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ABSTRACT 

This paper describes the election algorithm that guarantees the 

reliability of TEMPO, a distributed clock synchronizer running on 

Berkeley UNIX
7 

4.3BSD systems. TEMPO is a distributed program 

based on a master-slave scheme that is comprised of time daemon 

processes running on individual machines. 

The election algorithm chooses a new master from among the 

slaves after the crash of the machine on which the original master 

was running. When the master is working, it periodically resets an 

election timer in each slave. If the master disappears, the slave 

whose timer expires first will become a candidate for the new master. 

The election algorithm covers this normal case, as well as the 

infrequent case where there may be two or more simultaneous 

candidates. It also handles the case in which, due to a network 

partition that has been repaired, two masters are present at the same 

time. 

1. Introduction 

In this paper we describe the election algorithm we have designed for TEMPO, 

a distributed network clock synchronizer for Berkeley UNIX 4.3BSD systems. 

This work was sponsored by the Defense Advanced Research Projects Agency (DoDl, Arpa Order No. 

4871 monitored by the Naval Electronics Systems Command under contract No. N00039-84-C-0089, and 

by the CSELT Corporation. The views and conclusions contained in this document are those of the 

authors and should not be interpreted as representing official policies, either expressed or implied, of the 

Defense Research Projects Agency, of the US Government, or of CSELT. 

t UNIX is a Trademark of AT&T Bell Laboratories. 
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TEMPO, which works in a local area network, consists of a collection of time 

daemons (one per machine) and is based on a master-slave 

structure[Gusella1984,Gusella1985b]. The present implementation keeps processor 

clocks synchronized within 20 milliseconds. 

Figures la and lb sketch the way TEMPO works. A master time daemon 

measures the time difference between the clock of the machine on which it is 

running and those of all other machines. The master computes the network time as 

the average of the times provided by nonfaulty clocks. 1 It then sends to each slave 

time daemon the correction that should be performed on the clock of its machine. 

This process is repeated periodically. Since the correction is expressed as a time 

difference rather than an absolute time, transmission delays do not interfere with 

synchronization. When a machine comes up and joins the network, it starts a slave 

time daemon, which will ask the master for the correct time and will reset the 

machine's clock before any user activity can begin. TEMPO therefore maintains a 

single network time in spite of the drift of clocks away from each other. 

To ensure that TEMPO provides continuous, and therefore reliable, service, it 

is necessary to implement an election algorithm that will elect a new master 

should the machine running the current master crash, the master terminate (for 

example, because of a run-time error), or the network be partitioned. Under our 

algorithm, slaves are able to realize when the master has stopped functioning and 

to elect a new master from among themselves. It is important to note that, since 

the failure of the master results only in a gradual divergence of clock values, the 

election need not occur immediately. 

The election algorithm must be able to perform the following tasks: 

• Allow a time daemon that is a candidate for master to collect information 

about the system's topology. 

• Mask communication failures such as loss, delay, and duplication of messages. 

• Deal with network partitions. 

• Withstand machine failures that occur during the election. 

1 TEMPO considers faulty a clock whose value is more than a small specified interval 

apart from the majority of the clocks of the machines on the same network. See 

[Gusellal984,Gusellal985b] for more details. 

--
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To maximize overall efficiency, the algorithm must be very simple and fast for the 

normal case[Lampson1983]. Yet, at the same time, it must be able to deal with 

abnormal cases, e.g., when two slave time daemons simultaneously become 

candidates for master, either by solving these problems or by simply signaling their 

existence to system managers. 

The algorithm we designed displays the following characteristics: 

• Simplicity in the normal case. 

• Network traffic efficiency. 

Uniformity: all time daemons, regardless of their state (slave, master, or 

candidate for master), run the same software. 

• Conservativeness: a delay in the choice of the new master is favored over the 

prospect of having two masters. 

2. Some Past Solutions and Relevant Ideas 

The problem of electing a coordinator in a loosely coupled distributed system 

has received substantial attention. Most of the solutions proposed in the past were 

for us only of theoretical interest, either because they were excessively complex or 

because the hypotheses on which they were based did not apply to our local area 

network environment. An election algorithm need not be algorithmically complex: 

it has been shown that processor agreement can be reached by exchanging a 

polynomial number of messages[Dolev1982,Frederickson1984] 

A well-known paper[LeLann1977] presents an algorithm of quadratic 

complexity to elect a coordinator in a network of machines logically arranged as a 

ring whose nodes are statically ordered. All nodes must talk to the others before 

an agreement can be reached, and the winner will simply be the highest one in the 

ordering. Our election algorithm does not require machines to be logically 

arranged in a ring, nor does it require ordering among them. In the normal case, 

its message complexity is linear with respect to the number of machines. 

