
An Election Algorithm for a

Distributed Clock Synchronization Program

Riccardo Gusella and Stefano Zatti

Report No. UCB/CSD 86/275

December 1985
PROGRES Report No. 85.17

Computer Science Division..(EECS)

University of California
Berkeley, California 94720

-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1985 2. REPORT TYPE

3. DATES COVERED
 00-00-1985 to 00-00-1985

4. TITLE AND SUBTITLE
An Election Algorithm for a Distributed Clock Synchronization Program

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper describes the election algorithm that guarantees the reliability of TEMPO, a distributed clock
synchronizer running on Berkeley UNIX 4.3BSD systems. TEMPO is a distributed program based on a
master-slave scheme that is comprised of time daemon processes running on individual machines. The
election algorithm chooses a new master from among the slaves after the crash of the machine on which the
original master was running. When the master is working, it periodically resets an election timer in each
slave. If the master disappears, the slave whose timer expires first will become a candidate for the new
master. The election algorithm covers this normal case, as well as the infrequent case where there may be
two or more simultaneous candidates. It also handles the case in which, due to a network partition that has
been repaired, two masters are present at the same time.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

-

An Election Algorithm for a

Distributed Clock Synchronization Program

Riccardo Gusella and Stefano Zatti

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

This paper describes the election algorithm that guarantees the

reliability of TEMPO, a distributed clock synchronizer running on

Berkeley UNIX
7

4.3BSD systems. TEMPO is a distributed program

based on a master-slave scheme that is comprised of time daemon

processes running on individual machines.

The election algorithm chooses a new master from among the

slaves after the crash of the machine on which the original master

was running. When the master is working, it periodically resets an

election timer in each slave. If the master disappears, the slave

whose timer expires first will become a candidate for the new master.

The election algorithm covers this normal case, as well as the

infrequent case where there may be two or more simultaneous

candidates. It also handles the case in which, due to a network

partition that has been repaired, two masters are present at the same

time.

1. Introduction

In this paper we describe the election algorithm we have designed for TEMPO,

a distributed network clock synchronizer for Berkeley UNIX 4.3BSD systems.

This work was sponsored by the Defense Advanced Research Projects Agency (DoDl, Arpa Order No.

4871 monitored by the Naval Electronics Systems Command under contract No. N00039-84-C-0089, and

by the CSELT Corporation. The views and conclusions contained in this document are those of the

authors and should not be interpreted as representing official policies, either expressed or implied, of the

Defense Research Projects Agency, of the US Government, or of CSELT.

t UNIX is a Trademark of AT&T Bell Laboratories.

-

- 2-

TEMPO, which works in a local area network, consists of a collection of time

daemons (one per machine) and is based on a master-slave

structure[Gusella1984,Gusella1985b]. The present implementation keeps processor

clocks synchronized within 20 milliseconds.

Figures la and lb sketch the way TEMPO works. A master time daemon

measures the time difference between the clock of the machine on which it is

running and those of all other machines. The master computes the network time as

the average of the times provided by nonfaulty clocks. 1 It then sends to each slave

time daemon the correction that should be performed on the clock of its machine.

This process is repeated periodically. Since the correction is expressed as a time

difference rather than an absolute time, transmission delays do not interfere with

synchronization. When a machine comes up and joins the network, it starts a slave

time daemon, which will ask the master for the correct time and will reset the

machine's clock before any user activity can begin. TEMPO therefore maintains a

single network time in spite of the drift of clocks away from each other.

To ensure that TEMPO provides continuous, and therefore reliable, service, it

is necessary to implement an election algorithm that will elect a new master

should the machine running the current master crash, the master terminate (for

example, because of a run-time error), or the network be partitioned. Under our

algorithm, slaves are able to realize when the master has stopped functioning and

to elect a new master from among themselves. It is important to note that, since

the failure of the master results only in a gradual divergence of clock values, the

election need not occur immediately.

The election algorithm must be able to perform the following tasks:

• Allow a time daemon that is a candidate for master to collect information

about the system's topology.

• Mask communication failures such as loss, delay, and duplication of messages.

• Deal with network partitions.

• Withstand machine failures that occur during the election.

1 TEMPO considers faulty a clock whose value is more than a small specified interval

apart from the majority of the clocks of the machines on the same network. See

[Gusellal984,Gusellal985b] for more details.

