Corner-based Geometric Layout Rule Checking
£or VLSI Circuits

By
Michael Helmut Arnold

B.S. (Michigan State University) 1978

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in

Computer Science

in the
GRADUATE DIVISION
OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

oo

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
NOV 1985 2. REPORT TYPE 00-00-1985 to 00-00-1985
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Corner-Based Geometric Layout Rule Checking for VL SI Circuits £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Berkeley,Department of Electrical REPORT NUMBER
Engineering and Computer Sciences,Berkeley,CA,94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Layout rule checking istraditionally done through sequences of region-operations, and a few experimental
systems use pixel-based processing. This dissertation examines these approachesin detail, and then
proposes cor ner -based checking as an efficient and flexible alter native. In corner-based checking
contextual rules, specifying conditions at cor ners matching patterns, are applied to the design. A rule
compiler isused to convert the user-readable rule description to an efficient, indexed, internal form prior
to checking. Hierarchical and incremental check algorithmsthat eliminate redundant checking are also
developed. These algorithms greatly enhance the effectiveness of layout rule checking. M easurements from
several systemsimplementing corner-based checking and the hierarchical and incremental algorithms
demonstrate their viability and effectiveness. Cor ner-based checking has several advantages. First, it
checksall rulesin asingle pass over thedata. Thisavoidsthe 1/O bottleneck that iscommon in the
multi-pass r egion-oper ation systems. The rule-based nature of corner-based checking providesinherent
flexibility: variants of design rulesthat would require the coding of new operationsin region-oper ation
systems can often be accommodated by modifying the rule specification. Corner-based rules also per mit
directional context, which isnotorioudly difficult to establish in region-oper ation systems. Finally

cor ner-based systems associate violations with pointsin a design rather than edgesor regions. The
consequent simplicity of piecewise processing facilitates hierarchical and incremental checking.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 218

unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Corner-Based Geometric Layout Rule Checking
for VLSI Circuits

Copyright © 1985
by
Michael Helmut Arnold

CORNER-BASED GEOMETRIC LAYOUT RULE CHECKING
FOR VLSI CIRCUITS

Michael Helmut Arnold

Abstract

Layout rule checking is traditionally done through sequences of region-operations, and a
few experimental systems use pixel-based processing. This dissertation examines these
approaches in detail, and then proposes corner-based checking as an efficient and flexible
alternative. In corner-based checking contextual rules, specifying conditions at corners
matching patterns, are applied to the design. A rule compiler is used to convert the user-
readable rule description to an efficient, indexed, internal form prior to checking. Hierarchical
and incremental check algorithms that eliminate redundant checking are also developed.
These algorithms greatly enhance the effectiveness of layout rule checking. Measurements
from several systems implementing corner-based checking and the hierarchical and
incremental algorithms demonstrate their viability and effectiveness.

Corner-based checking has several advantages. First, it checks all rules in a single pass
over the data. This avoids the I/O bottleneck that is common in the multi-pass region-
operation systems. The rule-based nature of corner-based checking provides inherent
flexibility: variants of design rules that would require the coding of new operations in region-
operation systems can often be accommodated by modifying the rule specification. Corner-
based rules also permit directional context, which is notoriously difficult to establish in
region-operation systems. Finally corner-based systems associate violations with points in a
design rather than edges or regions. The consequent simplicity of piecewise processing
facilitates hierarchical and incremental checking.

The work described here was supported in part by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 3803, monitored by the Naval Electronic System Command under Contract No. N0003¢-78-G-
0013-0004.

Acknowledgments

I would like to thank Ann Lanfri, Chong Lee, and Bill Weir of MCV and Metheus
Corporations for their continuing cooperation and support in my research. I am also in debt
to Greg Cardell, Myron White and especially Keith Billings for their ideas and work on Leo
and Leo45, the Metheus corner-based systems. I would also like to thank Jack Vernetti (for

his help with the plots) and all the others who have helped make my association with Metheus

productive and enjoyable.

I would like to thank Howard Landmars and Stephen Pope for their help and comments
with the development of the Lyra rulesets, and the many others at Berkeley and in industry

who have enriched my research by their attention.
This research was funded, in part, by Defense Advanced Research Projects Agency.

Last, but not least, I am grateful to my research advisor, John Ousterhout. The
corner-based idea was born out of a sequence of discussions with John in which I volunteered
half-baked ideas and John shot them down (Johm is a crack shot). In addition to eventually
leading to this dissertation, these meetings taught me the value of simplicity and precision in
computer science. This is the single most valuable lesson I learned while at Berkeley, and [

know it will continue to bear fruit in the years to come.

CHAPTER 1. Introduction

Table of Contents

...

1.1 Design Rules and Design Rule Checkingcccoumiieniccscnscniemnnnnssnssninecscecssanen.
1.2 Scope of My ReSearchocoeercncunimmruimitesinnisms s
1.3 Ideas in My ReSEAICh ...coiiiiirerieensccnscnsnsiiinsnsasnnisnasns s st nssssssasasasessess
1.4 Outline ’
CHAPTER 2. The Nature of Design Rulescommnnincniisnininsnnnaniinenen.
0.1 IDLTOQUCLION oveveereererernereemrecessnsasnismsasssssasmsnsatsnsssssssesnanssssnssssssassonssntassssansacessas
2.2 Integrated Circuit Fabrication and the Origin of Design Rules ...cococeececcenecee.
2.3 The Form of Design Rules reteesesseesassassanttasareiessttasssnraseantes
2.4 Automatic Design Rule Checking and Design Methodology ...oecveeenccenrinirunneens
2.4.1 The Spectrum of Methodologiesccccocuiieimnrisiniiesissisunissienssnnmananmsnssscacerees
2.4.2 Design Rules and Other Constraints Employed by the Methodologies
2.4.3 The Need for an Automatic Topo-Tolerance Checking Capability.ccceeeee
2.5 SUIMIMATY .ouveerreesrrosesecasstssssssssesesessssasssassssisrststsssersmssstasasesestasssssmssassiasasssaseass
2.6 REfEIENCES ..ooueeveeerererenseseaeseossassnsstereasanssesssssstasertsmsssstasmtasssssstastasenitsnsantarsasanss
CHAPTER 3. The Reglon-Operation Approacheiinnnisiiinicnnene
3.1 IDEPOQUELION .ooeeoireierrereenerereaseseesarassssesssesanassasssesestsssessntosessnensiassansassssnsiossosnisnse
3.2 Mask Artwork and Mask Artwork Functionscccoovnvennninnicncnccsiniiinionannns
3.3 Region OPerationsceeeiseecosueeerssnstscsmsssissmsnsumtsssesensesessssasasmissenasasansscnsnsssens
3.3.1 Tolerance Qperations ...
3.3.2 Boolean OPETationsceccorerioresesesnacsurssssinssmsisnatisssssasstessossamasssnnstsasessnssesians

3.3.3 Topological Operations

..

13

13

16

22

26

29

30

30

33

34

36

36

37

38

40

46

46

3.3.4

Sizing Operations ..

...

3.3.5 Connectivity and Tag OpPerationscccccecevnromsintiiniimminininiiissnenss e

3.3.6 Area, Length and Perimeter Checks ..ot

3.4

3.5

3.6

3.7

Scanline Implementation of Region Operationscoeeeniiniiiinniciianniiens

Pros and Cons of the Region-Operation Approachcoveieviinininniiininninens

SUMMALY .ccoeeeeeeennen

References

...

...

CHAPTER 4. Survey of Non-Corner-Based DRC Systemsc.cocviinnnee

4.1

4.2

4.2.8

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

Introduction

...

Region-Operation SYStemsccereceeeteresniesieriimnisieisnnninssnsnsssassestsssninnsasanens

Baird's System

...

Lauther's AIGOTIthIM .coeoveeicciiiiicininne ettt

Haken's System

Hitachi voooovveeeeeraennee

Other Systems
Pixel Systems
Baker’s System

Seiler’s System

Mudge’'s Approach

Eustace’s System ..

Zech's Architecture

...

...

...

...

...

...

...

...

...

iii

49

51

53

53

56

60

61

64

64

65

66

67

68

68

69

69

69

69

4.4 SUIMMATY .eceeeererereecrersrecrieresissssesesssasstsssassesss st stsas s sansiasssatssaa s nasaasssassasassssscanse
4.5 RELEIEICES eevereereeeeeeeevrerteessnesetasmeesrtssasissessassssnassssssnssastsnssasatesstssstansassostossanssanes
CHAPTER 5. The Corner-Based Approachiriienrecnrenionenininnn,
5.1 INETOAUCEION .ocveerviervereerrerrerierceetesesasesssessnessessesntesmecsssssesessstassosasssasanssnasssssasnnnsas
5.2 UnconditioDal RUIES ..cooriiiiiiceiirenciiiirteiicnees st sanencacsstssssnsnssssnsas s ssanans
5.3' Geometric Conditional Rulescccecorviciiiiiimiiniiienerninencensssnsesisee s
5.3.1 Transistor Extension Ruleccccooiviiiimiiniiiniierecvenncesssescenicesseneenes
5.3.2 Reflection RUIE ...ocveevrerircie ettt cses et s st asse st nn e s as s aans
5.4 Nongeometric Conditional Rulesccoveeeiieniiimmniiiiiinccaee
5.4.1 Internode SPACINE ..cccccevececrerririnunsintesiereininransesesnscssssestisnesinsresssansnsansnsasassssesnss
5.4.2 Buried to Unrelated Polysilicon SPacingcoocvveieerieecccciiinnnnninnniiniineeean
5.4.3 Power and Ground Bus Width eereeeeaeeeae et ts et ssen e R e R bR A e
5.5 SUMMATY .eeceerereeerceccesecsetsremssissessmastassasesssesssesesosssstassssassnsnsasssesotsnstssassanosssoasostss
CHAPTER 8. Implementation of Corner-Based Checkingccccovivernnnnn.
6.1 IDETOAUCEION covvvrrreiiireeierreeeiresesseresaneassonsesanssssessssnrsnsanesssarassasssstsssssnsnasssssssarsasssns
6.2 Internal Rule Representationivieceiresissseesencccnsstnsconiosisintisemsesssssnanssass
6.2.1 Disjunctive Normal FOrmcccooiriiieiiceinecniersitiiicinee e
6.2.2 Layer EXPressionsc.ccocvoeeierienensissstniestsneesassnessissssinesssisssnese s snassasesesesncns
6.2.3 COTNMEOIS ..ooierererreerernreeaasatesrassseeracsassessssrtesrssssnntessssssrassntteseasantisssssesssssssnssessssanasas
6.2.4 CODNAILIONS .ovovvevererieriereesteermeeesecesetersutesssmsesnnesannrassssasnneasssaersscraassessssansssaninssnnens

6.2.5 Condition Expressions

6.3 Checking Algorithm ..

6.3.1 Corner Detection

6.3.2 Condition Evaluation

..

...

...

82

82

86

97

98

104

107

109

109

111

116

116

117

118

119

120

121

123

126

130

6.4 The Rule COMPIlEr .eeciiiieeieiiiccire et see st sene e e asesees 131
6.4.1 Conversion to Disjunctive Normal FOImM .ooviriiiiiiirniiciiiininnnticnicnseneans 133
6.4.2 Generation of Relevant-Layers Tableooceivoiiimmrieccciinneenininennnaans 136
6.4.3 Conversion to Decision-Tree FOIMc.covvivmniineniiiniinoreniniiisinniiniinsinnennnee 137
6.5 SUMIMATY .eocveecreeemrreracererereeseconissnessesssasrassaasssssssstastssnssnessnsteassssstastasassssssnsssssssnss 138
6.6. REICIEIICES woeeeeeeereierrreessrrsreeseassneasersosesssnresetestsestanssasssassntsstesassssstiostsosssesssronsnas 140
CHAPTER 7. Survey of Corner-Based Systemsccoovnnninniinniiniinnniiinienns 142
7.1 IDEPOAUCHION 1oeerereiiieeeerieeeeetrecsneeseeesoeessosatrosseassassanensansensssnasansonssassssssssnerassssnnses 142
T2 LYTB coreieeeiricesceceessenisstsreseansnesens et s s sasn sttt s e bt a R et 142
7.2.1 Features and RestrictiOnscccccovceerrminirieersnmsssesssnsisentensrmmssmssesssansssteossassanes 143
7.2.2 Implementationc.ecceeiereimesinsenentesteseetesienesenstenine s s et n e s e nas s sase st 146
T8 MBI oeeeciieeeeeiceiteestssaseesatsstassessnesesmeesrsesasastns st ssres e ae st e sn s e s s A s E e RS b hen e nes 148
7.3.1 Features and Restrictions ' 149
7.3.2 Implementationccccvmiiiiiiiininninenseecnesese e e 150
7.2.3 Rule Checking Capabilitiesc.ccccviiniinmrnnmniniricneciniininnieitcsnrna e 151
O S 7. 1 SO RS UROUPPP OO PP PP PTRE N 151
7.4.1 Features and Restrictions .. 152
7.4.2 IMPpIeMentationcccceoeemriinmirirerineiiniestsreersnnsees sttt sttt 152
7.4.3 Rule Checking Capabilitiesoceeveuimmnmnriinieeceerreccncniiran e 153
.Y, £V 3 T U OO P OSSP TR SSTOPDROP 154
7.5.1 Features and Restrictionsccccociemvrmmiriiniiiiniiiiicereecninesstrscsessssancssssnsssnsessnnees 154
7.5.2 Rule Checking Capabilitiescooiiiriniirniiniinirn ettt 156
76 INLEl DROC eeeieeeeeiee e rrvtrrsaeescsecsssetessssessnsasssaas st e s san e ssnas sssass sansesssansssasssnntes 156

7.7 SUIMIMATY eeireccceeereececrecsesissnsisanessssnsssssressnanestressssesssstioatessssnmssssssessstssssessassnesssases 156

CHAPTER 10. Summary

10.1

Previous Approaches to Design Rule Checking

T8 REfETEICES wooiervieerereeersertessnesenecsestossisessmassansontassasstessesstsasssmmresrantssssasaisssesereoses
CHAPTER 8. Hierarchical and Incremental Checkingc.cccvvvvninnainiinnacns
8.1 IDETOAUCEION .eveeveererristnernesnnesneseantiassstessrasserniessamassasaesatvostestssassssmsssantassasusasassess
8.2 Hierarchical Checking - Background ...
8.2.1 WHhItDey’s FIlLer ..coccereoiviririniereresinnnnne ettt et st set s
8.2.2 Scheffer's Strict HIerarchy ..occcovimiiiineniiireenien sttt
8.2.3 Newell and Fitzpatrick’s Derived Disjoint Hierarchyccoociiiiniiiniannnnes
8.3 Direct Processing of Unrestricted Hierarchyoceeeeviiiiniiiimiiniiiinciecne
8.4. Incremental CRECKINE ..ocecorvcmseciisriirriniresrnennestesaesssssistssinens st ees
8.4.1 LEOAS ooovreeereeeeeireineseessarssersasssntassnessessissabsassatassaraa et et et te st i s et s saessR s e e tassnt s s iras
8.4.2 MAGIC 174 oorereceeenicnerniinrcststnnennassasnessscatsassssmemasesessanssa st ssansssasassssasarsnsssansasas
8.5 SUMMATLY 175 cocirereiiicrnrnirnniterrsetestnes st st snrs i s e asasnasassnsssassassassnnsssnsnssnsanncs
8.6 RefErences 176 coocvviiviieeeereeecsseessenessesissssssrnmesssrssssssassansssssessansssassssssnsassntsassansssses
MEABULEIMEALS ..oceeeveiiiiiiiviereeteeeenasersecsssteresrstressassntrassneresssststesssantessssnnasassssnessessssssennsoss
9.1 Introduction ,
9.2 RaW PerfOrMANCEoeeeeeeeeecrcsariisenisssiasssniessenssssessssnesssesessnsissansessansssssassssnssssases
) 9.3 Hierarchical and Incremental Checkingcoovomeenirirmeiniinciiiiiieeiene
9.4 Sensitivity of Check Rate to Design Density ...,
9.5 Sensitivity to Data Organization ...
9.6 Layer Expression EVAluationceeeieeicoieniiiniinnn e
9.7 Region Condition Processingcccoceemscinrcesisinnsnsisninsnissnsssss s cscssensasaens
0.8 Rule INAeXIDE ..eecvereerereereeitniieieisise e te sttt s s

..

vi

158

158

159

161

162

166

167

171

172

174

175

176

178

178

179

181

183

185

185

188

190

192

192

4]

10.2 The Corner-Based APProach ..ocociveiernncininniiniinresnen st
10.3 Hierarchical and Incremental Checkingccooviiiiiniinniminninneiiicniiinsinines
10.4 Implementationsoecieermersemececsiasmisininssra sttt s
APPENDIX A. Benchmark Designs ...,
ALl SEALISLICS veerreerreeesreereessereseneseissrissnessaranseasamassmessosssemssnsasssantasentssatsssstassnmsnnasaneions
A2 PIOS oooeeeeeeerieuensssseasassssasessostsssasonsanessasastasesestoniossrmstsrtanaanastanestesiossuitsnessanansseas

vii

193

194

195

197

197

198

L)

CHAPTER 1

Introduction

This thesis presents my work in automatic design rule checking for integrated circuits
(DRC). It introduces corner-based design rule checking as an efficient and flexible alternative
to traditional region-based checking, that is well suited for hierarchical and incremetal
checking. A general formalism for corner-based rules is developed that can handle all-angle
data and complex conditional rules, and its implementation is considered. A rule compiler is
introduced to preprocess the input rule description for efficient processing. Hierarchical and
incremental check algorithms are also developed. The identification of violations with points
rather than edges or regions, makes corner-based checking particularly well suited for
hierarchical and incremental systems. Several corner-based systems, are discussed. In
addition, background material on the nature of the design rule checking problem, and other

work in the area, is provided.

This chapter gives an overview. It briefly describes design rules and design rule
checking, discusses the nature and scope of my research, outlines the most important ideas

arising from and/or validated by the research, and outlines the rest of the thesis.

1.1. Design Rules and Design Rule Checking

Integrated circuits are specified in terms of geometric mask patterns, or artwork, for
each of the layers in the circuit; see Figure 1.1. Design rules specify tolerances on thes;e
patterns. Tolerances typically govern width and spacing on conducting lines and various
extensions and enclosu;es on circuit constructs such as transistors and contacts; see Figure
1.2. Design rules stem from the limitations of the circuit fabrication process. They are an
abstraction of these limitations that acts as the interface between circuit design and process

engineering. They free the circuit designer from the intricate details of the fabrication process

11

INTRODUCTION ' 2

and its limitations: he need only make sure he obeys the design rules.

It is important that design rules are checked automatically. Current designs typically
contain one million or more separate geometric figures, making for very tedious and error-
prone manual checking. Manual checking is certain to result in missed design rule violations.
Such violations necessitate expensive and time consuming additional fabrication cycles. In
addition it is very difficult to locate design rule violations by probing 3 finished circuit. Some
violations are likely to go completely undetected, and result in degraded performance and a
lower yield of working parts throughout the lifetime of the product. The only acceptable

solution is complete automatic design rule checking of the mask artwork prior to fabrication.

Figure 1.1. - Mask Artwork. This is the mask artwork for the basic register cell used in the
RISC-II microprocessor chip developed at Berkeley. The RISC chip contains over 4000 such
¢ells, comprising approximately one quarter of the total chip srea. Each type of shading
corresponds to a distinct mask layer in the design.

1.1

INTRODUCTION 3

e e i e
a I /|
LA s]
! ! ! ! ! !
! ! ! F ! !
! ! ! ! ' !
! | ! =3 |
! ! ! ! I !
! ! ! ! ' !
i i g K P
L v L
L7 .- Lo
e 2
(a) Diffusion Width (b) Diffusion Spacing
/
1 r !
1 1 Y,
7
: !
1 [}
............. T
(c) Metal-Contact Enclosure (d) Transistor Extension

Figure 1.2. - Typleal Design Rules. These examples are taken from the Mead-Conway
rules for nMOS. Parts (a) and (b) give minimum widths and spacings {respectively) for lines on
a particular layer. Parts (c) and (d) specify dimensional constraints on the formation of
contacts and transistors (respectively). A design rule set contains anywhere from two dozen to
over two hundred such rules. Some rules are more complicated; examples will be given in the
next chapter.

To be useful, a design rule checker must meet several requirements. First it must be
accurate. Since a single design rule violation can render an entire design nonfunctional, a
design rule checker must miss no violations. In addition, a design rule checker that hides

genuine violations in a sea of false alarms is almost as bad. This can happen if the checker

1.1

INTRODUCTION 4

inaccurately handles just one commoaly occurring mask configuration. Thus a design rule

checker must be accurate: it must miss no genuine violations, and generate few false alarms.

A useful design rule checker must also be flexible enough to check a variety of design
rules. There are many integrated circuit technologies in use, and for each technology a
number of fabrication lines. Each fabrication line has its own characteristic limitations, and
hence its own design rules. In addition, as fabrication lines are refined and new ones
introduced, design rules change over time. The natures of design rules are also diverse.
Conditional design rules exist, that depend on factors as varied as the geometric context of a
mask feature, the length of conducting lines, the electrical characteristics of a particﬁlar node,
and even the intended function of the signal carried by a line. To be useful over time, and in
more than a narrow context, a design rule checker must be flexible enough to check a variety

of rulesets involving a variety of types of rules.

A design rule checker must also perform reasonably. As design complexity continues to
grow, design rule checkers are faced with large and ever increasing amounts of data to
process. A design rule check on a large design typically takes many hours or even days to
complete. Such checking is expensive in terms of computer resources. In addition it makes
design rule checking a batch process that is typically deferred until the end of the design
cycle. Design rule violations detected so late can be quite difficult to fix: a significant amount
of mask artwork in the vicinity of a violation may need to be altered to make room for the
fix. Expensive design rule checking also inhibits design refinements, since any change in the
design will require another costly design rule check. With the size and complexity of designs
continually increasing, it is clearly important to look for efficient ways to do design rule

checking.

In fact, the basic technique used almost universally for design rule checking was born
more than a decade ago when designs were much smaller and less complex than today. This

technique is poorly suited for processing designs of today’s scale. In this approach, rule

1.1

INTRODUCTION 5

checking is implemented through sequences of region-operations on one or two layers at a
time. These operations typically yield a new, intermediate, layer as output. Layers
frequently consist of over 100,000 figures, and typical rulesets require hundreds of these
operations. This results in the generation of great amounts of intermediate data during a
design rule check, and a great amount of 1/O. The number of data items is very large, and
the amount of computation per item relatively small. Hence processing is 1/O bound, and

slow.

Several ideas for speeding up design rule checking bave been proposed. One approach is
to use special-purpose ha‘rdwnre. A number of hardware-assisted systems have been
suggested. These systems employ pixel-based representations for the mask data; see Figure
1.3. An array of square pixels is laid over the design, and each pixel is marked with the mask
layers occurring in it. In order to have sufficient resolution the pixel-array must be fine. A
fine array over an entire VLSI design involves a very large amount of data. Thus, like the
traditional region-operation approach, the hardware-assisted approaches involve a large
amount of data, ;vith relatively little processing per data item, and hence tend to be
constrained by 1/O bandwidth. Such special-purpose processing engines are -also likely to be
complex and expensive. No fully functional hardware-assisted design rule checker has yet

been completed.

foe elimination of redundant checking can be very effective in speeding up design rule
checking. One such strategy, hierarchical processing, involves checking only one instance of
repeated structures in a design. Since designs typically contain much repetition, such a
strategy can reduce computation very signiﬁcﬁntly. For example, hierarchical checking of the
Riscl microprocessor chip with Leo45 speeds up checking by almost a factor of 6. Another
strategy, incremental checking, is to check only those portions of a design that have been
modified since the last check. Again, this can greatly reduce the computation required for

checking - particularly at the end of the design cycle, when minor modifications are typically

1.1

INTRODUCTION 6

Metal

nil Poly Metal/Poly/Cut

Figure 1.3. - Pixel-based Representation of Mask Artwork. In pixel-based systems, a
square array of pixels is laid over the design, and each pixel is marked with the layers present
within it. The pixel-array must be fine enough so that approximations at pixels that are only
partially covered by mask layers don't result in false design rule violation reports or missed
violations.

made t6 fix bugs detected by design rule checking or simulation. An incremental check of
Riscl, (again by Leo45) after a minor modification to the design takes less than 1% of the

time for a full check. Lyra and Leo, corner-based systems developed in conjunction with this

research, pioneered hierarchical and incremental checking (respectively).

1.2. Scope of My Research

My research has centered around an alternative approach to design rule checking: a
corner-based approach where checking is done in terms of the corners in a design and their

immediate environment. Corner-based checking is a fundamentally different approach to

INTRODUCTION 7

4

design rule checking that addresses the 1/O bottleneck problem traditionally plaguing design
rule checking. The input rule description is preprocessed with a rule compiler to generate an
efficient, indexed, internal rule form and all rules are processed in parallel in one pass through
the design artwork. Corner-based checking is both accurate and flexible. It lends itself to
checking rules involving directional contex‘t, which are notoriously difficult to check in

traditional region-operation systems.

My research also included the development of Hierarchicel and incremental algorithms
that reduce redundant checking and hence make design rule checks more efficient and
interactive. Although these algorithms could be implemented on top of a region operation
system, the corner-based approach, which associates violations with points rather than edges

or areas, is more convenient.

Corner-based checking was first implemented in the Lyra system, in 1981. Lyra was
written to test the the basic soundness of the corner-based approach and fill the need for an
accurate design rule checker at Berkeley. It demonstrated that corner-based checking can be
both accurate and flexible. It has been used on a number of large design projects, including
the RISC microprocessors at Berkeley, spanning a number of ntMOS and CMOS rulesets. On
its first real use (for the RISC-I chip), Lyra found violations that had been missed by a
previous DRC as well as by manual checking. Even though written in Lisp, Lyra was about 3

times as fast as the region-based NCA system, which was the industry standard at the time.

Lyra was the first hierarchical design rule checker. It demoanstrated the feasibility and
effectivéness of hierarchical checking. With interfaces to the Caesar and Kic geometric
editors, Lyra also pioneered interactive design rule checking. The interface allowed designers
to invoke Lyra on parts of the design currently being edited for “immediate’ feedback on
design rule violations. This feature proved quite useful to designers. Lyra is part of the
Berkeley CAD tool distribution, and has been used at several hundred unviersity and

industrial sites.

INTRODUCTION 8

The viability of corner-based checking was further tested with Leo, a second,
commercial, corner-based system. Leo was developed in conjunction with Metheus
Corporation for use in their VLSI design workstation. Wr;tten in C with an eye toward
efficiency, Leo is 3 times as fast as Lyra. In addition Leo is incremental, (it rechecks only the

parts of a design that have been modified). Leo works quite well; its incremental and

interactive checking capabilities have been selling points of the Metheus system.

The Lyra and Leo systems are useful odly within a restricted context. They handle only
manhattan designs, where all feature edges are lined up horizontally and vertically. A later
version of Leo, Leo45, allows edges at 45 degree angles as well, but still excludes all other
angles. The rulesets handled by these systems are composed of relatively simple, mainly
unconditional rules. These restrictions are in the spirit of the simplified design philosophy
popularized by Carver Mead and Lynn Conway. They are suitable for the Mead-Conway
design style widely used in universities and a growing segment of the industrial community.

They simplify the implementation of the systems, and improve performance.

Nevertheless, the question of the usefulness of corner-based checking in more general
contexts must be addressed. To explore this issue, I have developed a general corner-based
formalism and considered its implementation in detail. This formalism has provisions for
processing all-angle mask data, specifying complex conditions on the interrelationship of
features at cornmers (capable of capturing complex conditional rules), and provisions for the
incorporation of nongeometric data, (again for checking conditional rules). This work shows
that a general corner-based system is feasible, but that preprocessing would be required to
generate any nongeometric contextual information used in the rules. The rule formalism is
quite flexible. The proposed implementation uses standard compiler techniques as well as
some tairly elaborate logical manipulations to transform the input rule specification into 3

simple regular internal form that can be efficiently checked. Though the performance of such

a complex system can not be accurately predicted without implementation, it is encouraging

1.2

INTRODUCTION 9

that much of the complexity can be shifted to the rule compiler that transforms the input rule
specification to an efficient internal form. The rule compiler is only run infrequently, so its
efficiency is not a large concern. The actual rule checking is still relatively simple, though
more complex and slower than in the more restricted systems that have been implemented.
Many conditional rules rely on preprocessing to generate additional context information.
Such preprocessing would presumably be done using traditional region-based operations. This
suggests a hybrid system, involving region-based preprocessing to generate needed context

information followed by the more efficient and flexible corner-based tolerance check.

1.3. Ideas in My Research

A ;mmber of key ideas on design rule checking have emerged out of my research. These
ideas, more than particular systems or even particular algorithms, are my contribution to the
field. Some of the ideas, such as pattern-directed, rule-based, processing and point/edge
tolerance checks, were mew. Others such as hierarchical, and incremental checking had
previously been proposed, but were elaborated on (and validated) by my work. Still others
involving more general corner-based systems, were just suggested by the research, and remain

to be developed. The most important ideas are introduced below.

Corner-based checking uses pattern-directed, rule-based processing, a technique borrowed
from Artificial Intelligence. The pattern-directed processing of corners works as follows. Each
corner in a design is analyzed for certain mask patterns. The presence of certain predefined
patterns triggers relevant rules. The rules in turn specify conditions to check at the corner.
Care is given to index the triggering patterns so that the relevant rules at each corner can be
identified quickly. Processing of a design involves one pass through the data (all rules, and
layers are processed in parallel), and no intermediate layers are generated (the layers are
checked “in-place’”). This approach is radically different from the traditional region-operation
approach, where rules are checked through sequences of operations, and each operation

involves a separate traversal of the mask data. The pattern-directed processing concentrates

1.3

INTRODUCTION : 10

the checking per data item scanned, and thus avoids the I/O bottle neck problem. Pattern-
directed processing, looked at from another perspective, is rule-based. The rule-based nature
of corner-based checking provides the characteristic flexibility of rule-based systems. Variants
of design rules, that would require the coding of a new operation in region-based systems, can

be accommodated in a corner-based system by the much simpler process of modifying a rule.

Another innovation of the corner-based approach, is the use of point/edge based
tolerance checking, that is tolerance-checking involving the measuring of distances between
corner-points and edges, rather than between pairs of edges; see Figuré 1.4. This technique
localizes checking to points in the design rather ‘than edges or regions. Violations are
associated with corner-points, and the independent checking of a piece of a design can be
precisely defined as checking all the corner-poicts of that piece. The consequent simplicity of

piecewise checking facilitates the implementation of hierarchical and incremental strategies.

Though hierarchical processing has been widely heralded as the solution to the excessive
times required for design rule checking, hierarchical systems have been slow in coming. Lyra
appears to have been the first fully-functional hierarchical design rule checker. Lyra
demonstrated that hierarchical checking of structured designs can be effective, and that
special restrictions on cell overlap are not required: as long as cell overlap remains relatively
small, hierarchical checking in Lyra is eflective. In addition Lyra’s special handling of arrays
proved very effective. Most of the regularity in VLSI designs is in the form of arrays. Special
handling of arrays alone will give most of the advantages of hierarchical checking. There was
also a negative result: checking of poorly-structured designs was as much as several times
slower hierarchically than flat! This was because mask features involved in cell interactions

ended up being checked at several distinct levels in the hierarchy.

Once hierarchical checking was in place, incremental checking proved easy to implement
and very useful. User response to incremental checking in Leo was extremely favorable. Leo

users frequently run design rule checks each day or so. Violations no longer go unnoticed

INTRODUCTION 11

Y4

(3) Edge/Edge (b) Point/Edge

Figure 1.4, - Alternative Tolerance Check Methods. Traditionally, tolerance checks on
mask regions have been done by checking the distance between region edges {a). In corner-
based checking, tolerances are measured from corner points to region boundaries (b). Such
point/edge checking has the advantage of very naturally splitting up into piecewise checks:
checking a piece of 2 design, corresponds to checking tolerances from corner-points within that
piece.

until after the design is complete and they are hard to fix.

Several new design rule check systems have incorporated some of the above ideas. The
Mart design rule checker, developed by Bruce Nelson and Mark Shand at CSIRO is based
directly on corner-based checking as in Lyra. The new internal Intel design rule checker uses
point/edge tolerance checking to facilitate piecewise processing. The Magic design rule
checker, recently developed by George Taylor and John Qusterhout at Berkeley, is strongly
influenced by Lyra. Though edge-based rather than corner-based, the Magic system uses
pattern-directed rule-based processing. Its hierarchical algorithm is similar to Lyra’s, and its

handling of arrays is identical. All these systems are discussed in Chapter 7, and references

1.3

INTRODUCTION 12
are given at the end of that chapter.

1.4. QOutline

About half of the material in the following chapters provides background. It discusses
the origin and nature of design rules, and presents the various approaches to design rule
checking. This material provides an introduction to the design rule checking problem, and the
context for the discussion of the corner-based approach, and the hierarchical and incremental

algorithms of Lyra and Leo.

The remaining chapters are organized as follows. Chapter 2 considers where design rules
come from, what they look like, and their role in the various design methodologies. It
develops the topo-tolerance model for design rules that is used through out the thesis.
Chaptef 3 presents the traditional region-operation based method of design rule checking.
Chapter 4 surveys existing design rule checkers, giving examples of traditional systems as well
as other approaches. Chapter 5 introduces corner-based checking in fully gemeral form. It
develops a corner-based formalism and explores the scope of rules that can be handled by it
with a number of examples. Chapter 6 discusses how a general corner-based system might be
efficiently implemented. Chapter 7 surveys actual corner-based systems, focusing on the
restrictions of each: how they simplify the implementation and how they limit rule checking
capabilities. Chapter 8 discusses hierarchical and incremental checking. It presents both the
approaches I used in Lyra and Leo, and the approaches used in other systems. Numerical

measurements are presented in Chapter 9. Chapter 10 is the the conclusion.

1.4

13

CHAPTER 2

- The Nature of Design Rules

2.1. Introduction

Design rules specify constraints on the minimum size of circuit components, and the
maximum component density for integrated circuits. These constraints are given as minimum
tolerances on various spacings, widths, enclosures and extensions in the mask artwork for the

circuit. See Figure 2.1 for examples.

/i /i e
v N rol
tood Lo oo
b I =g |
oo ool ool
Pl L A
e L/ b/
1.7 (W4 w’
o2 o
(a) Diffamsion Width (%) Diffsion Spacing
‘l l- X \
,l,gg, J DO
/ / N J
TN 4 N /
__/ >
(¢) Metai-Consacs Enclosure (d) Tramisor Boension

Figure 2.1. - Typical Design Rules. These examples are taken from the Mead-Conway
rules for tMOS. Parts (a) and (b) give minimum widths and spacings (respectively) for lines on
a particular layer. Parts (c) and (d) specily dimensional constraints on the formation of
contacts and transistors respectively. A design rule set contains anywhere from a couple dozen
torover two hundred such rules. Some rules are more complicated; examples will be given later
in this chapter.