Vitanyi[Vitanyi1984] introduced a concept that is important in our 

implementation: only if clocks of our processors maintain Archimedean times, i.e. if 

there is always an integer multiple of one clock value that exceeds the others, 2 do 

elections or, in general, any sort of distributed synchronization, become possible. 

2 See: Archimedes, "Kvix8paTvpe ocp IJt llapaflo'A.a," Syracuse Monthly, 

Syracuse, 223 B.C .. 

--
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Without physical time and clocks to measure it, in fact, we cannot distinguish a 

pausing process from one that has crashed. With an Archimedean timing system a 

process can use a timer to tell if some process on a different processor has crashed. 

The Archimedean time requirement is easily satisfied in practice. 

The bully algorithm[Garcia-Molina1982] requires conditions hard to fulfill in 

practice, like an atomically writable storage that is preserved across system 

crashes or a reliable transmission mechanism, and has high complexity, i.e. 0(n 2 ). 

A new election is started every time a machine joins the network. Since it is 

unnecessary for the purposes of TEMPO to start an election whenever a new time 

daemon comes up, we did not employ this method. Moreover, like LeLann's 

algorithm, the bully algorithm requires a predefined ordering of the machines that 

must be known by all processes, and successively updated and maintained. 

3. The Hypotheses 

Our election algorithm is based on the following hypotheses: 

A) Communication mechanism assumptions: 

• Messages are not spontaneously generated in the network. 

• Messages are not (maliciously) forged by somebody connected to the 

network. 

• Messages are process-to-process datagrams that <:an be lost, delayed, 

duplicated, or received in altered order. 

• Transmission errors are detected: a message is either received as it was 

sent or discarded and considered lost. 

• The communication subsystem provides a broadcast mechanism that 

enables one to send a message to all machines on the network. 

B) Assumptions about the processors: 

Fail-stop: when a processor fails, it stops running and loses all its state 

information. A processor never pauses and resumes working later. 

• Byzantine failures are not considered. 

• Machines have clocks with Archimedean time functions. This assumption 

allows the use of timers. 

Note that no unrealistic assumptions are made on the reliability of the 

communication channel (messages may be lost), on the order of reception (messages 

may be out of order), on the transmission time, or on the permanence of the 
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information stored in memory (core memory is completely erased in case of 

machine crash). 

4. The Communication Protocol 

All messages exchanged by time daemons have their structure defined by a 

specifically designed protocol called the Time Synchronization Protocol 

(TSP)[Gusella1985a]. TSP, built on the DARPA UDP Protocol, serves a dual 

purpose. First, it supports messages for the synchronization of the clocks of the 

various hosts in a local area network. Second, it supports messages for the election 

that occurs among slave time daemons when, for any reason, the master 

disappears. 

0 1 2 3 
0 1 2 3 4 6 6 7 8 9 0 1 2 3 4 6 6 7 8 9 0 1 2 3 4 6 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Type Version No. Sequence No. 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Seconds of Time 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Microseconds of Time 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Machine Name 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 2 

While some messages need not be sent in a reliable way, most communication 

in TSP does require reliability. Reliability is achieved by the use of 

acknowledgements, sequence numbers, and retransmission when message losses 

occur. When a message that requires acknowledgment is not acknowledged, the 

time daemon which has sent the message will assume that the addressee is down. 

This mechanism guarantees that either the message arrives at its destination, or, if 

no acknowledgement is received after a certain number of retransmissions, that the 

sender can assume the addressed time daemon is not active. 

The message format in TSP (see Fig. 2) is the same for all message types, 

though in some instances one or more fields are not used. A message contains a 

message type field, a protocol version number field, a sequence number field, a field 

to store timing information, and a field that contains the name of the machine from 

which the message is sent. 

