
Corner-based Geometric Layout Rule Olecking
for VLSI Circuits

By

Michael Helnrut Arnold

B.S. U.tichigan State University) 1978

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

Approved:

DJCI'OR OF PHILOSOPHY

in

Computer Science

in the

GRAOOATE DIVISION

OF TI-!E

UNIVERSITY OF CALIFORI""JIA, BERKELEY

..

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 1985 2. REPORT TYPE

3. DATES COVERED
 00-00-1985 to 00-00-1985

4. TITLE AND SUBTITLE
Corner-Based Geometric Layout Rule Checking for VLSI Circuits

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Layout rule checking is traditionally done through sequences of region-operations, and a few experimental
systems use pixel-based processing. This dissertation examines these approaches in detail, and then
proposes corner-based checking as an efficient and flexible alternative. In corner-based checking
contextual rules, specifying conditions at corners matching patterns, are applied to the design. A rule
compiler is used to convert the user-readable rule description to an efficient, indexed, internal form prior
to checking. Hierarchical and incremental check algorithms that eliminate redundant checking are also
developed. These algorithms greatly enhance the effectiveness of layout rule checking. Measurements from
several systems implementing corner-based checking and the hierarchical and incremental algorithms
demonstrate their viability and effectiveness. Corner-based checking has several advantages. First, it
checks all rules in a single pass over the data. This avoids the I/O bottleneck that is common in the
multi-pass region-operation systems. The rule-based nature of corner-based checking provides inherent
flexibility: variants of design rules that would require the coding of new operations in region-operation
systems can often be accommodated by modifying the rule specification. Corner-based rules also permit
directional context, which is notoriously difficult to establish in region-operation systems. Finally
corner-based systems associate violations with points in a design rather than edges or regions. The
consequent simplicity of piecewise processing facilitates hierarchical and incremental checking.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

218

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Corner-Based Geometric Layout Rule Checking
for VLSI Circuits

Copyright © 1985
by

Michael Helmut Arnold

CORNER-BASED GEOMETRIC LAYOUT RULE CHECKING

FOR VLSI CffiCUITS

Michael Helmut Arnold

Abstract

Layout rule checking is traditionally done through sequences of region-operations, and a

few experimental systems use pixel-based processing. This dissertation examines these

approaches in detail, and then proposes corner-based checking as an efficient and llexible

alternative. In corner-based checking contextual rules, specifying conditions at corners

matching patterns, are applied to the design. A rule compiler is used to convert the user­

readable rule description to an efficient, indexed, internal form prior to checking. Hierarchical

and incremental check algorithms that eliminate redundant checking are also developed.

These algorithms greatly enhance the effectiveness of layout rule checking. Measurements

from several systems implementing corner-based checking and the hierarchical and

incremental algorithms demonstrate their viability and effectiveness.

Corner-based checking has several advantages. First, it checks all rules in a single pass

over the data. This avoids the 1/0 bottleneck that is common in the muit'i-pass region­

operation systems. The rule-based nature of corner-based checking provides inherent

llexibility: variants or design rules that would require the coding or new operations in region­

operation systems can often be accommodated by modifying the rule specification. Corner­

based rules also permit directional context, which is notoriously difficult to establish in

region-operation systems. Finally corner-based systems associate violations with points in a

design rather than edges or regions. The consequent simplicity or piecewise processing

facilitates hierarchical and incremental checking.

The worlc described here was supported in put by the Defense Adva.nced Reseuch Projects Agl!ncy (OOD),

ARPA Order No. 3803, monitored by the N&va.l Electronic System CortUlWld under Contr&et No. N0003~78-G-

0013-000of.

Acknowledgments

I would like to thank Ann Lanfri, Chong Lee, and Bill Weir or MCV and Metheus

Corporations for their continuing cooperation and support in my research. I am also in debt

to Greg Cardell, Myron White and especially Keith Billings for their ideas and work on Leo

and Leo45, the Metheus corner-based systems. I would also like to thank Jack Vernetti (for

his help with the plots) and all the others who have helped make my association with Metheus

productive and enjoyable.

I would like to thank Howard Landman and Stephen Pope for their help and comments

with the development of the Lyra rulesets, and the many others at Berkeley and in industry

who have enriched my research by their attention.

This research was funded, in part, by Defense Advanced Research Projects Agency.

Last, but not least, I am grateful to my research advisor, John Ousterhout. The

corner-based idea was born out of a sequence of discussions with John in which I volunteered

halt-baked ideas and John shot them down (John is a crack shot). In addition to eventually

leading to this dissertation, these meetings taught me the value or simplicity and precision in

computer science. This is the single most valuable lesson I learned while at Berkeley, and I

know it will continue to bear fruit in the years to come.

11

Table or Contents

CHAPTER 1. Introduction ... 1

1.1 Design Rules and Design Rule Checking ... 1

1.2 Scope of My Research 6

1.3 Ideas in My Research ... 9

,

1.4 Outline ··~····················· 12

CHAPTER 2. The Nature of Design Rules .. 13

2.1 Introduction .. 13

2.2 Integrated Circuit Fabrication and the Origin of Design Rules 16

2.3 The Form of Design Rules ... 22

2.4 Automatic Design Rule Checking and Design Methodology 26

2.4.1 The Spectrum oC Methodologies .. 29

2.4.2 Design Rules and Other Constraints Employed by the Methodologies 30

2.4.3 The Need for an Automatic Topo-Tolerance Checking Capability. 30

2.5 Summary .. 33

2.6 References ... 34

CHAPTER 3. The Region-Operation Approach .. 36

3.1 Introduction .. 36

3.2 Mask Artwork and Mask Artwork Functions .. 37

3.3 Region Operations ... :................ 38

3.3.,1 Tolerance Operations ... 40

3.3.2 Boolean Operations .. 46

3.3.3 Topological Operations .. 46

iii

3.3.4 Sizing Operations ... 49

3.3.5 Connectivity and Tag Operations ... 51

3.3.6 Area, Length and Perimeter Checks ... 53

3.4 Scanline Implementation of Region Operations .. 53

3.5 Pros and Cons or the Region-Operation Approach ... 56

3.6 Summary .. 60

3.7 References ... 61

CHAPTER -'· Survey ot Non-Corner-Based DRC Systems 64

4.1 Introduction .. 64

4.2 Region-Operation Systems ···~····················· 65

4.2.1 Baird's System 66

4.2.2 Lauther's A.lgorithm ... 67

4.2.3 Haken's System ·····:·· 67

.
4.2.4 Hitachi.. 68

4.2 .. ~ NCA ... ;... 68

4.2.6 Phoenix Data Systems ... 69

4.2.7 ECAD ... 69

4.2.8 Other Systems .. 69

4.3 Pixel Systems 69

4.3.1 Baker's System ... il

..
4.3.2 Seiler's System ... 72

4.3.3 Mudge's Approach ... 74

4.3.4 Eustace's System ... 75

4.3.5 Zech's Architecture .. 77

4.4 Summary

4.5 References .. .

iv

.., ..
I I

80

CHAPTER 5. The Corner-Based Approach .. 82

5.1 Introduction .. 82

5.2 Unconditional Rules ... 86

5.3 Geometric Conditional Rules ... 97

5.3.1 Transistor Extension Rule ... 98

5.3.2 Reflection Rule ... 104

5.4 Nongeometric Conditional Rules ... 107

5.4.1 Internode Spacing .. 109

5.4.2 Buried to Unrelated Polysilicon Spacing ... 109

5.4.3 Power and Ground Bus Width 111

5.5 Summary .. 112

CHAPTER 8. Implementation of Corner-Based Checking 116

6.1 Introduction .. 116

6.2 Internal Rule Representation :.. 117

6.2.1 Disjunctive Normal Form .. 118

6.2.2 Layer Expressions .. 119

6.2.3 Corners ... 120

6.2.4 Conditions .. 121

6.2.5 Condition Expressions .. 123

6.3 Checking Algorithm ... 126

6.3.1 Corner Detection .. 126

6.3.2 Condition Evaluation ... 130

,

v

6.4 The Rule Compiler ... 131

6.4.1 Conversion to Disjunctive Normal Form .. 133

6.4.2 Generation of Relevant-Layers Table ... 136

6.4.3 Conversion to Decision-Tree Form .. 137

6.5 Summary .. 138

6.6 References ... 140

CHAPTER 7. Survey of Corner-Based Systems... 142

7.1 Introduction .. 142

7.2 Lyra .. 142

7.2.1 Features and Restrictions .. 143

7.2.2 Implementation .. 146

7.3 Mart .. 148

7.3.1 Features and Restrictions .. 149

7.3.2 Implementation .. 150

7.3.3 Rule Checking Capabilities .. 151

7.4 Leo45 .. 151

7.4.1 Features and Restrictions .. 152

7.4.2 Implementation .. 152

7.4.3 Rule Checking Capabilities .. 153

7.5 Magic .. 154

7.5.1 Features and Restrictions .. 154

7.5.2 Rule Checking Capabilities

7.6 Intel DRC

156

156

7.7 Summary .. 156

vi

7.8 References ..•.. 157

CHAPTER 8. Hierarehieal and Incremental Cheeklng 158

8.1 Introduction .. 158

8.2 Hierarchical Checking - Background ... 159

8.2.1 Whitney's Filter ... 161

8.2.2 Scheffer's Strict Hierarchy ... 162

8.2.3 Newell and Fitzpatrick's Derived Disjoint Hierarchy 166

8.3 Direct Processing of Unrestricted Hierarchy ... 167

8.4 Incremental Checking ... 171

8.4.1 Leo45 .. 172

8.4.2 Magic 174 ... 174

8.5 Summary 175 ... 175

8.6 References 176 .. 176

Meaaurementa .. 178

~

9.1 Introduction .. 178

9.2 Raw Performance ... 179

9.3 Hierarchical and Incremental Checking ... 181

9.4 Sensitivity or Check Rate to Design Density .. 183

9.5 Sensitivity to Data Org:1nization :.. 185

9.6 Layer Expression Evaluation 185

9.7 Region Condition Processing 188

9.8 Rule Indexing .. 190

CHAPTER 10. Summary.. 192

10.1 Previous Approaches to Design Rule Checking ... 192

vii

10.2 The Corner-Based Approach .. 193

10.3 Hierarchical and Incremental Checking ... 194

10.4 Implementations ... 195

APPENDIX A. Benchmark Designs... 197

A.l Statistics .. 197

A.2 Plots ... 198

1

CHAPTER 1

Introduction

This thesis presents my work in automatic design rule checking Cor integrated circuits

(DRC). It introduces corner-based design rule checking as an efficient and flexible alternative

to traditional region-based checking, that is well suited for hierarchical and incremetal

checking. A general formalism for corner-based rules is developed that can handle aU-angle

data and complex conditional rules, and its implementation is considered. A rule compiler is

introduced to preprocess the input rule description for efficient processing. Hierarchical and

incremental check algorithms are also developed. The identification or violations with points

rather than edges or regions, makes corner-based checking particularly well suited for

hierarchical and incremental systems. Several corner-based systems, are discussed. In

addition, background material on the nature or the design rule checking problem, and other

work in the area, is provided.

This chapter gives an overview. It briefly describes design rules and design rule

checking, discusses the nature and scope oC my research, outlines the most important ideas

arising from and/or validated by the research, and outlines the rest or the thesis.

1.1. De1lgn Rule• and Design Rule Checking

Integrated circuits are specified in terms or geometric mask patterns, or artwork, for

each oC the layers in the circuit; see Figure 1.1. Design rules specify tolerances on these

patterns. Tolerances typically govern width and spacing on conducting lines and various

extensions and enclosures on circuit constructs such as transistors and contacts; see Figure

1.2. Design rules stem Crom the limitations or the circuit fabrication process. They are an

abstraction oC these limitations that acts as the interface between circuit design and process

engineering. They free the circuit designer from the intricate details or the fabrication process

1.1

INTRODUCTION
2

and its limitations: he need only make sure he obeys the design rules.

It is important that design rules are checked automatically. Current designs typically

contain one million or more separate geometric figures, making !or very tedious and error-

prone manual checking. Manual checking is certain to result in missed design rule violations.

Such violations necessitate expensive and time consuming additional fabrication cycles. In

addition it is very difficult to locate design rule violations by probing a finished circuit. Some

violations are likely to go completely undetected, and result in degraded performance and a

lower yield of working parts throughout the lifetime of the product. The only acceptable

solution is complete automatic design rule checking or the mask artwork prior to fabrication.

1'\pre 1.1. • Muk Arlwork. This is the ma.ek artwork Cor the basie rePter eell ~din the

rusc.n microprocessor ehip developed a.t. Berkeley. The RISC ehip contains OTer ~00 sueh

eells, compri.sin5 a.pproxima.t.ely one qua.rter or the total ehip ares. Ea.eh type ot sha.ding

corresponds to a. di.stinet ma.ek layer in the design.

1.1

INTRODUCTION

.. .,~
I
I
i
i
i
i

/!
I I

/ .

j I
i /.
i/ ··-

(a) Diffusion Width

~--~r---~··-·-·-·-·-·~

/

·-·-·--

I
i

_./
/

(c) Metal-Contact Enclosure

.....
/ i

__ ./ i ,..../

I i I
i i I
I i i
I i'f- 3~
i I i
i i i
i I i
i I i
!_./ ' I_./

(b) Diffusion Spacing

I

//

T
2 ___ ..v_.

~---·-·-·-·

I

I

(d) Transistor Extension

.--1
i
i
i
I
i
i
i
i
; ..-

Ftgure 1.:. • Typleal Design Rules. These examples a.re taken from the Mea.d-Conwa.y

rules for nMOS. Parts (a.) a.nd (b) give minimum widths a.nd spacings (respectively) for lines on

a particular layer. Parts (c) a.nd (d) specify dimensional constraints on the formation of

contacts a.nd transistors (respectively). A design rule set contains anywhere from two dozen to

over two hundred such rules. Some rules are more complicated; examples will be given in the

next chapter.

3

To be useful, a design rule checker must meet several requirements. First it must be

accurate. Since a single design rule violation can render an entire design nonfunctional, a

design rule checker must miss no violations. In addition, a design rule checker that hides

genuine violations in a sea or false alarms is almost as bad. This can happen if the checker

1.1

INTRODUCTION 4

inaccurately handles just one commonly occurring mask configuration. Thus a design rule

checker must be accurate: it must miss no genuine violations, and generate few false alarms.

A useful design rule checker must also be flexible enough to check a variety of design

rules. There are many integrated circuit technologies in use, and Cor each technology a

number of fabrication lines. Each fabrication line has its own characteristic limitations, and

hence its own design rules. In addition, as fabrication lines are refined and new ones

introduced, design rules change over time. The natures of design rules are also diverse.

Conditional design rules exist, that depend on factors as varied as the geometric context of a

mask feature, the length of conducting lines, the electrical characteristics of a particular node,

and even the intended function of the signal carried by a line. To be useful over time, and in

more than a narrow context. a design rule checker must be flexible enough to check a variety

or rulesets involving a variety of types or rules.

A design rule checker must also perform reasonably. As design complexity continues to

grow, design rule checkers are faced with large and ever increasing amounts of data to

process. A design rule check on a large design typically takes many hours or even days to

comple~e. Such checking is expensive in terms of computer resources. In addition it makes

design rule checking a batch process that is typically deferred until the end of the design

cycle. Design rule violations detected so late can be quite difficult to fix: a significant amount

of mask artwork in the vicinity of a violation may need to be altered to make room for the

fix. Expensive design rule checking also inhibits design refinements, since any change in the

design will require another costly design rule check. With the size and complexity of designs

continually increasing, it is clearly important to look Cor efficient ways to do design rule

checking.

In fact, the basic technique used almost universally Cor design rule checking was born

more than a decade ago when designs were much smaller and less complex than today. This

technique is poorly suited Cor processing designs of today's scale. In this approach, rule

1.1

INTRODUCTION
5

checking is implemented through sequences or region-operation& on one or two layers at a

time. These operations typically yield a. new, intermediate, layer as output. Layers

frequently consist or over 100,000 figures, and typical rulesets require hundreds oC these

operations. This results in the generation or great amounts or intermediate data during a.

design rule check, and a great amount or 1/0. The number or data items is very large, and

the amount or computation per item relatively small. Hence processing is 1/0 bound, and

slow.

Several ideas for speeding up design rule checking have been proposed. One approach is

to use special-purpose hardware. A number or hardware-assisted systems have been

suggested. These systems employ pixel-based representations for the mask data; see Figure

1.3. An array of square pixels is laid over the design, and each pixel is marked with the mask

layers occurring in it. In order to have sufficient resolution the pixel-array must be fine. A

fine array over an entire VLSI design involves a very large amount of data. Thus, like the

traditional region-operation approach, the hardware-assisted approaches involve a large

amount of data, with relatively little processing per data item, and hence tend to be

constrained by I/0 bandwidth. Such special-purpose processing engines are also likely to be

complex and expensive. No fully functional hardware-assisted design rule checker has yet

been completed.

The elimination or redundant checking can be very effective in speeding up design rule

checking. One such strategy, hierarchical processing, involves checking only one instance of

repeated structures in a design. Since designs typically contain much repetition, such a

strategy can reduce computation very significantly. For example, hierarchical checking or the

Riscl microprocessor chip with Leo45 speeds up checking by almost a factor or 6. Another

strategy, incremental checking, is to check only those portions of a design that have been

modified since the last check. Again, this can greatly reduce the computation required for

checking - particularly at the end or the design cycle, when minor modifications are typically

1.1

INTRODUCTION

............... ~:.; ; ;. ;. :.
• • • 0 • • 0

• • 0 • • • •

' ' . . .

Metal

nil Poly Metal/Poly /Cut

Flgw"e 1.3. • Plxel-bued Representation of Muk .Aztwork. In pixel-based systems, a

square array o(pixels is laid over the design, and each pixel is marked with the layers present

within it. The pixel-array must be fine enough so that approximations at pixels that are only

partially covered by ma.sk layers don't result in false design rule violation reports or missed

violations.

6

made to fix bugs detected by design rule checking or simulation. An incremental check of

Riscl, (again by Leo45) after a minor modification to the design takes less than 1% oC the

time for a Cull check. Lyra and Leo, corner-based systems developed in conjunction with this

research, pioneered hierarchical and incremental checking (respectively).

1.2. Scope ot My Research

My research has centered around an alternative approach to design rule checking: a

corner-based approach where checking is done in terms of the corners in a design and their

immediate environment. Corner-based checking is a fundamentally different approach to

1.2

INTRODUCTION 7

design rule checking that addresses the I/0 bottleneck problem tr:1.ditionally plaguing design

rule checking. The input rule description is preprocessed with a rule compiler to generate an

efficient, indexed, internal rule form and all rules are processed in parallel in one pass through

the design artwork. Corner-based checking is both accurate and flexible. It lends itself to

checking rules involving directional context, which are notoriously difficult to check in

traditional region-operation systems.

My research also included the development of Hierarchical and incremental algorithms

that reduce redundant checking and hence make design rule checks more efficient and

interactive. Although these algorithms could be implemented on top of a region operation

system, the corner-based approach, which associates violations with points rather than edges

or areas, is more convenient.

Corner-based checking was first implemented in the Lyra system, in 1981. Lyra was

written to test the the basic soundness or lhe corner-based approach and fill the need for an

accurate design rule checker at Berkeley. It demonstrated that corner-based checking can be

both accurate and flexible. It has been used on a number of large design projects, including

the RISC microprocessors at Berkeley, spanning a number of nMOS and CMOS rulesets. On

its first real use (for the RISC-I chip), Lyra found violations that had been missed by a

previous DRC as well as by manual checking. Even though written in Lisp, Lyra was about 3

times as fast as the region-based NCA system, which was the industry standard at the time.

Lyra was the first hierarchical design rule checker. It demonstrated the feasibility and

effectiveness of hierarchical checking. With interfaces to the Caesar and Kic geometric

editors, Lyra also pioneered interactive design rule checking. The interface allowed designers

to invoke Lyra on parts of the design currently being edited for "immediate" feedback on

design rule violations. This feature proved quite useful to designers. Lyra is part of the

Berkeley CAD tool distribution, and has been used at several hundred unviersity and

industrial sites.

1.2

INTRODUCTION 8

The viability or corner-based checking was further tested with Leo, a second,

commercial, corner-based system. Leo was developed in conjunction with Metheus

Corporation for use in their VLSI design workstation. Written in C with an eye toward

efficiency, Leo is 3 times as fast as Lyra. In addition Leo is incremental, (it rechecks only the

parts of a design that have been modified). Leo works quite well; its incremental and

interactive checking capabilities have been selling points of the Metheus system.

The Lyra and Leo systems are useful only within a restricted context. They handle only

manhattan designs, where all feature edges are lined up horizontally and vertically. A later

version of Leo, Leo45, allows edges at 45 degree angles as well, but still excludes all other

angles. The rulesets handled by these systems are composed of relatively simple, mainly

unconditional rules. These restrictions are in the spirit of the simplified design philosophy

popularized by Carver Mead and Lynn Conway. They are suitable for the Mead-Conway

design style widely used in universities and a growing segment of the industrial community.

They simplify the implementation of the systems, and improve performance.

Nevertheless, the question of the usefulness of corner-based checking in more general

contexts must be addressed. To explore this issue, I have developed a general corner-based

formalism and considered its implementation in detail. This formalism has provisions for

processing all-angle mask data, specifying complex conditions on the interrelationship of

features at corners (capable of capturing complex conditional rules), and provisions for the

incorporation of nongeometric data, (again for checking conditional rules). This work shows

that a general corner-based system is feasible, but that preprocessing would be required to

generate any nongeometric contextual information used in the rules. The rule formalism is

quite flexible. The proposed implementation uses standard compiler techniques as well as

some tairly elaborate logical manipulations to transform the input rule specification into a

simple regular internal form that can be efficiently checked. Though the performance of such

a complex system can not be accurately predicted without implementation, it is encouraging

1.2

INTRODUCTION 9

that much or the complexity can be shifted to the rule compiler that transforms the input rule

specification to an efficient internal form. The rule compiler is only run infrequently, so its

efficiency is not a large concern. The actual rule checking is still relatively simple, though

more complex and slower than in the more restricted systems that have been implemented.

Many conditional rules rely on preprocessing to generate additional context information.

Such preprocessing would presumably be done using traditional region-based operations. This

suggests a hybrid system, involving region-based preprocessing to generate needed context

information followed by the more efficient and flexible corner-based tolerance check.

1.3. Ideas ln My Research

A number or key ideas on design rule checking have emerged out or my research. These

ideas, more than particular systems or even particular algorithms, are my contribution to the

field. Some of the ideas, such as pattern-directed, rule-based, processing and point/edge

tolerance checks, were new. Others such as hierarchical, and incremental checking had

previously been proposed, but were elaborated on (and validated) by my work. Still others

involving more general corner-based systems, were just suggested by the research, and remain

to be developed. The most important ideas are introduced below.

Corner-based checking uses pattern-directed, rule-based processing, a technique borrowed

from Artificial Intelligence. The pattern-directed processing of corners works as follows. Each

corner in a design is analyzed Cor certain mask patterns. The presence of certain predefined

patterns triggers relevant rules. The rules in turn specify conditions to check at the corner.

Care is given to index the triggering patterns so that the relevant rules at each corner can be

identified quickly. Processing or a design involves one pass through the data (all rules, and

layers are processed in parallel), and no intermediate layers are generated (the layers are

checked "in-place"). This approach is radically different from the traditional region-operation

approach, where rules are checked through sequences of operations, and each operation

involves a separate traversal or the mask data. The pattern-directed processing concentrates

1.3

INTRODUCTION 10

the checking per data item scanned, and thus avoids the I/0 bottle neck problem. Pattern­

directed processing, looked at from another perspective, is rule-based. The rule-based nature

of corner-based checking provides the characteristic B.exibility of rule-based systems. Variants

of design rules, that would require the coding of a new operation in region-based systems, can

be accommodated in a corner-based system by the much simpler process of modifying a rule.

Another innovation of the corner-based approach, is the use of point/edge based

tolerance checking, that is tolerance-checking involving the measuring of distances between

corner-points and edges, rather than between pairs of edges; see Figure 1.4. This technique

localizes checking to points in the design rather than edges or regions. Violations are

associated with corner-points, and the independent checking or a piece or a design can be

precisely defined as checking all the corner-points or that piece. The consequent simplicity of

piecewise checking facilitates the implementation or hierarchical and incremental strategies.

Though hierarchical processing has been widely heralded as the solution to the excessive

times required for design rule checking, hierarchical systems have been slow in coming. Lyra

appears to have been the first fully-functional hierarchical design rule checker. Lyra

demonstrated that hierarchical checking or structured designs can be effective, and that

special restrictions on cell overlap are not required: as long as cell overlap remains relatively

small, hierarchical checking in Lyra is effective. In addition Lyra's special handling of arrays

proved very effective. Most of the regularity in VLSI designs is in the Corm of arrays. Special

handling of arrays alone will give most of the advantages of hierarchical checking. There was

also a negative result: checking of poorly-structured designs was as much as several times

slower hierarchically than flat! This was because mask features involved in cell interactions

ended up being checked at several distinct levels in the hierarchy.

Once hierarchical checking was in place, incremental checking proved easy to implement

and very useful. User response to incremental checking in Leo was extremely favorable. Leo

users frequently run design rule checks each day or so. Violations no longer go unnoticed

1.3

INTRODUCTION

1 1

(a) EdgefEdge (b) PointfEdge

Figure 1.4. • Alternative Tolerance Cheek Methods. Traditionally, tolerance checks on

mask regions have been done by checking the distance between region dges (a). In corner·

based checking, tolerances are measured from corner points to region boundaries (b). Such

point/edge checking has the advantage of very naturally splitting up into piecewise checks:

checking a. piece of a. design, corresponds to checking tolerances from corner-points within that

piece.

until after the design is complete and they are hard to fix.

11

Several new design rule check systems have incorporated some of the above ideas. The

Mart design rule checker, developed by Bruce Nelson and Mark Shand at CSIRO is based

directly on corner-based checking as in Lyra. The new internal Intel design rule checker uses

point/edge tolerance checking to facilitate piecewise processing. The Magic design rule

checker, recently developed by George Taylor and John Ousterhout at Berkeley, is strongly

influenced by Lyra. Though edge-based rather than corner-based, the Magic system uses

pattern-directed rule-based processing. Its hierarchical algorithm is similar to Lyra's, and its

handling of arrays is identical. All these systems are discussed in Chapter 7, and references

1.3

INTRODUCTION 12

are given at the end or that chapter.

1. 4. Outline

About half oC the material in the following chapters provides background. It discusses

the origin and nature or design rules, and presents the various approaches to design rule

checking. This material provides an introduction to the design rule checking problem, and the

context Cor the discussion of the corner-based approach, and the hierarchical and incremental

algorithms of Lyra and Leo.

The remaining chapters are organized as follows. Chapter 2 considers where design rules

come from, what they look like, and their role in the various design methodologies. It

develops the topo-tolerance model Cor design rules that is used through out the thesis.

Chapter 3 presents the traditional region-operation based method of design rule checking.

Chapter 4 surveys existing design rule checkers, giving examples of traditional systems as well

as other approaches. Chapter 5 introduces corner-based checking in Cully general Corm. It

develops a corner-based formalism and explores the scope of rules that can be handled by it

with a number of examples. Chapter 6 discusses how a general corner-based system might be

efficiently implemented. Chapter 7 surveys actual corner-based systems, focusing on the

restrictions of each: bow they simplify the implementation and how they limit rule checking

capabilities. Chapter 8 discusses hierarchical and incremental checking. It presents both the

approaches I used in Lyra and Leo, and the approaches used in other systems. Numerical

measurements are presented in Chapter 9. Chapter 10 is the the conclusion.

1.4

13

CHAPTER 2

The Nature of Design Rules

2.1. Introduction

Design rules specify constraints on the minimum size or circuit components, and the

maximum component density Cor integrated circuits. These constraints are given as minimum

tolerances on various spacings, widths, enclosures and extensions in the mask artwork Cor the

circuit. See Figure 2.1 Cor examples.

/i
,./ i
i i
i i
i i
i i
i/
i./

-·-----7

___ j
/

/

/i _;'1
,_..,.. i r i
i i I i
i i.- 3 -.i i
i i i i
i i -i _j
! I i
1./ ._/

Fleur• S.l. • Typleal Design Rules. These examples are taken (rom the Mead-Conway

rules (or nMOS. Pa.rta (a) a.nd (b) give minimum widths a.nd spa.cings (respectively) (or lines on

a. particular la.yer. Pa.rta (c) a.nd (d) specify dimensional constraints on the formation or

contacts a.nd transistors respectively. A design rule set contains a.nywhere (rom a couple dozen

to• over two hundred such rules. Some rules are more complicated; examples will be given later

in this chapter.

2.1

THE NATURE OF DESIGN RULES 14

There are a number of re3Sons (or making devices 3S small 3S possible and component

density 3S high as possible. Most importantly, the probability or any given chip being

fabricated correctly (the yield) decreases dramatically as overall circuit size grows. This is

because (atal defects, caused by impurities in the silicon crystal or dust contamination during

processing, occur with approximately fixed and independent probability in each unit-area of

the circuit. Thus the probability of at least one (fatal) defect occurring in a circuit grows

exponentially with the area of the circuit. Hence smaller circuits have much better yield and

are more economical to produce. In addition, there is a practical limit on the maximum

circuit size that can be fabricated: beyond some size, yield will· be so astronomically small

that no fabricated chip is likely to work. Thus smaller devices permit more complex chips.

Even disregarding yield, smaller circuits are more economical simply because there are more

chips per wafer fabricated; see Figure 2.2. Still another reason for minimizing component

sizes is that circuits composed of smaller components are taster and consume less power.

-
...........

/ ~ I ' '

Die Sites '
I

I

~v \
'\.

./

Wafer A. Wafer B.

Figure :.:. • Water• and Dte Sltea. Multiple copies or an integrated circuit are fabricated

simultaneouBly on circular silicon wafers. Arter fabrication is completed, a. wa.!er is fractured

(or diced) into rectangular chips (or dice). Ea.ch chip contains an individual copy or the circuit.

The smaller the area or a. chip, the more copies can be rabrica.ted per wa.!er, a.nd the more

economical production becomes.