--

(~

{"}

- 3-

The Measurements
/

- :o

G
,.__ - - /

Master

3:05

I
..... '· '

......

' i
-

--
'

....
I

/

\
\

(/ -10
'5

...... +20

" -

C9
Slave 1

2:55

(9
Slave 2

3:00

-.

Q
Slave 3

3:25

The Computation of the Average

/)0

G
... __ __...

Master

3:05 ... _ .. _,

'
--.

) '
/

--
~ - / 71

}

/
\

/

/ \

\
......

./ -10
<-5

+20

...

C9
Slave 1

2:55

"'

Q)
Slave 2

3:00

Av = 0- 10- 5= _5

3

Figure la

;.,

G
Slave 3

3:25

}

- ·-·- ~

()

(J

- 4-

The Correction of the Clocks

I

/
// +5

"'

G
Slave 1

2:55

--..-

/

G
'

....
j)

I
I
\

~

(9
Slave 2

3:00

I
.. o

/- _
) -5

..._-- /

Master

'

3:05

- -- \
I
I
\

' -25
),

G
Slave 3

3:25

J

Clocks are now Synchronized

(9
Slave 1

3:00

(9

(9
Slave 2

3:00

Figure lb

Master
3:00

(9
Slave 3

3:00

J

-

- 5-

To maximize overall efficiency, the algorithm must be very simple and fast for the

normal case[Lampson1983]. Yet, at the same time, it must be able to deal with

abnormal cases, e.g., when two slave time daemons simultaneously become

candidates for master, either by solving these problems or by simply signaling their

existence to system managers.

The algorithm we designed displays the following characteristics:

• Simplicity in the normal case.

• Network traffic efficiency.

Uniformity: all time daemons, regardless of their state (slave, master, or

candidate for master), run the same software.

• Conservativeness: a delay in the choice of the new master is favored over the

prospect of having two masters.

2. Some Past Solutions and Relevant Ideas

The problem of electing a coordinator in a loosely coupled distributed system

has received substantial attention. Most of the solutions proposed in the past were

for us only of theoretical interest, either because they were excessively complex or

because the hypotheses on which they were based did not apply to our local area

network environment. An election algorithm need not be algorithmically complex:

it has been shown that processor agreement can be reached by exchanging a

polynomial number of messages[Dolev1982,Frederickson1984]

A well-known paper[LeLann1977] presents an algorithm of quadratic

complexity to elect a coordinator in a network of machines logically arranged as a

ring whose nodes are statically ordered. All nodes must talk to the others before

an agreement can be reached, and the winner will simply be the highest one in the

ordering. Our election algorithm does not require machines to be logically

arranged in a ring, nor does it require ordering among them. In the normal case,

its message complexity is linear with respect to the number of machines.

Vitanyi[Vitanyi1984] introduced a concept that is important in our

implementation: only if clocks of our processors maintain Archimedean times, i.e. if

there is always an integer multiple of one clock value that exceeds the others, 2 do

elections or, in general, any sort of distributed synchronization, become possible.

2 See: Archimedes, "Kvix8paTvpe ocp IJt llapaflo'A.a," Syracuse Monthly,

Syracuse, 223 B.C ..

--

- 6-

Without physical time and clocks to measure it, in fact, we cannot distinguish a

pausing process from one that has crashed. With an Archimedean timing system a

process can use a timer to tell if some process on a different processor has crashed.

The Archimedean time requirement is easily satisfied in practice.

The bully algorithm[Garcia-Molina1982] requires conditions hard to fulfill in

practice, like an atomically writable storage that is preserved across system

crashes or a reliable transmission mechanism, and has high complexity, i.e. 0(n 2).

A new election is started every time a machine joins the network. Since it is

unnecessary for the purposes of TEMPO to start an election whenever a new time

daemon comes up, we did not employ this method. Moreover, like LeLann's

algorithm, the bully algorithm requires a predefined ordering of the machines that

must be known by all processes, and successively updated and maintained.

3. The Hypotheses

Our election algorithm is based on the following hypotheses:

A) Communication mechanism assumptions:

• Messages are not spontaneously generated in the network.

• Messages are not (maliciously) forged by somebody connected to the

network.

• Messages are process-to-process datagrams that <:an be lost, delayed,

duplicated, or received in altered order.