-
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5. The Election Algorithm 

5.1. The Normal Case 

Normally the master time daemon periodically synchronizes the clocks of all 

controlled machines. At start-up time, a slave time daemon randomly selects from 

a predefined range R a value for its election timer that is greater than the interval 

between synchronization messages. It is unlikely, though possible, that two slaves 

will have the same timer value. In the normal case we make the assumption that 

only one slave has selected the lowest timer value. Every time the master sends a 

slave a synchronization message (every four minutes in the current 

implementation) 3, the slave reinitializes its timer to that random value. If the 

master crashes, the absence of synchronization messages will cause the slave whose 

timer expires first to automatically become a candidate for master. 

The candidate broadcasts an Election message. The other slaves, still waiting 

for a synchronization message from the master, then reinitialize their election 

timers to prevent other candidacies. They also reply to the Election message with 

Accept messages that inform the candidate of the senders' names. 

The candidate acknowledges the slaves' Accept messages, and builds a list 

with their names. If elected it will synchronize the machines on this list. In the 

absence of events that will make the candidate resign (these events will be 

described in the next section), the candidate becomes master after a predetermined 

period of time following the receipt of the last Accept message has elapsed. The 

length of this time period has been chosen to give slaves the necessary time to 

answer the candidate's request. 

Upon becoming master, the time daemon broadcasts a Masterup message to 

make slaves that may not have received its candidacy offer aware of the presence 

of a new master. The slaves will reply with Slaveup messages, which enable the 

master to obtain the names of all slaves. 

5.2. The Case of Two (or more) Candidates 

It is possible that the lowest timer value be selected by two or more time 

daemons which then time out simultaneously. As a result, the slaves receive two 

or more Election messages. However, they will reply with an Accept message only 

3 See [Gusella1984, Gusella1985b] for a justification of this value. 

-
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to the first Election message received. Any other messages will be replied to with a 

Refuse message. A candidate that receives a Refuse message will withdraw its 

candidacy and return to the humble state of Slave. 

In the Ethernet local area network, broadcast messages do not overlap. Every 

machine receives messages in the order they are sent. However, we wanted our 

election algorithm to work with other network topologies (for example, ring 

networks) where broadcast message ordering can be arbitrary. In this latter case, 

it is possible that all candidates might receive Refuse messages. To make the 

election algorithm behave consistently in all network types, we designed the 

algorithm so that candidates themselves reply to Election messages with Refuse 

messages. 

When two time daemons run for master simultaneously, each candidate, upon 

receiving the other's Election message, replies with a Refuse message. Both 

candidates therefore return to the state of Slave. They also reselect their election 

timer values using an exponential backoff mechanism similar to the one used in 

the Ethernet to avoid simultaneously timing out once again. This procedure also 

handles the degenerate case where only two time daemons are left in the network 

after the master has disappeared and they time out at the same time. 

In the Appendix we give a proof of the fact that the probability that two or 

more slaves time out at the same time is less than ~S, where N is the number of 

time daemons, 8 is the time window after an Election message during which 

conflicts may arise, and R is the width of the interval over which time daemons 

select their election timers; the timer values are supposed to be uniformly 

distributed over R. 

The following scenario illustrates another case in which a conflict may occur. 

Suppose that the election procedure takes M seconds to complete and that there are 

N slaves in the network. The Election message broadcast by a candidate is not 

received by a slave whose election timer expires within M seconds4 . In this 

situation, even though we also have two candidates, there is no need to postpone 

the election. Rather, the first candidate and all the other slaves, upon receiving 

the Election from the second candidate, reply to it with Refuse messages, leaving 

the first candidate free to complete the election procedure. 

• This can happen because the operating system allocates only a limited amount of buffer 

space for incoming messages, and the UDP protocol does not provide a reliable transport 

subsystem. 

--
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5.3. The Case of Two Masters 

A network partition creates two disjoint sets of slaves: one with the original 

master and one without a master. This latter set will elect a master. When the 

network partition is repaired, there will be two independent sets of slaves, each 

with its own master. This anomalous situation is stable and will only be detected 

by a starting time daemon's M asterreq message. 

The following sequence of events will lead to the detection of the abnormal 

case and restoration of the normal situation: 

A newly started time daemon will broadcast a Masterreq message. 

It will receive two Masterack messages, one from each master. 

Since a slave does not have the authority to kill a master, it simply notifies 

the first master -the first to reply to its request- that a second one is present 

with a Conflict message. 

The informed master broadcasts a Conflict message to find out the name of the 

other master. 