2.1

THE NATURE OF DESIGN RULES 15

Limitations on the minimum size of circuit components, and hence the design rules, :l.rise

primarily from imperfections in the mask preparation and fabrication process. These

imperfections result in distortions or the artwork during the transfer from the original digital

specification to the actual integrated circuit layers. They are numerous and varied, arising at

every step in the fabrication process. Examples are imperfect optical resolution during certain

processing steps, and imperfect alignment between masks or layers.

In addition design rules result from the physical properties of the fabricated circuit. For

instance, to prevent shearing of brittle metal lines, some processes have design rules that

prohibi~. metal from crossing over features that rise and fall abruptly. Similarly metal

migration effects, involving the erosion or metal atoms under the influence of a strong electric

current, necessitate wider metal lines in some cases. The gradual nature of diffusion

boundaries also leads to width and spacing restrictions.

Design rules are an abstraction of the physical limitations of the fabrication process that

permits the decoupling of process engineering and circuit design. A circuit designer need not

be concerned with the complex details of the fabrication process: he need only conform to the

design rules. Similarly, process engineers have flexibility in the development or modification

of the fabrication process, as long as the final process meets the design rules.

The following sections explore the origin, form, and uses of design rules in more detail.

First, the next section takes a closer look at the process engineering side of design rules: the

physical structure of integrated circuits is described; the principle artwork transfer steps in the

fabrication process are considered; and it is shown how limitations in the lldelity or these

transfers, and physical limitations on the fabricated circuit lead to design rules. The following

section discusses the form of design rules. A model for design rule form is presented and

illustrated with a representative sample of design rules. The final section considers the role of

design rules in the various design methodologies, and argues that a basic automatic design

rule checking capability is important regardless of design methodology.

2.1

THE NATURE OF DESIGN RULES 16

2.2. Integrated Circuit Fabrication and the Origin of Design Rules

Integrated circuits consist of layers of patterned conducting material stacked vertically

on the surface or a silicon substrate and separated by insulating material. Electrical devices

such as transistors and capacitors are formed through the interaction of certain layers across

thin insulation. Electrical contacts between layers are formed by cutting through the

insulating material between. Regions of the circuit are implanted with various impurities to

selectively change the electrical characteristics or the layers and the devices formed by their

interactions. A circuit is defined by geometric patterns giving the regions where each of these

layers (conducting, insulating or implant) is present.

Tlie physical design of a circuit is originally in the form of digital design files specifying

the geometric pattern for each layer. To realize the circuit, the pattern for each layer must be

transferred to a physical layer in the circuit. This transfer is generally effected in at least

three stages, as illustrated in Figure 2.3. Prior to fabrication a photographic mask patterned

with transparent regions on an opaque background (or vice versa) is created for each layer.

The photomask is used to pattern a photosensitive resist, deposited uniformly over the surface

of the circuit. The actual layer is then patterned from the resist. Typically the layer has

been deposited immediately below the resist, and is patterned by an etchant that dissolves the

layer everywhere it is not covered by the resist.

Each transfer of the patterning information introduces distortions. The type and degree

of distortions is dependent on the procedure and equipment used. Mask generation is often

done by a block flash technique. A photographic emulsion is exposed to flashes of light

directed through a rectangular aperture, whose position, size and angle of rotation are

digitally controlled by a pattern generation tape. The pattern generation tape is derived

directly from the physical design Iiles for the circuit. There are several sources of distortion

during flashing. Optical diffraction effects at the edge or flashes cause a loss of edge acuity on

the emulsion; over- or under-exposure due to imperfect control or the timing and intensity of

2.2

THE NATURE OF DESIGN RULES

Digital Mask Artwork Specification

Mask Preparation

(with E-beam or Block Flasher)

Photographic Masks

Resist Patterning

{with Stepper)

Patterned Resist on Wafer

(Etching or Implantation)

~

Patterned Circuit Layer

FlKW"e :.3. • Pattern Tranafen 1.n Integrated Circuli Fabrication. The fabrication of

integrated circuits generally involves at lea.st three transfers or the geometric pattern

information: from the original digital specification to the photographic ma.sk, from the mask to

a photosensitive resist on the surface of the wafer, and finally from the resist to the actual

circuit la.yer.

17

flashes can lead to slight edge motion; and mechanical imprecision in the flasher can result in

inaccurate positioning of flashes. Also, decomposition of the original design into a sequence of

rectangular flashes may require approximations, since the size, position, and angle of flashes

can only be varied in discrete increments. Non-polygonal features, such as circles, require

2.2

THE NATURE OF DESIGN RULES 18

approximation too.

Patterning or the resist typically involves a stepper that focuses an image of the

photomask successively onto each chip site on the resist-coated wafer. After exposure, the

resist pattern is developed using a solvent that dissolves the exposed (negative resist), or

unexposed (positive resist) sections. Distortions introduced in the patterning or the resist are

due mainly to the limited optical resolution of the imaging system, and diffraction effects at

region edges. Distortions also result from other factors such as nonuniform resist thickness.

Finally, imperfect alignment between masks, both translational and rotational, leads to

uncert::.inty about the relative position of shapes on different layers.

The final transfer of the artwork pattern to the circuit layer is through an etching or

implantation step. The fidelity or this transfer is limited by the diffusion or etchant or

implant laterally underneath the resist boundaries. Imperfect control oC the reactivity of the

active species (e.g. etchant strength), or or timing, results in uncertainty about the size of the

regions created.

Some distortion effects are pattern dependent, that is, they vary with the circuit

artwork. For example light reflected by metal-coated polysilicon during resist exposure for

the metal layer, can cause edges on the metal layer to be displaced; see Figure 2. This

reflection effect only occurs when a polysilicon edge runs near a metal edge. Another pattern

dependent effect involves etching in open versus confined regions. The rate or etching may be

less in more confined spaces. Thus, for instance, the outside edges or a set or parallel metal

lines may be etched more than the internal edges, as in Figure 2.5.

The above description o(circuit fabrication, while correct in outline is greatly simplified.

Processing often involves additional transfers of the artwork pattern. For example working

masks may be produced from master photomasks, or reduced (and repeated) masks called

reticles may be used. A typical integrated circuit fabrication process involves over 100

distinct processing steps [Sze, 1 983J. Imperfections in each step contribute to overall

2.2

THE NATURE OF DESIGN RULES

(a)

(b)

Flpre 2.4. • Refleettona A Pattern Dependent Effeet. During resist patterning of an

-&luminum layer, (a.) above, the shiny aluminum-coated wafer reflects a.s much a.s 90% or the

incident light back through the resist. Where the wafer is fiat the light is reflected harmlessly

straight back up. However, protrusions cau.~d by underlying poly5ilicon edges scatter the light

resulting in unde5ired resist exposure. This results in the displacement or metal edges where

polysilcion edges run nearby, a.s shown in (b). In this case metal edge M is displaced to M by

light scattered from the nearby polysilicon edge P.

NN

Flsure 2.6. ·Variable Eteha Another Pattern Dependent Effect. Etching can be more

vigorous in open area.s, such as outside a set of closely spaced parallel lines, than in confined

areas, such a.s between closely spaced lines. This results in the narrowing of lines adjoining open

area.s.

19

2.2

THE NATURE OF DESIGN RULES 20

distortion in the final circuit.

The sources oC artwork distortion during fabrication are numerous and complex. In

general the distortions lead to uncertainty about the exact position oC region boundaries in the

AS DRAWN: AS FABRICATED:

D D q 0 0 ~
(a.) Width

-

DO q
___;

(b) Spacing

s--, ____ .J q ~--·, ____ __,

(c) Enclosure

. i c) (... \ I q I \ I - i
i i
i 1 i

(d) Extension _)

Flcu.re :.a.- How Dt.tortlon Caullft Clrcult Fallure. This figure shows exa.mpl~ or how
distortion can lead to circuit failure if minimum tolerances are not observed. Part (a.) illustrates
how a. narrow line can be split. Part (b) shows the merging or Cea.tur~ that are drawn too
closely together. Part (c) shows how the desired connection between layers can be lost if a.
contact is drawn with insufficient enclosure. And part (d) shows how transistors can rail, if they
are drawn with insufficient extension.

'l'l

THE NATURE OF DESIGN RULES 21

fabricated circuit. Shapes may be slightly larger or smaller than intended, and their relative

position, particularly between layers, will be inexact. This is illustrated in Figure 2.6.

Narrow lines may not be resolved at all (i.e. may not appear in the fabricated circuit), while

somewhat wider lines may be narrowed to the point where they are split into pieces, as in

Figure 2.6(a). Similarly shapes that are too closely spaced may be merged during fabrication,

as in Figure 2.6(b). Thus minimum width and spacing tolerances are needed to ensure that

electrical nodes are neither split nor merged together during fabrication.

The formation of contacts and devices such as transistors and capacitors involves

overlaps and extensions between layers. For example, in a typical MOS process a contact

from the metal layer to the diffusion layer is formed as shown in Figure 2.1(c). In order for

contact to be made it is necessary that all three layers, metal, diffusion and the cut in the

insulation between them, overlap. Thus minimum overlap tolerances are needed to ensure

all three layers will overlap sufficiently in the fabricated contact despite misalignments

between layers, and shrinks on the individual layers; see Figure 2.6(c).

The formation of MOS transistors involves the extension of a polysilicon line over a

diffusion line, as in Figure 2.1(d). The transistor will not function if the polysilicon fails to

extend all the way across the diffusion line in the fabricated circuit, (see Figure 2.6(d)), so a

minimum tolerance on the extension of the polysilicon beyond the diffusion is required.

In addition to causing circuit failure through broken or shorted nodes and inoperative

contacts or devices, distortions can result in degradation of circuit performance through the

formation of parasitic devices, e.g., capacitors formed by unintended overlap between layers,

or voltage drops in lines that end up too narrow. Cumulatively such effects can lead to

complete functional failure of the circuit, or simply degrade performance so the circuit will

not meet design specifications. In a few cases, distortions can result in long-term failure of the

circuit. For example, narrow metal lines carrying high current are subject to eventual failure

due to metal migration: the metal atoms actually erode away under the influence of the

2.2

THE NATURE OF DESIGN RULES
22

electric current.

Many or the factors contributing to artwork distortion during fabrica.tion are random.

They vary from wafer to wafer, and often from region to region on an individual chip,

according to some probability distribution. The distortion of individual shapes and

relationships between shapes results from the combined effects or these many random factors,

a.nd thus is best characterized in statistical terms. The maximum distortions occur when a.ll

the individual factors a.re by bad luck near their respective maxima and all work together in

the same direction. The greatest distortion on an average chip will be much less than such a.

worst case since the many factors contributing to distortion will tend to average out and

cancel each other.

Specifying design tolerances based on worst case distortions would be overconservative.

Such a choice would lead to unnecessarily large devices and circuit areas, degrading circuit

performance, increasing power consumption and quite possibly reducing the yield or working

chips because of fatal random defects whose probability increases exponentially with chip

area. Thus the specification or design rule tolerances is a compromise that seeks to make

minimum tolerances small while, at the same time, keeping losses from pattern distortion low.

2.3. The Form of Design Rules

The last section showed how numerous factors cause distortions of the design artwork

during fabrication. These distortions result in uncertainity about the eventual size and

relative position of artwork shapes in the fabricated circuit. Coupled with physical

requirements or the circuit, such as the need to maintain the integrity or nodes and minimize

parasitic devices, these effects lead to the design rules for the process.

Design rules take the form of minimum tolerances on spacings, widths, enclosures and

extensions on the artwork as designed. These tolerances are intended to be sufficiently large

so that the corresponding relationships in the fabricated design will be maintained (a.nd of

sufficient dimension) despite distortions. Because these rules give tolerances on topological

2.3

THE NATURE OF DESIGN RULES 23

relationships, I re!er to them as !opo-tolera.nce rules.

The simplest and most common design rules specify minimum width and spacing for the

nodes of a single layer. See, for example, Figures 2.l(a) and (b). Here diffusion lines are

required to be at least 2 units wide and distinct nodes are required to be spaced at least 3

units apart.

Enclosure and extension rules generally involve interlayer contact or device constructs.

For example Figure 2.1(c) shows a typical rule !or contacts between diffusion and metal in an

nMOS process. Here both the diffusion and the metal must enclose the contact cut for a

distance of at least one unit. Figure 2.l(d) shows an nMOS transistor rule that requires

polysilicon to extend past the diffusion for at least two units.

In addition to specifying tolerances on topological relationships for single layers and

between pairs or layers, topo-tolerance rules can re{er to regions defined by a combination or

layers. For instance in nMOS processes, the operating characteristics or a transistor can be

changed by implanting the transistor gate region: unimplanted transistors are enhancement

mode, while implanted transistors are depletion mode. To ensure that the entire gate region

or depletion mode transistors actually gets implanted, the implant layer is required to enclose

depletion mode gate regions, by some tolerance. Similarly, to avoid accidental implantation

o(enhancement mode transistors, there is a spacing rule between enhancement mode gate

regions and the implant mask. These rules are illustrated in Figure 2.7. Note here that

depletion mode gate regions are defined as

Polysilicon AND Diffusion AND Implant,

and enhancement mode gate regions are defined as

Polysilicon AND Diffusion AND (NOT Implant).

In general topo-tolerance rules can refer to regions on composite layers defined as arbitrary

combinations or the mask layers. Such combinations are specified by boolean expressions on

the mask layers, e.g. by using AND, OR and NOT operations.

2.3

THE NATURE OF DESIGN RULES

... /
!

.. -: ,........ .. ;
• ../ !
I I
i i
i i
i i
i i

.---------~---,..---~---------.
l j I i....,.l

I l i i l

-~-pob'---;.._t I-t ~__...~ -r-: r,__~ ~ ___ ; _?

..

: I • I :
l i i ~
·------------*------------~ I I

i i
i i
i i
i .. i
i i
~/--

Fllt'lre :.1. · Implant Tolerance. Involving ComblnattoZ:. of Laye:rs. Typical implant

rules require implanted transistors to be enclosed by implant for a. minimum of 2 units a.nd

nonimpla.nted transistors to be spaced at least 2 units from implant regions. These rules do not

involve spacings between ma.sk layers; rather they each involve a. spacing between a. ma.sk-la.yer

and a {boolean) combination or ma.sk layers.

~------------------~

j I
1 r·---~ i
! ~2~ i
I I I j

l--------~ i
I
I
i
i

/'..:.
I I ,_,

(a) ~!&Nodes~

/i 1_.. .

I
I i . .
!+-3~
I I
i i
i i
i i

I ;·"' ~ ~~ ·- ~~

(b) lnl.enlode Spadll&

Flgure :.s. · Internode Spacing} a Conditional Rule. Frequentiy the spacing rule for

distinct nodes specifies a. greater minimum spacing than is required between segments of a. single

node. Such a. spacing rule is cmditional because it only applies in limited contexts, i.e.,

between boundary edges of distinct nodes.

24

2.3

THE NATURE OF DESIGN RULES

Metal

~.~
Poly

0 0 I o
• • • 0 '
0 0 I 0
• 0 ••

• 0 0.
I o o 0 . ' ..

'' I i'

(a) (b) (c)

Flguze :.G. - Reflection Rule. The spacing between metal line:~ may be greater when

poly silicon edge(s) are nearby. This is because reflections from the metal coated polysilicon

edge:~ during patterning or the metal layer can cause the metal edge:~ to move outward.

25

The above rules, with the exception of internode spacing, are unconditional: the

specified spacings, widths, or enclosures apply unconditionally to the mask layers throughout

the circuit. However design rules are often conditional, that is, the specified topo-tolerance is

only r~levant in certain contexts. The conditions on design rules can take many forms. The

most common example of a conditional rule is internode spacing on a conducting layer. Such

a spacing rule is conditional because it only applies to mask regions that belong to distinct

nodes; see Figure 2.8. Another example of a conditional design rule involves the reflection

phenomenon introduced in the previous section. To take retlection into account a rule might

require that metal lines be spaced 1 unit apart when there are no polysilicon edges paralleling

the facing metal edges, 1.5 units apart when a polysilicon edge runs near one of the two metal

edges, and 2.0 units apart when polysilicon lines run near both the metal edges. Such a rule is

illustrated in Figure 2.9. Some design rules require that long parallel lines be spaced more

conservatively than short ones, to avoid capacitive coupling. Figure 2.10 gives an example.

A tendency for etching to be more vigorous in open areas can lead to conditional width rules.

For example minimum metal width might be 8 units if no other metal is present nearby, 7

2.3

THE NATURE OF DESIGN RULES 26

units if metal is nearby on one side, and 6 units if metal is present on both sides oC a line.

Such a ru!P. is illustrated in Figure 2.11. To avoid metal migration effects, metal width is

sometimes dependent on the current density a line will carry; for instance, power and ground

lines are often required to be wider than lines carrying other signals.

Conditional rules can get very intricate. As a final example, consider the following: To

avoid metal shearing due to rough underlying terrain, greater spacing between polysilicon and

diffusion edges may be required when a metal line runs perpendicularly across these edges; see

Figure 2.12. Since shearing in the direction of current does not pose a problem, such a rule is

actually dependent on the direction oC current in the overlaying metal.

The above examples illustrate conditional rules that depead on the presence of nearby

regions or edges on the same as well as different mask layers, rules that depend on the length,

expected current density or function of lines, and even a rule that depends on current

direction. In general design rule conditions may be very complex and may involve geometric

information about circuit artwork, topological information (such as node connectivity),

electrical information, and functional information about the circuit.

With the exception of an occasional rule concerning areas, perimeters, or exact (not

minimum) dimensions, the examples of this section illustrate the nature and range of design

rules for integrated circuits. Simple rulesets are comprised of a relatively small number of

conseryative primarily unconditional rules giving minimum tolerances on widths, spacings,

enclosures and extensions for mask layers and layer combinations. More complex rulesets

involve a greater number of conditional rules that give more precise tolerances by specializing

the context in which each rule applies.

2.4. Automatic Design Rule Checking and Design Methodology

The topo-tolerance rules defined in the last section form the basis for the interface

between process engineers and circuit designers. However, the nature of the design rules

actually seen by circuit designers varies considerably with design ·methodology. This section

2.4

THE NATURE OF DESIGN RULES

>1

Flpre 2.10. • Length-Dependent Spacing. Sometimes spacing rules are conditional on the

length over which lines run parallel. For example, lines might be required to be separated by 3

units if they run parallel for less than 7 units, but be separated by at least 3.5 units if they run

parallel for lengths of 7 units or more.

" "-,
<"- ""-,

" " " " " " "
"-"' <"- <"-<"-
" "'" "
" "" " <"-

Figure %.11. • Den.lty Dependent Wldth. Because etching is more vigorous in open areas,

width rules are sometimes conditional on the presence of nearby lines on the same layer. For

example minimum width may be 6 units for interior minimum-spaced lines, 7 units for lines at

the edge of a. minimum-spaced set, and 8 units otherwise.

27

2.4

THE NATURE OF DESIGN RULES

/I
r·/ i
i i
i i
i i
i i
I I
i
I
i
I
i
i

I
i

I I
I I

,.J I

i i
i I
i _j
I i
i i

1 i n·ffi
I 1 I
i i
i i
I . .J
i I
[/

Metal
··:,

c"firrer'i{>

Fli'W'e :.12. - Spacing Condltlonal on CW'rent Direction In Overlying Metal.

Sometimes minimum spacing between poly and diffusion is conditional on the presence of

overlying metal. This is because nearly-coincident poly and diffusion edges result in an abrupt

change in the vertical dimelll!ion that can cause overlying metal to shea.r. Since shearing in the

direction of current flow does not cause problerlll!, the more conservative spacing need only

apply to polysilicon and diffusion edges running across the direction of current in the overlying

metal.

28

explains why a spectrum or design methodologies is in use, and briefly describes the major

methodologies and the nature or the design rules each presents to the designer. Then it

argues that automatic topo-tolerance checking is important regardless or the methodology

employed.

2.4.1

THE NATURE OF DESIGN RULES 29

2.-i.l. The Spectrum ot Methodologies

Design methodology and design automation are receiving much attention. There is a

large spectrum of design styles in use, ranging from highly constrained, highly automated, low

density, gate-array designs to full-custom designs finely tuned to a specific process to achieve

maximum density and performance. These methodologies differ in the tradeoff they make

between sirnplirying design constraints on the one hand and ultimate circuit size and

performance on the other; see Figure 2.13. The nature of design rules and other constraints

employed by the methodologies will be outlined below.

In general, properly chosen constraints can simplify the design process. Such

simplifications improve designer productivity directly, since design decisions can be made

High Density
High Functionality
High Performance

I
Low Density

Low Functionality
Low Performance

........ o
.•.. ···~~Analog o···

[pd~~ Outcm

.. 0
}.feiJ4 ~ amuav

o··
S~ieDuign

0
St4ui14rd-Cdl

Constrained
Automated

Ea.<!y to Design -- Unconstrained
Manual

Hard to Design

Figure %.13. - Dealgn Cost/Density Tradeoff. There is a. ba.sic tradeoff between the degree

to" which a design method is constrained, and hence automated, quick, and painless on the one

ha.nd, and the penalty in circuit density' performance, a.nd runctiona.lity engendered by those

constraints on the other. Different position5 with respect to this tradeoff are appropriate to

different projects. A wide spectrum o(design methods ranging (rom Cully automated gate-array

to hand-tailored analog design are in use.

2.4.1

THE NATURE OF DESIGN RULES 30

more quickly and accurateiy, and indirectly since they facilitate the automation of the design

process. On the other hand, more constrained design styles generally lead to less dense and

less efficient circuits, resulting in more stringent limits on the maximum functionality per

chip, lower performance, and increased production cost. The best methodology to use for a

particular product depends on the functionality and performance required, the volume of chips

that will be produced, and the particular mix of resources available for design and fabrication.

However, it is apparent that over time, as fabrication technology continues to improve, more

constrained methodologies will be increasingly favored.

2.4.2. Design Rules and Other Constraints Employed by the Methodologies

Table 2.1 summarizes the characteristics or a number of design methodologies. The

methods are given in order of increasing design rule complexity. In fully automatic gate array

designs [Soukup 19811 the designer does not deal with topo-tolerance rules at all; he works at

the net!ist level, specifying the gate interconnections required to implement the circuit. A

designer using the standard cell approach [Soukup 1981J need not deal with a full set of topo­

tolerance rules either, since all devices and hence device rules are encapsulated in the

predefined cells. Designers using symbolic design systems [Bales 1979J[Hsueh 1979J work with

a more abstract representation than mask data: transistors, contacts, and their

interconnections are represented explicitly. Layout is generated automatically and is usually

guaranteed to be design-rule correct. The remaining methodologies, i.e., Mead-Conway [Mead

& Conway 19801, traditional custom, and memory & analog design, all work directly with the

mask layer specification, and all require a full set of topo-tolerance rules. They differ mainly

in the number and complexity of the rules employed.

2.4.3. The Need for an Automatic Topo-Tolerance Checking Capablllty.

Regardless of the design methodology used, there must be some automatic method for

guaranteeing that the final mask artwork for the design satisifies the topo-tolerance rules for

2.4.3

THE NATURE OF DESIGN RULES 31

Design Methodologies

Method I Description & Constraints Design Rules

Gate-Array Predefined, fixed, regular, array of gates with None.

horizontal and vertical wiring channels. Only
net list is specified by designer. Ga.te
assignment and routing ot netlist is done
automatically.

Standard-Cell Predefined library or fixed-height cells. Power Simple width and 3pacing

and ground routed horizontally through cells rules Cor wiring, with

at standard locations. Designer selects cells of stylized contacts. No

desired functionality, places cells in rows and transistor rules, since all

routes the signals. External pads must also be devices encapsulated in

placed and routed, and power and ground predefined cells.

connections made. No transistors are

permitted outside cells. Routing is usually

semi-automatic.

Intelligent Layout Designer places and routes devices Creely using Simple width and spacing

SytJtemtJ. abstract representations tor devices and or interconnect and devices

interconnect. Abstract representation permit.s must be considered during

stretch/ compact operations that preserve automatic generation or

integrity or design. Upon completion, mask data. More complex

abstract representation automatically device form rules are not

converted to mask layers. relevant stnce correct,
stylized, devices are
automatically generated.
Simple rules make
automatic stretch/compact
feasible.

Mead-Conway. Designers strive Cor regular placement and Full set or topo- tolerance

interconnection schemes that take full rules. Rulesets are simple,

advantage or the topological properties of the i.e., a small number or

implementation medium. Simple conservative mostly unconditional rules.

design rules are used to free designer from
messy low-level details.

Traditional Full Devices are placed and interconnected with Elaborate full topo-

Cu11tom. emphasis on high density and performance. A tolerance ruleset.

set of stylized layouts Cor gates, memory cells, Conditional rules allow

etc., is developed and used whenever practical. more precise tolerances to
be used, permitting denser
design.

Memory and Designers work closely with a particular Large complex rulesets with

Analog De11ign11. process to achieve maximum performance and many conditional rules.

density. Rules often depend on
anticipated power and
signal strength in particular
regions or a circuit.

Table 2.1

2.4.3

THE NATURE OF DESIGN RULES 32

the particular process being used: manual checking is unacceptable. The size and complexity

of VLSI designs makes manual checking an extremely tedious and error prone process. Even

experienced people concentrating on a single rule with diligence miss rule violations

[Fitzpatrick et. al. 1981J. Trial fabrication runs on circuits are time consuming (turn around

is typically several weeks to several months) and expensive. In addition it is difficult to

trouble-shoot finished circuits, even for fatal DRC 'iiolations that render the circuit

completely nonfunctional. Nonfatal violations contributing to reduced yield, reliability, and

performance oC the circuit are likely to go completely undetected during circuit testing. Thus

the mask artwork must be automatically generated, in a design rule correct way, or accurate

automatic design rule cheeking must be used to eliminate all design rule violations prior to

fabrication.

In fact an automatic topo-tolerance checking capability is important regardless or the

methodology employed. Although the more constrained methodologies shield the user from

much of the detail of topo-tolerance design rules, a topo-tolerance checking capability is still

important. Topo-tolerance checking is used for the development and maintenance of systems

employing constrained methodologies. For instance the library cells in standard cell systems

and the templates for gate-arrays must be verified with a full topo-tolerance DRC. Further,

automatic layout generation systems are complex and hence prone to error. Topo-tolerance

checking is required to verify the correctness oC automatically generated layout.

Topo-tolerance checking is also used to verify that no errors have been introduced

during the composition of independently-generated pieces of a circuit into a complete design.

Designs often combine elements developed with a variety of tools and within the framework

of a variety of systems. Integration and composition of these components is an error-prone

process involving multiple format conversions and often manual intervention to complete final

placement and route where automatic tools are not available or not quite adequate. Tope­

tolerance checking on the mask data has the advantage that it is done on the final

2.4.3

·•

THE NATURE OF DESIGN RULES 33

representation of the design, and thus can catch errors introduced during the final conversion

and integration steps: it provides a check on the correctness of all the steps leading to the

final design.

This thesis focuses on the automatic checking of full topo-tolerance rules on the mask

data for designs.

2.5. Summary

Dense designs are more economical, have better performance characteristics, and allow

greater functionality per chip. Design rules codify limitations on the minimum size of circuit

components, and hence on the maximum density achievable. These limitations originate from

numerous distortions introduced during circuit fabrication and to some extent from the

physical characteristics of the fabricated circuits.

Design rules provide an interface between the process engineers and the circuit designers.

The process engineers need not concern themselves with the details of the circuits being

fabricated as long as they can meet the specified design rules, and the circuit designers need

not concern themselves with the details of the fabrication process, as long as they obey the

design rules.

Design rules take a topo-tolerance form, that is, they specify tolerances on certain

spacing, width, overlap, and extension relationships in the circuit artwork. The intention is

that these tolerances are sufficient to maintain the relationships to some minimum acceptable

dimension despite process distortions. In general topo-tolerance rules involve relationships

between regions defined by combinations of t:nask layers. Many rules are unconditional: the

specified tolerances apply to the artwork relationships wherever they occur throughout the

designs. However rules can be conditional on nearby artwork on the same or different layers,

on topological relationships (such as node connectivity), on electrical properties, and even on

information about the function of the circuit.

2.5

THE NATURE OF DESIGN RULES
34

Though topo-tolerance rules are the basis for the designer /process interface, the nature

of the rules a designer sees directly varies with design methodology. Design methodologies

range from highly constrained, automated, low density, methods such as gate-array, to hand-

tailored, high-density, high-performance custom designs. The more constrained methodologies

shield the designer from low-level details such as a complete set of topo-tolerance rules.

Designers using these systems work with simpler, more abstract design rules.

Full topo-tolerance checking of mask artwork data. is important regardless of the design

method. This is true for several reasons: complex automated systems can make mistakes,

manual intervention into automated systems can introduce errors, and the final composition

of a design from independently generated pieces is often ad hoc and error prone. This thesis

focuses on full topo-tolerance checking of mask data.

2.0. References

For a general introduction to VLSI design, see !Mead & Conway 1980j. This text also

presents the famous Mead-Conway method of design, and gives a complete set of design rules

for nMOS. For more details on processing technology, see [Sze 1983J. The Lyon paper [Lyon

1981J presents an interpretation of design rules in terms of edge motion. Three examples or

symbolic layout systems are given by [Bales 1979J, [Hsueh 1979J, and [Ousterhout 1984J. For

an introduction to gate-array and standard cell techniques, see [Soukup 1981J.

[Bales 1979J

M.W. Bales, Layout Rule Spacing of Symbolic Integrated Circuit Artwork, MS Thesis,

UCB/ERL M82/72, University or California, Berkeley, CA, May 1982.

[Fitzpatrick, et. al. 1981J

D.T. Fitzpatrick, J.K. Foderaro, M.G.H. Katevenis, H.A. Landman, D.A. Patterson, J.B.

Peek, Z. Peshkess, C.H. Sequin, R.W. Sherburne and K.S. Van_Dyke, "A RISCy

Approach to VLSI," VLSI Design, Vol. 2, No.4, Fourth Quarter 1981, pp. 14-20.

[Hsueh 1979J

M.Y. Hsueh, Symbolic Layout and Compaction of Integrated Circuits, PhD Thesis,

UCB/ERL M79/80, University of California, Berkeley, CA, December 1979.

2.6

THE NATURE OF DESIGN RULES 35

[Lyon 1981J

R. Lyon, "Simplified Design Rules Cor VLSI Layouts," VLSI Design, Vol. 2, No. 1, First

Quarter 1981, pp. 54-59.

