.8). The presentation graph can be displayed in

outline format, with or without the attached text, by successively displaying
'

and removing beginning items, items with no in-links. Items with no

outgoing links are potential endpoints for the presentation. Items with no

links at all are probably irrelevant to the presentation (though they may have

served as a taking off point for other ideas in the graph).

[phasing]

Each phase em ph ames different kmds of activ1ty.

One goal1s to expenment w1th vanous structures for group problem solving.

•related work

De Koven's collect-connect-correct. Hayes and Flower had an analogous three

phases. Polya and Platt.

*(brainstorming]

Get as many tdeas on the table as poss1ble

theory

Generatton only. No delet1on or crittcism. Too many ideas better than too

few.

practice

Users act simultaneously. One window at f1rst. Supporting text can be added

- to ttems.

Figure 4.7. A portion of a Cognoter Outline. When desired, Cognoter will display an outline.

The outli"e can be displayed for the whole presentation graph, without or without attached

text, or for any su bgraph. Items arbitrarily ordered by the outlining algorithm are starred.

[Introduction) 2
[Idea processing]
~~

~· "'"""' ..
[phasing]\

'(group Jlrocess]
~-.~ alg:rithM

d!~h;;n !vo•uti:n
...

.:,:.--·

conclusion

/

ai

Figure 4.8. Evaluation of an idea graph. In the Evaluation phase the graph is scrutinized for

overall structure and unlinked items are considered. Example: Above, the item "link

algorithm" has no links and needs to be inserted into the ordering or declared a side issue.

"Grandmother cell" is probably irrelevant and a candidate for deletion (though it may have

served some purpose in the session by stimulating other ideas).

85

86

Operation

Help

S~letes

Add Item

Display

Red tsplayAII

Shape

ShapeToFit

Scrunch

Spread

Ambiguities

h.oAmbiguities

Group

Ungroup

Outline

TeX'tToo

Item Operation

Edit

Ed :_abel

Co-.,ert

ConvertToGroup

ConvertToltem

Copy

Move

Sho

Oper

Link

Un_ink

Delete

Evaluation Phase Operations

Description

Get some help

Display previously deleted items

Add a new item

Redisplay the items

Redisplay the entire association

Reshape the private view

Fit the display neatly around the items

Shrink the display window and ShapeToFit

Expand the display and ShapeToFit

Highlight incompletely ordered items

Stop highlighting incompletely ordered items

Collect chosen items into a group item

Replace a group by its enclosed items

Display the outline so far

Display the outline with all attached text

Description

Edit this item's attached text

Edit this item's label

Convert the type of this item

Convert this item to a group item

Convert this item to a regular item

Copy this item

Move this item

Show the text attached to this item

Open up a group item

Link this item to the next chosen item

Unlink this item from the next chosen item

Delete this item

Table 4.3. Et>aluation Phase Operations. Tool operations affect the tool in a global sense.

Item operations affect the item selected. Indentation in the table indicates sub-menu items.

Italics show f!"1tries new to the evaluation phase. The relation and neaten operations are not

shown above to conserve space.

Cognoter as a Multi-user Interface

To make the shared database simultaneously accessible to all the

members of a group, Cognoter provides a multi-user interface.

WYSIWIS Interfaces. Recall that strict WYSIWIS {What You See Is What I

See) demands that all screen images are exactly the same: all views are sized

and placed identically and the images of all cursors are visible. The WYSIWIS

ideal for multi-user interfaces must be addressed in a system, like Cognoter,

that supports a multi-user interface.

The general issue of WYSIWIS and the need for relaxations in the

multi-user interfaces is treated in Stefik et al [Stefik86]. The current

implementation of Cognoter addresses WYSIWIS in simple ways. For instance,

Cognoter relaxes strict WYSIWIS because it provides both private and public

display space. The Cognoter windows, those windows where the links and

items are displayed, are public, but the outline display and item editing

windows are private. Visual cues indicate whether a Cognoter window is

public or private.

Even in a multi-user interface, it is important that users have a high

degree of control of their displays. Cognoter provides private placement of

public windows. This freedom of screen use comes at a WYSIWIS cost: users will

not necessarily have the same views of the shared models. Participants can

not refer to screen objects by absolute position.

Busy signals and Social Conventions. When more than one user is able

to interact with shared objects conflicts can occur. This is a key problem in the

overall design of Colab, but largely avoided in Cognoter through the use of

busy signals. Cognoter helps participants avoid conflict by signaling potential

conflict (see Figure 4.9). Busy items are greyed-out in all views when being

edited or moved or grouped. These busy signals do not make conflict

impossible, but makes them avoidable, by relying on the participants to notice

that an item is being changed.

87

88

,.1.. ~;;~~o ... p •:•:":·r::::ratlv!IJ'
on~arizin~ ioea' need! to oo
!~~·eral thin;; s: cather the
ideae. dete..,....ine
relatior.:h p;: 4n:J

lin~ O!llgor:thrr.

d~~i~;;n evo•uti·:)n
./"'

.v·/
conclusion ai

Figure 4.9. A busy item. Conflicts can occur when more than one user is able to interact with

shared objects Cognoter warns users that someone else is doing something to a item by

highlighting the item. These busy signals put some of the burden of conflict detection onto

the users in a fairly natural way. Example: One of the collaborators is in the process of editing

the item "problem-solving structures". The greying-out of the item appears on all displays

warning the o:her participants that the item is busy.

In a face-to-face meeting social conventions come into play. While

using Cognoter people can verbally gain exclusive access to a shared object,

"I'm going to knock the introduction into shape", or suggest non-interfering

subtasks: "Why don't you work on the conclusion." Cognoter is intended to

support these kinds of behaviors (indeed, it depends on them in the current

implementation of conflict avoidance).

Another convention is semi-reserving the left side of the displays for

private activity. This partially avoids the problem of remote competition for

screen space.

Cognoter and Meeting Processes

As a meeting tool, Cognoter inevitably reflects a philosophy and model

of meeting processes. By making some things explicit and ignoring others,

meeting processes are inadvertently {or deliberately) biased. For example,

Cognoter users must take the phases into account: they can either follow the

urged path or consciously react against it. On the other hand, Cognoter (for

better or worse) is not involved in policing the technical level of the

presentation- this must be worked out by the participants.

Parallelism and Equal Access. Cognoter users at personal workstations

have the potential to simultaneously handle different parts of a task. For

example, during the brainstorming phase, participants often add items

simultaneously to the shared database (and all displays). In the ordering

phase, participants frequently partition items into sets order the sets in

parallel. In all phases, it is usual for participants to add attached text to

different items simultaneously.

In Cognoter sessions a characteristic pattern of activity occurs, especially

in the ordering phase. Users interact verbally for a few minutes, discussing

things and making short plans of action. This is followed by a period of

intense individual interaction with the system. Gradually, over the course of

minutes, the group tends to lose track of what the others were doing and the

.session returns to verbal interchange for summarization and focusing (see

chapter six).

Incremental actions. The ability of a tool to support incremental

progress is very important. It is key to the rapid and synergetic interactions.

The parallel actions that we see in Cognoter are not at the grainsize of hours

-they are the interactions that make up the give and take of participants in a

rapid problem-solving context. Interactions range from a few seconds to a

89

90

few minutes. and the shorter ones must happen quickly or they will slow

down the meeting. Many small contributions and local decisions about idea

ordering taken in sum constrain large scale organizational decisions. Large

scale organizational decisions may turn out to be sufficiently constrained that

they simply do not have to be made at all.

Consensus. Cognoter serves as a focus of attention and, since it

supports only a single version of the idea organization it, perforce, maintains

consensus. This will not be the correct approach for all applications (in fact,

some other research suggests otherwise [Kerr82] [Rice84]). Other applications

may wish to delay consensus. For instance, Argnoter3 [Stefik87], a Colab tool

under development for considering competing proposals, seeks to delay

consensus to highlight the differences between several competing proposals.

The "Rules of the Game". People who agree to cooperatively solve a

problem are likely to implicitly agree to the "rules of the game" -especially

if they think that playing the game will help them work more effectively.

Cognoter establishes a working framework both in the software and in the

implicit or explicit rules of the game. In effect, it both carries and presupposes

certain attitudes about the way that meetings are done. When tools like

Cognoter become widely used, they may have an important effect on large

organizations as carriers of problem-solving "culture".

Limitations of Cognoter. Some important parts of the group

problem-solving process are not captured in Cognoter. For example,

Cognoter has no representation of the goal for the presentation other than a

title. On the flexibility side this is good, but it also allows the group to wander

off the point. Cognoter does not handle a specification of the a_udience for

the presentation. When using Cognoter participants get little help at keeping

the technical or \dbal level of the presentation at the appropriate level. The

current version of the tool does not provide the ability to attach supporting

arguments to links or deletions. Experimentation with these is left to future

work {see chapter seven).

Design Evolution

Cognoter began as a desire to automate a particular

reasonable-seeming method of organizing material for presentation.

Although the basic idea for phasing existed early on [Stefik84), the first

implementation had no phases, only the ability to put idea items into a shared

window, attach text to them with local editors, publicly display items and

their text, and move the items around. It was expected that any phasing

would be handled verbally by the participants.

It quickly became apparent that a more flexible and definite ordering

technique was needed (rudimentary organization in the initial

implementation was achieved by moving items roughly into a left to right, top

to bottom order). Links were added as a precedence indicator.

Once links were added, the tool became marginally useful. With

greater utility came increased use and increased demands for improvement.

Usef ... : work could be done and it became necessary to be able to generate

more useful output and hardcopy than a simple snapshot of the screen.

Outl:'le format display and hardcopy features were introduced.

More sophisticated ordering techniques were needed for the

generation of real outlines. Complex items (groups items) were added. At

this point the crude tool was finished and was actually more useful than a

piece of paper and a pencil. Nothing(!?) remained to do except clean up the

deta ·is, straighten out the user interface, speed things up, and fix the things

that were being done the wrong way.

For Cognoter to be used regularly it was necessar-y to enhance item

movement (allowing movement across windows and, therefore, across

groups), the ability to save and restore the state of a session, and features to

guide and gauge completeness (ambiguity highlighting and notations

indicating that attached text was present). The menu structures were

rationalized several times and operations were introduced to allow more

control of display complexity: Spread, Scrunch, and ShapeToFit are examples.

91

92

Summary

Cognoter is a meeting tool that supports a group of people who are

organizing ideas for presentation. It is the first computer-based meeting tool

to be regularly used in the Colab. The implementation and design of

Cognoter has provided a better understanding the design of multi-user tools

and computer-supported meeting processes.

A key motivation for computer-supported meetings is the possibility of

parallel activity by participants. To support this, Cognoter provides a

multi-user interface which gives all participants equal and immediate access to

the shared database of the meeting. Cognoter's interface is based on the

wvsrwrs abstraction, which ideally enables all users to see the same written

information and where other participants are pointing.

Computers, as an active medium, allows the capture of some aspects of

meeting processes. Meeting tools, such as Cognoter, make it possible to

experiment with meeting processes in principled ways. Cognoter has three

phases that guide a presentation-planning meeting from the generation and

articulation of ideas through an annotated outline of the presentation. At

each phase of the meeting, progress towards the goal is achieved through

small, incremental actions that ultimately lead to a complete ordering of the

ideas to be presented:

The first generation of Cognoter is now finished. The next chapter

discusses implementation details of Cognoter and Colab. Informal

observations on Cognoter's early use and the results of some experiments to

explore Cognoter's multi-user interface and meeting processes are presented

in chapter stx. Extensions to Cognoter and speculation on future directions of

this work appear in chapter seven. Appendix Cis the Cognoter Users' Guide.

Notes:

, The name Cognoter comes from a combination of Cogno-ter, "thinker·, Cog-noter,

"thought noter'', and Co-gnorer, "knowing together".

2 Interestingly, there turns out to be the same reticence in making a group consisting of a

single item in Cognoter as there is in creating an outline sub-section consisting of a single

entry (Either the Mrs. Grundys ofthe world seem to be winning: "You can't have a II.B.l.a

without also having a II.B.l.b", or this is a recognition of a fundamental distinction).

3 The name Argnoter is intended to suggest "Argument Noter''.

5

So many out of the way things had happened lately

that Alice had begun to think that very few things,

indeed, were really impossible.
-Lewis Carroll

Implementation and System Objects

Here the object-based implementation, concepts and

subsystems of Cognoter and Colab are delineated. The Colab

Executive is the high-level interface to the system.

Conver.sations are associations of machines, collaborators, and

meeting tools. Cognoter is dissected and its parts described:

its windows, items, links, group items, and display algorithms.

The C-graph representation used by Cognoter is compared to

the usual o-tree representation of outlines. After exploring

several different database consistency schemes a combination

of "busy signals" and "social locking" techniques was settled

upon for the current implementation. This technique cannot

guarantee consistency but is surprisingly effect~ve in

Cognoter's special domain of cooperative participants in

face-to-face communication.

95

96

Introduction

Several assumptions determined the design of the Colab and Cognoter

software. Foremost were the assumptions that each human participant is at a

personal workstation, that the computers of the participants are connected

together by a communications network, and that all machines run the same

software kernel. Also, as explained later, by limiting the domain of the

project to support of face-to-face situations, the software design was

affected in some unexpected ways.

Though other design spaces for collaborative systems are certainly

possible- for example, a system might be built using a time-sharing system

or software might support a heterogeneous computing environment- the

chosen approach has proven workable and makes sense, directly reflecting as

it does the conceptual model of each node as an intelligent agent: a person

augmented by computational support. This networked workstation approach

is flexible and open-ended, suiting the experimental goals of the Colab

project. With this arrangement it is possible to add special software to

processors or to add processors to perform special functions, like statistics

gathering.

The software for Colab and Cognoter is written in Loops [Bobrow83], an

object oriented extension of Lisp [Sannella83]. Loops is similar to Smalltalk-80

[GoldbergBO] in that programs are organized as objects and control is expressed

in messages passed between objects. Objects can hold private data and

private methods specifying operations to perform or they can inherit default

data and methods from parent objects. As implemented, the Colab system

run· Jn Xerox Lisp Machines connected by an Ethernet [Metcalfe76] network.

This chapter describes the implementation of the Colab system and the

Cognoter brainstorming tool. Since the Colab system is implemented in an

object-oriented language, the main system objects and classes are presented

in some detail, along with an exploration of some of the object consistency

issues that arose in the course of the programming effort. For

object-oriented programming argot see the glossary (appendix A).

Colab Implementation and Objects

This discussion of the implementation of Cognoter and Colab begins by

considering the relationships between the system classes and objects (see

Figure 5.1 for a high-level view). Most objects in the Colab system are

associates. Recall from chapter three, that when any associate in an

association changes, new values are broadcast to all associates using an

RPC-based communication protocol (see BroadcastMethods in chapter three).

~ ColabExecutive ~

~-·~
Conversat1on

Collaborator

BroadcastQueue

Tool

Noter

Figure 5.1. Diagram of illustrative high-level object classes and their inter-<onnections. Colab

consists of many classes of system objects - this diagram is the basic road map. The links

mean ·has a pointer to".

97

98

The implementation of the system can also be considered

operationally. The system is designed as an "operating system• in steps:

initially supporting an individual tool, then supporting several tools together

in a single session, then the dynamic addition of tools to an existing session,

and finally supporting multiple sessions. After the single machine case is

delineated, message passing protocols are added and a similar sequence of

steps is followed in the multi-machine case. Beyond this are the requirements

for the sharing of common subsystems and dynamic system reconfiguration.

QueueProcess

Coll•boruor

Col•bExecutlve

----- CoS..bTool
Bro•dc.stQueue ---Convers• tlon

TooiEiement

EditGroupOwner

Edit Group

Col•bCS..ss

--Loc~use
Mouse '""---

-- ShadowMouse --- RernoteMouse

Figure 5.2. High-Level Object Class Lattice. This is the Loops class inheritance brow~r for

some ofthe main system objects.