2.1

THE NATURE OF DESIGN RULES 14

There are a number of reasons for making devices as small as possible and component
density as high as possible. Most importantly, the probability of any given chip being
fabricated correctly (the yield) decreases dramatically as overall circuit size grows. This is
because fatal defects, caused by impurities in the silicon crystal or dust contamination during
processing, occur with approximately fixed and independent probability in each unit-area of
the circuit. Thus the probability of at least one (fatal) defect occurring in a circuit grows
exponentially with the area of the circuit. Hence smaller circuits have much better yield and
are more economical to produce. In addition, there is a practical limit on the maximum
circuit size that can be fabricated: beyond some size, yield will be so astronomically small
that no fabricated chip is likely to work. Thus smaller devices permit more complex chips.
Even disregarding yield, smaller circuits are more economical simply because there are more
chips per wafer fabricated; see Figure 2.2. Still another reason for minimizing component

sizes is that circuits composed of smaller components are faster and consume less power.

Die Sites

Wafer A. Wafer B.

Figure 2.2. - Wafers and Dle Sites. Multiple copies of an integrated circuit are fabricated
simultaneously on circular silicon wafers. After fabrication is completed, a waler is fractured
(or diced) into rectangular chips (or dice). Each chip contains an individual copy of the circuit.
The smaller the area of a chip, the more copies can be fabricated per wafer, and the more
economical production becomes.

21

THE NATURE OF DESIGN RULES 15

Limitations on the minimum size of circuit components, and hence the design rules, arise
primarily from imperfections in the mask preparation and fabrication process. These
imperfections result in distortions of the artwork during the transfer from the original digital
specification to the actual integrated circuit layers. They are numerous and varied, arising at
every step in the fabrication process. Examples are imperfect optical resolution during certain

processing steps, and imperfect alignment between masks or layers.

In addition design rules result from the physical properties of the fabricated circuit. For
instance, to prevent shearing of brittle metal lines, some processes have design rules that
prohibit metal from crossing over features that rise and fall abruptly. Similarly metal
migration effects, involving the erosion of metal atoms under the influence of a strong electric
current, necessitate wider metal lines in some cases. The gradual nature of diffusion

boundaries also leads to width and spacing restrictions.

Design rules are an abstraction of the physical limitations of the fabrication process that
permits the decoupling of process engineering and circuit design. A circuit designer need not
be concerned with the complex details of the fabrication process: he need only conform to the
design rules. Similarly, process engineers have flexibility in the development or modification

of the fabrication process, as long as the final process meets the design rules.

The following sections explore the origin, form, and uses of design rules in more detail.
First, the next section takes a closer look at the process engineering side of design rules: the
physical structure of integrated circuits is described: the principle artwork transfer steps in the
fabrication process are considered; and it is shown how limita._tions in the lidelity of these
transfers, and physical limitations on the fabricated circuit lead to design rules. The following
section discusses the form of design rules. A model for design rule form is presented and
illustrated with a representative sample of design rules. The final section considers the role of
design rules in the various design methodologies, and argues that a basic automatic design

rule checking capability is important regardless of design methodology.

2.1

THE NATURE OF DESIGN RULES 16

2.2. Integrated Circuit Fabricatlon and the Origin of Design Rules

Integrated circuits consist of layers of patterned conducting material stacked vertically
on the surface of a silicon substrate and separated by insulating material. Electrical devices
such as transistors and capacitors are formed through the interaction of certain layers across
thin insulation. Electrical contacts between layers are formed by cutting through the
insulating material between. Regions of the circuit are implanted with various impurities to
selectively éhange the electrical characteristics of the layers and the devices formed by their
interactions. A circuit is defined by geometric patterns giving the regions where each of these

layers (conducting, insulating or implant) is present.

The physical design of a circuit is originally in the form of digital design files specifying
the geometric pattern for each layer. To realize the circuit, the pattern for each layer must be
transferred to a physical layer in the circuit. This transfer is generally effected in at least
three stages, as illustrated in Figure 2.3. Prior to fabrication a photographic mask patterned
with transparent regions on an opaque background (or vice versa) is created for each layer.
The photomask is used to pattern a photosensitive resist, deposited uniformly over the surface
of the circuit. The actual layer is then patterned from the resist. Typically the layer has
been deposited immediately below the resist, and is patterned by an etchant that dissolves the

layer everywhere it is not covered by the resist.

Each transfer of the patterning information introduces distortions. The type and degree
of distortions is dependent on the procedure and equipment used. Mask generation is often
done by a block flash technique. A photographic emulsion is exposed to flashes of light
directed through a rectangular aperture, whose position, size and angle of rotation are
digitally controlled by a pattern gemeration tape. The pattern generation tape is derived
directly from the physical design files for the circuit. There are several sources of distortion
during flashing. Optical diffraction eflects at the edge of flashes cause a loss of edge acuity on

the emulsion; over- or under-exposure due to imperfect control of the timing and intensity of

2.2

THE NATURE OF DESIGN RULES 17

Digital Mask Artwork Specification
!

Mask Preparation
(with E-beam or Block Flasher)

J

Photographic Masks
d

Resist Patterning
(with Stepper)
)
Patterned Resist on Wafer

3
CEtching or IrnplantatioxD

J
Patterned Circuit Layer

Figure 2.3. - Pattern Transfers in Integrated Clrcuit Fabrication. The fabrication of
integrated circuits generally involves at least three transfers of the geometric pattern
information: from the original digital specification to the photographic mask, from the mask to
a photosensitive resist on the surface of the wafer, and finally from the resist to the actual
cifcuit layer. :
flashes can lead to slight edge motion; and mechanical imprecision in the flasher can result in
inaccurate positioning of flashes. Also, decomposition of the original design into a sequence of

rectangular flashes may require approximations, since the size, position, and angle of flashes

can only be varied in discrete increments. Non-polygonal features, such as circles, require

2.2

THE NATURE OF DESIGN RULES 18

-

approximation too.

Patterning of the resist typically involves a stepper that focuses an image of the
photomask successively onto each chip site on the resist-coated wafer. After exposure, the
resist pattern is developed using a solvent that dissolves the exposed (megative resist), or
unexposed (positive resist) sections. Distortions introduced in the patterning of the resist are
due mainly to the limited optical resolution of the imaging system, and diffraction effects at
region edges. Distortions also result from other factors such as nonuniform resist thickness.
Finally, imperfect alignment between masks, both translational and rotational, leads to

uncertéinty about the relative position of shapes on different layers.

The final transfer of the artwork pattern to the circuit layer is through an etching or
implantation step. The fidelity of this transfer is limited by the diffusion of etchant or
implant laterally underneath the resist boundaries. Imperfect control of the reactivity of the
active species (e.g. etchant strength), or of timing, results in uncertainty about the size of the

regions created.

Some distortion effects are pattern dependent, that is, they vary with the circuit
artwork. For example light reflected by metal-coated polysilicon during resist exposure for
the metal layer, can cause edges on the metal layer to be displaced; see Figure 2. This
reflection effect only occurs when a polysilicon edge runs near a metal edge. Another pattern
dependent effect involves etching in open versus confined regions. The rate of etching may be
less in more confined spaces. Thus, for instance, the outside edges of a set of parallel metal

lines may be etched more than the internal edges, as in Figure 2.5.

The above description of circuit fabrication, while correct in outline is greatly simplified.
Processing often involves additional transfers of the artwork pattern. For example working
masks may be produced from master photomasks, or reduced (and repeated) masks called
reticles may be used. A typical integrated circuit fabrication process involves over 100

distinct processing steps [Sze, 1983]. Imperfections in each step conmtribute to overall

2.2

THE NATURE OF DESIGN RULES

'O

Polyeil

Figure 2.4, - Reflections A Pattern Dependent Effect. During resist patterning of an
aluminum layer, (a) above, the shiny aluminum-coated wafer reflects as much as 90% of the
incident light back through the resist. Where the wafer is flat the light is reflected harmlessly
straight back up. However, protrusions caused by underlying polysilicon edges scatter the light
resulting in undesired resist exposure. This results in the displacement of metal edges where
polysilcion edges run nearby, as shown in (b). In this case metal edge M is displaced to M’ by
light scattered from the nearby polysilicon edge P.

MM

Varlable Etcht Another Pattern Dependent Effect. Etching can be more
such as outside a set of closely spaced parallel lines, than in confined
This results in the narrowing of lines adjoining open

Figure 2.5. -
vigorous in open areas,
areas, such as between closely spaced lines.
areas.

19

THE NATURE OF DESIGN RULES _ 20

distortion in the final circuit.

The sources of artwork distortion during fabrication are numerous and complex. In

general the distortions lead to uncertainty about the exact position of region boundaries in the

AS DRAWN: AS FABRICATED:

=

(2) Width

=L

(b) Spacing

[~ |:-_“> %:I:D

(c) Enclosure

i i e
T /7N
! ! Lo
. {

[i -
| | I !

=== (d) Extension _J

T
|

1
|
T
g
|
L

Figure 2.8. - How Distortion Causes Clrcult Fallure. This figure shows examples of how
distortion can lead to circuit failure if minimum tolerances are not observed. Part (a) illustrates
how a narrow line can be split. Part (b) shows the merging of features that are drawn too
closely together. Part (c) shows how the desired connection between layers can be lost if a
contact is drawn with insufficient enclosure. And part {d) shows how transistors can fail, if they
are drawn with insufficient extension.

[
o

THE NATURE OF DESIGN RULES 21

fabricated circuit. Shapes may be slightly larger or smaller than intended, and their relative
position, particularly between layers, will be inexact. This is illustrated in Figure 2.6.
Narrow lines may not be resolved at all (i.e. may not appear in the fabricated circuit), while
somewhat wider lines may be narrowed to the point where they are split into pieces, as in
Figure 2.6(a). Similarly shapes that are too closely spaced may be merged during fabrication,
as in Figure 2.6(b). Thus minimum width and spacing tolerances are needed to ensure that

electrical nodes are neither split nor merged together during fabrication.

The formation of comtacts and devices such as transistors and capacitors involves
overlaps and extensions between layers. For example, m a typigal MOS process a contact
from the metal layer to the diffusion layer is formed as shown in Figure 2.1(c). In order for
contact to be made it is necessary that all three layers, metal, diffusion and the cut in the
insulation between them, overlap. Thus minimum overlap tolerances are needed to ensure
all three layers will overlap sufficiently in the fabricated contact despite misalignments

between layers, and shrinks on the individual layers; see Figure 2.6(c).

The formation of MOS transistors involves the extension of a polysilicon line over a
diffusion line, as in Figure 2.1(d). The transistor will not function if the polysilicon fails to
extend all the way across the diffusion line in the fabricated circuit, (see Figure 2.6(d)), so a

minimum tolerance on the extension of the polysilicon beyond the diffusion is required.

In addition to causing circuit failure through broken or shorted nodes and inoperative
contacts or devices, distortions can result in degradation of circuit performance through the
formation of parasitic devices, e.g., capacitors formed by unintended overlap between layers,
or voltage drops in lines that end up too narrow. Cumulatively such effects can lead to
complete functional failure of the circuit, or simply degrade performance so the circuit will
not meet design specifications. In a few cases, distortions can result in long-term failure of the
circuit. For example, narrow metal lines carrying high current are subject to eventual failure

due to metal migration: the metal atoms actually erode away under the influence of the

THE NATURE OF DESIGN RULES 22

electric current.

Many of the factors contributing to artwork distortion during fabrication are random.
They vary from wafer to wafer, and oftea from region to region on an individual chip,
according to some probability distribution. The distortion of individual shapes and
relationships between shapes results from the combined effects of these many random factors,
and thus is best characterized in statistical terms. The maximum distortions occur when all
the individual factors are by bad luck near their respective maxima and all work together in
the same direction. The greatest distortion on an average chip will be much less than such a
worst case since the many factors contributing to distor;ion will tend to average out and

cancel each other.

Specifying design tolerances based on worst case distortions would be overconservative.
Such a choice would lead to unnecessarily large devices and circuit areas, degrading circait
performance, increasing power consumption and quite possibly reducing the yield of working
chips because of fatal random defects whose probability increases exponentially with chip
area. Thus the specification of design rule tolerances is a compromise that seeks to make

minimum tolerances small while, at the same time, keeping losses from pattern distortion low.

2.3. The Form of Design Rules

The last section showed how numerous factors cause distortions of the design artwork
during fabrication. These distortions result in uncertainity about the eventual size and
relative position of artwork shapes in the fabricated circuit. Coupled with physical
requirements of the circuit, such as the need to maintain the integrity of nodes and minimize

parasitic devices, these effects lead to the design rules for the process.

Design rules take the form of minimum tolerances on spacings, widths, enclosures and
extensions on the artwork as designed. These tolerances are intended to be sufficiently large
so that the corresponding relationships in the fabricated design will be maintained (and of

sufficient dimension) despite distortions. Because these rules give tolerances ol topological

2.3

THE NATURE OF DESIGN RULES 23

relationships, I refer to them as topo-tolerance rules.

The simplest and most common design rules specify minimum width and spacing for the
nodes of a single layer. See, for example, Figures 2.1(a) and (b). Here diffusion lines are
required to be at least 2 units wide and distinct nodes are required to be spaced at least 3

units apart.

Enclosure and extension rules generally involve interlayer contact or device comstructs.
For example Figure 2.1(c) shows a typical rule for contacts between diffusion and metal in an
nMOS process. Here both the diffusion and the metal must enclose the comtact cut for a
distance of at least one unit. Figure 2.1(d) shows an pMOS transistor rule that requires

polysilicon to extend past the diffusion for at least two units.

In addition to specifying tolerances on topological relationships for single layers and
between pairs of layers, topo-tolerance rules can refer to regions defined by a combination of
layers. For instance in nMOS processes, the operating characteristics of a transistor can be
changed by implanting the trapsistor gate region: unimplanted transistors are enhancement
mode, while implanted transistors are depletion mode. To ensure that the entire gate region
of depletion mode transistors actually gets implanted, the implant layer is required to enclose
depletion mode gate regions, by some tolerance. Similarly, to avoid accidental implantation
of enhancement mode transistors, there is a spacing rule between enhancement mode gate
regions and the implant mask. These rules are illustrated in Figure 2.7. Note here that

depletion mode gate regions are defined as
Polysilicon AND Diffusion AND Implant,

and enhancement mode gate regions are defined as
Polysilicon AND Diffusion AND (NOT Implant).

In general topo-tolerance rules can refer to regions on composite layers defined as arbitrary
combinations of the mask layers. Such combinations are specified by boolean expressions on

the mask layers, e.g. by using AND, OR and NOT operations.

THE NATURE OF DESIGN RULES

)
\

\

i

I 2000 DS S,
‘_

\

| SN P _.1.

A
?
i

“\
\
N

Figure 2.7. - Implant Tolerances Involving Comblnntio:;l of Layers. Typical implant
rules require implanted transistors to be enclosed by implant for a minimum of 2 units and
nonimplanted transistors to be spaced at least 2 units from implant regions. These rules do not
involve spacings between mask layers; rather they each involve a spacing between a mask- layer
and a (boolean) combination of mask layers.

i ————— ‘| o | =
i i /| /i
i N ro o
i | | | 1 | | |
! N o o
— SEE | ks
o Lo o
L L L
| L o
Lo P o
! /—J ! -od 1 -
W, VARV
(a) Single-Node Spacing (b) Internode Spacing

Figure 2.8. - Internode Spacing; a Conditional Rule. Frequently the spacing rule for
distinct nodes specifies a greater minimum spacing than is required between segments of a single
node. Such a spacing rule is conditional because it only applies in limited contexts, ie.,
between boundary edges of distinct nodes.

24

2.3

THE NATURE OF DESIGN RULES 25

=
o
o~
[
L o
Q
[
©2

\N% A
g5k A
gal 1
L g4l
11 1
V) gk
44k LVl

(a) (b) (c)

Figure 2.9. - Reflection Rule. The spacing between metal lines may be greater when
polysilicon edge(s) are nearby. This is because reflections from the metal coated polysilicon
edges during patterning of the metal layer can cause the metal edges to move outward.

The above rules, with the exception of internode spacing, are unconditional: the
specified spacings, widths, or enclosures apply unconditionally to the mask layers throughout
the circuit. However design rules are often conditional, that is, the specified topo-tolerance is
only relevant in certain contexts. The conditions on design rules can take many forms. The
most common example of a conditional rule is internode spacing on a conducting layer. Such
a spacing rule is conditional because it only applies to mask regions that belong to distinct
nodes; see Figure 2.8. Another example of a conditional design rule involves the reflection
phenomenon introduced in the previous section. To take reflection into account a rule might
require that metal lines be spaced 1 unit apart when there are no polysilicon edges paralleling
the facing metal edges, 1.5 units apart when a polysilicon edge runs near one of the two metal
edges, and 2.0 units apart when polysilicon lines run near both the metal edges. Such a rule is
illustrated in Figure 2.9. Some design rules require that long parallel lines be spaced more
conservatively than short ones, to avoid capacitive coupling. Figure 2.10 gives an example.
A tendency for etching to be more vigorous in open areas can lead to conditional width rules.

For example minimum metal width might be 8 units if no other metal is present nearby, 7

THE NATURE OF DESIGN RULES 26

units if metal is nearby on one side, and 6 units if metal is present on both sides of a line.
Such a rule is illustrated in Figure 2.11. To avoid metal migration effects, metal width is
sometimes dependent on the current density a line will carry; for instance, power and ground

lines are often required to be wider than lines carrying other signals.

Conditional rules can get very intricate. As a final example, consider the following: To
avoid metal shearing due to rough underlying terrain, greater spacing between polysilicon and
diffusion edges may be required when a metal line runs perpendicularly across these edges; see
Figure 2.12. Since shearing in the direction of current does not pose a problem, such a rule is

actually dependent on the direction of current in the overlaying metal.

The above examples illustrate conditional rules that depend on the presence of nearby
regions or edges on the same as well as different mask layers, rules that depend on the length,
expected current density or function of lines, and even a rule that depends on current
direction. In general design rule conditions may be very complex and may involve geometric
information about circuit artwork, topological information (such as node connectivity),

electrical information, and functional information about the circuit.

With the exception of an occasional rule concerning areas, perimeters, or exact (not
minimum) dimensions, the examples of this section illustrate the nature and range of design
rules for integrated circuits. Simple rulesets are comprised of a relatively small number of
conseryative primarily unconditional rules giving minimum tolerances on widths, spacings,
enclosures and extensions for mask layers and layer combinations. More complex rulesets
involve a greater number of conditional rules that give more precise tolerances by specializing

the context in which each rule applies.
2.4. Automatic Design Rule Checking and Design Methodology

The topo-tolerance rules defined in the last section form the basis for the interface
between process engineers and circuit desiguers. However, the nature of the design rules

actually seen by circuit designers varies considerably with design methodology. This section

2.4

THE NATURE OF DESIGN RULES 27

[/////‘///////
X
35

r | >7

Figure 2.10. - Length-Dependent Spacing. Sometimes spacing rules are conditional on the
length over which lines run parallel. For example, lines might be required to be separated by 3
units if they run parallel for less than 7 units, but be separated by at least 3.5 units if they run
parallel for lengths of 7 units or more.

AN
] A A M L
{ NN N N\ _\\
\~\‘\ \‘\‘\ \~\ \~\ \\z
. NN . . . J
N N N, N, N
\.\‘\ YO N \\
N AR N D A
\\ N '\ N\ .\ . \\
\\ N \‘ N ‘\
N \. N N N
. NN AN B NN NP
\. N N N
. N N N N,
R .
|
e § € 7 <8 < 8)1 e 7
i

Figure 2.11. - Density Dependent Width. Because etching is more vigorous in open areas,
width rules are sometimes conditional on the presence of nearby lines on the same layer. For
example minimum width may be 6 units for interior minimum-spaced lines, 7 units for lines at
the edge of a minimum-spaced set, and 8 units otherwise.

THE NATURE OF DESIGN RULES 28

YA e

S

o,
/=
3
)
[=e}

W

Figure 2.12. - Spacing Conditional on Current Direction in Overlying Metal.
Sometimes minimum spacing between poly and diffusion is conditional on the presence of
overlying metal. This is because nearly-coincident poly and diffusion edges result in an abrupt

change in the

vertical dimension that can cause overlying metal to shear. Since shearing in the

direction of current flow does not cause problems, the more conservative spacing need only

apply to polys
metal.

explains why a s

ilicon and diffusion edges running across the direction of current in the overlying

pectrum of design methodologies is in use, and briefly describes the major

methodologies and the nature of the design rules each presents to the designer. Then it

argues that auto

employed.

matic topo-tolerance checking is important regardless of the methodology

2.4.1

THE NATURE OF DESIGN RULES 29

2.4.1. The Spectrum of Methodologies

Design methodology and design automation are receiving much attention. There is a
large spectrum of design styles in use, ranging from highly constrained, highly automated, low
density, gate-array designs to full-custom designs finely tuned to a specific process to achieve
maximum density and performance. These methodologies differ in the tradeoff they make
between simplifying design constraints on the one hand and ultimate circuit size and
performance on the other; see Figure 2.13. The nature of design rules and other constraints

employed by the methodologies will be outlined below.

In general, properly chosen constraints can simplify the design process. Such

simplifications improve designer productivity directly, since design decisions can be made

High Density { - (D)
High Functionality | oeeeer="Memory & Analog
High Performance O

_Indiiatrial Custom
O
Medd & Conuay
s;@éte Design
0]
Standard-Cell

Low Density O
Low Functionality Gate-Array
Low Performance

Constrained Unconstrained
Automated — Manual
Easy to Design Hard to Design

Figure 2.13. - Design Cost/Density Tradeoff. There is a basic tradeoff between the degree
to' which a design method is constrained, and hence automated, quick, and painless on the one
hand, and the penalty in circuit density, performance, and functionality engendered by those
constraints on the other. Different positions with respect to this tradeofl are appropriate to
different projects. A wide spectrum of design methods ranging from fully automated gate-array
to hand-tailored analog design are in use.

24.1

THE NATURE OF DESIGN RULES 30

more quickly and accurately, and indirectly since they facilitate the automation of the design
process. On the other hand, more constrained design styles generally lead to less dense and
less efficient circuits, resulting in more stringent limits on the maximum functionality per
chip, lower performance, and increased production cost. The best methodology to use for a
particular product depends on the functionality and performance required, the volume of chips
that will be produced, and the particular mix of resources available for design and fabrication.
However, it is apparent that over time, as fabrication technology continues to improve, more

constrained methodologies will be increasingly favored.

2.4.2. Design Rules and Other Constraints Employed by the Methodologies

Table 2.1 summarizes the characteristics of a number of design methodologies. The
methods are given in order of increasing design rule complexity. In fully automatic gate array
designs [Soukup 1981] the designer does not deal with topo-tolerance rules at all; he works at
the netlist level, specifying the gate interconnections required to implement the circuit. A
designer using the standard cell approach [Soukup 1981] need not deal with a full set of topo-
tolerance rules either, since all devices and hence device rules are encapsulated in the
predefined cells. Designers using symbolic design systems [Bales 1979] [Hsueh 1979] work with
a more abstract representation than mask data: transistors, contacts, and their
interconnections are represented explicitly. Layout is generated automatically and is usually
guaranteed to be design-rule correct. The remaining methodologies, i.e., Mead-Conway [Mead
& Conway 1980|, traditional custom, and memory & analog design, all work directly with the
mask layer specification, and all require a full set of topo-tolerance rules. They differ mainly

in the number and complexity of the rules employed.

2.4.3. The Need for an Automatic Topo-Tolerance Checking Capability.

Regardless of the design methodology used, there must be some automatic method for

guaraﬂteeing that the final mask artwork for the design satisifies the topo-tolerance rules for

2.4.3

THE NATURE OF DESIGN RULES

Design Methodologies

Method

Description & Constraints

Design Rules

Gate-Array

Predefined, fixed, regular, array of gates with
horizontal and vertical wiring channels. Only
netlist is specified by designer. Gate
assignment and routing of netlist is done
automatically.

None.

Standard-Cell

Prededned library of fixed-height cells. Power
and ground routed horizontally through cells
at standard locations. Designer selects cells of
desired functionality, places cells in rows and
routes the signals. External pads must also be
placed and routed, and power and ground
connections made. No transistors are
permitted outside cells. Routing is usually
semi-automatic.

Simple width and spacing
rules for wiring, with
stylized contacts. No
transistor rules, since all
devices encapsulated in
predefined cells.

Intelligent Layout
Systems.

Designer places and routes devices freely using
abstract representations for devices and
interconnect. Abstract representation permits

stretch/compact operations that preserve
integrity of design. Upon completion,
abstract representation automatically

converted to mask layers.

Simple width and spacing
of interconnect and devices
must be considered during
automatic generation of
mask data. More complex
device form rules are not

relevant since correct,
stylized, devices are
automatically generated.
Simple rules make

automatic stretch/compact
feasible.

Mead-Conway. Designers strive for regular placement and | Full set of topo-tolerance
interconnection schemes that take full | rules. Rulesets are simple,
advantage of the topological properties of the | ie., 2 small number of
implementation medium. Simple conservative mostly unconditional rules.
design rules are used to free designer from
messy low-level details.

Traditional Full | Devices are placed and interconnected with | Elaborate full topo-

Custom. emphasis on high density and performance. A | tolerance ruleset.
set of stylized layouts for gates, memory cells, | Conditional rules allow
etc., is developed and used whenever practical. | more precise tolerances to

be used, permitting denser
design.

Memory and | Designers work closely with a particular | Large complex rulesets with

Analog Designs. process to achieve maximum performance and | many conditional rules.
density. Rules often depend on

anticipated power and

signal strength in particular
regions of a circuit.

31

Table 2.1

THE NATURE OF DESIGN RULES 32

the particular process being used: manual checking is unacceptable. The size and complexity
of VLSI designs makes manual checking an extremely tedious and error prone process. Even
experienced people concentrating on a single rule with diligence miss rule violations
[Fitzpatrick et. al. 1981]. Trial fabrication runs on circuits are time consuming (turn around
is typically several weeks to several months) and expensive. In addition it is difficult to
trouble-shoot finished circuits, even for fatal DRC violations that render the circuit
completely nonfunctional. Nonfatal violations contributing to reduced yield, reliability, and
performance of the circuit are likely to go completely undetected during circuit testing. Thus
the mask artwork must be automatically generated, in a design rule correct way, or accurate
automatic design rule checking must be used to eliminate all design rule violations prior to

fabrication.

In fact an automatic topo-tolerance checking capability is important regardless of the
methodology employed. Although the more constrained methodologies shield the user from
much of the detail of topo-tolerance design rules, a topo-tolerance checking capability is still
important. Topo-tolerance checking is used for the development and maintenance of systems
employing constrained methodologies. For instance the library cells in standard cell systems
and the templates for gate-arrays must be verified with a full topo-tolerance DRC. Further,
automatic layout generation systems are complex and hence prome to error. Topo-tolerance

checking is required to verify the correctness of automatically generated layout.

Topo-tolerance checking is also used to verify that no errors have been introduced
during the composition of independently-generated pieces of a circuit into a complete design.
Designs often combine elements developed with a variety of tools and within the framework
of a variety of systems. Integration and composition of these components is an error-prone
process involving multiple format conversions and often manual intervention to complete final
placement and route where automatic tools are not available or not quite adequate. Topo-

tolerance checking on the mask data has the advantage that it is dome on the final

243

THE NATURE OF DESIGN RULES 33

representation of the design, and thus can catch errors introduced during the final conversion

and integration steps: it provides a check oa the correctness of all the steps leading to the

final design.

This thesis focuses on the automatic checking of full topo-tolerance rules on the mask

data for designs.

2.5. Summary

Dense designs are more economiéal, have better performance characteristics, and allow
greater functionality per chip. Design rules codify limitations on the minimum size of circuit
components, and hence on the maximum density achievable. These limitations originate from
numerous distortions introduced during circuit fabrication and to some extent from the

physical characteristics of the fabricated circuits.

Design rules provide an interface between the process engineers and the circuit designers.
The process engineers need not concern themselves with the details of the circuits being
fabricated as long as they can meet the specified design rules, and the circuit designers need
pot concern themselves with the details of the fabrication process, as long as they obey the

design rules.

Design rules take a topo-tolerance form, that is, they specify tolerances on certain
spacing, width, overlap, and extension relationships in the circuit artwork. The intention is
that these tolerances are sufficient to maintain the relationships to some minimum acceptable
dimension despite process distortions. In general topo-tolerance rules involve relationships
between regions defined by combinations of mask layers. Many rules are unconditional: the
specified tolerances apply to the artwork relationships wherever they occur throughout the
designs. However rules can be conditional on nearby artwork on the same or different layers,
on topological relationships (such as node connectivity), on electrical properties, and even on

information about the function of the circuit.

THE NATURE OF DESIGN RULES 34

Though topo-tolerance rules are the basis for the designer/process interface, the nature
of the rules a designer sees directly varies with design methodology. Design methodologies
range from highly constrained, automated, low density, methods such as gate-array, to hand-
tailored, high-density, high-performance custom designs. The more constrained methodologies
shield the designer from low-level details such as a complete set of topo-tolerance rules.

Designers using these systems work with simpler, more abstract design rules.

Full topo-tolerance checking of mask artwork data is important regardless of the design
method. This is true for several reasons: complex automated systems can make mistakes,
manual intervention into automated systems can introduce errors, and the final composition

of a design from independently generated pieces is often ad hoc and error prone. This thesis

focuses on full topo-tolerance checking of mask data.

2.8. References

For a general introduction to VLSI design, see [Mead & Conway 1980]. This text also
presents the famous Mead-Conway method of design, and gives a complete set of design rules
for tMOS. For more details on processing technology, see [Sze 1983]. The Lyon paper [Lyon
1981] presents an interpretation of design rules in terms of edge motion. Three examples of
symbolic layout systems are given by [Bales 1979], [Hsueh 1979], and [Ousterhout 1984]. For

an introduction to gate-array and standard cell techniques, see {Soukup 1981].

[Bales 1979]

M.W. Bales, Layout Rule Spacing of Symbolic Integrated Circuit Artwork, MS Thesis,
UCB/ERL M82/72, University of California, Berkeley, CA, May 1982.

[Fitzpatrick, et. al. 1981}

D.T. Fitzpatrick, J.K. Foderaro, M.G.H. Katevenis, H.A. Landman, D.A. Patterson, J.B.
Peek, Z. Peshkess, C.H. Sequin, R.W. Sherburne and K.S. Van_Dyke, “A RISCy
Approach to VLSL” VLSI Design, Vol. 2, No. 4, Fourth Quarter 1981, pp. 14-20.

[Hsueh 1979]

M.Y. Hsueh, Symbolic Layout and Compaction of Integrated Circuits, PhD Thesis,
UCB/ERL M79/80, University of California, Berkeley, CA, December 1979.

2.6

THE NATURE OF DESIGN RULES 35

[Lyon 1981]

R. Lyon, “Simplified Design Rules for VLSI Layouts,” VLSI Design, Vol. 2, No. 1, First
Quarter 1981, pp. 54-59.

[Mead & Conway 1980|

C. Mead, and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading,
1980.

[Soukup 1981]

J. Soukup, “Circuit Layout,” Proc. of the IEEE, Vol. 69, No. 10, October, 1981, pp.
1281-1304.

[Sze 1983]
S.M. Sze, VLSI Technology, Mcgraw Hill, New Jersey, 1983.

36

CHAPTER 3

The Region-Operation Approach

3.1. Introduction

This chapter presents the region-operation approach to design rule checking which, with
variations, is used throughout the industry. A region-operation based system consists of a
collection of primitive operations, each of which takes one or two layers as input and
generates an output layer. There are several types of operations. Tolerance operations check
topo-tolerances between layers and output the portions of regions that are in violation.
Tolerance operations can be preceded by boolean operations to select layer combinations for
checking, and by topological, sizing, connectivity and other operations to select regions for
conditional checks. Since each operation is independent and yet can be combined with any
other, a region-operation system is extremely flexible: operations can be sequenced together
as desired, and new operations can be added whenever needed without disturbing the integrity
of the system. Region-operation systems provide an integrated solution to mask artwork
processing: a comprehensive set of operations is used that can handle circuit extraction (i.e.
the extraction of transistor connection networks, capacitances and other electrical
information), and other mask artwork functions as well as design rule checking. The
operations intended primarily for non-DRC functions still serve to enrich the DRC, enabling a

variet}" of conditional checks.

The main drawback of the region-operation approach is that each operation
independently requires a pass through two input layers and the generation of an intermediate
output layer. Since mask layers for large circuits contain hundreds of thousands of figures,
and si;xce hundreds of operations are required to implement a complete design rule check,

design rule checking with region operations requires a deal of- I/O and hence is slow. Another

3.1

THE REGION-OPERATION APPROACH 37

problem with the region-operation approach is that direction-sensitive rules, often involved in
transistor or contact form, are notoriously difficult to check. These problems are considered
in detail later in the chapter, after the form, function, and implementation of region-based

systems are discussed.

The next chapter, which surveys DRC systems, presents a number of examples of

region-operation systems.

3.2. Mask Artwork and Mask Artwork Functions

In the region-operation approach, design rule checking is done in the context of a more
general mask artwork processing system. Such mask artwork systems are very similar,
consisting of similar sets of operations implemented in similar ways. This similarity in form is
due in part to similarity in function: they all process mask artwork, and all provide the same
basic functions. This section introduces this common ground: it presents the form of mask

artwork, and the functions typically performed on it.

Mask artwork files specify the two-dimensional geometric pattern of regions for each

layer in the circuit. Artwork file formats have the following characteristics:

i. Regions are defined in terms of primitive closed figures such as rectangles, trapezoids,
polygons and round flashes. Figures are identified with individual mask layers. Often there is
one file per layer.

ii. Figures on a layer are in general allowed to abut and overlap. However some formats do
not allow overlap between the figures composing a single layer.

iii. There is usually a symbol/instance mechanism, which allows a symbol consisting of a
collection of primitive figures (and possibly instances of other symbols) to be defined. A design
may contain multiple instances of any given symbol. Each instance has an associated
translation and rotation, which specifies where the symbol instance is to be placed. Symbol
instances may be nested to structure a design hierarchically. Hierarchy simplifies the design
process by allowing modular structuring of designs, allows far more space-efficient
representation of repetitive designs, and can be exploited to expedite some processing of designs,
such as design rule checking (see Chapter 8).

In addition to design rule checking, region-operation systems provide for circust

ezxtraction, and compensation functions. Circuit extraction involves recognizing transistors in

3.2

THE REGION-OPERATION APPROACH 38

the mask artwork, establishing their interconnection network, and determining electrical
parameters such as capacitances. (Extracted circuits are compared with original schematics,
checked for electrical rule violations, and used as input to cireuit simulators.) Compensation
inviolves growing and shrinking of regions on certain mask layers to accomodate peculiarities
of a pax;ticular process. An advantage of this integrated approach to mask artwork functions
is that operations intended primarily for circuit extraction or compensation functions are

never-the-less available to the DRC, enabling a variety of conditional checks.

