
ALANA
Augmentable LANguage Analyzer

Charles A. Cox

Report No. UCB/CSD 86/283

January 1986

Computer Science Division (EECS)
University of California
Berkeley, California 94 720

-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 1986 2. REPORT TYPE

3. DATES COVERED
 00-00-1986 to 00-00-1986

4. TITLE AND SUBTITLE
ALANA -- Augmentable LANguage Analyzer

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report introduces a reimplementation of the ideas for phrasal analysis originally implemented in
PHRAN[WA80] as part of the original Unix Consultant project (UC[WAC84]). The new implementation,
ALANA, presents a general algorithm using chart parsing techniques for phrasal analysis. Also presented
in this report is a discussion of KODIAK, the new form of representation from UC Berkeley into which
ALANA analyzes. We include a description of how language is represented in ALANA and how it ties in
with the KODIAK representation model. Finally, we look at how ALANA fits into the new UC, a new
implementation of UC using ALANA, KODIAK, and the latest ideas from the UC Berkeley BAIR
(Berkeley Artificial Intelligence Research) project on understanding and planning.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

69

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

This report introduces a reimplementation of the ideas for phrasal analysis originally imple

mented in PHRAN as part of the original Unixotnote{UNIX is a trademark of ATT Bell

Laboratories} Consultant project (UC). The new implementation, ALANA, presents a gen

eral algorithm using chart parsing techniques for phrasal analysis.

Also presented in this report is a discussion of KODIAK, the new form of representation

from UC Berkeley into which ALANA analyzes. We include a description of how language

is represented in ALANA and how it ties in with the KODIAK representation model.

Finally, we look at how ALANA fits into the new UC, a new implementation of UC using

ALANA, KODIAK, and the latest ideas from the UC Berkeley BAIR (Berkeley Artificial

Intelligence Research) project on understanding and planning.

Author Charles Arthur Cox
----~~~~~~~~--~~---------------------

Title ALANA--Augmentable Lk~guage Analyzer

RESEARCH PROJECT

Submitted to the Department of Electrical Engineering and

Computer Sciences, University of California, Berkeley, in

partial satisfaction of the requirements for the degree of

Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee' !l>t= ~---,.,.R<>e?~arch Adviser

Date

Date

ALANA-Augmentable LANguage Analyzer

Charles A. Cox

January 26, 1986

Abstract

This report introduces a reimplementation of the ideas for phrasal analysis

originally implemented in PHRAN[WA80J as pan of the original Unix1 Con

sultant project (UC[WAC84J). The new implementation, ALANA, presents a

general algorithm using chan parsing techniques for phrasal analysis.

Also presented in this report is a discussion of KODIAK, the new form of

representation from UC Berkeley into which ALANA analyzes. We include a

description of how language is represented in ALAN A and how it ties in with

the KODIAK representation model.

Finally, we look at how ALANA fits into the new UC, a new implementa

tion of UC using ALANA, KODIAK, and the latest ideas from the UC Berke

ley BAIR (Berkeley Artificial Intelligence Research) project on understanding

and planning.

This report was sponsored by

Defense Advanced Research Project Agency DARPA N00039-82-C0235

Office of Naval Research ONR N0014-80-C-0732

1UNIX is a trademark of AT&T Bell Laboratories

1

Contents

1 Introduction

2 Background
2.1 Other Parsing Techniques

2.1.1 ATNs ..
2.1.2 ELI

2.1.3 PHRAN

2.1.4 Problems with PHRAN

2.2 KODIAK

2.3 ALANA's Knowledge.

2.3.1 Builds (Concept) Processing.

2.3.2 TESTs processing

2.3.3 Miscellaneous defpat options

2.4 Sharing Linguistic Knowledge with the Generator

3 ALAN A's Processing

3.1 Chart Parsing

3.2 Matching Defpats

3.3 Left to Right Parsing ..

3.4 Pattern Matching

3.4.1 Pattern Storage

3.4.2 Open and Closed Patterns

3.4.3 Spelling Corrector

3.4.4 Timing Statistics and Further Optimizations

4 Example Trace

6 Conclusion
5.1 ALANA's Strengths

5.2 ALANA's Weaknesses

5.2.1 Ill-formed Input ..

5.3 What Needs To Be Done

6 Appendices
6.1 How to Use

1 Acknowledgements

2

6
5
5
8

12
14
18
19
22
27
27
29

30
31
35
37
39
39
41
46
47

48

65
56
56
57
57

69
59

69

List of Figures

1
2
3
4
5
6
7

ATN amount subnet

Correct parse of sentence

ATN parse needing to backtrack

KODIAK examples

KODIAK PRINT creation ..

KODIAK Causal Inheritance

Correct Parse

7
8
9

20

24
26
33

8 Bad Parse 34

9 Initial Chart 34

10 Intermediate Chart . 35

11 After Nominal-+ Adj N 35

12 Completed Chart 36

13 Sample Chart 36

14 Sample Chart with new edge added . 37

15 Discrimination Net of how Aux S . . 40

16 Abstract Diagram of how an open-pattern ties the chart to the

17
18

19

20

21
22

discrimination net .
Two Open-Patterns
Snapshot 1
Snapshot 2
Snapshot 3
Snapshot 4
Snapshot 5

3

42

43
44
45

46

47
63

1 Introduction

The main goal of the research presented in this report was to improve and
simplify a. natural language analyzer developed in the Berkeley Artificial In
telligence Research (BAIR) project. This previous a.na.lyzer[WA80], named
PHRAN for PHRasal ANalyzer, used the idea. that information relating nat
ural language to concepts be stored as a. pairing between linguistic patterns
and concepts. Concepts in PHRAN are represented in a. special language
such as Conceptual Dependency[SA77] (CD). The same main idea. of language
to concept pairs is also used in my new analyzer ALANA (for Augmenta.ble
LANguage Analyzer), yet ALANA is a. cleaner implementation of the ideas of
PHRAN and uses a.n improved method for representing concepts.

What makes ALANA better than PHRAN is that PHRAN was designed
only to analyze into Conceptual Dependency structures, whereas ALANA, be
ing developed independently of representation, depends less on the language
it is analyzing into, and more on other components of the underying under
standing system. In this report, I shall also argue that PHRAN was trying to
do too much as a. analyzer. This made its use too restrictive. ALANA, on the
other hand, is a. smaller and more versatile program, which, using the same
mechanism can analyze not only into Conceptual Dependency structures as
PHRAN had done, but also to different knowledge representations such as the
Berkeley KODIAK[Wil84] representation language also to be described in this
report. Finally, what makes ALANA better than PHRAN is that PHRAN
had been developed incrementally over a. period of several years, and ended
up being very difficult to maintain. PHRAN needed a.n overhaul, and ALANA
was the result.

The current ALAN A has successfully fit into two separate versions of
UC[WAC84], the Unix2 Consultant natural language dialogue system being
developed by the BAIR project. The ALANA code, being much smaller
and more modular than PHRAN, will be much easier to maintain than was
PH RAN. ALAN A was designed to achieve everything PHRAN could do plus
be easily modifiable and extendable to other systems. Also, the knowledge
base is separated from control so that, as with PHRAN, the analyzer can be
theoretically extended to other natural languages.

This report will focus mainly on the ALANA's implementation. Hoy,:ever,
before we look a.t the analyzer, we will look, as background, a.t some parsing
techniques that inspired ALANA's development in some way, and we will see

2UNIX is a trademark of AT&T Bell Laboratories

4

the strengths and weaknesses of these techniques. In addition, to elucidate

the description of concept building, we will see an overview of the KODIAK

representation system and its interpreter (originally written by Peter Norvig).

Then I will describe in detail how pattern matching is accomplished followed by

how declarative style concepts are translated into KODIAK. My descriptions

will be accompanied by my ideas on how I think natural language processing

is done in a person's head.

2 Background

Before going into the details of ALAN A, let us first look at the context in

which it is built. We will first look at some previous parsing techniques and

examine their strengths and weaknesses. We will end this section by looking

in detail at the strengths and weaknesses of PHRAN, and giving an overview

of th~ KODIAK representation system.

2.1 Other Parsing Techniques

Most parsing techniques fall into one of roughly two main categories, those

doing a lot of syntactic analysis followed by semantic analysis, and those in

tegrating the two analyses. As we shall see, ALANA's direct predecessors

(PHRAN[WA80], ELI[Rie78], IPP[SLB80]) were more in the integrated cat

egory. We shall also see that ALANA attempts to be even more integrated

than its predecessors by its continual inserting what it "finds out" from the

parse into the semantic representation for other processes to deal with.

2.1.1 ATNs

Let us look first, however, at a syntactic analyzing technique which provided

some of the inspiration for ALANA's pattern matching. An Augmented Tran

sition Network[Woo70] (ATN) is an early technique for natural language pars

ing and has become a popular paradigm on which to build analyzers. It is used

in such systems as PLANES[Wal78], LUNAR[WKN72], and even in a Unix

Consultant system (UCC)[DH82J being developed outside of Berkeley. These

systems all use ATNs to parse natural language input into formal queries for

database management systems.

An ATN is an extension of an RTN where an RTN (for Recursive Tran

sition Network) is simply a Finite State Machine[Har78] with the ability to

5

-· -·-

recursively use parts of itself to determine whether an edge traversal is pos

sible. It can be shown that RTNs recognize the class of languages known as

Context Free Languages[Har78]. We can build machines (i.e. write programs)

to parse these languages by having the program read input from a stream and

try all of the edges, and backtrack when it hits a dead end. Some researchers,

however, believe that the syntax of English is not context free. If so, it cannot

be parsed using only the power of RTN's. The extra power can be gained by

using augments on the edges. Hence we have Augmented Transition Networks

or ATNs.
An ATN is simply an RTN with the added ability that not only do the

routines on the edges read from the input stream and return back to the caller,

but they also can maintain and access global registers. With this added ability,

they are functionally equivalent to a Turing Machine which means they should

theoretically be able to compute any computable function. In other words,

they should be able to recognize any language that is effectively recognizable by

a machine. Hence, ATNs should be powerful enough to be used as a natural

language parsing technique. A sample ATN, from Wood's article{Woo70J,

along with some of the amount phrases it can recognize is shown in Figure 1.

There are two main problems with ATNs. The first is that with only

syntactic recognizers on the edges, it is strictly a syntax-based parser. The

idea of having a strictly syntax-based parser was fashionable in the 1950's

and 1960's when linguists were mostly studying the structure and distribution

of morphemes in a language. Semantics was given a back seat to syntax in

those days, and it was felt that the meaning of a analyzed sentence could

be determined by merely computing a function of the dictionary meanings of

the words and the syntactic construction of the sentences. Since that time,

many linguists as well as AI researchers have argued against the separation of

Linguistics into pure syntax and pure semantics[Lak69J.

The other main problem with ATNs is their efficiency. They are usually

implemented using a top-down, depth-first search mechanism, usually with

blind backtracking. Thus, the edges are tried in some arbitrary order, and

whenever an attempted traversal down one edge fails, the ATN routine will

just try the next edge. The following example of this inefficiency is taken from

R. Johnson[Joh83].

If we were to use a standard syntactically-oriented ATN confronted with

the English sentence in Figure 2, we can get an alternate bracketing up to the

word program which is rejected on finding the verb enhance. If the an·alysis

routine started with the second parse, then upon seeing enhance, it would

6

--

<comp>

as many as
more than
at least

<conj>

but
or
and

<neg>

not
none
DO

(and)

<integer>

\~~~:e,(ewer,less)
~j>

0
<conj>

(time,times)

<amount>
{recursively)

Figure 1: ATN amount subnet

have to back up all the way to the beginning of the sentence and start the
parse again, including a second traversal of the Prepositional Phrase (PP) in
the program. Note that the PP already had been correctly parsed, but we
had to undo it, and then redo it over again.

The idea of a cascaded ATN[Woo80] is an extension to the purely syn
tactic ATNs described above. A "cascaded ATN grammar" has a semantic
component which tries to build arbitrary structures. During processing, if
the semantic component is unable to build the structure, it returns a failure
message to the syntactic parser, which will then act as if it couldn't traverse
the edge which caused it to call the semantic routine. The ATN parser will
then backtrack just as in the regular syntactic parsing case. Such a method. is
used in Psi-Klone[BW80].

We shall see that the idea of using the syntax to determine which semantic

7

s

NP NP

PP \
L----.-~ enhance

Th• mn•moDO< labels D I
readability

in the program

Figure 2: Correct parse of sentence

routines should be considered, as is done with cascaded ATNs, is also done

to some degree in ALANA. The fundamental differences, however, between

ALANA and cascaded ATNs, is that ALANA has much less emphasis on

syntax, and also does neither blind backtracking nor depth-first search. Rather

it allows the other semantic components to guide the analysis rather than be

a slave to the syntactic parser.