Colab Executive. The ColabExec, an instance of the Colab Executive

class, is the high-level interface to the Colab environment. There is only one

ColabExec per machine. The ColabExec is a special kind of object: It is not

quite an association (see chapter three) since the ColabExec in each machine

environment keeps its own information and doesn't broadcast internal state,

but it is like an association in that all ColabExecs share the same name so they

can communicate easily with each other in an association-like way. The

ColabExec serves as the top-level user interface to the system, dealing with

things like adding new conversations and displaying currently known

participants {see Figure 5.3). It also handles some behind-the-scene chores

such as registering new participants and distributing changes to the state of

the conversations.

Figure 5.3. ColabExec Icon. The icon represents the people, the software (windows), and the

room (trapezoidal tables). Buttoning the icon brings up a menu of global operat;ons.

As shown in Figure 5.4, the ColabExec object contains the known

session collaborators (any of which may or may not be involved in individual

conversations), the active conversations, icon information (position, bitmap),

and menu interface.

99

ColabExecutive

MetaCiass: Class

Supers: lconWindow

lnstanceVariables: (me ·Collaborator ..)

(conversations << ListOfConversati ons»)

(collaborators« ListOfCollaborators»)

(LeftButtonltems « ListOfMenu Items»)

(icon «Bitmap»)

Methods: (. .. AddConversation ... ChangeCollaborators ... RestartRPC ...)

Figure 5.4. A condensed version of the Colab Executive class description. The ColabExec, the

only instance of the ColabExecutive class on each machine, contains the collaborators known

in the session, the active conversations, and information about the icon interface and

functionality.

Conversations. Technically, a conversation is defined as an association

of machines, collaborators, and tools. A conversation object (instance of the

Conversation class) holds a description of the participants involved in the

interaction and the tools that they are using (see Figure 5.5). In looser Colab

parlance, a conversation is a set of machines, Colab tools, and participants

working together to solve a problem in a meeting. People speak of joining,

leaving, saving, or restarting a conversation. There are several ways this might

be implemented, in Colab the Conversation class is a sub-class of

BroadcastQueue and therefore can run pro:esses on each workstation that

field broadcast messages or package local messages for broadcast.

Conversation

MetaCiass: Class

Supers: BroadcastQueue

lnstanceVariables: (collaborators ·ListOfCollaboratorObjects•)

(toolslnUse «ListOfTools»)

(title «String»)

(audience «ListONoyeurs»)

Methods: (... AddCollaborator ... AddTool ... NotifyColabExec ... PutSnapshot ...)

Figure 5.5. A condensed version of the Conversation class description. A conversation holds a

description of collaborators that it will broadcast to and the tools that are active.

New participants can be added to a conversation in progress through

the ColabExec. All the other participants will find out about the newcomer

just as the newcomer finds out about existing participants. The newcomer's

machine installs copies of the current state of objects that represent the

database and, if desired, a history of the conversation. Current

implementation allows participants to be brought up to date by either

playing back the conversation history from the beginning at high speed or by

loading a saved state (history would start with the GetSnapshot command, see

below, that restored the saved state). Conversations may.also have attached

to them voyeurs, unfortunately named objects that can eavesdrop on the

network or conversation activity- examples include debugging aids and data

collection monitors (it is possible ensure a degree of privacy by turning off the

voyeurs).

Collaborators. A Collaborator object is a description of a participant in

a Colab session (see Figure 5.6). It encapsulates network informatio,, and user

• c.
I

informatior.. A Collaborator object is created for each participant -

"participant• in this case refers to a human being and a workstation together.

Collaborator

MetaCiass: Class

Supers: Object

lnstanceVariables: (machine • NetAddress•)

(machineName «String»)

(userName «Atom»)

(rea/Name «String»)

(remoteMouse ccMouseObjecb)

Methods: (... Describe ... MakePrettyDescription ...)

Figure 5.6. A condensed version of the Collaborator class description. A Collaborator object

holds a descri p:ion of the human-machine pairs in a Co lab session.

Session State. Session or tool state can be saved and restored using the

standard methods PutSnapshot and GetSnapshot, respectively. These

methods will usually need to be specialized for each Colab tool since the

default versions inherited from ColabTool save everything about every object.

For tools of any complexity saving static data will be wasteful of space and

inflexible. If the contents of every instance variable were saved in Cognoter,

for example, then lnterlisp window or font descriptors would be written out.

But these descriptors may need to be rebuilt when installed into a new

environment. Along the same line, it is often better to recreate particular

object instantiations. The usual approach is for each tool to have a

PutSnapshot method that stores enough structured information for its

GetSnapshot method to rebuild the tool state.

Cognoter Implementation and Objects

The theory and practice of Cognoter was discussed in the previous

chapter. This section looks at the implementation details of Cognoter. Any

Colab meeting tool is implemented as a collection of objects. Like all Colab

tools, an instance of the Cognoter object has interface aspects and tool

functions. Figure 5.7 shows the classes for the main Cognoter objects. The

theory and practice of Cognoter were discussed in the previous chapter. The

main parts of Cognoter are illustrated in Figure 5.8.

GroupVIew ·-.:::--_
tternBucket '····... .._ ___________

EditGroup 'Cn~oterEdit't~"'-...__

,....-··· Labei'~~tem Co~'C.l.:,abelledltem

.,.·_,.. -,__ ---._____ ___- LlnkedRelationView

TooiEiernent ', Labelledlte.;,.tiew LlnkedltemVi~

·~ ··-, · · LlnkedGroupView

··.Jtemlink ·---tf~Link
' '

· ltemWiodow ---=-·· Cognoter'W'indow --- ShyCognoterWindow

Edit GroupO
Cognoter

Cola.bTool

Figure 5.7. Cognoter object class browser.

1C3

104

LinK_ -

EditGroup

intellectual task

1-
1

I
i...--·-)"
I

I

I

I

I

I

/

I ,·

Item
(Idea Node)

/

/

[Background]

' '

CognoterWindow

'
\

Group
Item

...

Figure 5.8. Th-e Basic Parts of Cognoter's Interface. A CognoterWindow is where the items

are manipulated. An EditGroup is a subtool supplying editing and text display functions. An

Item (Idea Node} is the basic unit. A Group item encloses a group of items. A Link specif1es the

order of two items.

Cognoter. An instance of the Cognoter class is really an interface

between its various subtools and the rest of the Colab system (see Figure 5.9).

A Cognoter object is the only part of the tool that communicates with the

enclosing conversation. Requests to broadcast generated by a part of

Cognoter is forwarded to the Cognoter object which in turn forwards them to

the enclosing conversation object. A Cognoter object contains pointers to all

the large scale parts: the windows and edit groups. It also takes care of global

tool state, such as session phase.

Cognoter

MetaCiass: Class

Supers: (ColabTool EditGroupOwner)

ClassVariables: (Object Types « TypePropList»)

(MenuName «String»)

(Phases (Brainstorm Order Evaluate))

lnstanceVariables: (mainWindow ·CognoterWindow ..)

(item Windows« ListOfCognoterWindows»)

(outline Window «Window>>)

(garbage Window «ShyCognoterWindow»)

(phase «phaseName»)

(*editGroup «EditGroup»)

(*conversation «Conversation»)

(*-initiator «Collaborator»)

(*objectsForSnapshot «ListOfObjects»)

Methods: (... DisplayOutline ... GetSnapshot ... NextPhase ... Quit ...)

Figure 5.9. A condensed version of the Cognoter class description. Contains the parts of the

tool: the windows, the edit groups, ... (* means inherited).

CognoterWindow. An instance of CognoterWindow (also called a

CognoterWindow when the difference between class and instance is

unambiguous) supports most of the interactive tool functionality (see Figure

105

106

5.10). It supp>~es the command menus and invokes most changes that happen

in the course of tool use. In addition to tool menus, a CognoterWindow

contains a list of items within it and their links.

CognoterWindow

MetaCiass: Class

Supers: (Item Window Group View)

lnstanceVariables: (*items cltemlist•)

(*tool .cognoterlnstance•)

(*title •String.)

(font «Fontlnformation•)

(spawningltem «Item•)

(ambiguitiesFig NIL)

(rightButtonltems c<Menultemlist»)

(titleltems «Menultemlist»)

(middleButtonltems <<Menultemlist»)

(leftButtonltems «Menultemlist»)

Methods:(... AddLink ... EditAttachedText ... Groupltems ... ShapeToFit ...)

Figure 5.10. A condensed version of the CognoterWindow class description. Menus, Items, ...

(* means inher-ited).

Items and Item Views. A complete specification of an item requires two

instances: one for its model and one for its view {technically item refers to an

item view and theltem refers to an item model). The underlying model of a

Cognoter item is an instance of ComplexLabel/edltem. It contains the basic

(display invariant) information about an item: the label, any attached text,

and a list of its views. An item view is an instances of LinkedltemView. It

contains, in addition to a pointer to back to its model, display information:

which font to use, the region the item should use to display, window

coordinates, and any links to or from the item (see Figure 5.11).

the model

label = idea
text = ""

\
the views

Figure 5.11. Items: the model and the views. Complexlabelledltems and LinkedltemViews

are each specialization of more primitive classes (LinkedltemView, for example, is a

specia!:zation of LabelledftemView which is a specialization of LabelledActiveRegion which

was begat by ActiveRegion which was begat by Region which was begat by ...). Instances of

Labelledltem contain the basic information held by an item: label, attached text, and its

views. Instances of LinkedltemView, in addition to a pointer to ·the Labelledltem it is

displaying, contain display information: label font, display region, and links.

An example may clarify: Suppose supporting text was to be attached to

an item. The item view would be buttoned. "Ed itT ext" would be chosen from

the menu (supplied by the enclosing CognoterWindow). The

107

108

CognoterWindow would send an EditText message to the item model of the

item view (e.g., (send (GetiV item theltem) EditText)) which brings up an

editor for the text. Since items with attached text appear in bold face, the

item model sends its views a Display message.

GroupViews. GroupView is a mixin class for linkedGroupView and

CognoterWindow, adding a list of contained item views. Instances of

linkedGroupView (group items) provide the hierarchical structure of

Cognoter. They display just as any other item does except for the added

brackets that indicate their complex nature.

Items that have been grouped are displayed only on request. The

group item can be opened (a new CognoterWindow is created) to display the

contained items (see Figure 5.12) and make them available for interaction.

lnr~rrrHl.tion banowidth
\

~

ergon::mic~

info ·::lverloa·:l

Speed of listening

~rr.ount or memory

Speed of ~ead:ng

Figure 5.12. A group item and its contents. [cognitive limits] is an opened group item.

ltemlinks. An instance of ltemlink, a link, established an ordering

between two item views (see Figure 5.13). A link contains information about

the item it is coming from and the item it is going to. It knows how to draw

itself by looking at the window coordinates of the items it connects. The link

arrowheads are backed off the end of the link by 10% to avoid overwriting

existing arrowheads- so items would have to be in exactly the same place for

their links to completely overwrite each other. As implemented, links contain

both model and view data and functions- this doesn't matter in the current

implementation but will be changed in the future.

ltemlink

MetaCiass: Class

Supers: Too/Element

lnstanceVariables: (fromltem •Item•)

(toltem «Item»)

(displayWindow «Window»)

Methods:(... Arrowhead ... Draw ... Quit ... To ...)

Figure 5.13. A condensed version of the ltemLink Class. Links know where they are coming

from and where they are going to. They use the window coordinates of the items they link to

calculate the coordinates for display.

Grouping Link Algorithm. When a group item is formed, strictly

contained items retain any links with each other, but any links across

CognoterWindows are broken. If there were any inlinks from items outside

109

, , 0

the group to any of the contained items then an inlink to the new group item

is formed from each outside item. If there were any outlinks from contained

items to items outside the group then a new group item link is formed to each

of them (this is described more clearly in Figure 5. 14).

Groups are ungrouped analogously. A shrunken version of the

contents of the group item is put in place of the group item. Links from the

outside to the newly ungrouped items are determined by inspecting the

decommissioned group item. Any inlinks to the group item become in links to

the beginning set (defined below) of the contained items, and similarly for

outlinks and the ending set of the contents.

As implemented, grouping followed by ungrouping is not invariant.

The simplest example of this is the following: Imagine four items A, J, K, and

Z. A is linked to both J and K, J is linked to K, J and K are both linked to Z. If J

and K are grouped into [G], then links from J and K to A and Z are broken and

new links are formed from A to [G) and from [G) to Z. If [G) is now ungrouped,

new links will only be formed from A to J and from K to Z (the link between J

and K is unchanged).

'l

lr,•c rmO!tion bar"ld·sidtn
\
\

-~.
ser-.ses .,

'\ '•
/ '\:ohnicel devices

/ ~ \
Spefid of ~~~~enir·g ~

y· --:~ e""g:;non·ics
":pe-=d ·:>f re<!.din~ /:_.,: •

,~om:ount :f merrory

lr"lformatio~· bandwidth

\
~.

sef'1,ses \

i/ "~pt"oysiceldevices
&,/ 'I

.... \
[ccgniti\'! limits]'-... .~

" . ~ e~;;cnorr·ics

Figure 5.14. Links in Grouping. Links between contained items are kept intact. In-links to

contained items from outside items become in-links to the group item. Out-links from

contained items to outside items become out-links from the group item.

Outline Algorithm. An outline is generated, with or without the

attached text, by successively removing and displaying items in the beginning

set (items with no in-links). In a completely specified graph with no

ambiguities there will be only one beginning item at each stage. If an item is

a group item then that item is traversed in the same way, but is displayed with

an indentation in the outline window. Figure 5.15 shows the algorithm used

for Cognoter's outline display.

111

, 12

DisplayOutline (cognoterWindow, title, textToo):

;; get the items and order them by taking successive "beginnings"

;; Orderltems behaves much like the Ambiguities Algorithm below

items- Orderltems(Getltems(cognoterWindow)

;; GetOutlineWindow creates a new outline Window if necessary

outline Window - GetOutline Window()

;; print the heading

Print(outlineWindow, title)

;; and the items ...

;; PrintOut will plumb any group items and PrintOut with

;; appropriate indentation (using PrintOutAux)

for i in items do

PrintOut(i, outline Window, globalltemFont, textToo)

Figure 5.15 Simplified version of the algorithm used for Cognoter's outline display.

Since the Outline command is handled by a CognoterWindow, outlines

are made in the context of invocation. This means that outlines can be made

of any subgraph in the hierarchy of CognoterWindows.

0-trees and C-graphs. An outline can be represented as an D-tree, a

tree whose nodes are decorated with attached text. An outline is actually a

forest made into a tree by adding a false root node to connect all roots of

trees that make up the forest. The outline is traced by traversing the 0-tree in

preorder. The depth of the 0-tree corresponds to the depth of the outline

(see Figure 5.16).

Title

I. Heading
attacbea test

II. Heading

A. Subheading

1. Point

2. Point
attaci:ed text

B. Subheading

C. Subheading

III. Heading

Title

------ -------I. Heading III. Heading
a::.acbeci :.er..

II. Heading

/ \~
A. Subheading B. Subheading C. Subheading

I ~
1. Point 2. Point

attached ta:rt

Figure 5.16. An outline and the corresponding o-tree. An 0-tree is a decorated tree. An

outline is generated from an 0-tree by traversing it in pre-order.

At the center of Cognoter is a way of organ1zmg ideas called a

Cognoter graph or C~raph (C-graph is used to refer to the abstraction and

113

114

Cognoter graph is used for the view of a C-graph seen on a display during a

Cognoter session - an Outline is to an 0-tree as a Cognoter graph is to a

C-graph -see Figure 5. 17). A C-graph is similar to an 0-tree except that

redundant connections between nodes are allowed and there is no need for

the additional false root to enforce ordering. An outline can be generated

from a C-graph by traversing the graph in pre-order, making sure to visit each

node only once. A Cognoter graph consists of two basic node types:

item-nodes and group-nodes. The other major elements in a Cognoter graph

are the links between the nodes, text attached to either kind of node, and the

containing item windows (a view of the items in a group).