• Transmission errors are detected: a message is either received as it was

sent or discarded and considered lost.

• The communication subsystem provides a broadcast mechanism that

enables one to send a message to all machines on the network.

B) Assumptions about the processors:

Fail-stop: when a processor fails, it stops running and loses all its state

information. A processor never pauses and resumes working later.

• Byzantine failures are not considered.

• Machines have clocks with Archimedean time functions. This assumption

allows the use of timers.

Note that no unrealistic assumptions are made on the reliability of the

communication channel (messages may be lost), on the order of reception (messages

may be out of order), on the transmission time, or on the permanence of the

- 7-

information stored in memory (core memory is completely erased in case of

machine crash).

4. The Communication Protocol

All messages exchanged by time daemons have their structure defined by a

specifically designed protocol called the Time Synchronization Protocol

(TSP)[Gusella1985a]. TSP, built on the DARPA UDP Protocol, serves a dual

purpose. First, it supports messages for the synchronization of the clocks of the

various hosts in a local area network. Second, it supports messages for the election

that occurs among slave time daemons when, for any reason, the master

disappears.

0 1 2 3
0 1 2 3 4 6 6 7 8 9 0 1 2 3 4 6 6 7 8 9 0 1 2 3 4 6 6 7 8 9 0 1

+-+

Type Version No. Sequence No.
+-+

Seconds of Time
+-+

Microseconds of Time
+-+

Machine Name
+-+

Figure 2

While some messages need not be sent in a reliable way, most communication

in TSP does require reliability. Reliability is achieved by the use of

acknowledgements, sequence numbers, and retransmission when message losses

occur. When a message that requires acknowledgment is not acknowledged, the

time daemon which has sent the message will assume that the addressee is down.

This mechanism guarantees that either the message arrives at its destination, or, if

no acknowledgement is received after a certain number of retransmissions, that the

sender can assume the addressed time daemon is not active.

The message format in TSP (see Fig. 2) is the same for all message types,

though in some instances one or more fields are not used. A message contains a

message type field, a protocol version number field, a sequence number field, a field

to store timing information, and a field that contains the name of the machine from

which the message is sent.

-

- 8-

5. The Election Algorithm

5.1. The Normal Case

Normally the master time daemon periodically synchronizes the clocks of all

controlled machines. At start-up time, a slave time daemon randomly selects from

a predefined range R a value for its election timer that is greater than the interval

between synchronization messages. It is unlikely, though possible, that two slaves

will have the same timer value. In the normal case we make the assumption that

only one slave has selected the lowest timer value. Every time the master sends a

slave a synchronization message (every four minutes in the current

implementation) 3, the slave reinitializes its timer to that random value. If the

master crashes, the absence of synchronization messages will cause the slave whose

timer expires first to automatically become a candidate for master.

The candidate broadcasts an Election message. The other slaves, still waiting

for a synchronization message from the master, then reinitialize their election

timers to prevent other candidacies. They also reply to the Election message with

Accept messages that inform the candidate of the senders' names.

The candidate acknowledges the slaves' Accept messages, and builds a list

with their names. If elected it will synchronize the machines on this list. In the

absence of events that will make the candidate resign (these events will be

described in the next section), the candidate becomes master after a predetermined

period of time following the receipt of the last Accept message has elapsed. The

length of this time period has been chosen to give slaves the necessary time to

answer the candidate's request.

Upon becoming master, the time daemon broadcasts a Masterup message to

make slaves that may not have received its candidacy offer aware of the presence

of a new master. The slaves will reply with Slaveup messages, which enable the

master to obtain the names of all slaves.

5.2. The Case of Two (or more) Candidates

It is possible that the lowest timer value be selected by two or more time

daemons which then time out simultaneously. As a result, the slaves receive two

or more Election messages. However, they will reply with an Accept message only

3 See [Gusella1984, Gusella1985b] for a justification of this value.

-

- 9-

to the first Election message received. Any other messages will be replied to with a

Refuse message. A candidate that receives a Refuse message will withdraw its

candidacy and return to the humble state of Slave.