2.1.2 ELI

Reacting to the pure syntactic analysis of parsing techniques, researchers be

gan looking at how to get the meaning of sentences by performing semantic

analysis of the input as it is being read, and not waiting until after pure struc

tural analysis. It is this semantic-oriented tradition of analysis into which

ALAN A falls. In this section, we discuss one of the earlier attempts at seman

tic style analysis by looking at ELI[Rie78]. But before we look at ELI itself,

we shall look at the theory behind it known as Conceptual Analysis.
Conceptual Analyzers work by intimately knowing about the represen

tation into which they are analyzing, and thus set up expectations as- they

read the natural language input stream. With ELI (and later, PHRAN), the

concepts were represented using Conceptual Dependencies (CD's), a graph-

8

s

V~~PP
0~
labels

in the program The mnemonic
(enhance)

Figure 3: ATN parse needing to backtrack

ical structure in which all actions were reduced to about eleven primitive

actions. The idea with Conceptual Dependency wa.s th:.t meanings could be

represented unambiguously in a canonical form, and from that form infer

ences could be made. For example, the verbs 'give', 'take', 'transfer', 'donate',

'send' could all map into the ATRANS primitive. The ATRANS primitive ha.s

a source and a recipient. By using this primitive, the system can then infer

such things a.s the source used to have the object, the recipient now ha.s the

object, and that the source no longer ha.s the object3 •

Getting back to the actual conceptual analysis, let us look at an example

a.s presented by Birnbaum and Selfridge[LB81]. When analyzing a sentence

such a.s "Fred ate an apple", the system reads that sentence left to right. The

words it reads early on (i.e. closest to the left), will influence how it reads

the rest of the sentence. So, when the word 'Fred' is encountered, the system

understands it to be a reference to a male human being named Fred. This

idea is also shared in PHRAN and ALAN A. It then stores the token it ha.s

named FRED into a short-term memory. When it encounters the word 'ate',

the system understands that there is an "eating action" going on which in

CD is represented by an INGEST CD frame. By the fact that INGEST takes

an ACTOR and an OBJECT, the system knows it can expect references in

the sentence to fill these slots. For example, there is an expectation that the

ACTOR of the INGEST is animate. Since the system already ha.s an animate

3 There were actually three notions of transfer in CD: PTRANS, A TRANS, and MTRANS.

ATRANS meant that an abstract transfer was taking place, thus what may be transferred
may really have been a transfer of possession.

9

object in its short term memory (FRED), it goes a.hea.d and makes FRED be

the ACTOR of the INGEST.

Stepping back and looking a.t what we have seen so far, the system has only

seen "Fred ate ... ", and without completing the analysis, it already knows that

a. person named Fred is doing some kind of ingesting. It also knows that it can

expect a.n object as the direct object of this sentence, and that that object will

be the thing ingested. It is this idea., of integrating linguistic processing with

other reasoning and memory processing, that gives ELI and its descendants,

including ALANA, efficiency and speed (in understanding) over syntax-first

parsers.
Continuing along with the example, the system next reads the word 'a.n'.

The system having expectations associated with 'an', knows that a. Noun

Phrase (NP) is coming up, and that the object associated with the NP should

be marked as a.n indefinite object. When the word 'apple' finally gets read,

the system knows it to be a. food which is a.n object, which in tu!"n is eligible

to fill the INGEST frame suggested above. Thus, the system ends up with the

frame

(INGEST
ACTOR (FRED)
OBJECT (APPLE REF (INDEF))

ELI was a.n early analyzer (written by Christopher Riesbeck[Rie78]) that

did conceptual analysis for CDs. The analyzer executed in a. top-down fash

ion and produced only conceptual structures for which it had expectations.

analyzed into a. conceptual structure only if it had previously been expected.

Expectations were implemented using test-action pairs that were called re

quests. If the test were true, then the actions were executed. In the above

example, one request tested for the concept of apple being a.n edible object.

When it found that a.n apple was indeed an edible object, it knew that it could

fit as a.n object of the INGEST, so the result or action of the request stated

that the INGEST's object should get the apple concept.

There are two kinds of requests used in ELI, lexical and conceptual. Lex

ical requests are stored under words in a. kind of dictionary. Thus, words

such as 'Fred' will have a. request stored under it where the test is T (de

noting a.n always true condition), and the action is to add the structure (PP

CLASS (HUMAN) NAME (FRED))\ which is a. CD structure indicating a

human named Fred, to the C-LIST or short term memory of the system. Many

4 We will not worry about the detailed syntax of the forms used by ELI. They are usually

10

words, such as verbs, have lots of requests associated with them. For example,

the word 'gave' triggers requests to check which types of objects are in short

term memory and which should be expected. In this way, the system is able to

understand the different uses of 'gave' in sentences such as Fred gave Sally

a book, Mary gave Sam a punch, and John gave Sue a headache. The re

quests associated with 'gave' check for all of these and build the appropriate

conceptual structures.

An extra component was also put onto the system to look for noun-noun

collocations such as stairway handrail, cigar smoker, dog leash, and car

seat. Cases like these were handled by using heuristics[Ger77] for determining

noun group boundaries. The heuristics of where the boundaries were depended

on conceptual as well as syntactic knowledge.

In my view, it is the arbitrary nature of these heuristics and requests

that gives the system problems. The problem is that in order to get ELI to

work properly on a sentence, one needs to attach a lot of ad hoc knowledge

at the word level (especially for verbs), and this knowledge needs to tell the

system to look ahead and to look behind for arbitrary structures. Some of the

problem cases can be illustrated by looking at idioms. If the word 'kick' is

read by the system, then all forms having to do with 'kick' have to be handled

as requests. This presumably includes idiomatic forms with 'kick' including

kick the bucket. So, there has to be an explicit request that tests for 'kick'

followed by 'the' followed by 'bucket'. If it is there, then we want to build the

concept for dying5
•

As a result, entering new knowledge to this system is not a trivial task.

We have to make sure that all of the requests get entered in the right order,

which may mean indexing them under the word. As we saw earlier above,

when the system saw the word 'gave', requests for all forms of 'gave' including

gave a book, gave a punch, and gave a headache had to be triggered.

ELI also had a problem with forms such as Chinese restaurant. The in

tended meaning of Chinese restaurant is a restaurant which serves Chinese

food, and may have a Chinese decor, etc. The problem was that it saw the

word 'Chinese' before seeing 'restaurant'. After seeing 'restaurant', even with

Gershman's analyzer, ELI could not realize that it was supposed to build a

concept for a specialized type of restaurant unless an expectation had been

set up for it. The only possible way to set up an expectation was to attach

pretty readable. The one word of this form which may be confusing is PP which stands for

Picture Producer, or an object which can form a mental image of "seeing" the object.

5In CD, dying is a state-change, where death = -10 health.

11

a request to the word 'Chinese'. In other words, whenever ELI sees the word

'Chinese', it would have to expect that 'restaurant' will be one of the possi

bilities to follow.
But ELI has to know to expect other words as well after 'Chinese', for

example 'laundry' in 'Chinese laundry'. The way to let it do this is to attach

the requests for 'laundry' and 'restaurant' as well as all others to the word

'Chinese'. A more serious theoretical problem with just attaching knowledge

to words is that there really is a generalization to Chinese restaurant, for we

have Italian restaurant, French restaurant, Indonesian restaurant,

etc. The generalization is that there is the idea of a NATIONALITY restaurant

which we should not expect until after we have seen the word 'restaurant'.

The solution to this problem of one-way-only requests was to change how

ELI handled requests by allowing them to look backwards as well as forwards.

So, ELI ended up being a word-expert system with lots of arbitrary knowledge

being stored at the word level, and with lots of requests being asserted just

because a particular word in a phrase had been used. The logical extension of

this word expert analysis idea is captured in Small's[SR82] word expert ana

lyzer in which the knowledge was all attached to the words. Adding knowledge

to these word experts becomes a very formidable task since it is difficult to

know how new knowledge will affect the old. This problem continually recurs

in analyzing natural language.
It was these problems that caused Wilensky and Arens[WA80] to propose a

simpler method for dealing with maintaining linguistic and conceptual knowl

edge in the analyzer. Their solution was the Pattern-Concept Pair which we

shall discuss next when describing PHRAN (PHRasal ANalyzer).

2.1.3 PHRAN

One main idea that PHRAN extended was ELI's idea of associating request

like knowledge to language components. However, in PHRAN the attachment

is not just to words, but to phrasal structures as well. A simple example

is the idiom '(root kick) the bucket' where '(root kick)' means 'kick' can

actually be of any tense or be the root of a complex verb phrase (as in "would

have kicked ... "). Instead of attaching requests to the word 'kick' that expect

the words 'the' and 'bucket', assert the request only after we have seen the

phrase 'kick the bucket', and associate the meaning with the phrase, and not

with the individual words.
Another useful idea incorporated into PHRAN was that knowledge at-

12

tached to the phrasal constructs was declarative. This became important in

that it not only made adding knowledge less of a chore than adding intri

cately interrelated procedural knowledge (as needed in ELI), but also that

one could think of the knowledge as a pairing between linguistic information

and conceptual information, and that analysis then became the process of

taking the natural language input, matching it against the phrasal patterns,

and then returning those concepts that had matched patterns. So, we had a

'language -+ concept' process.

By extending the idea of pairing linguistic information to concepts, there

seemed no reason why one could not process in the reverse direction, i.e. by

taking conceptual information and producing a linguistic form expressing that

concept. This reverse process is just that of natural language generation, the

counterpart to natural language analysis. In fact, after this realization was

made, a companion program to PHRAN, named PHRED[Jac83] (PHRasal

English Diction) was written and was successful in using the same knowledge

base that PHRAN used for its analysis.

Another advantage of pairing linguistic forms to concepts was that if the

concepts did not rely on English (and technically they were not supposed to in

CD even though labels in CD were always written in English), the mechanism

of PHRAN could be used to analyze other languages. Once the analyzing

had been done using a set of pattern-to-concept pairings (known in PHRAN

as Pattern-Concept Pairs) for one language, say English, a set of pattern

concept pairs for another language, say Spanish, could be used to generate

the same utterance in Spanish. Hence, depending on the strength of the

underlying representation (i.e. that it be canonical and interlingua or language

independent), PHRAN and PHRED together formed a primitive language

translation system. In fact, work has been done in making PHRAN and

PHRED understand languages such as Chinese and Spanish[WM81], [Jac83].

A sample Pattern-Concept Pair taken from PHRAN's database is shown

below

(index-under-pattern (kick the bucket)

[(nil
[(root kick) the (* and bucket)]

[p-o-s 'verb
tense (value 1 tense)
root 'kick-bucket
voice 'active
form (value 1 form)])])

13

, , pattern
,, links to concept

This pattern is the one used to analyze 'kick the bucket' using any tense of the

verb 'kick'. The concept analyzed into is shown as a "kick-bucket". Actually,

"kick-bucket" is the name of a special type of pattern used in PHRAN called

a named group. A named group is to be thought of as a meta-pattern or

a macro pattern representing the concept of a Pattern-Concept pair which

expands into a regular pattern when encountered in an instance of a" (index

under-pattern ...)" as above. The idea was to save typing for patterns that

built the same information.0

The named group (and thus, the real concept) for kick-bucket is shown

below

(name Gkick-bucket
((active)
[(person) (root kick-bucket)]

[concept '(state-change (actor ?actor)
(state-name health)
(to -10))

actor '?subject]))

Basically, PHRAN processes its input by reading in the sentence one word

at a time left-to-right and matching the input against its patterns. As it

analyzes, it replaces individual words by terms which, based on what patterns

the terms match, may be combined together to form more abstract terms later

on in the analyzing process. We note that once a term is created, PHRAN

does not backtrack to undo a term's creation. PHRAN's inability to deal with

possible multi-parses (i.e. creating different sets of terms) is a problem which

will be examined in the next section.

2.1.4 Problems with PHRAN

There were a number of problems with PHRAN. Most of these problems

concerned the implementation of PHRAN, not the theoretical ideas. While

PHRAN had succeeded in being used for several purposes, including being

used for different languages and being the front-end of the original UC, it

became difficult to maintain the code. Also, in my experiences with PHRAN,

problems showed up that needed correction.