~ •tern . · item.
item tto:ar~odtoxt: E:J
[group item] / ---~[. :

1
ttem

. ~ group 1tem
.·

item
item item.... . · · ·

. ~[group item)
\ ·attaci>odtnt•. •

itelll-7 item

\
item

~:::ac=eci text/

1tem

1'
~ ~oup item

t group item r-::1
item

groa~Pc~~~~~ Ld
item t

item~___..) \ item

\ item
itelll-7 item ~-----"

Figure 5.17. A C-graph and the corresponding Cognoter graph. A ·c-graph is a decorated

directed graph. An outline can be generated from a C-graph by traversing it in pre-order,

but o,...ly visiting each node once.

People are generally familiar with the basic use of outlines and

outlining. It can be argued that an outline is a good design form to use when

115

116

the goal is to generate an outline, since an outline ex1sts at all phases in the

design. However, the "always have an outline" constraint is also a weakness.

The outline format forces decisions too quickly: you must choose a place in

the outline to put an idea at the moment the idea is created. An outline is

also difficult to rearrange. Even when, in an attempt to overcome the need to

decide order at creation time, ideas are placed in random order with the plan

of scrutinizing and ordering later, the outline format still implies an ordering

(possibly false) at all times. It is not clear which ideas have been ordered and

which only appear to be in order.

A Cognoter graph, while having much to offer, is not a traditional

structure for ideas and it requires some effort to learn to think and work in

C-graph terms. This newness itself, if not overly difficult, can be an advantage

- providing a fresh way to look at things. A Cognoter graph permits the

delay of outline decisions since order need not be specified at node creation

time. Since items can be simply generated without concern for where they fit

into the existing nodes, a Cognoter graph lends itself well to incremental

decision-making. Items that are not ordered or are only partially ordered are

obvious in a Cognoter graph. A C-graph is able to hold more information

than an 0-tree: this additional information is the allowed redundant links

that specify relationships between items (see Figure 5.18). Information useless

at one moment, may become useful later. For instance, when a link between

two items is broken, formerly redundant links may become germane.

Figure 5.18. Cognoter graphs contain more information than outlines. Any outline can be

completely represented as a Cognoter graph, but no: every Cognoter graph can be

represented completely when cast as an outline.

Other, more subtle, information is captured in a Cognoter graph

(though not in the abstract C-graph): e.g., the rea! distance between items on

the display. Flexible positioning and re-positioning of items allows a

continuum of subtle relationships. Items physically closer together are

implicitly more closely related that items farther apart.

Ambiguity Algorithm. During the course of a session, the items in a

CognoterWindow will often be incompletely ordered. Items whose order in

incompletely specified can be highlighted on request. The topological sort

algorithm used for ambiguity highlighting and for outline generation is

shown in Figure 5.19 (Figure 5.20 shows an example).

117

, 18

Ambiguities (items, ignoredLinks):

;; add each item with no in links to the beginning list

beginnings - NIL

for i in items do

if (N olnLinks?(i)) then

beginnings- Union(beginnings, i}

;; no beginning list~ there's a cycle -punt

if (Length(beginnings) < 1) then

for i in items do

FlagAsAmbiguous(i)

beginnings- items

;; more than one beginning ~they are ambiguous

if (Length(beginnings) > 1) then

forb in beginnings do

FlagAsAmbiguous(b)

;; remove beginnings from item list

itemsLeft -NIL

itemsLeft - SetDifference(items, beginnings)

;; if any items are left, then recurse

ifitemsLeft then

;; in any case, ignore any links attached to beginnings

ignoredLinks -

Union(ignoredLinks, CollectLinks(beginnings))

Ambiguities(itemsLeft, ignoredLinks)

Figurl 5.19. Ambiguity Algorithm (simplified version).

unambiguous ambiguous

Figure 5.20. Ambiguity Algorithm Example. If o-c is missing then the relationship of B to C

and D to Cis unknown.

Linearization Algorithm. Linearization of a Cognoter graph makes it

look neater (see Figure 5.21). Linearization rearranges the display in a

CognoterWindow by placing the longest path down the left of the window.

Other shorter paths grow off this backbone to the right and down. The graph

can be displayed with the display of redundant links suppressed. A linearized

graph is easier in many cases to understand and is closer to an outline in form.

Unfortunately linearization also destroys any meaning attached to

idiosyncratic placement of nodes. The linearization algorithm is similar to the

ambiguities algorithm above.

119

120

.:ooper.)tion
I

comr:etition
·-.....,_-:.;..

Figure 5.21. A Linearized Cognoter graph A completely graph with the order of items

completely specified would appear as a si~gle column. The relative ordering of [cognitive

limits] and physical devices is still ambiguo~s. Redundant links remain, for instance between

information bandwidth and time scales.

Gone, but not Forgotten. Nodes that are deleted disappear from the

display windows but they are not destroyed. They are moved to a closed

garbage window. The garbage window is an instance of a specialization of

CognoterWindow called a ShyCognoterWindow because it w_ill only open

when asked very nicely. In other respects, a garbage window is a normal

CognoterWindow. The contents of the garbage window may be examined on

demand.

Shared Objects and Database Consistency

Cognoter enables people working together to share and jointly revise

information. To consider the properties of this shared workspace it is useful

to consider it as a a database management system for a concurrent database.

The specifics of data structure and grainsize is left unspecified: a Colab datum

may be anything from an integer to a bitmap to a piece of executable lisp

code. The design of this database its management system is a starting point

for understanding implementation issues and programming techniques that

have been used specifically for Cognoter and, more generally, for the Colab.

In addition to the usual database constraints of robustness and

correctness Colab shared databases also have some special requirements.

Overall, since Colab is a real-time application, real-time response is necessary:

changes to the database and display must happen quickly and updates must

propagate quickly. Since complex displays of information in the database are

being maintained, data access must be very fast. Since several displays will be

showing the same data, the database must converge to a consistent state very

rapidly. It should not be possible for accidental actions to have catastrophic

actions on the shared database. A Colab application should be able to survive

the loss of a participating machine (whether the loss is intentional or not­

i.e., the system should be able to survive both planned exits and unexpected

crashes).

What were the various approaches to database management? Several

schemes for conflict avoidance and database consistency were tested

experimentally.

Centralized Database Model. The first database scheme to be

considered seriously was a single centralized database (see Figure 5.22). This

centralized model has been used for many other applications {including

RTCAL by Sarin and Grief [Sarin83]). Since there is only one database,

concurrency control is straightforward. Nearly simultaneous changes to the

database are handled by well-known database transaction mechanisms

[Bernstein81]. Since all participants necessarily use the same data for display,

121

122

screen consistency is assured. However, the centralized model and object

servers in general were rejected after feasibility testing because distributed

displays could not be serviced fast enough from the remote database. Also,

since Colab was to be a real-time system of networked workstations with

expected bursts of interaction, the peak communication load between

individual workstations and the centralized database was expected to be high

enough to introduce unacceptable delays in both display and database

updating.

Database Management System

~ - - - • - - - - - - - - - - J

Figure 5.22. Centralized Database Model. There is one central database that all participants

must modify and use as a source of display data.

Centralized-Lock Model. After considering the basic centralized model

it was clear that, to approach real-time performance, the database must be

replicated at each workstation. This approach is feasible since only a small

database will be generated during the course of a meeting. The next model

considered was the centralized-lock model (see Figure 5.23). In

centralized-lock model each workstation maintains a copy of the database,

but can only make changes to the database when it has global ownership of

the item {i.e., a lock on it). Ownership of an item is obtained by conversing

with a centralized lock server. By locality arguments, this model ameliorates

the slow data retrieval problem of the pure centralized model since each

workstation will tend to already have the locks it needs to update the

database. Data for displays is always retrieved from the local cache, avoiding

network communication delays. The cache is updated whenever changes

made on any workstation are broadcast. Bernstein and Goodman discuss

several variations on this basic approach [Bernstein81].

123

~24

DBMS DBMS
, , r • • • • • • • •

:aatabase :
I I

I I
·a· 1 Database •
I I

I I

·-------.1 ·-------.1
data

<)

Figure 5.23. Centralized-Lock Model. The database is replicated at each workstation. There is

a centralized lock server that allows changes to the database only with the appropriate key.

Legal changes are broadcast to all workstations.

In the centralized-lock scheme the grainsize of the data is very

important. It might be reasonable to provide locks for data ranging from the

entire database to individual words of text. If the grainsize is small enough,

work on the database can proceed in parallel, but if too small a large number

of locks must be obtained to do significant work. If the data grainsize is large,

it is easy for once participant to make sweeping changes, but often at the cost

of locking others out. In an early implementation, the grainsize was at the

level of windows. This was much too large. It essentially forced sequential

action. All parallel activity was lost, and the frustration of waiting to get a

lock was added. Unfortunately a smaller, item-level, grainsize would have

been too slow.

An improvement to this scheme (unimplemented) would be to add

time-stamping. With a little database management machinery to check

time-stamps, changes to the database could be serialized. This would ensures

that replicated databases would converge to the same state, even if the

changes were received out of order. For transactions requiring ownership of

multiple locks, the the usual caveats about avoiding deadlock apply

[Coffman71] [Hansen73]. One solution is to require transactions needing more

than one lock to acquire them all before proceeding.

Roving-Keys. The centralized lock server described above can be a

communication bottleneck. The roving-key model (see Figure 5.24) reduces

network communication load further by locking all items and distributing the

key granting responsibility (keys are initially given to the machine beginning

the conversation). When a machine obtains a key on a datum it also obtains

the ability grant the key to someone else. Thus, when a machine needs a

daturr: it checks to see if it already has the necessary key. If not, it must get the

key (a"ld the future granting ability) from whichever other machine currently

has it. The postulated main advantage of this model is a locality argument

that machines would tend to acquire working sets of keys they need: most key

requests would be satisfied by looking in the local machine environment.

An apparent flaw in the roving-keys model, that keys may be held by

unknown machines requiring polling the entire network, can be largely

avoided by having each machine storing the last known location of each key it

touches. Machine A may need a key that it no longer ~as, but at least it

knows that it gave it to machine B. B either has the key and grants it to A or it

may not have the key any more and forwards the key request to C. If A had

never owned the needed key, it would query the machine that first started

the conversation.

125

126

I'
I

DBMS DBMS
r • - --. • • I r • - . . -- • I ·e· ·e· 1 Database 1 1 Database 1

I I I I

1 I I I

I • . - - --- .. keys I • -.. --- ..
< >

~ ~ <)
data

DBMS

r·······•
:eatabase :
I I

I I

·-------tl

Figure 5.24. Roving-keys Model. This scheme dispenses with the central lock server by

distributing not only keys to data, but the ability to grant keys. If a machine does not already

have a key that it needs, it queries the machine it last knew had the key to for the current

location of the key.

The roving-keys and the centralized-lock models were only partially

implemented- partly because other issues were more important in the early

phases of the project and partly because of a limitation of the lnterlisp process

scheduler. This process scheduler is non-preemptive. In the lnterlisp

environment there is no way to limit how long a system process may run

before yielding to other processes. Early tests showed that the system could

be brought to a halt by tying up a single processor that had obtained some

key locks(!). Future lnterlisp releases will have a preemptive scheduler.

Cooperative Model. The need for real-time performance led away

from the overhead of data locking. Since the observed time for a round trip

remote function call was so long (see table 5.1 and 5.2), techniques and

communication models that minimized remote function calls were necessary

(eschewing data locks and replicating the database, for instance). This model

works surprising well in practice considering its shortcomings. It is essentially

the database model used in the Colab at this writing.

Average RoundTrip Times

RemoteEval

Machines Simple Call Simple Call Long Call Long Call

Cl 1 e nt-Server Wait NoW a it Wait NoW a it

Do•ado-Dorado 111 91 145 112

DLion-Dorado 244 204 N/A N/A

Dorado-DLion 431 428 N/A N/A

Dorado-Dolphin 659 550 980 602

Dolphin-Dorado 265 220 426 294

(t1mes 1n milliseconds)

Table 5.1. Round trip communication time for function calls using the REMOTEVAL package.

The simple call was "1". The long call was a concatenation of several long strings. Wait

means wait for the return value. NoWait means wait only for an acknowledgment (the return

value is presumably not of interest). These times are approximately 100 times slower than

those reported by Birrell and Nelson [Birrell83] using Cedar. The degradation is mainly due to

the non-preemptive scheduler in lnterlisp.

127

128

Machines

Client-Server

Dorado-Dorado

Average RoundTrip Times

Simple Call

Wait

41

Courier

Simple Call

NoWait

N/A

(t1mes '"milliseconds)

Long Call

Wait

50

Long Call

NoWait

N/A

Table 5.2. Round trip communication time for function calls using the COURIER package.

The simple cal! was "1 ". The long call was a concatenation of several long strings. Courier is

about twice as fast as REMOTEVAL; the non-premptive scheduler is still the main

communicatior bottleneck.

Originally considered as a practical compensation for the

non-preemptive scheduler in lnterlisp, the cooperative model (see Figure

5.25) makes the critical assumption that all participants have non-hostile

intent and are trying to cooperate. This model can fail miserably in an

adversarial environment. In this model each machine maintains its own copy

of the database. Changes to the virtual global database are installed by

broadcasting the change to the replications without any synchronization.

DBMS DBMS

r·······• r • • • • • • • •

:aatabase :
I I

1 I

:aatabase :
I I

I I

I • • • • • • • j I • • • • • • • ~

< data)

DBMS
r·······• ·a· 1 Database 1

I I

I I

I • • • • • • • J

Figure 5.25. Cooperative Model. Changes to the virtual global database (replicated at each

works-:ation) are installed by broadcasting the change without any synchronization. This

scherr.e relies on human time-scale events and cooperative behavior.

Considered theoretically, this approach is dangerous and irresponsible,

rife with potential conflict and race-conditions. In practice it is possible to

lose work, which is unacceptable in production database systems. If two

participants make nearly simultaneous changes to the single datum, there is a

race to see which change will take effect (and which is lost). Worse, the

outcome of the race can be different on different machines. These

129

130

I •
; shortcomings of the cooperative approach are counterbalanced by several

factors.

Real-time performance. One helpful factor has already been

mentioned: this approach, especially when combined with semantic-action

packaging (see chapter three), is fast and permits real-time system response.

Independent changes. Another mitigating factor of the cooperative

approach is that for most sequences of changes to a Colab session database

the order of the changes is irrelevant. Almost all changes in the early uses of

Colab were independent.

Humans in the loop. Since human beings are on the critical path for

alterations to the database, changes take place on human time scales and,

therefore, simultaneous changes to data will be very rare. Nearly

simultaneous interactions can be avoided with busy signals (mentioned

earlier) that alter the appearance of objects and warn participants that an

item is already undergoing alteration. As a further mitigation, the

participants are aware of several kinds of actions that have the potential to

cause conflicts and will voice lock a portion of the shared data. "I'm going to

expand the nodes in the Related Work group."

Social coordination. Colab tools, Cognoter in particular, are designed

to coordinate the actions of participants. One reason to focus on face-to-face

meetings is to exploit social mechanisms for dividing up the work and for

reaching or maintaining consensus. The busy signal greying-out of a

displayed object is an example of Colab software making use of existing social

coordination mechanisms.

Discovery and recovery. In real systems, there is an inevitable delay

between the moment someone starts to alter an item and the propagation or

busy signals to other participants. It is possible that two users will begin

conflicting work on an object at very nearly the same moment. However, the

busy signal ensures, at least, that the two participants can quickly discover

that they are beginning to work in a conflicting way. Allowing them to

recover before they have invested very much time. In a face-to-face meeting

conflict resolution can be quickly negotiated once noticed.

Compare the cooperative model to the design constraints of telephone

systems: it is considered acceptable behavior for some percentage of phone

calls placed to fail (by dropped connection or wrong number). Such failures

require the user to redial. Little work (other than dialing) is lost and, with

little or no error detection/correction, the system is fast. People are willing to

assume that they have made a mistake in dialing if failures don't happen very

often,. Users even tolerate systems that are known to be unreliable so long as

work tends not to be lost. Once a connection is established, different, more

reliable mechanisms, are used to maintain it.