3.3. Region Operations

Most mask artwork systems use the region-operation approach to implement design rule
checking, circuit extraction, and compensation functions in one integrated system. Each
function is achieved through an appropriate sequence of region-operations. The following
types of region-operations are usually provided:

i. Tolerance

ii. Boolean

ili. Topological

iv. Sizing

v. Connectivity and Tagging

vi. Area, Length and Perimeter

Each operation takes one or two layers as input and generates an (intermediate) output
layer, typically consisting of selected or modified portions of the input. In the case of
tolerance operations the output consists of the parts of input regions involved in design rule
violations. Some of the operations involved in extraction, e.g., connectivity and area
operations, generate numerical output such as node numbers and node areas, or tag the mask
data with such inforruation. This will be considered further when the individual operations

are discussed.

3.3

THE REGION-OPERATION APPROACH 39

a) No Violation. b) False Violation.
V.
¢) Genuine Violation. d) Missed Violation.

Figure 3.1. - Region-Based vs. Figure-Based Operations. A width check based on
figures (b) rather than the regions formed by the figures (a) can lead to spurious violation
reports. Conversely, parts (c) and (d) show how a figure-based width check can miss violations.
In general it is important that operations work on regions as a whole, rather than the figures
composing the regions.

Operations are region not figure based, e.g. a width check verifies the width of entire
connected regions, not of figures in the mask artwork description. Figure 3.1 illustrates why
this distinction is important: region-based operations avoid pathological dependencies on the
decomposition of mask regions into figures. Region operations are implemented using edge-
based algorithms that operate on the region boundary edges. The input mask data is

converted to such edge-files at the beginning of processing, and the output of region-

operations is in boundary-edge form.

3.3

THE REGION-OPERATION APPROACH 40

The edge-files used by the region-operations differ from the mask artwork representation
in another important respect: mask artwork files are usually hierarchical, containing symbol
definitions and instances, while edge-files are generally flat. During conversion to boundary-

edge form, symbol instances in the original mask artwork are replaced by their definitions.

Since most region-operations read and write‘boundary-edge files, they can be freely
combined. All of the types of operations listed above, regardless of their primary function,
contribute to the design rule checker. For example, sizing operations, though needed
primarily to implement grows and shrinks for compensation, are useful for establishing certain
contexts in conditional design rule checking. Similarly, connectivity operations, needed
primarily for circuit extraction, also allow for the checking of conditional design rules
depending on connectivity. Each type of operation is discussed below, with emphasis on the

role it plays in design rule checking.

3.3.1. Tolerance Operations

Tolerance operations check width, spacing, enclosure and eztension. Tolerance
operations take one or two layers and a tolerance as input, and output boundary-edges that
are too close together, as shown in Figure 3.2. Violating edges are often thickened and output

as regions, to facilitate plotting or further processing.

A spacing check between layers A and B for distance n can be visualized as follows:
An n wide halo is drawn around each region on layer A and checked for intrusion by layer B,
see Figure 3.3. Such a halo can be constructed piecemeal, creating an n-deep outward-facing
box adjacent to each boundary-edge and joining together these boxes with circular sectors at
each convex corner, see Figure 3.4. When an edge intrudes into a halo, both the intruding
edge, and the edge giving rise to the particular halo piece are output. Checking halos for
intruding edges can miss situations where a region on one layer completely encloses a region
on the other, thus a halo based spacing operation must also check for, and flag, overlaps

between the layers.

3.3.1

THE REGION-OPERATION APPROACH 41

._’ racesssscnmnss
N7 R
() SPACING
-
(b) WIDTH
B /H -—p 3
A L
(c) ENCQLCSURE
A //) I H
B/
(d) EXTENESION

Figure 3.2 - Tolerance Operations. Tolerance operations output (portions} of edges that
are too close together. Often edges are “thickened” into regions to permit plotting or further
region-operations. The dotted versions of the input regions regions are for reference: they are
not actually part of the output.

In some cases it is desirable to check spacings perpendicularly outward from region
boundaries, but not diagonally out from corners. Such checks can be done using halos
without corner sectors, as in Figure 3.4(a). This sort of check is appropriate, for example, in

facing-edge rules; see Figure 3.5. Such rules guard against the formation of long narrow

slivers of resist during processing, which could physically break off and deposit themselves

3.3.1

THE REGION-OPERATION APPROACH 42

elsewhere.

In single-layer spacing checks it is often desirable to avoid reporting situations where a
region intrudes into its own halo; see Figure 3.6. A variant of the SPACING operation is
usually provided for this purpose. Such operations require prior tagging of edges with node

numbers, via the connectivity operations discussed below.

Spacing and other tolerance operations usually have provisions for user-supplied filter
routines. Such routines can be used to implement less common or more complicated
conditional checks, depending on node numbers or other information tagged to edges.
Tolerance operations pass the filter routines each pair of edges that violate the specified
tolerance, along with all the information tagged to them. Based on this information the filter
routines determine whether the edge pairs should be output or not. This facility is very

powerful. It allows tolerance checks to be conditional on connectivity, edge length, region

\ ’.’.‘.“““J

Figure 3.3. - Tolerance Checking with Halos. Interlayer spacing between layers A and B
is verified by checking for the presence of layer B within a halo around A. In general tolerance
checks can be done by checking for the presence of the appropriate layers in the appropriate
outward- or inward- facing halo regions. Actual overlap between regions must also be checked
for, since one region may completely enclose another.

3.3.1

THE

REGION-OPERATION APPROACH

)

Figure 3.4. - Halo Construction. An outward facing haio can be constructed from two
components: boxes extending perpendicularly outward from region edges (a), and circular
sectors around convex corners (b). This construction lends itsell to the boundary-edge
processing employed by the region-operations. Some checks involve only perpendicular
tolerances. Such checks can be implemented by leaving the corner sectors out of halos, as in (a)
alone.

3.3.1

THE REGION-OPERATION APPROACH 44

N

(=) (b)

Figure 3.5. - Facing-Edge Rules. Facing-edge rules specify a minimum spacing between
facing edges (b), that does not apply diagonally (a). They guard against the formation of
narrow slivers of resist during processing, which could break off and float to other parts of a
circuit. Such rules are checked with exclusion halos having no corner sectors. These rules are
checked by leaving the corners out of exclusion halos.

Figure 3.8. - Notches and Single Layer Spacing. This figure shows how a notched region
can intrude into its own halo. Single layer spacing rules often permit such notches, being
concerned only with internode spacing. Such rules can be implemented by using a variant on
the spacing tolerance check that compares the node numbers of intruding edges with the node
number of the region to which the halo belongs.

. 3.3.1

THE REGION-OPERATION APPROACH 45

//// | s

y
B

Figure 3.7. - Extenslon checks. This figure illustrates how the extension of a layer A
beyond a layer B is checked. The check is unusual in that halo-boxes extend outward only from
those parts of edges on the second layer (B), covered by the first layer (A). No corner-sectors
are involved.

area or perimeter, electrical characteristics of a node, and even on the function of the

intended function of a node. In addition, since filter routines are written in a general purpose

programming language, complex and unanticipated conditions are readily handled.

Width and enclosure checks are closely related to spacing. In fact they can be expressed

in terms of the SPACING operation as follows:

WIDTH[A,n] <=> SPACING1|(NOT A)n];
ENCLOSURE(4 ,B,n| <=> SPACING{4,(NOT B)nJ;

Here SPACINGT1 checks spacings between regions on a single layer, and SPACING checks
spacings between regions on two distinct layers. The NOT operation takes the complement
of a layer, i.e. all the regions where the layer is not present. Alternately, width and enclosure

can be visualized in terms of inward facing halos.

3.3.1

THE REGION-OPERATION APPROACH 46

Extension checks are less closely related to the other tolerance checks; see Figure 3.7.
Note that extension checks involve a perpendicular tolerance only - diagonal tolerances are
not involved. Halos are not drawn around the entire boundary, but only from portions of

edges of the second layer that are covered by the first layer.
3.3.2. Boolean Operations

Boolean Operations, typically AND, OR, and AND_NOT, take two layers as input
and create a composite layer as output. These operations are illustrated in Figure 3.8. Note
that the AND_NOT operation also serves as a not or complement operation when

performed on a single layer.

Boolean operations permit layer combinations to be selected for tolerance checks. For
example, the implant/nonimplanted-gate spacing rule illustrated in Figure 2.7 can be checked

by the following sequence of operations:

Gate = Polysilicon AND Diffusion;
~ NIGate = Gate AND_NOT Implant;
Violations = SPACING[NiGate,Implant,2];

The first operation generates a layer, Gate, layer consisting of all regions where both
polysilicon and diffusion are present. The second operation generates a layer, NIGate,
consisting of all gate regions where implant is not present. The final operation generates a
layer, Violations, of all cases where implant is closer than 2 units to a nonimplanted gate
region.

Boolean operations are also useful during circuit extraction, for instance to determine

contacts and gate regions.

3.3.3. Topological Operations

Topological operations, such as TOUCHING, OVERLAPPING, and
ENCLOSING, select regions based on topological relationships; see Figure 3.9. They differ

from boolean operations in that they select an entire input region when part is involved in the

333

THE REGION-OPERATION APPROACH 47

A
7 —
iz
A
B
(a) AND
A
7 —_—— e
o
B
- (b) OR

WIPAs > o

B

() AND_NOT

Figure 3.8. - Boolean Operations. Boolean operations define regions in terms of layer
combinations. The AND operation outputs the regions where both input layers are present,
OR outputs regions where at least one of the input layers is present, and AND_NOT outputs
regions where only the first input layer is present. The dotted regions are only for reference,
they are not part of the output.

specified interaction, while boolean operations only select the interacting portion.

Topological operations are useful for determining the roles of regions to permit
conditional checks. For instance polysilicon/diflusion overlap usually implies a transistor

region for which a certain minimum width as well as polysilicon and diffusion extensions are

3.3.3

THE REGION-OPERATION APPROACH 48

.........................

A I
| A LA
B
U D R
IS, L oS
(s) A TOUCHING B
T —
LT
[.._-_ !—._] prevaane 4
| A | A —_—
B

(c) A ENCLOSING B

Figure 3.9. - Topologieal Operations. Topological operations select regions based on their
relationship to other regions. They differ from boolean operations in that they select entire
regions of the input when an interaction with another layer occurs, while boolean operations
only select the interacting parts of regions. TOUCHING selects regions on the first layer that
touch or overlap regions on the second layer. OVERLAPPING selects regions on the first
layer that actually overlap (not just touch) regions on the second layer. ENCLOSING selects
regions on the first layer that entirely enclose a region on the second layer.

333

THE REGION-OPERATION APPROACH 49

-

required. However polysilicon and diffusion also overlap in butting contacts where these
tolerances are not relevant. See Figure 3.10. These cases can be distinguished between, both

for DRC and circuit extraction purposes, by the following sequence of operations:

PD = Polysilicon AND Diffusion
PDBC = PD OVERLAPPING Cut
Gate = PD AND_NOT PDBC

The first operation creates a layer, PD, containing all polysilicon/diffusion overlap. The
second operation, selects the regions of PD involved in contacts, and the third operation

selects all the other regions in PD.

3.3.4. Slzing Operatlons

Sizing operations are grows and shrinks on layers; see Figure 3.11. A grow operation
generates widened versions of the input regions, and a shrink generates narrower versions. A
true GROW or SHRINK operation involves rounding of region corners, as in the top part
of Figure 3.11. Since many mask artwork representations do not include arcs, grows (shrinks)
are usually done by moving all edges outward (inward) and extending them so they continue
to meet, as in middle part of Figure 3.11. More elaborate polygonal approximations of the
true GROW and SHRINK operations are also possible, e.g., as in the bottom part of Figure
3.11. Sizing operations are used to adjust the width of regions to compensate for peculiarities
of a particular process, e.g., a tendency to print lines on certain layers either a bit too

parrowly or a bit too widely.

Sizing operations are also used to implement conditicnal design rules, where a tolerance
is dependent on the proximity of another layer. For example, to take the reflection
phenofnenon into account (see Figure 2.4), the metal width check in Figure 2.9 treats metal
edges flanked by polysilicon edges differently. This rule treats metal edges affected by
reflection from polysilicon edges as if they were moved outwards 0.5 units. The following

sequence of operations implements this rule:

3.3.4

THE REGION-OPERATION APPROACH 50

To be Distinguished Legend

\ //{ Polysilicon
//1{/4/ % Diffusion
g g |

Figure 3.10. - Transistor vs. Butting Contact in Poly/Dif Overlap.
Polysilicon/Diffusion overlap occurs in transistors and butting contact (circled regions).
Extensions and minimum width are required for such regions in transistors but not when they
occur in contacts. These cases can be distinguished between with an OVERLAPPING
operation that checks whether each polysilicon/diffusion region overlaps a contact-cut.

Figure 3.11. - Slsing Operations. A true grow or shrink (by a certain radius) involves
rounded corners (top). Since region edges are limited to straight line segments in the region-
operation approach, a polygonal approximation must be used. The simplest approximation is
obtained by moving all boundary edges out (in) by the radius of the grow (shrink), and then
extending or trimming the edges so they just meet again (middle). More elaborate
approximations are also possible (bottom) and yield more accurate results.

3.34

THE RI'ZGION-OPERATION APPROACH 51

PGrow = Grow{Polysilicon 1)

PHalo = PGrow AND_NOT Polysilicon
MShrink = SHRINK(Metal,.01)
MEdges = Metal AND_NOT MShrink
MRefEdges = PHalo AND MEdges
MAdd = GROW(MRefEdges,.5)
MetalNew = MAdd OR Metal
Violations = SPACING1(MetalNew,1)

Figure 3.12 illustrates how this works. The first two operations, 2 GROW followed by an
AND_NOT, generate the PHalo layer identifying areas near (but to the outside of)
polysilicon edges. The next two operations, 3 SHRINK and an AND_NOT, create the
layer MEdges consisting of very narrow regions along metal edges. Then the intersection of
PHalo and MEdges is formed, (via AND) to create the MRefEdges. This layer consists of
narrow regions along those portions of Metal edges effected by reflection. Next MRefEdges is
grown by .5 units and combined with the original metal layer (via OR) to create the
MetalNew layer. MetalNew is the original metal layer, with all edges eflected by reflection

moved out .5 units. The actual spacing check is done on this layer.
3.3.5. Connectivity and Tag Operations

Connectivity operations are used to identify connected regions on a layer with a2 unique
node number, and to determine connections between regions on different layers. The output
of connectivity operations is originally in the form of a tag-file giving pairs of edges or nodes
that are connected. Tag-files can be processed to gemerate nongeometric data, such as
transistor comnection lists, or can be used as input to a TAG operation that actually tags

edges in an edge-file with node numbers or other information.

The primary use of connectivity operations is to determine circuit connection networks
during circuit extraction. For details on how this is accomplished see [Szymanski & Van
Wyk 1983]. What is important for design rule checking is that operations exist for tagging
mask data with node numbers. This permits connectivity-dependent design rules to be
handled, via built in primitives such as single-layer internode spacing, or in more complicated

or unusual cases via user-written filter routines that discriminate on the basis of the attached

3.3.5

THE REGION-OPERATION AFPROACH , 52

¢ e e b

R AR R AR AR
% SABIOIDNS]

(d) Check New Metal Spacing

Figure 3.12. - Implementation of a Reflection Rule using Grows and Shrinks. A
reflection rule requiring greater spacing between metal edges aflected by nearby polysilicon can
be checked as follows. Use 3 GROW and an AND_NOT operation to generate halos around
polysilicon regions, (a). Use s SHRINK and an AND_NOT to mark metal edges with thin
slivers, (b). Then AND together the polysilicon halos with the metal edge slivers to identify
metal edges affected by reflection, and GROW out the resulting layer, (¢). Finally AND
together the grown metal edges with the original metal layer to obtain a new metal layer that is
widened at affected edges, and do a spacing check on the new layer, (d).

3.3.5

THE REGION-OPERATION APPROACH 53

connectivity information.

The TAG operation can be used to associate arbitrary information with the edges in an
edge-file. This allows design rules to be conditional on any information, as long as there is
some way to generate a tag-file associating the information with edges or nodes in the mask
data. The area and perimeter operations of the next section, for example, generate tag files

that can be used by TAG to associate area and perimeter information with the mask regions.

3.3.8. Area, Length and Perimeter Checks

Region areas and perimeters, and edge lengths, are important for calculating electrical
properties of circuits such as capacitance and transistor sizes. In addition design rules
occasionally depend on these parameters, e.g., the length-dependent spacing rule illustrated in
Figure 2.10. AREA, LENGTH and PERIMETER operations generally generate output
in the form of tag files for regions or edges giving the numerical values of their area, length or
perimeter (respectively). These tag-files consist of region-number/parameter-value pairs. If
desired, a second pass through the layer can be made to incorporate the tag data directly into

the edge-file.

Area, length, and perimeter tags can be accessed by user-supplied selection routines to
implement conditional tolerance checks depending on these parameters. In addition, variants
of AREA, LENGTH, and PERIMETER operations that output, those regions where the
relevant parameter falls in a specified range, are usually provided for design rule checking; see
Figure 3.13. For example such an AREA operation can be used to check contact rules

requiring contacts of fixed area.

3.4. Scanline Implementation of Region Operations

Recall that region-operations process region boundary-edges, mot the abutting and
overlapping figures of the input mask artwork description. One edge-file is kept for each layer

in the input, and for each intermediate layer generated by the region-operations. Edge-files

THE REGION-OPERATION APPROACH 54

............

(b) LENGTH >

v
'S

(c) PERIMETER > 8 Scale

Figure 3.13 - Area, Length, and Perlmeter Operations. Area, length and perimeter
operations can be used to tag edges with these parameters, for use in circuit extraction or design
rule checking. Variants of these operations (shown above) allow selection of regions (or edges in
the case of LENGTH) where these parameters fall within a specified range.

are too large to comfortably fit into main memory: a single edge-file will typically contain

several hundred thousand edges.

Traditionally, edge-files are processed using scanline techmiques [Szymanski & Van Wyk

1983|. Scanline processing allows a sequential pass through 4he input edge-files; it does not

3.4

THE REGION-OPERATION APPROACH 55

require more than a fraction of the edges to be kept in main memory at any one time; and it
permits ready access to local geometric context, such as the lavers present at a point, and the

edges that are nearby.

Scanline processing proceeds horizontal scaniine by horizontal scanline, left to right,
and bottom to top, as shown in Figure 3.14(a). Prior to scanline processing, the input edge-
fles are sorted into scan order, the order in which they will be encountered during the
scanline processing. During the scanline processing an active-list of edges crossing the current
scanline is maintained in main mémory; see Figure 3.14(b). Note that edges are of two types,
beginning and ending. Beginning edges lie to the left of regions, (precede them in scan order),
and ending edges lie to the right of regions, (succeed them in scan order). Horizontal edges
are not explicitly represented. Their presence is readily deduced during processing. As a
scanline is processed from left to right, new edges beginning on the current scanline are
merged into the active list, and edges ending at the current scanline are deleted from the
active list. The maintenance of the active list together with a running nesting count for each
layer, i.e. beginning edges less ending edges encountered in the current scanline, provides
complete information about the layers and boundaries present at the current point in the

scan. This allows a wide range of processing to be integrated into the scan algorithm.

Copsider for example, the single-layer OR operation. This operation is usually
performed after initial conversion of figure data to edge form. The iritial edge file is not
really in boundary-edge form, as it includes all (nonhorizontal) edges from the original figures,
including interior edges of abutting or overlapping figures. The single-layer OR removes such
non-boundary edges, creating a true boundary-edge. file for use with tolerance and other
region-operations; see Figure 3.15. The single-layer OR can be implemented by marking
edges for output whenever a transition from or to 0 occurs in the nesting count. If the 0
transition occurs only below or above the current scanline, the edge is split. When the tops of

marked edges are reached they are written to the output. Since the output need not be

.

3.4

THE REGION-OPERATIO!N APPROACH

oF

v

® ® ® ®
(a) Scan-Order

(b) Active-List

Figure 3.14. - Scanline processing. In scanline processing, regions are bracketed by
beginning and ending edges, that are processed in left to right scans, beginning at the bottom
of the design and working up (a). The numbers indicate the order in which the edges will be
first encountered during scanning. Edges are sorted into this scan order prior to processing. An
active-list of edges crossing the current scanline is maintained in main memory during
processing.

56

3.4

THE REGION-OPERATION APPROACH 57

strictly in scan order it will have to be sorted prior to further scanline processing. The other

boolean operations are implemented in a similar manner.

Tolerance checks are implemented with an augmented active-list that allows ready
access to all data in proximity to the current point. A halo region is computed for each edge
as it is encountered and intrusion into the halo is. checked with the help of the augmented
active-list. In addition actual overlap between the layers is checked. This is analogous to the
boolean AND operation.

Most other region-operations have straightforward scanline implementations.

Sometimes a second pass through the data is needed to tag or select regions based on the

computation of the first pass. For example topological and conpectivity operations involve

7

(a) Input Figures (b) Initial Edge-File

.

NN
1

(c) Ouput of OR

Figure 3.15. Singlelayer OR implementation. A single-layer OR eliminates nonboundary
edges (b) resulting from overlapping or abutting figures (a), by outputting only those portions of
edges where the nesting count {numbers in b) undergoes a transition to or from 0 (c}.

3.4

THE REGION-OPERATION APPROACH 58

-

the determination of junctures between regions. This information is readily computed in one
scan, but a second scan is needed to to output selected regions in topological operations, and
to tag regions with node numbers in connectivity operations. Similarly, area and perimeter
computations can be performed in one pass through the data provided edges are tagged with
region numbers. A second pass is required to output selected regions or to tag the data with
the computed values. Sizing operations require a single pass. They generate a new, shifted,
edge for each edge in the input. Since scanline processing permits access to adjacent edges at
edge end-points, the amount that the edges need to be extended to meet properly is readily

determined.

An important feature of scanline algorithms is that they permit sequential processing of
the input after the initial sort, and only the edges crossing the current scanline need to be
stored in main memory at any given time. Since VLSI designs have relatively uniform edge
density, and are roughly square, the number of edges on the active-list and hence the main
memory requirement is O(\/r_z'), where n is the total number of edges in the design. The

processing time, excluding the initial sort, is O(n).

Note that the processing time is very sensitive to the average number of scanlines per
unit-y: if the number of scanlines doubles, the processing time doubles. This is because an
edge must be handled once for every scanline it crosses. The number of scanlines per unit-y is
just the number of distinct y-coordinates of end-points per unit-y. Thus scanline processing is

sensitive to the ‘‘utilized” resolution of the design.

3.5. Pros and Cons of the Region-Operation Approach

The region-operation approach to design rule checking has a number of strong points.
The bag of tools approach, providing a set of operations that can be pieced together to
provide the required functionality, is extremely flexible. The system can be retargeted to new
design rules by simply piecing together the appropriate operations. If functions are required

which are not supported by existing operations, new operations can be added without

3.5

THE REGION-OPERATION APPROACH 59

impacting any existing componeats of the system.

The region-operation approach neatly integrates design rule checking with the closely
related Tunctions of circuit extraction and compensation. This saves redundant software and

user interfaces, and gives the DRC complete access to extraction functions as needed.

The tolerance, compensation, and boolean operations match the way designers think

about design rules. They provide a natural language for expressing design rule checks.

The use of scanline algorithms allows data files (which are often very large) to be read

and processed sequentially, with relatively small main memory requirements (O(\/ﬁ)-

The decomposition of design rule checks into sequences of simple operations, each with
its own input and output, intrinsically provides frequent check points. Since design rule

checks of large designs involve many hours of processing, this is a very useful feature.

However the region-operation approach does have shortcomings. A full design rule
check involves many region-operations with the consequent generation of many intermediate
layers. Typically the edge files are too large to be kept in main memory and hence are kept
on disk resulting in great amounts of disk I/O with relatively little CPU processing. DRC

runs tend to be disk-bound and slow.

Because most region-operations apply uniformly in all directions rules involving
directional context are difficult to check. Such rules are commonly involved in the
specification of transistor or contact form. For example, transistors must have polysilicon and
diffusion extensions; see Figure 3.16. The size of extensions, if present are readily checked via
an extension tolerance operation. However checking for the presence of extensions is tricky.
The regions directly opposite gate edges must be checked for the presence of polysilicon or
diffusion extensions. However the presence of polysilicon extensions outside two adjacent gate
edges signals a bent transistor; see Figure 3.16(b). In this case an additional check must be
made to ensure that the polysilicon encloses the corner. Thus the tolerances that need to be

checked depend on which layers abut adjacent edges at gate corners. Such a rule is extremely

3.5

THE REGION-OPERATION APPROACH 60

Missing Extenslons

//j

NS
NN

.

!

Missing Extension

Figure 3.18 - Transistor Rule Involving Directional Context. In MOS processes
polysilicon and diffusion must extend laterally beyond transistor gate regions (a). In addition
extensions must be present around corners of bent transistors (b). To check this rule the layers
present outside each of the two edges at a gate corner must be compared. Such directional
context is difficult to generate in the region-operation approach: it requires long sequences of
operations.

difficult to check through a sequence of region-operations.
3.8. Summary

The region-operation approach to design rule checking is used almost universally. This
approach includes DRC functions as part of an integrated mask artwork system which is also

used to do circuit extraction, and compensation. All of these functions are implemented by

3.6

THE REGION-OPERATION APPROACH 61

sequences of region-operations. Region operaticns take one or two input files and generate ax

.

output file.

Mask data is converted to sorted edge-files, one per layer, and region-operations are
generally implemented using scanline algorithms. This allows for sequential access of input
files, and approximately O(v/7) main memory requirement where n is the total number of

edges in the input.

The region-operation approach provides a flexible, natural, and powerful system for
formulating design rule checks. It also has the advantage of neatly integrating DRC with
related functions, thus avoiding redundant code and user interfaces, and allowing the DRC full

access to extraction functions when needed.

On the negative side, a full DRC requires the sequential application of many primitive
operations and the generation of many intermediate layers. This requires a great amount of
1/O with relatively little CPU processing, leading to slow I/O bound processing. In addition,
anisotropic rules, involving directional context, are clumsy to check, requiring long sequences

of operations.

3.7. References

For an example of a mask artwork format, see the definition of CIF in [Mead & Conway
1980]. For a discussion of connectivity operations, and scanline implementation of region-
operations see [Szymanski & Van Wyk 1983]. A general theoretical discussion of scanline
algorithms, is given in [Bentley 1979]. References to region-operation systems are at the end

of the next chapter.

[Beutley7 1979]

J.L. Bentley, “Algorithms for Reporting and Counting Geometric Intersections,” IEEE
Transactions on Computers, Vol. C-28, No. 9, September, 1979, pp. 643-646.

[Mead & Conway 1980}

C. Mead, L. Conway, Introducetion to VLSI Systems, Addison-Wesley, Reading, 1980,
pp. 115-127.

3.7

THE REGION-OPERATION APPROACH 62

[Szymanski & Van Wyk 1983

T.G. Szymanski, and C.J. Van Wyk, “Space Efficient Algorithms for VLSI Artwork
Analysis,” Proc. 20th Design Automation Conference, June, 1983, pp. 734-739.

3.7

THIS SPACE INTENTIONALLY LEFT BLANK

63

64

CHAPTER 4

Survey of Non-Corner-Based DRC Systems

4.1. Introduction

There are three types of design rule checking systems in existence today: region-
operation, pixel-based, and corner-based. The vast majority of systems use variants of the
region-operation approach presented in the last chapter. They perform design rule checks

through sequences of region operations that process boundary-edge data.

A few systems use a pixel-based approach: these systems process two-dimensional
pixel-arrays rather than edges. Each pixel position is marked with the mask layers present
there, and in some cases with additional state information during processing. Pixel-based
design rule checking is of interest largely because it is amenable to highly parallel hardware

implementation.

Corner-based systems are the topic of this thesis. They apply conditions at each

location in a design according to the pattern of layers present at that location. These systems

differ from region-operation systems in that there is no sequencing of operations: all rules are

applied concurrently.

This chapter surveys region-operation and pixel-based systems. Corner-based systems,
(and the related Magic, and Intel DRC’s) will be considered in Chapter 7, after the

presentation of the corner-based approach.

Performance data for some of the systems presented in this chapter is given at the

’

beginning of Appendix I

4.2

-

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 65

4.2. Region-Operation Systems

The vast majority of DRC systems employ variations of the region-operation approach.
This section examines a number of such systems. All of these express design rule checks in
terms of sequences of the same basic region-operations, and they all use edge-based data

representations and processing.

The systems vary from each other mainly in the functionality they provide and the
internal data organization employed. Functionality ranges from very high for the commercial
DRC vendors such as NCA Corporation, Phoenix Data Systems (PDS), and ECAD
Corporation to minimal as in university software to support Mead-Conway-style design
activity. The commercial packages handle arbitrary angles in the input data, and allow a fuil
complement of conditional checks, with full access to extracted network information and an
interface to user-supplied selection routines, as described in the previous chapter. University
software is generally restricted to orthogonal mask data (for speed and simplicity) and does

not implement conditional checks, since these are not needed for Mead-Conway designs.

A variety of data organizations are used in these systems, including scanline, two
dimensional bins of edges, and swaths of sorted trapezoids, (see Figure 4.1). Each of these
seeks to organize the data in a way that allows edge/edge and edge/quadrilateral intersections
to be computed quickly and systematically, since these are the basic data operations required
to implement the region operations. The choice of data organization impacts the speed of the
operations. Scanline processing, presented in the last chapter, is conceptually simple and
elegant and is used by most systems. However, 3 typical edge is handled many times during
scanline processing: once for each scanline crossing the edge. This multiple handling of data
slows down processing. The fastest systems today use alternative data structures: such as
two dimensional bins (PDS), or the more exotic swatus of sorted trapezoids (ECAD). The

latter is particularly effective in minimizing the number of times each edge is dealt with.

4.2

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 66

7 5| 9 36'}.1/\
Ea o —
g x 5 - 18 29 \/‘ (-\F/‘J 1
3 r - T r ,] L R
: - =
: 1| M2 sj 10/\
(a) Scanline (b) Bins (¢) Swaths

Figure 4.1. - Internal Data Representations. The internal data representations used by
region-operation systems vary. Traditionally the scanline organization presented in the last
chapter is used (a). Some recent systems (e.g. PDS) organize edges or polygons into square bins
(b). At least one system (ECAD) organizes data into sorted horizontal swaths of quadrilaterals
(c). All these organizations facilitate processing by allowing quick and systematic computation
of edge/edge and edge/quadrilateral intersections.

The choice of data structure also determines how much of a design needs to be
maintained in main memory at a time. The scanline and swath methods require a thin slice
of the design to be in main memory, thus the main memory required is proportional to v
where n is the size of the design. If bins are used, only the current bin (and possibly the 8

neighboring bins) need be in memory at one time, so the amount of main memory required

remains constant regardless of the size of the design.

Note that the data organization used impacts the speed and order of the computation,
but not its character. Regardless of the organization employed the same edge-based

processing occurs, thus the user model remains the same.

The following subsections examine systems one by one. Special attention is given to the

main dimensions of variability outlined above: functionality and internal data organization.

4.2.1. Baird’s System

In his masters thesis at Rutgers, on artwork verification for integrated circuits [Baird
1976], Henry Baird surveyed a number of early artwork systems and observed surprising

uniformity: the same primitive operations came up again and again. He proposed an

4.2.1

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 67

integrated artwork system including all the types of operations presented in the [ast chapter.
Baird noted that to avoid spurious errors, operations must be region-based, not fgure-based
as in some of the early systems, and he showed how region-based operations could be

implemented using scan-order edge-based processing of region boundaries. He allowed for

circular arc edges as well as straight edges, to permit true grow operations (see Figure 3.11).

Though his proposed system employed scan-order processing, the data structures and
algorithms were much more complicated than the current scanline algorithms. Internally,
data was maintained in fully intersected form, i.e. edges were split at intersection points and
intersections were represented explicitly as vertices. Data structures were kept both for edges
and vertices and these structures were cross referenced. Processing actually proceeded vertex
by vertex.

Baird’s thesis was the first thorough exposition of region-operation based mask artwork

processing. He documented his algorithms with pseudo-code and careful analysis. Later he

implemented many of his ideas in a DRC system at RCA.

4.2.2. Lauther's Algorithm

Ulrﬁl Lauther of Siemens Corporation, presented a paper at the 18th Design
Automation Conference (Lauther 1981] showing how a scanline algorithm proposed by Bentley
could be modified to perform boolean operations efficiently. Lauther’s algorithm uses a true
scanline approach, as described in the previous chapter. It has O(nlogn) time, and O(\/ﬁ)

main memory requirements. Edges are restricted to straight lines.

The Siemens DRC employs this algorithm to implement region-operations.

4.2.3.. Haken's System

Dorothea Haken developed a DRC program at Carnegie-Mellon University [Haken 1980]
for orthogonal mask data. This program was written to support the Mead-Conway design

activity at CMU. The system includes boolean operations, topological operations (which were

4.2.3

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 68

required to handle butting contacts in the Mead-Conway nMOS process) and a basic
tolerance-check primitive for checking widths, spacings, extensions and enclosures. Extraction
functions were not supported, and node information was not maintained, thus spurious same-
node spacing violations could not be avoided. A simple filter was written to eliminate most of

these spurious violations.

Tolerance checks were implemented by building exclusion rectangles for each edge, and
then checking for intersections between mask features and the exclusion rectangles, i.e.
tolerance checks were implemented via manhattan halos (see Section 3.1 of Chapter 3). All

primitives were implemented using scanline algorithms.

4.2.4. Hitacht

T. Kazowa described the Hitachi artwork system in a paper presented at the 18th
Design Automation Conference [Kozawa 1981]. The Hitachi system uses exactly the region-
operation approach as described in the previous chapter. All the operation types are
supported. Implementat’ion is via scanline algorithms. For tolerance checks, the Hitachi
system uses a modified scanline algorithm that maintains a list of edges within a thin swath

below the current scanline.

4.2.5. NCA

NCA [Alexander 1978, 1983] has been the major vendor of DRC services for many
years. Their primary aim has been to capture all the rules employed by the industry.

Processing speed has been secondary.

The NCA system uses standard region-operations and mainly scanline processing.
Tolerance checks use a modified scanline algorithm that maintains edges within a swath of
fixed width below the current scanline. A few operations, such as GROW, actually operate
on a figure-based data representation. User written selection routines are used to implement

complex conditional checks.

4.2.5

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 69

4.2.8. Phoenix Data Systems

Phoenix Data Systems (PDS) [Spink 1983] has recently emerged as a major competitor
with NCA for mask artwork verification and preparation services. The PDS system employs
a preprocessing step that cross-indexes connected mask data for efficient extraction and
simulation. The DRC again uses the region-operation approach. Output of the tolerance
check operation can be all violating edges, or just the portions of edges which are in violation.
This gives flexibility in building up conditional checks. Edges are sorted into two-dimensional

bins and processed bin-by-bin rather than in scan order.

4.2.7. ECAD

ECAD [Huang 84] has recently entered the DRC vendor market (their first product was
announced in 1983). Their system uses region-operations, providing about the same
functionality as the PDS system. ECAD uses sorted swaths of trapezoids (see Figure 4.1c.) as
their basic data structure. This data structure allows very fast implementations of the

primitive operations.