In the Ethernet local area network, broadcast messages do not overlap. Every

machine receives messages in the order they are sent. However, we wanted our

election algorithm to work with other network topologies (for example, ring

networks) where broadcast message ordering can be arbitrary. In this latter case,

it is possible that all candidates might receive Refuse messages. To make the

election algorithm behave consistently in all network types, we designed the

algorithm so that candidates themselves reply to Election messages with Refuse

messages.

When two time daemons run for master simultaneously, each candidate, upon

receiving the other's Election message, replies with a Refuse message. Both

candidates therefore return to the state of Slave. They also reselect their election

timer values using an exponential backoff mechanism similar to the one used in

the Ethernet to avoid simultaneously timing out once again. This procedure also

handles the degenerate case where only two time daemons are left in the network

after the master has disappeared and they time out at the same time.

In the Appendix we give a proof of the fact that the probability that two or

more slaves time out at the same time is less than ~S, where N is the number of

time daemons, 8 is the time window after an Election message during which

conflicts may arise, and R is the width of the interval over which time daemons

select their election timers; the timer values are supposed to be uniformly

distributed over R.

The following scenario illustrates another case in which a conflict may occur.

Suppose that the election procedure takes M seconds to complete and that there are

N slaves in the network. The Election message broadcast by a candidate is not

received by a slave whose election timer expires within M seconds4 . In this

situation, even though we also have two candidates, there is no need to postpone

the election. Rather, the first candidate and all the other slaves, upon receiving

the Election from the second candidate, reply to it with Refuse messages, leaving

the first candidate free to complete the election procedure.

• This can happen because the operating system allocates only a limited amount of buffer

space for incoming messages, and the UDP protocol does not provide a reliable transport

subsystem.

--

- 10-

5.3. The Case of Two Masters

A network partition creates two disjoint sets of slaves: one with the original

master and one without a master. This latter set will elect a master. When the

network partition is repaired, there will be two independent sets of slaves, each

with its own master. This anomalous situation is stable and will only be detected

by a starting time daemon's M asterreq message.

The following sequence of events will lead to the detection of the abnormal

case and restoration of the normal situation:

A newly started time daemon will broadcast a Masterreq message.

It will receive two Masterack messages, one from each master.

Since a slave does not have the authority to kill a master, it simply notifies

the first master -the first to reply to its request- that a second one is present

with a Conflict message.

The informed master broadcasts a Conflict message to find out the name of the

other master.

The other master replies with a Masterack.

The first master then sends a Quit message to the other master, which returns

to the Slave state.

The first (and now sole) master broadcasts a Masterup message to collect the

names of all of the second master's slaves.

A slave that is overlooked because it does not receive the Masterup message will

timeout and will start an election. However, the present master will immediately

cut short the slave's attempt by sending it a Quit message, and adding its name to

the list of synchronized machines.

6. The Election Algorithm: A Finite State Model

We will use a state model to describe the details of how the election algorithm

works. In their lifetime, time daemons can be in one of a finite number of states.

Transitions from one state to another are caused by either the arrival of a message

or the expiration of a timer. A state transition may cause a time daemon to send

out a message, which triggers subsequent transitions in other time daemons. It is

important to clarify that, in explaining the model, we focus only on the state of one

time daemon, and not on the state of the entire distributed program.

-

- 11-

Figure 3 represents the state diagram for a time daemon. Circles represent

states; arrows represent transitions. A transition occurs either upon the arrival of

a message or upon the expiration of a timer; these events are shown on the upper

part of the labels superimposed on the arrows. The lower part of the label shows

the message that is sent at the time of the corresponding transition. A null label

signifies that no message is sent or received. Messages with an asterisk indicate

that the message is broadcast, i.e. sent to all the other time daemons.

For example, if a time daemon is in the Master state and receives a Conflict

message, it will broadcast a Resolve message and change its state to the Conflict

state. The following description refers to Figure 3.

The State Diagram

Figure 3

-

- 12-

6.1. Description of the States

Start-up: Upon start-up, a time daemon broadcasts a M asterreq message to

inform the master that a new time daemon exists.

No Master: This state results when no message is received by a time daemon in

the Start-up state and its start-up timer expires. At this stage, the

Master:

Slave:

Candidate:

Accept:

Conflict:

time daemon assumes that there is no master present and is ready

to become the master. However, there are three cases where the

time daemon will not become the master and will become a slave

instead: first, if it receives a Masterreq from a newly started time

daemon; second, if it receives an Election message from a slave; and

third, if it receives a Masterup message from a candidate that is

about to become the master. If none of these messages is received

after the no master timer expires, then the time daemon will enter

the Master state and broadcast a Masterup message.