!Mead & Conway 1980J

C. Mead, and L. Conway, Introduction to VLSI SystemJ, Addison-Wesley, Reading,

1980.

!Soukup 1981J

J. Soukup, "Circuit Layout," Proc. of the IEEE, Vol. 69, No. 10, October, 1981, pp.

1281-1304.

[Sze 1983J

S.M. Sze, VLSI Technology, Mcgraw Hill, New Jersey, 1983.

2.6

36

CHAPTER 3

The Region-Operation Approaeh

3.1. Introduction

This chapter presents the region-operation approach to design rule checking which, with

variations, is used throughout the industry. A region-operation based system consists or a

collection or primitive operations, each or which takes one or two layers as input and

generates an output layer. There are several types or operations. Tolerance operations check

top~tolerances between layers and output the portions or regions that are in violation.

Tolerance operations can be preceded by boolean operation., to select layer combinations Cor

checking, and by topological, sizing, connectivity and other operations to select regions (or

conditional checks. Since each operation is independent and yet can be combined with any

other, a region-operation system is extremely Bexible: operations can be sequenced together

as desired, and new operations can be added whenever needed without disturbing the integrity

of the system. Region-operation systems provide an integrated solution to mask artwork

processing: a comprehensive set of operations is used that can handle circuit extraction (i.e.

the extraction of transistor connection networks, capacitances and other electrical

information), and other mask artwork (unctions as well as design rule checking. The

operations intended primarily Cor non-DRC functions still serve to enrich the DRC, enabling a

variety of conditional checks.

The main drawback of the region-operation approach is that each operation

independently requires a pass through two input layers and the generation or an intermediate

output layer. Since mask layers for large circuits contain hundreds or thousands of figures,

and since hundreds· or operations are required to implement a complete design rule check,

design rule checking with region operations requires a deal of. I/0 and hence is slow. Another

3.1

THE REGION-OPERATION APPROACH 37

problem with the region-operation approach is that direction-sensitive rules, often involved in

transistor or contact form, are notoriously difficult to check. These problems are considered

in detail later in the chapter, after the form, function, and implementation of region-based

systems are discussed.

The next chapter, which surveys DRC systems, presents a number or examples of

region-operation systems.

3.2. Mask Artwork and Mask Artwork Functions

In the region-operation approach, design rule checking is done jn the context of a more

general mask artwork processing system. Such mask artwork systems are very similar,

consisting or similar sets or operations implemented in similar ways. This similarity in form is

due in part to similarity in function: they all process mask artwork, and all provide the same

basic functions. This section introduces this common ground: it presents the form of mask

artwork, and the functions typically performed on it.

Mask artwork files specify the two-dimensional geometric pattern or regions for each

layer in the circuit. Artwork file formats have the following characteristics:

i. Regions are defined in terms of primitive closed figures such as rectangles, trapezoids,

polygons and round flashes. Figures are identified with individual mask layers. Often there is

one file per layer.

ii. Figures on a. layer are in genera.! allowed to abut and overlap. However some formats do

not allow overlap between the figures composing a. single layer.

w. There is usually a. symbol/instance mechanism, which allows a. symbol consLStmg of a

collection of primitive figures (and possibly instances of other symbols) to be defined. A design

may contain multiple instances of any given symbol. Each instance has a.n associated

translation and rotation, which specifies where the symbol instance is to be placed. Symbol

instances may be nested to structure a design hierarchically. Hierarchy simplifies the design

process by allowing modular structuring of designs, allows far more space-efficient

representation of repetitive designs, and can be exploited to expedite some processing of designs,

such as design rule checking (see Chapter 8).

In addition to design rule checking, region-operation systems provide for circuit

extraction, and compensation functions. Circuit extraction involves recognizing transistors in

3.2

THE REGION-OPERATION APPROACH 38

the ma..sk artwork, establishing their interconnection network, 3.nd determining electrical

parameters such as capacitances. (Extracted circuits are compared with original schematics,

checked for electrical rule violations, and used as input to circuit simulators.) Compensation

inviolves growing and shrinking oC regions on certain mask layers to accomodate peculiarities

of a particular process. An advantage of this integrated approach to mask artwork functions

is that operations intended primarily for circuit extraction or compensation functions are

never-the-less available to the DRC, enabling a variety of conditional checks.

3.3. Region Operations

Most mask artwork systems use the region-operation approach to implement design rule

checking, circuit extraction, and compensation functions in one integrated system. Each

function is achieved through an appropriate sequence of region-operations. The following

types or region-operations are usually provided:

i. Tolerance

ii. Boolean

iii. Topological

iv. Sizing

v. Connectivity and Tagging

vi. Area, Length and Perimeter

Each operation takes one or two layers as input and generates an (intermediate) output

layer, typically consisting or selected or modified portions of the input. In the case of

tolerance operations the output consists or the parts or input regions involved in design rule

violations. Some or the operations involved in extraction, e.g., connectivity and area

operations, generate numerical output such as node numbers and node areas, or tag the mask

data with such inforruation. This will be considered further when the individual operations

are discussed.

3.3

.....

THE REGION-OPERATION APPROACH

a) No Violation. b) False Violation .

.___...,.v.

c) Genuine Violation. d) Missed Violation.

Figure 3.1. • Region-Baaed vs. Flgure-Baaed Operation.. A width check based on

figures (b) ra.ther tha.n the regions rormed by the figures (a.) ca.n lea.d to spurious violation

reports. Conversely, pa.rts (c) a.nd (d) show how a. figure- based width check can miss violations.

In general it is important that operations work on regions a.s a whole, rather than the figures

composing the regions.

39

Operations are region not figure based, e.g. a width check verifies the width of entire

connected regions, not or figures in the mask artwork description. Figure 3.1 illustrates why

this distinction is important: region-based operations avoid pathological dependencies on the

decomposition or mask regions into figures. Region operations are implemented using edge-

based algorithms that operate on the region boundary edges. The input mask data is

converted to such edge-files at the beginning or processing, and the output of region-

operations is in boundary-edge form.

3.3

THE REGION-OPERATION APPROACH 40

The edge-files used by the region-operations differ from the mask artwork representation

in another important respect: mask artwork files are usually hierarchical, containing symbol

definitions and instances, while edge-files are generally fiat. During conversion to boundary­

edge form, symbol instances in the original mask artwork are replaced by their definitions.

Since most region-operations read and write boundary-edge files, they can be freely

combined. All of the types of operations listed above, regardless or their primary function,

contribute to the design rule checker. For example, sizing operations, though needed

primarily to implement grows and shrinks for compensation, are useful Cor establishing certain

contexts in conditional design rule checking. Similarly, connectivity operations, needed

primarily ror circuit extraction, also allow for the checking or conditional design rules

depending on connectivity. Each type of operation is discussed below, with emphasis on the

role it plays in design rule checking.

3.3.1. Tolerance Operations

Tolerance operations check width, spacing, enclosure and extension. Tolerance

operations take one or two layers and a tolerance as input, and output boundary-edges that

are too close together, as shown in Figure 3.2. Violating edges are often thickened and output

as regions, to facilitate plotting or further processing.

A spacing check between layers A and B for distance n can be visualized as follows:

An n wide halo is drawn around each region on layer A and checked for intrusion by layer B,

see Figure 3.3. Such a halo can be constructed piecemeal, creating an n-deep outward-facing

box adjacent to each boundary-edge and joining together these boxes with circular sectors at

each convex corner, see Figure 3.4. When an edge intrudes into a halo, both the intruding

edge, and the edge giving rise to the particular halo piece are output. Checking halos Cor

intruding edges can miss situations where a region on one layer completely encloses a region

on the other, thus a halo based spacing operation must also check Cor, and flag, overlaps

between the layers.

3.3.1

THE REGION-OPERATION APPROACH

A.

.·············-~·-··----·-····.
-~············ .

. . . .

I
.-----------m:ccc=:::;;c:c=

...
. ~

(b) WIOIH

:··-·::::~
· :

(c) .EN.:1..CSl.RE

c::::::::::::r::::IHl

(d) EX'l'I!N;ION

Ftcure a.: - Tolerance Operations. Tolerance operations output (portions) of edges that

are too close together. Often edges are "thickened" into regions to permit plotting or further

region-operations. The dotted versions of the input regions regions a.re for reference: they are

not actually part or the output.

41

In some cases it is desirable to check spacings perpendicularly outward from region

boundaries, but not diagonally out from corners. Such checks can be done using halos

without corner sectors, as in Figure 3.4(a). This sort or check is appropriate, for example, in

facing-edge rules; see Figure 3.5. Such rules guard against the formation of long narrow

slivers or resist during processing, which could physically break off and deposit themselves

3.3.1

THE REGION-OPERATION APPROACH 42

elsewhere.

In single-layer spacing checks it is often desirable to avoid reporting situations where a

region intrudes into its own halo; see Figure 3.6. A variant or the SPACING operation is

usually provided for this purpose. Such operations require prior tagging or edges with node

numbers, via the connectivity operations discussed below.

Spacing and other tolerance operations usually have provisions for user-supplied filter

routines. Such routines can be used to implement less common or more complicated

conditional checks, depending on node numbers or other information tagged to edges.

Tolerance operations pass the filter routines each pair or edges that violate the specified

tolerance, along with all the information tagged to them. Based on this information the filter

routines determine whether the edge pairs should be output or not. This facility is very

powerful. It allows tolerance checks to be conditional on connectivity, edge length, region

Figure 3.3. • Tolerance Checking wltb Halos. Interlayer spacing between layers A and B

is verified by checking for the presence or layer B within a halo around A In general tolerance

checks can be done by checking Cor the presence or the appropriate layers in the appropriate

outward- or inward- facing halo regions. Actual overlap between regions must also be checked

Cor, since one region may completely enclose another.

3.3.1

THE REGION-OPERATION APPROACH

.....................

• • 0 0

~-------·····: :.;

-·
• • 0 • • •

~ ~
(_ ____ ; _____ : __ :r--_____,.L; _____ ; ____ ;j

:·:·····;···-)
__/

; .. : : :__ .. : : : .. ,;
-----· u----······-··-·-

' : :

. : ; : :

: : ~

: :

(J--······························u·
: : : : : :: :
: : : : : :: : :
: : : : : :: : : :

.....................
: : :

,...----...------·-·----··-·
I

_; ___ : ... :. ___ : .. J
G
:: : : ~---u--~---·: _____ , __ :

: : l : : :
o o I o o . . ' . .
: : : :

Flcure 3.4. • Halo Con.struetloo. An outward racing halo can be constructed Crom two

components: boxes extending perpendicularly outward from region edges (a.), a.nd circular

sectors around convex corners (b). This construction lends itself to the boundary-edge

processing employed by the region-operations. Some checks invoh·e only perpendicular

tolerances. Such checks can be implemented by leaving the corner sectors out or halos, a.s in (a.)

alone.

43

3.3.1

THE REGION-OPERATION APPROACH

(~ (b)

Figure 3.5. - Facing-Edge Rulea. Facing-edge rules specify a. minimum spacing between

facing edges (b), tha.t does not apply diagonally (a.). They guard a.ga.inst the formation of

narrow slivers of resist during processing, which could break off a.nd float to other parts of a.

circuit. Such rules a.re checked with exclusion halos having no corner sectors. These rules a.re

checked by leaving the corners out of exclusion halos.

6 ·················-····-·············u:
: : ! : : ! : : : . . .
: : : : : : : : : :

: : : :
: ;----------;············-····,

1 ---,;:: : :::::~::: ::r- ;- , 0
: , , :, : ; , =L : :\
: : i, ./ ·········-···-···,
i L.: = = :.~ !

: ~ :
'\]················,:::::::::: '[)!·;·····;·····:···

: : : : : : : : : : : : : : :
: : : : : : : : : : : : : :

.. ·

Figure 3.8.- Notehea and Single La,-e• Spacing. This figure shows how a. notched region

ca.n intrude into its own halo. Single layer spacing rules often permit such notches, being

concerned only with internode spacing. Such rules can be implemented by using a. va.ria.nt on

the spacing tolerance check tha.t compares the node numbers of intruding edges with the node

number of the region to which the ha.lo belongs.

44

3.3.1

THE REGION-OPERATION APPROACH

' ' :·· ~--~--~--~--~--~-. ~-­
!·-~--~--~-~--.:--: ·7·
:--~--~--~--. :--~·-7· --:.--~--~-- --:--:--~--:

:-·~--~--~-·~--~---=--~- --~~
:·-~--~-·~··~--~·-+·-:-· .. ;. .. :. .. :. .. --~--~--~--:

:--~--~--~--~--~·-+·7- --~-~:-~-- --~--~--~--~
L--A-~!·'--~---~'-··-'-: --~·-..... t·..;.-:-..:.--:--1· "--,....._~...,..._-+-· ·'-:· --~·..:...~·~-- --~--~- ·t··i

B

Figure 3.7. - Extenalon eheeb. This figure illustrates how the extension of a layer A

beyond a layer B is checked. The check is unusual in that halo-boxes extend outward only from

those parte oC edges on the second layer (B), covered by the first layer (A). No corner-sectors

are involved.

45

area or perimeter, electrical characteristics or a node, and even on the function or the

intended function o(a node. In addition, since filter routines are written in a general purpose

programming language, complex and unanticipated conditions are readily handled.

Width and enclosure checks are closely related to spacing. In fact they can be expressed

in terms o(the SPACING operation as follows:

WIDTH[A,n] <=> SPACINGl[(NOT A),n];
ENCLOSURE[A,B,n] <=> SPACING[A,(NOT B),n];

Here SPACING! checks spacings between regions on a single layer, and SPACING checks

spacings between regions on two distinct layers. The NOT operation takes the complement

o(a layer, i.e. all the regions where the layer is not present. Alternately, width and enclosure

can be visualized in terms or inward racing halos.

3.3.1

....

THE REGION-OPERATION APPROACH 46

Extension checks are less closely related to the other tolerance checks; see Figure 3.7.

Note that extension checks involve a perpendicular tolerance only - diagonal tolerances are

not involved. Halos are not drawn around the entire boundary, but only from portions of

edges of the second layer that are covered by the first layer.

3.3.2. Boolean Operations

Boolean Operations, typically AND, OR, and AND_NOT, take two layers as input

and create a composite layer as output. These operations are illustrated in Figure 3.8. Note

that the AND_NOT operation also serves as a not or complement operation when

performed on a single layer.

Boolean operations permit layer combinations to be selected for tolerance checks. For

exampl~ the implantfnonimplanted-gate spacing rule illustrated in Figure 2.7 can be checked

by the following sequence or operations:

Gate = Polysilicon AND Diffusion;

NIGate =Gate AND_NOT Implant;

Violations = SPACING[NiGate ,Implant ,2J;

The first operation generates a layer, Gate, layer consisting or all regions where both

polysilicon and diffusion are present. The second operation generates a layer, NIGate,

consisting of all gate regions where implant is not present. The final operation generates a.

layer, Violations, or all cases where implant is closer than 2 units to a nonimplanted gate

region.

Boolean operations are also useful during circuit extraction, for instance to determine

contacts and gate regions.

3.3.3. Topological Operations

Topological operations, such as TOUCHING, OVERLAPPING, and

ENCLOSING, select regions based on topological relationships; see Figure 3.9. They differ

from boolean operations in that they select an entire input region when part is involved in the

3.3.3

THE REGION-OPERATION APPROACH

..

. . .CJhj
~ .. '

{a) AND

A

(b) OR

A

{e) AND_NOT

Figure 3.8. • Boolean Operations. Boolean operations define regions in terms of layer

combinations. The AND operation outputs the regions where both input layers are present,

OR outputs regions where at least one of the input layers is present, and AND_NOT outputs

regions where only the first input layer is present. The dotted regions are only for reference,

they a.re not part of the output.

specified interaction, while boolean operations only select the interacting portion.

47

Topological operations are useful for determining the roles of regions to permit

conditional checks. For instance poly silicon/ diffusion overlap usually implies a transistor

region Cor which a certain minimum width as well as polysilicon and diffusion extensions are

3.3.3

THE REGION-OPERATION APPROACH

r-·­
iA
~--·-

r·-·-
iA
:._._

B

,--·---·---·--,
j A j
'--·-·-·-·-·-·!

!····················El

d D:
. .
••e••••••••••••••••'"••••••

::::::::::::::::::::::::::1
(a) A TOUCHING B

I
I • I
~--··

B

(................... EI
, ; D :

.

(b) A OVERLAPPING B

i·-·-·-·-·----,
j r-;1 !
I~ I
i A i
··-·---------··

r-·-·-·-·-·--1

rn AI
. . ····-···· . 0 0 I I

0 I I o
I 0 0 0
• 0 ' •
• 0 • • ···--····

'·-------·----J . . ------·-···········---·-··
(e) A ENCLOSING B

Flgwoe 3.0. - Topological Ope.ratlou.. Topological operations select regions based on their

relationship to other regions. They differ from boole3n operations in that they select entire

regions of the input when an interaction with another layer occurs, while boolean operations

only select the interacting part6 or regions. TOUCHING selects regions on the first layer that

touch or overlap regions on the second layer. OVERLAPPING selects regions on the first

layer that actually overlap (not just touch) regions on the second layer. ENCLOSING selects

regions on the first layer that entirely enclose a. region on the second layer.

48

3.3.3

THE REGION-OPERATION APPROACH 49

required. However polysilicon and diffusion also overlap in butting contacts where these

tolerances are not rele~·ant. See Figure 3.10. These cases can be distinguished between, both

for DRC and circuit extraction purposes, by the following sequence or operations:

PD = Polysilicon AND Diffusion
PDBC = PD OVERLAPPING Cut
Gate = PD A-ND_NOT PDBC

The first operation crer.tes a layer, PD, containing all polysilicon/diffusion overlap. The

second operation, selects the regions or PD involved in contacts, and the third operation

selects all the other regions in PD.

3.3.4. Slzlng Operations

Sizing operations are grows and shrinks on layers; see Figure 3.11. A grow operation

generates widened versions or the input regions, and a shrink generates narrower versions. A

true GROW or SHRINK operation involves rounding or region corners, as in the top part

or Figure 3.11. Since many mask artwork representations do not include arcs, grows (shrinks)

are usually done by moving all edges outward (inward) and extending them so they continue

to meet, as in middle part or Figure 3.11. More elaborate polygonal approximations of the

true GROW and SHRINK operations are also possible, e.g., as in the bottom part of Figure

3.11. Sizing operations are used to adjust the width of regions to compensate for peculiarities

or a particular process, e.g., a tendency to print lines on certain layers either a bit too

narrowly or a bit too widely.

Sizing operations are also used to implement conditional design rules, where a tolerance

is dependent on the proximity of another layer. For example, to take the reflection

phenomenon into account (see Figure 2.4), the metal width check in Figure 2.9 treats metal

edges flanked by polysilicon edges differently. This rule treats metal edges affected by

reflection from polysilicon edges as if they were moved outwards 0.5 units. The following

sequence or operations implements this rule:

3.3.4

THE REGION-OPERATION APPROACH

To be Distinguished

~

T
Legend

~Polysilicon

0 Diffusion

0 Contact

Figure 3.10. Tr&nal.wtor va. Buttlnc Contact In Poly /Df! Overlap.

Polysilicon/Diffusion overlap occurs in transistors and butting contact (circled regions).

Extensions and minimum width are required for such regions in transistors but not when they

occur in contacts. These ca.ses can be distinguished between with an OVERLAPPING

operation that checks whether each polysilicon/diffusion region overlaps a contact-cut.

........................ , . . -

/

/

······-·---------···­. .

:~:
·-·········. :

·•J

·-------------------

:~: ·---------.. .

,

·~·
.

Figure 3.11. - Sblng Operations. A true grow or shrink (by a certain radius) involves

rounded corners (top). Since region edgeS' are limited to straight line segments in the region­

operation approach, a polygonal approximation must be used. The simplest approximation is

obtained by moving all boundary edges out (in) by the radius of the grow (shrink), and then

extending or trimming the edges so they just meet again (middle). More elaborate

approximations are also possible (bottom) and yield more accurate results.

50

3.3.4

THE REGION-OPERATION APPROACH

?Grow = Grow(Polysilicon ,1)
PHalo = PGrow AND_NOT Polysilicon

MShrink = SHRINK(Metal,.Ol)
AfEdges = Afetal AND_NOT A/Shrink

MRejEdges = PHalo AND MEdges
MAdd = GROW(}vfRejEdges ,.5)
Metali\lew = MAdd OR Metal

Violations = SPACINGl(MetalNew ,1)

51

Figure 3.12 illustrates how this works. The first two operations, a GROW followed by an

AND_ NOT, generate the PHalo layer identifying areas near (but to the outside of)

poly silicon edges. The next two operations, a SHRINK and an AND_ NOT, create the

layer AfEdges consisting of very narrow regions along metal edges. Then the intersection of

PHalo and MEdges is formed, (via AND) to create the MRefEdge.L This layer consists of

narrow regions along those portions of Metal edges effected by reflection. Next MReJEdges is

grown by .5 units and combined with the original metal layer (via OR) to create the

MetalNew layer. MetalNew is the original metal layer, with all edges effected by reflection

moved out .5 units. The actual spacing check is done on this layer.

3.3.5. Connectivity and Tag Operations

Connectivity operations are used to identify connected regions on a layer with a unique

node number, and to determine connections between regions on different layers. The output

or connectivity operations is originally in the form of a tag-file giving pairs of edges or nodes

that are connected. Tag-files can be processed to generate nongeometric data, such as

transistor connection lists, or can be used as input to a TAG operation that actually tags

edges in an edge-file with node numbers or other information.

The primary use of connectivity operations is to determine circuit connection networks

during circuit extraction. For details on how this is accomplished see [Szymanski & Van

Wyk 1983J. What is important for design rule checking is that operations exist for tagging

mask data with node numbers. This permits connectivity-dependent design rules to be

handled, via built in primitives such as single-layer internode spacing, or in more complicated

or unusual cases via user-written filter routines that discriminate on the basis of the attached

3.3.5

THE REGION-OPERATION APPROACH

.....
L. - I

i - ,
I I

I

L -·

(a) Generate Polysilicon Halo

r·· ~

I ;1111111
t .. =::! 1- jill: D : ' : : : :

' Iillill.... ~-.... ' ...•.. ' ...•.. '
• • • •• • • • •• 0 ••

' ...•.. ····.··· ---. ...•.. ······· ._....
• • • •• • • • •• 0 0.
L. ::::·: :: :·::

(b) Extract Jletal Edges

D- r·r-~: ·- -i
1 I i I I
' '
l I i I I
1 I i I I ···-· . -

····--~~-:- - - 1 i I : =t I
i j j;.;j I I
, I , -~:- I
i I ; ::-:; 1 . , ·t· I
L •• L. • .L :{ L-.

(c) Identify Affected Edges

"' , .. Jill : ;
'-· ~

:--,-:] ' '
i I i
' .
l I l . .
i I i
~--

rf,~-: .. QLlJ -

(d) Check New Jletal Spacing

F1CW'• l.U. • Implementation of a B.efieetlon Rule ualnc Growa and Shrlnb. A
reflection rule requiring ~eater spacing between metal edges affected by nea.rby polysilicon can
be checked as follows. Use a GROW and a.n AND_NOT operation to generate halos around
polysilicon re~ons, (a). Use a SHRINK and an AND_NOT to m&J"k metal edges with thin
slivers, (b). Then AND together the polysilicon halos with the metal edge slivers to identify
metal edges affected by reflection, and GROW out the resulting layer, (c). Finally AND
together the grown metal edges with the ori~nal metal layer to obtain a ne~ metal layer that is
widened at affected edges, and do a spacing check on the ne~ layer, (d).

52

3.3.5

THE REGION-OPERATION APPROACH 53

connectivity information.

The TAG operation can be used to 35sociate arbitrary information with the edges in an

edge-file. This allows design rules to be conditional on any information, 35 long 35 there is

some way to generate a tag-file 35sociating the information with edges or nodes in the mask

data. The area and perimeter operations of the next section, for example, generate tag files

that can be used by TAG to 35sociate area and perimeter information with the mask regions.

3.3.6. Area, Length and Perimeter Cheeks

Region areas and perimeters, and edge lengths, are important for calculating electrical

properties of circuits such as capacitance and transistor sizes. In addition design rules

occasionally depend on these parameters, e.g., the length-dependent spacing rule illustrated in

Figure 2.10. AREA, LENGTH and PERIMETER operations generally generate output

in the form of tag files for regions or edges giving the numerical values of their area, length or

perimeter (respectively). These tag-files consist of region-n urn ber /parameter-value pairs. If

desired, a second pass through the layer can be made to incorporate the tag data directly into

the edge-file.

Area, length, and perimeter tags can be accessed by user-supplied selection routines to

implement conditional tolerance checks depending on these parameters. In addition, variants

of AREA, LENGTH, and PERIMETER operations that output, those regions where the

relevant parameter falls in a specified range, are usually provided for design rule checking; see

Figure 3.13. For example such an AREA operation can be used to check contact rules

requiring contacts of fixed area.

3.4. Seanllne Implementation of Region Operations

Recall that region-operations process region boundary-edges, not the abutting and

overlapping figures of the input mask artwork description. One edge-file is kept for each layer

in the input, and for each intermediate layer generated by the region-operations. Edge-files

3.4

THE REGION-OPERATION APPROACH

D
D

D
, ,

D

(a) AREA - 4

··-------------------··········

, ······ j

(b) LENGTH > 2

..

.

(c) PERIMETER > 8

f:
f' 0

Scale

Fisure 3.13 • Area, Length, and Perlmetu Operatlona. Area., length a.nd perimeter

operations ca.n be used to ta.g edges with these pa.ra.meters, for use in circuit extraction or design

rule checking. Va.ria.nts o(these operations (shown above) a.llow selection oC regions (or edges in

the case oC LENGTH) where these pa.ra.meters fall within a. specified ra.nge.

54

are too large to comfortably fit into main memory: a single edge-file will typically contain

several hundred thousand edges.

Traditionally, edge-files are processed using scanline techniques [Szymanski & VanWyk

1983!. Scanline processing allows a sequential pass through -the input edge-files; it does not

3.4

THE REGION-OPERATION APPROACH 55

require more than a fraction of the edges to be kept in main memory at any one time; and it

permits ready access to local geometric context, such as the layers present at a point, and the

edges that are nearby.

Scanline processing proceeds horizontal uanline by horizontal scanline, left to right,

and bottom to top, as shown in Figure 3.14(a). Prior to scanline processing, the input edge­

files are sorted into scan order, the order in which they will be encountered during the

scanline processing. During the scanline processing an active-list of edges crossing the current

scanline is maintained in main memory; see Figure 3.14(b). Note that edges are of two types,

beginning and ending. Beginning edges lie to the left of regions, (precede them in scan order),

and ending edges lie to the right of regions, (succeed them in scan order). Horizontal edges

are not explicitly represented. Their presence is readily deduced during processing. As a

scanline is processed from left to right, new edges beginning on the current scanline are

merged into the active Jist, and edges ending at the current scanline are deleted from the

active list. The maintenance of the active list together with a running nesting count for each

layer, i.e. beginning edges less ending edges encountered in the current scanline, provides

complete information about the layers and boundaries present at the current point in the

scan. This allows a wide range of processing to be integrated into the scan algorithm.

Consider for example, the single-layer OR operation. This operation is usually

performed after initial conversion of figure data to edge form. The initial edge file is not

really in boundary-edge form, as it includes all (nonhorizontal) edges from the original figures,

including interior edges of abutting or overlapping figures. The single-layer OR removes such

non-boundary edges, creating a true boundary-edge. file !or use with tolerance and other

region-operations; see Figure 3.15. The single-layer OR can be implemented by marking

edges for outvut whenever a transition from or to 0 occurs in the nesting count. If the 0

transition occurs only below or above the current scanline, the edge is split. When the tops of

marked edges are reached they are written to the output. Since the output need not be

3.4

THE REGION-OPERATIO~i APPROACH

E£GINNU<JG EDGES ENDING EDGES

................................. -----------------;-

-~---t----Jt----------------------------

(a) Sean-Order

(b) Actlve-Llri

F1gure 3.14. • Seanllne proeeulng. In scanline processing, regions are bracketed by

beginning and ending edges, that are processed in left to right scans, beginning at the bottom

of the design and working up (a). The numbers indicate the order in which the edges will be

first encountered during scanning. Edges are sorted ip.to this tcan order prior to processing. An

active-li11t oC edges crossing the current scanline is maintained in main memory during

processing.

56

3.4

THE REGiON-OPERATION APPROACH 57

strictly in scan order it will have to be sorted prior to further scanline processing. The other

boolean operations are implemented in a similar manner.

Tolerance checks are implemented with an augmented active-list that allows ready

access to all data in proximity to the current point. A halo region is computed for each edge

as it is encountered and intrusion into the halo is checked with the help of the augmented

active-list. In addition actual overlap between the layers is checked. This is analogous to the

boolean AND operation.

Most other region-operations have straightforward scanline implementations.

Sometimes a second pass through the data is needed to tag or select regions based on the

computation of the first pass. For example topological and connectivity operations involve

0

0 2

(b) Initla.l Edp.File

/
...........] [______ , __ _

...

. .
~--·······························

(e) Ouput or OR

Figure 3.15. Single-layer OR implementation. A single-layer OR eliminates nonbounda.ry

edges (b) resulting from overlapping or abutting figures (a.), by outputting only those portions or

edges where the nesting count (numbers in b) undergoes a. transition to or from 0 (c).

3.4

THE REGION-OPERATION APPROACH 58

the determination of junctures between regions. This information is readily computed in one

scan, but a second scan is needed to to output selected regions in topological operations, and

to tag regions with node numbers in connectivity operations. Similarly, area and perimeter

computations can be performed in one pass through the data provided edges are tagged with

region numbers. A second pass is required to output selected regions or to tag the data with

the computed values. Sizing operations require a single pass. They generate a new, shifted,

edge for each edge in the input. Since scanline processing permits access to adjacent edges at

edge end-points, the amount that the edges need to be extended to meet properly is readily

determined.

An important feature of scanline algorithms is that they permit sequential processing of

the input after the initial sort, and only the edges crossing the current scanline need to be

stored in main memory at any given time. Since VLSI designs have relatively uniform edge

density, and are roughly square, the number oC edges on the active-list and hence the main

memory requirement is 0 (Jn), where n is the total number or edges in the design. The

processing time, excluding the initial sort, is 0 (n).