4.2.8. Other Systems

There are many other systems employing region-operations on boundary-edge mask
data, with variations on functionality, special restrictions on input data, and varied internal
data organizations. But the examples given above illustrate the type and range of variation

in these systems.

4.3. Pixel Systems

A few DRC systems represent mask data by a pixel-array, rather than by boundary
edges. Each pixel is marked with the layers present in it. The algorithms employed by these
systems have a decidedly different flavor from those employed in the region-operation

approach, since they deal with pixels rather than region edges.

4.3

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 70

Pixels are square, and mask data is usually required to be orthogounal, although tricks
have been developed for handling 45s and other angles as well (given enough resolution). The
computation in these systems is organized so that the processing of each pixel depends only
on its own state and that of a small number of nearby pixels. The main appeal of the pixel-
based approach is that, since the pixels can be processed independently, highly parallel

hardware implementations are possible.

The method for expressing design rules varies. In some systems primitive operations are
implemented that can be pieced together to implement traditional region-operations (though
in terms of pixels not edges). In others each rule is expressed in terms of a finite state
machine. In one system the Mead-Conway design rules are hard-coded: they can not be

modified without rewriting the system.

The main problem with the pixel approach is that the required resolution can result in a
very large number of (tiny) pixels in a design; see Figure 4.2. The size of pixels is determined
not by feature sizes, but by the minimum amount by which region shapes and positions can
be varied, i.e. the resolution used in specifying the design. If the resolution is doubled, the
pumber of pixels increases by a factor of 4. As the resolution increases with respect to
average feature size the number of pixels quickly becomes much greater than the
corresponding number of edges in an edge-based representation. The large amount of data to
be processed puts stringent requirements on the efficiency of reading, processing, and writing
the individual pixels if the overall processing is to be faster than or even competitive with the
region-operation approach. Recall that the amount of processing per individual data item is
already small in the region-operation approach, so design rule chec'king will not be speeded up
significantly by reducing this time, unless corresponding reductions are made in the time

required for 1/0.

Pixel-based systems are largely experimental. Though a number of interesting systems

have been proposed, only one, Baker's, has been fully implemented.

4.3

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 71

(a) Unit Resolution (b) Half Unit Resolution

Figure 4.2. - Exponential Growth of Pixel-Array as Resolution Increases. Increasing
the resolution of a design from full units (a) to half-units (b}, quadruples the number of pixels
required to represent a design. Because of this exponential growth, as resolution increases, the
amount of data required to represent a design in a pixel-based system quickly becomes much
greater than that required by a region-operation system.

4.3.1. Baker’s System

Clark Baker developed a pixel-based DRC [Baker 1980] as part of his Master’s thesis at
MIT. For several years, this DRC was the principal one used in the university VLSI
community to check Mead-Conway-style designs. It also may have been the first pixel-based

DRC.

Baker’s DRC is based on pattern matching on small windows into the design, see Figure
4.3. Pixels are processed in raster order, with 3 lines {(plus 4 additional pixels) buffered for a
4x4 window check. Conceptually, the window is moved systematically across the design, and
at each window position, a check is made to see if the pattern under the window is legal
Illegal patterns are reported as design rule violations. Baker’s DRC employed 2x2, 3x3 and
4x4 window checks. A typical 4x4 check might be done by first checking the center 4 cells,
and if they satisfy some criterion, then using the contents of the peripheral cells to generate

an index into a table that specifies whether the pattern is acceptable. Pattern checks are hard

4.3.1

SURVEY OF NON-CORNER-BASED DRC SYSTEMS | 72

coded and ad hoc. Consequently they can not be readily extended to more complex rules, or

greater resolution.

Baker's program checks all of the Mead-Conway rules except for the rules involving

implants. A postfilter eliminates many spurious violations involving same-node spacing.

4.3.2. Seller’s System

Larry Seiler, also at MIT, is currently working on a pixel-based DRC with hardware
assist [Seiler 1982] that greatly extends Baker’s concept. Each operation in Seiler’s system
outputs a mask in pixel form, allowing sequencing of operations. This is done by identifying a
key cell position within a window. If the window does not pattern match, a 0 is output for
the key position, and if it does match a 1 is output. As the window is moved over the design
an entire new layer is generated. A set of hard-wired patterns implement the following

operations:

i. WIDTH-2 - check for width of at least 2.
ii. WIDTH-3 - check for width of at least 3.
iii. SHRINK-2 - shrink by 2.

The hardware also supports boolean operations. Larger width checks can be implemented by
a sequence of width checks alternated with sbriﬁks. (A width check must be done after each
shrink, So that a too narrow region does not disappear entirely before a width violation is
detected.) Spacing checks can be implemented as width checks on the complement of a layer.
Grows can be implemented as shrinks on the complement. Thus tolerance checks and boolean
operations, the main DRC primitives of traditional region-operation systems, can be built up

from the more basic operations of Seiler’s system.

4.3.2

SURVEY OF NON-CORNER-BASED DRC SYSTEMS

Window

(a) Window into Design

>

|
(b) Scan with Three Line Buffer

Figure 4.3. - Baker's DRC. In Baker's DRC, a small window (a) is systematically stepped
across the design: the window is moved from left to right and bottom to top. This allows pixels
to be read in scan-order, buffering 3 rows plus 4 pixels internally (b) for a 4x4 window. The
pattern of pixels at each window position is checked for legality.

4.3.

73

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 74

A few additional primitives are provided:

iv. PRUNE - remove narrow fingers.
v. FILL - fill narrow canyons.

vi. EDGE-CONDITIONS - check 2x2 user-programmable patterns.

These operations allow spurious violations to be avoided in single-layer spacing checks, and

permit some simple conditional checks.

Seiler's system is designed to handle 45 degree data. This is done largely by handling
partially filled pixels “appropriately” in converting data from figure-based to pixel form.
Appropriate handling means marking such pixels as empty or full, depending on the operation

to be performed.

The actual pixel processing is to be implemented with a special-purpose hardware DRC
engine. Figure-based input data will be scanned in software via a scanline algorithm, and
intervals covering the current scanline will be passed to the engine for conversion to a pixel
stream and processing. Internally, data paths in the DRC engine allow for recirculation of
data for sequencing of operations. Output from the engine will also be in interval form, and

will need to be postprocessed {or error reporting.

The hardware is designed around four custom VLSI chips which are currently only

partially designed and implemented.

4.3.3. Mudge's Approach

In a paper given at the 19th Design Automation Conference [Mudge et. al. 1982], T. N.
Mudge of the University of Michigan at Ann Arbor suggested how the Cytocomputer could be

usad to implement a pixel-based DRC check.

The Cytocomputer is a general-purpose pixel-based image processing engine currently

under development. The engine is built up of an expandable series of identical stages. Pixels

4.3.3

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 75

enter and exit each stage serially (in scan order). Each stage buffers two rows plus 3 pixels
internally and outputs a bit depending on the current bit and its 8 nearest neighbors. Looked

at another way, each stage implements a 3x3 window operation.

The basic operations implemented by Mudge on the cytocomputer differ from those in
Seiler's DRC engine. Mudge’s operations, based on the imagf; algebra foymalism developed by
Sternberg [Sternberg 1980], rely on generalized grows and shrinks called erosion and dslation.
Like Seiler’s primitives, Mudge’s operations can be combined to implement the traditional

region-operations.

If a Cytocomputer with a sufficient number of stages is available an entire DRC check
can be made with one pass through the pipeline. Mudge estimates that a full Mead-Conway
check would require 250 stages. Thus given a 250 stage Cytocomputer with a 1 microsecond
cycle time, a 2000 x 2000 lambda design could be processed in 10.5 seconds. However this
timing estimate does not take into account the conversion of the design from figure-based to
pixel form and the postprocéssing of the output, both of which are likely to be very significant

in practice.

Mudge illustrated how DRC operations might be implemented with a 3x3 spacing check.
It is not zpparent to me what form a general spacing check would take. Much work would be
required to code a complete set of region-operations. At the time of the 1982 Design
Automation Conference paper, only a one stage TTL prototype of the Cytocomputer was

available.

4.3.4. Eustace's Approach

R. Alan Eustace and Amar Mukhopadhyay of the University of Florida at Orlando have
proposed yet another pixel-based design rule checking system |Eustace & Mukhopadhyay
1982]. In their system a good deal of state is stored along with each pixel. Two-dimensional
transition functions determine the state of each pixel based on the state of its immediate left

and bottom neighbors and on the layers present at the pixel itself; see Figure 4.4. The state

4.3.4

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 76

of all pixels can be computed by processing from left to right and bottom to top. One
transition function is required for each rule to be checked. The number of states required
depends on the type of check and the maximum dimension involved, for example a 3x3

spacing check can be implemented with 12 states.

No systematic method for obtaining transition functions was suggested. The authors
generated transition functions by hand for a subset of the Mead-Conway rules using ad hoc

methods, specifying the functions in tabular form.

The major drawbacks to this method are the large amount of state information

4

associated with each cell, and the difficulty of specifying and implementing transition

functions. The number of states required grows quickly with the maximum dimension

115 125 135 145 [I55

114 [l24 134 fl44 (154

133/@;@ 153 L

s13| 7 s23 —> *
112 122/ 132/ 14%{\152
s12| 529 532 7649 % (143 .533.542
111 121/ 131/ la1 ~ |I51 = f(143,533,s 2)
s11| 7 s21] 7 s3ll ~ s41

Figure 4.4. - Eustace’s Approach. In Eustace’s approach, state information (bottom right
corners) as well as layer information (top left corners) is associated with each pixel. The state
of each pixel is computed (by a two-dimensional finite state machine [from the states of the
left and bottom neighbors, and the layers present at the pixel itself. A separate state machine,
and set of states, is required for each design rule. Whenever an error state is reached, a design
rule violation is reported.

4.3.4

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 77

involved in a check. and the table space required to store a transition function grows as
O(n"‘logn) where n is the number of states. Thus as resolution increases, the method

becomes untenable.

4.3.5.' Zech's Archltecture

Karl-Adolf Zech, suggests an elegant hardware organization for implementing the
Eustace-Mukhopadhyay method of design rule checking [Zech 82]. This architecture requires
the maintenance of state information for only a very few pixels at any one time, thus
eliminating one of the major obstacles to a practical implementation of this method of design

rule checking.

The basic building block for Zech's architecture is a processing element capable of
computing the state of a pixel, given the states of its left and bottom neighbors, and the
layers present at the pixel. Processing proceeds from left to right. Thus normally a
processing element stores the state of the left neighbor internally (this is just the result of its
previous computation) and takes the layer information for the current cell, and the state of
the bottom neighbor as input, see Figure -4.5(a). A two-dimensional array of processing
elements allows multiple rows of pixels and multiple rules to be checked simultaneously; see
Figure 4.5(b) Each column of processing elements handles one rule, and each row handles one
row of input pixels. The processing in each successive row is delayed one pixel with respect to

the previous row, to minimizes the number of pixel states that must be maintained: each

processing element stores one state internally.

Zech does not discuss the design of the individual processing elements, or the critical

problem of constructing and representing transition functions for design rules.

4.4, Summary

All but a very few DRCs are of the region-operation type presented in the last chapter.

However, these systems do vary in elaborateness. For example, the major DRC vendors allow

4.4

SURVEY OF NON-CORNER-BASED DRC SYSTEMS

Adjacent Pizels

Pizels Pizel Buffers

(a) Processing Element

Rule1 Rule?2 Rule8
| / / /

------- 1 PE |-{ PE | PE

.

‘Row 2)| PE

Row1 | PE |-

PE |1 PE |{ PE
-1 PE |1 PE
| PE |4 PE

(b) Processing Network

Figure 4.5. - Zech's Architecture. On each cycle, each processing element takes two states
and one set of layers as input, and generates one output state, (a). Processing elements can be
interconnected in a staggered array (b) to check multiple rows of pixels, and multiple design

rules simultaneously.

78

arbitrary angle data to high resolution and permit access to extracted data to check

sophisticated conditional rules. In contrast, software for Mead-Conway designs is often

restricted to orthogonal data, has coarse resolution ((e.g. 1/4 the minimum transistor width),

and has few provisions for conditional rules.

4.4

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 79

Region-operation systems also vary in the data structures they use to organize
processing of the mask dzta. Typical organizations are scanlines, two dimensional bins, and
sorted swaths. The basic data elements are usually edges, but may also be rectangles or
trapezoids. Despite these differences, the systems remain very similar in flavor: the same
primitives are used, and implementation is in terms of intersection calculations between

boundaries and other boundaries, or boundaries and halo regions.

There are two other broad types of DRC’s: pixel-based systems, and context-driven
systems. Pixel-based systems differ from region-operation systems in the type of data
representation they employ. In pixel-based systems the mask data is represented and
processed as a two-dimensional array of pixels, rather than in terms of region boundaries.
Pixel-based systems are largely experimental, and of interest mainly because they are
amenable to parallel or pipelined special purpose hardware implementations. Only one pixel-
based system, Baker's Mead-Conway DRC, has received a significant amount of actual use.
There are serious questions as to the practicality of the pixel-l;ased approach, centered around
the O(n?) growth in the nurﬁber of data elements needed to represent a design as the
resolution requirements increase. (Here n is the diameter of the design in minimum resolvable

units.)

Corner-based DRCs, the final type, differ from the region-operation approach in an even
more fundamental way: there is no notion of sequencing primitive operations in context
driven systems. Instead rules are represented in terms of local patterns of layers, and
conditions to be checked wherever the patterns apply. Rules are independent of order and are

all checked simultaneously in one pass through the data.

Corner-based systems are the topic of this thesis. Corner-based and related systems are
discussed in Chapter 7, following the presentation of the corner-based approach in the next

two chapters.

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 80

4,5. References

[Alexander 1981]

D. Alexander, “A Technology Independent Design Rule Checker,” Ird USA-JAPAN
Computer Conference, 1978.

[Alexander 1983
D. Alexander, Personal Communication, NCA Corporation, Sunnyvale, California, 1983.
[Baird 1976]

H.S. Baird, Design of a Family of Algorithms for Large Scale Integrated Circuit
Artwork Analysis, Masters Thesis, Rutgers University, 1976.

[Baker 1980]

C.M. Baker, Artwork Analysis Tools for VLSI Circuits, Masters Thesis, Massachusetts
Institute of Technology, 1980.

[Baker & Terman 1980]

C. Baker & C. Terman, “Tools for Verifying Integrated Circuit Designs,” VLSI Design,
Vol. 1, No. 3, Third Quarter 1980.

[Eustace & Mukhopadhyay 1982]

R.A. Eustace & A. Mukhopadhyay, “A Deterministic Finite Automaton Approach to
Design Rule Checking for VLSL," Proc. 19th Design Automation Conference, June,
1982, pp. 712-717.

[Haken 1980]

D. Haken, A Geometric Design Rulg Checker, Internal document, Carnegie Melon
University, June 1980.

[Huang 1984]
P. Huang, Personal Communication, ECAD, Inc., Santa Clara, California, 1984.
[Kozawa 1981]

T. Kozawa, “A Concurrent Pattern Operation Algorithm for VLSI Mask Data,” Proc.
18th Design Automation Conference, June, 1981.

[Lauther 1981}

U. Lauther, “An O(nlogn) Algorithm for Boolean Mask Operations,” Proc. 18th Design
Automation Conference, June, 1981, pp. 555-559.

[Mudge et. al. 1982}

T. N. Mudge, R.A. Rutenbar, R. M. Logheed and D.E. Atkins, “Cellular Image
Processing Techniques for VLSI Circuit Layout Validation and Routing,” Proc. 18th
Design Automation Conference, June, 1982, pp. 537-542.

[Seiler 1982

L. Seiler, “A Hardware Assisted Design Rule Check Architecture,” Proc. 19th Design
Automation Conference, June, 1982, pp. 232-238.

[Spink 1983]

P. Spink, Personal Communication, Phoenix Data Systems, Inc., Santa Clara, California,
1983.

4.5

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 81

ISternberg 1980]

S.R. Sternberg, “Language and Architecture for Parallel Image Processing,” Pattern
Recognition in Practice, E.S. Gelsema and L.N. Kanal, eds., North Holland Publishirg
Co., 1980.

[Zech 1982]

Karl-Adolf Zech, submitted to Journal of Information Processing and Cybernetics
(EIK), Akademie-Verlag, Berlin, 1982.

4.5

CHAPTER 5

The Corner-Based Approach

5.1, Introduction

This chapter begins the presentation of the corner-based approach to design rule
checking. It presents corner-based checking in its most general form. The form of the rules
presented is likely to appear some what varied and complex. The next chapter, shows how
these rules can be implemented in a uniform and relatively straight-forward manaer. Current
corner-based systems are less general than this, and have considerably simpler rules and

implementations. These will be considered in Chapter 7.

In corner-based design rule checking, conditions are verified at mask artwork corners; see
Figure 5.1. Conditions specify circular sectors in which given layer combinations must be
present or absent. For example, spacing checks are coded by conditions that require a layer
to be absent within sectors located to the outside of corners, while width checks are coded by
conditions that require a layer to be present within sectors inside corners. There are a few
embellishments. The angles of corners can be taken into account when specifying coaditions:
often rules specify one condition on convex corners and another onm concave. Several
conditions can be logically combined to specify more complex conditional rules. Attributes

attached to the mask data can be referenced in conditions to express rules that are

conditional on nongeometric information.

The above paragraph gives the entire corner-based mechanism. It has the following

features:

i. Sector conditions are attached to corners of given angles and layer combinations.

5.1

THE CORNER-BASED APPROACH

/

(a) Spacing

-

(b) Width

Figure 5.1. - Corner-Based Checking. The main idea of the corner-based approach is to
verify circular sector conditions, attached to corners, that require the presence or absence of
certain layers. Spacing is checked, (a), by verifying outward-facing sector conditions that
require a layer to be absent. Width is checked, (b), by verifying inward-facing sector conditions
that require a layer to be present. The shaded conditions have been violated.

ii. Sector conditions consist of circular sectors within which layer combinations must be present

(or absent).

iii. Conditions can be logically combined to implement conditional rules.

iv. Layers can be qualified by reference to attributes tagged to the mask data.

83

The layer combinations in i. and ii. and the combination of conditions in iii. can be general

boolean expressions. Features i. and ii.,, providing for sector conditions om corners, are

powerful enough to replace all the boolean and tolerance operations of the regidn operation

approach: they permit all unconditional rules to be checked. Feature iii., permitting the

logical combination of sector conditions, allows many (though not all) rules conditional on

geometric context to be checked without recourse to sizing operations. Feature iv., allowing

reference to mask feature attributes when specifying layer combinations, provides an interface

to nongeometric information, facilitating the checking of a variety of conditional rules.

5.1

THE CORNER-BASED APPROACH 84

Together these features provide 3 single fexible mechanism powerful enough to check most
rules that can be checked by the region-operation approach. In addition, unanticipated
variations on checks that would require a new primitive in a region-operation system can

often be expressed without difficulty in corner-based systems.

Corner-based checking is contezt-based: the conditions that are verified at a location are
determined by the local context, i.e., the corners present thers, and sometimes by the validity
of other conditions at the corner. Context-based checking facilitates the coding of
directionally sensitive rules, common in the specification of transistors and other circuit
constructs (see Figure 3.16). For example, a sector condition to the left of a corner may be
made conditional on another sector condition to the right of a corner. Directionally sensitive
rules are very clumsy to check with region-operations: they require long complicated
sequences of operations. This is because region-operations are not easily biased by local

context.

The use of context-based rules, rather than sequences of operations, permits all rules to
be checked simultaneously in one pass through the mask data. Each corner in the mask data
is identified, and all conditions applying to it are verified. This single pass through the mask
layers, made possible by context-based rules, is a great boon to performance. It eliminates
the I/O bottleneck encountered in region-operation systems where multiple passes are made

through the mask layers and many intermediate layers are generated.

Corner-based checking differs from the traditional region-operation approach in another
important way. In corner-based systems, tolerances are checked by sector conditions at
corners: no checking is done along the length of edges; see Figure 5.2. Effectively, tolerances
are implemented in terms of point/edge comparisons rather than the edge/edge comparisons
traditionally used in region-operation systems. Point/edge checking allows for clean
partitioning of designs: checking a piece of a design independently entails checking all the

corners in that piece. Partitioning is more difficult in systems employing edge/edge

5.1

THE CORNER-BASED APPROACH 85

processing, since edgss crossing piece boundaries must be treated specially. In fact in region-
operation systems, each type of operation may have to handle such edges differently. Thus
the corner-based method is particularly well suited to hierarchical and incremental checking,

where pieces of a design are checked independently.

The two innovations of the corner-based approach are a context-based rule description
mechanism and point/edge tolerance checking. Since the introduction of corner-based
checking, systems have emerged which employ each of these ideas independently. The Magic
system, recently developed at Berkeley, employs a rule description mechanism, similar to the

corner-based method but based on edges. Conversely, a recent region-operation system,

' - AN

AR v

ST S

(a) Edge/Edge (b) Point/Edge

Figure §.2. - Comparison of Tolerance Check Methods. Traditionally, tolerance checks
on mask regions have been done by checking distances between region edges, (a). In corner-
based checking, tolerances are measured from corner points to region boundaries, (b). Such
Point/Edge checking has the advantage of very naturally splitting-up into piecewise checks:
checking a piece of a design corresponds to checking tolerances from corner-points within that
plece.

5.1

THE CORNER-BASED APPROACH ' 86

developed at Intel, employs point/edge tolerance operations to facilitate hierarchical checking.

These systems will be considered along with the true corner-based systems in Chapter 7.

The remainder of this chapter looks at how corner-based checking works in more detail.
The c.hecking of unconditional rules, rules conditional on geometric context, and rules
conditional on nmongeometric information are considered in turn by the next three sections.v
Each section contrasts the way example rules are checked in corner-based systems with how
they would be handled in a traditional region-operation system. The final section
summarizes the chapter. Implementation issues will be taken up in Chapter 6, and actual

corner-based systems will be considered in Chapter 7.

5.2. Unconditional Rules

This section considers how unconditional spacing, width, and enclosure rules are
expressed in a corner-based system. Recall that in unconditional rules, tolerances apply to the
—layers throughout a design, regardless of context. In region-operation systems such a rule is
checked by a sequence of boolean operations followed by a tolerance check. The boolean
operations combine the mask layers to derive the regions to which the check applies, and the
tolerance operation performs the actual check. In corner-based systems the required tolerance
is checked by verifying circular sector conditions (equivalent to the halo corners in Figure 3.4)

at corners. Since combinations of layers are permitted for corners and sector conditions,

separate boolean operations are not needed.

At the beginning of this chapter, four features of the corner-based mechanism were
given. Only the first two of these are needed for unconditional rules, namely:
i. Sector conditions are attached to corners of given angles and layer combinations.

ii. Sector conditions consist of circular sectors within which layer combinations must be present
(or absent).

THE CORNER-BASED APPROACH 87

The Mead-Conway implant/enhancement-gate spacing rule will be used for illustration.
This rule is shown in Figure 2.7. It requires that implant regions be spaced at least two units
from enhancement gates. Enhancement gates are formed where ever polysilicon overlaps
diffusion and implant is not present. In a region-operation system this rule would be checked

with a sequence of operations like this:

Gate = Polysilicon AND Diffusion;
EnhGate = Gate AND_NOT Implant,
Violations = SPACING|EnhGate,Implant ,2];

In the corner-based approach this rule is expressed as follows:

rule "Implant/Non-Implanted Gate Spacing”
for Implant corners_require
if corner.angle <180 then
!(Polysilicon & Diffusion & !Implant) everywhere_in
sector|edge1+90 *,edge 0—90 *2]
for (Polysilicon & Diffusion & !Implant) corners_require
if corner.angle <180 then
\Implant everywhere_ln sector[edge1+90",edge()—90 *2

The first for specifies sectors at convex (< 180 degree) implant corners; see Figure 5.3(a).
Enhancement gate regions are not permitted inside these sectors. The layer of the corners

and the angle restriction are indicated by:

- for Implant corners_require
if corner.angle <180 then - -

The condition on the sector {no enhancement gate regions) and the sector itself are specified
by:

!(Polysilicon & Diffusion & !Implant) everywhere_in
sector(edge 1+90 * edge0—90*,2

The layer combination ‘(Polysilicon & Diffusion & !Implant) defines enhancement gate
regions. Thus "(Polysilicon & Diffusion & tImplant) everywhere_In - - - ' specifies that
enhancement gate regions not be present anmywhere in the sector. The sector specification
itself has 3 parameters. The first two specify the angle of the beginning and ending edges of

the sector, relative to the edges of the corner. The final parameter gives the depth of the

5.2

THE CORNER-BASED APPROACH 88

¢
vl

iffusio

1

.

7

Polysilicon

S

- Enhancement Gate

(a) Convex Implant Corners (b) Convex Gate Corners

Figure 5.3. - Corner-Based Implant/Enhancement-Gate Spacing Check. Spacing
between impiant and enhancement-gate regions is checked by outward facing conditions on
convex corners of each layer that require the absence of the other layer: part (a) checks that
the Enhancement-Gate layer is not present outside convex implant corners, and part (b) checks
that implant is not present outside convex enhancement-gate corners. The saw-toothed pattern
along the sector edges in part (a) indicate that the edges are included in the sector region:
features abutting these edges would be considered to intersect the sector.

sector. For the details of sector specification, see Figure 5.4. Similarly, the second for
specifies sectors outside convex enhancement gate corners where implant must not be present;

see Figure 5.3(b).

Both for conditions are necessary; see Figure 5.5. The sectors on the implant corners
are needed to ensure that implant regions do not get too close to enhancement gate regions
along implant edges (Figure 5.5(a)), and the sectors on the enhancement gate corners are
needed to ensure that gate regions do not get too close to implant regions along implant edges
(Figure 5.5(b)). The check must be done from both directions since checking only occurs at
corners. In the region-operation approach where checkiag is done along the entire length of
edges, it suffices to check halos around just one of the layers. This is a major difference

between point/edge and edge/edge tolerance checking.

THE CORNER-BASED APPROACH

(s) Angle Direction (b) Sector Specification

e EDCE1

(¢) Inclusive Sector Edge (d) Zero-Width Sector

Figure 5.4. - Sector Specification. A corner’s edges are arbitrarily labeled edge0 and
edgel. The positive direction of rotation is defined as the direction through the interior of 2
corner {rom the corners edge0 to edgel, (a). The first and second argument of a sector
specification give sector edge locations relative to the corner edges. For example,
‘sector{edge1+90,edge0—090,3]’ defines a sector outside a corner with edges 90 degrees from ths
corner edges, (b). The interior of the sector lies between the first and second sector edges in the
positive direction of rotation. The third argument of the sector specification gives its depth.
Sector edges are excluded from a sector by default. Appending an asterisk, {‘*’), to an edge
specification indicates that the edge is to be included in the sector region, i.e. features abuting
the edge from the outside are considered to intersect the sector. For instance
‘nctor{edge1+90,edge0—90‘,3]' specifies a sector with first edge excluded and second edge
included, (c). Zero-width and zero-depth sectors are also allowed. Zero-width sectors are rays
extending from a corner. The zero-width sector ‘sector|edge0—90*,edge0,3]' is shown in (d).
Features abutting from the left are considered to intersect the “sector”. Zero-depth sectors (not
shown) are used to specify adjacencies. For example ‘lector[edgeo,edgel,O]' is concerned with
layers inside the corner and adjacent to the corner vertex.

89

THE CORNER-BASED APPROACH 90

Implant] i

e

lmplant Enhancement Gate Enhancement Gate

(a) Implant Corners ‘(b) Gate Corners

Figure 5.5. - Checking from both Directions. Both parts of the Implant/Enhancement-
- Gate spacing check are necessary. The check at implant corners detects spacing violations along
the length of enhancement-gate edges, where no enhancement-gate corner is present, {a}, and the
check at enhancement-gate corners detects violations along implant edges, (b).
It is also necessary that the sectors are at least as wide as specified in the example, i.e.,
that they extend to within 90 degrees of the corner edges, and that regions touching the edges
of the sector are considered to intrude (as indicated by ‘*’ in the sector specification). If this

were not the case, violations between parallel edges of equal extent could be missed; see

Figure 5.6

It has been shown that the conditions specified in the interlayer spacing rule are
necessary. But why are they sufficient? Why is it sufficient to check only at corners in a
design? Corner-based checking depends on the fact that the closest approach between two

edges always occurs at a corner. There are three cases:

i) The two edges cross.
ii) The two edges are parallel.

iii) The edges get closer together in one direction or the other.

THE CORNER-BASED APPROACH g1

() Violation Detected (b) Violation Mlssed

Figure 5.8. - Sector Width. In spacing checks, the conditiop sectors must extend to within
90 degrees of the corner edges and must inclde their bounding edges, {2). Otherwise spacing
violations between parallel edges of equal extent can be missed, {b). '

This is illustrated in Figure 5.7. If the edges cross, they actually meet at a corner. If the
edges are parallel they are equally close over the entire extent they run parallel. The end of
this extent must coincide with an end-point on one of the edges, again a corner. In the final
case, the edges get closer together in one direction, and hence they are closest together at the

end-point of one of the edges in that direction, again a corner. Thus in every case, the closest

approach between two edges occurs at a corner.

The corner-based interlayer spacing check, given above, can now readily be shown
correct. This check verifies that each of the layers is not present outside sectors at convex
corner on the other layer extending to within 90 degrees of the corner edges. By the above
argument, the closest approach between implant and enhancement gate regions involves either
a corner on implant, enhancement-gate, or a corner formed by crossing implant and
enhancement gate edges. Since enhancement-gate regions are only possible where implant is
not present, the two layers never cross, hence there are no corners formed by crossing implant
and enhancement-gate edges: the closest approach must occur at an implant corner or

enhancement-gate corner. [t remains onmly to show that it must occur within the sector

THE GORNER-BASED APPROACH

(a) Crossing Edges (b) Parallel Edges {¢) Approaching Edges

Figure 5.7. - Relationship of Corners to Edge Spacings. The closest spacing between
two edges always occurs at a corner. There are 3 cases: the edges cross (a), the edges are
parallel (b), or the edges approach each other in one direction or the other (c}. In all three cases
the closest spacing occurs at a corner.

Figure 5.8. - Sufficiency of Sector Extents The sectors in the spacing check need oniy
extend to within 90 degrees of the corner edges, since the closest approach between two layers
occurs at some corner. Suppose it occurs between a corner A on the implant layer and some
point B on the enhancement-gate layer. Then the angle between AB and the corner edges can
not be less than 90 degrees, as drawn in the Figure. In this case B is closer to some other point
on the enhancement-gate layer than it is to A, which is contradictory.

92

5.2

THE CORNER-BASED APPROACH 93

conditions specified by the rule for these two types of corners.

Qince the cases are are symmetrical, only one need be considered. Suppose the closest
approach occurs at an implant corner. Call the corner point A and the closest point of an
enhancement-gate region B. Figure 5.8 shows that if the angle between the line segment A5
and one of the corner edges is less than 90 degrees, then B is closer to some other point cn
the corner-edge than it is to A. Thus AB must be at least 90 degrees from each corner edge.
This is not possible at concave corners, hence the implant corner at A must be convex, and B
must be in the pie slice between perpendiculars to the corner-edges. A violation occurs if and
only if the length of AB is less than the tolerance d requirea by the rule, i.e. if B is in the
circular sector bounded by the perpendiculars and of depth d. But this is exactly the
condition checked in the rule. In summary, it has been shown that if a spacing violation
;)ccurs then a point of enhancement-mode gate must be present in 3 circular sector of depth d
outside a convex implant corner extending go within 90 degrees of the corner edges, or (by
symmetry) a point of an implant region must be present inside a similar sector at an

enhancement mode gate corner - exactly the conditions checked by the corner-based spacing

rule given above.

To generalize the implant/enhancement-mode spacing check to arbitrary layers A and
B it is necessary to explicitly check for overlap between the two layers, since in general two
layers are not logically precluded from overlapping. Overlap can be detected by looking for

corners on the layer A & B:

for A & B corners_require
not_allowed

Since the presence of A & B corners alone signals a violation, no sector condition is required
at these corners. Instead the degenerate condition ‘not_allowed’ is used. This condition can
never be satisfied. Adding the overlap check to the checks at convex corners on the two

layers, yields the following general interlayer spacing rule:

THE CORNER-BASED APPROACH 94

rule "4/B Interlayer Spacing Check”
for A corners_require
i corner.angle <180 then
!B everywhere_in sector{edge1+90* edge0—~90%,2
for B corners_require
if corner.angle <180 then
!4 everywhere_ln sector|edgel+90%*edge0—90%,2
for A & B corners_requlre
not_allowed

Corner-based enclosure, single layer spacing, and width rules are implemented in similar
ways; see Figure 5.9. Single layer spacing is checked with sectors outside convex corners
requiring the same layer to be absent. In addition sectors outside concave corners are checked
to guard against spacing violations caused by small holes in a region. A width check is
equivalent to a spacing check on the complementary layer. It is implemented with inward
facing sectors. The enclosure of A by B can be thought of as 3 spacing between A and the
complement of B. This corresponds to requiring that B be present outs.ide convex corners on
A and that A be absent inside concave corners of B. All these checks can be shown correct
with arguments similar to the one given above for interlayer spacing. The crux of these

arguments is that the closest approach between two edges always occurs at a corner.

It would be cumbersome to express all spacings, widths, and enclosures directly in terms

of the corner-based mechanism. Instead macros are used for the most common rules, e.g.,

Spacing2|{A,B,2|;
Spacing|4,3];
Width[4,3];
Enclosure{4 ,B,2};

These macros expand into the corner-based rules described above. More unusyal rules can
always be written directly in terms of the underlying mechanism, and thus exploit the full

flexibility of the corner-based approach.

To illustrate the flexibility of the corner-based mechanism, one more unconditional rule
will be developed: a facing edge rule. In region-based systems such rules require a special

primitive (e.g. a perpendicular-only grow operation).

THE CORNER-BASED APPROACH 85

(a) Single Layer Spacing

(b) Width

(c) Enclosure of A by B

Figure 5.9, - Other Unconditional Tolerance Checks. Corner-based unconditional single
layer spacing, width, and enclosure checks are all similar to the interlayer spacing check
developed above. Single layer spacing, (a), involves sectors outside corners prohibiting the
presence of the same layer. Sectors at concave corners check for spacing violations resulting
from small holes in a layer. Width, (b), is checked by inward-facing sectors that require the
presence of the layer for a minimum radius. Enclosure, {c), is checked by verifying the presence
of the enclosing layer outside convex corners of the enclosed layer, and verifying the absence of
the enclosed layer inside concave corners of the enclosing layer.