Use of the cooperative model has shown that data conflicts occur rarely

in human time-scales. Therefore, the cost of system interruptions for conflict

negotiation should be small, probably much smaller than the cost of

maintaining locks. Related approaches are called certification by Bernstein

and Goodman [Bernstein81] and validation py Kung and Robinson [Kung81]

and Sarin [Sarin84].

Although the database management facilities in Colab may eventually

have to adopt provably reliable techniques, probably involving some form of

two-phase locking and time-stamping, in Colab's special domain- where all

users of the database are in constant verbal, visual, and computational

contact with each other - it is reasonable to consider user intervention in

occasional cases of synchronization failure.

The ideal database model would run acceptably fast and guarantee

data consistency across machines. Work on more efficient locking schemes,

data dependencies, and consistency checking is in progress. The best model

now appears to involve consistency checking, dependency detection, and

roving-keys. The ideal model will also take advantage of the social-process

lessons learned from the cooperative approach. This is discussed further in

chapter seven.

, 31

132

Summary

This chapter has described the object-oriented implementation of

Colab and Cognoter. The system is flexible and open-ended, suiting the

experimental goals of the project. There is no claim being made that the

implementation described has converged to an ideal state. The

implementation works within the design constraints and desired features

presented. The next (fifth?) overhaul of Colab is currently in the planning

stages. Cognoter continues to be in a evolutionary state.

Particular lessons learned from the implementation include a

confirmation of the benefits of object-based systems and the layering of

system abstractions. The ColabExec is the high-level interface to the system.

Conversations are encapsulations of machines, tools, and participants.

Cognoter consists of special active windows, items, links, and group items.

After several trials, the database issues for cooperative work systems are now

better understood. The interim scheme of choice is the cooperative system

that relies on social coordination.

The next chapter describes observations of early use of Cognoter and

Colab. These informal and semi-formal observations led to a series of

experiments to test the effectiveness of the design and features of Cognoter

and Colab.

Note:

1 Accord . .,g to Garth Gibson, a former employee of a telephone company that shall remain

nameless.

6

The endless praises of the choirs of angels had

begun to grow wearisome; for, after all, did he not

deserve their praise? Had he not given them

endless joy? Would it not be more amusing to
obtain undeserved praise, to be worshipped by

beings whom he tortured? He smiled inwardly, and

resolved that the great drama should be
performed.

- The history of creation, as told
to Dr. Faustus in his study by
Mephistopheles

Experiments with Cognoter

During the later stages of its development Cognoter was used

informally by various groups as an idea organization tool.

Observation of these early meetings provided an opportunity

to reconsider several assumptions and test some guiding

hypotheses. These first observations also revealed some

surprises. The observation of initial uses of Cognoter led to a

series of experiments to explore some of the early notions of

the design of Cognoter and its effect on user behavior and

task effectiveness. The observations of early users and the

results of the experiments provided the background for a

deeper understanding of what Cognoter does for groups that

use it and the formulation of more precise research questions.

13~

134

Introduction

Earlier chapters have made occasional allusions to "early uses of

Cognoter" and "Cognoter experiments" for on-the-fly justification or

comment. This chapter presents some evidence and plausibility arguments for

the general statements and unsubstantiated claims that have appeared in

previous chapters. Much of the evidence presented here is anecdotal. The

appropriate technology for observing and measuring activity in the Colab did

not exist during this dissertation work. It is just now beginning to be

incorporated into the Colab environment and will be used for the next phase

of the project. The main evaluation strategy used for the present work was to

collect reports from observers who have travelled to the collaborative system

front and returned to tell the tale.

The "early observations" come in two flavors: informal observations

made from meetings using Cognoter in the Colab meeting room at Xerox

PARC during the last year or so, and more formal observations made during a

small set of controlled Cognoter experiments done at Berkeley in the spring of

1986.

This chapter organizes these observations by considering them under a

few general headings: Organizing Ideas, Phasing the Process, Equal

Opportunity, and Group Focus. The observations are discussed in relation to

assumptions and hypotheses engendered during the design phase of

Cognoter. There is also an attempt to understand the corroborations,

contradictions, and surprises that occurred during design, ea_rly use, and

experimentation. Throughout this chapter are headline paragraphs like:

Assumption: An interesting and workable domain

to consider for computer-based collaboration is

face-to-face meetings where each participant has a

workstation, and the workstations are connected by

a network.

The assumptions, hypotheses, and surprises headlined in this way serve

as a framework for considering facets of the early observations and

experiments. Assumptions generally have implications and the headlining of

an assumption means that observed implications will follow. Most of the

following hypotheses could be recast in negative language and the

corroboration that usually follows them could be viewed as refutation. There

were a few instructive surprises. An exploration of the surprising activity and

processes at work follows a headlined surprise. Many of the following

assumptions and hypotheses concerning Cognoter apply generally to Colab as

well. The Reader has been spared reading the phrase "Cognoter in particular

and Colab in general" over and over.

It is important to emphasize that in the complicated and broad-based

task domain chosen, the method of evaluation was to gather information

from Cognoter session observers and participants. First a small digression to

make things a bit more specific.

A Little History

During the design and implementation of Cognoter, a few brave souls

attempted to use it for idea organization and the planning of presentations.

The tool design evolved by taking into account the difficulties these explorers

encountered and the desires they expressed for new features (creeping

featurism ...). Observations made during these early sessions led to the design

of a simple set of controlled experiments.

The set of experiments was designed to get a better indication of the

. effectiveness of Cognoter and the problem-solving structu_res it supplies (such

as the phasing of the organization process), as well as to test some to the basic

ideas behind Colab {i.e., "Can people work concurrently on a shared

problem?"). It was expected that any observed improvement in task

performance by Cognoter over traditional problem-solving techniques would

be significant since no claims were being made concerning the optimality of

the Cognoter and since users have much greater familiarity with paper or

blackboard than they have with Colab and Cognoter.

135

136

These experiments involved dyads, pairs of participants. Each group

(dyad) performed two tasks. One task was to generate an outline for an

article on a randomly chosen topic using whatever traditional technology they

wished (usually paper and pencil, or blackboard and chalk equivalent). The

other task was to generate an outline for an article on a different randomly

chosen topic using Cognoter. The order of the two tasks was determined

randomly. Each dyad functioned as its own control group since they

performed both the target task and the control task in randomly determined

order.

This is only a brief introduction to the experiment; a more detailed

account appears later in this chapter and in appendix D. In the following,

when referring to the actions of the dyads during the experiments, numbers

and percentages are not used since the sample size was too small (five groups)

to be statistically compelling. The experiments were, however, instructive and

serve as an initial test of Cognoter's design and effectiveness and a guide for

enhancements.

Organizing Ideas

Computers can be used to support idea organization and writing

processes in many different ways. Cognoter, as implemented, expresses one

set of assumptions about idea processing. It embodies a process that is

intended to more-or-less monotonically move the group from undeveloped

and unstructured ideas through small-scale organization to the final

generation of a presentation path or outline on the desired topic.

Observations of the use of Cognoter show that in many ca~es its design

dovetails with what people were trying to do. Brainstorming, for instance, is a

natural beginning. The dyads participating in the experiments u~.-.~ally started

with at least a short brainstorming session to get some ideas on paper (or the

board). During the Cognoter subtask they generally spent more time

brainstorming, though there are several explanations for this - including

simple time pressure and lack of understanding about how to use the tool.

The ease of adding ideas to the group pool of ideas •vas particularly

appreciated by most early users of Cognoter.

In some other cases, the design of Cognoter caused friction and subtle

difficulties. For example, the main Cognoter brainstorming window during

the brainstorming phase is designed to be an unstructured area for

participants to put their ideas without having to decide on an idea's place in

the overall scheme of things. Early sessions with Cognoter, however, showed

that group members used the physical proximity of idea nodes in the

brainstorming window to establish connectedness and order between ideas

before moving on to the ordering phase where the group members are

supposed to consider the relationships between ideas. later, in the ordering

phase, even after items have been explicitly linked, the spatial proximity

continues to imply relationships between them. This is all very good, except

that the spatial cues (the closeness of items) sometimes overpowered actual

links in perceived closeness - items displayed close together were often

implicitly the most strongly linked than actually linked items in the

participants minds- so the participants may have a conceptual image of their

idea structure that is significantly different from the idea organization

contained in Cognoter's data structures.

Assumption: Small~cale local decisions are easier to

make than global decisions.

Hypothesis: Incremental small-scale decisions can

yield a coherent larg~cale organization.

The incremental approach encouraged by the ordering phase of

Cognoter is surprisingly effective. In the early Cognoter meetings, as hoped,

many small decisions about the ordering of ideas generally yielded a globally

cohesive organization. Flower and Hayes [FiowerSO] describe the act of writing

as an "act of juggling a number of simultaneous constraints" and stress the

necessity of "effective strategies for handling this large number of

constraints."

Incremental decision-making coupled with the computer's flexibility

and memory seemed to reduce the "cognitive strain" of paper design.

137

138

Small-scale decisions about the ordering of items are usually simple to make

and can lead to large-scale organization, even when large-scale decisions

appeared to be difficult. It's usually easier to see that A .comes before B and

that C comes before A than to figure out, all at once, where A fits into the

grand scheme of things.

In early uses of Cognoter there was a general impression reported

among the users that the ease of placing idea nodes and the flexibility of the

ordering process made overall organization easier. In both instances the low

commitment to placing an idea or linking two ideas together made the

decision to place or link much easier- it could be moved with little effort.

However, in interviews after the experiments, there was no specific mention

of the incremental actions helping to make large-scale decisions.

Phasing the Process

Hypothesis: Partitioning the

process into brainstorming,

evaluation phases with distinct

goals is helpful.

problenHOiving
ordering, and
operations and

In theory, the process of ordering and evaluation proceeds more

effectively when brainstorming is complete and all the ideas are available.

The process of ordering can also expose under-brainstormed areas (subtopics

that need to be developed by generating more ideas}.

There is some evidence counter to the hypothesis headlined above, at

least in terms of the specific phasing and operations offered by Cognoter.

Sever_al of the early users of Cognoter said that they felt un_productively

constrained by the brainstorming phase. The usual complaint was the lack of

linking and grouping capability during that phase. Delayed deletion and

evaluation of the nodes was generally accepted and appreciated in early use

and experiments- the protection from criticism by the phases and the rules

of the game were generally seen as favorable, but the desirability of

separating brainstorming and ordering was less clear. Groups often wanted

to link as they brainstormed. Based on early observation, the question of

whether or not a tool should enforce the rules of the game by phasing and

partitioning operations is still open.

Hypothesis: Outline generation will be the final

operation in a presentation planning session.

During the design of Cognoter, the outlining utility was seen as

something that would only be used as an output format. In practice the users

of Cognoter were much more resourceful. In addition to using the outlining

feature to display the final result, they also used it to view work in progress­

they found the familiar outline form useful for looking at intermediate states

of the emerging structure and highlighting under-constrained nodes and

under-developed subtopics.

The preceding disjuncts between the phasing assumptions of the tool

design and the expectations and actual use of Cognoter show that "natural"

organization techniques and assumed partitioning of task phasing is not quite

right. The difficulties that some users suffered suggests different phase

boundaries (if any) and operations than were originally assumed. Future tool

designs will be judged by how well or poorly its design assumptions fit the

reality of what people want and are able to use.

Equal Opportunity

Assumption: Sequential access to group

problem-solving technology limits each individual's

ability to contribute to a collaborative effort.

Hypothesis: The ability to simultaneously act in the

system encourages equal participation and parallel

activity.

A motivation for the design of Cognoter's multi-user interface is the

notion that each participant in a Cognoter session should have equal access to

the changing database of the group's ideas and to the tools to alter the

database. Cognoter is an attempt to circumvent the usual tum-taking by

allowing users to act simultaneously. Participants at personal workstations

may compose new ideas and add them to the group database at virtually the

139

140

same time. Participants can act on ideas at the moment of inception. This is

not to say that all participants are assumed to have equal contributions to

make to a given situation. People have their individual strengths and

weaknesses and will, presumably, contribute according to their abilities given

the opportunity. Cognoter strives to provide the opportunity.

In the experiments, where participants had a chance to directly

compare the free-wheeling process of Cognoter with traditional serial

techniques, they reported feeling constrained in the serial interaction. The

participants wanted to feel they had freedom of expression - even in

situations where they didn't need it or didn't use it.

For cooperative problem-solving in face-to-face real-time situations,

the kind Cognoter is designed to support, collaboration seems ideally not to

involve any prescribed division of labor among participants. Cognoter's

multi-user interface is intended to enhance a single non-synchronous and

flexible role. By equalizing the access of all participants to views on the

database and to the shared data itself, Cognoter encourages wide

participation and makes it difficult for any single person to dominate the

group activity.

It may well be that for some groups and for some kinds of

problem-solving activities, role specialization, participants taking on fixed

roles or roles prescribed by a problem-solving technique, will be more

effective than the egalitarian approach encouraged by Cognoter. Role

specialization, if deemed desirable, can be used with Cognoter software as it

exists by changing the rules of the game. For example, Cognoter could be

used by a group of people each of whom has specialized expertise with a

single discussion leader partitioning the work and making assignments.

Group Focus

Observation of problem-solving sessions showed that the serial access

to writing tools enforced by traditional technology isn't all bad -one thing

good about it is that it helps to maintain a shared focus. People working

together on a problem using traditional technology, say a blackboard,

maintain group focus by watching the person writing on the blackboard. The

apparent bottleneck of having to get all ideas through the person writing at

the blackboard has the beneficial side effect of slowing things down enough

to allow all participants access to all ideas as they are entered on the

blackboard. Any changes to the group database {the marks on the

blackboard) are made by the single database manager (the pe~on with the

chalk) in full view of the other participants. In serial access situations like this,

everyone paying attention can stay current.

Hypothesis: A shared database and synchronized

displays enable shared focus among participants in

a computer-based meeting.

Shared access to objects contributes to a common group focus. This

applies to computer-based tools such as Cognoter as well as it does to

blackboards. A group working together needs as much common experience

relating to the problem at hand as possible. This is especially relevant when

seeking to assess possible improvements brought about by working in

parallel. Participants need to be able to easily refer to common objects by

pointing at them or by verbally specifying their location. The WYSIWIS ideal

described in chapters three and four is a recognition that efficient reference

depends on the maintenance of a common view.

Giving a group the ability to work in parallel makes it difficult for each

member to keep in touch with what the others are doing. Unfortunately, to

make effective contributions to a group effort, it is usually necessary know

what the rest of the group is up to. If the usual requirements of taking turns is

relaxed by allowing parallel activities, simultaneous entry of new items to the

group's blackboard, for instance, then some way of accomplishing what

turn-taking accomplishes- orderly transitions, incremental development of

the group memory, and group focus- must be found. Two basic techniques

were discovered (both involve periods of serial interaction): summarization

and task partitioning.

141

142

Surprise: The divergence/convergence tens10n

created meetings that oscillated between episodes

of parallel activity and episodes of summarization

to bring the group back together and planning to

hold it together longer.

In Cognoter sessions the need to maintain a shared focus is expressed in

a characteristic pattern of activity. There are three distinct stages: joint

planning, parallel individual activity, and summarization -these stages are

interestingly similar to the method partitioning described in chapter three

(user-actions, semantic-actions, and display-actions). In the first stage, users

interact verbally (conversationally and serially) for a few minutes, discussing

goals and plans of action. In the second stage, the group members settle into

portions of the task they have taken on and a period of intense individual

interaction with the system takes place. Gradually, after a few minutes of

simultaneous idea generation and editing, the group tends to lose track of

what the others are doing. When a majority of participants begin feeling lost,

the group slows down, stops interacting with the system, and returns to serial

verbal interchange. In the third stage the participants summarize the current

state and explain what they have been doing, and return to goal discussion

and planning for another round of activity.

Cognoter sessions routinely consist of several such cycles of divergence

and convergence: joint planning, parallel individual action gradually

diverging, and summarization to converge back again.

Surprise: The video multiplexer in the Colab

meeting room provided a desired access to smaller

scale writing processes, like text editing.