Consider the problem of adding patterns to PH RAN. For example, a typi

cal question asked of a Unix Consultant may be How can I send a message

6 Named groups, as well as other details regarding Pattern-Concept Pairs for PHRAN are

explained in Arens' unpublished "How to Write PHRAN Patterns" [Are81]

14

to someone?. To analyze this question, we need to write the pattern [(per

son) (root send) (message) {from (user)} {to (user)}], where the braces ({})

indicate optional parts of the pattern, and attach this pattern under a "named

group" for send. As mentioned above, a named group in PHRAN was a type

of meta-pattern macro that was meant to expand when referenced inside a

PC-pair. The idea was to save a lot of rewriting for patterns that built the

same information.
A problem comes up, however, in writing a pattern for the sentence How

can I give a message to someone?. We have to write almost the same

pattern as we had in the send case so that it could be stored under the word

give. In other words, we are not able to generalize the "Distribute message to

someone" construct because of PHRAN's rewrite rules. We have to duplicate

the pattern whenever we wanted to add the ability to analyze a variant of

it. In other words, with this implementation, PHRAN still seems too word

oriented.
There were other major problems with PHRAN not having anything hav

ing to do with re-write rules. Redundancy arose in the pattern database.

Whenever a pattern writer wanted to add a pattern for a new sentence, s/he

had to specify everything in the pattern. For example, the pattern had to

contain what PHRAN called links to specify which part of the pattern de

noted the actor, which denoted the object, etc. This information would have

to be duplicated in every pattern representing sentences between actors and

objects7
•

Another problem was that patterns were not as autonomous as they were

supposed to be. For example, consider the questions How do I find out how

much disk space I have? andHow do I find out how much disk space

I have used?. At first glance, it seems all one needs to do is create a Pattern

Concept Pair where the pattern [is 'how much NOUN PERSON HAVE']. How

ever, when PHRAN sees 'ADJECTIVE NOUN', it calls the pattern that re

places the above two terms into the single term 'NOUN-PHRASE'. This means

that PHRAN collapses the terms [<how> <much> <N>] to [<how> <NP>]

which causes it to miss the [<how> <much> <N> <person> ...] patterns.

Even though the specific word much is included in the pattern, PHRAN uses

7 As we will see in the description of my analyzer, my solution to the problem of duplicating

information could have been integrated into the old PHRAN by having patterns correspond

to different levels of analysis. The question is, would PHRAN's pattern matcher have handled

things the proper way. Some of the problems discussed later indicate PHRAN might have

had trouble with patterns being matched in parallel.

15

the more general pattern, thereby violating the important analysis principle

of using the most specific patterns first[WA80]. Furthermore, even if this PC

pair is indexed under (how much), the problem occurs. The reason for these

problems is that PHRAN does not do arbitrary backups because of the diffi

culties involved. PHRAN not backing up had not caused troubles in the past

since pattern writers had always been able to write patterns that got around

backing up.
The general problem was that one could not just add a new pattern as a

discrete piece of knowledge. One had to know how the new pattern would be

matched, how backup might or might not be performed, and most importantly,

how it interacted with other patterns. One of the main goals of my analyzer

is that any pattern that gets added to its knowledge base will get instantiated

if it matches the input, and finding such patterns is not done with merely

ATN-style backup, but in a parallel style to be described later.

PHRAN's syntax for pattern-concept pairs is painful, especially when one

wanted "optional" parts for a pattern. An example of a rewrite-rule such as

what a pattern writer might have to write (along with optional subparts) is

included below8 :

; thing be eaten
(index-under-pattern (noun-phrase be perfective)

(get (from-end 1 root))
(3 (root be) (* and 2 (form perfective) (negative nil))

([(by 1) (actor (opt-val 2))])

Crest ([(by 1) (actor (opt-val 2))]))

(cd-form '?concept
p-o-s 'sentence
subject nil) passive)

The first line of the example (index-under-pattern ...) indicates where

this pattern is to be indexed. The idea was that instead of suggesting all

patterns all the time, a pattern would be suggested only when enough of it

had been seen. N .B. the index is not the same as the pattern, but in almost

all cases it was a prefix of the pattern. The patterns were indexed under a

Discrimination Net[CRM80].
The next three lines of the example indicate the pattern9

• These lines have

a very complicated meaning which depends on the fact that at pattern-match

8 This pattern is taken from the PHRAN database with the'#' signs changed to'@'.
9 See Yigal Arens "How to write PHRAN patterns", §{.3 for details.

16

time, this pattern will be accessing various "named groups". The (get (from

end 1 root)) indicates that a named group is to be taken and modified at

pattern-match time, where 'get' is a special function which finds desired PCPs.

Because of the state of the system when this pattern is being processed, the

'1' refers to the verb that it is looking at (the pattern writer has to know

it is a verb because we have reached the 'perfective' in the pattern index).

Then a new named group gets created. The third, fourth, and fifth lines of

this example, then, are built in to be the parts of the pattern that go into

a new meta-pattern (or named group). In other words, while the concept

itself is a declarative (empty frame) structure, this actual piece of know ledge

is procedural in that it builds, during the pattern matching, a new named

group that will be used by other pattern-concept pairs.

Looking at the second and third lines (which are the skeleton for the new

pattern), we see numbers, a '*', and a '@rest'. The numbers refer to com

ponents in the pattern being built up. The (* and ...) indicates to the

pattern matcher just where the indexer will have left off on this particular

pattern. The and in this starred expression is to be thought of as a boolean

'and'-not the word and (even though it is put in the list just as if it were

a pattern component). The last expression beginning with 'cd-form' is the

concept part, which in this case just amounts to setting a few links since the

concept will be stored in the variable '?concept' when the subpattern matches.

All in all, this is much too complicated (I do not expect my very cursory

description to have been able to make anyone understand just what PHRAN is

doing). The main problems are that these meta-patterns are not really neces

sary if one has what I call 'high-level' patterns that match at the same time as

the 'low-level' patterns. The low-level patterns are meant to match the least

abstract phrases, "passing" information upon their instantiation to the high

level patterns. The main difference between "high" and "low" level patterns is

the level of abstraction each exhibits. So, for example, a fairly 'high-level' pat

tern is 'NP-+ Art NP', which would match anytime one sees an NP preceded

by an Art. This will not always result in the correct analysis right away, but

all patterns are matching at the same time. Those patterns that do match,

but turn out not to be correct may be dead-ended in their usefulness when

other understanding components rule them out. These other processes can

indicate to the analyzer that certain patterns should no longer be considered.

We shall see later how the analyzer interacts with the other understanding

processes when the actual pattern matching process is described.

Therefore, all linguistic patterns can be written as rules, instead of per-

17

lUL. --

forming special tricks to get meta-patterns to come out correctly (as shown in

the above example). Thus, the complexity of meta-patterns (or rewrite-rules

or named-groups) can be avoided if one uses a. single representation for pat

terns. Then simpler pattern matching than PHRAN's can be used to analyze

the input.
Additional unnecessary complexity can be seen in the optional parts of

patterns. The optional sub-patterns are indicated by the extra. brackets and

require that their links be set in the pattern itself (as opposed to being in

the concept part, which is where non-optiona.llinks get set). For their added

complexity (both in pattern writing and especially pattern matching), they

are not worth having. Their exact same effect can be had by having separate

patterns.
Another problem with PHRAN had to do with the way it fit into the

rest of an understanding system. PHRAN was inadequate for KODIAK since

it had been designed to create and instantiate only Conceptual Dependency

frames. The idea. was that when PHRAN finished its processing, a. completed

CD representation would be returned by PHRAN. Only after PHRAN had

finished would other understanding components be able to take over to further

process what PHRAN had given them.

My feeling is that the "pipe-lined" approach to natural language under

standing implied by PHRAN-style analysis is wrong since the gra.mma.tica.lity

of the sentence is heavily influenced not only by the semantics of the sentence,

but also by the understanding process of that sentence. To have a. linguistic

analyzer be the only component used to build a. representation means that the

analyzer must know all about metaphors, metonymies, and categories so that

the gra.mma.tica.lity of basic sentences may be determined.

Given the above problems, it was clear that even though the ideas of

PHRAN were essentially correct, the implementation had problems serious

enough that they could not be simply patched.

2.2 KODIAK

One of the major reasons PHRAN needed to be rewritten was that the rep

resentation language, Conceptual Dependency[SA 77] (CD) was inadequate.

PHRAN was designed to create such CD frames and instantiate them by fill

ing in their slots. The idea. being that when PHRAN finished its processing, a.

completed CD representation would be returned. Arguments for why CD's are

not strong enough for representation are detailed in Wilensky's pa.per[Wil84],

18

but a basic summary of the arguments is that the CD frames are too ad hoc,

and the frames' slots were unmotivated. A new Berkeley representation named

KODIAK10 has been developed to address their deficiencies. KODIAK is sim

ilar to KL-ONE in that it is a semantic network with multiple inheritance. I

will not explain the motivations behind the details of KODIAK. They can be

found in Wilensky's paper[Wil84]. I will, however, give a brief description.

Objects in KODIAK are either absolutes or relations (which are used to

relate two or more objects together). Objects can represent classes (such as

the class of all books) or can be subclasses of other classes (such as the class of

females being a subclass of humans). This type of subclass relation is denoted

as a dominates. It is represented in KODIAK by a dominates (or D) link.

Relations can be denoted as su brelations of other relations also by using

dominates. Relations have two or more aspectuals where an aspectual is

a concept equivalent to the argument position of a relation. Inheritance of

aspectuals is then indicated by a special two-pronged link known as a Role

Play link. A role-play link is associated with a particular dominates link and

has the role part pointing to the "parent" aspectual, and the play part pointing

to the associated "child" aspectual. All other aspectuals of the dominator's

relation get inherited by the dominatee exactly as they are in the dominator.

Finally, one can denote particular instances of a class by using an instance (or

I) link. Likewise individual instances of relations can be formed by using an

instance link. Examples of these KODIAK concepts are shown in Figure 4,

which shows how we can indicate that a particular human female exists and

is named Carol.

2.3 ALANA's Knowledge

At this point, we look at what ALANA's knowledge looks like. Later we will

examine in detail how the actual analysis is done and how representations

get built. The heart of the ALANA's matcher, the chart parsing process, is

described in § 3.1. The main idea behind ALANA is that pattern knowledge

is used to aid in the syntactic analysis, which takes place at the same time as

semantic analysis. ALANA's main function is to use the patterns to suggest

parses. All pattern matching knowledge, from the individual words up to

syntactic rules are handled as Pattern-Concept-TEST triples (sometimes just

simply called defpats).
As we go through the description of the data with which ALANA works,

1°Keystone to Overall Design, Integration and Application Knowledge.

19

4 rel11tion

11n ;"rctual .f./ /oamcT
.(--··::::• :; _: bas-name C

HUMAN .:: --··· 11n abMlute .;. v ~ R
t .(---··::::· d .

1
. k bas-name-n e bas- me-object

FEMALE .,:::: ... ---··an ab,olute
'\.,4···:::::· . . . p HUMAN

10 .:::~::::::;~ ommate" m D ~

'\ .: .. ----···· an m"tance lmk has-person-name

FEMALE!~·;:?': • port;<Ula' femak J "'-.. a /o
has-person-name-name ~ person

.(--····::•
I .:::: ... ----··a particular naming

a value link ----->::::., v
has-person-name 1

pers~ ~ bas-perso•-••m.,_c,

caroll

A Section of KODIAK indicating a female's name is Carol

Figure 4: KODIAK examples

we must keep in mind ALAN A's overall understanding strategy. Any pattern
that can be matched will be matched. It is not necessarily just up to the
pattern matcher to determine which matches are to be ruled out. ALANA
expects that other routines will look at what ha.s been matched a.nd that
other processes running a.s coroutines will suggest information that can aid
the matcher. This information is in the form of adding or removing patterns
being considered, thus affecting the way pattern matching will be performed.

ALANA's matcher provides tools to add or remove patterns being consid
ered. These tools ca.n be used by other inference components to provide hints
to ALANA's matcher. In this way, analysis expectations can be added, or
known dead-ends can be avoided. While current systems which use ALANA

20

do not take advantage of such tools, their intention is to have language analysis

be a subservient part to the whole of the understanding process. In this way,

ALAN A can run as a coroutine with other components in an understanding

system and it may be desirable for these other components to directly affect

how sentences are being read by ALAN A.

The basic form of ALANA's data is

(defpat [pattern-label] (pattern-name=> component1 ••• componentn)

(TEST (LISP-FCN component1 ••• component"})

(builds (LISP-FCN componenh ... componentn)))

The pattern-label is an optional atom which distinguishes this particular PCT

triple and is used only as a mnemonic for the user. The pattern-name is an

atom which is the label put on the pattern instantiation created when the

components (component1 ••• component") have all been matched. In the

simplest form, each component is an atom11 , and refers to a pattern-name of

a defpat. A word is indicated as a list (w word) so that ALANA can know

which pattern components should be passed off to the spelling corrector when

an unknown word is encountered. During analysis, after the components are

found, the TEST, if present, is evaluated and if it returns non-nil, the result

of evaluating the builds function is attached to a new pattern instance for

pattern-name as the (concept-of pattern-name).