The other master replies with a Masterack. 

The first master then sends a Quit message to the other master, which returns 

to the Slave state. 

The first (and now sole) master broadcasts a Masterup message to collect the 

names of all of the second master's slaves. 

A slave that is overlooked because it does not receive the Masterup message will 

timeout and will start an election. However, the present master will immediately 

cut short the slave's attempt by sending it a Quit message, and adding its name to 

the list of synchronized machines. 

6. The Election Algorithm: A Finite State Model 

We will use a state model to describe the details of how the election algorithm 

works. In their lifetime, time daemons can be in one of a finite number of states. 

Transitions from one state to another are caused by either the arrival of a message 

or the expiration of a timer. A state transition may cause a time daemon to send 

out a message, which triggers subsequent transitions in other time daemons. It is 

important to clarify that, in explaining the model, we focus only on the state of one 

time daemon, and not on the state of the entire distributed program. 

-
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Figure 3 represents the state diagram for a time daemon. Circles represent 

states; arrows represent transitions. A transition occurs either upon the arrival of 

a message or upon the expiration of a timer; these events are shown on the upper 

part of the labels superimposed on the arrows. The lower part of the label shows 

the message that is sent at the time of the corresponding transition. A null label 

signifies that no message is sent or received. Messages with an asterisk indicate 

that the message is broadcast, i.e. sent to all the other time daemons. 

For example, if a time daemon is in the Master state and receives a Conflict 

message, it will broadcast a Resolve message and change its state to the Conflict 

state. The following description refers to Figure 3. 

The State Diagram 

Figure 3 

-
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6.1. Description of the States 

Start-up: Upon start-up, a time daemon broadcasts a M asterreq message to 

inform the master that a new time daemon exists. 

No Master: This state results when no message is received by a time daemon in 

the Start-up state and its start-up timer expires. At this stage, the 

Master: 

Slave: 

Candidate: 

Accept: 

Conflict: 

time daemon assumes that there is no master present and is ready 

to become the master. However, there are three cases where the 

time daemon will not become the master and will become a slave 

instead: first, if it receives a Masterreq from a newly started time 

daemon; second, if it receives an Election message from a slave; and 

third, if it receives a Masterup message from a candidate that is 

about to become the master. If none of these messages is received 

after the no master timer expires, then the time daemon will enter 

the Master state and broadcast a Masterup message. 

The Master state is reached either when an election is won, or 

when no master is found at start-up time. 

In this state a time daemon receives periodical adjustment messages 

from the master; when this occurs, it reinitializes its election timer. 

This state is reached when the election timer in a slave expires. 

Since these timers are randomly set from a large interval, it is 

unlikely that two or more of them will expire simultaneously. A 

time daemon will remain in the Candidate state as long as it 

receives Accept messages from slaves; if instead it receives a Refuse 

message, it will revert back to the Slave state. If the candidate 

timer that is reinitialized after any Accept message is received 

expires, the candidate will become master, broadcasting a Masterup 

message. 

A process in the normal Slave state receives an Election message 

and sends to the candidate an Accept message entering this state. It 

will then reply with a Refuse to all the following Election messages, 

until the accept timeout occurs, which resets the state to normal 

Slave. 

In this state the master has received a Conflict, and looks for one, or 

possibly more, rival masters to kill. It will leave the state after 

waiting for the conflict timeout to expire following the resolution of 

-
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the conflict. 

Consistency: In this state a newly started time daemon that has received a 

Masterack message from a master waits to check that no other 

master is active. If it receives a Masterack from another master, it 

sends a Conflict message to the first one, which will eliminate the 

anomalous situation, and immediately becomes a slave. If no 

Masterack is received, after the consistency timeout expires, the 

time daemon enters the Slave state. 

7. Message Complexity of the Algorithm 

The algorithm we have described is very efficient in terms of network 

utilization. In fact, it requires a linear number of messages to elect a new master. 

Suppose that, after the master's crash, there are N machines in the network. 

Suppose also, for the purpose of simplifying the discussion, that there are no 

message losses. 

1) Case of one candidate: 

The election starts with the Election message, which is followed by N -1 

Accept messages sent by the slaves. Then there are N -1 acknowledgments 

from the candidate, the Masterup message, and finally, the N -1 Slaveup 

replies. The total message count is 2+3*(N-1l = 3*N-1. 