The Master state is reached either when an election is won, or

when no master is found at start-up time.

In this state a time daemon receives periodical adjustment messages

from the master; when this occurs, it reinitializes its election timer.

This state is reached when the election timer in a slave expires.

Since these timers are randomly set from a large interval, it is

unlikely that two or more of them will expire simultaneously. A

time daemon will remain in the Candidate state as long as it

receives Accept messages from slaves; if instead it receives a Refuse

message, it will revert back to the Slave state. If the candidate

timer that is reinitialized after any Accept message is received

expires, the candidate will become master, broadcasting a Masterup

message.

A process in the normal Slave state receives an Election message

and sends to the candidate an Accept message entering this state. It

will then reply with a Refuse to all the following Election messages,

until the accept timeout occurs, which resets the state to normal

Slave.

In this state the master has received a Conflict, and looks for one, or

possibly more, rival masters to kill. It will leave the state after

waiting for the conflict timeout to expire following the resolution of

-

- 13 -

the conflict.

Consistency: In this state a newly started time daemon that has received a

Masterack message from a master waits to check that no other

master is active. If it receives a Masterack from another master, it

sends a Conflict message to the first one, which will eliminate the

anomalous situation, and immediately becomes a slave. If no

Masterack is received, after the consistency timeout expires, the

time daemon enters the Slave state.

7. Message Complexity of the Algorithm

The algorithm we have described is very efficient in terms of network

utilization. In fact, it requires a linear number of messages to elect a new master.

Suppose that, after the master's crash, there are N machines in the network.

Suppose also, for the purpose of simplifying the discussion, that there are no

message losses.

1) Case of one candidate:

The election starts with the Election message, which is followed by N -1

Accept messages sent by the slaves. Then there are N -1 acknowledgments

from the candidate, the Masterup message, and finally, the N -1 Slaveup

replies. The total message count is 2+3*(N-1l = 3*N-1.

2) Case of two candidates:

The election starts with two Election messages. Each of the N- 2 remaining

slaves replays with an Accept message to the first candidate and with a Refuse

message to the second one. Each candidate acknowledges the N- 2 messages

received. Moreover, the two candidates send a Refuse message, which is also

acknowledged, to each other. In this case, the total message count is 4*N -2.

The election is not successful and must be repeated; however, as we have

shown, in each repetition it becomes less and less probable that two candidates

will appear.

8. Conclusions

We have presented an election algorithm that ensures the reliability of the

master-slave based distributed program TEMPO in spite of master crashes.

Elections occur when randomly set election timers expire. The algorithm is very

simple and efficient in the normal case. In the unusual cases in which there are

two or more candidates, it handles election conflicts in a conservative way by

- 14-

making candidates withdraw their candidacies and manipulating timers in order to

reduce the probability of conflicts reoccurring. This is appropriate because

synchronized clocks diverge only slightly during an election. The algorithm also

handles the case in which there are two masters after a network partition is

repaired.

Perhaps the most significant drawback of the algorithm is its reliance on the

existence of a broadcast channel. This limits its usability in an internetwork

environment. We are working to extend the algorithm to this more general

environment. We are satisfied with the performance of our election algorithm for

TEMPO, and we believe that its simplicity and efficiency make it attractive for

other applications as well.

9. Acknowledgments

Domenico Ferrari stimulated our efforts in designing a better and more

accurate algorithm. Claude Belisle helped in the derivation shown in the

Appendix. The authors are also grateful to Mike Karels, Luis Felipe Cabrera, and

Stuart Sechrest. A special grazie to Phyllis Chang for editorial advice.

References

Dolev1982.

D. Dolev and R. Strong, "Polynomial Algorithms for Multiple Processor

Agreement," Proceedings of the 14th Annual Symposium on Theory of

Computation, pp. 401-407, ACM, May 1982.

Frederickson 19 84.

G. N. Frederickson and N. A. Lynch, "The Impact of Synchronous

Communication on the Problem of Electing a Leader in a Ring," Proceedings of

the 16th Annual Symposium on Theory of Computation, pp. 493-503, ACM,

May 1984.