In early Cognoter sessions it was frequently observed that one

participant would want to watch another editing. Occasionally two or three

participants would want to edit together - usually with a "driver" and a

"navigator· or two. In Cognoter's current (pragmatically dictated) design,

editing is done in private windows with the result being distributed publicly.

Sharing information at the character level is not provided for: the person

editing has to explicitly "send" edited data. It so happened, however, that in

., the Colab meeting room at PARC each workstation had a video sw1tch

connected to it that allows the screen image of any other station to be slaved

and displayed there. The switch was originally installed so the meeting room

would be more useful for ordinary (i.e., non-colab) demonstrations. The

video switch was frequently used by participants to watch the editing process

of others. In the tests at Berkeley there was no video switch, but on several

occasions one participant would slide over to watch editing taking place

"privately" on another participant's screen. This unexpected desire of users to

watch the editing process underscores the importance of maintaining a

shared focus by shared participation in group processes over a range of

grainsizes.

The Experiments

This section presents a description of the Cognoter experiments done at

Berkeley and their results. The effectiveness of a group working with a

blackboard is taken as the standard by which the effectiveness of a

collaborative system can measured.

The first experiments consisted of five dyads (pairs) performing two

subtasks: a Paper 1 task and a Cognoter task. The ten participants were all

computer science graduate students and all were experienced computer users.

The experiments were run in an ordinary office with two Xerox Lisp machines,

some table space, and a whiteboard. This experiment did not use the Colab

meeting room at PARC. The various response forms, reference cards, faked

telegrams, etc. used in the trials are reproduced in appendix D.

The Protocol. Each group generated an outlin~ for each of two

different topics: one outline was done using the support technology of their

choice (usually paper and pencil, or whiteboard and pens), and the other one

was done using Cognoter (Figure 6.1 delineates the basic experimental

protocol).

144

Introduction

Basic Information Form

Coin Flip for Support Technology

(Cognoter Instruction- if necessary)

Random choice of First Topic

First Fake Telegram

15 Minutes to Generate Outline

Break

(Cognoter Instruction- if necessary)

Random choice of Second Topic

Second Fake Telegram

15 Minutes to Generate Outline

Debriefing Form

Figure 6.1. The Experimental Protocol. The experiment is self-<:ontrolled- each group used

both support technologies (Cognoter and Paper) in random order.

The group was gathered and offered refreshment while they

responded to a few questions on a short demographic form. This form was

purely informational; it concerned the computer expertise of the volunteers,

their familiarity with Cognoter, and the extent to which the group had

previously worked together. A coin-flip determined which organizational

technology (Paper or Cognoter) was to be used first.

The first topic was randomly chosen from the four possible topics (see

table 6.1). The participants were given a fake telegram purporting to be from

a national magazine (Atlantic Monthly) begging for their help in destgning an

article on the chosen topic. (Telegrams addressed to all groups for all topics

were made up in advance.) The Participants were told that in fifteen minutes

a special courier from the magazine would arrive to rush the outline to the

desperate editors. A watch was started and the group began their work. The

participants were reminded of the time left at five minutes and two minutes.

The Topics

Games and Sports in Society (GSS)

The Strategic Defense Initiative (SOl)

National Parks and Wildlife Preserves (NPWP)

Affirmative Action (AA)

Table 6.1. The Topics used for the experiments. Each subtask in the experiment involved

generating an outline for a magazine article on one of these topics. Topics were chosen for

their generality and open-€ndedness. It was expected that some topics would be more

fruitful and thought-provoking than others.

After the group had completed the first task as best they could in the

limited time and taken a short refreshment break, a second topic was

randomly chosen and the participants were given another fake telegram: this

one purporting to be from the editorial staff of another national magazine

(Harper's) that had heard of their success with the previous magazine article.

This magazine also needed an outline -for the second topic- ASAP. The

group again was given a deadline of fifteen minutes before a courier would

arrive to snatch up their outline and rush it to the anxiously waiting editors.

Immediately before the Cognoter subtask was undertaken the group

was seated at workstations running Colab and Cognoter, and given about

145

146

fifteen minutes of Cognoter instruction. The instruction consisted of a guided

tour through generation of an outline for a dummy topic and a general

explanation of the main features of Cognoter.

After both sessions were complete the participants were given a short

debriefing form to capture their reactions to the experiment and any other

comments about it that they wished to make. A summary of these comments

appears below in the Results subsection.

The four topics chosen for the experiments (see table 6.1) were chosen

for their generality and open-endedness. Some topics were intended to be

controversial (SOl and AA). Some were less controversial but still thought

provoking {GSS and NPWP). There is no claim that the topics are equivalently

deep or broad or exciting. They were intended to be topics about which

everyone has some knowledge or opinions. It was expected that some would

yield more ideas than others. This variation in topic interest can be factored

out by viewing each topic as a partition of the experiment, though this

expected variation in topic yield turned out not to matter very much (see

tables 6.2 and 6.3).

Comments on the Protocol. The experiment was designed to be

self-controlling: each group performed the target task (Cognoter) and the

control task (Paper). Functionally there were three groups: free Paper

technique, Cognoter use, and Paper technique under the influence of the

method embodied by Cognoter (where Cognoter was the first technique used

or where already experienced Cognoter users entered the experiment). The

practice effect (or the familiarity effect) was accounted for by sometimes

running Cognoter first, sometimes running Paper first. It was expected that

the second part of each session would yield higher quality results since

participant:; were warmed up, individually and as a team. Fatigue and

boredom were expected to be a less important counter-acting factor, since

the sessions were short (approximately an hour all together) and reasonably

entertaining.

Experimental Results

The goals of the experiments included seeing how Cognoter was used

by people unfamiliar with it and gaining practical insight into what the tool

does well and what the tool does poorly. The experiment was also trying to

determine whether the techniques embodied by Cognoter or Cognoter itself,

as a computer program and a collection of techniques, account for any

improvements in performance. The simplest way to approach these goals was

to compare the use of Cognoter to traditional ways of generating and

organizing material. The experiments were too broad-based to provide

incontrovertible evidence for or against any particular tool feature or

problem-solving technique. It was impossible to separate the many processes

going on during the test sessions. However, the experiments did supply a look

at how Cognoter was actually used by groups trying to organize ideas.

Evaluation. Because of the subjectivity of the results, any sort of

numerical evaluation would be difficult. Before the experiments were carried

out it was thought that some crude indications of merit comparing work done

during the tests would be possible. The total number of entries in each

outline might give an indication of lines of argument and the total number of

ideas generated. The number of complete sentences might measure the

completeness of idea development. The number of words could be taken as a

measure of overall length. The number of entries at each level of the outline

might measure the degree of organization. The results appear below in Table

6.2. Since the participants did not know that such crude measurements were

being considered, they may have some small validity.

147

148

Dyad Experimental Results

Cognoter Paper

tOPIC hnes words sents depth tOpiC lines words sents depth

NPWP 21 40 0 2.3 *SOl 17 58 2 1.8

AA 29 108 5 3.0 *SOl 23 67 3 1.8

GSS 23 59 2 1.7 *AA 9 28 0 1.6

*SOl 21 49 3 1.9 GSS 28 63 0 2.3

GSS 31 75 2 1.8 *NPWP 23 55 2 1.7

Ave: 25 66 2.1 2.1 20 54 1.4 1.8

Table 6.2. Results of the first experiment. Five groups performed pairs of tasks- one using

Cognoter and one using their choice of support technology (called "Paper" here). Each row is

a pair of tasks. • *" indicates the topic taken first. The topic acronyms are introduced in Table

6.1. Lines is the number of entries in the final outline. Words is the total number of words in

the final outline. Sents is the number of complete sentences in the final outline. Depth is the

average depth (indentation) of an entry in the outline.

The participants were more explorers than laboratory test subjects.

Another criterion of merit is the perception by the groups themselves of what

was going on. How satisfied were they with their own performance?

Responses to the debriefing questionnaire appear in the following section.

Future experiments will also measure quality by submitting the (standardly

formatted) outlines to independent referees or panels for judgment and

ranking.

Dyad Topic Comparison

GSS SOl

tech lines words sents depth tech lines words sents depth

Paper 28 63 0 2.3 *Paper 17 58 2 1.8

Cog no 31 75 2 1.8 *Paper 23 67 3 1.8

Cog no 23 59 2 1.7 *Cog no 21 49 3 1.9

Ave: 27 66 1.3 1.9 20 58 2.7 1.8

NPWP AA

toptc lines words sents depth tOpiC ltnes words sents depth

Cog no 21 40 0 2.3 Cog no 29 108 5 3.0

*Paper 23 55 2 1.7 *Paper 9 28 0 1.6

Ave: 22 48 1.0 2.0 19 68 2.5 2.3

Table 6.3. Topic comparison in the first experiment. Rows do not represent pairs of subtasks.

M*" indicates that this subtask was first. Topic acronyms are introduced in Table 6.1. Lines is

the number of entries in the final outline. Words is the total number of words in the final

outline. Sents is the number of complete sentences in the final outline. Depth is the average

depth (indentation) of an entry in the outline.

The data in Tables 6.2 and 6.3 is inconclusive. Performance was roughly

the same across topics and across support technology. Cognoter's slightly

better performance can be explained away by the practice effect since it was

the second subtask for all but one group (compare GSS and SOl in Table 6.3,

GSS was consistently a better topic than SOl - GSS was always the second

subtask and SOl was always the first subtask). The fact that the results are

essentially the same may be significant (in the long run) in favor of Cognoter,

since most users spent the bulk of the 15 minutes for the Cognoter subtask

learning how to use the system. Much of the work produced during the

Cognoter subtasks took place in the last few minutes of each session.

149

150

Debriefing Questionnaire. This subsection presents and discusses a

selection of responses to the debriefing questionnaire (the questionnaire

itself appears in Appendix D). This questionnaire was designed to get the

participants to subjectively evaluate their comfort, efficiency, and satisfaction.

Most groups primarily used the whiteboard for the Paper1 session, shifting to

paper for the final form of the outline.

Question: Did Cognoter help or hinder?

• It hetped me come up with ideas, but unfamiliarity with the tool hindered my

organization.

• Learning curve dominated. Response time was slow- I can scribble faster than I

can pop a window.

• It hindered the naive user from reorganizing a hierarchy.

• Some help in that one doesn't have to have one person do the writing. Some

hindrance in that I couldn't get the windows to open to write something

down.

• Helped organization. Hindered expression because I didn't know how to use the

system.

• It hi-dered us in that we had to learn how to use it.

• Nov· cesare going to spend more time fighting the system than working.

• It ce-tainly makes entering data easy -we added a lot of ideas quickly.

• [The rest thought it generally helped]

The responses to this question can be summed up as: Cognoter was

perceived as being useful but the difficulty of using the tool slowed users

down. This clearly suggests that the users needed more instruction and/or a

longer session.

Question: Did you feel that the phasing organized

your approach? Or did it only get in the way?

• Yes, as long as the operations in earlier phases are available in later phases. You

don't want to feel that changing phases is an irrevocable commitment.

• Got in the way a little. I like modeless operation (I would have liked linking

sooner).

• 1 think brainstorming and ordering should be combined. Ordering is inherent in

the way I think.

• I think one should be able to order in the brainstorming phase.

• Good if you can go back and forth.

• Too rigid. I would like to do them in different orders.

• I think you could be doing all at all times - the user should know enough to

brainstorm first.

• At times I felt like I wanted to move on so I could use the added features of the next

phase. I could see jumping right to the last phase.

• [The rest thought it helped]

There is no clear consensus here. Participants seemed largely in

agreement that some linking and grouping should be allowed while

brainstorming. Groups had little to say about the Evaluation phase -

probably because they spent so little time there. People largely agreed that

pure brainstorming was a good thing to do, but they didn't like being

preve:~ted from doing other operations during the brainstorming phase.

Question: Did your team work in parallel during

either session?

• [Cognoter] Yes. By grouping things you can act in parallel. [Paper] Yes, but we

didn't break things down and work independently as much.

• Much more parallelism during Cognoter session. But less fusion of ideas. During

the paper session there was more fusion of ideas. We communicated verbally

much more during this session.

• [Cognoter] Some, but I wanted to see what [my partner] was editing. [Paper] Yes

we did, but I acted as secretary.

• [Cognoter] Somewhat, but it was hard to keep track of what was going on in

parallel. [Paper] No.

• [Cognoter] Yes- independently, in fact. [Paper] No.

• [Cognoter] Yes- parallel and independent too. It takes a little while to get used

to saying what you are doing so you can synchronize. [Paper] Yes- we had

two talkers and one writer.

• [The rest said "yes" for Cognoter and split for Paper]

151

152

Members of the same Dyad didn't always agree on degree of

parallelism in their group. All groups worked in parallel more of the time

when using Cognoter than when using Paper.

Question: Which session did you like better?

• Cognoter makes generating a more complete outline easier.

• Cognoter -less sloppy- more potential power.

• Cognoter. It was much more interesting.

• I preferred paper, in part because of my experience with that tool.

• Cognoter is more fun, like a trip to the museum of.science and industry.

• The [Cognoter session] was hilarious and fun for a hacker. The [paper session] was

more satisfying in the sense that I was in control and not at the whim of a

machine.

• In spite of slowness and unfamiliarity, I liked Colab [Cognoter].

• [The rest split or had no opinion]

Cognoter won the popularity prize, probably either because it was new

or because the participants didn't want to hurt my feelings.

Question: Which session was more effective?

• Cognoter- mainly_because it is easier to generate and organize ideas.

• Cognoter was more effective, but the learning curve for a new system got in the

way.

• Time pressure in last phase of Cognoter got in the way. Paper gives a better feel for

how much there is left to do. Cognoter should help this by showing items that

are not yet linked or grouped1.

• Paper. I'm much more used to it. Cognoter may be better with a little practice.

• We did a more complete job on paper because we could use the technology.

• [The rest said "Paper" or had no opinion]

Once again, comments concerning the users' lack of familiarity with

Cognoter dominated here. Not surprisingly the people who managed to get

into the swing of it felt more effective. People who felt Cognoter was more

effective may also have been giving it the benefit of the doubt because they

perceived a potential; they imagined they could be more effective with such a

tool. Participants were much better at time management during the Paper

sessions. They were distracted by awkwardness with the system during the

Cognoter sessions.

Notes on the Paper Sessions from the Observer's Notebook. The

following is a summary of notes taken for each group during the Paper session

(most groups primarily used a white board for organization and paper for the

final outline). Bracketed comments were added after the session. The

demographic survey revealed that none of the pairs had ever collaborated on

a writing project before.

1. This dyad used a whiteboard. They started sequentially with "Ok,

what's I.A ?", but quickly decided to brainstorm [one member of this group

had used Cognoter before]. The brainstorming decision notwithstanding they

soon picked a few main headings and expanded them in a top down manner.

Two minutes in: "What are the goals?" Seven minutes in: "But what are the

goals?" [The general form of the outline was organized with links and

groupings a Ia Cognoter.] A lot of things were said that were never written

on the board or on the outline. They seemed to be condensing their material

for the stated goal of an outline.

2. This dyad taped sheets of paper to a table and immediately began

brainstorming in parallel- writing ideas down without consulting with each

other. After five minutes they began to work together in a top down fashion.

The last seven minutes were spent arguing details.

3. This dyad used the whiteboard. They first started a high-level

discussion. "What's our thesis?" After three minutes, they began to write an

outline but quickly returned to high-level discussion. "What's our thesis?".

Five minutes in: a title was chosen. More high-level discussion. Seven

minutes in: they began writing topics depth first. Eight minutes in they began

a main topic outline: "What's our thesis?" With three minutes left they began

153

154

to seriously make an outline but ran out of time. [This group clearly lacked

task focus.)

4. This dyad used the whiteboard. The first five minutes were spent in

alternating parallel and sequential brainstorming [occasionally two writers).

Ten minutes in: they began to argue content and fine points of organization.

Eleven minutes in: they began the sequential writing of the outline [one

scribe and one kibitzer).