2) Case of two candidates: 

The election starts with two Election messages. Each of the N- 2 remaining 

slaves replays with an Accept message to the first candidate and with a Refuse 

message to the second one. Each candidate acknowledges the N- 2 messages 

received. Moreover, the two candidates send a Refuse message, which is also 

acknowledged, to each other. In this case, the total message count is 4*N -2. 

The election is not successful and must be repeated; however, as we have 

shown, in each repetition it becomes less and less probable that two candidates 

will appear. 

8. Conclusions 

We have presented an election algorithm that ensures the reliability of the 

master-slave based distributed program TEMPO in spite of master crashes. 

Elections occur when randomly set election timers expire. The algorithm is very 

simple and efficient in the normal case. In the unusual cases in which there are 

two or more candidates, it handles election conflicts in a conservative way by 
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making candidates withdraw their candidacies and manipulating timers in order to 

reduce the probability of conflicts reoccurring. This is appropriate because 

synchronized clocks diverge only slightly during an election. The algorithm also 

handles the case in which there are two masters after a network partition is 

repaired. 

Perhaps the most significant drawback of the algorithm is its reliance on the 

existence of a broadcast channel. This limits its usability in an internetwork 

environment. We are working to extend the algorithm to this more general 

environment. We are satisfied with the performance of our election algorithm for 

TEMPO, and we believe that its simplicity and efficiency make it attractive for 

other applications as well. 
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Appendix 

In this section we will compute the probability that an election attempt results 

in a collision. We will ignore the case, described in section 5.2, of collisions 

generated by the loss of election messages. Being this last case rare, it is more a 

curiosity than a real problem. 

Every time an election timer expires and a time daemon starts an election, 

there is a window of 8 seconds during which a collision may happen. Since upon 

receiving the election message each time daemon reinitializes its election timer, 8 

is equal to the transmission time over the network plus the longest scheduling 

delay of the various time daemon processes. This window is, therefore, very small. 

The problem can be formalized as follows. Let T1, T2, ···,TN be the values of 

the election timers of N time daemons. They are independent random variables 

with uniform distribution over the interval [r, r+ R], where r is larger than the 

time between two subsequent synchronization rounds, as discussed in section 5.1. 

In order to simplify the following derivation, we will work instead with the random 

variables X1, X2, · · ·, XN uniformly distributed over [0, R]. Let M1 and M 2 be the 

smallest and the second smallest values among the X,'s respectively. Then, the 

probability that an election attempt results in a collision is P[M 2-M 1 ~ 8]. This 

probability can be computed in the following way: 

R 

PCM2-M1 ~ 8] = fP[M2-M1 ~ 8IM1=x]{M
1
(x)dx 

0 

R 

= fP[M 2 ~ 8+xiM 1 =x]f M/x)dx 
0 

where fM
1 

is the probability density function of M1. 

(1) 

Given that M 1 =x, the values of the remaining N -1 random variables are 

uniformly distributed over [x, R]. Therefore, for O~x~R -8 : 

P[M2 ~ 8+xiM1=x] = P[min<V1, U2, · · ·, UN-1) ~ 8] 

[ I
N -1 

= 1 - R-x-8 
R- X 

where U1 , U2, · · ·, UN_ 1 are independent random variables with uniform 

distribution over [0, R- x] . 

For R-8~x~R, we have instead: 

P[M2 ~ 8+xiM 1=x] = 1, 
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thus (1) becomes: 

(2) 

The density function fM
1
(x) can be written as the derivative of the distribution 

function: 

0 ifx<O 

d d d R-x N 
{M

1
(x) = dxFM

1
(x) = dxP[M 1 S x] = dx 1-(~) ifOsx<R 

1 ifx~R 

Thus finally: 

I I
N-1 

N R-x 

=I R ll ifOsx~R 
0 otherwi.Se · 

P[M 2-M 1 S 8] = J 1- R - x- 8 N R - x dx + J N R - x dx R-~, I IN-1]1 IN-1 R I IN-1 
0 R -x R R R-~ R R 

Observe that for all Osx<1 and for all positive integers N, we have: 

1-(1-x)N s Nx 

with very good approximation when x is small, in the sense that: 

lim 1-(1-x)N = 1 . 
x-+0 Nx 

This provides us with a sharp upper bound for (3): 

I BIN 8 
1- 1- R s ~ . 

(3) 

--