Note that the processing time is very sensitive to the average number or scanlines per

unit-y: if the number or scanlines doubles, the processing time doubles. This is because an

edge must be handled once Cor every scanline it crosses. The number or scanlines per unit-y is

just the number oC distinct y-coordinates or end-points per unit-y. Thus scanline processing is

sensitive to the "utilized" resolution or the design.

3.5. Pros and Cons ot the Region-Operation Approach

The region-operation approach to design rule checking has a number or strong points.

The bag of tools approach, providing a set or operations that can be pieced together to

provide the required functionality, is extremely flexible. The system can be retargeted to new

design rules by simply piecing together the appropriate operations. It functions are required

which are not supported by existing operations, new operations can be added without

3.5

THE REGION-OPERATION APPROACH 59

impacting any existing compone~ts or the system.

The region-operation approach neatly integrates design rule checking with the closely

related functions or circuit extraction and compensation. This saves redundant software and

user interfaces, and gives the DRC complete access to extraction functions as needed.

The tolerance, compensation, and boolean operations match the way designers think

about design rules. They provide a nat.urallanguage for expressing design rule checks.

The use of scanline algorithms allows data files (which are often very large) to be read

and processed sequentially, with relatively small main memory requirements (0 (v'n)).

The decomposition of design rule checks into sequences of simple operations, each with

its own input and output, intrinsically provides frequent check points. Since design rule

checks of large designs involve many hours of processing, this is a very useful feature.

However the region-operation approach does have shortcomings. A full design rule

check involves many region-operations with the consequent generation of many intermediate

layers. Typically the edge files are too large to be kept in main memory and hence are kept

on disk resulting in great amounts of disk I/0 with relatively little CPU processing. DRC

runs tend to be disk-bound and slow.

Because most region-operations apply uniformly in all directions rules involving

directional context are difficult to check. Such rules are commonly involved in the

specification of transistor or contact Corm. For example, transistors must have polysilicon and

diffusion extensions; see Figure 3.16. The size of extensions, if present are readily checked via

an extension tolerance operation. However checking for the presence of extensions is tricky.

The regions directly opposite gate edges must be checked Cor the presence of polysilicon or

diffusion extensions. However the presence or polysilicon extensions outside two adjacent gate

edges ~ignals a bent transistor; see Figure 3.16{b). In this case an additional check must be

made to ensure that the polysilicon encloses the corner. Thus the tolerances that need to be

checked depend on which layers abut adjacent edges at gate corners. Such a rule is extremely

3.5

THE REGION-OPERATION APPROACH

/-·-·
/ _____ _

r-·
(___ _

·-·-,
i

_ __ _j

(a)

(b)

Missing Extensions

l=·:ij

Missing Extension

I

(_~----

.. "
........

Figure 3.18 - Tranal.tor Rule Involving Dlzeetlonal Context. In MOS processes

polysilicon and diffusion must extend laterally beyond transistor gate regions (a). In addition

extensions must be present around corners or bent transistors (b). To check this rule the layers

present outside each or the two edges at a gate corner must be compared. Such directional

context is difficult to generate in the region-operation approach: it requires long sequences or
operations.

difficult to check through a sequence or region-operations.

3.8. Summary

60

The region-operation approach to design rule checking is used almost universally. This

approach includes DRC functions as part or an integrated mask artwork system which is also

used to do circuit extraction, and compensation. All o(these functions are implemented by

3.6

THE REGION-OPERATION APPROACH 61

sequences of region-operations. Region operations t:J.ke one or two input files and generate an

output file.

Mask data is converted to sorted edge-files, one per layer, and region-operations are

generally implemented using scanline algorithms. This allows for sequential access of input

files, and approximately 0(v'n) main memory requirement where n is the total number of

edges in the input.

The region-operation approach provides a flexible, natural, and powerful system for

formulating design rule checks. It also has the advantage of neatly integrating DRC with

related functions, thus avoiding redundant code and" user interfaces, and allowing the DRC full

access to extraction functions when needed.

On the negative side, a full DRC requires the sequential application of many primitive

operations and the generation of many intermediate layers. This requires a great amount of

1/0 with relatively little CPU processing, leading to slow I/0 bound processing. In addition,

anisotropic rules, involving directional context, are clumsy to check, requiring long sequences

of operations.

3. 7. References

For an example of a mask artwork format, see the definition of CIF in [Mead & Conway

1980j. For a discussion of connectivity operations, and scanline implementation of region-

operations see [Szymanski & Van Wyk 1983J. A general theoretical discussion of scanline

algorithms, is given in [Bentley 19i9J. References to region-operation systems are at the end

oC the next chapter.

-
[Bentley 1979j

J.L. Bentley, "Algorithms for Reporting and Counting Geometric Intersections," IEEE

Transactions on Computers, Vol. C-28, No. 9, September, 1979, pp. 643-546.

[Mead & Conway 1980j

C. Mead, L. Conway, Introducetion to vLSI Systems, Addison-Wesley, Reading, 1980,

pp. 115-127.

3.7

THE REGION-OPERATION APPROACH 62

[Szymanski &: Van Wyk 1983!

T.G. Szymanski, and C.J. Van Wyk, "Sp~e Efficient Algorithms for VLSI Artwork
Analysis," Proc. 20th De3ign Automation Conference, June, 1983, pp. 734-739.

3.7

63

0

THIS SPACE li'vTEiVIIONALLY LEFT BLANK

-_._

64

CHAPTER 4

Survey of Non-Corner-Based DRC Systems

4.1. Introduetlon

There are three types or design rule checking systems in existence today: region-

operation, pixel-base-d, and corner-based. The vast majority or systems use variants or the

region-operation approach presented in the last chapter. They perform design rule checks

through sequences or region operations that process boundary-edge data.

A rew systems use a pixel-based approach: these systems process two-dimensional

pixel-arrays rather than edges. Each pixel position is marked with the mask layers present

there, and in some cases with additional state information during processing. Pixel-based

design rule checking is or interest largely because it is amenable to highly parallel hardware

implementation.

Corner-based systems are the topic or this thesis. They apply conditions at each
....

location in a design according to the pattern or layers present at that location. These systems

differ !rom region-operation systems in that there is no sequencing or operations: all rules are

applied concurrently.

This chapter surveys region-operation and pixel-based systems. Corner-based systems,

(and the related Magic, and Intel DRC's) will be considered in Chapter 7, after the

presentation or the corner-based approach.

Performance data ror some or the systems presented in this chapter is given at the

beginning or Appendix I.

4.2

SURVEY OF NON-CORl't'ER-BASED DRC SYSTEMS 65

4.2. Region-Operation Sy!ltems

The vast majority of DRC systems employ variations of the region-operation approach.

This section examines a number or such systems. All of these express design rule checks in

terms of sequences or the same basic region-operations, and they all use edge-based data

representations and processing.

The systems vary from each other mainly in the functionality they provide and the

internal data organization employed. Functionality ranges from very high for the commercial

DRC vendors such as NCA Corporation, Phoenix Data Systems (PDS), and ECAD

Corporation to minimal as in university software to support Mead-Conway-style design

activity. The commercial packages handle arbitrary angles in the input data, and allow a fuil

complement of conditional checks, with full access to extracted network information and an

interface to user-supplied selection routines, as described in the previous chapter. University

software is generally restricted to orthogonal mask data (for speed and simplicity) and does

not implement conditional checks, since these are not needed for Mead-Conway designs.

A variety of data organizations are used in these systems, including scanline, two

dimensional bins of edges, and swaths of sorted trapezoids, (see Figure 4.1). Each or these

seeks to organize the data in a way that allows edge/edge and edge/quadrilateral intersections

to be computed quickly and systematically, since these are the basic data operations required

to implement the region operations. The choice of data organization impacts the speed of the

operations. Scanline processing, presented in the last chapter, is conceptually simple and

elegant and is used by most systems. However, a typical edge is handled many times during

scanline processing: once for each scanline crossing the edge. This multiple handling of data

slows down processing. The fastest systems today use alternative data structures: such as

two dimensional bins (PDS), or the more exotic swatus of sorted trapezoids (ECAD). The

latter is particularly effective in minimizing the number of times each edge is dealt with.

4.2

SURVEY OF NON-CORNER-BASED DRC SYSTEMS

8
1
8
s
• 3
2
1

f1
I J L
L

r
I I

(a) Scanline

l

(b) Bins (c) Swaths

Flgu7e j.l. • Internal Data Represent&tloiU. The internal data representations used by

region-operation systems vary. Traditionally the scanline organization presented in the last

chapter is used (a). Some recent system:3 (e.g. PDS) organize edges or polygons into square bins

(b). At least one system (EGAD) organizes data. into sorted horizontal swaths of quadribterals

(c). All these organizations ra.cilitate processing by allowing quick and systematic computation

or edge/ edge and edge/ quadrilateral intersections.

66

The choice or data structure also determines how much or a design needs to be

maintained in main memory at a time. The scanline and swath methods require a thin slice

or the design to be in m?..in memory, thus the main memory required is proportional to v'n

where n is the site or the design. It bins are used, only the current bin (and possibly the 8

neighboring bins) need be in memory at one time, so the amount or main memory required

remains constant regardless or the size or the design.

Note that the data organization used impacts the speed and order or the computation,

but not its character. Regardless or the organization employed the same edge-based

processing occurs, thus the user model remains the same.

The following subsections examine systems one by one. Special attention is given to the

main dimensions or variability outlined above: functionality and internal data organization.

4.2.1. Baird's System

In his masters thesis at Rutgers, on artwork verification Cor integrated circuits [Baird

1976J, Henry Baird surveyed a number or early artwork systems and observed surprising

uniformity: the same primitive operations came up again and again. He proposed an

4.2.1

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 67

integrated artwork system including all the types of oper:1.tions presented in the iast chapter.

Baird noted that to avoid spurious errors, oper:1.tions must be region-based, not figure-based

as in some of the early systems, and he showed how region-based operations could be

implemented using scan-order edge-based processing or region boundaries. He allowed for

circular arc edges as well as straight edges, to permit true grow operations (see Figure 3.11).

Though his proposed system employed scan-order processing, the data structures and

algorithms were much more complicated than the current scan line algorithms. Internally,

data was maintained in fully intersected form, i.e. edges were split at intersection points and

intersections were represented explicitly as vertices. Data structures were kept both for edges

and vertices and these structures were cross referenced. Processing actually proceeded vertex

by vertex.

Baird's thesis was the first thorough exposition of region-operation based mask artwork

processing. He documented his algorithms with pseudo-code and careful analysis. Later he

implemented many of his ideas in a DRC system at RCA.

4.2.2. Lauther's Algorithm

Ulrich Lauther of Siemens Corporation, presented a paper at the 18th Design

Automation Conference [La.uther 1981] showing how a scanline algorithm proposed by Bentley

could be modified to perform boolean operations efficiently. Lauther's algorithm uses a true

scanline approach, as described in the previous chapter. It has O(nlogn) time, and O(Vn)

main memory requirements. Edges are restricted to straight lines.

The Siemens DRC employs this algorithm to implement region-operations.

4.2.3 •. Haken 'a System

Dorothea Haken developed a DRC program at Carnegie-Mellon University [Haken 1980]

for orthogonal mask data. This program was written to support the Mead-Conway design

activity at C~. The system includes boolean operations, topological operations (which were

4.2.3

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 68

required to handle butting contacts in the :\1e3.d-Conway nMOS process) and a basic

tolerance-check primitive for checking widths, spacings, extensio11s and enclosures. Extraction

functions were not supported, and node information was not maintained, thus spurious same­

node spacing violations could not be avoided. A simple filter was written to eliminate most of

these spurious violations.

Tolerance checks were implemented by building exclusion rectangles for each edge, and

then checking for intersections between mask features and the exclusion rectangles, i.e.

tolerance checks were implemented via manhattan halos (see Section 3.1 of Chapter 3). All

primitives were implemented using scanline algorithms.

4.2.4. Hitachi

T. Kazowa described the Hitachi artwork system in a paper presented at the 18th

Design Automation Conference [Kozawa 1981]. The Hitachi system uses exactly the region­

operation approach as described in the previous chapter. All the operation types are

supported. Implementation is via scanline algorithms. For tolerance checks, the Hitachi

system uses a modified scanline algorithm that maintains a list or edges within a thin swath

bel~w the current scanline.

4.2.5. NCA

NCA !Alexander 1978, 1983] has been the major vendor or DRC services for many

years. Their primary aim has been to capture all the rules employed by the industry.

Processing speed has been secondary.

The NCA system uses standard region-operations and mainly scanline processing.

Tolerance checks use a modified scanline algorithm that maintains edges within a swath of

fixed width below the current scanline. A few operations, such as GROW, actually operate

on a figure-based data representation. User written selection routines are used to implement

complex conditional checks.

4.2.5

SURVEY OF NON-CORI'.'ER-BASED DRC SYSTEMS 69

-t.2.5. Phoenix Data Systems

Phoenix Data Systems (PDS) [Spink 1983] has recently emerged as a major competitor

with NCA for mask artwork verification and preparation services. The PDS system employs

a preprocessing step that cross-indexes connected mask data for efficient extraction and

simulation. The DRC again uses the region-operation approach. Output of the tolerance

check operation can be all violating edges, or just the portions of edges which are in violation.

This gives flexibility in building up conditional checks. Edges are sorted into two-dimensional

bins and processed bin-by-bin rather than in scan order.

-'.2.7. ECAD

ECAD [Huang 84] has recently entered the DRC vendor market (their first product was

announced in 1983). Their system uses region-operations, providing about the same

functionality as the PDS system. ECAD uses sorted swaths of trapezoids (see Figure 4.1c.) as

their basic data structure. This data structure allows very fast implementations of the

primitive operations.

4.2.8. Other Systems

There are many other systems employing region-operations on boundary-edge mask

data, with variations on functionality, special restrictions on input data, and varied internal

data organizations. But the examples given above illustrate the type and range of variation

in these systems.

4.3. Pixel Systems

A few DRC systems represent mask data by a pixel-array, rather than by boundary

edges. Each pixel is marked with the layers present in it. The algorithms employed by these

systems have a decidedly different flavor from those employed in the region-operation

approach, since they deal with pixels rather than region edges.

4.3

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 70

Pixels are square, and mask data is usually required to be orthogonal, although tricks

have been developed for handling 45s and other angles as well (given enough resolution). The

computation in these systems is organized so that the processing of each pixel depends only

on its own state and that of a small number of nearby pixels. The main appeal of the pixel­

based approach is that, since the pi.xels can be processed independently, highly parallel

hardware implementations are possible.

The. method for expressing design rules varies. In some systems primitive operations are

implemented that can be pieced together to implement traditional region-operations (though

in terms of pixels not edges). In others each rule is expressed in terms or a finite state

machine. In one system the Mead-Conway design rules are hard-coded: they can not be

modified without rewriting the system.

The main problem with the pixel approach is that the required resolution can result in a

very large number of (tiny) pixels in a design; see Figure 4.2. The size of pixels is determined

not by feature sizes, but by the minimum amount by which region shapes and positions can

be varied, i.e. the resolution used in specifying the design. It the resolution is doubled, the

number of pixels increases by a factor of 4. As the resolution increases with respect to

average feature size the number of pixels quickly becomes much greater than the

corresponding number of edges in an edge-based representation. The large amount of data to

be processed puts stringent requirements on the efficiency of reading, processing, and writing

the individual pixels it the overall processing is to be faster than or even competitive with the

region-operation approach. Recall that the amount of processing per individual data item is

already small in the region-operation approach, so design rule chec'king will not be speeded up

significantly by reducing this time, unless corresponding reductions are made in the time

required for I/0.

Pixel-based systems are largely experimental. Though a number or interesting systems

have been proposed, only one, Baker's, has been fully implemented.

4.3

SlJRVEY OF NON-CORNER-BASED DRC SYSTEMS

I I I I
I i I ! I I i I i ! I

: ... !: . :I. . . ~

I

(a) Unit Resolution (b) Half Unit Resolution

Figu:re 4.%. - ExponentW Growth of Plxel-A:r:ray aa Resolution lne:reuea. Increasing

the resolution or a. design rrom rull units (a.) to half-units (b), quadruples the number or pixels

required to represent a. design. Because or this exponential growth. as resolution increases, the

amount of data. required to represent a design in a pixel-based system quickly becomes much

greater than that required by a. region-operation system.

4.3.1. Baker's System

71

Clark Baker developed a pixel-based DRC [Baker 1980J as part of his Master's thesis at

MIT. For several years, this DRC was the principal one used in the university VLSI

community to check Mead-Conway-style designs. It also may have been the first pixel-based

DRC.

Baker's DRC is based on pattern matching on small windows into the design, see Figure

4.3. Pixels are processed in raster order, with 3 lines (plus 4 additional pixels) buffered for a

4x4 window check. Conceptually, the window is moved systematically across the design, and

at each window position, a check is made to see if the pattern under the window is legal.

lllegal patterns are reported as design rule violations. Baker's DRC employed 2x2, 3x3 and

4x4 window checks. A typical 4x4 check might be done by first checking the center 4 cells,

and if they satisfy some criterion, then using the contents of the peripheral cells to generate

an index into a table that specifies whether the pattern is acceptable. Pattern checks are bard

4.3.1

SURVEY OF NON-COR.l\TER-BASED DRC SYSTEMS 72

coded and ad hoc. Consequently they can not be readily extended to more complex rules, or

greater resolution.

Baker's program checks all of the Mead-Conway rules except for the rules involving

implants. A postfilter eliminates many spurious violations involving same-node spacing.

4.3.2. Seller's System

Larry Seiler, also at MIT, is currently working on a pixel-based DRC with hardware

assist [Seiler 1982J that greatly extends Baker's concept. Each operation in Seiler's system

outputs a mask in pi.xel form, allowing sequencing of operations. This is done by identifying a

key cell position within a window. If the window does not pattern match, a 0 is output for

the key position, and if it does match a 1 is output. As the window is moved over the design

an entire new layer is generated. A set of hard-wired patterns implement the following

operations:

i. WIDTH-:Z - check for width of at least 2.

u. WIDTH-3 - check for width of at least 3.

iii. SHRINK-:Z - shrink by 2.

The hardware also supports boolean operations. Larger width checks can be implemented by

a sequence of width checks alternated with shrinks. (A width check must be done after each

shrink, so that a too narrow region does not disappear entirely before a width violation is

detected.) Spacing checks can be implemented as width checks on the complement of a layer.

Grows can be implemented as shrinks on the complement. Thus tolerance checks and boolean

operations, the main DRC primitives of traditional region-operation systems, can be built up

from the more basic operations of Seiler's system.

4.3.2

SURVEY OF NON-CORNER-BASED DRC SYSTEMS

~---
----------·----1

/<":~ Window

·r:::::::<Y
K::::j

r;::::::::::;::::=;:::==;;:::::::;::;, ''' . i

ll----~--,l--?--,i:_-';1.,,.-itl;~:i;il::~:::~::::~::~-----~:;y
11-----1'-....... 1'-~~~·::::I ~>;;;~::;:,·

. . . ~
. . ' ::-:::1
f ~

L:·-·>::--:-·--

(a) Window into Design

I I
I
!

l -p I
I I

I
I

I I
I I I I I I I

I

(b) Scan with Three Line Buffer

Ftgun -'.3. · Bakel''l DRC. In Baker's DRC, a small window (a) is systematically stepped

across the design: the window is moved from left to right and bottom to top. This allows pixels

to be read in scan-order, buffering 3 rows plus 4 pixels internally (b) for a 4.x4 window. The

pattern or pixels at each window position is checked for legality.

73

4.3.2

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 74

A few :1.dditional primitives :lre provided:

iv. PRUNE· remove n:1rrow fingers.

v. FILL • fill narrow canyons.

vi. EDGE-CONDmONS · check 2x2 user-programmable patterns.

These operations allow spurious violations to be avoided in single-layer spacing checks, and

permit some simple conditional checks.

Seiler's system is designed to handle 45 degree data. This is done largely by handling

partially filled pixels "appropriately" in converting data from figure-based to pixel form.

Appropriate handling means marking such pixels as empty or Cull, depending on the operation

to be performed.

The actual pixel processing is to be implemented with a special-purpose hardware DRC

engine. Figure-based input data will be scanned in software via a scanline algorithm, and

intervals covering the current scanline will be passed to the engin~ for conversion to a pixel

stream and processing. Internally, data paths in the DRC engine allow Cor recirculation oC

data for sequencing of operations. Output from the engine will also be in interval Corm, and

will need to be postprocessed for error reporting.

The hardware is designed around four custom VLSI chips which are currently only

partially designed and implemented.

4.3.3. Mudge's Approach

In a paper given at the 19th Design Automation Conference [Mudge et. al. 1982], T. N.

Mudge of the University of Michigan at Ann Arbor suggested how the Cytocomputer could be

us?d to implement a pixel-based DRC check.

The Cytocomputer is a general-purpose pixel-based image processing engine currently

under development. The engine is built up of an expandable series of identical stages. Pixels

4.3.3

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 75

enter and exit each st:lge serially (in scan order). Each stage buffers two rows plus 3 pixels

internally and outputs a bit depending on the current bit and its 8 nearest neighbors. Looked

at another way, each stage implements a 3x3 window operation.

The basic operations implemented by Mudge on the cytocomputer differ from those in

Seiler's DRC engine. Mudge's operations, based on the imag; algebra formalism developed by

Sternberg [Sternberg 1980J, rely on generalized grows and shrinks called eross·on and dilation.

Like Seiler's primitives, Mudge's operations can be combined to implement the traditional

region-operations.

lC a Cytocomputer with a sufficient number of stages is available an entire DRC check

can be made with one pass through the pipeline. Mudge estimates that a full Mead-Conway

check would require 250 stages. Thus given a 250 stage Cytocomputer with a 1 microsecond

cycle time, a 2000 x 2000 lambda design could be processed in 10.5 seconds. However this

timing estimate does not take into account the conversion of the design from figure-based to

pixel form and the postprocessing of the output, both of which are likely to be very significant

in practice.

Mudge illustrated how DRC operations might be implemented with a 3x3 spacing check.

It is not apparent to me what form a general spacing check would take. Much work would be

required to code a complete set of region-operations. At the time of the 1982 Design

Automation Conference paper, only a one stage TTL prototype of the Cytocomputer was

available.

4.3.4. Eustace's Approach

R. Alan Eustace and Amar Mukhopadhyay of the University of Florida at Orlando have

proposed yet another pixel-based design rule checking system [Eustace & Mukhopadhyay

1982]. In their system a good deal of state is stored along with each pixel. Two-dimensional

tranJition functions determine the state of each pixel based on the state or its immediate left

and bottom neighbors and on the layers present at the pixel itself; see Figure 4.4. The state

4.3.4

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 76

of all pixels can be computed by processing from left to right and bottom to top. One

transit,ion function is required for each rule to be checked. The number of states required

depends on the type oC check and the maximum dimension involved, for example a 3x3

spacing check can be implemented with 12 states.

No systematic method for obtaining transition functions was suggested. The authors

generated transition functions by hand for a subset of the Mead-Conway rules using ad hoc

methods, specifying the functions in tabular form.

The major drawbacks to this method are the large amount of state information

associated with each cell, and the difficulty of specifying and implementing transition

functions. The number of states required grows quickly with the maximum dimension

•
•
•

115 125 135 45 155

114 ~24 134 44 154

uy ~2?: 13~ ~ 153

sl3 s23 ~3$
• • •

uy 12~ 13~ 14~ 152

sl2 s22 s32 s4.f
uy 12~ 13~ ~~ 151

sll s21 s31 s41

* f(l43,s33,s42)

Flgure 4.4. - Eusta.ee's Approa.eh. In Eustace's approach, state information (bottom right

corners) a.s well a.s layer information (top left corners) is associated with each pixel. The state

of t>'lch pixel is computed (by a two-dimen~Sional finite 11tate machine from the states of the

left and bottom neighbors, and the layers present at the pixel itself. A separate state machine,

and set of states, is required for each design rule. Whenever an error state is reached, a design

rule violation is reported.

4.3.4

SURVEY OF NON-CORN'ER-BASED DRC SYSTEMS 77

involved in a check, and the table space required to store a transition function grows as

O(nZJogn) where n is the number of states. Thus as resolution increases, the method

becomes untenable.

4.3.5. · Zech 'a Architecture

Karl-Adolf Zech, suggests an elegant hardware organization for implementing the

Eustace-Mukhopadhyay method of design rule checking !Zech 82]. This architecture requires

the maintenance of state information for only a very few pixels at any one time, thus

eliminating one of the major obstacles to a practical implementation of this method of design

rule checking.

The basic building block for Zech's architecture is a processing element capable of

computing the state of a pixel, given the states of its left and bottom neighbors, and the

layers present at the pi..xel. Processing proceeds from left to right. Thus normally a

processing element stores the state of the left neighbor internally (this is just the result of its

previous computation) and takes the layer information for the current cell, and the state of

the bottom neighbor as input, see Figure ·4.5(a). A two-dimensional array of processing

elements allows multiple rows of pixels and multiple rules to be checked simultaneously; see

Figure 4.5(b) Each column of processing elements handles one rule, and each row handles one

row of input pixels. The processing in each successive row is delayed one pixel with respect to

the previous row, to minimizes the number of pixel states that must be maintained: each

processing element stores one state internally.

Zech does not discuss the design of the individual processing elements, or the critical

problem of constructing and representing transition functions for design rules.

4.4. Summary

All but a very few DRCs are of the region-operation type presented in the last chapter.

However, these systems do vary in elaborateness. For example, the major DRC vendors allow

4.4

SURVEY OF NON-CORNER-BASED DRC SYSTEMS

Adjacent Pixel~
~ ,·@······· ·i2%" : , . .

./ i 2 .
• t. •••••• ·'

{a) Processing Element

Pixels
r-,

Pixel Buffers Rule 1 Rule 2 Rule S
/ / /

~--~ r--~ r---~

Row 4 ········!0··········0··········0······· PE PE ----! PE ,

Row 3 !0 ~0

·Row 2 !0 ~

Row 1 ; PE ···i PE ·--' PE

{b) Processing Network

Flgure 4.&. • Zeeh'a Anhlteetu.re. On each cycle, each processing element takes two states

and one set or layers as input, and generates one output state, (a). Processing elements can be

interconnected in a staggered array (b) to check multiple rows or pixels, and multiple design

rules simultaneously.

78

arbitrary angle data to high resolution and permit access to extracted data to check

sophisticated conditional rules. In contrast, software for Mead-Conway designs is often

restricted to orthogonal data, has coarse resolution ((e.g. 1/4 the minimum transistor width),

and has few provisions for conditional rules.

4.4

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 79

Region-operation systems also Y3.ry in the data structures they use to organize

processing of the mask data. Typical organizations are scanlines, two dimensional bins, and

sorted swaths. The basic data elements are usually edges, but may also be rectangles or

trapezoids. Despite these differences, the systems remain very similar in flavor: the same

primitives are used, and implementation is in terms of intersection calculations between

boundaries and other boundaries, or boundaries and halo regions.

There are two other broad types of DRC's: pixel-based systems, and context-driven

systems. Pixel-based systems differ from region-operation systems in the type of data

representation they employ. In pixel-based systems the mask data is represented and

processed as a two-dimensional array of pixels, rather than in terms of region boundaries.

Pixel-based systems are largely experimental, and of interest mainly because they are

amenable to parallel or pipelined special purpose hardware implementations. Only one pixel­

based system, Baker's Mead-Conway DRC, has received a significant amount of actual use.

There are serious questions as to the practicality of the pixel-based approach, centered around

the O(n 2) growth in the number of data elements needed to represent a design as the

resolution requirements increase. (Here n is the diameter of the design in minimum resolvable

units.)

Corner-based DRCs, the final type, differ from the region-operation approach in an even

more fundamental way: there is no notion of sequencing primitive operations in context

driven systems. Instead rules are represented in terms of local patterns of layers, and

conditions to be checked wherever the patterns apply. Rules are independent of order and are

all checked simultaneously in one pass through the data.

Corner-based systems are the topic of this thesis. Corner-based and related systems are

discussed in Chapter i, following the presentation of the corner-based approach in the next

two chapters.

4.5

SURVEY OF NON-CORNER-BASED DRC SYSTEMS 80

4.5. References

[Alexander 1981]

D. Alexander, "A Technology Independent Design Rule Checker," Srd USA.-J.4PA.N

Computer Conference, 1978.

[Alexander 1983]

D. Alexander, Personal Communication, NCA Corporation, Sunnyvale, California, 1983.

[Baird 1976]

H.S. Baird, Design of a Family of Algorithms for Large Scale Integrated Circuit

Artwork Analysi3, Masters Thesis, Rutgers University, 1976.

[Baker 1 980]

C.M. Baker, Artwork Analysis Tools for VIS! Circuits, Masters Thesis, Massachusetts

Institute or Technology, 1980.

[Baker & Terman 1980]

C. Baker & C. Terman, "Tools for Verifying Integrated' Circuit Designs," VLSI Design,

Vol. 1, No.3, Third Quarter 1980.

[Eustace & Mukhopadhyay 1982]

R.A. Eustace & A. Mukhopadhyay, "A Deterministic Finite Automaton Approach to

Design Rule Checking for VLSI," Proc. 19th Design Automation Conference, June,

1982, pp. 712-717.

[Haken 1 980]

D. Haken, A Geometric Design Rule Checker, Internal document, Carnegie Melon

University, June 1980.

[Huang 1984]

P. Huang, Personal Communication, ECAD, Inc., Santa Clara, California, 1984.

[Kozawa 1981]

T. Kozawa, "A Concurrent Pattern Operation Algorithm for VLSI Mask Data,'' Proc.

18th Design Automation Conference, June, 1981.

[Lauther 1981]

U. Lauther, "An O(n logn) Algorithm for Boolean Mask Operations," Proc. 18th Design

Automation Conference, June, 1981, pp. 555-559.

[Mudge et. al. 1 982]

T. N. Mudge, R.A. Rutenbar, R. M. Logheed and D.E. Atkins, "Cellular Image

Processing Techniques for VLSI Circuit Layout Validation and Routing," Proc. 19th

Design Automation Conference, June, 1982, pp. 537-542.

[Seiler 1 982]

L. Seiler, "A Hardware Assisted Design Rule Check Architecture," ?roc. 19th Design

Automation Conference, June, 1982, pp. 232-238.