5. This dyad also used the whiteboard. General brainstorming (one

scribe, one kibitzer) for three minutes. Three minutes in: one member took

the lead- the scribe became the idea generator and the kibitzer became an

agreer. With three minutes to go they began generating the outline: the

ex-scribe read from the whiteboard while the ex-kibitzer took dictation on

paper. The ex-kibitzer [now paper-scribe) did some re-arranging while the

ex-scribe [now paper-kibitzer] looked on.

Notes on the Cognoter Sessions from the Observer's Notebook. The

following is a summary of notes taken for each group during the Cognoter

subtask. Bracketed comments were added after the session.

1. This group had difficulty with the system. They brainstormed for five

minutes. Most of their work was done in the last few minutes [once they

began to get the hang of Cognoter).

2. This group immediately began to work in parallel with no talking.

One member preferred to use long idea labels instead of attaching text. This

dyad began moving nodes into a outline-like arrangement during

Brainstorming phase. After three minutes they began running tow on ideas

and started looking to each other [verbally] for inspiration. The rest of the

time was spent expandinj, linking, and grouping nodes. [They seemed to

catch on to the spirit and techniques of Cognoter quickly.] Some time was

spend figuring out how to get the grouping and linking to reflect the outline

form they had arranged spatially during Brainstorming.

3. This dyad began brainstorming in parallel. Two minutes in: one

member began watching the other since the other had started brainstorming

inside a private editing window [that wasn't visible on the other screen]. Five

minutes in: they began a high-level verbal discussion. Seven minutes in: they

continued the discussion with one member building an outline in a private

editing window. [This forced them to double up on one machine.] They

decided to re~rganize with five minutes to go. They entered the Ordering

phase with two minutes left and had not finished organizing when time ran

out.

4. This group began brainstorming in parallel. After two minutes they

wanted to "clean up". They began moving the idea nodes to form a rough

[spatial] outline. Five minutes in: they wanted to clean up again. This time

they moved to the Ordering phase and began linking and grouping. [They

moved to Evaluation at the last moment to generate the outline.]

5. In the first minute they couldn't remember what to do [they were

immediately blocked by lack of knowledge about the system]. One minute in

[after a few reminders from the observer]: they began brainstorming in

parallel. Nine minutes in: there were (valid) complaints of system sluggishness

[the network was very slow for a few minutes]. With five minutes to go they

entered the ordering phase and began grouping and linking. [They moved to

Evaluation at the last moment to generate the outline.]

Not much use was made of the Evaluation phase. No group spent more

than two minutes in the Evaluation phase. Time pressures were usually such

that little critical evaluation or deletion occurred. Three groups only moved

to Evaluation at the last moment so they could generate the required outline.

Early users were confused by the difference between public windows

and private windows. They didn't understand the underlying model of the

conversation, yet were put in the position of having to deal with it.

All groups had difficulty estimating and budgeting their time using

Cognoter. All groups ran into time trouble. This was partly due to the

difficulty of learning how to use Cognoter. In most cases the bulk of the work

155

156

was done in the last few minutes. By contrast, the groups had little time

trouble when using Paper, they usually finished their outline in about 14.5

minutes. This is hardly surprising since all users had vastly more experience

using Paper than using Cognoter.

Future Experiments

These experiments were intended to guide intuition for future tool

design, implementation, and evaluation. They lay the groundwork for a

methodology for testing collaborative systems. To provide objective results

the experimental protocol, while basically useful, would have to be changed

in several ways. Clearly, the participants need more familiarity with the

computer-based tool before a useful comparison with traditional techniques

can be made. The tests showed that Cognoter was more complicated to use

than anticipated. Another line of investigation might include tests of

productivity/minute by allowing each group in each task an extra few minutes

to improve their result. To provide quantitative resu Its the experiments will

have to be run over larger samples than these were. It will also be important

to compare the performance of larger groups (three or more participants) to

dyads and individuals. Informal observation suggests that groups of three or

more are significantly different from groups of two.

The wiring for sound and video of the Colab meeting room (in progress

at this writing) will enable more complete capture and analysis of meeting

events. Future tests of Cognoter and other Colab tools will evaluate particular

tool operations, features, and functions. What are the long- and short-term

interactions among participants and which are the most important? At what

stages of the process should diversity be encouraged and when· is consensus

desired? At what grainsize does different kinds of collaboration naturally

take place? Should the collaborative process go thrv..Jgh phases and to what

extent should a tool prescribe or enforce phasing? To what extent do

computer-based tools provide additional leverage over simply putting two or

three motivated designers together at a desk?

The data collection sessions in this chapter suggest that while the

phasing of activity is useful, some changes in the operations available in each

phase will be necessary. It may be that the three phases should be combined

into only two: essentially brainstorming and evaluation with the operations

currently in ordering distributed between them.

The early uses of Cognoter were generally egalitarian and very task

oriented. But all these sessions were relatively short- no more than a few

hours in duration. What sort of culture and roles will develop in a group that

uses Colab over a longer time? And once recognized, how does a tool

enhance or enforce these things? This is difficult to predict and needs to be

studied.

Summary

The most obvious lesson learned from these observations and

experiments is that users must have a decent amount of familiarity with

Cognoter before it can be fairly compared to anything. The amount of

instruction for new users may be small (perhaps 30 minutes to an hour or

two). It is encouraging that, in spite of persistent difficulties with using an

unfamiliar system, participants in the experiments still managed to get

appreciable work finished in 15 minutes. It became clear during the course of

the experiments that the participants never got much beyond the "lag"

portion of a sigmoidal learning curve.

There is some evidence that the small-scale incremental approach can

help with larger decisions. The ease of adding and moving new items and

making or breaking links was cited by several users as a useful feature. The

correspondingly smaller commitment to placement may contribute as well­

it's simpler to move an idea in a CognoterWindow than it is to erase and

re-write it on a blackboard.

Another point is that people do work in parallel when using Cognoter.

The "convergence/divergence" cycle- the necessity of maintaining a shared

focus forced groups to stop working concurrently and, periodically, bring each

, 57

158

other up-to-date- was o,bserved to a greater or lesser extent in all Cognoter

sessions. Paper sessions did not exhibit this behavior and generally proceeded

in a serial fashion (a few groups brainstormed on the whiteboard in parallel

for a minute or two before settling into serial interaction). Related to this

group focus issue was the observed desire of the participants to occasionally

edit text as a group.

The three phases that Cognoter supplies to help users organize their

ideas seem to be somewhat out of synch with what people want to do. Until

people learn to work in new ways and use new techniques it will be necessary

to provide tools that let them do what they want to do. This applies to the

representation of idea organization as well. More than one group attempted

to use the spatial relationship of idea nodes in Cognoter to design an outline.

An active outline display that reflects back into the C-graph structure {and visa

versa) appears to be a helpful, though possibly transitory, feature.

As an interesting sidelight, over the last several month Cognoter has

beaten out the whiteboard and become the preferred tool for organizing

talks and papers in the Knowledge Systems Area at Xerox PARC (the only

place Cognoter is generally available at present).

In addition to evaluating the design of Cognoter, these early

observations and "eye-witness reports from the frontier" are intended to

generate questions for further research in collaborative systems (and

computer-<;upported cooperative work). The next (and last) chapter sums up

the work so far and speculates on the directions future work might take.

159

Note:
1 Cognoter does show ambiguously ordered or unordered items, but no group used this

feature -lack of familiarity once again.

7

There ain't any answer.

There ain't going to be any answer.

There never has been an answer.

That's the answer.
-Gertrude Stein

Conclusion and Future Work

In this chapter the goals and main concepts of this work are

summarized and evaluated. The applicability and limitations

of this work are discussed. Plans for extending the present

work are described as well as some speculation on possible

directions for future research.

161

162

Goals and Concepts

This dissertation addresses the design and implementation of

collaborative systems, computer-based systems for supporting real-time

cooperative work. Three questions have guided this work: Which facets and

processes of cooperative work can computer systems effectively augment?

What software tool features, underlying system organization, and interface

presentations best support these facets and processes? What effects do these

systems have on collaborators and the nature of collaboration?

An objective throughout this work has been to discover appropriate

design dimensions for cooperative software tools and to determine their

effect on multi-user interfaces and the structuring of group problem-solving

processes, so that collaborative system tool designers may make enlightened

choices when developing applications for a variety of cooperative activities.

To illustrate and test general principles and concepts, a particular domain

(face-to-face idea organization), collaborative system (Colab), and tool

(Cognoter) have been developed and considered.

Another objective- perhaps more properly called a bias- has been to

keep in mind Joshua Lec!_erberg's advice concerning the importance of people

as well as machines when using the computer as a communication medium

[Lederberg78]:

We do well to question our moral capability of enjoying the fruits of such

cooperation [between humans and machines]; but this is not to damn

ourselves in advance, especially if we acknowledge that anticipating the

human problems is a task of equal priority to engineering the hardware ..

In this dissertation the following areas were explored:

Desirability of Collaborative Systems. In the first chapter the utility

and limitations of traditional meeting support technologies, such as

blackboard and chalk, were discussed. Many of the shortcomings of

traditional technologies- especially short- and long-term (space and time)

memory limitations, difficulty of rearrangement, and passivity - can be

ameliorated by computer-based systems. The challenge is to retain the

desirable qualities of traditional technologies- their informality, familiarity,

and availability- in newly designed collaborative systems.

Issues in Multi-user Systems. As explained in chapter three, the design

of a multi-user interface is much more complicated than the design of a

single-user interface. Multi-user tools must, in addition to providing the task

functionality and human-machine interface qualities of single-user tools,

handle inter-machine communications and the attendant problems

associated with multiple readers and writers on shared data. Multi-user

interface presentation constraints complicate the otherwise attractive notions

of run-time customization and individual control over workspace and display.

Collaborative systems like the Colab that support simultaneous actions

must also be concerned with distributed display issues: how are the views of

the shared objects updated and displayed? At one end of the display

philosophy spectrum is strict WYSIWIS where every screen shows exactly the

same thing to all users all the time. At the other end is total individual control

(and responsibility) by each user for the views of any shared models on each

screen. A compromise position is necessary. Each user must have ultimate

control of his personal display screen, but control must sometimes be

relinquished to permit updates from the outside to maintain the illusion that

all users are operating on the same underlying aggregate model.

A closely related issue is the question of appropriate mix of public and

private actions and objects. Obviously, some display items need to be private;

for instance, the reading of personal mail. Just as obviously, shared objects

need to be publicly active so the group can interact with them. The grainsize

of collaboration and degree of public access often changes during a session.

Design of a Collaborative System Tool. Cognoter, a Colab tool that has

been implemented and used for real (and contrived) tasks, was presented in

chapter four. The design and implementation of this collaborative tool

highlighted some important questions. To what extent should the tools

163

164

structure the problem-solving process? What operations should be offered to

the users, and in what way?

Based on a theory of idea organization process structuring used

successfully in traditional meetings, Cognoter partitions the problem-solving

process into three phases: brainstorming, ordering, and evaluation. The

phasing of the meeting process was intended to enhance the usefulness of

incremental actions - local operations and decisions that can yield global

results.

Cognoter also demonstrated that social locking and busy signals

together constituted a viable, though imperfect, database consistency

technique in a concurrent environment- at least when the actions of a few

human beings are being synchronized. Social locking is an implied or verbal

reservation of a shared object. Busy signals are visible changes in the way a

shared object is displayed when it is being changed.

Organization and Implementation of a Collaborative System. The

organization of system objects and functions in Colab and Cognoter is not the

only way that a collaborative system might be implemented, but it does

demonstrate a reasonable way to do it. Building the Colab environment

brought to light many challenges in distributed computing and multi-user

interfaces.

In the course of the implementation new ways of viewing software

modules for collaborative and distributed systems were evinced. One is the

idea of an association, where, conceptually, there is a single shared object, the

association, with an associate at each node. Each node (or user) has the

illusion of working on the object. Another idea is the conv'?rsation, a

collection of tools and cooperating nodes that know about each other and

work in concert. The "working set" of tools and users in a conversa• on can

change freely.

A series of database consistency schemes for shared data and

multi-user interfaces were explored. The key here was to provide several

participants to with the ability to act on and view shared objects

simultaneously.

Difficulties in writing and debugging distributed programs led to the

development of BroadcastMethods that hide the underlying communication

protocol from the programmer and to the U-S-D disciplined partitioning of

tool methods into user-actions, semantic-actions, and display-actions.

Semantic-actions encapsulate several data requests or changes into a single

network transaction.

The state and history of a Cognoter session is maintained digitally.

Thus, it is a simple matter to stop and start collaborative sessions, or to bring

new-comers up to date. Session state can even be shipped to remote groups

for further interaction (sessions have been shipped between Palo Alto and

Berkeley}.

Cognoter expresses one set of design decisions in the collaborative

system tool design space. To present the evolving organization of ideas

Cognoter uses the C~raph representation described in chapter five - a

C-graph is a hierarchical directed graph of annotated nodes. This

representation carries along more information than an ordinary outline.

Cognoter provides capabilities for a dual presentation (C-graph and outline}

of its single internal representation of items and their relationships.

Evaluation of a Collaborative System. It is difficult to quantitatively

evaluate the task effectiveness or user satisfaction of something as complex as

a collaborative system. In chapter six the prototype system developed for this

dissertation was evaluated primarily by observation of its use and by soliciting

reports from the users.

It became apparent that people can and do work in parallel given a

collaborative system that supports simultaneous activity. The active views of a

shared database as supported by Cognoter was generally reported to be

useful.

165

166

When members of a group work simultaneously each tends to lose

track of what the others are doing. The observed sessions showed that an

important element of computer support of collaborative work is the

maintenance of group focus. For instance, users frequently wanted to share

access to a single editing process. This was not directly supported so they had

to physically move to the terminal that was running the editor or used the

video switch in the Colab meeting room.

Future Directions

Future versions of Colab will certainly want to incorporate more of the

session interactions into the digital record. Graphics, video, voice, and other

media should eventually be captured and made available to participants and

the system for manipulation. Video multiplexed bitplanes that allow a select

portion of a remote screen to be displayed will solve the "edit spying"

problem where participants occasionally want to observe remote activities on

a character by character basis.

Active Outline Representation. Although the unusual hierarchical

"idea graph" (C-graph) organizational technique used in Cognoter was

reported to be effective by the experimental users, observations suggested

the utility of an additional "active outline" representation. Cognoter

supports individual views of shared objects, but the problem of maintaining

views on more than one active distributed representation of a single shared

idea structure is an important extension that has implications for the design of

future Colab tools.

Use Profile. Use profiles will be another line of enquiry. What kind of

usage patterns are generated by a collaborative system? It is expected that

·.ne "load model" will be bursty: that is, periods of little activity (for instance,

while people are talking) followed by periods of intense activity and net

contention with several messages per second as the group simultaneously

interacts with the multi-user interface. More experimentation and data

gathering at the system level is needed to check these intuitions and informal

observations of usage patterns.

Interactions between participants take place over widely varying time

intervals - micro-seconds to minutes to weeks - for different processes.

One underlying mechanism is probably insufficient to support all of these

levels of interaction. What sort of layering will be necessary?

Distributed Database Consistency. The basics of Colab tool

implementation is fairly well understood; the primary system implementation

difficulties in the future will concern database consistency issues. The schemes

currently in use are not robust and rely too much on user attention and

intervention.

As shown in chapter five, a promising approach to the database

consistency problem is the dependency detection model. This model fixes

some of the shortcomings of the cooperative model by attaching author and

time stamps to data broadcasts. This allows changes to the database to be

checked against the state of the database to see if a conflict has occurred. Any

detected conflicts can be resolved as they occur by appealing directly to the

participants. This scheme needs to be implemented and the possibility of

some conflicts being automatically handled explored.

Collaborative systems like Colab are a special case of the distributed

database consistency problem since these applications are driven by real-time

interaction among human beings as well human-machine and

machine-machine interactions. These systems have a different set of

performance requirements and failure profiles than do other database

applications. On one hand, the intensely interactive nature of collaborative

systems makes real-time response (in human terms) essential. While on the

other hand, since most events occur on human time-scales and the number of

humans involved is small, some of the usual constraints on distributed

database transactions can be relaxed. For example, it may be worth sacrificing

a guarantee of data consistency in rare cases for overall faster response time.