Facing edge checks, as in Figure 3.5, specify minimum tolerances between facing edges,

but do not restrict diagonal spacings, as in Figure 3.5. Such rules are motivated by the

THE CORNER-BASED APPROACH 96

physical properties of the resist used in patterning the layer: parrow resist slivers resulting
from closely spaced facing edges might tear off and foat to another sight on the wafer causing
a fatal flaw there. For example one ruleset requires facing implant regions to be separated by
at least 2 units. Such a rule can be checked with zero width sector conditions perpendicular
to corner-edges, run out as feelers, as in Figure 5.10. Zero-width sectors can be visualized as
having a slight width in the direction(s) of the *'ed edge(s). Conceptually this check is
derived by removing the sector interior from a spacing check. This rule can be written as

follows:

rule "Two Unit Facing Edge Check for Implant”
for Implant corners_require
'Implant everywhere_In sector|edge0—90,edge0—90 *,2] and
tImplant everywhere_In sector|edge1+90*,edge1+90,2}

This section has shown how the basic idea behind corner-based checking: verifying
circular sectors at corners for the presence or absence of layer combinations, can be used to
implement the standard unconditional tolerance checks. In addition the flexibility of the

method has been demonstrated with a more unusual check: a facing edge check. The

Figure 5.10. - Corner-Based Implant Facing Edge Check. Facing edge checks can be
implemented with zero width conditions or fingers extending perpendicularly outwards from the
corner edges. As usual, the saw-toothed sides of the fingers indicate inclusive sector edges: mask
regions touching the fingers on those sides will be considered to impinge on the sector.

5.2

THE CORNER-BASED APPROACH 97

following two sections show how coraer-based checking caa be extended to conditional rules.

- r

5.3. Geometric Condltlonal Rules

Geometric conditional rules are rules where tolerances between features depend on the
geometric context in which they are found. Examples of conditional rules are spacing rules
that depend on the configuration of an underlying layer (Figure 2.9), and width rules that
depend on how densely features are spaced (Figure 2.11). Rules governing transistor or
contact form, for example the extension form rule illustrated in Figure 3.16, also depend on

geometric context.

In region-operation systems, such rules are checked by preceding a tolerance check
operation by a sequence of, sizing, topological, and boolean operations that extract the regions
to which the tolerance applies. In corner-based systems interrelated sector conditions are used
to implement conditional checks. For example a tolerance might be enforced by one sector
condition, only if a certain layer is detected in the vicinity by another sector condition. Such
rules differ from the unconditional rules of the last section in that they use the third feature of

the corner-based mechanism:

iii. Conditions can be logically combined to implement conditional rules.

Some geometric conditional rules can be checked using only the corner-based
mechanism. In other cases the required context is mot available at corners, and must be
established by sizing or topological operations prior to checking. Even in these cases, one or
two region operations usually suffice. This is many fewer than would be required by a
traditional region-operation system. This section illustrates corner-based checking of
geometric conditional rules with two examples. The first one, a transistor extension rule, is
checked by the corner-based mechanism alone, without any preceding region-operations. This
rule involves directional context, and is extremely difficult to check in a region-operation

system (the best method I know requires 18 supporting region-operations in addition to the

5.3

THE CORNER-BASED APPROACH 98

two extension checks). The second example is a reflection rule, where the minimum spacing
between metal lines depends on the configuration of nearby polysilicon. Two region-
operations, an AND aad 2 GROW, are required to provide enough context for the corner-

based check. In a pure region-operation system this check requires 8 operations.

5.3.1. “Translator Extenslion Rule

This section gives a complete transistor extension rule for MOS processes. The rule
requires that transistor extensions are present at every gate edge, and that extensions enclose
transistor corners. This is illustrated in Figure 3.16. Special effort is required to check that
extensions are present along the entire length of gate edges, i.e. that extensions are not
notched; see Figure 5.11. In addition to extension form, the size of extensioms is checked:

extensions are required to be at least 2 units long.
The following sequence of region operations checks this rule:

V1 = EXTENSION(P,D,2)
V2 = EXTENSION(D P,2)

PorD =PORD

Gate = P AND D

GateP1 = GROW_PERP(Gate,2)

V3 = GateP1 AND_NOT PorD

GateH1 = GROW(Gate,.01)

AtCorners = GateH1 AND_NOT GatePl
GateH2 = GROW(Gate,2)

Corners = GateH2 AND_NOT GateP1

PureP = P AND_NOT D

PCorner = TOUCHING(AtCorner PureP)
NotPCorner = AtCorner AND_NOT PCorner
NeedD = OVERLAPPING(Corners,NotPCorner)
V4 = NeedD AND_NOT D

PureD = D AND_NOT P

DCorner = TOUCHING(AtCorner,PureD)
NotDCorner = AtCorner AND_NOT DCorner
NeedP = OVERLAPPING(Corners,NotDCorner)
V5 = NeedP AND_NOT P

5.3.1

THE CORNER-BASED APPROACH 99

/////‘

|\

i

(a) Notched Extension (b) Full Extension

Flgure 5.11. - Notched Extensions. Transistor extensions must not be notched as in (a).
Rather they must be present along the full length of the transistor edge, (b). Notches must be
checked for explicitly in corner-based extension checks.

Violations are written to the layers V11 through V5. The 2 extension operations check the size
of polysilicon and diffusion extensions where ever they appear. The following 4 operations
check that polysilicon or diffusion extensions are present along every gate edge. The
remaining 14 operations checit that transistor corners are enclosed by extensions of sufficient

depth.

The corner-based version of this rule is shown in Figure 5.12. It involves conditional
checks at polysilicon corners, diffusion corners, gate corners, pure-polysilicon (no diffusion
present) corners, and pure-diffusion (no polysilicon present) corners. Together, checks at these

corners suffice to verify the form and dimensional constraints for transistors.

The complete text for this rule is given below. The graphical representation, given in
Figure 5.12, is probably easier to understand. Once conceived of graphically, the translation
into the rule language is not difficult. Also, a few macros would make the rule briefer and

more readable.

5.3.1

THE CORNER-BASED APPROACH 100

If Then

(o)

Figure 5.12. - Corner-Based Extension Rule; First Section. Parts (a) and (b) check all
polysilicon and diffusion corners to make sure that polysilicon and diffusion edges never coincide.
This ensures that gate edges are always flanked by extensions. Part (¢) checks the size of
extensions at regular gate corners, i.e. corners where polysilcion extends out from one corner
edge and diffusion from the other. Parts (d) and (e} check for extensions around corners of bent
transistors.

5.3.1

THE CORNER-BASED APPROACH 101

(b)

Figure 5.12. - Corner-Based Extension Ruley Final Section. Part (f) checks that either
polysilicon or diffusion extension is present inside concave bends in transistors. Parts (g) and (h)
check inside concave pure-polysilicon {no diffusion present) and pure-diffusion (no polysilicon)
corners. They verify that notches in extension do not result in insufficient extension depth.

rule "Tranasistor Extensions”

/* (a) Check for-diffusion extensions along transistor edges
for P corners_require
If D everywhere_in sector|edge0,edge0*,0] then
D everywhere_in sector|edge0*,edge0,0]
and If D everywhere_in sector[edgel*,edgel,0] then
D everywhere_In sector|edge 1,edgel*,0]

5.3.1

THE CORNER-BASED APPROACH 102

/* (b) Check for polysilicon extensions along gate edges
for D corners_require
if P everywhere_In sector[edge0,edge0*,0] then
P everywhere_in sectoredge0*,edge0,0]
and If P everywhere_In sector(edgel* edge1,0] then
P everywhere_lin 5ector[edgel,edgel*,0]

/* {¢) Check extension dimensions at normal gate corners. */
for (P & D) corners_require
if corner.cngle <130 then
if (P everywhere_in sector|edge0*,edge0,0] and
D everywhere_in sector[edgel,edgel*,O]) then
P everywhere_In sector|edge0—90,edge0—90%,2] and
D everywhere_in sector[edgel+90*,edgel+90,2]
elself (D everywhere_in sector|edge0 *,edge0,0] and
P everywhere_In sector{edgel,edgel *,0]) then
D everywhere_In sector[edgeO—QO,edgeO—QO*,Q] and
P everywhere_in sector[edge1+90*,edgel+90,2]

/* (d) Check that diffusion extensions enclose bends in transistors */
for (P & D) corners_require
1f corner.angle <180 then
if (D everywhere_in sector[edge0*,edge0,0] and
D everywhere_in sector|edge 1,edge1*,0]) then
D everywhere_in sector|edge1+90*,edge0—90*,2]

/* (e) Check that polysilicon extensions enclose bends in transistors */
for (P & D) corners_require
it corner.angle <180 then
if (P everywhere_in sector|edge0*,edge0,0] and
P everywhere_in sector(edgel,edgel¥,0]) then
P everywhere_in sector|edge1+90 * edge0—90*,2

/* (f) Check that concave transistor corners are enclosed by an extension */
for (P & D) corners_require
If corner.angle>180 then
P everywhere_in sector[edgel,edge0,2] or
D everywhere_in sector|edgel,edge0,2]

/* (g) Check diffusion corners to complete D extension check */
for (D & !P) corners_require
if corner.angle>180 then
P & D) everywhere_in sector|edge0+90%*,edge1—90*,2

/* (b) Check polysilicon corners to complete P extension check */
for (P & !D) corners_require
If corner.angle >180 then
(P & D) everywhere_in sector[edge0+90",edgel—QO*,'Z]

53.1

THE CORNER-BASED APPROACH 103

Parts (a) and {b) check 2ll polysilicon and diffusion corners to make sure that polysilicor
and difflusion edges do not coincide. These checks involve zero-depth sector conditions, {or

example:
P everywhere_In sector|edge0*,edge0,0]

Zero-depth conditions check adjacencies rather than tolerances; they can be visualized as
sectors with very small radius. In the example, the condition specifies that either polysilicon
is present directly outside the corner and just above one of the corners edges (edge0). Part (c)
checks the size of the extensions at nprmal trapsistor corners {i.e. corners where polysilicon
extends from one of the corner edges, and diffusion from the other). Parts (d) and (e) check
to see that extensions enclose corners of bent transistors (recognized by the fact that either
polysilicon or diffusion extends from both corner-edges). Part (f) checks for extensions at
concave transistor corners. Finally parts (g) and (h) complete the exteﬁsion tolerance check
by looking back from polysilicon and diffusion corners. This final check is required to guard

‘against violations resulting from notches.

This example illustrates how corner-.based ‘extension tolerances are checked. For
example, polysilicon extensions are checked, at convex gate corners that have adjacent
polysilicon (and at concave pure polysilicon corners). This is actually a conditional check:
the tolerance applies only at those gate corner where polysilicon is adjacent. This is why
extension checking was not considered alongside spacing, width and enclosure checks in the

last section.

In the corner-based approach form and directional context are checked via conditional
checks. The complete extension check above involved conditions on 5 corners: polysilicon,
diffusion, gate, pure-polysilicon and pure-diffusion. By contrast the form part of the region-

based extension check required 13 operations and 11 intermediate layers.

(o]
w
[

THE CORNER-BASED APPROACH 104

5.3.2. Reflection Rule

Recall that polysilicon edges to the inside of metal edges can reflect light laterally durieg
patterning of the resist for the metal layer, moving the metal edge outward from its intended
position; see Figure 2.4. To take this phenomenon into account, reflection rules require
greater spacing between metal lines when polysilicon edges lie nearby. For example, metal
edges may be required to be 1 unit apart everywhere, 1.5 units apart when one of the metal
edges is affected by reflection (a suitable polysilicon edge lies within one unit of the metal

edge) and 2 units apart when both metal edges are affected by reflection; see Figure 2.9.

In the region-based approach, this rule can be checked by a l-unit spacing check on a

modified metal layer where edges affected by reflection have been moved outward by .5 units.

Figure 5.13. - Problem with Corner-Based Reflection Check. Above, a bulge in
underlying polysilicon results in a metal spacing violation along a section of metal edge. Note
that no metal corner, and in fact no corner of any kind is present at the site of the violation.
The corner-based mechanism alone cannot detect such violations.

5.3.2

THE CORNER-BASED APPROACH 105

The details of this check were developed in Chapter 3. It requires 3 boolean operaticns, 4

sizing operations, and the spacing tolerance check.

This rule poses a problem for the corner-based approach, since the necessary information
is not available at the corners of the design. For example, Figure 5.13 shows how checking at
metal corners can miss a spacing violation involving a metal edge section affected by
reflection. Note that there is no corner present along the section of metal edge where this

spacing needs to be checked. .

A corner-based check of this rule is possible, if the check is preceded by region
operations that identify the metal edge sections aflected by reflection. For example, the

following two operations do the trick:

MP = M AND P
RefX = GROW(MP,1.0)

All metal edges that are covered by the Re/X layer (reflection context) but not by polysilicon
are affected by reflection. Using the RefX layer, a corner-based version of the reflection rule
can be constructed by checking both metal corners and corners of metal aflected by reflection;
see Figure 5.14. Sector conditions of radius 1.0 and 1.5 units at convex metal corners check
tolerances to any metal and aflected metal respectively. Similarly, sectors of radius 1.5 and
2.0 units at convex affected metal corners check tolerances to amy metal and affected metal
respectively. In situations such as the one depicted in Figure 5.13, affected metal corners
occur in the middle of a metal edge. In these cases it is sufficient to check tolerances only in

the direction perpendicular to the edge. The complete rule can be written as follows:

THE CORNER-BASED APPROACH

> AND
(2)
YMEXEIP)
AND
YMBXEIP)
™M
> AND

(c)

Figure 5.14. - Corner-Based Reflection Check. The corner-based reflection check
distinguishes between ordinary metal and metal affected by reflection. Metal affected by
reflection is defined as ‘Metal & RefX & !Polysilicon’, where RefX is generated prior to
checking as described in the text. Part (a) checks the spacing from ordinary metal corners to
both ordinary metal and affected metal. Similarly part {b) checks the spacing from affected
metal corners to ordinary metal and affected metal. Part (c) checks perpendicular spacings
from affected metal corners occurring in the middle of a metal edge. Such corners arise in
situations such as the one depicted in Figure 5.13.

106

THE CORNER-BASED APPROACH 107

rule "Metal reflection”

/* Normal Metal coraers */
for M corners_requlre
i? corner.angle <180 then
!M everywhere_In sector|edge1+90* edye0—~90*,1.0] and
{M & RefX & !P)everywhere_in sector[edgel+90% edge0—90*,1.5|

/* Corners of Metal affected by reflection NOT in middle of M edges */
for (M & RefX & !P) corners_require
if corner.angle <180 then
if (!M everywhere_ln sector|edge0 ™, edge0,0] and
!M everywhere_in sector{edgel,edgel *,0|) then
!M everywhere_in sector(edge1+90*,edge0-90%,1.5] and
(M & RefX & !P) everywhere_In sector{edge1+90* edge0—90*,2.0]
/* Corners of Metal affected by reflection in middle of M edges */
for (M & RefX & !Poly) corners_require :
if corner.angle <180 then
If ({M everywhere_In sector|edge0* edge0,0] and
M everywhere_In sector|edgel,edgel *,0]) then
!M everywhere_in aector(edgeO+90,edgeO+90*,1.5] and
(M & RefX & !P) everywhere_in sector|edge0+90,edge0+90*,2.0]
for (M & RefX & !Poly) corners_require
if corner.angle <180 then
if (M everywhere_In sector[edge0*,edge0,0] and
!M everywhere_In sector|edgel,edgel *,0]) then

!M everywhere_In sector|edge1+90*,edge0+90,1.5] and
'(M & RefX & !P) everywhere_In sector|edge1+90* edge1+90,2.0|

5.4. Nongeometric Conditional Rules

Some design rules are conditional on connectivity. For example, the spacing required
between distinct nodes is often greater than the minimum spacing between pieces of a single
node. Other rules are conditional on electrical information, such as the resistance of a node,
or on the intended function of a node. Chapter 2 gives examples of rules of each of these
types. All these rules depend on information that is not directly available in the mask
description: rather it must be derived by an analysis program such as a circuit extractor, or

supplied by the designer. Such rules are called nongeometric conditionals.

In region-based systems nongeometric information is tagged to the figures or line

segments comprising the mask data. For example, each line segment is assigned a node

THE CORNER-BASED APPROACH 108

pumber for use in connmectivity-dependent checks. Special operations exist to generate the
nongeometric information and tag the mask data. Once the mask data is tagged, selection
operations can be performed that output only relevant mask features for tolerance checking.
For example, a special width rule for VDD and GND buses can be implemented by preceding
the width tolerance operation, with a selection operation that only outputs mask regions that
are tagged as such. Some nongeometric conditionals, notably internode spacing rules, cannot
be implemented with selection operations. The reason is that whether a tolerance applies
between features in these rules does not depend on the individual values of the tagged data,
but rather on the relationship between the tagged data of pairs of features. For example,
internode spacing tolerance apply to pairs of reatux;es that halve distinct node numbers. Such
rules must be implemented by special tolerance operations that compare the tagged data of

every edge-pair before doing the tolerance check on that pair.

The corner-based mechanism described in this chapter cannot generate nongeometric
information. Thus any nongeometric information that is to be used in corner-based design
rule checking must be provided by an external analysis program (e.g. by a region-based circuit
extractor) or by the circuit designer. If nongeometric information is available, the corner-
based mechanism can use this information for nongeometric conditional checks.
Nongeometric conditional checks use the fourth and final feature of the corner-based
mechanisms:

iv. Layers can be qualified by reference to attributes tagged to the mask data.

For example, ‘Metal[function=”PWRBUS”]‘ is used to specify metal regions tagged with a

function attribute of "PWRBUS", and ‘Diffusion[nodesécorner.node|’ refers to diffusion

regions with node number distinct from the current corner.

There are three examples in this section. The first two illustrate how connectivity-
dependent rules can be implemented in corner-based systems. The third example, a width

check for VDD and GND buses, is typical of rules that are implemented with selection

5.4

THE CORNER-BASED APPROACH ' 109

operations in region-based systems. It shows how references to tag-data ia layer specifications

can be used in place of selection operations.

5.4.1. Internode Spacling

The most common nongeometric conditional rules specify minimum spacings for distinct
nodes on a layer. Such a rule can be implemented by a condition outside convex corners that
does not permit the presence of the same layer unless it has the same node number. For
example, 2 3-unit minimum internode spacing on the diffusion layer is checked by the

following rule:

rule "Diffusion Internode Spacing”
for Diffusion corners_require
if corner.angle <180 then
IDiffusion [nodes%corner.node] everywhere_In
sector|edge 1+90 * ,edge0—90*,3|

The expression ‘Diffusion|nodesécorner.node] refers to diffusion regions with node number
not equal to the node number of the current corner. This rule is illustrated in Figure 5.15.
Unlike the unconditional single layer spacing rule, this rule does not attach conditions to
concave corners. Conditions on concave corners are not needed, in this case, because the

material around a small hole must all belong to the same node.

5.4.2. Burled to Unrelated Polysilicon Spacing

Design rules require polysilicon and diffusion lines that do not actually join in 2 buried
contact region to be spaced a certain minimum distance from the buried region. This guards
against accidental contacts. For example the minimum spacing between a buried region and
unrelated polysilicon might be 2 units. This is another example of a connectivity-dependent
rule. If the common node pumber of the polysilicon and diffusion in buried contacts is
assigned to the buried region as well, then buried/polysilicon spacing can be checked as

follows:

5.4.2

THE CORNER-BASED APPROACH 110

(s) Noteh - OK {b) Distinet Nodes - Violation

corner.node

(c) The Rule

Figure 5.16. - Corner-Based Internode Spacing Check. An internode spacing rule
permits close spacing between sections of the same node, {a), but guards against too-closely-
spaced distinct nodes (b). Such a rule can be checked by qualifying the layer specification in the
sector condition to refer only to regions belonging to different nodes, (c). Here node refers to
the node of the region inside the sector and corner.node refers to the node of the corner.

5.4.

THE CORNER-BASED APPROACH 111

rule "Buried to U'nrelated Poly Spacing”
‘for Buried corners_require
if corner.angle <180 then
!Polysilicon [node=corner.node| everywhere_In
sector|edge1+90 *,edge0—50*,2

for Polysilicon corners_require
it corner.angle <180 then

'Buried|node==corner.node] everywhere_in
sector|edge1+90 * edge0-90*,2]

This rule is illustrated in Figure 5.16. It is exactly like an unconditional interlayer spacing
rule, except that the sector conditions are qualified by node information. A similar rule

’,

checks buried/diffusion spacing.

5.4.3. Power and Ground Bus Width

Since power and ground buses must carry large amounts of current, design rules
sometimes require them to be wider than other metal lines. For example metal may be

required to be 3 units wide everywhere, but S-units wide in power and ground buses. If this

!P{oode£ corn
corner.node

'Blnodes£ corn\ﬁnode]

r.node]
\ corner.node

(a) Convex Buried Corners (b) Convex Poly Corners

Figure 5.18. - Corner-Based Buried to Unrelated Polysilicon Spacing. The buried-to-
unrelated-polysilicon rule is just like an interlayer spacing rule, except that the layer
specifications in the condition sectors are qualified to refer only to distinct nodes. Part (a)
checks outside convex buried corners for polysilicon belonging to a different node (i.e. unrelated)
and part (b) checks outside convex polysilicon corners for any buried regions with a different
node number.

5.4.3

THE CORNER-BASED APPROACH 112

rule is to be checked, power and ground buses must be identified in the mask data with
appropriate tags, say ‘function=="PWRBUS™. In a region-based system such a rule would
typically be checked by preceding the 5 unit width check with a selection operation that
outputs only those metal regions with a function tag of "PWRBUS". In a corner-based
system, such a rule can be verified with a width check on ‘Metal|function="PWRBUS"]'.

This looks as follows:

rule "Power Bus Width”
for Metal|function="PWRBUS"| corners_require
if corner.angle <180 then
Metal|function="PWRBUS"| everywhere_in
sector|edge 1—50,2d5¢0490,3]
for Metol|function="PWRBUS"| corners_require
if corner.angle >180 then
Metal|function="PWRBUS"| everywhere_in
sector[edge0+90* edge 1—90*,5]

This check is illustrated in Figure 5.17.

5.5. Summary

This chapter has introduced a corner-based mechanism for describing and checking
design rules. The mechanism is summarized by the following four features:
i. Sector conditions are attached to corners of given angles and layer combinations.

ii. Sector conditions consist of circular sectors within which layer combinations must be present
{or absent).

iii. Conditions can be logically combined to implement conditional rules.

iv. Layers can be qualified by reference to attributes tagged to the mask data.

The main idea is to express rules in terms of conditions that must hold at corners in a design.
Conditions take the form of circular sectors that are checked for the presence or absence of
certain layer combinations. Conditional rules are checked by logically combining multiple

sector conditions. Rules that depend on nongeometric information are checked by referencing

5.5

THE CORNER-BASED APPROACH 113

M{Function=" PWRBUS"]

(a) Convex Metal Corners

M[Function=="PWRBUS"|

(b) Concave Metal Corners

Figure 5.17. - Corner-Based Bus Width Check. Metal buses may need to be wider than
other metal, since they carry a great deal of current. If buses are tagged as such, such a rule
can be checked with condition sectors attached to corners of metal regions tagged as buses.
Both convex and concave corners need to be checked, just asin a standard, unconditional, width
check. ’

data attached to the mask features in layer specifications.

The first two features suffice for checking unconditional spacing, width, and enclosure
rules (Figure 5.9). Spacing is checked wi‘th outward facing sectors that guard against
intrusions of the same or a second layer. Width is checked with inward facing sectors that
make sure a layer is present for some minimum distance inside of corners, and enclosure is
checked with outward facing sectors on convex corners of the enclosed layer, and inward
facing sectors on concave corners of the enclosing layers. The corner-based mechanism

effectively replaces the sequences of boolean and tolerance operations required in region-based

5.5

THE CORNER-BASED APPROACH 114

systems for checking unconditional rules. Preceding boolean operations are nct required since
both cormers and sector conditions can involve layer combinations. The edge to edge
tolerance checking of the region-based approach is replaced by the checking of circular sectors
at corners: point to edge tolerance checking. This is possible since the closest approach
between two edges always occurs at a corner. However, unlike edge/edge checking,

point/edge tolerance checks must be done from (corners on) both of the involved layers.

Geometric conditionals can be implemented using the third feature of the corner-based
mechanism: the logical combination of multiple conditions. Interdependent conditions at
corners are particularly »;'ell suited for rules involving directional context. For example, a
sector condition along the right edge of a corner may only be checked if another condition
along the left edge holds. Such directionally sensitive rules, common in rules governing the
formation of constructs such as tranmsistors, are difficult to check in region-based systems.
The context required to check geometric conditionals is not always available at the corners in
the design, e.g. reflection rules (Figure 5.13). Corner-based checks of such rules must be
preced.ed by region-based operations to establish the required context. In such cases, the use

of the corner-based mechanism still reduces the total number of operations required.

Rules involving nongeometric information require the fourth feature of the mechanism:
reference to nongeometric information tagged to mask features. Qualification of layer
specifications with reference to tagged information accomplishes the same function as special
selection operations and subroutines in region-operation systems. However the corner-based
mechanism cannot be used to generate nongeometric informzttion. Tagged information must
be provided prior to the corner-based check, e.g., by region-operation-based analysis

programs.

- In corner-based systems macros are provided for common checks, such as spacing,
width, and enclosure. These macros all expand into the same primitive formalism of the

corner-based mechanism. More unusual checks can be written directly in terms of the

5.5

THE CORNER-BASED APPROACH 115

underlying mechanism. Unlike the region operation approach, special primitives are not

required for rule variants or unusual checks.

The use of point/edge tolerance checking makes the corner-based mechanism
particularly well suited for partitioned checking, as required in incremental and hierarchical
systems. Checking a piece of a design simply involves checking the corner-points in that
piece: the tricky problem of edges straddling piece boundaries that is emcountered in

edge/edge checking is avoided.

Rather than depending on sequences of operations, corner-based checking is explicitly
context-based: each rule consists of conditions that apply in a certain context, i.e., at certain
corners. This permits all all rules to be checked in parallel in one pass through a design. The
many intermediate layers, and operations of the region-operation approach, and the resulting

I/O bottleneck are avoided.

5.5

116

CHAPTER 38

Implementation of Corner-Based Checking

8.1. Introduction

This chapter discusses the implementation of corner-based design rule checking with all
the capabilites discussed in the previous chapter. To date, all existing systems are less general

than this in one respect or another. Actual systems will be surveyed in the next chapter.

Corner-based checking involves finding corners in a design and verifiying the relevant
(possibly interrelated) conditions the design rules associate with them. The efficiency of this
process depends, to a large extent, on the internal representation used for the design rules.
The main theme of this chapter is this internal representation: what it looks like, how it is
used by the checking algorithms, and its automatic generation, by a rule compiler, from the

human-readable and -writable format presented in the last chapter.

The three key issues of this chapter are:

i. Representation of layer expressions, which specify combinations of mask layers - to allow
quick evaluation.

ii. Indexing of Rules - to allow quick access to relevant ones.

iii. Representation of condition expressions, which involve interrelated conditions - for efficient
evaluation.

The evaluation of layer expressions is required both during the identification of corners
and during the verification of sector conditions. Many expression evaluations are performed
in the course of corner-based design rule checking. Leo, a commercial corner-based DRC,
averages over 4000 expression evaluations per transistor; see Chapter 9. Thus efficient
corner-based checking depends on a representation for layer expressions that permits quick

evaluation. A bitmapped representation, based on the disjunctive normal form for boolean

6.1

IMPLEMENTATION OF CORNER-BASED CHECKING 117

expressions, is developed for this purpose.

Rulesets contains many rules, only a few of which apply at any given vertex. For
example the Mead-Conway nMOS rules for Lyra consist of 44 rules, of which, on the average,
less than 5 apply at a given corner. Efficient rule checking depends on quickly eliminating
most of the irrelevant rules from consideration at any vertex. An indexing scheme based on

the layer expressions is used for this.

Corner-based systems spend much of their time evaluating condition expressions, (30%
in Lyra, 55% in Leo, and 75% in Leo45). The evaluation of some conditions is relatively
expensive. Thus the intelligent handling of condition expressions, evaluating cheap conditions
first and avoiding whenever possible the evaluation of expensive ones, can significantly speed
up design rule checking. A decision-tree representation is developed that completely specifies
the order of condition evaluation. The rule compiler uses heuristics to choose an appropriate

evaluation order when constructing these trees.

The body of this chapter contains three sections.. The first section, below, develops an
internal rule representation. The second section discusses rule-checking algorithms employing
this representation. And the third section considers the generation of the internal

representation by the rule compiler.

Chapter 9 contains data from actual systems relating to several issues disscussed in this
chapter. These include data organization, layer-expression evaluation, condition-expression

processing, and rule indexing.

8.2. Internal Rule Representation

Corner-based rules, as developed in the last chapter, specify conditions that apply to
corners on certain layers. Conditions, corners, and layers are precisely defined in this section,
and their internal representation is considered. Disjunctive normal form and decision trees are

developed as means of representing layer and condition expressions (respectively). The end

6.2

IMPLEMENTATION OF CORNER-BASED CHECKING 118

result is an internal representation for rules that is suitable for efficieat checking. This
representation is quite difflerent from the external format, which is intended for comvenient
reading and writing by humans. The rule compiler translates external rule descriptions to the

internal format.

8.2.1. Disjunctive Normal Form

In corner-based rules, general logical expressions are used for three purposes: to describe
the combination of mask layers comprising the layer of a corner, to describe the combination
of mask layers that must be present within a sector, and to describe an interrelated set of

conditions applying at a corner. Here are examples of each kind (respectively):

for (D & !P) corners_require - --
(P1D) everywhere_In sector - - -

if CONDITION1 and CONDITION?2 then CONDITION3

The first two types are layer expressions: they involve mask layer combinations. Layer
expressions are conveniently represented in the disjunctive normal form, (DNF), [Hohn 1966]
described below. The third type is a condition expression: it describes an interrelationship
between conditions. Disjunctive normal form is used as an intermediate representation for

condition expressions during rule compilation.

An expression is in disjunctive normal form, if it is the or of terms, that in turn are the

and of simple variables and their complements. For example the expression
A& BIC)&D

is not in disjunctive normal form, but the equivalent expression
1A&D | B&D | C&D

is. Every logical expression, no matter how complex, can be put in disjunctive normal form.
The next section shows how disjunctive normal form is employed to represent layer

expressions. A method for converting expressions to disjunctive normal is given in the

6.2.1

IMPLEMENTATION OF CORNER-BASED CHECKING 119
section on the rule compiler.

8.2.2. Layer Expressions

Layer expressions must be evaluated in the search fér corners to which the rules apply,
and in checking the sector conditions that apply at these corners. Consequently many layer
expression evaluations are required in the course of a design rule check. For example a
complete design rule check of the 44,000 transistor RISC-I chip with Leo requires

approximately 200 million layer expression evaluations.

To permit fast evaluation, layer expressions are represented in disjunctive normal form,
using bitmaps; this is illustrated in Figure 6.1 Each mask layer is assigned a bit position in
the maps. The presence of variables in positive form are marked by 1’s in the posMap for the
term, and the presence of negated variables are marked by 0’s in the negMap for the term.
An expression is represented by posMap and negMap arrays, with one entry in each array for

each term.

This bitmapped representation allows advantage to be taken of parallel bitwise logical

operations. A term in a layer expression can be evaluated as follows:

((posMask|i] & layers) === posMask[i]) | |
((negMask[i] | layers) == negmask|i}).

The C-language syntax is used: ‘&’ and ‘|’ are bitwise and and or operations (respectively),
‘====', compares for equality, and ‘| |’ is logical or. The variable ‘layers’ is assumed to be a
bitmapped representation of the mask layers present where the expression is to be evaluated.
This computation requires only a few machine instructions. Since layer expressions generally
contain only 1 term, and almost Anevel: more than 3, they are evaluated quite quickly using
this method. (Leo and Leo45 average 22 microseconds per expression evaluation, using this

method.)

Some expressions are complicated by layers that are qualified with attribute

information. Two examples of such expressions {(drawn from the rules in Chapter 5) are:

IMPLEMENTATION OF CORNER-BASED CHECKING 120

P&D | D&B

I SO
"/,’ i‘_ \\.’" \\‘
[oT1Tolofolol \==- \[o]lo] [ol1Tolotol1l\ = \lolo]
P D M 1 C B P D M | Cc B
FOSMASK {1} FOSMASK{Y

“
[ofaalainin) \= \1]1] Privinlalalad Lo \1ia
PDMI.CB P D M1 C B

NEGMASK]1] NEGMASKg!

Figure 8.1. - Bitmapped Representation of Logical Expressions. Alter conversion to
disjunctive normal form, logical expressions can be represented using pairs of mask words (one
pair per term). Positive variables are indicated by 1's in the PosMask’s, and negated variables
are indicated by 0's in the NegMask's. Expressions represented in this way can be quickly
evaluated, using machine level bit-parallel logic operations.

!Polysilicon [node=corner.node]
Metal|function=PWRBUS]

Qualified mask layers are assigned their own bit positions in the maps. The evaluation of
such expressions is slowed by the need to reference the attribute information and establish the

presence or absence of the qualified layers prior to the bitmap computations given above.

8.2.3. Corners

The corners of corner-based checking consist of a vertez, two edges and a layer
(expression) that is present between the edges but not directly outside them. It is important
to note that both edges and layer are necessary to the definition of a corner; see Figure 6.2.
Corners with distinct edge;s ma.y share a common vertex, and corners on more than one layer
may share common edges. Each of these corners may have distinct conditions associated with

it that must be checked.

IMPLEMENTATION OF CORNER-BASED CHECKING | 121

I\

! P&M
P&!M l P&D l M

(a) Corners on Same Layer (b) Corners with Same Edges

Figure 6.2, - Corners. Corners are defined by their vertez, two edgee, and a layer that is
present between the edges. The edges and layer are both important. Two corners on a
common layer may share a vertex (a). Similarly two corners can share common edges (b).
Each distinct corner may entail its own associated conditions that must be checked.

8.2.4. Conditions

Conditions, associated with corners by the design rules, must be verified during
checking. Much of the processing time of corner-based systems is devoted to condition
processing - 30% in Lyra, 56% in Leo, and 75% in the more complicated Leo45. There are

four types of conditions, as illustrated in Figure 6.3.

The sector condition, shown in Figure 6.3(a), is the basic type. As explained in Chapter
5, a sector condition is specified by giving its two edges (relative to the corner edges), a depth,
and a layer expression. The condition holds if the layer expression holds throughout the
interior of the sector. The sector edges may be inclusive or exclusive. If a sector edge is
inclusive, it is considered interior to the sector condition, and hence regions abutting the edge
will be considered to infringe upon the sector. Zero-width sectors can be specified to check a

layer expression outward from the corner in a particular direction (Figure 6.3(b)), and zero-

6.2.4

N

IMPLEMENTATION OF CORNER-BASED CHECKING C 12

depth sectors can be specified, to check for the presence of layers directly adjacent to the
corner {Figure 6.3(c)).

Angle conditions, the remaining type, specify a range of angles for a corner (Figure
6.3(d)). They hold only at corners whose angles lie within the specified range. Angle
conditions are generall); used to distinguish between convex and concave‘corners, but they can
also be used for other purposes, for example to disallow acute corners, {i.e., those sharper than

90 degrees), on mask layers.