[Spink 1983]

P. Spink, Personal Communication, Phoenix Data Systems, Inc., Santa Clara, California,

1983.

4.5

SURVEY OF NON-CORI\'ER-BASED DRC SYSTEMS 81

[Sternberg 1980]

S.R. Sternberg, "Language and Architecture Cor Parallel Image Processing," Pattern

Recognition in Practice, E.S. Gelsema and L.~. Kana!, eds., North Holland Publishing

Co., 1980.

!Zech 1982J

Karl-Adolf Zecb, submitted to Journal of Information Proce3aing and Cybernetics

{ElK}, Akademie-Verlag, Berlin, 1982.

4.5

82

CHAPTER 5

The Corner-Based Approach

5.1. Introduction

This chapter begins the presentation or the corner-based approach to design rule

checking. It presents corner-based checking in its most general Corm. The form or the rules

presented is likely to appear some wh3.t varied and complex. The next chapter, shows how

these ;ules can be implemented in a uniform and relatively straight-forward manner. Current

corner-based systems are Jess general than this, and have considerably simpler rules and

implementations. These will be considered in Chapter 7.

In corner-based design rule checking, conditions are verified at mask artwork corners; see

Figure 5.1. Conditions specify circular sectors in which given layer combinations must be

present or absent. For example, spacing checks are coded by conditions that require a layer

to be ab.,ent within sectors located to the outside or corners, while width checks are coded by
,

conditions that require a layer to be preunt within sectors inside corners. There are a few

embellishments. The angles or corners can be taken into account when specifying conditions:

_?(ten rules specify one condition on convex corners and another on concave. Several

conditions can be logically combined to specify more complex conditional rules. Attributes

attached to the mask data can be referenced in conditions to express rules that are

conditional on nongeometric information.

The above paragraph gives the entire corner-based mechanism. It has the following

features:

i. Sector conditions &re attached to corners or pven a.n~les a.nd layer combinations.

5.1

THE CORNER-BASED APPROACH

,

(a) Spacing (b) Width

Figure 5.1. • Corner-Baaed Cheeldng. The main idea or the corner-based approach is to

verify circular sector conditions, attached to corners, that require the presence or absence or

certain layers. Spacing is checked, (a), by verifying outward-facing sector conditions that

require a layer to be absent. Width is checked, (b), by verifying inward-facing sector conditions

that require a layer to be present. The shaded conditions have been violated.

ii. Sector conditions consist of circular sectors within which layer combinations must be present

(or absent).

iii. Conditions can be logically combined to implement conditional rules.

iv. Layers can be qualified by reference to attributes tagged to the mask data.

83

The layer combinations in i. and ii. and the combination of conditions in iii. can be general

boolean expressions. Features i. and ii., providing for sector conditions on corners, are

powerful enough to replace all the boolean and tolerance operations of the region operation

approach: they permit all unconditional rules to be checked. Feature iii., permitting the

logical combination of sector conditions, allows many (though not all) rules conditional on

geometric context to be checked without recourse to sizing operations. Feature iv ., allowing

reference to mask feature attributes when specifying layer combinations, provides an interface

to nongeometric information, facilitating the checking of a variety of conditional rules.

5.1

THE QORNER-BASED APPROACH 84

Together these features provide a sin·~!e flexible mechanism power(ul enough to check most

rules that can be checked by the region-operation approach. In addition, unanticipated

variations on checks that would require a new primitive in a region-operation system can

often be expressed without difficulty in corner-based systems.

Corner-based checking is context-baud: the conditions that are verified at a location are

determined by the local context, i.e., the corners present there, and sometimes by the validity ,

ot other conditions at the corner. Context-based checking facilitates the coding of

directionally sensitive rules, common in the specification or transistors and other circuit

_!:onstructs (see Figure 3.16). For example, a sector condition to the left of a corner may be

made conditional on another sector condition to the right or a corner. Directionally sensitive

rules are very clumsy to check with region-operations: they require long complicated

sequences of operations. This is because region-operations are not easily biased by local

context.

The use of context-based rules, rather than sequences of operations, permits all rules to

be checked simultaneously in one pass through the mask data. Each corner in the mask data

is identified, and all conditions applying to it are verified. This single pass through the mask

layers, made possible by context-based rules, is a great boon to performance. It eliminates

the I/0 bottleneck encountered in region-operation systems where multiple passes are made

through the mask layers and many intermediate layers are generated.

Corner-based checking differs from the traditional region-{)peration approach in another

important way. In corner-based systems, tolerances are checked by sector conditions at

corners: no checking is done along the length of edges; see Figure 5.2. Effectively, tolerances

are implemented in terms of point/edge comparisons rather than the edge/edge comparisons

traditionally used in region-operation systems. Point/edge checking allows for clean

partitioning or designs: checking a piece or a design independently entails checking all the

corners in that piece. Partitioning is more difficult in systems employing edge/edge

5.1

THE CORNER-BASED APPROACH 85

processing, since edges crossing ?ieee boundaries must be treated specbl1y. In fact in region-

oper:1tion systems, each type or operation m~y have to handle such edges differently. Thus

the corner-based method is particularly well suited to hierarchical and incremental checking,

where pieces o(a design are checked independently.

The two innovations oC the corner-based approach are a context-based rule description

mechanism and point/edge tolerance checking. Since the introduction or corner-based

checking, systems have emerged which employ each or these ideas independently. The Magic

system, recently developed at Berkeley, employs a rule description mechanism, similar to the

corner-based method but based on edges. Conversely, a recent region-operation system,

l l

(a) EdgefEdge (b) PointfEdge

Figure 5.%. - Compul.son of Toler" &nee Cheek Methoda. Traditionally, tolerance checks

on mask regions have been done by checking distances between region edget!, (a.). In corner­

based checking, tolerances are measured from corner points to region boundaries, (b). Such

Point(Edge checking has the advantage of very naturally splitting-up into piecewise checks:

checking a. piece of a. design corresponds to checking tolerances from corner-points within that

piece.

5.1

THE CORNER-BASED APPROACH 86

developed at Intel, employs point/edge tolerance operations to facilitate hierarchical checking.

These systems will be cor..sidered along with the true corner-based systems in Chapter 7.

The remainder of this chapter looks at how corner-based checking works in more detail.

The checking of unconditional rules, rules conditional on geometric context, and rules

conditional on nongeometric information are considered in turn by the next three sections.

Each section contrasts the way example rules are checked in corner-based systems with how

they would be handled in a traditional region-operation system. The final section

summarizes the chapter. Implementation issues will be taken up in Chapter 6, and actual

corner-based systems will be considered in Chapter 7.

5.2. Uncondltlonal Rules

This section considers how unconditional spacing, width, and enclosure rules are

expressed in a corner-based system. Recall that in unconditional rules, tolerances apply to the

layers throughout a design, regardless or context. In region-operation systems such a rule is

checked by a sequence of boolean operatio?s followed by a tolerance check. The boolean

operations combine the mask layers to derive the regions to which the check applies, and the

tolerance operation performs the actual check. In corner-based systems the required tolerance

is checked by verifying circular sector conditions (equivalent to the halo corners in Figure 3.4)

at corners. Since combinations of layers are permitted for corners and sector conditions,

separate boolean operations are not needed.

At the beginning of this chapter, four features or the corner-based mechanism were

given. Only the first two or these are needed for unconditional rules, namely:

i. Sector conditions are attached to corners oC given angles and layer combinations.

ii. Sector conditions consist or circular sectors within which la.yer combinations must be present

(or absent).

5.2

THE CORNER-BASED APPROACH 87

The Me::1.d-Conway impbnt/enh::l.ncement-gate spacing rule will be used for illustration.

This rule is shown in Figure 2.7. It requires that implant regions be spaced at least two units

from enhancement gates. Enhancement gates are formed where ever polysilicon overlaps

diffusion and implant is not present. In a region-operation system this rule would be checked

with a sequence oC operations like this:

Gate = Polysilicon AND Diffusion;

EnhGate =Gate AND_NOT Implant;

Violations = SPACING[EnhGate,lmplant ,2];

In the corner-based approach this rule is expressed as follows:

rule "Implant/Non-Implanted Gate Spadng"

for Implant cornera_requlre
lf corner.angle < 180 then

!(PolyJilicon & Diffusion & !Implant) everywhere_ in

sector[edge 1+90 ~,edge0-90 ~ ,2]

for (Polysilicon & Diffusion & !Implant) cornere_requlre

lf corner.angle < 180 then
!Implant everywhere_ln sector[edge1+90*,edge0-90~,2]

The first for specifies sectors at convex (< 180 degree) implant corners; see Figure 5.3(a).

-
Enhancement gate regions are not permitted inside these sectors. The layer of the corners

and the angle restriction are indicated by:

for Implant corners_ require
lf corner.angle < 180 then · · ·

The condition on the sector (no enhancement gate regions) and the sector itself are specified

by:

!(Polysilicon & Diffusion & !Implant) everywhere_ in

sector[edge 1 +90 ~ ,edge0-90 ~ ,2]

The layer combination '(Polysilicon & Diffusion & !Implant)' defines enhancement gate

regions. Thus '!(PolyJilicon & Diffusion & !Implant) everywhere_ in · · · ' specifies that

enhancement gate regions not be present anywhere in the sector. The sector specification

itself has 3 parameters. The first two specify the angle of the beginning and ending edges of

the sector, relative to the edges of the corner. The final parameter gives the depth of the

5.2

THE CORNER-BASED APPROACH

!(P&D&~)

Enhancement Gate

(a) Convex Implant Corners (b) Convex Gate Corners

Flgun 6.3. • Corner-Baaed Implant/Enha.neement-Ga.te Spa.elng Cheek. Spacing

between implant and enhancement-gate regions is checked by outward facing conditions on

convex corners of each layer that require the absence of the other layer: part (a.) checks that

the Enhancement-Gate layer is not present outside convex implant corners, a.nd part (b) checks

that implant is not present outside convex enhancement-gate corners. The saw-toothed pattern

along the sector edges in part (a.) indicate that the edges a.re included in the sector region:

features a. butting these edges would be considered to intersect the sector.

88

sector. For the details of sector specification, see Figure 5.4. Similarly, the second for

specifies sectors outside convex enhancement gate corners where implant must not be present;

see Figure 5.3(b).

Both for conditions are necessary; see Figure 5.5. The sectors on the implant corners

are needed to ensure that implant regions do not get too close to enhancement gate regions

along implant edges (Figure 5.5(a)), and the sectors on the enhancement gate corners are

needed to ensure that gate regions do not get too close to implant regions along implant edges

(Figure 5.5(b)). The check must be done from both directions since checking only occurs at

corners. In the region-operation approach where checkbg is done along the entire length of

edges, it suffices to check halos around just one of the layers. This is a major difference

between point/edge and edge/edge tolerance checking.

5.2

THE CORNER-BASED APPROACH

I!CGEO I!CGEO

!DC£1 !DC£1

(a) Angle Direction (b) Sector Specification

I!CGE1

(c) Indusive Sector Edge (d) Zero-Width Sector

Flgwoe 5.4. - Seetor SpecUleailon. A corner's edges are arbitrarily labeled edgeO and

edge 1. The positive direction of rotation is defined as the direction through the interior of a

corner from the corners edgeO to edgel, (a). The first and second argument of a sector

specification give sector edge locations relative to the corner edges. For example,

'aeetor!edgel +90,edge0-90,3]' defines a sector outside a corner with edges 90 degrees from the

corner edges, (b). The interior of the sector lies between the first and second sector edges in the

positive direction of rotation. The third argument of the sector specification gives its depth.

Sector edges are excluded from a sector by derault. Appending an asterisk, ('*'), to an ed~e

specification indicates that the edge is to be included in the sector region, i.e. features abuting

the edge from the outside are considered to intersect the sector. For instance

'aeetor[edgel +90,edge0-90 *,3j' specifies a sector with first edge excluded and second edge

included, (c). Zero-width and zero-depth sectors are also allowed. Zero-width sectors are rays

extending from a corner. The zero-width sector 'aeetor[edge0-90 •,edge0,3j' is shown in (d).

Features abutting from the left are considered to intersect the "sector". Zero-depth sectors (not

shown) are used to specify adjacencies. For example 'aeetor[edgeO,edgel,Oj' is concerned with

layers inside the corner and adjacent to the corner vertex.

89

5.2

THE CORNER-BASED APPROACH

Implant

Implant Enhancement Gate Enhancement Gate

(a.) Implant Corners '(b) Ga.te Corners

Flgul'e 5.5. • CheeJdng from both DlreetloiUI. Both parts or the Implant/Enhancement­

Gate spacing check are necessary. The check at implant corners detects spacing violations along

the length or enhancement-gate edges, where no enhancement-gate corner is present, (a), and the

check at enhancement-gate corners detects violations along implant edges, (b).

90

It is also necessary that the sectors are at least as wide as specified in the example, i.e.,

that they extend to within 90 degrees of the corner edges, and that regions touching the edges

of the sector are considered to intrude (as indicated by '*' in the sector specification). If this

were not the case, violations between parallel edges of equal extent could be missed; see

Figure 5.6

It has been shown that the conditions specified in the interlayer spacing rule are

necessary. But why are they sufficient? Why is it sufficient to check only at corners in a

design? Corner-based checking depends on the fact that the closest approach between two

edges always occurs at a corner. There are three cases:

i) The two edges cross.

ii) The two edges are parallel.

iii) The edges get closer t<>gether in one direction or the other.

5.2

THE COR!'.'ER-BASED APPROACH

(a) Vlolatlon Deteeted (b) Vlolatlon Missed

Figure 5.&. • Sector Wldth. In spacing checks, the conditio!) sectors must extend to within

go degrees of the corner edges and must inclde their bounding edges, (a). Otherwise spacing

violations between parallel edges of equal extent can be missed, (b).

91

This is illustrated in Figure 5.7. II the edges cross, they actually meet at a corner. II the

edges are parallel they are equally close over the entire extent they run parallel. The end of

this extent must coincide with an end-point pn one of the edges, again a corner. In the final

case, the edges get closer together in one direction, and hence they are closest together at the

end-point of one o(the edges in that direction, again a corner. Thus in every case, the closest

approach between two edges occurs at a corner.

The corner-based interlayer spacing check, given above, can now readily be shown

correct. This check verifies that each o(the layers is not present outside sectors at convex

corner on the other layer extending to within 90 degrees of the corner edges. By the above

argument, the closest approach between implant and enhancement gate regions involves either

a corner on implant, enhancement-gate, or a corner formed by crossing implant and

enhancement gate edges. Since enhancement-gate regions are only possible where implant is

not present, the two layers never cross, hence there are no corners formed by crossing implant

and enhancement-gate edges: the closest approach must occur at an implant corner or

enhancement-gate corner. It remains only to show that it must occur within the sector

5.2

THE QORNER-B.ASED APPROACH

::·::: ,:,:::· ::~:~:j

;: ::-:·

(a.) Crossing Edges (b) Parallel Edges (c) Approaching Edges

F1g'W'e 5.7. - Relationship of Corners to Edge Spaelngs. The closest spacing between

two edges always occurs at a corner. There are 3 cases: the edges cross (a), the edges are

parallel (b), or the edges approach each other in one direction or the other (c). In all three cases

the closest spacing occurs at a corner.

I
I

B I

I

I

Fig'W'e 5.8. - Sufficiency of Seetor Extent• The sectors in the spacing check need only

extend to within 90 degrees of the corner edges, since the closest approach between two layers

occurs at 8ome corner. Suppose it occurs between a corner A on the implant layer and some

point Bon the enhancement-gate layer. Then the angle between AB and the corner edges can

not be less than 90 degrees, as dnwn in the Figure. In this case B is closer to some other point

on the enhancement-gJ.te layer than it is to A, which is contradictory.

92

5.2

THE CORNER-BASED APPROACH g3

conditions specified by the rule for these two types or corners.

Since the C:l.Ses are are symmetrical, only one need be considered. Suppose the closest

approach occurs at an implant corner. Call the corner point A and the closest point of an

enhancement-gate region B. Figure 5.8 shows that if the angle between the line segment AB

and one of the corner edges is less than go degrees, then B is closer to some other point on

the corner-edge than it is to A. Thus AB must be at least 90 degrees from each corner edge.

This is not possible at concave corners, hence the implant corner at A must be convex, and B

must be in the pie slice between perpendiculars to the corner-edges. A violation occurs if and

only if the length or AB is less than the tolerance d required by the rule, i.e. if B is in the

circular sector bounded by the perpendiculars and or depth d. But this is exactly the

condition checked in the rule. In summary, it has been shown that if a spacing violation

occurs then a point of enhancement-mode gate must be present in a circular sector oC depth d

outside a convex implant corner extending to within go degrees of the corner edges, or (by

symmetry) a point of an implant region must be present inside a similar sector at an

enhancement mode gate corner - exactly the conditions checked by the corner-based spacing

rule given above.

To generalize the implant/enhancement-mode spacing ch~ck to arbitrary layers A and

B it is necessary to explicitly check for overlap between the two layers, since in general two

layers are not logically precluded from overlapping. Overlap can be detected by looking Cor

corners on the layer A & B:

for A & B eorners_require
not_allowed

Since the presence or A & B corners alone signals a violation, no sector condition is required

at these corners. Instead the degenerate condition 'not_allowed' is used. This condition can

never be satisfied. Adding the overlap check to the checks at convex corners on the two

layers, yields the following general interlayer spacing rule:

5.2

THE CORNER-BASED APPROACH

rule "A./B Interlayer Spacing Check"

for A eorners_require
lf corner.angle < 180 then

!B everywhere_ in see tor[edge 1 +90 * ,edge0-90 *,2]
for B eorners_requlre

lf ccrner.angle < 180 then
!A everywhere_ in sector[edge 1+90 *,edge0-90 *,2]

·Cor A & B eorners_requlre
not_allowed

94

Corner-based enclosure, single layer spacing, and width rules are implemented in similar

ways; see Figure 5.9. Single layer spacing is checked with sectors outside convex corners

requiring the same layer to be absent. In addition sectors outside concave corners are checked

to guard against spacing violations caused by small holes in a region. A width check is

equivalent to a spacing check on the complementary layer. It is implemented with inward

racing sectors. The enclosure of A by B can be thought of as a spacing between A and the

complement or B. This corresponds to requiring that B be present outside convex corners on

A and that A be absent inside concave corners of B. All these checks can be shown correct

with arguments similar to the one given above for interlayer spacing. The crux of these

arguments is that the closest approach between two edges always occurs at a corner.

It would be cumbersome to express all spacings, widths, and enclosures directly in terms

of the corner-based mechanism. instead macros are used for the most common rules, e.g.,

Spaelng2[A ,B ,2];
Spaelng[A ,3];
W1dth[A,3j;
Enelosure[A ,B ,2];

These macros expand into the corner-based rules described above. More unusual rules can

always be written directly in terms of the underlying mechanism, and thus exploit the full

flexibility of the corner-based approach.

To illustrate the flexibility of the corner-based mechanism, one more unconditional rule

will be developed: a facing edge rule. In region-based systems such rules require a special

primitive (e.g. a perpendicular-only grow operation).

5.2

THE CORNER-BASED APPROACH

..............•. tl
.. ··············

·····································

: T:HHAHHH:TH
·······························

(a) Single Layer Spacing

(b) Width

. ············. ············.

(e) Enclosure of A by B

Ft~e 5.0.- OtheJ' Uneondltlonal ToleJ"anee Cheeka. Corner-based unconditional single

layer spacing, width, and enclosure checks are all similar to the interlayer spacing check

developed above. Single layer spacing, (a), involves sectors outside corners prohibiting the

presence or the Bame layer. Sectors at concave corners check for spacing violations resulting

from small holes in a layer. Width, (b), is checked by inward-facing sectors that require the

presence or the layer Cor a minimum radius. Enclosure, (c), is checked by verifying the presence

o(the enclosing layer outside convex corners or the enclosed layer, and verifying the absence or

the enclosed layer inside concave corners or the enclosing layer.

95

Facing edge checks, as in Figure 3.5, specify minimum tolerances between facing edge3,

but do not restrict diagonal spacings, as in Figure 3.5. Such rules are motivated by the

5.2

.THE CORNER-BASED APPROACH 96

physical properties of the resist used in patterning the byer: narrow resist slivers resulting

!rom closely spaced racing edges might tear off and float to another sight on the wafer causing

a fatal flaw there. For example one ruleset requires !acing implant regions to be separated by

at least 2 units. Such a rule ca.n be checked with zero width sector conditions perpendicular

to corner-edges, run out as feelers, as in Figure 5.10. Zero-width sectors can be visualized as

having a slight width in the direction(s) or the *'ed edge(s). Conceptually this check is

derived by removing the sector interior from a spacing check. This rule can be written as

follows:

rule "Two Unit Facing Edge Check for Implant"

for Implant cornera_requlre
!Implant everywhere_ in aector[edge0-90,edge0-90 *,2J and

!Implant everywhere_ln aector[edgel+90*,edgel+90,2]

This section has shown how the basic idea behind corner-based checking: verifying

circular sectors at corners for the presence or absence oC layer combinations, can be used to

implement the standard unconditional tolerance checks. In addition the flexibility oC the

method has been demonstrated with a more unusual check: a facing edge check. The

!I

!I

................... ················· ·················
:::::::::::::::::::::

.

Flgun 5.10. • Corner-Bued Implant Fa.elng Edge Cheek. Facing edge checks can be

implemented with zero width conditions or finger8 extending perpendicularly outwards from the

corner edges. h usual, the saw-toothed sides of the fingers indicate inclusive sector edges: ma.sk

regions touching the fingers on those sides will be considered to impinge on the sector.

5.2

•

THE CORNER-BASED APPROACH

following two sections show how corner-based checking can be extended to conditional rules.
r

5.3. Geometric: Conditional Rules

97

Geometric conditional rules are rules where tolerances between features depend on the

geometric context in which they are found. Examples or conditional rules are spacing rules

that depend on the configuration of an underlying layer (Figure 2.9), and width rules that

depend on how densely features are spaced (Figure 2.11). Rules governing transistor or

contact form, for example the extension form rule illustrated in Figure 3.16, also depend on

geometric context.

In region-operation systems, such rules are checked by preceding a tolerance check

operation by a sequence or, sizing, topological, and boolean operations that extract the regions

to which the tolerance applies. In corner-based systems interrelated sector conditions are used

to implement conditional checks. For example a tolerance might be enforced by one sector

condition, only if a certain layer is detected in the vicinity by another sector condition. Such

rules differ from the unconditional rules of the last section in that they use the third feature of

the corner-based mechanism:

iii. Conditions can be logically combined to implement conditional rules.

Some geometric conditional rules can be checked using only the corner-based

mechanism. In other cases the required context is not available at corners, and must be

established by sizing or topological operations prior to checking. Even in these cases, one or

two region operations usually suffice. This is many fewer than would be required by a

traditional region-operation system. This section illustrates corner-based checking of

geometric conditional rules with two examples. The first one, a transistor extension rule, is

checked by the corner-based mechanism alone, without any preceding region-operations. This

rule involves directional context, and is extremely difficult to check in a region-operation

system (the best method I know requires 18 supporting region-operations in addition to the

5.3

THE CORNER-BASED APPROACH 98

two extension checks). The second example is a. reflection rule, where the minimum spacing

between metal Jines depends on the configuration of nearby polysilicon. Two region-

operations, an AND and a GROW, are required to provide enough context for the corner-

based check. In a pure region-operation system this check requires 8 operations.

5.3.1. -Translator Extension Rule

This section gives a complete transistor extension rule for MOS processes. The rule

requires that transistor extensions are present at every gate edge, and that extensions enclose

transistor corners. This is illustrated in Figure 3.16. Special effort is required to check that

extensions are present along the entire length of gate edges, i.e. that extensions are not

notched; see Figure 5.11. In addition to extension form, the size or extensions is checked:

extensions are required to be at least 2 units long.

The following sequence of region operations checks this rule:

VI = EXTENSION(P,D ,2)
V2 = EXTENSION(D ,P,2)

ForD= P OR D
Gate= PAND D
GatePl = GROW_PERP(Gate,2)
V3 = GatePI AND_NOT ParD
GateHl = GROW(Gate,.Ol)
AtCorners = GateHI AND_NOT GatePl

GateH2 = GROW(Gate,2)
Corners = GateH2 AND_NOT GatePl

PureP = P AND_NOT D
?Corner = TOUCHING(A.tCorner ,PureP)

NotPCorner = AtCorner AND_NOT ?Corner

NeedD = OVERLAPPING(Corners ,NotPCorner)

V4 = NeedD AND_NOT D

PureD = D AND_NOT P
DCorner = TOUCHING(AtCorner ,PureD)

NotDCorner = AtCorner AND_NOT DCorner

NeedP = OVERLAPPING(Corners ,NotDCorner)

V5 = NeedP AND_NOT P

5.3.1

THE CORNER-BASED APPROACH

(a) Notched Extension (b) Full Extension

Flgure 5.11. - Notehed Extenaiona. Transistor extensions must not be notched as in (a).

Rather they must be present along the full length of the transistor edge, (b). Notches must be

checked for explicitly in corner-based extension checks.

99

Violations are written to the layers V1 through V5. The 2 extension operations check the size

of polysilicon and diffusion extensions where ever they appear. The following 4 operations

check that polysilicon or diffusion extensions are present along every gate edge. The

remaining 14 operations check that transistor corners are enclosed by extensions of sufficient

depth.

The corner-based version of this rule is shown in Figure 5.12. It involves conditional

checks at polysilicon corners, diffusion corners, gate corners, pure-polysilicon (no diffusion

present) corners, and pure-diffusion (no polysilicon present) corners. Together, checks at these

corners suffice to verify the form and dimensional constraints for transistors.

The complete text for this rule is given below. The graphical representation, given m

Figure 5.12, is probably easier to understand. Once conceived of graphically, the translation

into the rule language is not difficult. Also, a few macros would make the rule briefer and

more readable.

5.3.1

THE CORNER-BASED APPROACH

If

p

~D
_P~~

(a)

(b)

(e)

-
(d)

-
(e)

Then

:=&
:>>1

p

D

D

Figure &.1%. • Corner-Baaed ExteDIIlon Rule, Fi.rst Section. Parts (a.) a.nd (b) check a.ll

polysilicon and diffusion corners to make sure that polysilicon and diffusion edges never coincide.

This ensures that gate edges are always flanked by extensions. Part (c) checks the size of

extensions at regular gate corners, i.e. corners where polysilcion extends out from one corner

edge and diffusion from the other. Parts (d) and (e) check for extensions around corners of bent

transistors.

100

5.3.1

THE CORNER-BASED APPROACH

:::::::::::::::::::::::::::

:p&:fi::HHH<
···························

D o.:!P::::::::·
~ . . :

... ······

(f)

(g)

(h)

D ····················· ····················· ::::::::::::::::::;:; ····················· ····················· .
·····················

OR
.0
: ~
• 0 • • • • • • • • • • • • •

··············· .

Ftgure 6.U. - Corner-Baaed Extenalon RuleJ Flnal Section. Part (r) checks that either

polysilicon or diffusion extension is present inside concave bends in transistors. Parts (g) a.nd (h)

check inside concave pure-polysilicon (no diffusion present) and pure-diffusion (no polysilicon)

corners. They verify that notches in extension do not result in insufficient extension depth.

rule "Tran3i8tor Exten8ion3"

/'* (a) Check for·diffusion extensions along transistor edges

for P corners_require
lf D everywhere_ln sector[edgeO,edgeO*,OJ then

D everywhere_ in sector[edgeO *,edgeO,Oj

and if D everywhere_ in sector[edge 1 *,edge l,Oj then

D everywhere_ in sector[edge 1,edge 1 *,OJ

101

5.3.1

THE COR~'ER-BASED APPROACH

I* (b) Check for po!ysilicon extensions along ,pte edges

for D corners_ require
it P everywhere_ln aector[edgeO,edgeO*,O] then

P everywhere_ln sector[edgeO*,edgeO,O]

and if P everywhere_ in sector[edgel *,edge l,Oj then

P everywhere_ln seetor[edgel,edgel *,OJ

r (c) Check extension dimensions at normal gate corners .• I
for (P & D) cornera_requlre

if corner.angle < 180 then
it (P eve:-ywhere_ln aeetor[edgeO*,edgeO,OJ and

D everywhere_ln sector[edgel,edgel *,OJ) then

P everywhere_ln aeetor[edge0-90,edge0-90*,2] and

D everywhere_ln sector[edge1+90*,edge1+90,2J

elself (D everywhere_ in aector[edgeO *,edgeO,OJ and

P everywhere_ln aector[edge1,edge1 *,0]) then

D everywhere_ln sector[edge0-90,edge0-9(J*,2] and

P everywhere_ln sector[edge1+90*,edge1+90,2j

r (d) Check that diffusion extensions enclose bends in transistors • I
for (P & D) corners_ require

tt corner.angle < 180 then
If (D everywhere_ln sector[edgeD* ,edgeO,OJ and

D everywhere_ln sector[edge1,edge1 *,0]) then

D everywhere_ln sector[edgel+90*,edge0-90*,2J

I* (e) Check that polysilicon extensions enclose bends in transistors • I
for (P & D) cornera_requlre

lt corner.angle < 180 then
lt (P everywhere_ln aector[edgeO*,edgeO,O] and

P everywhere_ln aector[edge1,edge1 *,0]) then

P everywhere_ln sector[edge1+90 *,edge0-90 *,2]

r (C) Check that concave transistor corners are enclosed by an extension • I
tor (P & D) corners_requlre

lt corner.angle > 180 then
P everywhere_ln sector[edge1,edge0,2] or

D everywhere_ In sector[edge 1,edge0,2]

r (g) Check diffusion corners to complete D extension check • I
for (D & !P) corners_requlre

If corner.angle > 180 then
!(P & D) everywhere_ln aector[edge0+90*,edgel-90*,2]

/* (h) Check poly silicon corners to complete P extension check • I
for (P & !D) corners_ require

lt corner.angle > 180 then
!(P & D) everywhere_ in aector[edge0+90 *,edgel-90 ~.2]

102

5.3.1

THE CORNER-BASED APPROACH 103

Parts (a) and (b) check all polysilicon and diffusion corners to make sure that polysilicon

and diffusion edges do not coincide. These checks involve zero-depth sector conditions, for

example:

P everywhere_ln sector[edgeO*,edgeO,O]

Zero-depth conditions check adjacencies rather than tolerances; they can be visualized as

sectors with very small radius. In the example, the condition specifies that either polysilicon

is present directly outside the corner and just above one of the corners edges (edgeD). Part (c)

checks the size of the extensions at normal transistor corners (i.e. corners where polysilicon

extends from one of the corner edges, and diffusion from the other). Parts (d) and (e) check

to see that extensions enclose corners or bent transistors (recognized by the fact that either

poly silicon or diffusion extends from both corner-edges). Part (f) checks for extensions at

concave transistor corners. Finally parts (g) and (h) complete the extension tolerance check

by looking back from polysilicon and diffusion corners. This final check is required to guard

against violations resulting rr~m notches.