In most database work, data consistency is essential - this is usually

approached by serialization of transactions. Less work has been done on

reliable, but imperfect, systems that converge to consistent states or save

alternate versions in the case of conflict.

167

168

language Features for Distributed Collaborative Computing. In an

ideal world it will be a simple matter to build new cooperative tools for

collaborative systems. Software engineering organizational techniques like

the partitioning of methods described in chapter five can simplify and

accelerate the programming effort for distributed applications like the Colab.

This combined with other language features, like the BroadcastMethod

encapsulation of network protocols, enables rapid prototyping and testing of

new collaborative tools. The rapid development of tools will enable

correspondingly fast exploration of tool features and their effects on

cooperative work.

Future collaborative system architectures will likely require basic

transactional mechanisms such as locks and timestamps. Language designers

have begun to create languages with features such as these for writing

distributed programs [Liskov85,86]. (This contrasts with the approach of using a

programmatic interface to a database, an approach which appears to be both

too heavy-handed and too inflexible for many applications.)

The Meeting Analyst's Workstation. Tools for collaborative systems

can also be used as a magnifying glass to look at group problem-solving.

Group processes and actions are difficult to observe and analyze because

interesting events can happen simultaneously and focus can shift quickly. To

aid in such observations the Colab meeting room is being equipped with

microphones and computer synchronized video cameras to enable a more

complete record of the activity that takes place during Colab sessions (Colab

software already captures digitally the system semantic action history).

Machine-machine, human-computer, and human-human interaction data

from these sessions can be used to develop analytic models to test against

previous observations. The Colab meeting record and analysis can provide the

beginnings of an account d collaborative processes, and to clarify the effects

of computer-based systems on collaboration.

Applications of Collaborative Systems. The Colab project focuses on

the development of the "group computer" and understanding how it can be

effectively used. While it is certain that collaborative systems will invade

unexpected communication niches- some of which don't even exist today­

some areas already appear promising for collaborative assistance.

Expert and Knowledge-based Systems. The difficulty of acquiring and

testing knowledge bases has slowed the development of knowledge-based

systems. In expert systems the formalization, refinement, distribution, and

application of knowledge is usually done by groups. A collaborative system

could streamline this process by providing a sequence of tools for the creation

and extension of knowledge bases: first, a tool like Cognoter for the initial

gathering and organization of information, then an argumentation tool,

perhaps like Argnoter (see chapter four), for considering inconsistencies in the

data, disputes, and competing proposals, and finally tools to assist in formal

knowledge representation and testing. The design of a such a suite of tools

would provide insight into the creation and evolution of community

knowledge bases. This approach would also help to uncover portions of the

knowledge gathering and testing process that lend themselves to

automation.

Group Authoring. A similar sequence of tools would be appropriate for

a community authoring system. After future Cognoter (and other tools)

sessions have shed more light on the natural organization of the group

writing process, a more finely targeted suite of tools can be developed. These

tools would be used to see how people use the available tools to see the

developing structure of their collective argument, and the relation of initial

tool design assumptions to the actual uses that people make of the tools at

hand. Once such a system is understood it may be extended to community

authoring and used with other larger-scale tools for checking, librarianship,

and usage charges or analysis.

Games and Pedagogy. It is easy to envision instructional uses of

collaborative systems. Real-time multi-player computer games already exist

and could be implemented using the underpinnings of Colab. Especially

relevant and useful might be a combination of instruction and play:

cooperative games for future training or entertainment applications. (Just

calling something a game can make it appear to be more fun and interesting.)

169

170

Colab in its present form will be less appropriate for competitive situations

since it is possible to maliciously misuse the system to the detriment of other

participants - for instance, by intentionally editing or deleting an already

busy node (or test score or spaceship}.

Bootstrapping a Knowledge Medium. Books and other passive media

can store knowledge. Expert systems, in the ideal, not only store, but also

apply knowledge. Collaborative systems are somewhere in between, where

knowledge processing is done mostly by people. There is a lot of space to

explore between the printed page and Artificial Intelligence; and there are

many opportunities to establish human-machine partnerships and for

automating tasks incrementally [Stefik86].

Artificial and other Intelligence. It will likely prove desirable to extend

the notion of a session participant to include non-human intelligent agents,

like special-purpose programs. Initially these would be simple assistants, like

automatic spelling checkers, attached to conversations. Later, more

sophisticated participants, like argument structure analysts (that do things

like detect conflicting assumptions} or other inferential subsystems, may be

introduced.

Tele-Colab. A Tele-colab, a version of Colab supporting

non-face-to-face but still real-time interactions, would call for extensive

redesign. While such an extension seems simple there are crucial differences.

A Tele-colab would need to support or simulate new concerns, such as

"presence". The loss of face-to-face interaction would diminish the

effectiveness of social locking and group planning (though both would still be

largely possible with an ordinary voice link).

Contributions of this Thesis

This work is a beginning in the understanding of why collaborative

problem-solving is organized as it is, how traditional practices relate to

computer technology, and what the trade-offs are between supporting old

procedures and supplying innovative techniques for collaborative systems.

In a nutshell the contributions of this thesis are:

• The exploration of the notion of a multi-user interface.

• The delineation of design principles and features for

computer-based tools for cooperative work, including: support of

simultaneous activity, busy signals, and WYSIWIS.

• The exploration of problem-solving structures and techniques for

collaborative systems, including: process phasing, mutual protocols,

and social coordination.

• The design and implementation of an illustrative collaborative

system tool (Cognoter) and the organization of the system objects in

a general purpose collaborative system (Cola b).

• An initial experimental design for evaluation of collaborative system

structures and tools.

Pragmatic techniques for programming of multi-user interfaces and

complexity management were also discussed. In particular: ActiveRegions, a

modularization of mouse sensitivity over screen areas; Associations, an

abstraction of shared models expressed in replicated databases,

BroadcastMethods, an abstraction of the broadcast communication protocols;

and the disciplined partitioning of method function into user-actions,

semantic-actions, and display-actions.

171

Argnoter

Association

Broadcast method

Busy signal

Class

C~raph

Cognoter

Appendix A

Glossary

A Colab tool for meetings in which proposals are

prepared and evaluated.

The set of representations on multiple machines that

stand for the same object in a shared database.

An object-oriented programming abstraction that

extends the concept of method from a single machine

to all the machines in a conversation. When a

message invokes a broadcast method for an object on

one machine, that method is automatically invoked

on the associates of that object on other machines in

the conversation.

A visual signal in a display that indicates when

particular items are being modified by other

pa rti ci pants.

A template for object data-structures with attached

data manipulating procedures.

A decorated directed graph. A C-graph traversed in

preorder, indenting at each level, produces an

outline.

A Colab tool for meetings in which a presentation is

prepared.

Collaborative system A real-time computer-based cooperative work

environment.

173

174

Conversation

Dei xis

£lectern

Group computer

Instance variable

Instantiation

Live board

Message

Method

Multi-user interface

Mutual protocol

Object

0-tree

Public window

A collection of machines, Colab tools, and participants

working together on a problem.

Referring to something. The reference can be done

verbally- ("e.g., the gray house across the street" or

"that house") or by pointing.

A podium-like device in the Colab that provides a

keyboard for a participant at the live board.

See collaborative system.

A field in the object record or a slot in the data type.

An instance of a data structure described by a class:

the actual data storage.

An electronic chalkboard. The Colab liveboard uses a

high resolution video projector focused on the back

side of a frosted-glass screen. It is also touch sensitive.

An operation to do.

An actual procedure.

A human-machine interface used by several people

sharing information in a meeting.

The articulation, by members of a problem-solving

group, of the problem-solving process they are

engaged in.

See Instance.

A decorated tree. An 0-tree traversed in preorder,

indenting at each level, produces an outline. l subset

of C -graphs.

An interactive window in a computer display that is

accessible to the entire group in a meeting. Public

windows usually adhere to some version of WYSIWIS.

Voice lock

WYSIWIS

WYSIWYG

A "social constraint" lock, where a user declares aloud

that he is doing an operation on something and

expects everyone else to leave it alone.

"What You See Is What I See". Strict WYSIWIS means

that all meeting participants see exactly the same

thing, and can see where the others are pointing.

"What You See Is What You Get". Used mainly to

describe editors. It often refers to systems that let

users see (a reasonable facsimile of) what their final

output will look like.

175

•·

Appendix B

Existing Multiple User Systems

In other -largely non-electronic and non-computer- domains there

already exist many communication and distribution systems that are intended

for multiple users. For instance, the world telephone system is a

communication medium that provides an interface between two or more

people. World postal services support data (document) broadcast to subsets

of users and a package-switching network. There are many others.

Tables 8.1 and 8.2 compare several communication media along

several dimensions. Most of the user interfaces described below support

sequential actions, that is the users interact with the system or communication

medium by turn-taking of some kind (explicit or implicit). Electronic mail is a

good example of a sequential system even though more than one person may

be active at any moment. There is often no exclusion of parallel action, as is

the case with electronic mail, but no provision for it either.

177

178

Communication Dimensions

Media Cycle Participants Simultaneously Length of

Time Active Interaction

Conference seclwks lQ-1000 1-10 hr/days

Meeting 0 2-20 1 + min/hrs

TeleConference sees 2-200 min/hrs

InterOffice Memo hr/days 2-20 1 + days

Telephone 0 2 mins

Newspaper days 1-Ms 1 + wks

Electronic Mail min/hrs 2-100 1 + min/days

Postal Mail days 2+ 0+ wks

Blackboard sees 1-30 mins

Voting Machine hrs 100-Ms 10 + mins

Television 0 any 0+ min/hrs

QUBE-TV sec/mins 1Q-Ks 1 + min/hrs

Stock Exchange sec/mins 1Q-Ks 10 + min/hrs

Popular Magazine wklmos Ks-Ms 1 + mos

Professional Journal mo/yrs 10Q-Ks 1 + mo/yrs

CB Radio sees 1-100 mins

Delphi wks 5-50 0+ wklmos

NotelnBottle mo/yrs 1-2 0+ mo/yrs

Co lab sees 1-10 1 + min/hrs

Table 8.1. Communication media compared on several dimensions. Cycle Time is the time for

a "round trip" interaction. Participants is the approximate number of participants that may

be passively or actively involved in the interaction. Simultaneously Active is the number of

participants that may be active at the same time. Length of Interaction is the total length of a

single communication task.

More Communication Dimensions

Communication Branching Synchronicity Setup Transfer

Media Ratio Time Media

Conference 100 both mos Verba liT ext/Personal

Meeting 10 seq min/days Verbal/Personal

TeleConference 10 seq hr/days Verbal

InterOffice Memo 10 async min/hrs Text

Telephone seq sees Verbal

Newspaper Ks async hr/days Text/Graphics

Electronic Mail 10 seq mins Text

Postal Mail 1 seq min/hrs Text/Graphics

Blackboard 5 seq sec/mins Text/Drawings

Voting Machine ? a sync wks Votes

Television Ms seq seclwks Video

QUBE-TV 100 seq min/days Video/Votes

StockExchange 1000 both min/wks TexWerbai/Money

Popular Magazine Ms seq day/wks Text/Graphics

Professional Journal Ks both wks Text/Graphics

CB Radio 10 seq sec/mins Verbal

Delphi 10 async wks Text/Graphics

NotelnBottle 1 seq min/yrs Text

Co lab 5 both mins Text/Graphics/

Verbal/Personal

Table 8.2. Various communication media compared on several more dimensions. Branching

Ratio is the number of participants a single communicatione vent is likely to reach.

Synchronicity is whether the medium is primarily sequential or asynchronous in character.

Setup Time is the time to set up a communication session. Transfer Medium is the form in

which most information is transferred.

179

Appendix C

A Cognoter Users' Guide

Cognoter is a Colab tool for creating a presentation path- an ordered hierarchical

consensical outline for something like a talk or a paper. Cognoter is designed for use by a

small group of collaborators each on a personal workstation. It can also be used by a single

person.

Cognoter embodies a theory of effective problem solving. It encourages three phases

in the presentation building process: Brainstorming, Ordering, and Evaluation. You can

pretty much ignore the phases, but if you play the game we claim you will generate a higher

quality outline with less effort.

Getting Started:

Try to reserve a time slot in the Colab meeting room -it is a pleasant environment

and is the only room with a liveboard. If this is impossible, try to get a machine for

everyone in the same room. Cognoter is also usable by geographically separated

people with a telephone link, but less effectively.

If anyone doesn't see the Colab Icon on their screen (it looks like the one at the start

of this guide), then they probably don't have the proper files loaded and need to find

somebody who knows how to load them. If the Icon appears on all screens then

you're ready to go ... almost.

First, decide on the topic and goal of the presentation you're trying to build.

OK, you know what the presentation is about and are ready to build it. One person

should button the Colab Icon with the middle mouse button- this is quick-starting.

A menu will appear offering the available Colab tools, pick Cognoter. In a moment

another menu will appear giving you the chance to add participants to the

conversation. When you add "other" machines, you can supply either the machine

181

182

name or the machine net number. The participant menu will keep reappearing until

you button "done". In a few seconds the system will have everyone registered and

ready togo.

1. Brainstorming:

Cognoter begins in the Brainstorming phase. This phase is intended for uncritical idea

generation. The idea here is for everyone to put down as many ideas as possible, bad

ones, goods ones, specific ones, vague ones. Ideas are referred to as ideas, idea nodes,

nodes, and items.

Button functions:

There are more-or-less adhered to mouse button semantics: Any button on the

window title gives you large scale operations, Right button affects the surrounding

window, Middle button adds or changes things, and Left button lets you see things.

Shift, Control, and Meta fine tune these operations.

Right button:

Anywhere in a window gives you a general window menu with functions like

shaping the window, clearing the window, moving the window, etc.

Middle button:

On the window title bar gives you a menu of high-level Cognoter operations.

NextPhase moves the whole session into the next phase (don't do this

for a while).

Display redisplays the contents of a window (in case it somehow got

messed up).

Redisplay is the same as Display above.

RedisplayEveryone will redisplay the window on every

machine participating in the conversation.

Shape reshapes the window across associations.

Spread increases the size of the window and

proportionally spreads all the items.

Scrunch is like spread except everything is crammed

into a smaller window.

ShapeTofit will shape the window to exactly fit

around all the items without moving them.

Fonts changes the item fonts to your choice of:

BIG FONTS.

Defaultfonts.

littlefonts.

Addltem will prompt you to add a new item (Idea node) into the main

window (there's a faster way to do this, see below).

AddNewRelation will prompt you to add a new relation item

(Idea node) into the main window. At the moment, a relation

item is simply an item in a lighter font.

Help may give you help.

Accelerator: On empty window background gives you the accelerated way to

add items promised above. Just button over the window background and

type in the label for your idea (end with return). If you mistakenly get a

prompt for a label a return all by itself will tell Cognoter forget about this

label.

On an item gives you a menu of ways to change the item.

Edit lets you edit some aspect of the item (Defaults to attached text) in

a TEd it window.

Editlabellets you edit the node label in a TEdit window.

EditText lets you add/edit text attached to the node (this text

is not normally visible). Attached text is the place to amplify

idea nodes.

Copy makes a copy of the item and prompts you for a place to put it.

183

184

Move does what you expect, it lets you move the item wherever you

wish.

Left button:

2. Ordering:

On the window title bar gives you the same menu of high-level Cognoter

operations described above.

On an Item gives you a menu with two options for publicly displaying the text

attached to the item.

Show displays the attached text (it doesn't touch subgroup windows)

and display the text attached to the item.

Showfirst will close any existing public displays of attached

text (it doesn't touch subgroup windows) and display the text

attached to the item.

ShowAnother displays attached text in another public display

window, leaving the others alone.

Accelerator: On an Item with the control key down at the same time locks the

item to the cursor allowing you to move it until the button is released.