TESTs are meant to be used for linguistic tests such as agreement, whether

prepositions can modify a noun-phrase, and other forms of grammaticality

known about at the language analysis level. TESTs are given entry points to

the parsing chart so that the TEST function can look around on the chart for

any information it may need. Most morphological analysis, however, is done

on the word of the chart edge which can be accessed via the word-offunction.

The TEST and builds parts of the defpat are described in LISP functions

of components. In processing these parts, the LISP-FCNs for the TEST and

builds are applied to the values of the concepts of the pattern components.

Because of the way these values are stored (attached to chart edges on a parsing

chart-to be explained later), functions can not only access the components

directly, but through them, can access any previously built up concept value.

The way to access the different concepts is through chart accessor functions.

By using the chart accessor functions, the TEST and builds functions can look

in other places in the chart to gather any needed information.

One danger of using arbitrary functions for TEST and builds is that anal

ysis could become too procedural and as such, it could become impossible to

11 Actually a component can also be a list. We will discuss later what this means.

21

trace or keep straight just how the analysis takes place. It is for this reason

that certain strict conventions have been adopted. One of these is that TESTs

should not modify the chart or assert any new conceptual information. They

only check conditions and return nil or non-nil. A nil result means the TEST

failed and not only should the concept (builds function) not be asserted, but

neither should any new chart edges be added. The other convention is that,

as much as possible, concepts should be written in a declarative style using

macros that expand to the low level KODIAK primitives. Let us now look in

detail at how these macros are defined and how concepts are processed.

2.3.1 Builds (Concept) Processing

Here are some actual sample defpats:

(defpat (V •> Print))

(defpat (Print => (w print))
(builds (i PRINT-ACTION

witha pr-effect (i PRINT-EFFECT))))

These two defpats contain patterns, with the first having neither a TEST

nor a builds, and the second having no TEST12 , but with a simple builds. The

first pattern says, whenever a 'Print' category is found, always instantiate it

as a verb (V). We note that though the pattern matcher will always put in a

V wherever it sees a Print, this may not always be desired, and that there are

cases where 'Print' ought to refer to a Noun (as in a 'Print-out'). To rule out

such bad possibilities, we could rely on either having a TEST, which would

perform a linguistic test to see if it were possible to have aN here, or we could

just go ahead and assume that 'Print' is always a Verb. If it is not a Verb, a

later process will use one of the functions provided by the analyzer to remove

it from further consideration as a Verb. In neither case do we rely on just the

syntax alone. This is a place where we would call on semantics to aid in the

pattern matching.
The second defpat actually associates a word with a category that gets used

in the first defpat. Since it also has no TEST, it will always be instantiated

whenever the word print is seen. In addition, it uses the builds function to

build the parenthesized expression (i PRINT-ACTION wi tha pr-etfect (i

PRINT-EFFECT)). This expression is read as

12 A sample defpat with a TEST appears in an example on page 27.

22

Create an instance of a PRINT-ACTION object (where we as

sume PRINT-ACTION is already defined) and assert an instance

of a pr-effect for that PRINT-ACTION to be an instance of a

PRINT-EFFECT.

The i expression is actually a LISP macro and is defined so that the above

expression will expand to the following LISP code calling KODIAK primitives

(progn

(push (relation (new-unbound-sym 'PRINT-ACTION))

REL-namestack)

(instance (relation 'PRINT-ACTION) (top *REL-namestack*))

(push (aspectual (new-unbound-sym 'pr-effect))

ASP-namestack)

(argument (top *REL-namestack*) (top *ASP-namestack*))

(role-play (aspectual 'pr-effect) (top *ASP-namestack*))

(value (top *ASP-namestack*)

(progn
(push (absolute (new-unbound-sym 'PRINT-EFFECT))

REL-namestack)

(instance (absolute 'PRINT-EFFECT)

(top *REL-namestack*))

(pop *REL-namestack*)))

(pop *ASP-namestack*)

(pop *REL-namestack*)))

which is equivalent to the following series of KODIAK calls (the '#' means

that a new atom is created by using newsym).

Make a new instance of PRINT-ACTION called PRINT-ACTION#

(relation 'PRINT-ACTION#)

(instance PRINT-ACTION PRINT-ACTION#)

Make a new aspectual called pr-effect1 and make it be an aspectual of the newly

created PRINT-ACTION

23

(aspectual 'pr-effect#)
(argument PRINT-ACTION# pr-effect#)
(role-play pr-effect pr-effect#)

Give the newly created a&pectual1 the value of the inner 'i' macro which will

be the new PRINT-EFFECT#

(value pr-effect#

(Inner block} Create a new in&tance of a PRINT-EFFECT which will be the

value of the pr-ef!ect# above

(absolute 'PRINT-EFFECT#)
(instance PRINT-EFFECT PRINT-EFFECT#))

Graphically, the new network looks like Figure 5.

PRINT-ACTION

I ' ?: P.{-ded

--------···-··::.
PRINT -EFFECT

PRINT-ACTiqN# ,:P
'·a ~~;: I
'·····l> pr-effect:fl;_ _ v

··- .. _

--- ...
PRINT -EFFECT#

Figure 5: KODIAK PRINT creation

More options in the builds part of defpat are illustrated by the following

(partial) example (for clarity, the words here are left unmarked)

(defpat (Q •> do you know how to S)
(builds

(old (concept-of S) is1 HYPOTHETICAL
with cause (i ACTION is1 HYPOTHETICAL

24

witha actor _actor))

))

The ellipsis indicates that there is more that one expression in this builds.

builds itself can be thought of as a LISP progn so that the last expression's

value is what will be returned and put on the concept annotation for the Q

chart edge.
The (old (concept-of S) ...) means refer to an already created con

cept rather than create a new one. Saying X isl Y means (instance Y X).

Finally, the aspectual cause is referred to by 'with' as opposed to 'wi tha' in

the previous example. This means that the aspectual cause for (concept-of S)

is inherited from a higher-up concept (presumably causal-event) rather than

have a new instance of that aspectual be created. S, by the way, could refer to

a concept such as DELETE-ACTION17 (an instance of a DELETE-ACTION

which may have been created by the sentence "Do you know how to delete a

file?"). The KODIAK calls for the above examples are

(relation "ACTION#)
(instance ACTION ACTION#)

(aspectual •actor#)
(argument ACTION# actor#)
(role-play actor actor#)
(value actor# _actor)

(instance HYPOTHETICAL ACTION#)

(role-fill (concept-of S) cause ACTION#)

(instance HYPOTHETICAL (car *REL-namestack*))

which graphically looks like Figure 6.
Other options to the builds macros include referring to the most recent in

stance of a concept by (newest concept). Also, one can indicate a dominates

relation by using isa as in (old concept isa concept-class) which expands

to (dominates concept-class concept).

25

CAUSAL-EVENT

a
ACTION cause
~~

actor ·,
v: R .
' '· : '~ ··--- ·.

\P
I I

. yncept-of S)

·. ·····- .. ~.~~ncep~ S)'s cause

ACTION If

~a·
·~

actor#

Figure 6: KODIAK Causal Inheritance

26

2.3.2 TESTs processing

At the time of this writing, not much study had been put into TESTs and very

little has been implemented. What is implemented for them is the automatic

checking for them. If a TEST exists and it does not return non-nil, the chart

edge corresponding to the pattern-name is not added. Here is an example

with a TEST.

(defpat (S => Person Trans-VP)

(TEST (number-and-person-agreement Person Trans-VP))

(builds
(old (concept-of Trans-VP)

witha actor (concept-of Person))))

Just as in the builds discussion the TEST function, in this case number

and-person-agreement is applied to the chart edges corresponding to the

matched Person and Trans-VP. If the TEST is successful (i.e. returns non

nil), then the builds is evaluated and stored on S's chart edge. Otherwise,

S is not added to the chart, and this pattern will be discarded from further

consideration.

2.3.3 Miscellaneous defpat options

There are a few either features I have added to defpat to make pattern writing

slightly easier. One option is the ability to assert conceptual information

without adding a chart edge. An example of when you might want to do this

is when you have matched a modifier pattern whose builds modifies an existing

KODIAK concept. It may not be desirable to add a new edge representing

that concept since it would only redundantly fire off many patterns that had

previously been triggered the first time that concept's edge was inserted into

the chart. The way to achieve this option is to put a minus sign (-) in front

of the pattern-name. Here is a specific example.

(defpat (-NP => NP named *anyword*) ; ; add a name to NP

(builds ; ; without adding any

(i HAS-NAME ; ; new chart edges

witha named-obj (concept-of NP)

witha name (old (absolute (word-of *anyword*))

is1 NAME))

(concept-of NP)))

27

In this defpat, we are building a HAS-NAME relation which relates an

object (denoted by (concept-of NP)) to a NAME (which is matched by the

wildcard *anyword*). *anyword* matches any word from the input. There

is another special pattern component called *unkword* which is supposed to

match any unknown word. This is useful for patterns that look for components

such as names which may not be in the analyzer's dictionary, but are still

expected. I say "supposed to" because deciding if a word is unknown or if

it fits into the pattern is very complicated to figure out since it is very likely

that known words may be used to name objects (such as Ble in the phrase

the :file Ble). Thus the code for handling *unkword* is currently exactly

the same as that for *anyword*.
Another defpat option is the ability to define multiple patterns within a

single defpat. This is done as follows

(defpat (name1 => name2 => ... =>name"=> c1 ... Cm)

(builds . . .))
which is exactly the same as writing the following n patterns:

(defpat (name"=> C1 ... Cm)
(builds . . .))

(defpat (namen-1 => namen)
(builds (concept-of name")))

(de:fpat (name1 => name2)
(builds (concept-of name2)))

This option's use is illustrated in the next example, which also shows how one

can access the results of a partially completed pattern outside of the current

pattern being matched. This is done by setting global variables during the

matching phase. A variable (atom) is included as part of a pattern compo

nent. If that component is matched, the atom's value is set to the concept

associated with that component's edge. For example, a pattern exists in the

UC pattern database as follows:

(de:fpat (S => Intrans-S => (_actor Person) Intrans-VP)

(TEST (number-and-person-agreement Person Trans-VP))

(builds

28

--

(old (concept-of Intrans-VP))))

This defpat says that if Person is found in the course of matching this

pattern, the global variable _actor is set, and can be used in other patterns

such as the builds part of

(defpat (Intrans-VP => VP => get Phys-Ailment)

(builds
(i HAPPENS-TO

witha patient _actor ,, set patient to global
,, value of _actor

witha condition (concept-of Phys-Ailment))))

Here the S pattern has not been completed yet, but the actor is already known

and can be gotten by the VP pattern (subpattern of S). Using an underscore

to prefix variable names is simply a convention (borrowed from PROLOG) for

naming variables.

2.4 Sharing Linguistic Knowledge with the Generator

One of PHRAN's greatest strengths came from its declarative style knowledge

base. This style of knowledge base allowed PHRED to be built and run using

PHRAN's linguistic knowledge. Part of the reason PHRAN was able to use

this declarative structure was that all PHRAN had to do was build frames,

which corresponded to LISP lists. In the KODIAK world, things are different

in that the knowledge that gets passed around from one routine to another

is not in the form of LISP lists, but rather in the form of pointers into a

giant semantic network representing the state of the program's understanding

of current situations. Moreover, analyzer knowledge is not the knowledge to

just plug fillers into slots. The analyzer has to dynamically create instances

of concepts and relations and leave pointers to these newly created objects.

My solution to building KODIAK structures fitting into the main semantic

net, and at the same time, have this knowledge structured declaratively, has

been to impose a strict style on the builds functions and have them be inter

preted. For my analysis needs, up to now, this format has been fine. However,

if a concept needs to be built that does not follow a more or less hierarchical

form, i.e. having something like -

(i X

witha (i Y witha ...))

29

then one has to resort to using some kind of trickery such as declaring local

variables. Resorting to such trickery loses the flavor of the strict declarative

format (even though the analyzer will still work). Furthermore, such trick

ery diminishes the hopes of getting a generator up that can use the same

knowledge.
A proposal, by Dekai Wu, has been made that the concepts of pattern

concept pairs should be represented as pointers to template sections of KO

DIAK networks. These templates could be filled out by an interpreter which

would take links set up between pattern components to pointers into the tem

plate and instantiate that template into the main KODIAK network.