This example illustrates how corner-based 'extension tolerances are checked. For

example, polysilicon extensions are checked, at convex gate corners that have adjacent

poly silicon (and at concave pure polysilicon corners). This is actually a conditional check:

the tolerance applies only at those gate corner where polysilicon is adjacent. This is why

extension checking was not considered alongside spacing, width and enclosure checks in the

last section.

In the corner-based approach form and directional context are checked via conditional

checks. The complete extension check above involved conditions on 5 corners: polysilicon,

diffusion, gate, pure-polysilicon and pure-diffusion. By contrast the form part of the region­

based extension check required 13 operations and 11 intermediate layers.

5.3.2

THE CORNER-BASED APPROACH 104

5.3.2. Reflection Rule

Recall that polysilicon edges to the inside of metal edges can reflect light laterally during

patterning o{ the resist for the metal layer, moving the metal edge outward from its intended

position; see Figure ~.4. To take this phenomenon into account, reflection rules require

greater spacing between metal lines when poly silicon edges lie nearby. For example, metal

edges may be required to be 1 unit apart everywhere, 1.5 units apart when one of the metal

edges is affected by reflection (a suitable polysilicon edge lies within one unit or the metal

edge) ~nd 2 units apart when both metal edges are affected by reflection; see Figure 2.9.

In the region-based approach, this rule can be checked by a 1-unit spacing check on a

modified metal layer where edges affected by reflection have been moved outward by .5 units.

!M

:.~::::::::::
..... - .

. ·::::::::::::::::::::::·:··
····························· .. :::::::::: ;:~:::::::::::::: ...

···························•.•••.••••............

.•...•..

. ······················· ·······················
·····················.

Metal

Flgun 6.13. - Problem wlth Corner-Baaed Refieetlon Cheek. Above, a bulge in

underlying polysilicon results in a metal spacing violation along a. section of metal edge. Note

that no metal corner, and in fact no corner of any kind is present at the site of the violation.

The corner-based mechanism alone cannot detect such violations.

5.3.2

THE CORNER-BASED APPROACH 105

The details c(this check were developed in Chapter 3. It requires 3 boolean operations, 4

sizing ope::ations, and the spacing tolerance check.

This rule poses a problem for the corner-based approach, since the necessary information

is not available at the corners of the design. For example, Figure 5.13 shows how checking at

metal corners can miss a spacing violation involving a metal edge section affected by

reflection. Note that there is no corner present along the section or metal edge where this

spacing needs to be checked.

A corner-based check of this rule is possible, if the check is preceded by region

operations that identify the metal edge sections affected by reflection. For example, the

following two operations do the trick:

MP=MANDP
Re!X = GROW(MP,l.O)

All metal edges that are covered by the RefX layer (reflection context) but not by polysilicon

are affected by reflection. Using the RefX layer, a corner-based version of the reflection rule

can be constructed by checking both metal corners and corners or metal affected by reflection;

see Figure 5.14. Sector conditions of radius 1.0 and 1.5 units at convex metal corners check

tolerances to any metal and affected metal respectively. Similarly, sectors or radius 1.5 and

2.0 units at convex affected metal corners check tolerances to any metal and affected metal

respectively. In situations such as the one depicted in Figure 5.13, affected metal corners

occur in the middle or a metal edge. In these cases it is sufficient to check tolerances only in

the direction perpendicular to the edge. The complete rule can be written as follows:

5.3.2

THE CORNER-BASED APPROACH

1M

~1M y .. :J
M&X&!P

M&X&!P

(a)

--
(b)

-
(c)

A1VD

T
.'(/t.IOX ~!P}

A2VD

T T
{/t.IOX8!P) 2.0

u !M

AND

Flgun 6.14. • Cornei'-Baaed Refteetlon Cheek. The corner-based reflection check

distinguishes between ordinary metal and metal affected by reflection. Metal affected by

reflection is defined a.s 'Metal & Re{X & !Poly1ilicon', where Re{X is generated prior to

checking as described in the text. Part (a) checks the spacing from ordinary meta.! corners to

both ordinary meta.! a.nd affected meta.!. Similarly pa.rt (b) checks the spacing from affected

meta.! corners to ordinary metal a.nd affected meta.!. Pa.rt (c) checks perpendicular spacings

from affected metal corners occurring in the middle of a. meta.! edge. Such corners a.rise in

situations such as the one depicted in Figure 5.13.

106

5.3.Z

THE CORNER-BASED APPROACH

rule ·'Afetal reflecticr. w

I* Normal ~fetal corners *I
for Al corner,_requlre
lf corner.angle < 180 then

!M everywhere_ln aedor[edge1+90*,edge0-90*,1.0] and
!(M & RefX & !P) everywhere_in aector[edgel+90*,edge0-90*,1.5J

/* Corners of Metal affected by reflection NOT in middle of M edges • I
for (M & Re/X & !P) cornera_requlre

lf corner.angle < 180 then
It (!M everywhere_ln eector[edgeO*,edgeO,O] and
!M everywhere_ln eector[edgel,edgel*,O]) then

!Al everywhere_ln aector[edge1+90*,edge0:_90*,1.5] and
!(M & RefX & !P) everywhere_ln eector[edge1+90*,edge0-90*,2.0]

/* Corners of :\fetal affected by reflection in middle of M edges • I
for (M & RefX & !Poly) corners_require

lf corner.angle < 180 then
lf (!M everywhere_tn eector[edgeO*,edgeO,O] and
M everywhere_tn eector[edgel,edgel*,O]) then

!M everywhere_tn aector[edge0+90,edge0+90*,1.5] and
!(M & RejX & !P) everywliere_tn aector[edge0+90,edge0+90*,2.0]

for (M & RejX & !Poly) cornera_requlre
It corner.angle < 180 then

tf (M everywhere_ln aector[edgeO*,edgeO,Oj and
!M everywhere_ln aector[edgel,edgel *,0]) then

!M everywhere_ln aeetor[edgel+90*,edge0+90,1.5] and
!(M & Re/X & !P) everywhere_ln aector[edgel+90*,edge1+90,2.0]

5.4. Nongeometric Conditional Rules

107

Some design rules are conditional on connectivity. For example, the spacing required

between distinct nodes is often greater than the minimum spacing between pieces of a single

node. Other rules are conditional on electrical information, such as the resistance of a node,

or on the intended function of a node. Chapter 2 gives examples of rules of each of these

types. All these rules depend on information that is not directly available in the mask

description: rather it must be derived by an analysis program such as a circuit extractor, or

supplied by the designer. St•ch rules are called nongeometric conditionals.

In region-based systems nongeometric information is tagged to the figures or line

segments comprising the mask data. For example, each line segment is assigned a node

5.4

THE CORNER-BASED APPROACH 108

number for use in connectivity-dependent checks. Special open.tions exist to genel'ate the

nongeometric information and tag the mask data. Once the mask data is tagged, ulection

operations can be performed that output only relevant mask features for tolerance checking.

For example, a special width rule Cor VDD and Gl'l1) buses can be implemented by preceding

the width tolerance operation, with a selection operation that only outputs mask regions that

are tagged as such. Some nongeometric conditionals, notably internode spacing rules, cannot

be implemented with selection operations. The reason is that whether a tolerance applies

between features in these rules does not de_~:,end on the individual values or the tagged data,

but rather on the relationship between the tagged data of pairs of features. For example,

'
internode spacing tolerance apply to pairs of features that have distinct node numbers. Such

rules must be implemented by special tolerance operations that compare the tagged data of

every edge-pair before doing the tolerance check on that pair.

The corner-based mechanism described in this chapter cannot generate nongeometric

information. Thus any nongeometric information that is to be used in corner-based design

rule checking must be provided by an external analysis program (e.g. by a region-based circuit

extractor) or by the circuit designer. If nongeometric information is available, the corner-

based mechanism can use this information Cor nongeometric conditional checks.

Nongeometric conditional checks use the fourth and final feature of the corner-based

mechanisms:

iv. Layers can be qualified by reference to attributes tagged to the mask data.

For example, 'Metal [function= "1'\-VRBUS "]' is used to specify metal regions tagged with a

function attribute of "1'\-VRBUS ", and 'Diffusion [noderfcorner.node]' refers to diffusion

regions with node number distinct from the current corner.

There are three examples in this section. The first two illustrate how connectivity-

dependent rules can be implemented in corner-based systems. The third example, a width

check for VDD and Gi'o1) buses, is typical or rules that are implemented with selection

5.4

THE CORNER-BASED APPROACH 109

oper~tions in region-based systems. It shows how references to tag-data in layer specifications

can be used in place of selection operations.

5.4.1. Internode Spa.clng

The most common nongeornetric conditional rules specify minimum spacings for distinct

nodes on a layer. Such a rule can be implemented by a condition outside convex corners that

does not permit the presence of the same layer unless it has the same node number. For

example, a 3-unit minimum internode spacing on the diffusion layer is checked by the

following rule:

rule nDiffusion Internode Spacing n

for Diffusion eorners_requlre
lf corner.angle < 180 then

!Diffusion [noderfcorner.node] everywhere_ In
eeetor[edge 1+90 *,edge0-90 *,3]

The expression 'Diffusion [noderfcorner.node]' refers to diffusion regions with node number

not equal to the node number of the curren_t corner. This rule is illustrated in Figure 5.15.

Unlike the unconditional single layer spacing rule, this rule does not attach conditions to

concave corners. Conditions on concave corners are not needed, in this case, because the

material around a small hole must all belong to the same node.

5.4.2. Buried to Unrelated Polysllleon Spacing

Design rules require polysilicon and diffusion lines that do not actually join in a buried

contact region to be spaced a certain minimum distance from the buried region. This guards

against accidental contacts. For example the minimum spacing between a buried region and

unrelated polysilicon might be 2 units. This is another example of a connectivity-dependent

rule. If the common node number of the polysilicon and diffusion in buried contacts is

assigned to the buried region as well, then buriedfpolysilicon spacing can be checked as

follows:

5.4.2

THE CORNER-BASED APPROACH

......

........... --~:·······

(a) Notch - OK (b) Dbtl.nct Nodes - Vlolatlon

(c) The Rule

Flgure 5.15. - Corner-Baaed Internode Spacing Cheek. An internode spacing rule

permits close spacing between sections or the same node, (a), but guards ag:~.inst too-closely­

spaced distinct nodes (b). Such a rule can be checked by qualirying the layer specification in the

sector condition to rerer only to regions belonging to different nodes, (c). Here node rerers to

the node or the region inside the sector and corner.node rerers to,the node or the corner.

110

5.4.2

THE CORNER-BASED APPROACH

rule 'Buried to [:nre!cted Poly Spacing'
·for Buried cornera_requlre

l:t corner. angle< 180 then
!Poly..,ilicon [node=corner.node] everywhere_ in

seetor[edge 1+90 *,edge0-90 *,2]

for Polysilicon corners_requlre
lf corner.angle < 180 then

!Buried[node=corner.nodej everywhere_ln
sector[edge 1+90 *,edge0-90 *,2]

111

This rule is illustrated in Figure 5.15. It is exactly like an unconditional interlayer spacing

rule, except that the sector conditions are qualified by node information. A similar rule

checks buried/diffusion spacing.

5.4.3. Power and Ground Bus Width

Since power and ground buses must carry large amounts o(current, design rules

sometimes require them to be wider than other metal lines. For example metal may be

required to be 3 units wide everywhere, but 5-units wide in power and ground buses. rr this

eorner.node

p

(a) Convex Buried Corners (b) Convex Poly Corners

Ftgure 6.1&. - Corner-Baaed Burled to Unrelated Polyallleon Spaelng. The buried-to­

unrelated-polysilicon rule is just like an interlayer spacing rule, except that the layer

specifications in the condition sectors are qualified to re(er only to distinct nodes. Part (a)

checks outside convex buried corners (or polysilicon belonging to a different node (i.e. unrelated)

a.nd part (b) checks outside convex polysilicon corners tor any buried regions with a different

node number.

5.4.3

THE CORNER-BASED APPROACH 112

rule is to be checked, power and ground buses must be identified in the mask data with

appropriate tags, say 'function= "PrVRBUS"'. In a region-based system s11ch a rule would

typically be checked by preceding the 5 unit width check with a selection operation that

outputs only those metal regions with a function tag of "PrVRBUS ". In a corner-based

syste~, such a rule can be verified with a width check on 'Metallfunction= ".F"rtRBUS"J'.

This looks as follows:

rule "Power Bus Width"
for Metal !Junction= "PrVRBUS "I cornera_requlre

lf corner.angle < 180 then
Metal[Junction = ".AVRBUS "I everywhere_ln

sector[edge 1-90, edge0+90,5j

for Metal !Junction= "P'tVRBUS "I cornera_requlre
lf corner.angle > 180 then

Metal !Junction= "PrVRBUS"J everywhere_ In
aector[edge0+90 *,edge 1-90 *,5J

This check is illustrated in Figure 5.17.

5.5. Summary

This chapter has introduced a corner-based mechanism for describing and checking

design rules. The mechanism is summarized by the following four features:

i. Sector conditions are attached to corners of given angles a.nd layer combinations.

ii. Sector conditions consist of circular sectors within which layer combinations must be present

(or absent).

111. Conditions can be logically combined to implement conditional rules.

iv. Layers can be qualified by reference to attributes tagged to the ma.sk data..

The main idea is to express rules in terms of conditions that must hold at corners in a design.

Conditions take the form of circular sectors that are checked for the presence or absence of

certain layer combinations. Conditional rules are checked by logically combining multiple

sector conditions. Rules that depend on nongeometric information are checked by referencing

5.5

THE CORNER-BASED APPROACH

M{Function=~PWRBUS"J

(a) Convex Metal Corners

··L
... : ······· ~
:::::::: :: ~~::::::::::;:::::
···························· r:·:·: ... ~.:.:.::::.:

M{Function="PWRBUS"J

(b) Concave Metal Corners

Figure 5.17.- Cornel'-Baaed Bu. Wldth Cheek. Meta.! buses may need to be wider than

other metal, since they carry a great deal of current. Ir buses are tagged as such, such a. rule

can be checked with condition sectors attached to corners of metal regions tagged as buses.

Both convex and concave corners need to be checked, just as in a. standard, unconditional, width

check.

data attached to the mask features in layer specifications.

113

The first two features suffice for checking unconditional spacing, width, and enclosure

rules (Figure 5.9). Spacing is checked wi_th outward facing sectors that guard against

intrusions of the same or a second layer. Width is checked with inward facing sectors that

make sure a layer is present for some minimum distance inside of corners, and enclosure is

checked with outward facing sectors on convex corners of the enclosed layer, and inward

facing sectors on concave corners of the enclosing layers. The corner-based mechanism

effectively replaces the sequences of boolean and tolerance operations required in region-based

5.5

THE CORNER-BASED APPROACH 114

systems for checking unconditional rules. Preceding boole:1n oper:J.tions are not required since

both corners and sector conditions can involve layer combinations. The edge to edge

tolerance checking of the region-based approach is replaced by the checking of circular sectors

at corners: point to edge tolerance checking. This is possible since the closest approach

between two edges always occurs at a corner. However, unlike edge/edge checking,

point/edge tolerance checks must be done from (corners on) both of the involved layers.

Geometric conditionals can be implemented using the third feature of the corner-based

mechanism: the logical combination of multiple conditions. Interdependent conditions at

corners are particularly well s•Jited for rules involving directional context. For example, a

sector condition along the right edge of a corner may only be checked if another condition

along the lert edge holds. Such directionally sensitive rules, common in rules governing the

formation of constructs such as transistors, are difficult to check in region-based systems.

The context required to check geometric conditionals is not always available at the corners in

the design, e.g. reflection rules (Figure 5.13). Corner-based checks of such rules must be

preceded by region-based operations to establish the required context. In such cases, the use

or the corner-based mechanism still reduces the total number or operations required.

Rules involving nongeometric information require the fourth feature of the mechanism:

reference to nongeometric information tagged to mask features. Qualification of layer

specifications with reference to tagged information accomplishes the same function as special

selection operations and subroutines in region-operation systems. However the corner-based

mechanism cannot be used to generate nongeometric information. Tagged information must
'

be provided prior to the corner-based check, e.g., by region-operation-based analysis

programs.

In corner-based systems macros are provided for common checks, such as spacing,

width, and enclosure. These macros all expand into the same primitive formalism or the

corner-based mechanism. t..,iore unusual checks can be written directly in terms of the

5.5

THE CORNER-BASED APPROACH 115

underlying mechanism. ·unlike the region operation approach, special primitives are not

required for rule Yari:J.nts or unusual checks.

The use of point/edge tolerance checking makes the corner-based mechanism

particularly well suited for partitioned checking, as required in incremental and hierarchical

systems. Checking a piece ot a design simply involves checking the corner-points in that

piece: the tricky problem of edges straddling piece boundaries that is encountered in

edge/edge checking is avoided.

Rather than depending on sequences of operations, corner-based checking is explicitly

context-based; each rule consists of conditions that apply in a certain context, i.e., at certain

corners. This permits all all rules to be checked in parallel in one pass through a design. The

many intermediate layers, and operations of the region-operation approach, and the resulting

1/0 bottleneck are avoided.

5.5

116

CH.A.PTER a

Implementation of Corner-Based Checking

&.1. Introduction

This chapter discusses the implementation or corner-based design rule checking with all

the capabilites discussed in the previous chapter. To date, all existing systems are less general

than this in one respect or another. Actual systems will be surveyed in the next chapter.

Corner-based checking involves finding corners in a design and verifiying the relevant

(possibly interrelated) conditions the design rules associate with them. The efficiency of this

process depends, to a large extent, on the internal representation used for the design rules.

The main theme or this chapter is this internal representation: what it looks like, how it is

used by the checking algorithms, and its automatic generation, _by a rule compiler, from the

human-readable and -writable format presented in the last chapter.

The three key issues or this chapter are:

i. Representation or layer expressions, which specify combinations or mask layers - to &llow

quick evaluation.

ii. Indexin! or Rules - to allow quick acces'!l to relevant ones.

iii. Representation or condition expressions, which involve interrelated conditions - for efficient

evaluation.

The evaluation or layer expressions is required both during the identification of corn~rs

and during the verification or sector conditions. Many expression evaluations are performed

in the course o(corner-based design rule checking. Leo, a ,commercial corner-based DRC,

averages over 4000 expression evaluations per transistor; see Chapter 9. Thus efficient

corner-based checking depends on a representation Cor layer expressions that permits quick

evaluation. A bitmapped representation, based on the disjunctive normal Corm for boolean

6.1

IMPLE;\illNTATION OF CORNER-BASED CHECKING 117

expressions, is developed for this purpose.

Rulesec; contains many rules, only a few of which apply at any g1ven vertex. For

example the ~fead-Conway nMOS rules for Lyra consist of 44 rules, of which, on the average,

less than 5 apply at a given corner. Efficient rule checking depends on quickly eliminating

most of the irrelevant rules from consideration at any vertex. An indexing scheme based on

the layer expressions is used for this.

Corner-based systems spend much of their time evaluating condition expressions, (30%

in Lyra, 55% in Leo, and 75% in Leo45). The evaluation of some conditions is relatively

expensive. Thus the intelligent handling of condition expressions, evaluating cheap conditions

first and avoiding whenever possible the evaluation of expensive ones, can significantly speed

up design rule checking. A decision-tree representation is developed that completely specifies

the order of condition evaluation. The rule compiler uses heuristics to choose an appropriate

evaluation order when constructing these trees.

The body of this chapter contains three sections. The first section, below, develops an

internal rule representation. The second section discusses rule-checking algorithms employing

this representation. And the third section considers the generation of the internal

representation by the rule compiler.

Chapter 9 contains data from actual systems relating to several issues disscussed in this

chapter. These include data organization, layer-expression evaluation, condition-expression

processing, and rule indexing.

6.2. Internal Rule Representation

Corner-based rules, as developed in the last chapter, specify conditions that apply to

corners on certain layers. Conditions, corners, and layers are precisely defined in this section,

and their internal representation is considered. Disjunctive normal form and decision trees are

developed as means of representing layer and condition exp~essions (respectively). The end

6.2

IMPLE:MENTATION OF CORNER-BASED CHECKING 118

result is an internal representation for rules th3t is suitable for efficient checking. This

representation is quite different from the external format, which is intended for convenient

reading and writing by humans. The rule compiler translates external rule descriptions to the

internal format.

8.2.1. Disjunctive Normal Form

In corner-based rules, general logical expressions are used for three purposes: to describe

the combination of mask layers comprising the layer of a corner, to describe the combination

o(mask layers that must be present within a sector, and to describe an interrelated set of

conditions applying at a corner. Here are examples of each kind (respectively):

for (D & !P) corners_requlre

(PI D) everywhere_ in sector

lf CONDITION1 and CONDITION2 then CONDITION3

The first two types are layer expressions: they involve mask layer combinations. Layer

expressions are conveniently represented in the disjunctive normal form, (DNF), [Hohn 1966]

described below. The third type is a condition expression: it describes an interrelationship

between conditions. Disjunctive normal form is used as an intermediate representation for

condition expressions during rule compilation.

An expression is in disjunctive normal form, if it is the or of terms, that in turn are the

and of simple variables and their complements. For example the expression

!(A & !(B I C)) & D

is not in disjunctive normal form, but the equivalent expression

!A&D I B&D I C&D

is. Every logical expression, no matter how complex, can be put in disjunctive normal form.

The next section shows how disjunctive normal form is employed to represent layer

expressions. A method for converting expressions to disjunctive normal is given in the

6.2.1

IMPLEMENTATION OF CORNER-BASED CHECKING 119

section on the rule compiler.

0.2.2. Layer Expressions

Layer expressions must be evaluated in the search for corners to which the rules apply,

and in checking the sector conditions that apply at these corners. Consequently many layer

expression evaluations are required in the course of a design rule check. For example a

complete design rule check of the 44,000 transistor RISC-I chip with Leo requires

approximately 200 million layer ·expression evaluations.

To permit fast ev:J.!uation, layer expressions are represented in disjunctive normal form,

using bitmaps; this is illustrated in Figure 6.1 Each mask layer is assigned a bit position in

the maps. The presence of variables in positive form are marked by 1's in the posJv[ap for the

term, and the presence of negated variables are marked by O's in the negMap for the term.

An expression is represented by posMap and negMap arrays, with one entry in each array for

each term.

This bitmapped representation allows advantage to be taken of parallel bitwise logical

operations. A term in a layer expression can be evaluated as follows:

((posMask[i] & layers)== posMask[i!) I I
((negMask[iJ I layers)== negmask[i]).

The C-language syntax is used: '&' and 'I' are bitwise and and or operations (respectively),

'==', compares for equality, and 'II' is logical or. The variable 'layers' is assumed to be a

bitmapped representation of the mask layers present where the expression is to be evaluated.

This computation requires only a few machine instructions. Since layer expressions generally

contain only 1 term, and almost never more than 3, they are evaluated quite quickly using

this method. (Leo and Leo45 average 22 microseconds per expression evaluation, using this

method.)

Some expressions are complicated by layers that are qualified with attribute

information. Two examples of such expressions (drawn from the rules in Chapter 5) are:

6.2.2

IMPLE:MENTATION OF CORNER-BASED CHECKING

................... -.................... -

/ •
jojiiojojoloj ~···

p D M I c 8 ..
... FOSMASK[l/

\ :.
lotijiiiiiiij \ ...

p D M I c 8

NEriMASK[lJ

!P&D

\liii]

\Lili]

D&B
' ' \

joiiiololoiii \· ..
P 0 M I C 8

lliiiiii!IIIi\· .. 1\UJi]
P D M I C B

Figure &.1. • Bltmapped Representation of Logical Expressions. After conversion to

disjunctive normal form, logical expressions can be represented using pairs or mask words (one

pair per term). Positive variables are indicated by 1 's in the PosAfask's, and negated variables

are indicated by O's in the NegMask's. Expressions represented in this way can be quickly

evaluated, using machine level bit-parallel logic operations.

!Polysilicon lnode=corner.node]
Metal [function =ffiRBUSJ

120

Qualified mask layers are assigned their own bit positions in the maps. The evaluation of

such expressions is slowed by the need to reference the attribute information and establish the

presence or absence of the qualified layers prior to the bitmap computations given above.

0.2.3. Corners

The corners oC corner-based checking consist of a vertex, two edges and a layer

(expression) that is present between the edges but not directly outside them. It is important

to note that both edges and layer are necessary to the definition of a corner; see Figure 6.2.

Corners with distinct edges may share a common vertex, and corners on more than one layer

may share common edges. Each of these corners may have distinct conditions associated with

it that must be checked.

6.2.4

;

IMPLEMENTATION OF CORr-.'ER-BASED CHECKING

l I \

P&!M r
(a) Corners on Same Layer (b) Corners with Same Edges

Figure 8.%. • Cornera. Corners are defined by their verte:r, two edgeB, and a layer that is

present between the edges. The edgeB and layer are both important. Two corners on a

common layer may share a verte..-.: (a). Similarly two corners can share common edges (b).

Each distinct corner may entail its own associated conditions that must be checked.

6.2.4. Conditions

121

Conditions, associated with corners by the design rules, must be verified during

checking. Much of the processing time of corner-based systems is devoted to condition

processing - 30% in Lyra, 55% in Leo, and 75% in the more complicated Leo45. There are

four types of conditions, as illustrated in Figure 6.3.

The sector condition, shown in Figure 6.3(a), is the basic type. As explained in Chapter

5, a sector condition is specified by giving its two edges (relative to the corner edges), a depth,

and a layer expression. The condition holds if the layer expression holds throughout the

interior of the sector. The sector edges may be inclusive or exclusive. If a sector edge is

inclusive, it is considered interior to the sector condition, and hence regions abutting the edge

will be considered to infringe upon the sector. Zero-width sectors can be specified to check a

layer expression outward from the corner in a particular direction (Figure 6.3(b)), and zero-

6.2.4

IMPLEMENTATION OF CORNER-BASED CHECKING 11')1')

depth sectors can be specified, to check for the presence or layers directly adjacent to the

corner (Figure 6.3(c)).

Angle conditions, the remaining type, specify a range of angles Cor a corner (Figure

6.3(d)). They hold only at corners whose angles lie witliin the specified range. Angle

conditions are generally used to distinguish between convex and concave corners, but they can

also be used Cor other purposes, for example to disallow acute corners, (i.e., those sharper than

9o degrees), on mask layers.

REGIONAL
CONDITIONS:

IMMEDIATE
CONDITIONS:

(a) Sedor

(c) Zer<>-Depth Sector

!I

(b) Zer<>-Width Sectors

~ I
(d) Angle

Flgure &.3. • Condltion.a. Conditions are of four types: sector conditions, which require a.

layer to be present in a circular sector about a. corner, (a.), zero-width sector conditions, which

require a layer to be present outwards in a given direction from a. corner, (b), zero-depth

sectors, which require a. layer to be present directly adjacent to a. corner, (c), and angle

conditions, which require the angle between the corner edges to fall within a. certain range, (d).

Conditions are cla.ssified a.s immediate, if they depend only on the ma.sk configuration, directly

a.t a. vertex, and a.s regional, if they depend on additional ma.sk data in the vicinity 9C the corner

a.s well. Immediate conditions are cheaper to evaluate than regional ones.

6.2.4

IMPLE:MENTATION OF CORNER-BASED CHECKING 123

c;onditions are divided into immediate ones (angle conditions and zero depth sector

conditions) and re1ional ones (all other sector conditions). This distinction is important

because immediate conditions can be verified much more quickly than regional ones.

0.2.5. Condltlon Expressions

In general, a rule specifies interrelated conditions, i.e., condition expressions. For

example, consider part (c) of the transistor extension check given in Chapter 5:

/* (c) Check extension dimensions at normal gate cor~ers. *I
for (P & D) eorners_requlre

if' corner.angle < 180 then
lf (P everywhere_ In sector[edgeO * ,edgeO,O] and

D everywht!re_ln sector[edge1,edgel *,OJ) then

P everywhere_ln sector[edge0-90,edge0-90*,2] and

D everywhere_ln sector[edge1+90*,edge1+90,2]

elself (D everywhere_ln sector[edgeO*,edgeO,O] and

P everywhere_ln sector[edge1,edgel *,0]) then

D everywhere_ in sector[edge0-90,edge0-90 *,2] and

P everywhere_ in sector[edg.e 1 +90 *,edge 1 +90,2]

Here a set of nine interrelated conditions is specified for transistor corners. If the details of

the conditions themselves are ignored, simply writing Jl through I5 for the immediate

conditions, and R 1 through R 4, for the regional ones, the expression becomes:

/* (c) Check extension dimensions at normal gate corners. *I
for (P & D) corners_ require

if l1 then
lf (/2 and I3) then
Rl and R2
else if (I 4 and I 5) then

R3 and R4

Note that it is not necessary to evaluate all the conditions in the expression. If l1 (the angle

condition) is evaluated first, and is found not to hold, none of the other conditions need be

evaluated. Further if all the immediate conditions are evaluated first, it will not be necessary

to evaluate more than two of the four regional conditions. Evaluating conditions in the

appropriate order, and avoiding the evaluation of conditions that have been rendered

irrelevant by previous ones, significantly reduces the total amount of computation. The

6.2.5

lMPLE:MENTATION OF CORNER-BASED CHECKING 124

representation of condition expressions a.s decision trees, allows the rule compiler to assign an

optimal order of condition evaluations, and avoids the evaluation of irrelevant conditiou.s.