REGIONAL i
CONDITIONS: 2 3
1. b}
(a) Sector (b) Zero-Width Sectors
IMMEDIATE
CONDITIONS: e ———.@
2
l
(c) Zero-Depth Sector (d) Angle

Figure 8.3. - Conditions. Conditions are of four types: sector conditions, which require a
layer to be present in a circular sector about a corner, (a), zero-width sector conditions, which
require a layer to be present outwards in a given direction from a corner, {b), zero-depth
sectors, which require a layer to be present directly adjacent to a corner, {c), and angle
conditions, which require the angle between the corner edges to fall within a certain range, (d).
Conditions are classified as immediate, if they depend only on the mask configuration, directly
at a vertex, and as regional, if they depend on additional mask data in the vicinity of the corner
as well. Immediate conditions are cheaper to evaluate than regional ones.

IMPLEMENTATION OF CORNER-BASED CHECKING 123

Conditicns are divided into immedéiate ones (angle conditions and zero depth sector
conditions) and regional omes (all other sector conditions). This distinction is importaat

because immediate conditions can be verified much more quickly than regional ones.

8.2.5. Conditlon Expressions

In general, a rule specifies interrelated conditions, i.e., condition ezpressions. For

example, consider part (c) of the transistor extension check given in Chapter 5:

/* (c) Check extension dimensions at normal gate corners. */
for (P & D) corners_require
if corner.angle <180 then
if (P everywhere_in sector|edge0 *,edge0,0] and
D everywhere_in sector|edgel,edgel *,0]) then
P everywhere_In sector{edge0—90,edge0—90%,2] and
- D everywhere_in sector[edge1+90* edge1+90,2|
elseif (D everywhere_in sector|edge0*,edge0,0| and
P everywhere_in sector|edgel,edgel*,0]) then
D everywhere_in sector(edge0—90,edge0—90*,2] and
P everywhere_in sector|edge1+90* edge1+90,2]

Here a set of nine interrelated conditions is specified for transistor cormers. If the details of
the conditions themselves are ignored, simply writing I1 through I5 for the immediate

conditions, and R1 through R4, for the regional ones, the expression becomes:

/* (¢) Check extension dimensions at normal gate corners. */
for (P & D) corners_require
if I1 then
if (/2 and I3) then
R1 and R2
elseif (74 and /5) then
R3 and R4

Note that it is not necessary to evaluate all the conditions in the expression. If I1 (the angle
condition) is evaluated first, and is found not to hold, none of the other conditions need be
evaluated. Further if all the immediate conditions are evaluated first, it will not be necessary
to evaluate more than two of the four regional conditions. Evaluating conditions in the
appropriate order, and avoiding the evaluation of conditions that have been rendered

irrelevant by previous ones, significantly reduces the total amount of computation. The

IMPLEMENTATION OF CORNER-BASED CHECKING

124

representation of coadition expressions as decision trees, allows the rule compiler to assiga an

optimal order of condition evaluatiors, and avoids the evaluation of irrelevant coanditioas.

Figure 6.4 gives a decision tree for the expression above. The internal nodes of the tree

give conditions to evaluate, and the leaves of the tree specify whether the entire expression

evaluates to true or false. The root condition is evaluated first. Computation then proceeds

along the T or F branch of the tree, according to how the condition evaluates. When a leaf is

{1

T

N

12 OK
T F
I8
T F S
R1 I 14
T \F T F T F
) R2) |V I5) ok I5) lox
T F T F T F
OK V. R3) oK R3) oK
T F T \F
R4 V. R4 V.
T F T F
OK V. OK \'s

Figure 8.4, - Decision Tree for Condition Expression. The decision tree representation
of a condition expression completely specifies the order of condition evaluation. The condition
at the root of the tree is verified first; evaluation then proceeds down the T or F subtree
according to the result. When a leal node is reached the computation is complete; the leal
indicates whether the expression is satisfied or not. The use of decision trees minimizes the
number of conditions that must be verified during expression evaluation.

IMPLEMENTATION OF CORNER-BASED CHECKING 125

A: if (11 AND I2) then (R1 AND R2) T
B: if (i1 AND 13) then (R3 AND NOT R1) T F
- g
I2 o e
T F B- G
I8 18
T F
T F
R1 R1 RI A
T T r AP B-
R2 R3 R2 iy I e RS
T p Tr<r T F B-ogq |B-V . b
a-ad fa-vi] fa-v] [a-v] Jr-ad Ja-v . a-ad Ja-ad
B-V. B-v.| IB-ox! {B-v!} [B-x] |B-X B-okl |B-V

Figure 8.5. - Multiple Expression Declsion Tree. This decision tree allows the expressions

A and B, (at top left), to be simultaneously evaluated. Such simultaneous evaluation avoids
redundant verification of conditions that are common to expressions, (in this case /1 and RI).
reached, the computation is complete. The value indicated in the leafl is the value of the
expression. Putting the angle condition at the root of the tree eliminates the need for any
further expression evaluation whenever it is not met. The location of the immediate
expressions toward the root of the tree minimizes the number of regional conditions that need

to be evaluated. The automatic generation of optimal decision trees is taken up in the section

on the rule compiler below.

Decision trees are indexed under the layer of the corners they apply to. If expressions
applying to corners on the same layer share common conditions, redundant evaluation of
these conditions can be avoided by combining them into a single decision tree. This is
illustrated in Figure 6.5. The leaves of the combined tree indicate which expressions (i.e.

rules) have been violated.

6.3

IMPLEMENTATION OF CORNER-BASED CHECKING 126

8.3. Checking Algorithm
Rule checking consists of two steps:

i. Detecting corners.

ii. Checking the conditions that apply there.
This section considers how these two steps are accomplished.

A asorted mask-data representation that allows quick access to the mask regions and
mask region boundaries is assumed. A pixel-based representation, for example would not be
suitable, since it does not allow quick access to region boundaries. It is also assumed that
regions are split where attributes change, so that edges are always present along the
transitions; see Figure 6.6. As long as these conditions are met, the details of the mask data
representation are not important to the overall checking algorithm: two-dimensional bin,
sorted swath, scanline, and corner-stitched representations are all suitable. Several of these

have been employed in corner-based systems; see Chapter 7.

8.3.1. Corner Detection

Corner vertices occur at boundary edge crossings; see Figure 6.7. Thus they can be
found by searching for intersections between pairs of edges. The use of sorted mask data

allows the search to be limited to edges that are near each other, thus making it efficient.

Recall that corners are determined not only by a vertex, but also involve a layer and
edges. The second step in corner detection is to construct a pie-slice data structure, (Figure
6.8), giving the position of edges around a vertex and the mask layers present in the pie-slices
between the edges. In the simplest case there will be only two pie-slices (e.g. the interior and
exterior of a metal corner as in Figure 6.8(a)), and in almost all cases there will be no more

than four slices.

6.3.1

IMPLEMENTATION OF CORNER-BASED CHECKING 127

(3) Power Bus and Taps

{b) Split at Attribute Boundaries

Figure 6.8. - Splits at Attribute Boundaries. Attributes may only apply to sections of a
mask region. For example, the major trunks of the power and ground network may be tagged
as buses, while the smaller taps into these trunks are not, (a}. It is assumed that the mask
regions are split at attribute boundaries, so that attribute values are constant throughout the
individual figures in the mask data, (b). This ensures that corners on attribute-qualifed layers
will not be missed. For example the Metal|function="PWRBUS"| corner indicated in (b)
will be detected.

Figure 8.7. - Corner Vertices. Corner vertices occur where one or more edges cross in the
mask data. The first step in corner-detection is to search for these edge crossings.

6.3.1

IMPLEMENTATION OF CORNER-BASED CHECKING

(a) Simple Corner

(b) More Complex Corner

11100111010 f~ ;10'01'0;0
P D B P D B
011 lo]-

0 9
cs@
0ioi1l0loro

F D M B

v
©
xlo
oje
wlo

=)
o
I

Figure 6.8. - Ple-Slice Data Structure. After a vertex is detected, a pie-slice data structure
is created for it. The pie-slice data structure gives the position of all edges about the vertex
and, in bitmapped form, the mask layers present between the edges. At simple corners, (a),
only two pie-slices are present. However, since in general many-edges may meet at a common

point, many pie-slices are possible.

Layer

128

Figure 8.9. - Extracting Corners from Ple Slice Data. To find corners on a particular
layer, the corresponding layer expression is evaluated at each pie-slice about a vertex, and then

contiguous slices where the expression holds are consolidated.

6.3.1

IMPLEMENTATION OF CORNER-BASED CHECKING 129

However in general, several sdzes may intersect a vertex, and thus 2 large number of pie-
slices is possible. The mask layers present in each pie-slice are represented in bitmapped
form, so that layer expressions can be evaluated on them. The pie-slice data structure is
constructed incrementally, by considering the effect of each mask region present at the vertex.

Efficiency depends, again, on the utilization of sorted mask data.

Corners on specific layers can be extracted from the pie-slice data structure by
evaluating the layer expression on each pie-slice and then conmsolidating contiguous sectors
where the layer expression is satisfied; see Figure 6.9. This computation is relatively
expensive, and in a typical rules set conditions are associated with 15 or so layers of which
only 1 or 2 apply at each vertex; see Appendix 1. Thus checking for the presence of each
layer at each vertex is too slow. This is circumvented by an indexing scheme that greatly

reduces the number of layers considered at each vertex.

The idea behind the indexing is simple: there is no point in looking for Metal corners at
a vertex where Metal is not present in any pie-slice. Similarly corners on more complex
layers can only occur when certain mask layers are present; for example a cormer on
{(Polysilicon | !Diffusion) & Buried’ can only occur when Buried is present. Such facts are
exploited by the rule compiler to build a relevant-layer table that gives, for each combination
of mask-layers, an associated set of relevant layers. The relevant-layers are those with

associated conditions defined in the ruleset, that in addition may occur at a corner where the

given mask layers are present.

If there are 10 mask layers (a typical number), the relevant-layer table would have 1024
entries. After the pie-slice data structure for a vertex has been constructed, the bitmaps
giving the layers present in each pie-slice are ored together to obtain a single map giving all
the layers present at the corner. The entry in the relevant-layer table corresponding to this
value is consulted to obtain the relevant layers for this vertex. Then the pie-slice data

structure is searched for corners on each of these layers by evaluating the layer expression on

6.3.1

IMPLEMENTATION OF CORNER-BASED CHECKING _ 130
the pie-slices and consolidating slices, as already described.

8.3.2. Condition Evaluation

Once a corner has been completely identified, vertex, edges, and layer, it is time to
check the conditions that apply to it. One or more decision trees is associated with the layer
of the corner. Each cecision tree represents one or more condition expressions. The trees
must be traversed from the root down, evaluating the root condition first, and then

proceeding with the T or F subtree, according to how the condition evaluates.

The immediate conditions, i.e., angle conditions and zero-depth sector conditions, are
readily evaluated: their value can be determined from the location of the corner edges, and

from the pie-slice data structure for the corner’s vertex.

P.legional conditions, i.e., sector conditions with positive depth, are more difficult to
evaluate. To evaluate them one must determine whether a layer expression holds throughout
the interior of t,he- sectors. This is accomplished by fracturing sectors at each mask region
boundary, dividing them into ‘“‘monochromatic” chunks, each containing a definite
combination of mask layers throughout, and then evaluating the layer expression on each

chunk separately. See Figure 6.10.

For totally-sorted mask representations, such as corlner-stitching and scanline, the
fracture lines are available so no special computation is required to do the splitting. If a
partially-sorted mask representation is used, such as binning or sorted swaths, a clipping
procedure must be employed to break the sector into the appropriate chunks. Though in the
worst case this sector splitting process can be computationally intensive, on the average it is
not unreasonable. The splitting need only involve mask layers occuring in the layer
expression. For example a sector checking for the presence or absence of metal need only be
split at metal boundaries. Consequently most sectors will not be split at all unless a violation

is present.

IMPLEMENTATION OF CORNER-BASED CHECKING 131

-
>

do
=
S
S

- P D M B
; 1/0:0lc0i0f—1 Y\
'S X o H v

ojoioicioio] —} I

|

0i1]eioiolo

oD M B

qo)
; U
°
(=]
o
o} o

Figure 8.10. - Sector Condition Evaluation. Sector conditions are evaluated, by splitting
their interior into “monochromatic” chunks, each with a definite combination of mask layers
present, and then evaluating the layer expression for the condition on each chunk. This process
is not as costly as it at first appears. The splitting need only be done for mask layers involved
in the layer specified by the condition. In practice most sectors need not be split (they are
monochromatic with respect to the relevant layers).

Since true circular sectors are difficult to work with, e.g., to split into monochromatic
pieces as above, polygonal approximations are used in practice; see Figure 6.11. The greater
the required' accuracy (in diagopal tolerance checks), the more complex this polygonal
approximation must be. A greater range of angles in the mask data also requires more
elaborate sector approximations: sector approximations employing only 45 degree angles can
be quite accurate if the mask data is similarly restricted to 45 degree angles. The cost of more

elaborate approximations is coasiderable. The total time spent processing conditions in

Leo45, which uses 45 degree approximations as described above, is 3.6 times that of Leo, its

manhattan predecessor.

8.4. The Rule Compiler

4

The rule compiler converts the human readable and writable, external rule description to

an internal forn: that permits efficient checking. Aspects of this task include:

i. Macro expansion

ii. Parsing of the input language

6.4

IMPLEMENTATION OF CORNER-BASED CHECKING 132

Actual
Sheapes

Manhattan

Approz.

(
!

45 - Degree i
I

Approz. |
!

|

I

General

|
|

!

. |
Polygonal |
Approz. :
{

Figure 8.11. - Polygonal Sector Approximaltions. Polygonal approximations of sector
regions are used during processing. The simplest approximations are the Manhattan ones.
Though these result in excessively conservative diagonal tolerances, they have been successfully
employed in Manhattan-only systems. The next simplest approximations, using only 45's, are
quite satisfactory when the mask data is similarly restricted. General approximations are more
accurate, but require more processing.

ili. Conversion of layer expressions to DNF
iv. Generation of the relevant-layers table

v. Conversion of condition expressions to (optimal) decision-trees

Macro preprocessers and parsers are well understood. They can be implemented, for example,

with the Unix tools M4 [Kernighan & Ritchie 1977}, Lex [Lesk 1975] and Yacc [Johnson 1973)].

6.4

IMPLEMENTATION OF CORNER-BASED CHECKING 133

The remaining topics, conversioa to DNF, generation of the relevant-layers table, and

decision-tree construction, are more specific to rule compilation; they are considered below.

8.4.1. Conversion to Disjunctive Normal Form

Recall that conversion of layer expressions to disjunctive normal form permits an
efficient bitmapped evaluation technique. It is also useful to convert condition expressions to
DNF prior to generating decision trees. DNF facilitates the expression specialization and
simplification required to create decision.trees, and also permits heuristics based on the term

structure of DNF; see the section on decision trees below.

Whether the primitives of the expression are mask layers or conditions, the process of
conversion to DNF is the same. It consists of a sequence of transformations beginning with
the parse tree for the original expression and ending with an equivalent tree in DNF form.
The process is illustrated with the parse-tree for the expression in Section 2.5; see Figure

6.12(a). The goal is the OR/AND/NOT structure of Figure 6.12(d).

The first step is the elimination of if constructs, by the application of the
transformations shown in Figure 6.13. The application of these transformations converts the
tree of Figure 6.12(a) to that of 6.12(b). After this step all interior nodes are either AND,

OR, or NOT.

The second step is to push NOT’s down to the leaves of the tree. This is accomplished
by the transformations of Figure 6.14, which are based on DeMorgans laws and the law of
double negatives. The transformations are applied to NOT nodes, working from the top of
the tree down, until all remaining NOT's are positioned just above the leaves. Applying
these transformations to the tree in Figure 6.12(b) yields 6.12(c). After this transformation,

only AND’s and OR’; are left in the top part of the tree.

The final step is to move the AND’s through the OR's. The required transformation,

based on the distributive law, is shown in Figure 6.15. Applying this transformation to the

6.4.1

IMPLEMENTATION OF CORNER-BASED CHECKING

(d) Normal Form

134

Figure 8.12. - Conversion to DNF, These are the stages in the conversion of an example
parse-tree to DNF. Notice the stratification of OR, AND, and NOT nodes in the final, DNF,

representation, (d).

6.4.1

IMPLEMENTATION OF CORNER-BASED CHECKING 135

(a) if-then (b) if-then-else

Figure 8.12. - Transformations eliminating If's. These transformations replace if
constructs with equivalent structures involving only AND, OR, and NOT.

(a) DeMorgan’s Laws - AND (b) DeMorgan’s Laws - OR

{c) Law of Double Negatives - NOT

Figure 8.14. - Transformations Pushing NOT's to Leaves. A NOT is moved through
an AND by (a), and through an OR by (b). Adjacent NOT's are collapsed by the
transformation in (c). These transformations are applied systematically from the root of the
tree down, leaving NOT's only directly above the leaves.

example, (Figure 6.12(c)), and consolidating adjacent AND's (and OR's) to single multi-

argument functions, yields the final DNF tree shown in Figure 6.12(d).

6.4.1

IMPLEMENTATION OF CORNER-BASED CHECKING 136

Figure 8.15. - Transformation moving AND's through OR’s. Systematic application of
this transformation from the root of a tree down, moves all the AND's below the OR's. This
is the final step in conversion to disjunctive normal form.

DNF trees for layer expressions are translated to bitmapped form. DNF-trees for

condition expressions are the input for the decision-tree generation algorithm.

8.4.2. Generation of Relevant-Layers Table

Recall that the purpose of the relevant-layers table is to limit the layers considered in
searching for corners at vertices. The table has an entry for each combination of mask layers.
Each entry consists of a list of layers for which corners are possible at a vertex where the

given mask layers are present.

The table is created by considering, for each mask layer combination, the entire list of
layer expressions associated with corners, and retaining those for which a corner might be
present. However, simply evaluating the layer expressions for each set of mask layers does
pot work. For example suppose polysilicon and diffusion are both present at a vertex. Then
the expression ‘P&!D’ evaluates to false, yet, since diffusion need not be present in every pie-
slice around the vertex, a corner on ‘P&'D’ is possible. In general, since the presence of a
layer somewhere at a vertex does not imply its presence everywhere, the value of negated

variables in expressions can not be predicted. The trick is to modify the evaluation of

6.4.2

IMPLEMENTATION OF CORNER-BASED CHECKING 137

expressions to ignorz negated variables. Specifically, the com atation:
P g e Y,

({(posMask|i] & layers) == posMaskii]) |!
({(negMaskli] | layers) == negmask).

is replaced by simply
(posMask[i] & layers) == posMask[i]

If an expression evaluates to true under this modifed evaluation scheme, a corner on that

layer is possible at vertices where the given mask layers are present.

8.4.3. Conversion to Decision-Tree Form

Condition expressions are put in decision-tree form to specify the exact order of
evaluation and avoid unnecessary condition evaluations. A decision tree is built by choosing a
condition for the root of the tree, and then proceeding (recursively) to build the T and F
subtrees. This process involves choosing root nodes and deriving expressions for the subtrees.

Both steps assume a DNF representation of the input expressions.
Huristics are used to choose, at each step, the root condition that is most likely to

minimize the amount of computation required during evaluations of the expression. The

following heuristics (approximately in order of priority) are the most important:

i. Prefer immediate conditions.
ii. Prefer conditions appearing in the most terms.

iii. Prefer conditions whose appearances in positive and negated forms are most nearly
balanced.

Immediate conditions are chosen first because they are cheap, and their early evaluation is
likely to reduce the number of more expensive region condition evaluations required.
Conditions appearing in many terms are evaluated early, since they potentially greatly reduce
the number of conditions left to evaluate. Between two conditions appearing in many terms,

the one with the number of positive and negated appearances most nearly equal is chosen

6.4.3

IMPLEMENTATION OF CORNER-BASED CHECKING 138

first, since, true or false, it is guaranteed to reduce the number of conditions left to evaluate.

Notice that the second and third heuristics utilize the term structure of DNT.

Once a root condition is chosen, expressions for the true and false subtrees must be
derived so that the process can be continued. The idea is to replace the root condition with
true, (“T"), and felse, (‘F'), and simplify to obtain the expressions for the T and F subtrees
(respectively). Since the expressions are in DNF form, the simplification can be managed as

follows:

i. Cancel T's appearing as positive variables, and F’s appearing as negated variables. If this
reduces the number of variables in any term to zero, reducé the entire expression to T.

ii. Cancel terms where F appears as a positive variable or ‘T’ appears as a negated variable. If
this reduces the number of terms in an expression to zero, reduce the entire expression to F.

A third simplification is useful for removing redundant terms:

iii. If T; and T; are terms of the same expression, and term T; contains all variables in term

Tj, the negated variables in negated form, and the positive variables in positive form, then
cancel term T from the expression.

These simplifications are illustrated in Figure 6.16. The end result of simplification is T,
F, or an expression involving neither T nor F. If an expression simplifies to T or F, its value
is completely determined, and no further conditions need be evaluated: a leaf node is created.

Otherwise, a root condition is chosen for the subtree and the process is continued.

Recall that when two condition expressions for cormers on a layer share common
conditions, redundant evaluation of those conditions can be avoided by combining the
expressions into a single decision tree. A decision tree for multiple expressions can be created
using the same procedure as above, but simplifying each expression separately. A leafl is

created when all the expressions have been reduced to T or F.

8.5. Summary

Corner-based checking involves the detection of corners in a design and the verification

of the conditions specified for the corners by the design rules. These steps can be executed

IMPLEMENTATION OF CORNER-BASED CHECKING 139

[ABT + CF = AB+ C

0
1\ ¥ +CE = T
=

Term becomes null.

(EAB + CD + BE = CD
(® _
_ TAB => F

=

Ezpression becomes null.

@ ABC + ABCD + EF => ABCD + EF
L

Subterm.

Figure 8.18. - Expression Simplification. DNF expressions containing T*s and F's can be
simplified as in (i) and (ii). Such simplifications may lead to redundant terms or subterms.
Such terms should be eliminated as illustrated in (iii). After these simpilifications, an expression
will either be T or F, or will not contain T and F.

simply and efficiently if a good internal rule representation is used. In particular the bit-
mapped DNF representation of layer expressions speeds up both steps. It allows machine-
level, bit-parallel, logic operations to be used for quick evaluation of layer expression,

facilitating both the detection of corners, which occur on layers, and the verification of sector

conditions, which requre layers to be present or absent throughout a sector’s interior.

The indexing of rules is also important: a typical ruleset contains many rules, only a
few of which apply at any given vertex. The relevant-layer table is used for indexing. Given
the combination of mask layers surrounding a vertex, the table is consulted for a list of layers
on which corners (with associated rules) might be present. Only corners on these layers, and
hence the rules associated with them, are considered at a vertex. The rule compiler computes

the relevant-layer table, using a modified evaluation scheme for layer expressions that ignores

6.5

IMPLEMENTATION OF CORNER-BASED CHECKING 140

negated varaibles. Layers that evaluate to true under this scheme may be present at the

vertex in question.

The representation of condition expressions is another important aspect of rule
representation. The order in which conditions are evaluated can effect the total cost of the
computation, because the evaluation of one condition will in some cases eliminate the need to
evaluate another. Condition expressions are represented by decision trees that specify the
exact order of condition evaluation. The rule compiler employs heuristics to choose a good
order of evaluation when constructing decision trees. For example, cheap conditions are
evaluated early in the hope of eliminating the need to check more expensive ones, and
conditions that appear in multiple terms of an expression are checked early since they can

potentially eliminate the need to evaluate many other conditions.

Because of the importance of a good internal rule representation, the rule compiler is a
crucial component of corner-based implementations. The use of a rule compiler to translate

rules to an efficient internal format makes corner-based design rule checking simple and fast

8.8. References

Normal forms and logic expression manipulation are discussed in [Hohn 1966]. Compiler
writing tools, for automatic generation of lexical analyzers and parsers are presented in [Lesk
1975] and [Johnson 1975]. A general macro preprocessor, suitable for use in corner-based

DRC systems, is detailed in [Kernighan & Ritchie 1977}

[Hohn 1966}

F.E. Hohn, Appplied Boolean Algebra, The Macmillan Company, New York, 1966, pp.
41-51.

{Johnson 1975)

S.C. Johnson, “Yacc: Yet Another Compiler Compiler,” Comp. Sci. Tech. Rep. No. 32,
Bell Laboratories, Murray Hill, New Jersey, 1975. Reprinted in UNIX Programmer's
Manual, Supplementary Documents, 4.2 Berkeley Software Distribution, Virtual VAX-
11 Version, Computer Science Division, University of California, Berkeley, CA, March,
1984.

6.6

IMPLEMENTATION OF CORNER-BASED ‘CHECKING 141

[Kernighan & Ritchie 1977]

B.W. Kernighan, and D.M Ritchie, “The M4 Macro Processor,” Comp. Sci. Tech. Rep.,
Bell Labs, Murray Hill, New Jersey, 1977. Reprinted in UNIX Programmer's Mcnual,
Supplementary Documents, 4.2 Berkeley Software Distribution, Virtual Vax-11
Version, Computer Science Division, University of California, Berkeley, CA, March,
1984.

[Lesk 1975]

ME. Lesk, “Lex - A Lexical Analyzer Generatior,” Comp. Sci. Tech. Rep. No. 39, Bell
Laboratories, Murray Hill, New Jersey, 1975. Reprinted in UNIX Programmer's
Manual, Supplementary Documents, 4.2 Berkeley Software Distribution, Virtual VAX-
11 Version, Computer Science Division, University of California, Berkeley, CA, March,
1084.

6.6

142

CHAPTER 7

Survey of Corner-Based Systems

7.1. Introduction

This chapter considers actual corner-based systems. None of these systems implement
the cormer-based formalism of the previous chapters in complete generality, though the
. combined features of two of them, Mart and Leo43, come close. For each system, the nature
of its features and restrictions are presented, its implementation is discussed, and its rule
checking capabilities are analyzed. The structure of the systems and their implementations is
similar to that of the general system developed in the previous two chapters. Differences are
for the most part due to restrictions in the actual systems that simplify implementation and

limit rule checking capability.

The Magic and Intel systems presented‘ ;t the end of the chapter do not use the corner-
based formalism of the previous two chapters. These systems are included because they
independently employ the two key innovations of the corner-based approach: The Magic
system uses context-based checking, and the Intel system uses point/edge comparisons to

implement its tolerance checks.

Performance figures and other numerical data for all the systems discussed in this

chapter are given in Chapter 9.

7.2. Lyra

Lyra, the first corner-based design rule checker, [Arnold & Ousterhout 1982], was coded
by the author in the summer of 1981. Lyra was written as an experiment to test ideas for
corner-based checking, and also to fill 3 need for an accurate and flexible DRC at Berkeley.

Lyra was completed just in time to check the RISC-I chip. Later Lyra was extended to check

SURVEY OF CORNER-BASED SYSTEMS 143

designs hierarchically {see Chapter 8) aad added to the Serkeley V1SI Tools distributicn tape.
An editor interface allows Lyra to be invoked interactively from Caesar, [Ousterhout 1981],
Kic, [Keller & Newton 1682], and other graphic editors to check selected portions of the
design currently being edited. Lyra is in active use both at university and industrial sites.

Rulesets for a number of MOS processes have been written.

7.2.1. Features and Restrictions

.

Lyra is less general than the corner-based system described in Chapter 5 in three ways:

i. It is manhattan.
ii. The form of condition expressions is restricted.
fii. Layers can not be qualified by attributes.

Lyra processes only manhattan mask data, and uses manhattan bozes in place of
sectors; see Figure 7.1. Zero-depth sectors are implemented by thin boxes, one unit of

resolution wide, as are inclusive sector edges.

The manhattan nature of Lyra is its most apparent limitation. Manhattan design
-simpliﬁes CAD tools and is widely used in university settings. The restriction to manhattan
data is more problematic in industry. The use of manhattan boxes to approximate sectors
results in overconservative checking of diagonal tolerances; see Figure 7.2. For example 2 3
unit spacing rule would flag diagonal spacings of up to 3v/3 =4.23 units. However tight

diagonal spacings are awkward in strictly manhattan designs anyway, and rarely come up.

Circuit designers at Berkeley have not found manhattan distances difficult to live with.
Condition expressions in Lyra rules must take the form,

it {I, and I; and --- and I;} then
{R, and R; and ... and R, }

where I, through [; are immediate conditions and R, through R, are regional conditions.

One of the immediate conditions in each rule must be either ‘corner.angle==90" or

-1
to
—

SURVEY OF CORNER-BASED SYSTEMS 144

o————
(a)
=
(b) © I 1 UNIT
=
Ovwwwrvwroew X 1 UNIT
} (c) -
GENERAL METHOD LYRA

Figure 7.1. - Substituting Manhattan Boxes for Sectors. In Lyra, manhattan boxes are
used in place of circular sectors, (a). Thin boxes (one unit of resolution wide) are used for
inclusive edges, (b} and {c}.

7.2.1

SURVEY OF CORNER-BASED SYSTEMS 145

Figure 7.2. - Over-Conservative Diagonal Tolerances. Using manhattan boxes in place
of circular sectors results in over-conservative diagonal tolerances. For example, above,
although A and B are more than 3 units apart they would be flagged by a 3-unit spacing check
using manhattan boxes.

‘corner.angle=270". (These are the only posisible corner angles in manhattan designs). Thus
condition expressions in Lyra consist of two parts, a list of immediate preconditions, and a

list of regional conditions. If all the preconditions hold at a corner, then all the regional

conditions must also hold.

Condition expressions in Lyra are more restricted than the general expressions developed
in Chapter 5. In particular expressions such as ‘R, or R., specifying that one of two region
conditions must hold, and ‘mot R1', useful for checking that a layer is present at least
somewhere within a sector, are not permitted. Thus complex relationships between
conditions, such as might occur in the more involved industrial rules, cannot be handled by
Lyra. However the great majority of rules take the form required by Lyra. Among the

examples in Chapter 5, only the transistor extension rule involve condition expressions too

SURVEY OF CORNER-BASED SYSTEMS 146

complex to be kandled by Lyra: parts (a) and (bj of this rule involve two conditionals, part
(c) involves an ‘else’, and part (f) involves an ‘or’ between two region conditions. All of these

expressions can be split into simpler ones that have the form required by Lyra.

The third restriction in Lyra is th;;t layers may not be qualifed by attribute
information. Because of this restriction, rules depending on connectivity information, such as
rules for single-node spacing and rules for spacing between buried regions and unrelated
polysilicon or diffusion, can not be accurately checked by Lyra. Instead, approximations must
be used that sometimes generate false violations. The major complaints of Lyra users have
concerned false diffusion spacing violations, and false buried-contact-related violations, both
stemming from Lyra's inability to handle connectivity. Users cope with thesc problems by
stylizing their designs to avoid these idiosyncrasies of Lyra. Users who began designing with
interactive access to Lyra (e.g. from Caesar) complain much less; they learn the idiosyncrasies

along with the design rules, directly from Lyra.

Lyra can check the great majority of rules occurring in practice, including simple width,
spacing, enclosure and extension rules, transistor and contact form rules and the exotic
facing-edge and anisotropic implant rules. The capabilities of Lyra are satisfactory for simple

nMOS and CMOS rulesets on manhattan designs.
7.2.2. Implementation

The Lyra system consists of 4500 lines of Lisp code for the checker, and an additional
2500 liries for the rule compiler. The implementation follows the general method described in
Chapter 6 but is much simpler. Several factors contribute to the relative simplicity of the

Lyra implementation.

Mask data in Lyra is organized into square bins. Lists of rectangles intersecting each
bin are maintained, one list for each mask layer. This simple data organization minimizes the
complexity of the low-level routines for sorting and traversing the mask data: about 100-200

lines of code suffice where 1000-2000 lines are required for scanline or corner-stitched data

SURVEY OF CORNER-BASED SYSTEMS 147

orzanizations,
’
Since Lyra does not support layer expressions qualified by attribute information,
attribute information need not be maintained internally, and layer expression processing is

simplified. In addition vertex detection is simpler, since attribute transitions need not be

considered.

Lyra’s restricted condition expressions simplify the rule compiler. The condition
expressions, as specified by the user, can be used directly by the checker. The code to convert

condition expressions first to DNF and then to optimal decision trees is not required.

The use of Lisp allows further simplifca.ti.ons in the implementation of the rule compiler.
Rules in Lyra are written using Lisp syntax. This permits the direct use of the parsing and
macro processing facilities of the Lisp environment. In addition layer expressions are treated
as Lisp expressions and compiled by the Lisp compiler, avoiding the conversion to DNF-based

bitmapped form.

Together, restricted condition expressions and the use of Lisp make the Lyra rule
compiler almost trivial: Macro preprocessing, parsing, and layer-expression processing are
done ‘‘for free’’ by the Lisp environment, and condition expressions require little processing.
The remaining significant function of the Lyra rule compiler is the generation of the relevant-
lavers index. This is accomplished as described in Chapter 6, except that, since laver
expressions are not represented in DNF form, the evaluation of candidate layers is done in a

slightly more complicated way that bypasses DNF.

The restriction to manhattan data, and the use of manhattan approximations for
sectors, simplifies all phases of rule checking. The intersection calculations involved in finding
vertex points, determining the pie-slice data structure and verifying region conditions are all
simpler when only borizontal and vertical edges are involved: the coordinates of intersections
can be read from the coordinates of the intersecting elements, and no slope computations are

necessary.

SURVEY OF CORNER-BASED SYSTEMS 148

The pie-slice data structure is aiso simpler in a manhattan system. Instead of an
arbitrary number of pie-slices, with arbitrary edge positions, the pie is simply divided into
four quadrants, and the pie-slice data structure reduces to four bit-mapped words, ore for
each quadrant. Corners can be found by evaluating the appropriate layer expression in each
quadrant, and then doing a 16-way table lookup based on the result; the more cumbersome

pie-slice consolidation of the general method is avoided.

The processing of region conditions is also simplified because Lyra is manhattan.
Regions are just boxes, and hence are easy to construct. The box is wholly determined by the
location of the corner vertex, and the corner orientation: since the exact angle of the corners
is fixed, the size and shape of region conditions do not depend on the positions of the corner
edges. The use of narrow boxes in place of inclusive edges allows uniform treatment of region

edges, further simplifying condition processing.

Overall, making Lyra manhattan and restricting condition expressions allowed great
simplifications in the implementation, without significantly reducing Lyra’s usefulness in the
university environment. The other simplifications came at greater costs. Ignoring attributes
made Lyra blind to connectivity, leading to many false violations in situations related to
single-node spacing and buried-contact rules. The major complaint of Lyra users concerns
this inability to properly check connectivity-related rules. Implementation in Lisp made Lyra
dependent on a large runtime system, and relinquished control of low-level data management
to the Lisp system. This resulted in a much bulkier and slower system than would have
otherwise been the case. Nevertheless the functionality of Lyra is sufficient to make it the
preferred design rule checker at many universities, and its speed is comparable with

traditional region-based checkers.

7.3. Mart

Mart, an integrated design rule checker and circuit extractor, was developed by Mark

Shand & Bruce Nelson at CSIRO in Australia, [Nelson & Shand 1983|. Mark Shand later

=3
(4]

SURVEY OF CORNER-BASED SYSTEMS 149

continued work on Mart at Xerox PARC. The DRC part of Mart is based on Lyra. Mart is

neither hierarchical nor incremental.