What is nice about these forms is that they allow much more generality

than my i macro would give, plus they could be shared with the genera

tor. Wu's proposal is appealing. Making such a modification to the current

ALAN A should be relatively straightforward since building the concepts is

centralized to one function.

3 ALANA's Processing

ALAN A processes a sentence one word at a time, left to right. The analyzer is

highly integrated with memory and refererence systems so that other processes

that use the analyzer will be able to make analyzer-time inferences without

waiting for the analysis to finish. An example that has come up in UC involves

the question How do I print a file on the line printer?. The other

components of UC depend on the fact that after the analysis, an instance of

a PRINT-FILE-ACTION concept be created with the appropriate denotation

that the destination is the line printer. When reading the sentence, after we

have seen "How do I print a file ... ", it is expected, at analysis-time, to have

this PRINT-FILE-ACTION. It is not reasonable, however, for the analyzer

to generally know that a PRINTing of a file is any different from PRINTing

anything else, so all the analyzer produces is a PRINT-ACTION relation with

a print-file being a FILE node. At this point, however, it is reasonable for

a concretion13 [Wil83] mechanism to take over and infer that a PRINT-FILE

ACTION needs to be created. The analyzer can then take this PRINT-FILE

ACTION instance and associate with it the fact that it is an action directed

to the line-printer.

13 Concretion is the process whereby one can realize a more specific concept given that one

already knows a set of more general concepts.

30

Ultimately, ALAN A should be set up as a coroutine so that the rest of the
system can make complex inferences while ALANA is still processing. This
phenomenon also happens in people when they are able to answer a question
or finish someone else's thought before processing the whole sentence being
input to them.

ALANA simulates this ability by asserting facts in the knowledge base as
it finds them out. Of course, much of the information may become invalidated
if later parts of the sentence contradict inferences made in the earlier parts. In
an ideal system, however, these inferences could be retracted or avoided just
as a person would do when reading text in the ALANA style. ALANA can be
set up to allow other parts of the system to add or delete language analysis
facts, i.e. chart edges or annotations associated with these edges. In this way,
ALANA can allow other parts of the system the ability to provide knowledge
that it needs in order to do its analysis.

Currently, ALANA is not running as a coroutine since it has not been
integrated into a system which supports language analysis as a coroutine. I
believe, however, that adapting ALANA to a coroutine system would be rel
atively straightforward. The whole analyzer runs as two main loops which
would need to be broken up so that state could be saved as the other compo
nents operate. Until a whole non-pipelined understanding system is set up so
that ALANA can run on an agenda or coroutine basis (where it would fetch
input and build simple concepts), it can and is being used to pattern match
input against patterns and to use its patterns to create partial or complete
concepts that the rest of the system can use for the other understanding or
planning tasks. Also, after each concept is built, whether it be major or mi
nor, a concretion mechanism (being built by Dekai Wu) is called to further
concrete the concept if necessary.

3.1 Chart Parsing

We now concentrate on how the pattern matching part of the analyzer works.
A basic idea I wanted to incorporate into the analyzer was that any pattern in
the database should match whenever all the components were present in the
input and in the right order. In the extreme, patterns could be written in such
a detailed and low level way that there would be one pattern for every sentence
that the analyzer could understand. My analyzer does not rule out this way of

31

storing patterns14 • Yet, since it instantiates a pattern whenever that pattern

is seen, we can have different 'levels' of patterns. High level patterns would

be, for example, general syntax rules or language definition rules. A "language

definition" rule is what I am considering to be among the most abstract of the

high-level patterns. These are the ones which may declare a language to be, for

example, an SVO (Subject-Verb-Object) language. Lower level patterns would

be fixed word expressions such as idioms and collocations (or discontinuous

collocations). The lowest level would be forms for words or lexemes. This

type of pattern matching is handled using a data structure known as a chart.

The need for a chart comes up in the following simple example:

Given the grammar

The "high-level" patterns
NP -+ Art Nominal
Nominal -+ Adj Nominal
Nominal-+ N

The "low-level" patterns
Art-+ the
Adj -+big
Adj -+red
N-+ ball

The correct and only parse for the unambiguous phrase the big red ball

is pictured in Figure 7. We need to avoid all patterns getting instantiated

whenever all their components appear but are not properly positioned, as

indicated by the dotted lines in Figure 8.

What is needed to match all the possible patterns is a way to keep track of

where the matched components are relative to all the other components. An

ideal data structure for representing this situation is a chart.
Like a tree, a chart is a graphical representation of an input string parse.

Unlike a tree, however, a single chart can represent multiple parses of a sen

tence. In fact, a chart is a generalization of a tree in that it can represent

all possible parses of the string along with all possible pa.rse8 of substrings.

14 In fact, I needed to rely, to some degree, on this method of storing patterns for UC

patterns since I did not have the benefit of a concretion mechanism working with the analyzer

to aid in building the concepts that were needed by the rest of UC. Thus some of my patterns

are more "canned" than they should be right now.

32

NP

~
Nominal

~
Nominal

/~
Art

I
the

Adj Adj I
red ball big

Figure 7: Correct Parse

Because of this flexibility of being able to represent multiple parses in a. non
mutually conflicting way, I have chosen to use a. chart as the basic data. struc
ture in my analyzer.

A chart is simply a. labelled directed graph. Nodes are meant to be thought
of as markers between the original words of the phrase. The edges indicate
pattern instantiations with the edge labels being the name of the pattern
instantiated. For convenience, the words themselves form edge labels on edges
to indicate a. linear ordering of the nodes. An example of the "initial" chart,
i.e. one that has not had any patterns matched against it is shown in Figure 9.

The patterns, then, are matched against the initial chart by looking a.t the
labels on the edges. An edge indicates all the nodes that are included in a.
particular match. In the simple case, each word belongs to a. category, so a.n
"intermediate" chart might look like Figure 10. Note that from a. given node,
one has access to all the edge labels coming from that node. So, for node 2, we
can access the word red just as easily as we can the part of speech (or pattern
label) Adj. This feature makes matching all levels of patterns easy and is not
available if we just are building a. strictly hierarchical tree structure.

In the case where a. pattern matches two or more components as in Nomi
nal -+ Adj N, a. single 'Nominal' edge is added that starts a.t the initial node
of the first component edge and ends a.t the final node of the last compo-

33

Art

I
the

NP

~~ / :: ~p (w•ong)

__ .----N~~i~~~
~--~-------J~f:p;minal (wrong)

Adj Ad} T
big red ball

Figure 8: Bad Parse

nent. Thus the next intermediate chart containing the instantiation of the
Nominal --+ Adj N pattern may look like Figure 11.

The final chart using the above grammar for our example is in Figure 12.
We look ba.ck at Figure 8 and see that the wrong grammar rule instantia

tions are not possible in the chart since they represent edges which skip nodes.
Not only are wrong grammar rule instantiations not possible, but we have the
benefit of accessing all possible parts of the instantiated patterns from each
node.

0 1 2 3 4

Vertices are numbered with words labelling the edges. The nodes are labelled
for e~e of reference.

Figure 9: Initial Chart

34

0 1 2 3 4

Figure 10: Intermediate Chart

0 1 2 3 4

Figure 11: After Nominal- Adj N

3.2 Matching Defpats

Let us look again at the basic form for a pattern-concept-TEST triple to see
how they can be matched against the analyzer input. Recall the basic form of
a defpat:

(defpat [pattern-labe~ (pattern-name=> component1 ••• componentn)
(TEST (LISP-FCN component1 ••• componentn))
(builds (LISP-FCN componenh ... componentn)))

A pattern matches if each componenti is present and adjacent in terms of
the chart that gets built up. When each component is found to be present,
a new chart edge gets added starting at the initial vertex of component1 and
ending at the terminating edge of component0 • So, if the chart looks like
Figure 13, the pattern-name is then added as the label of a new edge repre
senting a new component as in Figure 14 leaving all other edges in place. The

35

NP

0 1 2 3 4

Figure 12: Completed Chart

component component
~1 2

/- ~~./,
o---·o''o 0 0

component component

-~~~ •
A B c D E

Dotted edges indicate arbitrary edges

Figure 13: Sample Chart

pattern-name may be then just the component that a higher level pattern is

looking for.
Each component, in the defpat refers to exactly one chart edge and so

that chart edge can have extra information or annotations associated with

that component. More importantly, using the chart edge, we can have an

entry point to the chart and through it, we can get to as much arbitrary

information about the parse as we may need in concept and TEST processing.