Figure 6.4 gives a decision tree for the expression above. The internal nodes or the tree

give conditions to evaluate, and the leaves of the tree specify whether the entire expression

evaluates to true or fal8e. The root condition is evaluated first. Computation then proceeds

along the T or F branch of the tree, according to how the condition evaluates. \Vhen a leaf is

Figure e,,, - Declaion Tree for Condition Expresaion. The decision treP. representation

or a condition expression completely specifies the order or condition evaluation. The condition

at the root or the tree is verified first; evaluation then proceeds down the T or F subtree

according to the result. When a lear node is reached the computation is complete; the leaf

indicates whether the expression is satisfied or not. The use or decision trees minimizes the

number or conditions that must be verified during expression evaluation.

6.2.5

IMPLEMENTATION OF CORNER-BASED CHECKING

A: if (11 A.'';D !2) then (Rl A.i'<"D R2)

B: il' (11 AND !3) then (R3 AND NOT Rl}

Figure 8.5. • Multiple Expression Deelaion Tree. This decision tree allows the expressions

A and B, (at top left), to be simultaneously evaluated. Such simultaneous evaluation avoids

redundant verification of conditions that are common to expressions, (in this case 11 and Rl).

125

reached, the computation is complete. The value indicated in the leaf is the value of the

expression. Putting the angle condition at the root of the tree eliminates the need for any

further expression evaluation whenever it is not met. The location of the immediate

expressions toward the root of the tree minimizes the number of regional conditions that need

to be evaluated. The automatic generation of optimal decision trees is taken up in the section

on the rule compiler below.

Decision trees are indexed under the layer of the corners they apply to. If expressions

applying to corners on the same layer share common conditions, redundant evaluation of

these conditions can be avoided by combining them into a single decision tree. This is

illustrated in Figure 6.5. The leaves of the combined tree indicate which expressions (i.e.

rules) have been violated.

6.3

IMPLEMENTATION OF CORNER-BASED CHECKING 126

15.3. Checking Algorithm

Rule checking consists of two steps:

i. Detecting corners.

ii. Checking the conditions that apply there.

This section considers how these two steps are accomplished.

A aorted mask-data representation that allows quick access to the mask regions and

mask region boundaries is assumed. A pixel-based representation, Cor example would not be

suitable, since it does I!ot allow quick access to region boundaries. It is also assumed that

regions are split where attributes change, so that edges are always present along the

transitions; see Figure 6.6. As long as these conditions are met, the details of the mask data

representation are not important to the overall checking algorithm: two-dimensional bin,

sorted swath, scanline, and corner-stitched representations are all suitable. Several of these

have been employed in corner-based systems; see Chapter 7.

6.3.1. Corner Detection

Corner vertices occur at boundary edge crossings; see Figure 6.7. Thus they can be

found by searching for intersections between pairs of edges. The use of sorted mask data

allows the search to be limited to edges that are near each other, thus making it efficient.

Recall that corners are determined not only by a vertex, but also involve a layer and

edges. The second step in corner detection is to construct a pie-slice data structure, (Figure

6.8), giving the position of edges around a vertex and the mask layers present in the pie-slices

between the edges. In the simplest case there will be only two pie-slices (e.g. the interior and

exterior of a metal corner as in Figure 6.8(a)), and in almost all cases there will be no more

than four slices.

6.3.1

IMPLEMENTATION OF CORNER-BASED CHECKING

(a) Power Bus a.nd Taps

~ ~ 1":'"'

a..-

;~
/

(b) Split a.t Attribute Boundaries

Figure &.&. • SpUta at Attribute Boundules. Attributes may only apply to sections of a

mask region. For example, the major trunks of the power and ground network may be tagged

as buses, while the smaller taps into these trunks are not, (a). It is assumed that the mask

regions are split at attribute boundaries, so that attribute values are constant throughout the

individual figures in the mask data., (b). This ensures that corners on a.ttribute-qua.lifed layers

will not be missed. For example the Metal [function= ".f'I.VRBUS "] corner indicated in (b)

will be detected.

O······ ······0

0······

Vertice1

Flgure &.7.- Corner Vertices. Corner vertices occur where one or more edges cross in the

mask data.. The first step in corner-detection is to search for these edge crossings.

127

6.3.1

IMPLE:MENTA TION OF CORf'.'ER-BASED CHECKING

[~;~;~~ ~ ~?D

(•) Simple Corne~

~r-o-,-o...,.,-1-:-1-o'! o-, o..,l
PDMI cs

b i 1lo11 io1o~1 :oio 11 :o1ol

'""' ""si:uz"""' ""
lo11jol1loiol.../ t lolo!olt:oiol
PDMICB PDMICB

(b) More Complex Corner

Flgure 8.8. • Pl&-Sllee Data StruetUPe. After a vertex is detected, a pie-slice data. structure

is created Cor it. The pie-slice data structure gives the position of all edges about the vertex

and, in bitmapped form, the mask layers present between the edges. At simple corners, (a),

only two pie-slices are present. However, since in general many-edges may meet at a common

point, many pie-slices are possible.

F
Figure 8.0. • Ext:ractlng Corner• from Ple Sllee Data. To find corners on a particular

layer, the corresponding layer expression is evaluated at each pie-slice about a vertex, and then

contiguous slices where the expression holds are consolidated.

128

6.3.1

IMPLEMENTATION OF CORNER-BASED CHECKING 129

However in genera.l, sever:1l '!c~~s rr.ay intersect a v~rtex, and thus :J. larg'! number or pie-

slices is possible. The mask layers present in each pie-siice are represented in bitm:J.pped

form, so that b.yer expressions c:J.n be evaluated on them. The pie-slice data structure is

constructed incrementally, by considering the effect of each mask region present at the vertex.

Efficiency depends, again, on the utilization of sorted mask data.

Corners on specific layers can be extracted from the pie-slice data structure by

evaluating the layer expression on each pie-slice and then consolidating contiguous sectors

where the layer expression is satisfied; see Figure 6.9. This computation is relatively

expenf.ive, and in a typical rules set conditions are associated with 15 or so la.yers of which

only 1 or 2 apply at each vertex; see Appendix I. Thus checking for the presence of each

layer at each vertex is too slow. This is circumvented by an indexing scheme that greatly

reduces the number of layers considered at each vertex.

The idea behind the indexing is simple: there is no point in looking for Metal corners at

a vertex where Metal is not present in any pie-slice. Similarly corners on more complex

layers can only occur when certain mask layers are present; for example a corner on

'(Polysilicon I !Diffusion) & Buried' can only occur when Buried is present. Such facts are

exploited by the rule compiler to build a relevant-layer table that gives, for each combination

of mask-layers, an associated set of relevant layers. The relevant-layers are those with

associated conditions defined in the ruleset, that in addition may occur at a corner where the

given mask layers are present.

If there are 10 mask layers (a typical number), the relevant-layer table would have 1024

entries. Arter the pie-slice data structure for a vertex has been constructed, the bitmaps

giving the layers present in each pie-slice are ored together to obtain a single map giving all

the layers present at the corner. The entry in the relevant-layer table corresponding to this

value is consulted to obtain the relevant layers for this vertex. Then the pie-slice data

structure is searched for corners on each of these layers by evaluating the layer expression on

6.3.1

lMPLEMENTATION OF CORNER-BASED CHECKING 130

the pie-slices :lnd cooso!ida~ing slices, 3.S already described.

~.3.2. Condition Evaluation

Once a corner h3.S been completely identified, vertex, edges, and layer, it is time to

check the conditions that apply to it. One or more decision trees is associated with the layer

of the corner. Ea.:h C:ecision tree represents one or more condition expressions. The trees

must be traversed from the root down, evaluating the root condition first, and then

proceeding with the T or F subtree, according to how the condition evaluates.

The immediate conditions, i.e., angle conditions and zero-depth sector conditions, are

readily evaluated: their value can be determined from the location of the corner edges, and

from the pie-slice data structure for the corner's vertex.

Regional conditions, i.e., sector conditions with positive depth, are more difficult to

evaluate. To evaluate them one must determine whether a layer expression holds throughout

the interior of the sectors. This is accomplished by fracturing sectors at each mask region

boundary, dividing them into "monochromatic" chunks, each containing a definite

combination of mask layers throughout, and then evaluating the layer expression on each

chunk separately. See Figure 6.10.

For totally-sorted mask representations, such as corner-stitching and scanline, the
'

fracture lines are available so no special computation is required to do the splitting. If a

partially-sorted mask representation is used, such as binning or sorted swaths, a clipping

procedure must be employed to break the sector into the appropriate chunks. Though in the

worst case this sector splitting process can be computationally intensive, on the average it is

not unreasonable. The splitting need onry involve mask layers occuring in the layer

expression. For example a sector checking for the presence or absence of metal need only be

split at metal boundaries. Consequently most sectors will not be split at all unless a violation

is present.

6.3.2

IMPLEMENTATION OF CORNER-BASED CHECKING

fi:o:olo:o:ol
PbMICE

loiO;OIOlOtol
PD!WiJ CB

(oilioto!o!ol
PbMICD

hloiolo!olol
PDMICB

(ololofoiotol
PDMICB

Flgure &.10. - Seetor Condltlon Evaluation. Sector conditions are evaluated, by splitting

their interior into "monochromatic" chunks, each with a. definite combination or ma.sk layers

present, and then evaluating the layer expression for the condition on each chunk. This process

is not a.s costly a.s it at first appears. The splitting need only be done for ma.sk layers involved

in the layer specified by the condition. In practice most sectors need not be split (they are

monochromatic with respect to the relevant layers).

131

Since true circular sectors are difficult to work with, e.g., to split into monochromatic

pieces as above, polygonal approximations are used in practice; see Figure 6.11. The greater

the required· accuracy (in diagonal tolerance checks), the more complex this polygonal

approximation must be. A greater range of angles in the mask data also requires more

elaborate sector approximations: sector approximations employing only 45 degree angles can

be quite accurate if the mask data is similarly restricted to 45 degree angles. The cost of more

elaborate approximations is considerable. The total time spent processing conditions in

Leo45, which uses 45 degree approximations as described above, is 3.6 times that of Leo, its

manhattan predecessor.

0.4. The Rule Compiler

The rule compiler converts the human readable and writable, external rule description to

an internal forn1 that permits efficient checking. Aspects of this task include:

i. Macro expansion

ii. Parsing of the input language

6.4

....

IMPLEMENTATION OF CORNER-BASED CHECKING

Actual

Shapes

Manhattan

Appro:c.

D

D
------------- ~--------- -1------ -I--

I I I

45- Degree

Appro:c. D
I

<J
------------- ~--------- -1------ -I------.

General

Polygonal

Appro:c .

D
I

Flgun 8.11. - Polygonal Seetor Approxlma.itioJUI. Polygonal approximations or sector

regions are used during processing. The simplest approximations are the Manhattan ones.

Though these result in excessively conservative diagonal tolerances, they have been successfully

employed in Manhattan-only systems. The next simplest approximations, using only 45's, are

quite satisfactory when the mask data is similarly restricted. General approximations are more

accurate, but require more processing.

iii. Conversion or layer expressions to DN"F

iv. Generation or the relevant-layers table

v. Conversion or condition expressions to (optimal) decision-trees

132

Macro preprocessers and parsers are well understood. They can be implemented, (or example,

with the Unix tools M4 [Kernighan & Ritchie 19ii], Lex [Lesk 1975J and Yacc [Johnson 1975j.

6.4

IMPLE?vfENT A TION OF COR!'\'ER-BASED CHECKING 133

The remaining topics, conversion to D~"F, generation of the relevant-byers t:::.ble, :J.nd

decision-tree construction, :ue more specific to rule compilation; they are considered below.

0.-i.l. Conversion to Disjunctive Normal Form

Recall that conversion of layer expressions to disjunctive normal form permits an

efficient bitmapped evaluation technique. It is also useful to convert condition expressions to

DNF prior to generating decision trees. DNF facilitates the expression specialization and

simplification required to create decision trees, and also permits heuristics based on the term

structure of DNF; see the section on dedsion trees below.

Whether the primitives of the expression are mask layers or conditions, the process of

conversion to DNF is the same. It consists of a sequence of transformations beginning with

the parse tree for the original expression and ending with an equivalent tree in DNF form.

The process is illustrated with the parse-tree for the expression in Section 2.5; see Figure

6.12(a). The goal is the OR/ AND /NOT structure of Figure 6.12(d).

The first step is the elimination of if constructs, by the application of the

transformations shown in Figure 6.13. The application of these transformations converts the

tree of Figure 6.12(a) to that of 6.12(b). After this step all interior nodes are either AND,

OR, or NOT.

The second step is to push NOT's down to the leaves of the tree. This is accomplished

by the transformations of Figure 6.14, which are based on DeMorgans laws and the law of

double negatives. The transformations are applied to NOT nodes, working from the top of

the tree down, until all remaining NOT's are positioned just above the leaves. Applying

these transformations to the tree in Figure 6.12(b) yields 6.12(c). After this transformation,

only AND's and OR'" are left in the top part of the tree.

The final step is to move the AND's through the OR's. The required transformation,

based on the distributive law, is shown in Figure 6.15. Applying this transformation to the

6.4.1

IMPLEMENTATION OF CORNER-BASED CHECKING

r--
1

I

(a) Original Parse Tree

(b) IF'• Removed

Lj

(e) NOT'• at Leave•

(d) Normal Form

Flcw'e &.1%. • Converalon to DNF. These are the stages in the conversion o(an example

parse-tree to DNF. Notice the stratification o(OR, AND, and NOT nodes in the final, Dl\I"F,

representation, (d).

134

6.4.1

L\1PLEl'vfENTATION OF CORNER-BASED CHECKING

~A~ .~.--.
/_-ry._\ /n\ /n\ /T2\ /rs··

.:n\ .:n··. /r:\

/n\

(a) if-then (b) if-then-else

Figure &.13. - Tranaformatlona ellmlnating Ira. These transformations replace if
constructs with equivalent structures involving only AND, OR, and NOT.

/A
:T1'- :1'2-.

/ \ l : ..

~~ /A
{!.(:. /.!.¥.\ /.!.!.\ /.!.?.\

ft . ' .. '
/r1\ /r2\ . ________ _. ·

(a) DeMorgan's Laws- AND (b) De..\.forgan'a Laws- OR

.:Tl-..
'··------t

(c) Law or Double Negatives - NOT

Flgure &.U. - Tranal'ormatlona Pushing NOT's to Leaves. A NOT is moved through

an AND by (a.), and through an OR by (b). Adjacent NOT's are collapsed by the

transformation in (c). These transformations are applied systematically from the root of the

tree down, leaving NOT's only directly above the leaves.

135

example, (Figure 6.12(c)), and consolidating adjacent AND's (and OR's) to single multi-

argument functions, yields the final D~'F tree shown in Figure 6.1:?(d).

6.4.1

IMPLEMENTATION OF CORNER-DASED CHECKING

/'£!_\ /T2\ /T1.... T3 ·. /T2·· rs··.

Figun 8.15.- T:r&nslormation moving AJ.~l)'s through OR's. Systematic application of

this transformation from the root of a tree down, moves a.ll the AND's below the OR's. This

is the final step in conversion to disjunctive normal form.

136

DNF trees for layer expressions are translated to bitmapped form. DNF-trees for

condition expressions are the input for the decision-tree generation algorithm.

6.4.2. Generation of Relevant-Layers Table

Recall that the purpose of the relevant-layers table is to limit the layers considered in

searching for corners at vertices. The table has an entry for each combination of mask layers.

Each entry consists of a list of layers for which corners are possible at a vertex where the

given mask layers are present.

The table is created by considering, for each mask layer combination, the entire list of

layer expressions associated with corners, and retaining those for which a corner might be

present. However, simply evaluating the layer expressions for each set of mask layers does

not work. For example suppose polysilicon and diffusion are both present at a vertex. Then

the expression 'P &!D' evaluates to false, yet, since diffusion need not be present in every pie-

slice around the vertex, a corner on 'P &!D' i8 possible. In general, since the presence of a

layer somewhere at a vertex does not imply its presence everywhere, the value of negated

variables in expressions can not be predicted. The trick is to modify the evaluation of

6.4.2

lMPLE~iENTATION OF CORI\ffiR-BASED CHECKING

expressions tD igncr~ nega.ted V:J.riables. S;:·ecinca.ily, the computation:

((pos~1ask[ij & layers)== posMask[i]) II
((negMask[ij I layers)== negmask).

is replaced by simply

(posMask[ij & layers) == posMask[ij

137

If an expression evaluates to true under this modifed evaluation scheme, a corner on that

layer is possible at vertices where the given mask layers are present.

6.4.3. Conversion to Decision-Tree Form

Condition expressions are put in decision-tree form to specify the exact order of

evaluation and avoid unnecessary condition evaluations. A decision tree is built by choosing a

condition for the root of the tree, and then proceeding (recursively) to build the T and F

subtrees. This process involves choosing root nodes and deriving expressions for the subtrees.

Both st~ps assume a D!'.T representation of the input expressions.

Huristics are used to choose, at each step, the root condition that is most likely to

minimize the amount of computation required during evaluations of the expression. The

following heuristics (approximately in order of priority) are the most important:

i. Prefer immediate conditions.

ii. Prefer conditions appearing in the most terms.

m. Prefer conditions whose appearances m positive and negated forms are most nearly

balanced.

Immediate conditions are chosen first because they are cheap, and their early evaluation is

likely to reduce the number of more expensive region condition evaluations required.

Conditions appearing in many terms are evaluated early, since they potentially greatly reduce

the number of conditions left to evaluate. Between two conditions appearing in many terms,

the one with the number of positive and negated appearances most nearly equal is chosen

6.4.3

IMPLEMENTATION OF CORJ'.<"ER-BASED CHECKING 138

first, since, true or hl.se, it is guaranteed to reduce the number oC conditions left to ev::du:J.te.

Notice th:!.t the second and third heuristics utilize the term structure of Di'o"F.

Once a root condition is chosen, expressions for the true and false subtrees must be

derived so that the process can be continued. The idea is to replace the root condition with

true, ('T'), and false, ('F'), and simplify to obtain the expressions for the T and F subtrees

(respectively). Since the expressions are in DNF form, the simplification can be managed as

follows:

i. Cancel T's appearing a.s positive variables, and F's appearing a.s negated variables. Ir this

reduces the number ot variables in any term to zero, reduce the entire expression to T.

ii. Cancel terms where F appears a.s a. positive variable or T appears a.s a. negated variable. If

this reduces the number or terms in an expression to zero, reduce the entire expression to F.

A third simplification is useful for removing redundant terms:

iii. I! Ti and Ti a.re terms or the same expression, and term Ti contains all variables in term

Ti, the negated variables in negated form, and the positive variables in positive form, then

cancel term Ti from the expression.

T~ese simplifications are illustrated in Figure 6.16. The end result of simplification is T,

F, or an expression involving neither T nor F. If an expression simplifies to T or F, its value

is completely determined, and no further conditions need be evaluated: a leaf node is created.

Otherwise, a root condition is chosen for the subtree and the process is continued.

Recall that when two condition expressions for corners on a layer share common

conditions, redundant evaluation of those conditions can be avoided by combining the

expressions into a single decision tree. A decision tree for multiple expressions can be created

using the same procedure as above, but simplifying each expression separately. A leaf is

created when all the expressions have been reduced to T or F.

0.5. Summary

Corner-based checking involves the detection of corners in a design and the verification

of the conditions specified for the corners by the design rules. These steps can be executed

6.5

INIPLE~1ENTATION OF CORNER-BASED CHECKING

r
/ -~

AB/T I cy => A.B ' {'

I - ~' '

(i) l ;r + CE => T ~

\.__Term becomell null.

r ~+CD +Yif => CD
(U) l jd => F

\.__ ExpreBsion becomes null.

{ill) ftFJ(f + ABCD + EF => ABCD + EF

\.__ Subterm.

Figure 6.16. • Expression Slmpllilcatlon. DI'.r expressions containing T'a and F'o can be

simplified as in (i) and (ii). Such simplifications may lead to redundant terms or subterms.

Such terms should be eliminated as illustrated in (iii). After these simpilifications, an expression

will either be Tor F, or will not contain T and F.

139

simply and efficiently if a good internal rule representation is used. In particular the bit-

mapped DNF representation of layer expressions speeds up both steps. It allows machine-

level, bit-parallel, logic operations to be used for quick evaluation of layer expression,

facilitating both the detection or corners, which occur on layers, and the verification of sector

conditions, which requre layers to be present or absent throughout a sector's interior.

The indexing or rules is also important: a typical ruleset contains many rules, only a

few oC which apply at any given vertex. The relevant-layer table is used for indexing. Given

the combination of mask layers surrounding a vertex, the table is consulted for a list of layers

on which corners (with associated rules) might be present. Only corners on these layers, and

hence the rules associated with them, are considered at a vertex. The rule compiler computes

the relevant-layer table, using a modified evaluation scheme for layer expressions that ignores

6.5

'

IMPLE:MENTATION OF CORNER-BASED CHECKING 140

negJ.ted varaibles. Layers that evaluate to tr'J.e under this scheme ma.y be present at the

vertex in question.

The representation of condition expressions 1s another important aspect of rule

representation. The order in which conditions are evaluated can effect the total cost of the

computation, because the evaluation of one condition will in some cases eliminate the need to

evaluate another. Condition expressions are represented by decision trees that specify the

exact order of condition evaluation. The rule compiler employs heuristics to choose a good

order of evaluation when constructing decision trees. For ex:1.mple, cheap conditions are

evaluated early in the hope or eliminating the need to check more expensive ones, and

conditions that appear in multiple terms of an expression are checked early since they can

potentially eliminate the need to evaluate many other conditions.

Because of the importance of a good internal rule representation, the rule compiler is a

crucial component of corner-based implementations. The use of a rule compiler to translate

rules to an efficient internal format makes corner-based design rule checking simple and fast

~.6. References

Normal forms and logic expression manipulation are discussed in [Hohn 1966]. Compiler

writing tools, for automatic generation of lexical analyzers and parsers are presented in [Lesk

1975] and [Johnson 1975]. A general macro preprocessor, suitable for use in corner-based

DRC systems, is detailed in [Kernighan & Ritchie 1977].

[Hohn 1966]

F.E. Hohn, Appplied Boolean Algebra, The Macmillan Company, New York, 1966, pp.

41-51.

[Johnson 1975]

S.C. Johnson, "Ya.cc: Yet Another Compiler Compiler," Comp. Sci. Tech. Rep. No. 32,

Bell Laboratories, Murray Hill, New Jersey, 197 5. Reprinted in UNIX Programmer's

Afanual, Supplementary Documents, 4.2 Berkeley Software Distribution, Virtual VAX-

11 Version, Computer Science Division, University of California., Berkeley, CA, March,

1984.

6.6

IMPLEMENTATION OF CORI\IcR-BASED CHECKING 141

iKernighan & Ritchie 1977]

B.W. Kernighan, and D.M Ritchie. "The M4 ~!aero Processor," Comp. Sci. Tech. Rep.,

Bell Labs, ~furrJ.y Hill, ~ew Jersey, 1977. Reprinted in r..:NJX Programme:r'J }fc.nual,

Supplementary Documenta, 4.2 Berkeley Software Distribution, Virtual V.lw"X-11

Version, Computer Science Division, University of California, Berkeley, CA, March,

1984.

[Lesk 1975]

M.E. Lesk, "Lex- A Lexical Analyzer Generatior," Comp. Sci. Tech. Rep. No. 39, Bell

Laboratories, Murray Hill, New Jersey, 1975. Reprinted in UNIX Programmer'a

A1anual, Supplementary DocumentB, 4.2 Berkeley Software Distribution, Virtual V A.X-

11 Version, Computer Science Division, University of California, Berkeley, CA, March,

1984.

6.6

142

CRAFTER 7

Survey or Corner-Based Systems

7 .1. Introduction

This chapter considers actual corner-based systems. None of these systems implement

the corner-based formalism or the previous chapters in complete generality, though the

combined features of two or them, Mart and Leo45, come close. For each system, the nature

or its features and restrictions are presented, its implementation is discussed, and its rule

checking capabilities are analyzed. The structure or the sy&tems and their implementations is

similar to that or the general system developed in the previous two chapters. Differences are

Cor the most part due to restrictions in the actual systems that simplify implementation and

limit rule checking capability.

The Magic and Intel systems presented at the end of the chapter do not use the corner­

based formalism or the previous two chapters. These systems are included because they

independently employ the two key innovations of the corner-based approach: The Magic

system uses context-based checking, and the Intel system uses point/edge comparisons to

implement its tolerance checks.

Performance figures and other numerical data for all the systems discussed in this

chapter are given in Chapter 9.

7.%. Lyra

Lyra, the first corner-based design rule checker, [Arnold & Ousterhout 198~J, was coded

by the author in the summer or 1981. Lyra was written as an experiment to test ideas for

corner-based checking, and also to fill a need for an accurate and flexible DRC at Berkeley.

Lyra was completed just in time to check the RISC-1 chip. Later Lyra was extended to check

7.2

SURVEY OF CORNER-BASED SYSTEMS 143

designs Jier:uchically (see Ch:.;;ter 8) J.nd ::J.dded to the 3erke!ey "Y'LSI Tools distribution tape.

An editor interrace allows Lyra to be invoked interacti,·dy from Caesa.r, [Ousterhout 1981L

Kic, [Keller & Newton 198~], and other graphic editors to check selected portions of the

design currently being edited. Lyra. is in active use both at university and industrial sites.

Rulesets for a number or ~IOS processes have been written.

7 .2.1. Features and Restrictions

Lyra is less gener::J.l than the corner-based system described in Chapter 5 in three ways:

i. It is m3nh:l.tt3n.

ii. The form of condition expressions is restricted.

iii. La.yers ca.n not be qualified by attributes.

Lyra processes only manhattan mask data, and uses manhattan boxes in place of

sectors; see Figure 7 .1. Zero-depth sectors are implemen~d by thin boxes, one unit of

resolution wide, as are inclusive sector edges.

The manhattan nature of Lyra is its most apparent limitation. Manhattan design

simplifies CAD tools and is widely used in university settings. The restriction to manhattan

data is more problematic in industry. The use of manhattan boxes to approximate sectors

results in overconservative checking of diagonal tolerances; see Figure 7.2. For example a 3

unit spacing rule would !lag diagonal spacings of up to 3v':2 =4.23 units. However tight

diagonal spacings are awkward in strictly manhattan designs anyway, and rarely come up.

Circuit designers at Berkeley have not found manhattan distances difficult to live with.

Condition expressions in Lyra rules must take the form,

lf {!1 and 12 and · · · and I;-} then

{R1 and R2 and ... and Rk}

where 11 through I1 are immediate conditions and R 1 through Rk are regional conditions.

One of the immediate conditions in each rule must be either 'corner.angle=90' or

7.2.1

SURVEY OF CORNER-BASED SYSTEMS

I

~····· ·····---~ . . I I u
(a)

D
(b) D I lUNIT

I o ••••••..•••
(c)

..__ ___ _,1 I 1 UNIT

GENERAL METHOD LYRA

Figure 7.1.- Sub.titutlng Manhattan Boxes for Seeton. In Lyra, manhattan boxes are

used in place of circular sectors, (a). Thin boxes (one unit of resolution wide) are used for

inclusive edges, (b) and (c).

144

7.2.1

§URVEY OF CORNER-B.\SED SYSTEMS

A

B

' .. .;~-:--: .: .. +. ~·----­··+++·:·.:. ..
• • ·!".- ~ •• ·:--- ~-.-. •

• 0 •• '

1 ::L)::t:):::t:.

Flgw"e 1.%. • Over-Conaervatlve Diagonal Tolerances. Vsing manhattan boxes in place

of circular sectors results in over-conservative diagonal tolerances. For example, above,

although A and B are more than 3 units apart they would be flagged by a 3-unit spacing check

using manhattan boxes.

145

'corner.angle=270'. (These are the only posisible corner angles in manhattan designs). Thus

condition expressions in Lyra consist or two parts, a list or immediate preconditions, and a

list or regional conditions. If all the preconditions hold at a corner, then all the regional

conditions must also hold.

Condition expressions in Lyra are more restricted than the general expressions developed

in Chapter 5. In particular expressions such as 'R 1 or R2', specifying that one or two region

conditions must hold, and 'not Rl', useful for checking that a layer is present at least

somewhere within a sector, are not permitted. Thus complex relationships between

conditions, such as might occur in the more involved industrial rules, cannot be handled by

Lyra. However the great majority of rules take the form required by Lyra. Among the

examples in Chapter 5, only the transistor extension rule involve condition expressions too

7.2.1

SURVEY OF CORNER-BASED SYSTEMS
;

146

complex to be handled by Lyra: parts (a) and (bj of this rule involve two concitionals, part

(c) involves an 'ebe', and part (i) involves an 'or' between two region cond1tions. All of these

expressions can be split in to simpler ones that have the form required by Lyra.

The third restriction in Lyra is that layers may not be qualified by attribute

information. Because of this restriction, rules depending on connectivity information, such as

rules for single-node spacing and rules for spacing between buried regions and unrelated

polysilicon or diffusion, can not be accurately checked by Lyra. Instead, approximations must

be used that sometimes generate false violations. The major complaints of Lyra users have

concerned false diffusion spacing violations, and false buried-contact-related violations, both

stemming from Lyra's inability to handle connectivity. Users cope with these problems by

stylizing their designs to avoid these idiosyncrasies of Lyra. Users who began designing with

interactive access to Lyra (e.g. from Caesar) complain much Jess; they learn the idiosyncrasies

along with the design rules, directly from Lyra.

Lyra can check the great majority of rules occurring in practice, including simple width,

spacing, enclosure and extension rules, transistor and contact form rules and the exotic

facing-edge and anisotropic implant rules. The capabilities of Lyra are satisfactory for simple

nMOS and CMOS rulesets on manhattan designs.

7 .2.2. Implementation

The Lyra system consists of 4500 lines of Lisp code for the checker, and an additional

2500 lines Cor the rule compiler. The implementation follows the general method described in

Chapter 6 but is much simpler. Several factors contribute to the relative simplicity of the

Lyra implementation.

Mask data in Lyra is organized into square bins. Lists of rectangles intersecting each

bin are maintained, one list for each mask layer. This simple data organization minimizes the

complexity of the low-level routines for sorting and traversing the mask data: about 100-200

lines of code suffice where 1000-2000 lines are required for scanline or corner-stitched data

7.2.2

SURVEY OF CORNER-BASED SYSTEMS 14i

or;p.niz;1tious.

Since Lyr:J. does not support byer expressions qualified by :;.ttribute inior:n:;.tion.

attribute information need not be maint:;.ined in tern ally, and layer expression processing is

simplified. In addition vertex detection is simpler, since attribute transitions need not be

considered.