Garcia-Molina1982.

H. Garcia-Molina, "Elections in a Distributed Computing System," IEEE

Transactions on Computers, vol. C-31 No.1, pp. 48-59, IEEE, January 1982.

Gusella1984.

R. Gusella and S. Zatti, "TEMPO - A Network Time Controller for a

Distributed Berkeley UNIX System," Distributed Processing Tech. Comm.

-

- 15-

Newsletter, vol. 6 NoSI-2, pp. 7-15, IEEE, June 1984.

Gusella1985a.

R. Gusella and S. Zatti, "The Berkeley UNIX 4.3BSD Time Synchronization

Protocol: Protocol Specification," Report No. UCBICSD 851250, University of

California, Berkeley, June 1985.

Gusella1985b.

R. Gusella and S. Zatti, "Clock Synchronization in a Local Area Network," (in

preparation).

Lampson1983.

B. Lampson, "Hints for Computer System Design," Procs. of the 9th SOSP,

Operating System Review, vol. 17 ,5, pp. 33-48, ACM, October 1983.

LeLann1977.

G. LeLann, "Distributed Systems - Towards a Formal Approach," Proceedings

of the IFIP Congress 77, pp. 155-160, 1977.

Vitanyi1984.

P.M.B. Vitanyi, "Distributed Elections in an Archimedean Ring of Processors,"

Proceedings of the 16th Annual Symposium on Theory of Computation, pp.

542-547, ACM, May 1984.

- 16-

Appendix

In this section we will compute the probability that an election attempt results

in a collision. We will ignore the case, described in section 5.2, of collisions

generated by the loss of election messages. Being this last case rare, it is more a

curiosity than a real problem.

Every time an election timer expires and a time daemon starts an election,

there is a window of 8 seconds during which a collision may happen. Since upon

receiving the election message each time daemon reinitializes its election timer, 8

is equal to the transmission time over the network plus the longest scheduling

delay of the various time daemon processes. This window is, therefore, very small.

The problem can be formalized as follows. Let T1, T2, ···,TN be the values of

the election timers of N time daemons. They are independent random variables

with uniform distribution over the interval [r, r+ R], where r is larger than the

time between two subsequent synchronization rounds, as discussed in section 5.1.

In order to simplify the following derivation, we will work instead with the random

variables X1, X2, · · ·, XN uniformly distributed over [0, R]. Let M1 and M 2 be the

smallest and the second smallest values among the X,'s respectively. Then, the

probability that an election attempt results in a collision is P[M 2-M 1 ~ 8]. This

probability can be computed in the following way:

R

PCM2-M1 ~ 8] = fP[M2-M1 ~ 8IM1=x]{M
1
(x)dx

0

R

= fP[M 2 ~ 8+xiM 1 =x]f M/x)dx
0

where fM
1

is the probability density function of M1.

(1)

Given that M 1 =x, the values of the remaining N -1 random variables are

uniformly distributed over [x, R]. Therefore, for O~x~R -8 :

P[M2 ~ 8+xiM1=x] = P[min<V1, U2, · · ·, UN-1) ~ 8]

[I
N -1

= 1 - R-x-8
R- X

where U1 , U2, · · ·, UN_ 1 are independent random variables with uniform

distribution over [0, R- x] .

For R-8~x~R, we have instead:

P[M2 ~ 8+xiM 1=x] = 1,

- 17-

thus (1) becomes:

(2)

The density function fM
1
(x) can be written as the derivative of the distribution

function:

0 ifx<O

d d d R-x N
{M

1
(x) = dxFM

1
(x) = dxP[M 1 S x] = dx 1-(~) ifOsx<R

1 ifx~R

Thus finally:

I I
N-1

N R-x

=I R ll ifOsx~R
0 otherwi.Se ·

P[M 2-M 1 S 8] = J 1- R - x- 8 N R - x dx + J N R - x dx R-~, I IN-1]1 IN-1 R I IN-1
0 R -x R R R-~ R R

Observe that for all Osx<1 and for all positive integers N, we have:

1-(1-x)N s Nx

with very good approximation when x is small, in the sense that:

lim 1-(1-x)N = 1 .
x-+0 Nx

This provides us with a sharp upper bound for (3):

I BIN 8
1- 1- R s ~ .

(3)

--