For example, if we matched a NP, and we wanted to know what the words

of that NP were, we easily have access to that information by following all

the appropriate edges of the chart vertices between the beginning and ending

vertices of the NP edge. In processing a TEST or builds, one may need access

36

pattern-name

component component

~~~2 
o·''of'·o 0 0 

<~JDP~ component n 

•• ~0 • A B c D E 

Instantiating 

pattern-name => componen)componen~··· componenb 

Figure 14: Sample Chart with new edge added 

to arbitrary pieces of information from the already built chart. We will now 
look at TEST and builds processing. 

S.S Left to Right Parsing 

Most computer language parsers read its input (i.e. source program) by read
ing one lexeme at a time and building parse trees. At the lowest level, the 
input is read one lexeme at a time, and although processing on that lexeme 
may have to wait until later input is read and processed, no lexical item is 
read until all the lexemes to the left are read. Likewise, most natural lan
guage analyzers read one word at a time where the leftmost words will set up 
expectations for the words further to the right. A case where a word sets up 
an expectation for input already read in is "NATIONALITY restaurant", where 
only after reading restaurant would it be reasonable to look to the left and 
check if the "previous" word refers to a nationality. 

People, however, do not necessarily read one word at a time. Speed reading 
courses teach students to read down the centers of pages using peripheral vision 
to see words along the sides. The eyes (which are peoples' input sensors) do 
not need to move across each word. A machine, however, with only a single 
read mechanism, needs to ultimately read each character of each word. 

My belief is that people, when clumping together recognized phrases, read 

37 



faster and more efficiently than when they are constrained to reading one word 

at a time. Thus if one were to write a analyzer that reads as people read, that 

analyzer would have to have (in addition to some sort of visual capability) an 

ability to recognize phrases quickly that jump out as units to people. In this 

way, individual words can be skipped, or given less analysis than other words. 

This type of analyzer would go way beyond analyzers that have been built in 

the past, and would require several years of research in vision and perception 

as well as in natural language recognition. 

Yet, people are still able to read one word at a time since those, who 

know how to read, are able to process the news sign at New York's Times 

Square or the light signs at BART stations which have words "traveling" 

across the sign. The words start at the right edge of the sign and stay visible 

as they move across the sign until they disappear off the left edge. Words are 

presented in order, at a constant rate, where the left-most word of a passage 

will appear first. People reading the sign then have to be able to read and 

analyze the sentence one word at a time. If we are to write a natural language 

understanding system that is limited in how it collects its input (i.e. one word 

at a time), we should strive to simulate how people read input one word at a 

time, and how expectations and concepts are built. 

For me personally, one word at a time type of reading is slow and can 

be very frustrating. I can sense expectations being set up so that the need 

for reading the rest of the words in a phrase becomes somewhat reduced. I 

am only looking for a few more keywords to finish the idea. It is this idea 

of setting up expectations from the left-most words, and having the phrases 

be filled out, or instantiated, that I wanted to capture in ALANA. My way 

of capturing the idea of expectations is to have PHRAN-like patterns. What 

I want in addition to just patterns is to have all different levels of patterns 

being matched at the same time so that both specific and general information 

can be ascertained from the input at the same time. 

There is a class of sentences which would tend to defy this single word, 

left-to-right analysis style. These are the Garden Path sentences. A Garden 

Path sentence is a sentence in which after you have read most of the sentence, 

you reach a word or phrase at which point, you realize that you have to back 

up and re-analyze some of the sentence. An example is The secretary re

ported seeing a bug, which caused a massive CIA investigation. In 

this sentence, we a.re parsing along, and when we see the word bug, people 

usually first instantiate it to the small multi-legged animal that people find 

unpleasant having in office situations[GEH84]. Things seem fine until we see 

38 



the word CIA. Not being able to make sense of this, people sometimes have to 

stop here to figure out that bug probably referred to a small listening device 

used by an adversary to hear what is going on. This step required backing 

up and reassigning a meaning to bug, which then involves re-analyzing the 

sentence from the word bug. In fact, one may go back further to realize that 

secretary may not refer to the usual sense of secretary (i.e. a person em

ployed as an aide to a superior to perform tasks such as typing, organizing, 

and generally being helpful), but may refer to a government secretary such as 

the Secretary of State or Secretary of Defense. 

The type of backing up required by the understanding components in this 

example includes the parser, but is not completely done by the parser. The 

parser is only involved in taking the input text and matching it against pat

terns. It has to work in an integrated fashion with an understanding mecha

nism that performs concretion and other tasks. Rather than having the parser 

finish its task before the understander takes control, the parser and the under

stander should work together to form the total analyzer. In case the input is 

ill-formed, the analyzer can still provide a meaning of a sentence by reporting 

to the understander, phrases that match. The understander, then, can poten

tially help the parser by providing extra information that the parser can use 

to instantiate a pattern even if the components were not in the correct posi

tion within the sentence. This way of parsing is known as Integrated Parsing. 

Other integrated parsers are described in papers [RM85] [SLB80]. 

3.4 Pattern Matching 

The main goals for the design of the pattern matcher were that it should be 

simple and general. The pattern matcher should not try to know anything 

about analysis, only about instantiating patterns and calling the attached 

TESTs and concepts (builds functions). The main purpose of the pattern 

matcher is to build the parsing chart used by it and other parsing routines. 

It should also instantiate, or at least test for instantiation any pattern all of 

whose components are found to be adjacent on the parsing chart. This section 

describes the pattern matcher and how all these goals are met. 

3.4.1 Pattern Storage 

As with PHRAN, the patterns are stored in a Discrimination Net [CRMSOJ. 

In ALAN A, the patterns are stored in a special type of discrimination net 

more accurately referred to as a discrimination tree since there are not any 

39 



cycles and each node in the tree has exactly one parent. I will use the terms 
discrimination net, discrimination tree interchangeably. The discrimination 
net is actually used to store the concepts (builds) and TESTs with the pattern 
components acting as an index to them. As the matcher matches a pattern, 
it follows the path in the discrimination net. When it finds that a particular 
discrimination net node has information attached, it calls the routine do-any
new-actions which will either build a concept, call a TEST for feasibility, set 
a global variable, or all of the above. Figure 15 shows an example of how a 
simple pattern is stored in the database. 

(defpat (Q •> how Aux S) 

(builds concept)) 

• 

Aux 

~ 
-~ / .. 

Figure 15: Discrimination Net of how Aux S 

After seeing the component how, the matcher advances from node 1 to 2 
and searches for components starting from 2. After seeing an Aux, the matcher 

40 



will advance to 3. When all the pattern components are seen and we make it 

to 4, the matcher will check if a. TEST function exists. If one is attached to the 

discrimination net node, it will call the TEST function as described in § 2.3.2. 

If the TEST fails then the pattern describing this path is discarded (more 

about this later). If the TEST succeeds, then a. new chart edge is added to 

the chart, and the builds function is called to assert new conceptual knowledge 

to the network. It would be at this point that a. coroutine might take over and 

decide what to do with the new conceptual knowledge. 
The success of a. discrimination net highly depends on its shape and how 

many children nodes have. If a. highly used node (such as the top node) 

has many children, then much time could be spent just searching through 

those children to see if the matcher can advance through one of them. In the 

current implementation, ALANA just does a. linear search at each node. It 
could easily be speeded up here by using either a. hashing or binary search 

::1echa.nism. Up to now, however, it has not been worth the overhead. One 

optimization I have made, though, is that patterns with only one component 

(i.e. look like (defpat (Name -=> Component) ... ) ) not be indexed under 

the discrimination net, but rather be indexed under the name of the atom 

component itself (using its property list). This way we keep the top level of 

the discrimination net small, and get to use LISP's internal hashing mechanism 

to find these single-component patterns. 

3.4.2 Open and Closed Patterns 

To keep pattern matching as general as possible, we need to have a. way to 

match the components no matter where they may begin or end in an input 

sentence. We conveniently have available to us an ability to point to any 

position of the input in the form of the parsing chart which includes the words 

themselves. Combined with the ability to point anywhere in the patterns 

discrimination net, we are able to have a. special data. structure called an 

open-pattern which ties the discrimination net to the parsing chart. Such a. 

data. structure keeps track of where a. pattern match began in the input, where 

it ends, and the ma.tchings of edges to pattern component labels. 

Abstractly, the structure looks as diagrammed in Figure 16. Here an 

open-pattern recognized a. C in the middle of the chart. Since the p~ttern 

discrimination net indicates that C is a. valid way to begin a. pattern (i.e. a. 

(defpat (name •> C ... ) )), the pattern matching process is be

gun. An open-pattern gets created and starts at the chart vertex where C 

41 



Open-Pattern 

Par~ing Chart 

0 

• 
Di~crimination Net 

0 

Figure 16: Abstract Diagram of how an open-pattern ties the chart to the 
discrimination uet 

was started, and ends where C ends. At the same time, it advances down the 
discrimination net along the C path. 

The next components that can follow a C are D, E, and F. If one is seen, 
or gets added, following the C on the parsing chart, then a copy of the open
pattern is made and the copy will advance simultaneously along the chart and 
the discrimination net. The reason we make a copy is that there may be more 
than one valid component following the C (i.e. another D, E, or F), and we 
want to follow them all simultaneously. So, a possible next state of affairs may 
look like in Figure 17. 

Open-pattern 2 now captures the complete C-E pattern. Open-pattern 1 is 
waiting for another occurrence of D, E, or F to show up. Although, not shown 
in the picture open-pattern 1 will not follow the same E since open-patterns 
actually point to edges, and once an edge within a vertex is considered, it 
is never considered again. If there were more than one possibility following 
the C-E, then open-pattern 2 will be copied (I refer to this as cloning an 
open-pattern) to consider all of them. 

Before going to a more full example, recall that not every pattern is stored 
in the discrimination net. Those which had just one component are indexed 
under the atom itself. In this case, the pattern-name, builds, and TEST infor
mation is all stored in the node atom's property list. Because of the separation 
of modules between matching and database management, the matcher does 

42 



0 

Par8ing Chart 
Discrimination Net 

Figure 17: Two Open-Patterns 

not need to know too much about how single-component patterns are stored 
except that they are not on the discrimination net. Thus, for every vertex, 
there is a single special open pattern known as a single-component special 
which slides one-way along the edges of that vertex and checks to see if that 
edge's label indexes a single component pattern. H it does, then the actions 
taken are just the same as if a multi-component pattern had completed (i.e. 
it calls TEST, builds, and adds a chart edge if appropriate). 

Let us go partially through a detailed example to show how a parse using 
just the pattern matcher is actually performed. We will use the above example 
of parsing the big red ball. This example will also point out more accu
rately what the data structures look like to ALANA. We will proceed through 
a series of snapshots of the data structures. 

In Figure 18, we see the set-up before any processing has begun. The chart 
starts off as a single chart vertex (labeled in a circle with 0) with no edges. The 
object pointed to by the vertex is a dummy empty edge which is pointed to by 
the open-patterns. When we want to add a new edge, we change the dummy 
empty edge so that the open-patterns will see changes made to the object that 
they point to. This is kind of like changing things under an open-pattern's 
feet. We will see more of this. The open-pattern 1 is initialized to begin an~ 
end at the vertex and also point to the top of the patterns discrimination 
net. Also initialized with the chart vertex is a single-component special open
pattern which is distinguished from a regular open pattern only by the fact 

43 



Figure 18: Snapshot 1 

that it does not point into the patterns discrimination net. This open-pattern 

will be marching along the edges and checking to see if the edge labels index 

single-component defpat's. Every chart vertex is initialized with two open

patterns in the way shown above. Thus we are able to have patterns begin 

matching at any arbitrary point of the input. 
After entering the word, the, as in Figure 19, we see that two more open

patterns got added and initialized in the same way as was done for vertex 0. We 

also note that open-patterns 1 and s-cl now point to non empty edges. It is at 