The second phase in Cognoter is the ordering phase. You should enter this phase

when brainstorming seems to be drying up and there a consensus develops for adding

more structure to the ideas. In this phase you are trying to group similar ideas

together hierarchically ("these things are all really this") and add temporal links

between items ("this should be persented before that").

Additional Button functions:

Menus and button functions in this phase are the same as in the Brainstorming phase

with the fol!·..,wing additional operations.

Middle button:

On the title bar you have all the menu options from the Brainstorming phase

plus:

Groupltems groups items chosep by buttoning them. When you are

done choosing items, click on the window background and you will be

prompted for the name of the new group.

Ambiguities highlights ambiguous orderings among the items.

NoAmbiguities stops the ambiguity highlighting.

On an Item you have all the menu options from the Brainstorming phase plus

Open shows the items contained in a group item.

Link establishes link between the item the menu came up on and the

next item you choose with the Left Button.

Unlink undoes what ComesBefore does. It erases the

dependency link between items.

Convert changes the type of an item (self explanatory).

ConvertToGroup

ConvertToltem

ConvertToRelation

Left button:

On the window title bar gives you the same menu described above.

On an item gives you the same menu described above.

3. Evaluating:

The third Cognoter phase is the Evaluation phase. You should enter this phase when

items look to be essentially ordered and the work needs to be clarified and cleaned

up. Only in this phase can ideas be deleted.

Button function changes:

185

186

Menus and button functions in this phase are almost the same as in the Ordering

phase with the following changes and additions.

Middle button:

On the title bar the menu loses the NewPhase option and gains the Outline

option. The submenu for Help also gains SeeDeletes as an option.

SeeDeletes will open the normally closed Deleted Items

window so you can examine or rescue things previously

deleted.

Outline will display the item graph you've built up as an outline in a

separate window. Outline has a roll-out option.

TextToo displays the outline and any attached text.

On an Item you are given one more option:

Left button:

Deleteltem lets you do what it says. Deleted items are not really

completely gone - they're in the (usually) hidden Deleted Items

window.

On the window title bar gives you the same menu described above.

On an item gives you the same menu described above.

Adding new people:

New people can be added to an ongoing session by using the Left button on the

Colab Icon and choosing ChangeCollaborators.

How to leave a Conversation:

Choose Quit from the Colab Icon Left button menu.

Saving the state of the Conversation:

First make sure you are connected to the directory you want to save the conversation

in (the snapshotter isn't very smart at the moment). Having done that, choose

PutSnapShot from the Colablcon Left button menu. You will be prompted for a file

name. It will take a few minutes to save the snapshot if you've done very much work.

Restoring a saved Conversation:

First connect to the directory where the saved state is. Then choose GetSnapShot

from the Colab Icon menu. Once the conversation is restored, you can add other

people in using ChangeCollaborators.

187

Appendix D

Experimental Paraphernalia

{Example Fake Telegrams)

--Important Colab Telegram--

Ben Zorn and Margaret Butler
UC BERKELEY

BEN AND MARGARET:
HELP STOP NEED OUTLINE FOR ARTICLE ON GAMES AND SPORTS IN
SOCIETY SOONEST STOP STAFF STRUCK STUPID STOP DOUBLE USUAL
TERMS STOP

ATLANTIC MONTHLY EDITORS

--Important Colab Telegram--

Ben Zorn and ~argaret Butler
UC BERKELEY

BEN AND MARGARET:
AFTER RESOUNDING ATLANTIC SUCCESS NEED OUTLINE FOR ARTICLE
ON THE STRATEGIC DEFENSE INITIATIVE ASAP STOP STAFF IN AWE
STOP TRIPLE USUAL TERMS STOP

EDITORS. HARPERS

189

190

(Reference Card Given to Participants)

Cognoter Reference

Select = LeftButton

Menu = MiddleButton

TitleBar menu for tool operations

Item menu for item operations

accelerators

New Item = MiddleButton (on window background)

Move Item = CTRL-LeftButton

(Background Form)

Group UID:

Number in group:

Previously worked together:

never some

Computer literacy:

novice some

Previous experience with tool:

none

First test:

tool:

topic:

Comments:

Second test:

tool:

topic:

Comments:

some

often

expert

expert

191

192

Overall Comments:

(Debriefing Form)

Debriefing

Did Cognoter help or hinder?

Did you feel that the phasing (Brainstorming, Ordering, Evaluating) organized

your approach? Or did it only get in the way?

Did your team work in parallel during the Cognoter session?

During the Paper session?

Which session did you like better?

Which session was more effective?

193

References

[Axelrod81] Robert Axelrod, William N. Hamilton, The Evolution of
Cooperation. Science, 2111390-96 (27 March 1981).

[Bernstein81] P.A. Bernstein, N. Goodman, Concurrency Control in
Distributed Database Systems. Computing Surveys, 13:2, (June
1981).

[Birrell83] A. D. Birrell and B. J. Nelson, Implementing Remote Procedure
Calls, Technical Note CSL-83-7 Xerox Corporation (December
1983).

[Bobrow83] Daniel G. Bobrow and Mark J. Stefik, The Loops Manual,
Xerox Corporation (1983).

[Bobrow86] Daniel G. Bobrow and Mark J. Stefik, Perspectives on
Artificial Intelligence Programming. Science, 231 951-956 (28
February 1986).

[Bobrow72] Bobrow, D.G., Burchfiel, J.D., Murphy D.L., Tomlinson, R.S.,
TENEX, a paged time sharing system for the PDP-10.
Communications of the ACM, 15:3 (1972).

[BoltSO] R. A. Bolt, Put-That-There: Voice and Gesture at the Graphics
Interface, Computer Graphics, Proceedings of ACM SIGGRAPH
'80, 14:3 262-270 (1980).

[Bransford85] Bransford, John D., Stein, Barry S., Arbitman-Smith, Ruth,
Vye, Nancy J., Improving Thinking and Learning Skills: Analysis of
Three Approaches, Thinking and Learning Skills (Judith W. Segal,
Susan F. Chipman, and Robert Glaser, eds), Hillsdale, New Jersey:
Lawrence Erlbaum Associates (1985).

195

196

[Brown83] John Seely Brown, Process versus Product. In Report from the
Learning Lab: Education in the Electronic Age (S. Newman & E.
Poor, Eds.). New York: WNET Educational Broadcasting
Corporation.

[Bush45] Vannevar Bush, As We May Think, Atlantic Monthly, 176:1
101-108, (July 1945).

[Coffman71] Coffman, E.G. Elphick, M.J., Shoshani, A., System Deadlocks.
Computing Surveys. 3:2 {June 1971).

[DeBono70] Edward DeBono, Lateral Thinking. New York: Harper & Row
{1970).

[DeKoven86] Bernard DeKoven, Personal Communication (1 April 1986).

[Engelbart84] Engelbart, D.C., Collaboration Support Provisions in
AUGMENT, OAC '84 Digest, Proc. of the 1984 AFIPS Office
Automation Conf., Los Angeles, California, (February 1984).

[Engelbart68] Engelbart, D.C. and English, W.K., Research Center for
Augmenting Human Intellect, Proc. Fall Joint Computing Cong.,
AFIPS press, 395-410, (December 1968).

[Fiower80] Flower, Linda S., Hayes, John R., The Dynamics of Composing:
Making Plans and Juggling Constraints, Cognitive Processes in
Writing (Lee W. Gregg, Erwin R. Steinberg, eds), Hillsdale, New

Jersey: Lawrence Erlbaum Associates (1980).

[Forsdick85] Harry C. Forsdick, Explorations into Real-time Multimedia
Conferencing, Proc. Second International Symposium on
Computer Message Systems (September 1985).

[Gerrold73] David Gerrold, The World of Startrek. New York: Ballantine
Books (1973).

[Giegg69] G. L. Glegg, The Design of Design. Cambridge: Cambridge
University Press {1969).

[Goldberg83] Goldberg, A. and Robson, D., Sma//talk-80: The language

and its implementation. Reading, Mass: Addison-Wesley (1983).

[Greif86] Irene Greif, Robert Seliger, William We_ihl, Atomic Data
Abstractions in a Distributed Collaborative Editing System,

Proceedings of POPL 86 (1986).

[Halasz82] Frank Halasz and Thomas P. Moran, Analogy Considered

Harmful, Conference on Human Factors in Computer Systems

(March 1982).

[Halasz86] Frank Halasz, Randall Trigg, Tom Moran, Notecards Release

1.2 Reference Manual, XSIS, Pasadena, California (1986).

[Hansen73] Hansen, P.B., Operating System Principles, Englewood Cliffs,
New Jersey: Prentice-Hall (1973).

[HayesBO] Hayes, John R., Flower, Linda S., Identifying the Organization

of Writing Processes, Cognitive Processes in Writing {Lee W.

Gregg, Erwin R. Steinberg, eds), Hillsdale, New Jersey: Lawrence
Erlbaum Associates {1980).

[Henderson86] D. Austin Henderson, Jr. and Stuart K. Card, Rooms: The

Use of Multiple Virtual Workspaces to Reduce Space Contention
in a Window-based Graphical User Interface, Xerox Palo Alto
Research Center {1986).

[Hiltz81] Hiltz, S.R. and Turoff, M., The Evolution of User Behavior in a

Computerized Conferencing System, Communications of the

ACM, 24:11 {November 1981).

[Hiltz78] Hiltz, S.R., Turoff, M., The Network Nation: human

communication via computer. London: Addison-Wesley {1978).

[Johansen84] Johansen, R., Teleconferencing and Beyond:
communications in the office of the future. New York:
McGraw-Hill {1984).

197

198

[Johansen79] Johansen, R., Vallee, J., Spangler, K., Electronic Meetings:

technical alternatives and social choices. Reading, Massachusetts:

Addison-Wesley (1979).

[Kerr82] E. Kerr and S. R. Hiltz, Computer-Mediated Communication

Systems, New York: Academic Press (1982).

[Kraemer83] K. L. Kraemer, J. L. King, Computer Supported Conference

Rooms: final report of a state of the art study. {unpublished

draft, Department of Information and Computer Science at the

University of California, Irvine.) (December 1983).

[Kung81] H. T. Kung and John T. Robinson, On Optimistic Methods for

Concurrency Control. ACM Transactions on Database Systems,

6:2 212-226 (June 1981).

[Lederberg78] Joshua Lederberg, Digital Communications and the

Conduct of Science: The New Literacy, Proceedings of the IEEE,

66:11 {November 1 978).

[Licklider60] J. C. R. Licklider, Man-Computer Symbiosis, IRE Transactions

on Human Factors in Electronics (March 1960).

[Licklider68] J. C. R. Licklider, Robert Taylor, and Evan Herbert, The

Computer as a Communication Device, Science & Technology,

21-31 (Apr1968).

[Licklider78] J. C. Licklider and A. Vezza, Applications of Information

Networks. Proceedings of the IEEE, 66:11 1330-1346 (1978).

[Linstone75] Linstone, H.A. and Turoff, M., The Delphi Method:

techniques and applications, Addison-Wesley, Reading, Mass.

{1975)

[LiskovBS] Liskov, 8., The Argus Language and System, in Distributed

Systems: Methods and Tools for Specification; An Advanced

Course, Lecture Notes in Computer Science, Volume 190 [Alford

et al, eds.], pp. 343-430, Springer-Verlag, Berlin (1985).

[Liskov86] Barbara Liskov, Maurice Herlihy, and Lucy Gilbert, Limitations

of Synchronous Commun'ication with Static Process Structure in

languages for Distributed Computing, Proceedings of POPL 86

{1986).

[Malone82} Thomas W. Malone, Heuristics for Designing Enjoyable User

Interfaces, Conference on Human Factors in Computer Systems

{March 1982).

[Merriam69} G. & C. Merriam, Webster's Seventh New Collegiate

Dictionary. Springfield, Mass.: G. & C. Merriam Company (1969).

[Metcalfe76] Metcalfe, R.M. and Boggs, D.R., Ethernet: distributed packet

switching for local computer networks, Communications of the

ACM, 19 395-404 (July 1976).

[BNelson81] Bruce J. Nelson, Remote Procedure Call, CSL-81-9, Xerox

Palo Alto Research Center (May 1981).

[TNelson81] Ted Nelson, Literary Machines, Swarthmore, Pennsylvania:

Theodore Nelson (1981).

[O'Connor84] Rory J. O'Connor, Outline Processors Catch On, lnfoWorld,

30-31 (2 July 1984).
A survey of ThinkTank, FreeStyle and other commercial "thought processors".

[Palme84} Jacob Palme, Survey of Computer-based Message Systems.

Interact '84: IFIP Conference on Human-computer Interaction

(September 1984).

[Parnes77} Robert Parnes, Chris H. Hench, and Karl Z_inn, Organizing a

Computer-based Conference, Transmat. Associations (J. Union of

Intern. Associations), 10 418-422, Univertity of Michigan (1977).

[Polya57] G. Polya, How To Solve It, a New Aspect of Mathematical

Method. Garden City, New Jersey, Doubleday, Anchor Books

{1957).

199

200

[Rice84] Ronald E. Rice and Associates, The New Media: Communication,

Research, and Technology. Beverly Hills, California: Sage (1984).

[Sanella83] M. Sanella et al, lnterlisp Reference Manual, Xerox

Corporation (1983).

[Sarin84] Sunil K. Sarin, Interactive On-Line Conferences, PhD. thesis

(MIT), MIT/LCS/TR-330 (December 1984).

[Sarin84a] Sunil K. Sarin and Irene Greif, Software for Interactive On-Line

Conferences, Proceedings ACM-SIGOA Conference on Office

Information Systems, Toronto, Canada, (25-27 June 1 984).

[Sarin85] Sunil K. Sarin and Irene Greif, Computer-Based Real-Time

Conferencing Systems, Computer, 18:10 33-45 (October 1985).

[Sheil83] Beau Sheil, Power Tools for Programmers. Datamation
(February 1983).

[Shneiderman83] B. Shneiderman, Direct Manipulation: A Step Beyond

Programming. IEEE Computer (August 1 983).

[Stefik84] Mark Stefik, How to Solve It, Collectively. Working paper

(1984).

[Stefik86] Mark Stefik, The Next Knowledge Medium. AI Magazine, 7:1
34-46 (Spring 1986).

[Stefik86a] Mark Stefik, Daniel G. Bobrow, Stanley Lanning, Deborah

Tatar, Gregg Foster, WYSIWIS Revised: Early Experiences with

Multi-user Interfaces. Proceedings of the Conf-erence on

Computer-Supported Work, Austin Texas (December 1 986).

[Stefik87] Mark Stefik, Gregg Foster, Daniel G. Bobrow, Kenneth Kahn,

Stanley Lanning, Lucy Such man, Beyond the Chalkboard:

Computer Support for Collaboration and Problem Solving in

Meetings. To appear in Communications of the ACM (January

1987).

[Thomas83] Robert H. Thomas, Harry C. Forsdick, Terren~ R. Crowley,

George G. Robertson, Richard W. Schaaf, Raymond S. Tomlinson,

Virginia M. Travers, Diamond: A Multimedia Message System

Built Upon a Distributed Architecture. Technical Report, Bolt

Beranek and Newman, Inc. (July 1983).

[Thompson84] Henry Thompson, RPC users guide. Manuscript, Xerox Palo

Alto Research Center (1984).

[Trigg83] Randall Trigg, Network Approach to Text Handling for the

Online Scientific Community, Ph.D. thesis, Department of

Computer Science, University of Maryland, CSTR-1346

(November 1983).

[Turoff72] Murray Turoff, Delphi Conferencing: computer-based

conferencing with anonymity. Technological Forecasting and

Social Change, 3 159-204 (1972).

[Vallee76] Jacques Vallee, Robert Johansen, H. Lipinski, T. Wilson.

Pragmatics and Dynamics of Computer Conferencing: A

Summary of Findings from the FORUM Project," Proceedings of

the 3rd International Conference on Computer Communication

(P. Verma, Ed.), 203-213 (1976).

[von0ech83] Roger von Oech, Ph. D., A Whack on the Side of the Head.

Warner Books (1983).

201