7.3.1. Features and Restrictions

Like Lyra, Mart checks manhattan data only, and uses box-shaped condition regions
rather than circular sectors. Several extensions of Lyra's capabilities were incorporated in
Mart. The side edges of box regions can be inclusive or exclusive; see Figure 7.3. This
eliminates the need for the long narrow sliver regions simulating inclusive edges in Lyra,
reducing the total number of regions to check by about 409% and improving performance
dramatically. Note however that, unlike the general case, the side edges of a region are either
both inclusive or exclusive: they can not be set independently. Mart supports somewhere-
style conditions as well as everywhere-style ones, that is, a layer expression can be required to
hold everywhere in a region condition or just somewhere inside it. Regional conditions can be
combined with NOT and XOR as well as AND operations, thus regional conditions can

qualify each other. This allows more complex conditional rules to be checked.

Overiaps Condition Doesn't Overlap Condition

\

(a) Inclusive Edges (b) Exclusive Edges

Figure 7.3. - Inclusive/Exclusive Bax Edges. In Mart, the two edges of a rondition box
adjacent to the corner-point, can be either inclusive, (a), or exclusive, (b). As in the general
system of Chapters 5 and 6, a mask feature directly abutting an inclusive edge is considered to
overlap the condition region.

7.3.1

SURVEY OF CORNER-BASED SYSTEMS 150

Layer expressions in Mart are limited to circuit layers and logical combinations of at
most two circuit layers under the operations AND, OR, and NOT. This does pot restrict
the functionality of the system however, since circuit layers consisting or arbitrary boolean
combir.xations of the mask lavers can be generated prior to design rule checking, as part of the
circuit extraction phase of Mart. Layer expressions in region conditions can be qualified to
apply only to layers with node numbers equal (or unequal) to the corner layer. Thus

connectivity based rules can be checked.

7.3.2. Implementation

Mart is written in C and is scanline-based. However the scanline algorithm is not
“pure”: corners below but near the current scanline are %ept track of so that regional

conditions can be checked on the same pass that corner-points are identified.
Since the form of layer expressions is restricted, conversion to DNF is not necessary.

In the interest of better readability and writability, the input rule description for Mart
does not use Lisp syntax, thus a special- purpose parser is required. The parser was

constructed using the Unix tools YACC and LEX.

Since regional conditions are interdependent, regional condition expressions are
represented with parse trees. These parse trees are not converted to DNF or decision-trees.
Instead, all regional conditions are evaluated, and then the values are plugged into the leaves
of the parse tree and the tree expression is evaluated directly. However rules have the general

form:
It <immediate conditions> then <regz’onal-ezpression>

Immediate conditions are kept separately from regional conditions and evaluated first. Thus
the most important strategy of the decision tree approach (early evaluation of the cheap

immediate conditions) is honored.

7.3.2

SURVEY OF CORNER-BASED SYSTEMS 151

it extraction fumciion of Mare

(2]
£

Ccnnectivity information is generated as part of the cir

and is readily available to the DRC.

7.3.3. Rule Checking Capabllities

Like Lyra, Mart's most apparent limitation is its restriction to manhattan data. And
like Lyra, Mart also uses manhattan approximations of circular sectors, leading to over-

conservative checking of diagonal tolerances.

The extensions of Mart remove many of Lyra's other deficiencies. Connectivity
information allows Mart to do single-node spacing and buried/polysilicon spacing rules.
Complex regional expressions allow rules requiring context established by regional conditions,

such as reflection rules and open-area-dependent width rules to be handled.

The lack of general attribute capabilities makes rules employing nongeometric
information other than connectivity, such as special rules for regions of high current or for

VDD and GND nodes, difficult to implement.

Fl

Mart is considerably faster than Lyra, for flat (nonhierarchical) checking. The reduction
in the number of region conditions afforded by the use of inclusive/exclusive edges is one
factor. The use of the C language for implementation, and general attention to efficiency, are

others. See Appendix I for performance measurements.

7.4. Leo45

Leo45, the Metheus DRC, developed by myself and others at Metheus, is the first
commercial corner-based DRC. It is hierarchical and incremental. True to its name, Leod5
handles 45 degree angle mask data. (The first version of this program, Leo, was manhattan

only. Benchmarks for both Leo and Leo45 are included in Appendix 1)

7.4.1

SURVEY OF CORNER-BASED SYSTEMS 152

7 4.1, Features and Restrictions

Leo45 extends Lyra in a number of ways. The processing of 45-degree-angle mask data
is supported and circular sectors are approximated as pieces of an octagon, rather than a
square; see Figure 6.11. These approximations are quite close to true circular sectors: it is
difficult to generate designs restricted to 45 degree angles for which the octagonal

approximation yields different results than would be obtained with true circular sectors.

Like Mart, Leo45 permits region edges to be specified as inclusive or exclusive. In
Leo45, the two region edges can be specified independently, e.g. one as exclusive and the other
as inclusive. This is useful for specifying zero-width condition fingers that check for a layer

on onl& one side. Such conditions are simulated with long narrow boxes in Mart acd Lyra.

The Leo45 rule language is a subset of the general language developed in Chapter 5. It
anticipates general condition expressions and ‘somewhere_in’ style region conditions, though
these are not vet supported in Leo45. Currently rules in Leo45 are restricted to the following

form:

for <layer expression> corners_require
i <angle condition> and <zero depth condition> ...
then <sector condition> and ... ,

As in Lyra, rules consist of a corner layer, angle restriction, list of immediate conditions, and
list of regional conditions that apply (each independently) where the immediate conditions are

et. Attribute qualifications are not supported.

7.4.2. Implementation

The rule language parser for Leo45 is generated using the Unix tools YACC and LEX.
A modified version of the Unix M4 macro preprocessor provides a macro capability for

specifying standard rules such as simple width and spacing.

Laver expressions are represented using the bitmapped DNF scheme discussed in

Chapter 6. Condition expressions are still simple however, and thus do not require conversion

-~X
-
o

SURVEY OF CORNER-BASED SYSTEMS 153

to DINF or decision-trees.
Two-pass scanline processing, is used. Corners are identifed szad appropriste rezion
conditions are generated in the first pass. The second pass checks the region conditions

generated in the first.

The processing of 45-degree-angle data adds considerable complexity. The underlying
scanline manipulation is more complicated when 45s are permitted. Edges sloping forward or
backward at 45 degrees must be handled along with vertical edges. Special processing must
be done so that intersections between two 45—degree~éngle edges, or a 45-degree edge and a
vertical edge, are not missed, even if they do not occur on an existing scanline. Processing of

corner points is more complicated since edges can meet at various angles.

A corner is divided up into octants rather than quadrants as in manhattan systems.
Thus ¢orner-detection falls into 256 cases rather than the 16 of manhattan systems. However
this is still simpler than the general pie-slice data structure described in the previous chapter.
A different rule indexing scheme is tried in Leo and Leo45: corner layers are indexed based on
pairs of crossing edges, rather than on the mask-layers present at corner-points. Data
comparing these two methods is given in Section 8 of Appendix I. The data suggests that the
crossing-edge method was probably a mistake. The mask-layers present method presented in

Chapter 6 and used by Lyra is more efficient.

’

The generation of region shapes is much more complicated in Leo45 than in manhattan
systems. The construction of a polygonal sector region given corner edge positions involves 2
table lookup to obtain a prototype sector region shape, and then scaling and translation to

obtain the actual sector.

7.4.3. Rule Checking Capabilities

Leo45 is the first corner-based system to support 45 degree angle data, 5 czpability

needed for many industrial applications. Leo45 does not yet support attribute conditions or

SURVEY OF CORNER-BASED SYSTEMS 154

arbitrary condition expressioas. Thus like Lyra, Leo45 can not properly handle rules involving
connectivity, such as single-node spacing rules and rules requiring one regional condition to
establish the context in which another applies, such as reflection rules. However Leod453's rule

language is general, and anticipates future enhancements.

7.5. Maglc

The Magic DRC, developed by George Taylor and John Ousterhout as a component of
the Magic layout system, [Taylor & Ousterhout 1984], is hierarchical and fully incremental.
The Magic DRC runs in the background checking design modifications as they are entered,
and in most cases providing instantaneous feedback. Though Magic is edge-based rather than
corner-based, it is more closely related to corner-based systems than to region-operation
systems. Like corner-based systems, Magic uses context-based rules, employs a rule compiler
to convert input rule descriptions to an efficient internal form, and indexes rules, so that the
rules applying to a particular location in a design can be quickly found. The phenomonal

performance of Magic demonstrates that context-based checking can be very eflective.

7.5.1. Features and Restrictions

The input to the Magic DRC is not simple mask data. Magic maintains abstract layers,
representing various types of transistors and contacts. The designer works with the abstract
layers rather than the detailed device structures, and the design rules are phrased in terms of
these layers. Prior to fabrication, abstract layers are automatically replaced with the

appropriate device constructs.

The use of abstract layers removes much of the complexity from design rules. In
particular, boolean layer combinations are not required to identify device parts (e.g. transistor

gates). The Magic DRC has no provisions for specifying layer combinations.

Rules are edge-based. They specify a left and right layer, a distance and a set of

permissible layers. A rule applies to all edges with the left layer on the left and the right

7.5.1

Yt
o
(4]

SURVEY OF CORNER-BASED SYSTEMS

layer on the right; see Figure 7.4. For such edges only the permissible layers are allowed for
the specified distance. OFf course rules can apply right to left, top to bottom, and bottom to
top also. Empty space is a special ayer, thus width rules can be expressed by omitting empty
space from the list of acceptable layers. An extension for checking at corners is provided so
that diagonal tolerances can be checked correctly. The extension distinguishes between

convex and concave corners.

Since edges and corners are checked, tolerance checks are essentially implemented by
checking a complete halo about regions. One consequence of this is that tolerances between
two layers need ocly be checked from one direction. This is an important consideration in
Magic, since design rules are also used to direct plowing, an operation which compacts in a

particular direction.

corner types?

Region Conditions

Figure 7.4. - Magie Rules. Magic design rules refer to edges. A typical rule specifies that
whenever a layer A is present on the left side of an edge and a layer B on the right, then only
certain layers may be present for a distance d to the right of the edge. This condition can be
conditionally extended into the corners, depending on the layers present just beyond and to the
left of the edge.

SURVEY OF CORNER-BASED SYSTEMS 156

7.5.2. Rule Chackling Capsbllities

The rule checking capabilities of Magic are comparable to Lyra. Both systems can
check simple spacing, width, extension and enclosure rules, and the context-based rules in
both sy;cems handle simple conditional rules. On the other hand both systems are restricted
to manhattan data, use manhattan distances at corners resulting in overconservative diagonal
tolerances, and can not properly handle rules involving connectivity. Since there is no

provision for boolean combinations of layers in Magic’s design rules, the DRC depends on the

existence of suitable abstract layers for checking the more complicated rales.

7.8. Intel DRC

An internal hierarchical design rule checker at Intel, developed by Todd Wagner,
[Wagner 1984}, combines the region-operation approach with the corner-based idea of
point/edge processing. Design rule checking is done with sequences of primitive operations.
Primitives include boolean, topological, sizing and tolerance check operations, just as In
traditional region-operation systems, but tolerance checks are implemented using point/edge
comparisons. This “corner-based” processing, localizes violations to specific corner-points,

facilitating clean hierarchical processing.

7.7. Summary

Current corner-based systems are all simpler than the general system presented in the
previous chapter. Simplifications include restriction of input data to manhattan shapes,
approximation of circular sectors with boxes, restrictions on how conditions can be combined
in condition expressions, and ommission of attribute conditions. These simplifications limit
the rule checking capabilities of the systems. Typical limitations are an inability to check
nonmanhattan data, overconservative diagonal tolerance checks, the inability to check certain
conditional rules such as reflection rules, and the inability to properly check rules involving

connectivity, such as single-node spacing rules.

=1
~1

SURVEY OF CORNER-BASED SYSTEMS 157

Howover not all the systems have all the limitations. Taken together, the systems come
close to exhibiting all the features of the geaseral system. While none of the systems have 2
general attribute capability, permit completely general combination of conditions, or can
handle all angle input data, Mart has provisions for handling connectivity attribute
information and allows interdependent region conditions to be specified, while Leo45 handles

45 degree angle design data.

The Magic and Intel systems presented at the end of the chapter show that the two key

ideas of the corner-based approach, context-based checking and point/edge tolerance checks,
can be applied independently. The Magic DRC demoanstrates that context-based checking can
lead to a very fast implementation, and the Intel system shows how point/edge tolerance

checking can be combined with a traditional region-based system.

7.8. References
[Arnold & Custerhout 1982

M.H. Arnold & JK. Ousterhout, “Lyra: A New Approach to Geometric Layout Rule
Checking,” Proc. 19th Design Autcmation Conference, June, 1982, pp. 530-336.

[Keller & Newton 1982
K. Kenneth and R. Newton, “KIC2: A Low Cost, Interactive Editor for Integrated
Circuit Design,” Digest of Papers for COMPCON, Spring 1982.

[Nelson & Shand 1983]

B.J. Nelson & M.A. Shand, An Integrated, Technology Independent, High Performance
Artwork Anclyzer for VLSI Circuit Design, Technical Report VLSI-TR-83-4-1, VLSI
Program, Division of Computing Research, CSIRO, Adelaide, South Australia, April
1983.

[Ousterhout 1981]

JK. Ousterhout, “Caesar: An Interactive Editor for VLSI Layouts.”, VLSI Design, Vol.
2, No. 4, Fourth Quarter 1981.

[Taylor & Ousterhout 1984

G.S. Taylor & J.K. Ousterhout, “Magic’s Incremental Design-Rule Checker,” Proc. 21st
Design Automation Conference, June, 1984, pp. 160-165.

[Wagner 1984]

T. Wagner, Personal Communication, Intel Corporation, Santa Clara, California, 1983.

-1
w

158

CHAPTER 8

Hierarchical and Incremental Checking

8.1. Introductlon

Checking entire VLSI designs on each DRC run is wasteful. VLSI designs generally
contain large amounts of repetition. Examples are arrays of memory cells, nearly identical
bit-slices, and other repeated function blocks. It should not be necessary to recheck every
instance of such repeated blocks. Alsé portions of a design that have not been modified since
the last DRC run do not need to be rechecked. This waste is particularly acute at the end of
the design cycle, when minor changes to a design, correctiné problems detected by DRC or
simulation runs, necessitate a follow-up DRC run requiring many hours of computer time.
Never-the-less, most current design rule checkers still check an entire design each time they

are invoked.

This chapter is concerned with hierarchical and incremental checking, two strategies for
reducing unnecessary checking. Hierarchical processing eliminates redundant checking by
processing subcells only once, regardless of how many instances of them are present in a
design. Incremental processing eliminates redundant checking of unchanged portions of a
design. Together these techniques greatly reduce the CPU time and memory requirements for
design rule checking. A hierarchical check of the Riscl microprocessor chip with Leo45 takes
only 17% of the time of a flat, (i.e., nonhierarchical) check, and a hierarchical/incremental
recheck after modification of a small cell takes less than 1% of the time for a full flat check;
see Chapter 9. Hierarchical/incremental checking also eliminates redundant viclation reports
that can hide important violations in a sea of repetitious output, and permits more interactive
checkiﬁg, giving users early warnings on design rule violations while they can still be easily

fixed.

8.1

HIERARCHICAL AND INCREMENTAL CHECKING 159

Hierarchical! and izcremental sirategies are lgtgeiy indepesdent of the underlying DRC
method, and hierarchical DRC's have been built on top of region-basad systems. However the
corner-based method has a nice property that makes it particularly well suited for use iz 3
hierarchical or incremental system: violations are associated with specific points in the design,
rather than edges or areas. Thus the problem of handling violations straddling the region

currently being checked does mot arise in corner-based systems. Except for this, the

underlying DRC method is unimportant in this chapter.

Several approaches to hierarchical checking differing from mine have been proposed, and
a few have been implemented. The next section introduces hierarchical .checking and
discusses these approaches. The following section presents my approach to hierarchical
checking, as implemented in Lyra, Leo, and Leo45. This method is also used in Magic. It is
distinguished from others in that it works directly with the hierarchy as the designer sees it,
and imposes no constraints on cell overlap. The extension of this method to incremental
checking is discussed in the following section. Incremental checking was originally
implemented in Leo45, and further extended (by George Taylor & John- Qusterhout) in Magic.

I know of no other incremental design rule checkers. The chapter concludes with a summary.
8.2. Hierarchical Checking - Background

VLSI circuit designs are represented hierarchically; see Figure 8.1. The top level cell is
composed of mask features and subcell instances. The subcells in turn contain more mask
features and subcells. The hierarchy eventually terminates with leaf cells, which contain no

subcells of their own. A design can contain many instances of a single subcell.

Hierarchical representation modularizes the design, and makes repetition explicit,
namely, as repeated instances of subcells. This permits more structured designs, greatly
reduces the size of the design database, and, potentially, facilitates fast hierarchical design

rule checking and circuit extraction.

HIERARCHICAL AND INCREMENTAL CHECKING 160

\
Q=lQl™

T

=i

Figure 8.1. - Hierarchical Representation of Designs. A hierarchical design is divided
into cells. Cells can contain both mask features and instances of other cells {subcells). A three-
level hierarchy is illustrated above. The top-level cell, A, contains four instances of a cell B,
and one instance of the cell C. The cells B and C in turn contain instances of D, E, Fand G.
These last four cells are leaf cells: they have no subcells.

The idea of hierarchical processing is to process each cell just once, regardless of how
many instances of it occur in a design. The interfaces between cells must also be checked.

For example a hierarchical design rule checker might check each cell once, and then check

regions near instance boundaries for violations involving interactions between cells.

Hierarchical processing enhances performance by eliminating the need to recheck each
instance of a cell. In addition the time and space penalities of creating and working with the
bulky flat representations of designs are avoided. Hierarchical checking also provides a more

convenient interface to the designer. Design rule violations are reported directly in terms of

8.2

HIERARCHICAL AND INCREMENTAL CHECKING 161

the ceils the designer is working with, rath2r than in terms of global coordinates ke must
ultimately transiate back to cell coordinates. Also violations in cells are reported only once
regardless of how many times the cells are repeated. Anyone whe has sorted through reams
of output genmerated by a traditional DRC, searching for a few distinct violations, will

recognize the importance of this feature.

The key problem in hierarcical checking is the handling of cell interactions. Even if each
cell is correct when considered in isolation from its parents or children, there may be desigﬁ
rule violations that occur because of interactions between features in neighboring cells. All
such interaction must be checked. In practice, the overhead of checking cell interactions
limits the effectiveness of hierarchical checking. For example, a hierarchical check of the
Delay design by Leo45 is actually slightly slower than a flat check, despite the fact that on
the average their are nearly 20 instances of each rectangle! The reason is that the interaction
checks sums to over half the area of the design. (See Chapter 9 for more, albeit less extreme,
examples.) Different methods of hierarchical checking, differ chiefly in how they handle cell

interactions.

The following subsections discuss various methods for hierarchical checking that have

been proposed, and in most cases implemented.

8.2.1. Whitney's Fliter

Telle Whitney developed a hierarchical filter, {Whitney 1983], that creates a flattened
version of a design with many of the redundant mask features removed. A traditional flat
DRC is run on the output of the filter. Versions of the filter have been used at both Caltech
and DEC. For one design the DRC time with the filter (including the time to run the filter)
was 20% of the time required without the filter. This design was very regular: there were an

average of 74 instances of each transistor specified by the user.

The filter works as follows. A representative instance of each cell is chosen and all the

mask features contained directly in that cell are output as well as all mask features of other

8.21

HIERARCHICAL AND INCREMENTAL CHECKING 162

ceils {including subceils) that are near spough to interact. Iateraction checks betwseen pairs of
subcells are noted, and a given configuration is output only once. Thus the flter checks one
instance of each cell and ope instance of each cell/cell interaction. In outline, the algorithm is

as follows:

CheckCeli(c):
if (c not already checked)
write out all mask features in ¢ for checking;
for each (subcell, sc, in ¢)
CheckCell(sc});
write out all mask features in sc that interact with features in c;
for each (other subcell, sco, in ¢)
if (sc and sco interact and interaction not yet checked)
write out all pairs of interacting features, with
one element drawn from sc and the other from sco;
endif
endfor
endfor

mark ¢ as checked;
endif

return;

The algorithm is not completely reliable: three way interactions between features in
different cells can cause genuine violations to be missed and false ones to be reported; see
Figure 8.2. This problem seems to be intrinsic to the filter approach. As long as only part of

the design is written out for checking, erroneous checking can result from missing context

pear the edges of the parts that are written out.

8.2.2. Scheffer’s Strict Hlerarchy

Louis Scheffer developed the concept of strict hierarchy in his PhD thesis at Stanford
[Scheffer 1983] and incorporated these ideas in systems at Hewlett Packard and Valid Logic
Systems. A strict hierarchy allows no overlap between subcells or between a subcell and mask
features in the parent; see Figure 8.3. In addition devices may not cross cell boundaries, and

all connection points on a cell boundary must be explicitly labeled as ports. Cell boundaries

HIERARCHICAL AND INCREMENTAL CHECKING 163

. -— :
oy | | | !
A s A c |
Caze 1 Caze 2

(a) Violation Masked by Third Feature

- Three-Way Pairwise 1 Patrwise 2 Pairwise 8

(b) Violation Involving Three Features

[] [+]

Case 1 Case 2

(c) False Violation Due to Boundary Conditions

Figure 8.2. - Problems With the Hierarchical Filter. The pair-wise interaction
paradigm of Telle Whitney’s filter does not handle three-way interactions reliably. The
examples involve three mask features assumed to belong to separate cells, A, Band C. In (a)}, if
C is present over the instance of the interaction between A and B written out for checking, (case
2), but not over all instances, (case 1), violations present only in the absence of C will be missed.
If all pair-wise interactions between A, B, and C are OK, as in (b), and present somewhere in
the design, a violation involving a three-way interaction between the features may be missed.
False violations reports can also result if two features are checked outside the context of a third
nearby feature. For example, in (c), il A and B are written out without C, a false violation
results. Problems like the above seem intrinsic to the filter approach.

HIERARCHICAL AND INCREMENTAL CHECKING 164

o

ed to rectangles; the user coa specify a general manhattan polygon boundary.

are zot resitic
Of course 2l the mask festures of a cell must be contained within its boundary.

Schefier argues that the use of strict hierarchy is a good discipline for designers as well
as being useful for hierarchical design rule checking and circuit extraction. Strict hierarchy
incorporates the software engineering concepts of clean, explicit, interfaces between modules
and nested scoping.

If strict hierarcy is employed, checking interactions between cells reduces to checking

the parts of a cell near the edges with the parent(s) of the cell. More precisely, the portions of

a cell within the largest design rule interaction distance ([-radius) of the edges, are checked

Rlegat
\
A \
Ve 38!
d R
(a) Non-Roctangular Cell Boundaries OK (b) Overlnp Is Not OK

| =l
b oA

AR 1< i

4
[Sen ¥

2
a
é

(c) Ports where Signais Cross Cells (d) Devices Cannot Cross Cell Boundarios

Pigure 8.3. - Stzict Hlerarchy. Louis Scheffer suggests the use of strict hierarchy to simplify
hierarchical processing of designs. Strict hierarchy allows nonrectangular cell boundaries as in
(a), but constrains interaction between cells. Cells are not allowed to overlap with other cells or
mask features as in (b), points where signals leave a cell must be explictly label as ports as in
(c), 2nd devices can not straddle cell boundaries as in (d).

HIERARCHICAL AND INCREMENTAL CHECKING 165

with the the parent. This is illustrated in Figure 3.4.

Nonoveriapping cells do simplify hierarchical precessing and avoid situaticns, involving
large overlap between cells, that lead to anomalous behavior in other systems (see next
section). But the price is high. Restrictions on design style reduce the designer’s fexibility
apd limit the use of the checker to emvironments where the restrictions are honored. In
situations where cell overlap is natural and convenient, such as shared busses, the designer
must manually fragment the layout into non-overlapping cells. This can result in many
variants of a given cell, each used in a different overlap situation. Strict hierarchy can also
force global wiring to be dope in an unpatural way, splitting a wire between several cells it
Lhappens to pass through, and defining ports at each of the cell interfaces. The added
complexity of nonrectangular cell boundaries is necessary to keep nonoverlap of cells from

becoming impractically restrictive.

Checked at this Level

Checked in Subcells Checked in Parent

Figure 8.4, - Hierarchical Checking of Strict Hierarchies. If strict hierarchy is
employed, each cell divides into an outside margin, to be checked in the parent cell, an interior
(including the outside margins of subcells), to be checked at this levels, and the interiors of
subcells, to be checked at the subcell level.

HIERARCHICAL AND INCREMENTAL CHECKING 166

The value of forcing designers to adhere to a strict hierarchy is unclesr. Requiring strict
hierarchy for design rule checking reduces the flexibility of designers and limits the sccpe in
which the program can be used. These disadvantages must be weighed against the possible
advantages of clean cell interfaces. The derived disjoint hierarchy approach discussed below,
and the unrestricted hierarchy approach given in the next section explore hierarchical

checking of hierarchies that need not be strict.

8.2.3. Newell and Fitzpatrick’s Derived Disjoint Hlerarchy -

Martin Newell and Daniel Fitzpatrick developed a circuit extractor that allows arbitrary
cell overlap in the design hierarchy, but uses an automatically derived disjoint hierarchy
internally [Newell & Martin 1983]. They define a disjoint hierarchy as a hierarchy in which
subcells do not overlap with each other or with mask features from the parent cell, just as in
Scheffer’s strict hierarchy. However, disjoint hierarchy diflers from strict hierarchy in that

transistors may be split across cell boundaries.

Figure 8.5 illustrates the transformation to disjoint hierarchy. The disjoint hierarchy is
derived by dividing the area of the design into regions uniformly covered by specific subcells
or combinations of subcells, and then creating a new hierarchy with these regions as the cells.

The disjointing process is continued recursively with each subcell, until leaf cells are reached.

In Newell's circuit extractor, the disjointing process is carried out using a scanline
algorithm. Results show that derivation of the disjoint hierarchy is quite efficient. Once the

disjoint hierarchy is obtained, checking can proceed just as with Scheffer’s strict hierarchy.

This approach has the advantage of being general and not burdening designers with
restrictions. Its major disadvantage is that a new intermediate internal representation must
be derived and used. Violations in derived cells must be converted back to violations in the
original hierarchy, and it is not trivial to determine which original cell a violation belongs in.

The use of polygonal boundaries (at least internally) also adds complexity.

8.3

HIERARCHICAL AND INCREMENTAL CHECKING | 167

A

(a) Original Hierarchy

(b) Disjoint Hierarchy

Figurs 8.5. - Transformation to Disjoint Hierarchy. A disjoint hiearchy is automatically
created by turning regions of cell overlap into independent subcells. Notice that the derived
hierarchy can contain nonrectangular cell boundaries, even if the original hierarchy contains
only rectangular cells.

8.3. Direct Processing of Unrestricted Hierarchy

This section presents an alternative method of hierarchical checking I have developed
that allows unrestricted overlap of cells and works directly with the design hierarchy. This
method has been implemented in Lyra, Leo and Leo45. George Taylor has implemented a

similar method in Magic.

In this approach, interaction regions are identified and checked; see Figure 8.6. The
maximum design rule interaction distance for a ruleset, I-Radius guides the process. The
vicinity of each subcell is searched for other subcells, or mask features. Any cell or mask
feature within I-Radius of the cell boundary is considered to interact wiih it. Check regions
for interacting objects are computed by expanding their bounding boxes by I-Radius in each

direction and then intersecting them. The resulting regions are checked In 3 context

8.3

HIERARCHICAL AND INCREMENTAL CHECKING 168

extending out l-radius in each direction.

4 - —

Chack Cortast

(¢) Check Regions in Context

Figure 8.8. - Checking Interactions. Interactions are identified by searching for cells or
features within I-radius of each subcell boundary (2). A check region is computed for each pair
of interacting objects, by growing their bounding boxes by I-radius and then intersecting them
(b). Check regions are checked in the context of a slightly larger region that extends beyond the
check region by I-radius in each direction (c).

8.3

HIERARCHICAL AND INCREMENTAL CHECKING . 169
Checking a cell divides into three phases:

i, Check mask featurss contained directly in cell (pretending subcells don't
exist).

ii. Check subcells (recursively).

iii. Compute and recheck interaction areas, as described above.

Ignoring subcells in i., can introduce false violations. These will be removed in step iii. when

the regions involved are rechecked.

Performance is further enhanced by handling arrays specially. Instead of checking all
interactions between cells of an array, only representative interactions are checked; see Figure
8.7. Since arrays account for much of the regularity of VLSI designs, and such special
handling greatly reduces the overhead required for checking arrays, this method improves
performance of the checker dramatically. For example the overhead (total interaction area /
area of chip) for Riscl, which contains larée explicit arrays, is only 119% and hierarchical
processing speeds up checking by almost a factor of six. In contrast the overhead for the
Delay chip, which contains no explicit arrays, is over 509, and hierarchical checking is
actually slightly slower than flat checking. This is despite the fact that Delay is essentially 2
single large array (though not explicitly specified as an array in the design file) and is more

regular than Riscl; see Chapter 9.

Merging adjacent and overlapping interaction regions before checking them, improves
performance still further. Merging interaction regions reduces both the number of regions to
be checked and their total area. Leo45 uses the same merging algorithm employed in the
Caesar layout editor [Ousterhout 1984] to merge interaction regions into maximum horizontal

strips before checking them. This reduces check time by about 35%.

Though the above method of hierarchical checking does not restrict overlap between

cells, it does restricts designers in another way: each cell must be design rule correct in

8.3

HIERARCHICAL AND INCREMENTAL CHECKING 170

check region

A0 |Ap1| |Al2)| |ABS

Aol (AR A2 |ARS

J

A[L,0]| |A[L1]] |ALZ]| |A[LS]

— 1
[

Apo)| |amo)l |ARo)| |A[30]

Figure 8.7. - Special Handling of Arrays. Interactions between component cells in an
array are repeated over and over. Performance is greatly improved by checking oniy
representative regions (the dashed regions above). All interactions in the array are identical to
interactions in these regions.
isolation: a cell may not contain half a bus, half a contact or half a transistor. This seems to
be a reasonable restriction, and no designer has complained about it. Hierarchical processing
is of course most eflective for designs involving little overlap, and degrades steadily as the

amount of overlap increases. In this methodology, designers are free to exercise their own

judgement, but must pay for their sins.

8.3

HIERARCHICAL AND INCREMENTAL CHECKING 171

The main problem with my hierarchical algorithm s that big sinness are punished too

P
! 1

severely. Designs containing larze amounts of overlap can take seversl times longer to cleck
hierarchically than flat! This is because the mask features inside overlap rezions can end up
being checked multiple times, i.e., first while checking the cells involved in the overlap, and

then again when interactions between cells are checked.

For example, pads and global wiring are frequently placed in one subcell, while the rest
of the design is placed in another. A hierarchiczl check of such a design checks the design
hierarchically, and then once again flat. The flat check is done because the entire design is
one large interaction region between the pad and wiring cell and the cell containing the rest of
the design. This particular problem can be avoided by making the body of the design a
subcell of the pad and wiring cell, rather than making them both subcells of a common top-

level cell.

8.4. Incremental Checking

Incremental checking involves only checking the parts of a design that have been
modified since the last DRC check. Incremental checking greatly reduces the time required
for incdividual DRC runs, particularly near the end of the layout process. Benchmarks on the
Riscl chip show that an incremental check of the chip after modification of the toplevel cell
(which contains the global wiring) takes 40%% of the time of a full hierarchical check, and the

incremental check time after modification of a leaf cell is 1% of the time for a full check.

By reducing the computing resources required for design rule check runs, incremental
checking permits frequent checks, creating a much more interactive environment. Early
detection of design rule violations can save much effort later, since, for example, a spacing
violation can be fixed before it is boxed in by other parts of the design. Incremental design
rule checking also encourages greater experimentation and refinement at the end of the design
process, since each change does not rsquire ancther full DRC run on the design. Finally,

incremental checking provides automatic checkpointing. If a long DRC run is interrupted

8.4

HIERARCHICAL AND INCREMENTAL CHECKING 172

because of computer failure, the next incremeantal run will automatically resume where the

last one left of.

1 know of only two incremental design rule checkers: Leo43 (and its predecessor Leo),
developed as part of this research, and the recently developed Magic design rule checker.

These two systems are discussed below.

8.4.1. Leo45

Leo45 is incremental by cell. It rechecks only the cells that have been modified since the
iast check, and interactions involving those cells. Since each cell is stored as a separate Unix
file, the date of last modification is available from the operating system. The time of the last
design rule check is stored in each cell. Thus modified cells can be detected by comparing
the modification date for the file containing the cell with the last-checked-date recorded in
that file. In addition to the notion of a modified cell, the incremental algorithm makes use of
the concept of an impacied cell. A cell is impacted if one of its descendent cells (e.g. subcell
or subcell of a subcell, and so on) is modified. Cell interactions involving impacted cells must
be rechecked. Incremental checking in Leod5 is achieved by adapting the hierarchical
algorithm presented in the last section to distinguish between modified, impacted, and

unaffected cells. In outline the algorithm goes as follows:

8.4.1

HIERARCHICAL AND INCREMENTAL CHECKING 173

checkCellfe):

17 (¢ not alrecdy CHECKED)

for each subeeil sc
checkCeil(sc);
i (sc IMPACTED or MODIFIED)
mark ¢ IMPACTED;
endlif
endfor

If (¢ MODIFIED)
check mask features in c;
for each (subcell, sc)
check interactions involving sc;
endfor
else If (¢ IMPACTED)
for each subcell sc
if (sc MODIFIED or IMPACTED)
check interactions involving sc;
if (bounding boz of sc changed)
recheck region of previous bounding boz;
endif
endif
endfor
endlf

mark ¢c CHECKED;
endif

return;

Figure 8.8 illustrates an incremental check by Leo45. Note that modified cells are
entirely rechecked, while all interactions involving impacted cells are rechecked. Modifying a
cell can change its bounding box. When this occurs, violations may be introduced or removed
in the region formerly occupied by the bounding box as well as in the region of the new
bounding box. Thus old bounding boxes of subcells are stored with each cell, and the relevant

regions are checked when a subcell is modified.

Incremental checking in Leo45 has proven very effective in reducing the time required
for DRC runs, and has facilitated frequent use of the DRC during the design process. See

Chapter 9 for numerical examples.

842

HIERARCHICAL AND INCREMENTAL CHECKING 174

modified impclzcied

AllB [C

2%

SEB TR NSRS

(b)

s

Figure 8.8. Incremental Checking in Les & Leo45. For purposes of incremental
checking, subcells are classifed into those modified since the last DRC, those impacted (i.e.
having a descendent that has been modifed), and those that are neither modified nor impacted,
(a). All interactions between parent cells and modifed or impacted children are rechecked, (b).
In addition all mask features and subcell interactions in modifed cells are rechecked (not shown).

8.4.2. Magic

The Magic design rule checker runs as a background process, incrementally checking
each modification to the design and giving, in most cases, instantaneous feedback on design
rule violations. The Magic editor marks regions that have been modified with to-be-checked
rectangles on a special layer. As the design rule checker checks these regions, it removes the
to-be-checked rectangles. The use of to-be-checked rectangles, made possible by the close
coupling between the layout editor and the DRC, eliminates the need to completely recheck

modified cells: incremental checking proceeds on a much finer grain.