this point, when open-patterns point to something non-nil, that instantiations 

occur as shown in the next snapshot (Figure 20) 
At this point, open-pattern 1 checked the, and found that there was noth

ing at that level in the discrimination net that matched the. So, it slid along to 

the next edge, which was the empty edge for the 0 vertex. The s-cl, however, 

did recognize the as an index to a single-component defpat. At this point, 

the TEST and builds functions {if present) would be called to validate the 

instantiation and contribute to the KODIAK network respectively. Figure 20 

shows that s-cl added an edge to end at the same point that the ends, and 

then advanced itself. That is when snapshot 3 is being taken. Note that s-cl 

indicated that Art should be added, an edge changed under open-pattern 1 's 

feet, so that open-pattern! will now consider the new edge. 

In Figure 21, we see that open-pattern 1 recognized Art and so it made a 

copy of itself (open-pattern 3), which got slid to the next (empty) edge to wait 

in case another edge gets added that matches a component at the top level of 

the discrimination net. Then, one of the pointers of open-pattern 1 advanced 

44 



Figure 19: Snapshot 2 

to point to the first edge of the vertex which matched the discrimination net 
link. Simultaneously, the pointer to the discrimination net advanced so that 
it now considers all the patterns that start with Art. 

As we can see, continuing with such an example makes for messy diagrams 
very quickly. Figure 22 on page 63, however, is the ending diagram (with some 
editting) showing only the patterns that matched completely (it is shown only 
for completeness, it is not necessary to digest the whole thing right away 
to understand the main points). The diagram shows that the list of open 
patterns now corresponding to "closed" patterns (i.e. completely matched 
open-patterns). For this diagram, these closed-patterns are not numbered. 

Once an open-pattern ha.s traversed to the bottom node of the discrimi
nation net path, it is removed from consideration by moving it to a closed
patterns list. Currently, once a pattern is in the closed list, it just stays there. 
While the closed pattern could be used a.s an inspector for those patterns that 
completely matched to get at the nodes and edges that matched, the current 
implementation does not take advantage of this feature. 

Thus, the pattern matcher, which is what guides the analysis to be per
formed, does not read any new words until all the pattern matching that 
can be done bas been done on all previous words. This is how we achieve 
our one-word-at-a-time, left-to-right reading. The patterns firing off simulates 

45 



Figure 20: Snapshot 3 

generating and/or fulfilling expectations. The way patterns get fired off is to 
simply go through the list of open-patterns as many times as it takes until 
none of them change. 

3.4.3 Spelling Corrector 

Any time a new word is entered, we expect at least one open-pattern to ad
vance. If none can advance, we very likely have an unknown or misspelled 
word. By use of wildcards, such as •anyword* and •unkword•, we can expect 
unknown or arbitrary words at certain points and open-patterns containing 
such wildcards in their patterns would automatically advance. Thus if no open 
pattern can advance, we truly have an unknown word at a place we did not 
expect to find one. Such an unknown word is very likely to just be misspelled. 
If the correct spelling could be known, we could insert the correct word into 
the chart and try to match against it. 

In UC, ALANA does make use of a spelling corrector [implemented by Jim 
Mayfield based on the algorithm used in Teitelman's DWIM[Tei78]]. Wh~n 
ALANA is stopped at a word where no open-pattern can advance, ALANA 
gathers all the words it expects and calls the spelling corrector with the un
known word and the list of expected words. Since ALAN A technically can 

46 



Discrimination Net 

Figure 21: Snapshot 4 

expect any word at any time, the list of expected words is made up only from 

the patterns that have already started matching. 

The corrector then returns a list of valid candidates from the list of pos

sibilities. To keep in the general spirit of parsing all that we can, all of the 

possibilities are entered into the chart at the point where the misspelled word 

is located. Then, if patterns are able to match more than one word, open

patterns will be cloned and those corresponding to nonsensical phrases will 

presumably be ruled out at a deeper level of analysis. 

3.4.4 Timing Statistics and Pnrther Optimisations 

ALANA was developed entirely in Franz Lisp (Opus 38.91). The total number 

of lines (not including the pattern database), including comments is 1035 of 

which 175 is for pattern definition code, 569 is for the pattern matcher, 240 is 

for the database manager, and the rest is for miscellaneous interface functions. 

It is difficult to obtain timing statistics for ALANA since it depends on the 

speed of the representation functions. 

Running only as a pattern matcher, in as fast a mode as possible for Franz 

Lisp (translink set to on), and using the current patterns list, sentences parse 

in around 115-380 ms. Running in UC, where ALANA needs to make calls to 

47 



KODIAK primitives, and execute builds functions, times are around 500-1400 

milliseconds for a complete analysis depending on the sentence's complexity. 

So far, time has not been a critical problem. As previously mentioned, there 

are many areas where speed up could be achieved by using hashing at the 

discrimination net nodes. 
I leave this area open for optimization in case the time-critical path of the 

analyzer is through inspecting the open patterns. Ideally, there should not 

be a problem here since the number of patterns should be small. However, 

without an understanding or concretion mechanism, the burden may fall on 

the analyzer to create the concepts needed by the rest of the system which 

may result in many patterns, hence we would have many many open-patterns. 

I believe that there are lots of interesting ways this pattern-matching 

method could be optimized including checking for recency of use. We could 

move recently accessed open-patterns to the beginning of the open-patterns 

list in a way similar to Tarjan's linear splaying algorithm[Tar83]. In this way, 

we are likely to consider those open-patterns most likely to change with higher 

regularity. Before adding a new word, however, we would still want to sweep 

through the whole open-patterns list to make sure all matching had been done. 

4 Example Trace 

I now present a trace of ALANA running inside of UC. Currently there is 

a LISP top level which acts as a front end to UC. This top level reads the 

input into a list and passes the list of words (all in lower case) to the analyzer. 

Shown below is a briefly annotated trace of UC answering "How do I print 

a file?" with the analyzer verbose flag set so that we can watch its stepping 

through the parse. 

Franz Lisp, Opus 42.15 
(C) Copyright 1985, Franz Inc., Alameda Ca. 
c) ?ld load 

Loading in UC/KODIAK files 

[fasl /na/bair/bair/UC/Source/Parser/aux.o] 
[fasl /na/bair/bair/UC/Source/Parser/debug.h.o] 

48 



[fasl /na/bair/bair/UC/Source/Parser/UCparse.h.o] 

[fasl /na/bair/bair/UC/Source/Parser/test.h.o] 

[fasl /na/bair/bair/UC/Source/Parser/db.h.o] 

[fasl /na/bair/bair/UC/Source/Parser/db.o] 

[fasl /na/bair/bair/UC/Source/Parser/match.h.o] 

[fasl /na/bair/bair/UC/Source/Parser/match.o] 

[fasl /na/bair/bair/UC/Source/Parser/parse.h.o] 

[fasl /na/bair/bair/UC/Source/Parser/parse.o] 

[fasl /na/bair/bair/UC/Source/Parser/pat.h.o] 

[fasl /na/bair/bair/UC/Source/Parser/pat.o] 

Zeroing *patterns* database ... 

Warning: adding to already established pattern 

Warning: adding to already established pattern 

Warning: adding to already established pattern 

Warning: adding to already established pattern 

((w directory)) 
( (w name)) 
((w mother)) 
((w in)) 

The above warnings fust mean that there are multiple paths to the above words 

(load.l) 
=> (setq tverbose 2) 

2 

.. . so we can see the chart as it gets built 

s) (parse '(how do i print a file)) 

The chart is printed (during the verbose mode of parsing) as an edge list with 

the vertices numbered from 0 on. Each edge is indicated by [label > vertex

number], where label is the edge's label, vertex-number is the vertex to which 

this edge is directed. The most recently added edge is denoted with + signs. 

The edges which caused this label to be added are indicated with tl signs. 

Resetting matching chart ... 

Entering New Word: how 

Current Chart: 

49 



0: +[how > 1]+ 

1: 

Entering New Word: do 

Current Chart: 
0: [how > 1] 

1: +[do > 2]+ 

2: 

Calling function builds-403700004-187, which is compiled. 

The builds function is compiled. If it were interpreted, we would see its defi

nition here which is a series of calls to the KODIAK interpreter. See § !.9.1 

for what such an expansion would look like. 

Current Chart: 
0: [how > 1] 

1: l[do > 2]1 +[Aux > 2]+ 

2: 

At this point, we jtJ.St entered the Aux for the how Aux S pattern 

Entering New Word: i 

50 



Current Chart: 
0: [how > 1] 

1: [do> 2] [Aux > 2] 

2: +[i > 3]+ 

3: 

Calling function builds-493790904-186, which is compiled. 

Current Chart: 
0: [how > 1] 

1: [do > 2] [Aux > 2] 

2: C[i > 3]C +[Person > 3:*USER*]+ 

3: 

The chart printer prints concepts attached to edges as [ label> vertex-number: CONCEPT]. 

Hence, in the above chart, the *USER* indicates the concept associated with the 

chart edge for Person. 

{Skipping several steps) 

Current Chart: 
0: [how > 1] 

1: [do > 2] [Aux > 2] 

51 



2: [i > 3] [Person > 3:*USER*] [Intrans-S > 4:PRINT-ACTIONO] 
I[S > 4:PRINT-ACTIONO]I +[DeclS > 4:TELLO]+ 

3: [print > 4] [Print > 4:PRINT-ACTIONO] [V > 4:PRINT-ACTIONO] 
[Verbal> 4:PRINT-ACTIONO] [Intrans-VP > 4:PRINT-ACTIONO] ... 
[VP > 4:PRINT-ACTIONO] 

4: 

At this point, the words how do i print have been read. When print was 

read, a PRINT-ACTION instance (called PRINT-ACTIONO} was asserted in 

the KODIAK network, and a pointer to that concept was initially entered on 

the chart as being associated with the Print => print pattern. This PRINT

ACTIONO can be seen to have propogated up as different patterns were fired 

that made use of the verb print resulting in being the concept of the sentence 

I print. 
The parsing chart now shows that we have a how followed directly by an Aux 

followed directly by an S. Thus, the how-question pattern (below} will build an 

ASK instance {where ASK is an already defined KODIAK concept). 

(defpat how-question (Q •> (w how) Aux S) 
(builds 

(old (concept-of S) is1 HYPOTHETICAL 
with cause (i ACTION ia1 HYPOTHETICAL 

witha actor _actor)) 
(let ((Scauae (get-value-of cause (concept-of S))) 

(Seffect (get-value-of effect (concept-of S)))) 
(if Scause (old Scauae ia1 HYPOTHETICAL)) 
(if Seffect (old Seffect ia1 HYPOTHETICAL))) 

The fi"t part of thi$ builds $tate$ that the action of the S untence i$ not an auertion 

of a fact, but rather an auertion of a de$ired effect. Hence, it i$ made a hypothetical 

in$tance to indicate that S i$ not to be talcen a8 a literal auertion. 

The ucond part of the builds create8 a new in$tance of an ASK relation. The 

definition of an ASK i8 auumed to already be defined in the KODIAK network. We 

note that creating an ASK involve$ creating an indance of a QUESTION which make$ 

acceu to part of the untence a$urtion referred to bJI the S pattern component. 

52 



(i ASJt 
witha asked-for (i QUESTION 

witha what-ia (get-value-of cauae 
(concept-of S))) 

witha apeaker _apeaker 
witha listener _listener))) 

Chart result of instantiating Q => how Aux S 

Current Chart: 
0: G[how > 1]G +[Q > 4:ASKO]+ 

1: [do > 2] G[Aux > 2]G 

2: [i > 3] [Person > 3:*USER*] [Intrans-S > 4:PRINT-ACTIONO] 
G[S > 4:PRINT-ACTIONO]G [DeclS > 4:TELLO] 

3: [print > 4] [Print > 4:PRINT-ACTIONO] [V > 4:PRINT-ACTIONO] 
[Verbal> 4:PRINT-ACTIONO] [Intrans-VP > 4:PRINT-ACTIONO] ... 
[VP > 4:PRINT-ACTIONO] 

4: 

As can be seen in the above chart, ASKO only represents the question How 
do I print. Since ALANA is reading one word at a time, it doesn't look 

ahead, which is why it built the question. However, since there is further 

input, it will keep going and continue with the analysis. 

Current Chart: 
0: [how > 1] [Q > 4:ASKO] 

53 



1 : [do > 2] [Aux > 2] 

2: [i > 3] [Person > 3:*USER*] [Intrans-S > 4:PRINT-ACTIONO] 
[S > 4:PRINT-ACTIONO] [DeclS > 4:TELLO] ... 
[Trans-S > 6:PRINT-ACTIONO] G[S > 6:PRINT-ACTIONO]G ... 
+[DeclS > 6:TELL1]+ 

3: [print> 4] [Print> 4:PRINT-ACTIONO] [V > 4:PRINT-ACTIONO] ... 
[Verbal > 4:PRINT-ACTIONO] [Intrans-VP > 4:PRINT-ACTIONO] 
[VP > 4:PRINT-ACTIONO] [Trans-VP > 6:PRINT-ACTIONO] ... 
[VP > 6:PRINT-ACTIONO] 

4: [a> 6] [Unspec-Art > 6] [Art> 6] [File> 6:FILEO] ... 
[Unix-File > 6:FILEO] [Nominal > 6:FILEO] [NP > 6:FILEO] 

6: [file > 6] [File > 6:FILEO] [Unix-File > 6:FILEO] [Nominal > 6:FILEO] 

6: 

At this point, we have read all the words, and have already analyzed a new 

sentence, I delete a file. Since we have a newS (from vertices£ to 6}1 we 

can once again use how Aux S to instantiate a new Question (or Q) pattern. 

This time, the ASK instance {ASK1} represents the whole question that we 

passed to the parse function. 
Since no more patterns will fire, ALANA's task is complete. 

Final Chart 

Current Chart: 
0: G[how > 1]G [Q > 4:ASKO] +[Q > 6:ASK1]+ 

1: [do > 2] G[Aux > 2]G 

2: [i > 3] [Person > 3:*USER*] [Intrans-S > 4:PRINT-ACTIONO] 
[S > 4:PRINT-ACTIONO] [DeclS > 4:TELLO] ... 
[Trans-S > 6:PRINT-ACTIONO] G[S > 6:PRINT-ACTIONO]G 

54 



[DeclS > 6:TELL1] 

S: [print > 4] [Print > 4:PRINT-ACTIONO] [V > 4:PRINT-ACTIONO] 

[Verbal > 4:PRINT-ACTIONO] [Intrans-VP > 4:PRINT-ACTIONO] 

[VP > 4:PRINT-ACTIONO] [Trans-VP > 6:PRINT-ACTIONO] ... 

[VP > 6:PRINT-ACTIONO] 

4: [a> 6] [Unspec-Art > 6] [Art> 6] [File> 6:FILEO] ... 

[Unix-File > 6:FILEO] [Nominal > 6:FILEO] [NP > 6:FILEO] 

6: [file > 6] [File > 6:FILEO] [Unix-File > 6:FILEO] [Nominal > 6:FILEO] 

6: 

ASK1 
=> (show-all ASK1) 
(ASK1 (listener6 = UC) 

(speaker6 = *USER*) 
(asked-forS = (QUESTIONS (what-isS = 

(ACTIONS (actorS = 
*USER*)))))) 

ASK1 is a pointer to the particular instance created by this analysis. The KO

DIAK function show-all prints out the relation and all its aspectuals with 

their values. 

5 Conclusion 

I have presented in this report not only a paradigm for natural language anal

ysis based on the successes of past parsing and analysis efforts, including inte

grated parsing and using phrasal lexicon, but also a general tool that can be 

used for this paradigm. ALANA is representation independent, has a declara

tive style knowledge base, and because of the simplicity of its powerful ideas, 

is easy to extend and modify. It is hoped that rather than ALAN A following 

the tradition of being scrapped immediately after the author's departure, that 

its core of ideas, and maybe even code, will branch towards different needs 

55 



for front-end or integrated parsing, or progress as a way of studying linguistic 

analysis. 
I close this report by giving some of the strengths and weaknesses of my 

system, and finally by indicating my idea of what further directions this project 

was intended to head. 

5.1 ALANA's Strengths 

The advantages of ALANA over PHRAN stem mostly from ALANA's sim

plicity. This simplicity leads to a high degree of flexibility. For example, 
with PHRAN it was not always known that adding a pattern to the linguistic 
knowledge base make make PHRAN succeed in actually using that pattern 

to analyze (c.f., Problems with PHRAN, § 2.1.4). The reasons for PHRAN's 
problems were that PHRAN's mechanism tried to know a lot about what was 
going on in terms of analysis, and as a result, made many assumptions that 

reduced its flexibility. Not so with ALANA since every pattern that it knows 
about is guaranteed to match if the constituents are present. Thus, anyone 

adding knowledge to ALANA need only be concerned with the integration of 

new patterns with the database. The knowledge adder does not also need to 

fight the matching algorithm. 
Even though there is a rigid concept defining structure to the pattern 

concept pairs, one can have arbitrary pieces of LISP there to allow for complete 

flexibility. Using LISP directly is undesirable, but since it is available, I did not 
have to write an interpreter for things that were already available in LISP such 

as having the ability to define local or global variables. Since the processing of 

concept functions is centralized, one can very easily change the representation 

of concepts without changing the analyzer. It is my hope that a system, such 

as proposed by Wu (discussed in § 2.4) will fit into my analyzing tool as an 

extension. 

5.2 ALANA's Weaknesses 

I think that the best way to sum up ALAN A is by saying that it is a "weak", 
but general method of parsing, just as depth-first search, best-first search, 
hill-climbing, etc. are "weak" methods of problem solving. By itself, ALAN A 

does not capture much of what I consider to be AI. 
Much of the "AI" in natural language processing, I have pushed to more 

specialized, but as of yet, largely unwritten, routines that know about specific 
pieces of knowledge and can make inferences and concretions if handed the 

56 



right things from a parser. However, at the linguistic analysis phase, there are 

lots of things ALANA does not do. 

6.2.1 Ill-formed Input 

If a user of the system makes grammatical errors, crucial patterns may fail to 

become instantiated. A tricky problem comes if the misspelled word is a rec

ognized word. This comes up if the user typed the sentence How do I delete 

flies? where flies should be files. Using the ALANA paradigm, the an

alyzer would go ahead and parse flies. However, the ill-formed semantics of 

this sentence could possibly be caught at a TEST of a high level pattern (if it 

were to check for semantics). Some other understanding mechanism, however, 

could indicate to the analyzer, in the form of a signal, that a certain chart 

edge is not instantiated correctly, and needs to be re-evaluated. This signal, 

or message could indicate that a word does not make sense, and could possibly 

be misspelled. The spelling corrector may then re-evaluate the word of that 

edge, and analysis would be restarted from the reading of that word. 

In general, the solutions ALANA would have for ill-formed input is that 

the analyzer does the best it can by matching the patterns it can and building 

the associated concepts. If concepts are not combined because a particular 

pattern could not instantiate, there may be enough redundancy in the semantic 

network from patterns already matched and the concepts already built that 

the understander can still figure out what the user meant. 

5.3 What Needs To Be Done 

The analyzer needs some sort of morphological analyzer. The UNIX spell 

program has a number of morphological rules which can be used to determine 

the roots and tenses of words. It is not clear if these rules are in the public 

domain and whether they could be published, but a weaker set of rules (actu

ally a flowchart) can be found in Winograd's book [Win72], page 72. Such a 

routine can be used to strip off prefixes and suffixes and construct the root of 

a word. 
The main part of ALAN A that is unspecified in current implementations, 

is the real AI of the system, the understanding/concretion mechanism. This 

is the part that may, for example, take a subject and verb predicate and find 

out if the pair can be made more specific to a defined concept in the semantic 

network. For example, in UC, if it is known that the user wants to delete a 

file, a DELETE-FILE-ACTION instance must be created for the rest of the 

57 



system to be able to handle inferences on deleting files. However, the most 

the analyzer should be expected to do is to create a DELETE-ACTION with 

the delete object being a file. In other words, seeing the word delete with 

an object should create the DELETE-ACTION of that object. The analyzer 

should not have to know that a DELETE-FILE-ACTION is what needs to 

be created just because other parts of the system depend on it. Rather, 

the concretion mechanism should concrete DELETE-ACTION of a FILE to 

a DELETE-FILE-ACTION. At this point, however, such a system does not 

exist and the analyzer has to be kludged to create the specific DELETE-FILE

ACTION by having a special Delete-File Verb Phrase pattern. This solution is 

unsatisfactory. However, work by Dekai Wu is being done to add a mechanism 

that would run in conjunction with the analyzer so that the phrasal patterns 

can be made less specific. I am hopeful that this approach to analysis will allow 

for not only a general model of understanding, but also a "knowledge-based" 

AI system into which new knowledge can be easily added. 

Another part of ALAN A's design that needs to be more incorporated into 

its implementation is its coroutine structure with other programs being used 

to form inference:'~ at "read" time. As an example, to show ALANA's cooper

ative/coroutine nature and how other routines can affect the way ALANA's 

matcher analyzes a sentence, there may be a pattern <PRINT> <N>, which 

would match the verb phrase of a sentence such as "How do I print a file?". 

At the same time, one would want to interpret "How do I get a listing of a 

file?" as having the same meaning as the previous sentence. One solution for 

recognizing that print is equivalent to get a listing of is to have two patterns 

sharing a common concept so that PRINT is asserted whenever either the word 

sequences print or get a listing of are seen. This is in fact how ALANA 

currently recognizes both of the above sentences. 

The more ideal possibility for recognizing the conceptual equivalences of 

the above phrases is not to just store patterns for each phrase, but to have 

the analyzer initially and naively analyze get a listing of as a receiving of 

some listing object. Some concretion or understanding mechanism would then 

recognize that get a listing of is a PRINT, and simply assert that PRINT so 

that the matcher could substitute it for the words get a listing of and be able 

to fire off <PRINT N P> patterns. In this way, understanding and inference 

mechanisms can take place during analysis time, which I feel is closer t<;> how 

humans understand ( c.f., § 3.3). 

58 



6 Appendices 

6.1 How to Use 

As of January 17, 1986, the source to ALANA can be found on the UC Berkeley 
kim VAX 11/780 in the bair/UC/Parser/ directory. To run, one simply 
starts up a Franz Lisp session and, at the prompt, execute the function (load 
'load). All of ALANA's modules are then loaded. At this point, the pattern 
matcher alone can be exercised by calling the function parse with a list of 
words as the argument. H the KODIAK interpreter and a knowledge base 
is also loaded in the lisp environment, one can set the &use-kodiak flag to 
actually make calls to build KODIAK concepts. 

During processing, the variable &verbose can be set to different numeric 
values where the higher values indicate more verbosity. To see the final chart 
produced, one can call the function (kprint-cbart) which will print the chart 
as formatted in the example in § 4. 

7 Acknowledgements 

Each member of the BAIR project has inspired me in some way that helped 
to shape this project. The current and past members of this group include 
Anthony Albert, Rick Alterman, Yigal Arens, Mike Braverman, Margaret 
Butler, Dave Chin, Joe Faletti, Paul Jacobs, Marc Luria, Jim Martin, Jim 
Mayfield, Peter Norvig, Lisa Rau, Nigel Ward, and Dekai Wu. I also would 
like to acknowledge inspiration I have received from students and faculty in 
Psychology and Linguistics, especially to Prof. George Lakoff for giving me 
insights into the nature of understanding. 

Thanks also to Nina Herrera and Clarice Cox for helping with some of the 
proofreading. 

Finally, thanks to Prof. Robert Wilensky for supporting me during grad
uate school and reviving my inspiration for this project when my spirits were 
low. 

This work was supported by Office of Naval Research (ONR) contract 
number N0014-80-C-0732, by Defense Advanced Research Project Agency 
(DARPA/DoD) contract number N00039-82-C0235. 

59 



References 

(Are81] Y. Arens. How to Write PHRAN Patterns. 1981. This report is to 

appear a.s a chapter in Arens' Ph.D. Thesis. 

[BW80] R.J. Bobrow and B.L Webber. Psi-Klone: parsing and semantic 

interpretation in the BBN natural language understanding system. 

In Proceedings of the Third Biennial Conference of the Canadian 

Society for Computational Studies of Intelligence, Stanford Univer

sity, Stanford, 1980. 

[CRM80) E. Charniak, C. Riesbeck, and D. McDermott. Artificial Intelli

gence Programming. Lawrence Erlbaum Associates, Hillsdale, New 

Jersey, 1980. 

[DH82] R. Douglass and S. Hegner. An Expert Consultant for the Unix 

System: Bridging the Gap Between the User and Command Lan

guage Semantics. In Proceedings of the Fourth National Conference 

of Canadian Society for Computational Studies of Intelligence, Uni

versity of Saskatchewan, Saskatoon, Canada, 1982. 

[GEH84] R. Granger, K.P. Eiselt, and J.K. Holbrook. The Parallel Organi

zation of Lexical, Syntactic, and Pragmatic Inference Processes. In 

Proceedings of the First Annual Workshop on Theoretical Issues in 

Conceptual Information Processing, Atlanta, GA, 1984. 

[Ger77) A.N. Gershman. Conceptual analysis of noun groups in English. In 

Proceedings of the fifth International Joint Conference on Artificial 

Intelligence, pages 132-138, Cambridge, Massachusetts, 1977. 

[Har78) Michael A. Harrison. Introduction to Formal Language Theory. Ad

dison Wesley, 1978. 

[Jac83] P. Jacobs. Generation in a Natural Language Interface. In Pro

ceedings of the Eighth International Joint Conference on Artificial 

Intelligence, Karlsruhe, Germany, 1983. 

[Joh83] R. Johnson. Parsing with Transition Networks, chapter 4, pages 59-

72. Academic Press, 1983. 

60 



[Lak69] G. Lakoff. On Generative Semantics. In Papers from the Fifth 

Regional Meeting of the Chicago Linguistic Society, Linguistics De

partment, University of Chicago, 1969. 

[LB81] M. Selfridge L. Birnbaum. Conceptual Analysis of Natural Lan

guage. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1981. 

[Rie78] C. Riesbeck. An. expectation-driven. production. system for natural 

language understanding. Academic Press, New York, 1978. 

[RM85] C. Riesbeck and C. Martin. Direct Memory Accus Parsing. Tech

nical Report, Yale University, Report No. YALEU /DCS/RR 354, 

Yale University, 1985. 

[SA 77] Roger Schank and Robert Abelson. Scripts Plans Goals and Un

derstanding. Lawrence Erlbaum Associates, 1977. 

[SLB80] R. Schank, M. Leobowitz, and L. Birnbaum. An Integrated Under

stander. Amen·can Journal of Computational Linguistics, 6(1):13ff., 

1980. 

[SR82] S. Small and C. Rieger. Parsing and Comprehending with Word 

Experb (A Theory and it.s Realization.). Lawrence Erlbaum Asso

ciates, Hillsdale, New Jersey, 1982. 

[Tar83] R. Tarjan. Data Structures and Network Algorithms. Society for 

Industrial and Applied Mathematics, 1983. 

[Tei78] W. Teitelman. The ln.terli.sp Reference Manual. Technical Report, 

Xerox PARC, October 1978. 

[WA80] R. Wilensky and Y. Arens. PHRAN-A Knowledge Based Ap

proach to Natural Language Analysis. Technical Report, University 

of California at Berkeley, 1980. 

[WAC84] R. Wilensky, Y. Arens, and D. N. Chin. Talking to UNIX in En

glish: An Overview of UC. Commun.ication..s of the ACM, 27(6), 

1984. 

[Wal78] D. L. Waltz. An English language question-answering system for 

a large relational database. Communications of the ACM, 21:526-

539, 1978. 

61 



[Wil83) R. Wilensky. Planning and Understanding. Addison-Wesley, Read

ing, MA, 1983. 

[Wil84) R. Wilensky. KODIAK, A Representation Language. In Proceed

ings of the First Annual Workshop on Theoretical Issues in Con

ceptual Information Proceuing, Atlanta, GA, 1984. 

[Win72) Terry Winograd. Understanding Natural Language. Academic 

Press, 1972. 

[WKN72) W.A. Woods, R.M. Kaplan, and B. Nash-Webber. The lunar sci

enceB natural language information system: Final report. Technical 

Report, Bolt Beranek and Newman, Report No. 2388, Cambridge, 

Massachusetts, 1972. 

[WM81) R. Wilensky and M. Morgan. One Analyzer for Three Languages. 

Technical Report, Electronics Research Laboratory, Report No. 

UCB/ERL M81/67, College of Engineering, UC Berkeley, 1981. 

[Woo70) W. A. Woods. Transition network grammars for naturallangua.ge 

analysis. Communications of the ACM, 13:591~06, 1970. 

[Woo80) W .A. Woods. Cascaded ATN grammars. American Journal of 

Computational Linguistics, 6(1):1-12, 1980. 

62 



Chart 

I 

I 

____ ..._ {Former) Open-Patterns 
.... I --

/, --7 .. ,--::---o - .... 
I ' 

/ I 
'0 

I 

I 

I 

0 
/ 

/ 

" 
:. 

' ... 
" '. , .. 

\ .. , · ...... 
·t············-... :':-_ ..... 

Discrimination Net 

---~-------

- ::: :: -
====::: __ _ 

/ ,., ---------
.'/' // --------, --------

-o 

.... 
-o 

I 

I I 

I I 

I I 

I I I 

I I I·- -O 
I....J -i 'T 

:· 

__ I..J.J..!. 

/ 

/ 

II II--._ 
I I 

I I 

I I 

I I 

I I I 

I I I I 

I I I 

I I I 
I I I 

I I I 
/ I 

/ I I 
/ I 

/ / 
/ 

I 

I 
I 

,o 

/ 

/ 

/ 
/ 

/ 

. · ,··- . 
·. 

•. ·. 

These are single-component open-patterns 

Figure 22: Snapshot 5 

63 