Because Magic is hierarchical as well as incremental, the impact of changes must be

checked both up and down the hierarchy. Backpointers to parent cells are kept internally in

8.4.2

o

HIERARCHICAL AND INCREMENTAL CHECKING 17

the Magic system, so that the impact of changes can be tracad up she hierarchy.

Continuons des,ga rule checkiag in Magic works very well The concest of design rule
checking as a long batch run to be performed at the end of the design cycle is completely

absent in Magic.

8.5. Summary

Most design rule checkers check an entire design on every invocation. This is wasteful
in two ways. First, repeated structures are rechecked at every occurrence. Second, parts of
the design that have not been modified since the last DRC run are rechecked. This chapter
has presented two techniques for reducing such wasteful redundant checking, hierarchical
checking to avoid rechecking repeated instances of the same structure, and incremental
checking to avoid rechecking parts of designs that kave not changed since the last DRC run.
Both techniques have proven effective. A hierarchical check of Riscl by Leo45 takes only 17%
of the time of a flat check, and an incremental check after minor modifications to a design

takes only about 1% of the time for fuil check.

The basic idea of hierarchical checking is to check each.cell only once, regardless of the
number of instances of the cell in the design. However this is complicated by the need to
check interactions between cells. Several methods have been proposed to solve this problem.
Telle Whitney invented a hierarchical-filter based on pairwise interactions. The idea is that
geometries are output only for the first instance of each pairwise interaction between cells,
and then a traditional DRC is run on the OI;tput of the filter. Unfortunately, this method is
not completely reliable.- A second approach, championed by Louis Scheffer, simplifies
interactions between cells by disallowing overlaps between cells. Yet another approach,
proposed by Martin Newell and Dan Fitzpatrick, permits arbitrary overlap between cells, but

generates a modified disjoint (or nonoverlapping) hierarchy prior to checking.

My approach to hierarchical checking, implemented in Lyrs, Leo, and Leod5, permits

arbitrary overlap between cells, and works directly on the hierarchy specified by the user.

8.5

HIERARCHICAL AND INCREMENTAL CHECKING 176

Call interaction regicas are computed on the dy and checked flat. Arrays are handled
specially, to minimize interaction check overhead. This approach allows fast checking of well
structured designs, and 'degrades steadily as the amount of cell overlap increases. (Poorly
structured designs can take longer to check hierarchically than flat, due to a huge amount of

interaction checking.) Designers‘ are permitted flexibility in handling shared buses, edges of

arrays and global wiring.

There are only a couple of incremental design rule checkers I am aware of: The Leo45
(and Leo) systems, designed as part of this research, and the Magic design rule checker
fecent!y developed by George Taylor, and John Ousterhout. In Leo45 only cells that have
been modified since the last check, and interactions involving those cells are rechecked. This
is achieved by modifying the hierarchical algorithm to take into account modification- and
check-;iates on cells. The Magic system goes one step further, by taggin each each design
modification as it is entered and checking them independently, keeping users continually up to
date. Both systems provide much more interactive design rule checking than traditional
systems, giving users more timely information on design rule violations, allowing errors to be
more easily fixed, and encouraging more experimentation and refinement at the late stage of

the design cycle.

8.8. References
[Newell & Martin 1983

M.E. Newell & D.T. Fitzpatrick, “Exploiting Structure in Integrated Circuit Design
Analysis,” Proc. Conference on Advanced Research in VLSI, MIT, 1982, pp84-92.

[Ousterhout 1984]

J.K. Ousterhout, “The User Interface and Implementation of an IC Layout Editor,”
IEEE Trans. on Computer-Aided Design, Vol. CAD-3, No. 3, July 1984, pp. 242-245.

[Scheffer 1983]

L.K Schefler, The Use of Strict Hierarchy for Verification of Intergrated Circuits, PhD
Thesis, Stanford University, May 1983.

[Taylor & Ousterhout 1984]

G.S. Taylor & J.K. Ousterhout, “Magic’s Incremental Design-Rule Checker,"” Proc. 212t
Design Automation Conference, June, 1984, pp. 160-165.

8.6

HIERARCHICAL AND INCREMENTAL CHECKING

T. Whitney, Personal Commuaication, Californis Institut
California, 1323,

177

8.6

178
CHAPT:IR 9

Peasurements

9.1. Iatroducticn

This chapter presents performance figures for a number of design rule checkers.
Measurements are also preseated that relate to various topics discussed in the previous
chapters. These include numbers on hierarchical/incremental checking, data organization,

layer expression evaluation, constraint processing and rule indexing.

Most of the measurements were done on three corner-based checkers: Lyra, Leo, and
Leo45. Recall that Lyra, the original corner-based design rule checker, is coded in Lisp and
uses a two-dimensional bin structure to organize data. Leo and Leo4d, belonging to Metheus
Corporation, are coded in C and use a scanline organization. Lyra and Leo are strictly
manhattan. Leo45 can handle 45-degree angles as well. All three programs are capable of

hierarchical checking. Leo and Leo45 also check incrementally.

Performance figures for a number of other DRC's are also given. These include the
NCA and ECAD commercial region-based systems, Mart, a corner-based DRC written by
Mark Shand at CSIRO in Australia, the Magic DRC, which uses an edge-based algorithm
similar to the corner-based approach, and Baker’s pixel-based DRC. More details on these

systems are provided in Chapters 4and 7.

Most benchmarks were done on VAX-11/780’s running Berkeley 4.2 BSD Unix. Some
benchmarks were done on the Metheus X, a 68000 based workstation running a port of 4.1¢
BSD Unix. The Delay, 32plus and loc chips, provided by Mark Shand, and the Risel processor
chip from Berkeley were used for the benchmarks. These designs range in size from 484
transistors (Delay) to 44,000 transistors (RiscI). All of them have a significant amount of

hierarchical structure but only the Riscl chip contains explicit arrays. All use the Mead-

9.1

MEASUREMENTS 179

h)

Conway aMOS desiza rules. The chanpel width is 5 microas, which corresponds to N = 2.

(V1]

microas, and ecch desiza is resolved by 2 1\ grid, i2., by pixels of dimension IX. Plots, and
2 - 2 ?

detailed statistics on the benchmark designs are given in the appendix.

8.2. Raw Performance

This section gives timings and check rates for nonhierarchical, nonincremental checks of
Mead-Conway nMOS designs. Figure 9.1 gives timings for Shand’s examples. The numbers
were obtained from actual runs on lightly-loaded VAX-11/780's, except that the Magic time
for loc was extrapolated from the smaller examples. Magic could not check Ioc

(nonhierarchically) because of memory limitations.

hours
5 ——
4 ——
3 ——
[] =10C
2 T
= 32PLUS
1 e
= DELAY
E?;Lkef" quu: Mart Leo Lecy5 Lyra
DRC

Figure 9.1. - Raw Performancs on Shand's Examples. The chart shows run times for a
number of systems checking Shand’s three examples on VAX-11/780's. All checks were
nonhierarchical and nonincremental. Magic could not check loc nonhierarchically because of
memory limitations; the time given on the chart was extrapolated from smaller benchmarks.

MEASUREMENTS _ 180

Figure 9.2 gives check-rates for 3 number of sysiems. The pumbers are for Mead-
Conway designs on VAX-11/780's. The benchmarks these numbers were based on were on 2
number of machines. VAX-11/780 rates were computed based on tae relative speed of the
machines. The NCA and ECAD numbers correspond to about 6/84. Their current systems

are probably faster.

The numbers in this section give a broad perspective on the raw performance of DRC’s,
but it is dangerous to give them too much weight. There are several problems with
comparing DRC’s in this way. First, the checkers are not all doing the same job. Baker's
DRC, for example, does not check all the fules (e.g. the implant rules are not checked), while
Mart, NCA, and ECAD go the exra mile and do the node-extraction necessary for accurate
checking of internode spacing rules. (The DRC part of Mart also serves as the first pass for

circuit extraction.) The NCA and ECAD systems do accurate diagonal checks and have

transistors/hour

25,000 T

20,000 —+

15000 —T

10,000 ——

5000

—

Figure 9.2. - Check Rate. This chart compares check rates (transistors/hour) for a number
of systems. The numbers are for nonhierarchical nonincremental checks of Mead-Conway
nMOS designs on a VAX-11/780. Some of the numbers estimates based on benchmarks on
different machines and/or different rulesets.

MEASUREMENTS 181

provisions ‘¢ hazdle all-zngle data. Excluding NCA acd ECAD, Leod3 checks diazonz

distances much more sccurately than the other systems. Second, those DRC’s with

hierarchical and incremental checking capability (Lyra, Leo, Leo45 and Mazic) perform much
> - -) g1

better in practice than suggested by these flat numbers.

The above data is particularly misleading with respect to Magic. In Magic, contacts are
normally explicitly specified by the user and stored in the database. Similarly transistors are
identified and explicitly stored in the database at user entry time. In the Magic benchmarks
reported above, 85% of the time was devoted to reading in the maskdata (CIF) and
performing the logical operations npecessary to convert contacts and transistors to internal
form; checking designs already in Magic format is much faster. The Magic DRC runs in the

background throughout an edit session, and generally appears instantaneous to the user.

¢.3. Hierarchical and Incremental Checking

As discussed in Chapter 8, hierarchical processing, particularly when done incrementally,
can greatly improve the effective performance of a DRC system. This section gives statistics
on hierarchical and incremental checks done by Leo45 on the Metheus A workstation.
Hierarchical checking is done by verifying each cell separately and then rechecking all regions
where cells interact. Incremental checking in Leo45 is done on a per cell basis: only those
cells changed since the last check, and the interaction regions involving those cells, are

rechecked.

Figure 9.3 gives timings for the four example designs. The first two columns give the
times required for flat, and complete hierarchical checks, respectively. The third column gives
the time required for an incremental check after modification of the top-level cell, and the
fourth column gives the time required for an incremental check after a leaf cell has been
modified. This chart dramatically illustrates the advantages of incremental checking. The
only exception is the small Delay example, where a change to the top-level cell required the

majority of the design to be rechecked. The chart also shows how the advantages of

9.3

MEASUREMENTS 182

hierarchical checking alone are variable: hierarchically checking Delay was actually slower,
while hierarchically checking Riscl resulted in an almost sixfold speedup.

Additional statistics on the hierarchical checking of these designs are given in Table 9.1.
The regularity factor, large in all four of the example designs, gives the speedup that would be
obtained from ideal hierarchical checking involving no overhead from cell interactions. The
regularity factor is defined as the ratio of the number of rectangles in the fully instantiated

design to the number in the hierarchical representation. Overhead is measured as the ratio of

minutes minutes

501

201 :
40—

15
30

107 20

5 10—

fat hier ‘[z,g,' IQ‘;’] fat hier "[’0; 1?5]
DELAY 32PLUS
houre hours

REREIER 5]
flat hier ‘0;' }?;J'- flat hier ‘[Z,;‘ }?;j—
IoC RISCI

Figure 9.3. - Hlerarchical & Incremental Performance. This chart compares the flat,
hizrarchical, and incremental performance of Leod5. Two incremental times are given, one for
a change to the top-level cell, and one for a change to a leaf cell. The benchmarks were run on
a Metheus .

9.3

MEASUREMENTS 183

the total area of interaction checks 1o the area of she design. The aumbers in the iable saow

that overhead is oftea large in practice, and that it criticaily efects hierarchical performance.

The efficiency of hierarchical checking is also affected by how fragmented the interaction
regions are: because of overhead in starting up a check, one large check can be done more
quickly than several smaller checks summing to the same area. The average size of
interaction regions given in Table 9.1 provides a measure of fragmentation. Note that
performance does appear to be related to this figure.

Fragmentation of interaction regions is minimized in Leo45 by merging adjacent or
overlapping check regions before doing the checks. The effectiveness of this process is
illustrated in Figure 9.4. Notice that merging not only reduces the number of interaction
regions, but also their total area. This is because there is significant overlap between the

original check regions.

9.4. Sensitivity of Check Rate to Design Density

In pixel-based systems the processing rate per pixel element is approximately constant.
Thus for a given resolution (pixels/area) the processing rate (time/area) is approximately

constant. In corner-based systems, in contrast, the processing rate is approximately

Statistics on Hierarchical Checking
average
design | speedup | overhead interaction | regularity | arrays
area

Delay .97 52% 253 19.4 NO
32plus 1.9 36% 461 12.1 NO

Toc 1.3 33% 251 8.3 NO
Riscl 5.8 11% 709 16.6 YES

Teble 9.1 These statistics were collected for Leod5 running on a VAX-11/780. The columns
give, respectively, the speedup factor for hierarchical checking over flat, the area of interaction
checks as a percentage of the total chip area, the average area of interaction regions, the ratio
of rectangles in the fully instantiated design to rectanges in the hierarchical representation, and
whether the design contains arrays.

9.4

MEASUREMENTS

bd
[

T 1 % 8

8 8 8 9 §

gm0 ——

[0 = Wibouwt Merging

e With Merging

Flgure 9.4. - Importance of Merging Check Reglons Merging adjacent and/or
overlapping check regions prior to checking reduces the total number of regions to check,
increases the average size of check regions, and decreases the total area to check. The
combination of less setup overhead for checks (snce the average check region is Jarger) and less
total area to check, results in considerable savings in total check time.

,

proportional to the density of the layout and independent of resolution.

These relationships are illustrated in Figure 9.5. The first graph shows that the

processing rate of Baker's pixel-based system is approximately constant across Shand's three

examples. The similarity of the second and third graphs show that the processing rate of Leo

is approximately proportional to layout density.

9.4

MEASUREMENTS 185

o —- -—

100 ——

- - &/

rd
o ——
‘_'—
20 >
DELAY ssLS IOC DELAY MFAILS IOC DELAY 8L JOC
PIXEL-BASED CORNER-BASED LAYOUT DENSITY

- (Bakar 'sericroasconda /M%) (Laomicrosmonda A% (CTFemctanglee/23)

Figure 0.5. - Processing Rates and Layout Density. The above charts illustrate how the
processing rate per unit area of pixel-based systems is approximately consiant, while the check
rate of corner-based systems is correlated with the layout denisity. The data is from
benchmarks on VAX-11/780’s.

0.5. Sensitivity to Data Organization

The efficiency of corner-based checking depends on the ability to quickly reference all
features geometrically near a given point. There are many ways to organize data to allow
quick local reference, and I do not know which is best, but there is no doubt that performance
is semsitive to the details of data organization. This is illustrated in Figure 9.6 showing

sensitivity to bin-size in Lyra.

9.8. Layer Expression Evaluation

This section presents statistics on layer expression evaluation for Lyra, Leo and Leo4S.
The statistics are based on rums on a VAX-11/780, the Delay example, and Mead-Conway
rules. The statistics demonstrate the importance of efficient expression evaluation, and
document the value of the bitmapped DNF method. Differences in the layer expression usage

patterns of Lyra, Leo and Leo45 are also analyzed.

Efficient layer expression evaluation is important because of the sheer number of

evaluations that must be performed during corner-based checking. Figure 9.7 gives numbers

for Lyra, Leo and Leo45 on Shand’s Delay example. Note that even for this small 484

9.6

MEASUREMENTS 186

EXECUTION
TTME
(in eeconds)

BIN DIAMETER
(in min. channel widths)

Figure 9.8. - Binz In Lyra. If too small a bin-size is used bin handling overhead becomes
excessive. If too large a bin-size is used too much data must be searched at each corner. Thus
the performance of Lyra is very sensitive to bin-size. In general the performance of a DRC is
likely to be very sensitive to the details of the data organization employed. The above data is
from benchmarks of Lyrz on a VAX-11/780.

transistor design, millions of expression evaluations are required. Table 9.2 translates these

numbers into rates.

Given the amazing number of expression evaluations required in corner-based checking,
it is natural to ask what purposes they serve. The layer expression evaluations in Figure 9.7
are subdivided into those required for corner classification, (i.e., for determining which rules

apply at the corners), for checking immediate conditions, and for checking regional conditions.

Corner classification in Leo and Leo45 require about three times as many expression
evaluations as in Lyra. This is due partly to the different indexing methods used by Lyra and
the Metheus systems. The edge-crossing method of Leo and Leo45 result in about 1.5 times
as many layer candidates as the layers-present method of Lyra. This is exacerbated in Leo
because false edges are not filtered out prior to indexing. Leo45 filters out false edges, but
requires twice as many layer expression evaluations per layer candidate (one for each octart,

rather than one per quadrant).

9.6

MEASUREMENTS _ 187

2,000,000 1

1,000,000 -

== corner classification

Lﬁra Leo Leo4s

Figure 9.7. - Number of Layer Expression Evaluations. The chart shows the number
of layer expressions required by three corner-based programs to check the 484-transistor Dﬁe%ay
design. Evaluations are divided into those used for corner classification, immediate-conditicn

evaluation, and region-conditon evaluation.

Layer Expression Rates

program | exprs./A* | exprs./corner | exprs./rectangle exprs./transistor
Lyra 4.07 20 150 1408
Leo 12.3 61 455 4267
Leods 16.7 82 614 5761

Table 9.2 These expression evaluation rates were computed {rom a benchmark of Delay on a
VAX-11/780.
The number of layer expression evaluations required for checking immediate conditions

remains small and approximately constant across the three programs.

The number of evaluations employed during regional condition checking is small in Lyra,
but grows by a factor of four for Leo, and by another factor of three for Leo45. The number
for Lyra is small because layer expressions are evaluated only when mask features on layers .
snvolved in the expressions impinge on the condition regions. In most cases there will be
either no or one impinging feature: none in spacing rules and one in width rules. The number
of evaluations in Leo is greater because the scanline method used in Leo requires layer
expression evaluations for all impinging features, regardless of layer. Leod45 requires still more

layer expression evaluations because the more complex region shapes employed in this 45-

9.6

MEASUREMENTS 188

dezree system are checked ia pieces, and because extra layer expressicn evaluations are

required to support inclusive sector edges.

Fortunately layer expression evaluation can be done quickly. Im Lyra layer expression
evaluation times range from 69.8 microseconds for the simplest layer expression to 85.5
microseconds for the most complex. They average 75.9 microseconds. Each layer expression
is compiled as a separate function, so0 evaluation time is dominated by function call overhead.
The bitmapped DNF method, recommended in Chapter 5, and employed by Leo and Leo45 is
even faster. Evaluation times range from 20 microseconds to 32 microseconds, averaging 22

microseconds.

Figure .8 gives the time required for layer expression evaluation in the context of total
processing time. The hypothetical performance of each system, using the alternate layer
expression evaluation method is also shown. The chart shows that the compiled function
method-would consume over 50% of the processing time in Leo. The DNF method requires
23% of processing time in Leo, 12% in Leo45 and weuld require only 207 in Lyra. Thus it is
apparent that the bitmapped DNF method of layer expression evaluation is fast enough not to
dominate processing time in corner-based systems, but that significantly less efficient methods

of layer expression evaluation would be too slow.

9.7. Reglon Condition Processing

Benchmarks on the Delay example show that corner-based systems spend a large part of
their time processing constraints: 30% in Lyra, 569 in Leo and 75% in Leo45. This is shown
graphically in Figure 9.9. Additional statistics are provided in Table 9.3.

Region condition processing is particularly slow in Leo45, because of the added

complexity of the region shapes, and because of extra processing to support inclusive edges.

(Notice that the support for inclusive edges reduces the total number of condition regions).

9.8

MEASUREMENTS 189

seconds
500
400 7 | [= tcional eratin
i
200 - |
N
Lyra Leo Leoi5

Figure 9.8. - Thne Required for Layer Expression Evalustlon, The chart contrasts
the time required for layer expression evaluation in three programs with the time required for
all other purposes. For each program two evaluation schemes are considered: function-bused
evaluation as used in Lyra, and DNF-based evaluation, as implemented in Leo and Leo45. The
numbers come from benchmarks of Delay on a VAX-11/780. The time that would be required
by each program for the alternate evaluation method was computed from a trace of layer
expression evaluations for that program.

sezonds

800

400 — ’ . . .
) == region-condition checking
t

200 ! == region-condition construction
i
', == pot region-condition related

Lyra Leo Leo45

Figure 2.9. - Time Required for Reglon Condition Procesaing. The chart divides total
check time for Delay on a VAX-11/780, into the time required for region-condition checking,
the time required fo region-condition construction, and all other check time. Region conditon
processing clearly dominates processing tirne in the 45-degree program, Leodd.

9.8

MEASUREMENTS 180

| Statisties on Region-Coadistion Processing
orogram | # conditiens .(conditions/sec. | # layer expressicns f exprs./condition
1 Lyre 86.900 | 462 100,15 1.13
Leo &6,990 I 787 410,520 472
Leodd 30,272 ! 127 1,239,369 24.65

Table 9.3 These statistics are for Delay on a VAX-11/780. The columrs give the total
number of region conditions checked, the average number of conditions checked per second, the
total number of layer-expression evaluations required to process the conditions, and the average
number of layer-expression evaluations per condition, respectively.

9.8. Rule Indexing

In corner-based systems, rules are indexed so that those applying to a given corner can
be found quickly. Indexing is important because rulessets contain many rules, only a few of
which apply at any given corner. This is illustrated by the numbers in Table 9.4. These
numbers are based on checks of Delay by Lyra and Leo45. Note that, for Lyra, less than 3 of
the 44 rules in the Mezd-Conway ruleset are relevant at the average corner. The pumber of
relevant rules is higher in Leo45, because rules for comvex and concave coraers are not
separate. The number of corner-points varies slightly between the two programs, because

different methods are used to filter out false corners.

The basic indexing strategy in corner-based systems is to group rules by the layer they
apply to. Then given a corner-point, layer candidates are determined by some method and
then tested to see if corners on those layers are present. The rules corresponding to the layers

for which cormers are actually present are then applied to those cormers. Lyra generates

Statistics on Rule Application

program | # of Corner Points | # of Rules | Maximum Rules Average Rules
{/Corner Point) | (/Corner Point)

Lyra 20591 44 17 4.78
Leo4s 19088 43 20 7.66

Table 9.4 These statisitics apply to checks of Delay. The columns give the total number of
corner points processed, the total number of rules in the ruleset, the maximum number of rules
applying at a single corner point, and the average number of rules applying at a corner point,
respectively.

9.8

MEASUREMENTS 191

cornef-fioin:s by the method suzgested in Chapter &, basad on the mask-layers preseat at 3
coraer-poini. LecdS uses a method based on edge intersections. Statistics for the two
methods are presented in Table 9.5. The average number of layer-candidates for the edge-
intersection scheme is about 1.5 times greater than in the layers-present method. But the

number of layers actually applying is also higher.

Two measures of indexing eflectiveness are the ratio of layers for which corners are
actually present to the number of layer candidates, and the average number of false
candidates per corner. These statistics are shown in Table 9.6. It is clear from these
statistics that the layers-present method of Lyra is more effective than the edge—int.ersecnion
method of Leo45. Both methods are significantly more eflective than sequential testing of
rules or sequential testing of all layers indexing rules. Rule indexing becomes more important

as ruleset size and complexity increases.

Statlsties on Indexing Methods
program | Total Index Layers | Avg # of Candidates | Avg # that Apply
Lyrea 15 6.12 1.87
Leods 15 9.64 2.36

Table 9.5 Again, these statistics were obtained for Delay. The columns give the number of
distinct index layers used to index the rules, the average number of index layers considered at
each corner point, and the average number of index layers for which corners are actually
present at a corner point, respectively.

Indexing Efficlency
program | # that apply / candidate #lalse layers / corner

Lyra 31% 4.25
‘ Leois 24% 7.28

Table 9.8 These statistics, obtained for Delay, are measures of the efficiency of indexing. The
first column gives the percentage of index-layer candidates that actually apply. The second
column gives the average number of layer candidates that do not apply at a corner point.

9.8

CHAPTZR 10

Summary

This chapter briefly summarizes the major points of the thesis.

10.1. Previcus Approaches to Design Rule Checking

Design rules specify minimum tolerances for topological relationships on and between
mask regions. These include minimum width, spaciag, enclosure and extension tolerances.
Rules can apply to regions formed by combinations of mask layers (such as trapsistor gates)
as well as to regions on the individual mask layers. Some rules are unconditional, that is they
apply equally to all ﬁgions on the specified layers (or layer combinations). Others are
conditional. Conditional rules give tolerances that apply only to selected regions on the given
layers. Conditional rules can depend on the presence of nearby mask features, the length of
conducting lines, connectivity information, and even the intended function of the features

involved.

The traditional, almost universally used, approach to design rule checking use sequences
of region operations. Each region operation takes one or two layers as input and gemerates an
(intermediate) output layer. Each design rule is coded as a sequence of selection operations,
isolating the regions to which the tolerance applies, followed by a tolerance check operation.
The region operations in a typical system include several tolerance checks, boolean operations,
sizing operations {to grow or shrink regions) and topological oPerations that for example select
all regions partially overlapped by a specified layer. Other operations allow selections based
on connectivity, or node labels. The main problem with this approach is that it involves a
yery large amount of data manipulatica. Each design rule involves several operations, and
the more complex ones can involve dozens. In checking VLEI designs, each region-operation

in the sequence involves hundreds of thousands of input and output edges. Relatively little

10.1

SUMMARY 193

design rule checking is done per 1/O operation, so the overall result is 3 slow [/O bound

system.

Some experimentation has been done with pixel-based systems employing special
purpose hardware. These systems represent a design in terms of a fine grid of pixels where
each pixel is tagged with the mésk layers present in it. Such a representation involves an
even larger amount of data, and hence has the same problem that the region-operation
approach has: relatively simple processing must be done on a very large amount of data. Of
course the special purpose hardware might be built with sufficient bandwidth to handle such
data quickly. However the ballooning of the desizn into such a large amount of data seems to
be inherently unbalanced. The problem of I/O to and from the special purpose hardware
remains, and the hardware itself is likely to be expenmsive. No system of this type has yet

been completed.

10.2. The Corner-Based Approach

The corner-based approach solves the I/O bottleneck problem plaguing most design rule
check systems. Corner-based checking uses pattern-directed rule application. Patterns at
each corner in a design determine which rules apply, and hence which tolerances are to be
checked. The rule patterns are indexed so that the rules applying to a given corner can be
quickly determined (i.e. much faster than a linear search through the rules). Just one pass is

made through the design data, and no intermediate layers are generated.

Corner-based checking can be used in general settings. Though current corner-based
implementation are restricted to manhattan or 45-degree mask data, their is nothing intrinsic
in the approach that limits it to these settings. Corner-based rules directly replace the
tolerance check and boolean operations of the traditional operation-based system. In addition
multiple condition rules can often (but not always) establish context that would otherwise
require sizing operations. Corner-based checking alone can not replace nonlocal region

operations, such as topological operations, or operations for deriving connectivity. If rules

10.2

SUMMARY 164

requiring such operations are to be checked, a hybrid system is required, where rezion-

operations are used to esiablish nonlocal context prior to the coraer-based checking.

Corper-based systems are quite flexible. Variants of rules, that would require the coding
of a new operation in an operation-based system, can often be captured by simply modifying
the corner-based rule spe.ciﬁcation. Another advantage of the corner-based approach is that it
can easily handle anisotropic rules that are difficult or impossible to handle in region-operation
based systems. This is because conditions in corner-based rules can be combined to establish

directional context.

Tolerance checks in corner-based systems are done diferently from tolerance checls in
region-operation systems: they involve distances between corner-points and the boundaries of
regions, rather than distances between pairs of edges. Such point/edge tolerance checking
naturally identifies violations with points in the design. This makes corner-based checking
particularly well suited for hierarchical and incremental systems, where piece-wise checking is

required.

10.3. Hlerarchical and Incremental Checking

Hierarchical checking avoids redundant checking by checking each cell only once
regardless of how many times it is repeated in a design. In addition to checking cells,
interactions between cells must be checked. The hierarchical algorithm I used in Lyra and

Leo has three steps:

i, Check subcells recursively.

ii. Check all mask features in current ceil

ili. Find and recheck regions where cells interact.

No special restrictions on cell interaction are required. Arrays of cells are checked specially:
instead of checking all cell interactions in an array, only representative interactions are

checked. The algorithm is eflective for checking hierarchical designs with moderate overlap

10.3

SUMMARY 195

90

between csils. The special treatment of arrays makes for particularly efficient checking, siaz

[V
W

most of the regularity in VLSI desigas comes in the form of arrays. However the algerithm
handles designs with large amounts of overlap poorly. Such designs can take several times
longer to check hierarchically than fiat. This is because mask features in regions of overlap
are checked multiply, first as part of the overlapping cells, snd then again when the

interaction resulting from the overlap is checked.

The Leo and Leo45 programs were also made incremental. Incremental checking avoids
redundancy by only checking cells that have been modified since the last design rule check.
1t was surprisingly eazsy to adapt the hierarchical algorithm to be incremental as well.
Hierarchical/incremental checking after small changes to a large design typically takes from
5% to less than 1% of the time for a full flat check. This makes it possible to run design rule
checks frequently during the design process, and hence to catch violations early when they are

still easy to fix.
10.4. Implementations

The viability of corner-based checking, and related ideas developed in this thesis, have
been demonstrated by a number of systems. Lyra, my initial, manhattan, corner-based
system, has been used on a pumber of university and industrial projects involving several,
Mead-Conway style, aMOS and CMOS rulesets. Lyra was also the first hierarchical design
rule checker, and demonstrated that hierarchical checking can be efective without special
restrictions on cell interactions. Leo, a second implementation I developed in conjunction
with Metheus corporation, showed that corner-based checking can be fast. Leo also
demonstrated the feasibility and usefulness of incremental checking. Mart, a corner-based
design rule checker, developed by Bruce Nelson & Mark Shand of CSIRO, handles somewhat
more complex rules than Lyra, and, in terms of raw speed, is probably the world's fastest

design rule checker.

10.4

SUMMARY 196

Two other svstems, employ ideas prssented in this thesis. Intel receatly develops=c =
ragion-based design rule checker that uses corner-based style (i.e. point/edgs) tolerance
checks. This style of tolerance checking was chosen to facilitate piecewise processing. Finally
the, edge-based, Magic desiza rule checker, recently developed by John Ousterhout and
George Taylor at Berkeley, very efectively uses pattern-directed rule application. The Magic
design rule checker runs in the background throughout edit sessions, and provides virtually

instantaneous feedback on design rule violations.

10.4

APPE

NDIX A

Benchmark Designs

197

This appendix contains statistics and a complete set of plots for the benchmark designs

used for most of the measurements presented in Chapter 9.

A.1 Statistics

Four benchmarks are used. The Delay, 32plus and loc desigms, provided by Mark

Shand, and the Riscl processor design from Berkeley. These designs range in size from 484

transistors (Delay) to 44,000 transistors (Riscl). All of them have a significant amount of

hierarchical structure but omly the Riscl chip contains explicit arrays. All use the Mead-

Conway nMOS design rules. The channel width is 5 microns, which corresponds to A == 2.5

microns, and each design is resolved by a %) grid, i.e., by pixels of dimension .;-)\. Tables A.1,

A.2 and A.3 give detailed size, density, and hierarchical statistics on the four designs.

Size of Deslgns
design area area hierarchical flat transistors | rectangles drawn | rectangles
(%) (mai?) | (CIF—kbytes)
Delay 167,433 87,513 13.8 155 484 232 5475
SOplus 837,304 258,977 34.8 347 1,380 1,038 12,540
Ioc 5,290,000 2,133,080 387 2,501 7,288 10,584 87,305
Riscl 20,002,750 8,085,008 810 13,991 44,000 32,158 532,041
Table ALl

Al

BENCHMARK DESIGNS 198

Denalty of Designs

design | rectangles/A® | trapsistors/\?
Delcy 033 .0028
8oplue .020 .0021

Toc 016 .0013
Risel 027 .0022

Tablae A3

Statisties on Hierarchy

design | % of data in top cell | regularity (rects/drawn-reci) | cells | hierarchy depth
Deicy 42 19.4 16 4
8Zplus 1.6 12.1 44 6

Toc .05 8.3 346 11
Riscl 26 16.6 202 7

Table A3
A.2 Flots

Plots for the four designs are given below. Each design is plotted to successively deener

levels of its cell hierarchy {once for each level).

BENCHMARK DESIGNS

199

iyt v TR, IOV TR
Ll e ISR e e W

PR 5
LI,

L

I

Plot A.1 - Delay, top level.

200

BENCHMARK DESIGNS

€

R L = m it
N N 5 RS
>
] e
e
4 = 4}
3 Say A3 SRMAY & AN WASE Ay <310
USSR S o
| H,
g JE
35T SN & S X
Aardd [
15 ® ka
L% a N ARG &8
G
Xils A B
T4 ”
Iy 3
b
b o881 PR
& e

rrame it

=51 oL B

T b3
o it ot i
J ek
Ryt bt s
St G
L o iA
v
—
§ i 3
e Al]
Any S m X

T

k3

S B
I A

B 2 2 e -
5 i 5 :
R T i i
ek m
3 y $ AR
- .a»w (s Im- m
«i® R
3 NAaAR 4 > 111 yevyd 1 89
5 :“... w, i lmv AL
i = Bkl it Q
2 A\ N N 3 3 3R NYiN
g - 9, - L
SV oy e s
- .5 u
3 g et < M = dece c AT
T - =
L3 L Spital W i
y j e
"t

E

% 9

1 B

Plot A.2 - Delay, top two levsls.

BENCHMARK DESIGNS

01

bty

WIINTINY
L SRR

AN

I}
. “.
> 4
S o~
>: 5 ot
q 4 D b
- 5] i PP ” o
< S = .
2 7 Tl
i i g A9
- % a %
15 3 a 23 b A
% 2 ¥
2~ P
vy 5]
* % s 4
e ;
g 3 2 :
¥ r *.
7 1z
4 Y ¥ b
oA b v >
" LR = ¢ 1
g+ §1 > [o
5 T ;
. A A

PR N Sbil

[}

: 3
&

U DI T ISR TN S
&,gn. e T, TR N e Y

AN

Plot A.3 - Delay, top three levels.

Ao ws s S hd

R

Fiidv orsis,

202

BENCHMARK DESIGNS

T3 v 1.,
s e

A LR 2L

(complete).

Deiay, top four levels

Plot A4

A2

BENCHMARK DESIGNS

Plot A.5 - 32plus, top level.

203

A2

204

BENCHMARK DESIGNS

o By
i
ok {s &
R R £

].;I.It..ljln.,llll.!jll;-'.,l .._.Ijljul..l.“xlll‘[x gll

: e b =

P swsort 3 v e § =mer e e Bt G = ¥

_ > = s

Plot A.8 - 32plus, top two levels.

BENCHMARK DESIGNS : 205

j %L . : X N R] i
‘ i
E
il
: ;.
;

L3
i}
1 4
B
44
— "
A= !
| E3ECE
ok
1y
F & o ¥ £
i ol
5 i 2 1 ;
et ratmev e i : o > ey

Plot A.7 - 32plus, top three levels.

A2

BENCHMARK DESIGNS

06