Lyra's restricted condition expressions simplify the rule compiler. The condition

expressions, as specified by the user, can be used directly by the checker. The code to convert

condition expressions first to DNF and then to optimal decision trees is not required.

The use of Lisp allows further simplifcations in the implementation of the rule compiler.

Rules in Lyra are written using Lisp syntax. This permits the direct use of the parsing and

macro processing facilities of the Lisp environment. In addition layer expressions are treated

as Lisp expressions and compiled by the Lisp compiler, avoiding the conversion to D~'F -based

bitmapped form.

Together, restricted condition expressions and the use of Lisp make the Lyra rule

compiler almost trivial: Macro preprocessing, parsing, and layer-expression processing are

done "for free" by the Lisp environment, and condition expressions require little processing.

The remaining significant function of the Lyra rule compiler is the generation of the relevant-

layers index. This is accomplished as described in Chapter 6, except that, since layer

expressions are not represented in D"t\"F form, the evaluation of candidate layers is done in a

slightly more complicated way that bypasses Dt\i'F.

The restriction to manhattan data, and the use of manhattan approximations for

sectors,...simplifies all phases of rule checking. The intersection calculations involved in finding

vertex points, determining the pie-slice data structure and verifying region conditions are all

simpler when only horizontal and vertical edges are involved: the coordinates or intersections

can be read from the coordinates or the intersecting elements, and no slope computations are

necessary.

7.2.2

SURVEY OF CORNER-BASED SYSTEMS 148

The pie-slice data structure is also simpler in a manhattan system. Instead of an

arbitrary number of pie-slices, with arbitrary edge positions, the pie is simply divided into

four quadrants, and the pie-slice data. structure reduces to four bit-mapped words, one for

each quadrant. Corners can be found by evaluating the a.pp:.opriate layer expression in each

quadrant, and then doing a H)-way table lookup based on the result; the more cumbersome

pie-slice consolidation of the general method is avoided.

The processing of region conditions is also simplified because Lyra is manhattan.

Regions are just boxes, and hence are easy to construct. The box is wholly determined by the

location of the corner vertex, and the corner orientation: since the exact angle of the corners

is fixed, the size and shape of region conditions do not depend on the positions of the corner

edges. The use of narrow boxes in place of inclusive edges allows uniform treatment of region

edges, further simplifying condition processing.

Overall, making Lyra manhattan and restricting condition expressions allowed great

simplifications in the implementation, without significantly reducing Lyra's usefulness in the

university environment. The other simplifications came at greater costs. Ignoring attributes

made Lyra blind to connectivity, leading to many false violations in situations related to

single-node spacing and buried-contact rules. The major complaint of Lyra users concerns

this inability to properly check connectivity-related rules. Implementation in Lisp made Lyra

dependent on a large runtime system, and relinquished control of low-level data management

to the Lisp system. This resulted in a much bulkier and slower system than would have

otherwise been the case. Nevertheless the functionality of Lyra is sufficient to make it the

preferred design rule checker at many universities, and its speed is comparable with

traditional region-based checkers.

7.3. Mart

Mart, an integrated design rule checker and circuit extractor, was developed by Mark

Shand & Bruce Nelson at CSIRO in Australia, [Nelson & Shand 1983J. Mark Shand later

7.3

SURVEY OF CORNER-BASED SYSTEMS 149

continued work on ~b.rt at Xerox PA.R.C. The DRC part of Mart is based on Ly:a. :\tb.rt is

neither hierarchical !lor increme!ltal.

7 .3.1. Features and Restrictions

Like Lyra, Mart checks manhattan data only, and uses box-shaped condition regions

rather than circular sectors. Several extension~ of Lyra's capabilities were incorporated in

Mart. The side edges of box regions can be inclusive or exclusive; see Figure 7.3. This

eliminates the need for the long narrow sliver regions simulating inclusive edges in Lyra,

reducing the total number of regions to check by about 40% and improving performance

dramatically. Note however that, unlike the general case, the side edges of a region are either

_both inclusive or exclusive: they can not be set independently. Mart supports somewl!ere-

style conditions as well as everywhere-style ones, that is, a layer expression can be required to

hold everywhere in a region condition or just somewhere inside it. Regional conditions can be

combined with NOT and XOR as well as AND operations, thus regional conditions can

qualify each other. This allows more complex conditional rules to be checked.

\
::::::·:

!M ::::::::::;:::;:: :::::;:: !M ..
. . .

(a) Inclusive Edges (b) Exclusive Edges

Flgure 7 .3. - Ineluaive/Exelualve Box Edges. In Ma.rt, the two edges or a ~ondition box

adjacent to the corner-point, can be either inclusive, (a.), or exclusive, (b). As in the genera.!

system of Chapters 5 and 6, a ma.sk feature directly abutting an inclusive edge is considered to

overlap the condition region.

7.3.1

SURVEY OF CORNER-BASED SYSTEMS 150

Layer expressions in ;\hrt are limited to circuit layers and lobical combin:J.tions of at

most two circuit layers under the operations AND, OR, and NOT. This does not restrict

the functionality of the system however, since circuit byers consisting or arbitrary boolean

combinations of the mask layers can be generated prior to design rule checking, as part of the

circuit extraction phase or Mart. Layer expressions in region conditions can be qualified to

apply only to layers with node numbers equal (or unequal) to the corner layer. Thus

connectivity based rules can be checked.

7 .3.2. Implementation

Mart is written in C and is scanline-based. However the scanline algorithm is not

"pure": corners below but near the current scanline are kept track of so that regional

conditions can be checked on the same pass that corner-points are identified.

Since the form or layer expressions is restricted, conversion to DNF is not necessary.

In the interest of better readability and writability, the input rule description for Mart

does not use Lisp syntax, thus a special· purpose parser is required. The parser was

constructed using the Unix tools Y ACC and LEX.

Since regional conditions are interdependent, regional condition expressions are

represented with parse trees. These parse trees are not converted to D~'F or decision-trees.

Instead, all regional conditions are evaluated, and then the values are plugged into the leaves

oC the parse tree and the tree expression is evaluated directly. However rules have the general

Corm:

lt <immediate condition-'> then <regional-expre33ion>

Immediate conditions are kept separately from regional conditions and evaluated first. Thus

the most important strategy of the decision tree approach (early evaluation of the cheap

immediate conditions) is honored.

7.3.2

SURVEY OF CORNER-BASED SYSTEMS 151

Connectivity inform:1t!oa is g~'.len~ed J.S put of the ci:ca!t extr:J.ctioa !u::1cticn of \hut

and is readily 3.Yaibble to the DP.C.

7.3.3. Rule Checking Capabllltle!

Like Lyra, Mart's most apparent limitation is its restriction to manhattan data. And

like Lyra, Mart also uses manhattan approximations of circular sectors, leading to over­

conservative checking of diagonal tolerances.

the extensions of Mart remove many of Lyra's other deficiencies. Connectivity

information allows Mart to do single-node spacing and buriedfpolysilicon spacing rules.

Complex regional expressions allow rules requiring context established by regional conditions,

such as reflection rules and open-area-dependent width rules to be handled.

The lack of general attribute capabilities makes rules employing nongeometric

information other than connectivity, such as special rules for regions of high current or for

VDD and GND nodes, difficult to implement.

Mart is consider3.bly faster than Lyra, for fiat (nonhieruchical) checking. The reduction

m the number of region conditions afforded by the use of inclusive/exclusive edges is one

!actor. The use of the C language for implementation, and general attention to efficiency, are

others. See Appendix I Cor performance measurements.

7.4. Leo45

Leo45, the Metheus DRC, deveioped by myself and others at Metheus, is the first

commercial corner-based DRC. It is hierarchical and incremental. True to its name, Leo45

handles 45 degree angle mask data. (The first version of this program, Leo, was manhattaD

only. Benchmarks for both Leo and Leo45 are included in Appendix I.)

7 .4.1

SURVEY OF CORNER-BASED SYSTEMS 152

7 .4.1. F e3iures 3-nd Restrictions

Leo4.S extends Lyra in a number o(ways. The processin6 of 45-<iegree-angle mask data

is supported and circular sectors are approximated as pieces o(an octagon, rather than a

square; see Figure 6.11. These approximations are quite close to true circular sectors: it is

difficult to generate designs restricted to 45 degree angles for which the octagonal

approximation yields different results than would be obtained with true circular sectors.

Like Mart, Leo45 permits region edges to be specified as inclusive or exclusive. In

Leo45, the two region edges can be specified independently, e.g. one as exclusive and the other

as inclusive. This is useful for specifying zero-width condition fingers that check for a layer

on only one side. Such conditions are simulated with long narrow boxes in Mart and Lyr~.

The Leo45 rule language is a subset of the general language developed in Chapter 5. It

anticipates general condition expressions and 'somewhere_ln' style region conditions, though

these are not yet supported in Leo45. Currently rules in ~eo45 are restricted to the following

form:

tor <layer expression> corners_requlre
lt <angle condition> and <zero depth condition> ...

then <sector condition> and ...

A.5 in Lyra, rules consist of a corner layer, angle restriction, list of immediate conditions, and

list of regional conditions that apply (each independently) where the immediate conditions are

met. Attribute qualifications are not supported.

7.4.2. Implementation

The rule language parser for Leo45 is generated using the Unix tools Y ACC a.nd LEX.

A modified version of the Unix M4 macro preprocessor provides a. macro capability (or

specifying standard rules such as simple width and spacing.

Layer expressions a.re represented using the bitmapped Di'<"F scheme discussed in

Chapter 6. Condition expressions are still simple however, and thus do not require conversion

i.4.:2

SURVEY OF CORNER-BASED SYSTEMS 153

to D0.7 or decision-trees.

Tw~pass scanline processing, is used. Ccrne:s are identi.S.ed 3-:ld ap;)iopri:::.te re:;:·J:l

conditions are generated in the first pass. The second pass checks the regwn conditions

generated in the first.

The processing of 45-degree-angle data adds considerable complexity. The underlying

scanline manipulation is more complicated when 45s are permitted. Edges sloping forward or

backward at 45 degrees must be handled along with vertical edges. Special processing must

be done so that intersections between two 45-degree-angle edges, or a 45-degree edge and a

vertical edge, are not missed, even if they do not occur on an existing scanline. Processing of

corner points is more complicated since edges can meet at various angles.

A corner is divided up into octants rather than quadr2.nts as in manh:lttan systems.

Thus ~omer-detection falls into 256 cases rather than the 16 of manhattan systems. However

this is still simpler than the general pie-slice data structure described in the previous chapter.

A different rule indexing scheme is tried in Leo and Leo45: corner layers are indexed based on

pairs of crossing edges, rather than on the mask-layers present at corner-points. Data

comparing these two methods is given in Section 8 of Appendi.x I. The data suggests that the

crossing-edge method was probably a mistake. The mask-layers present method presented in

Chapter 6 and used by Lyra is more efficient.

The generation of region shapes is much more complicated in Leo45 than in manhattan

systems. The construction of a polygonal sector region given corner edge positions involves a

table lookup to obtain a prototype sector region shape, and then scaling and translation to

obtain the actual sector.

7.4.3. Rule Checking Capabilities

Leo45 is the first corner-based system to support 45 degree angle d~t:J., :;. c~pability

needed for many industrial applications. Leo45 does not yet support attrib11te conditions or

i.4.3

SURVEY OF COR!\.'ER-BASED SYSTEMS 154

arbitn.r; conditio~ expressio;:~s. Thus like Lyr'l, Leo4.S can not properly handle rules involving

connectivity, such as sin6!e-node spacing rules and rules requiring one regional condition to

establish the context in which another applies, such as reflection rules. However Leo45's rule

language is general, and anticipates future enhancements.

7.5. Magic

The Magic DRC, developed by George Taylor and John Ousterhout as a component of

the Magic layout system, [Taylor & Ousterhout 1984], is hierarchical and fully incremental.

The Magic DRC runs in the background checking design modifications as they are entered,

and in most cases providing instantaneous feedback. Though Magic is edge-based rather than

corner-based, it is more closely related to corner-based systems than to region-operation

systems. Like corner-based systems, Magic uses context-based rules, employs a rule compiler

to convert input rule descriptions to an efficient internal form, and indexes rules, so that the

rules applying to a particular location in a design can be quickly found. The phenomenal

performance of Magic demonstrates that context-based checking can be very effective.

7.5.1. Features and Restrictions

The input to the Magic DRC is not simple mask data. Magic maintains abstract layers,

representing various types of transistors and contacts. The designer works with the abstract

layers rather than the detailed device structures, and the design rules are phrased in terms of

these layers. Prior to fabrication, abstract layers are automatically replaced with the

appropriate device constructs.

The use of abstract layers removes much of the complexity from design rules. In

particular, boolean layer combinations are not required to ide~tify device parts (e.g. transistor

gates). The Magic DRC has no provisions for specifying layer combinations.

Rules are edge-based. They specify a left and right layer, a distance and a set of

permissible layers. A rule applies to all edges with the left layer on the left and the right

7.5.1

SURVEY OF CORNER-BASED SYSTEMS 155

l:.l.yer on the right; see Figure iA. For such edg::s only the permissible byers :J.re allowed for

the specified distance. or cou;-se rules can apply right to left, top to botto:n, and bottom to

top also. Empty space is a special iayer, thus width rules can be expressed by omitting empty

space from the list of acceptable layers. An extension ior checking at corners is provided so

that diagonal tolerances can be checked correctly. The extension distinguishes between

convex and concave corners.

Since edges and corners are checked, tolerance checks are essentially implemented by

checking a complete halo about regions. One consequence of this is that tolerances between

two layers need only be checked from one direction. This is an important consideration in

Magic, since design rules are also used to direct plowing, an operation which compacts in a

particular direction.

,----,
I

: __ ~
I

Region Conditions

A B

I
j

d

Flguu '1.4. • Magie Rules. Magic design rules refer to edges. A typical rule specifies that

whenever a. layer A i.5 present on the left side or an edge and a layer B on the right, then only

certain layers may be present for a distance d to the right or the edge. This condition can be

conditionally extended into the corners, depending on the layers present just beyond and to the

left or the edge.

7.5.1

SURVEY OF CORl'ltR-BASED SYSTEMS 156

7.5.~. Rule Cheek!r:s Caps.bll!t!e3

The rule checking c:J.pabilities of :\-bgic are comparable to Lyra. Both systems can

check simple spacing, width, extension and enclosure rules, and the context-b3.Sed rule3 ia

both systems handle simple conditional rules. On the other hand both systems are restricted

to manhattan data, use manhattan distances at corners resulting in overconservative diagonal

tolerances, and can not properly handle rules involving connectivity. Since there is no

provision for boolean combinations of layers in Magic's design rules, the DRC depends on the

existence of suitable abstract layers for checking the more complicated rules.

7.6. Intel DRC

An internal hierarchical design rule checker at Intel, developed by Todd Wagner,

!Wagner 1984], combines the region-operation approach with the corner-based idea of

point/edge processing. Design rule checking is done with sequences of primitive operations.

Primitives include boolean, topological, sizing and tolerance check operations, just as in

traditional region-operation systems, but tolerance checks are implemented using point/ edge

comparisons. This "corner-based" processing, localizes violations to specific corner-points,

facilitating clean hierarchical processing.

7.7. Summary

Current corner-based systems are all simpler than the general system presented in the

previous chapter. Simplifications include restriction of input data to manhattan shapes,

approximation of circular sectors with boxes, restrictions on how conditions can be combined

in condition expressions, and ommission of attribute conditions. These simplifications limit

the rule checking capabilities of the systems. Typical limitations are an inability to check

nonmanhattan data, overconservative diagonal tolerance checks, the inability to check certain

conditional rules such as reflection rules, and the inability to properly check rules involving

connectivity, such as single-node spacing rules.

7.i

SURVEY OF CORNER-BASED SYSTEMS l5i

How~ver not all the sy5tems h.:l.ve all the limitations. Taken together. the systems cor..e

close to exhibiting all the features of the gener:J.l sys:.em. vVhile none of the systems hc.ve a

general attribute capability, permit completely general combination of conditions, or can

h3.ndle all angle input data, Mart has provisions for handling connectivity attribute

information and allows interdependent region conditions to be specified, while Leo45 handles

45 degree angle design data.

The Magic and Intel systems presented at the end of the chapter show that the two key

ideas of the corner-based approach, context-based checking and point/ edge tolerance checks,

can be applied independently. The :\fagic DRC demonstrates th:lt context-based checking can

lead to a very fast implementation, and the Intel system shows how point/edge tolerance

checking can be combined with a traditional region-based system.

7 .8. References

[Arnold & Ouster bout 1 982]

M.H. Arnold & J.K. Ousterhout, "Lyra: A New Approach to Geometric Layout Rule

Checking," Proc. 19th Design Automation Conference, June, 1982, pp. 530-536.

[Keller & Newton 1982]

K. Kenneth and R. Newton, "KIC2: A Low Cost, Interactive Editor for Integrated

Circuit Design," Digest of Papers for COAfPCON, Spring 1982.

[Nelson & Shand 1983]

B.J. Nelson & M.A. Shand, An Integrated, Technology Independent, High Performance

Artwork Analyzer for vLSI Circuit De3ign, Technical Report VLSI-TR-83-4-1, V'LSI

Program, Division of Computing Research, CSIRO, Adelaide, South Australia, April

1983.

[Ousterhout 1981]

J.K. Ousterhout, "Caesar: An Interactive Editor (or VLSI Layouts.", VLSI Design, Vol.

2, No. 4, Fourth Quarter 1981.

[Taylor & Ousterhout 1984]

G.S. Taylor & J.K. Ousterhout, "Magic's Incremental Design-Rule Checker," Proc. 21st

Design Automation Conference, June, 1984, pp. 160-165.

[Wagner 1984]

T. Wagner, Personal Communication, Intel Corporation, Santa Clara, California, 1983.

i.8

158

CHAPTER 8

Hierarchical ::1.nd Incremental Checkin:g

8.1. Introduction

Checking entire VLSI designs on each DRC run is wasteful. VLSI designs generally

contain large amounts of repetition. Examples are arrays of memory cells, nearly identical

bit-slices, and other repeated function blocks. It should not be necessary to recheck every

instance of such repeated blocks. Also portions or a design that have not been modified since

the last DRC run do not need to be rechecked. This waste is particularly acute at the end of

the design cycle, when minor changes to a design, correcting problems detected by DRC or

simulation runs, necessitate a follow-up DRC run requiring many hours or computer time.

Never-the-less, most current design rule cheders still check an entire design each time they

are invoked.

This chapter is concerned with hierarchical and incremental checking, two strategies for

reducing unnecessary checking. Hierarchical processing eliminates redundant checking by

processing subcells only once, regardless of how many instances of them are present in a

design. Incremental processing eliminates redundant checking or unchanged portions of a

design. Together these techniques greatly reduce the CPU time and memory requirements for

design rule checking. A hierarchical check of the Riscl microprocessor chip with Leo45 takes

only 17% of the time of a flat, (i.e., nonhierarchical) check, and a hierarchical/incremental

recheck after modification of a small cell takes less than 1% of the time for a full fiat check;

see Chapter 9. Hierarchical/incremental checking also eliminates redundant violation reports

that can bide important violations in a sea of repetitious output, and permits more interactive

checking, giving users early warnings on design rule violations while they can still be easily

fixed.

8.1

HIERARCHICAL Af\.1) INCRE~ffiNT AL CHECKING 159

method, and J.ierarchical DRC's h:l.~·e been built on top of region-~ase::! systems. Eo·.-·ever tb.e

corner-based method has a nice property that makes it particularly well suited for use in a

hierarchical or incremental system: violations are associated with specific points in the design,

rather than edges or areas. Thus the problem of handling viobtions straddling the region

currently being checked does not arise in corner-based systems. Except for this, the

underlying DRC method is unimportant in this chapter.

Several approaches to hierarchic::J.! checking differing from mine have been proposed, and

a few have been implemented. The next section introduces hierarchical checking and

discusses these approaches. The following section presents my approach to hierarchical

checking, as implemented in Lyra, Leo, and Leo45. This method is also used in Magic. It is

distinguished from others in that it works directly with the hierarchy as the designer sees it,

and imposes no constraints on cell overlap. The extension of this method to incremental

checking is discussed in the following section. Incremental checking was originally

implemented in Leo45, and further extended (by George Taylor & John Ousterhout) in Magic.

I know of no other incremental design rule checkers. The chapter concludes with a summary.

8.2. Hlera.rehlcal Checking - Background

VLSI circuit designs are represented hierarchically; see Figure 8.1. The top level cell is

composed of mask features and subcell instances. The subcells in turn contain more mask

features and subcells. The hierarchy eventually terminates with leaf cells, which contain no

subcells of their own. A design can contain many instances of a single subcell.

Hiera.rchical representation modula.rizes the design, and makes repetition explicit,

namely, as repeated instances of subcells. This permits more structured designs, greatly

reduces the size of the design database, and, potentially, facilitates fast hierarchical design

rule checking and circuit extraction.

8.2

HIERARCHICAL AND INCRE?-.1ENTAL CHECKING

·' e:l u
A:

:-j ::1 •.. ...
B ~:
B c m
B

B: C: F

G

F

G

D: 8B E: ta

Flgu.re 8.1. - ffie.rarehlcal Representation of Deslgn.a. A hierarchical design is divided

into cell1. Cells can contain both mask features and instances of other celLs (subcells). A three­

level hierarchy is illustrated above. The top-level cell, A, contains four instances of a cell B,

and one instance of the cell C. The celLs B and C in turn contain instances of D, E, F and G.

These last four cells are leaf cells: they have no subcells.

150

The idea of hierarchical processing is to process each cell just once, regardless of bow

many instances of it occur in a design. The interfaces between cells must also be checked.

For example a hierarchical design rule checker might check each cell once, and then check

regions near instance boundaries for violations involving interactions between cells.

Hierarchical processing enhances performance by eliminating the need to recheck each

instance of a cell. In addition the time and space penalities of creating and working with the

bulky flat representations of designs are avoided. Hierarchical checking also provides a more

convenient interface to the designer. Design rule violations are reported directly in terms of

8.2

HIERARCHICAL AND INCRE!\1ENT AL CHECKING 161

the cells the des;gner is working with, rather th::Hl in terrns of global coordinates he must

ultimately tran:;iate back to cell coordinates. Also viobtions in cells are repor"ed only on·=e

reg::..rdless of how many times the cells are repeated. Anyone who bas sorted through reams

of output gener3.ted by a traditional DRC, searching fo; a few distinct violations, will

recognize the importance of this feature.

The key problem in hierarcical checking is the handling of cell interactions. Even if each

cell is correct when considered in isolation from its parents or children, there may be design

rule violations that occur because of interactions between features in neighboring cells. All

such inter3.ction must be checked. In practice, the overhead of checking cell interactions

limits the effectiveness of hierarchical checking. For example, a hierarchical check of the

Delay design by Leo45 is actually slightly slower than a fiat check, despite the fact that on

the average their are nearly 20 instances of each rectangle! The reason is that the interaction

checks sums to over half the area of the design. (See Chapter 9 for more, albeit less extreme,

examples.) Different methods of hierarchical checking, differ chiefly in how they handle cell

interactions.

The following subsections discuss various methods for hierarchical checking that have

been proposed, and in most cases implemented.

8.2.1. Whitney's Filter

Telle Whitney developed a hierarchical filter, [Whitney 1983], that creates a flattened

version or a design with many of the redundant mask features removed. A traditional flat

DRC is run on the output of the filter. Versions of the filter have been used at both Caltech

and DEC. For one design the DRC time with the filter (including the time to run the filter)

was 20% o(the time required without the filter. This design was very regular: there were an

average of 74 instances of each transistor specified by the user.

The filter works as follows. A representative instance or each cell is chosen and all the

mask features contained directly in that cell are output as well as all mask features of other

8.2.1

HIERARCHICAL AND INCRE?vffiNTAL CHECKING 162

ceils (including subcells) that are neJ.r enough to intcrJ.ct. Inter3ct:on checks between p::.:rs of

subcells are noted, and a given configuration is output only once. Thus the filter checks one

instance of each cell and one inst:.\nce of each cell/cell inter:J.ction. In outline, the algorithm is

as follows:

CheckCell(c):
it (c not already checked)

write out all ma~k feature~ in c for checking;

for each (~ubcell, sc, in c)

CheckCell(sc);
write out all ma~k feature~ in sc that interact with feature~ inc;

for each (other Bubcell, sco, in c)

lf (sc and sco interact and interaction not yet checked)

write out all pairB of interacting features, with

one element drawn from sc and the other from ~co;

endif
endfor

endfor

mark c aB checked;

endif'

return;

The algorithm is not completely reliable: three way interactions between features in

different cells can cause genuine violations to be missed and false ones to be reported; see

Figure 8.2. This problem seems to be intrinsic to the filter approach. As long as only part of

the design is written out for checking, erroneous checking can result from missing context

near the edges of the parts that are written out.

8.2.2. Scheffer's Strict Hierarchy

Louis Scheffer developed the concept of strict hierarchy in his PhD thesis at Stanford

[Scheffer 1983] and incorporated these ideas in systems at Hewlett Packard and Valid Logic

Systems. A strict hierarchy allows no overlap between subcells or between a subcell and mask

features in the parent; see Figure 8.3. In addition devices may not cross cell boundaries, and

all connection points on a cell boundary must be explicitly labeled as ports. Cell boundaries

8.2.2

HIERARCHICAL Al'i'D INCRE:MENT AL CHECKING

-i I

~~A _____)r~- l
Cau 1 Cau 2

(a) Violation Maaked by Third Feature

* ~
. w···~· ~·
.

.

A A !WMM •••• m i '!4\Xt%\ A
B B C C

Three-Way Pairwise 1 Pairwise 2 Pairwise S

(b) VIolation Involving Three Features

Case 1 Case 2

(c) False VIolation Due to Boundary Conditions

Figure 8.%. • Problema With the IDer&J'ehieal Fllter. The pair-wise interaction

paradigm of Telle Whitney's filter does not handle three-way interactions reliably. The

examples involve three mask features assumed to beiong to separate cells, A, Band C. In (a), if

C is present over the instance of the interaction between A and B written out for checking, (case

2), but not over all instances, {case 1), violations present only in the absence of C will be missed.

If all pair-wise interactions between A, B, and C are OK, a.s in (b), and pr~ent somewhere in

the design, a violation involving a three-way interaction between the features may be missed.

False violations reports can also result if two features are checked outside the context of a third

nearby feature. For example, in (c), if A and B are written out without C, a false violation

results. Problems like the above seem intrinsic to the filter approach.

163

8.2.2

HIERARCHICAL AND INCREMENTAL CHECKING 164

::.re ::::c :. ~ ;s ~~:c ted to rectangles; the user co.n specify a 6eneral manhattan polygon bound::.ry.

Of course :11! the mask features of a cell must be contained within its bound3:y.

Scheffer argues that the use of strict hierarchy is a good discipline for designers as well

as being useful for hierarchical design rule checking and circuit extraction. Strict hierarchy

incorporates the software engineering concepts of clean, explicit, interfaces between modules

and nested scoping.

If strict hierarcy is employed, checking interactions between cells reduces to checking

the parts of a cell near the edges with the parent(s) of the cell. More precisely, the portions of

a cell within the largest design rule interaction distance (!-radius) of the edges, are checked

ntegal

(b) Oreriap ilo Not. OK

Figure 8.3. - St7lct HleraJ'Ch;y. L<mis Scheffer suggests the use o{ strict hierarchy t<l simplify

hierarchical processing or designs. Strict hierarchy allows nonrectangular cell boundariea a.s in

(a), but constrains interaction between cells. Cells are not allowed t<> overlap with other cells or

ma.sk features a.s in (b), points where signals leave a cell must be explictly label a.s ports a.s in

(c), and devices can not straddle eel! boundaries a.s in (d).

8.~.2

HIERARCHICAL AND INCREwfENTAL CHECKING 165

with the the parent. This is illustr::.ted in Figure 8.4.

Nonoverbpping cells do si:nplify hier::~.rchic:ll prccessiilg and avoid situ::l.tions, involving

large overbp between celis, that lead to anomalous beh:wior in other systems (see next

section). But the price is high. Restrictions on design style reduce the designer's flexibility

and limit the use of the checker to environments where the restrictions are honored. In

situations where cell overlap is natural and conYenient, such as sh:ued busses, the designer

must manually fragment the layout into non-overlapping cells. This can result in many

variants of a given cell, each used in a different overlap situation. Strict hierarchy can also

force g~obal wiring to be done in an unnatural way, splitting a wire between several cells it

happens to pass through, and defining ports at each of the cell interfaces. The added

complexity of nonrectangular cell boundaries is necessary to keep nonoverlap of cells from

becoming impractically restrictive.

Checked at this Level

Checked in Subcelle Checked in Parent

Figure 8.4. - IDer&J'ehleal Cheeldng of Striei ffier&J'ehles. Ir strict hierarchy is

employed, e:J.ch cell divides into an outside margin, t{) be checked in the parent cell, an interior

(including the outside margins of subcells), to be checked at this levels, and the interiors of

subcells, to be checked a.t the subcell level.

8.~.~

HIERARCHICAL AI\'D INCRE~vfENT AL CHECKING 156

TJ~ value or forcing d~sig::~ers to :J.dhere to:> strict hier::.:ch;: is unc!e:-.r. Requiring strict

hierarchy for design rule checking reduces the flexibility of desig::~ers and limits the scope in

which the progr:>m can be used. These disadvantages must be weighed against the possible

advantages of clean cell interfaces. The derived disjoint hierarchy approach discussed below,

and the unrestricted hierarchy approach given in the next section explore hierarchical

checking or hierarchies that need not be strict.

8.2.3. Newell and Fitzpatrick's Derived Disjoint Hierarchy ·

Martin Newell and Daniel Fitzpatrick developed a circuit extractor that allows arbitrary

cell overlap in the design hierarchy, but uses an automatically derived disjoint hierarchy

internally !Newell & Martin 1983]. They define a disjoint hierarchy as a hierarchy in which

subcells do not overlap with each other or with mask features from the parent cell, just as in

Scheffer's strict hierarchy. However, disjoint hierarchy differs from strict hierarchy in that

transistors may be split across cell boundaries.

Figure 8.5 illustrates the transformation to disjoint hierarchy. The disjoint hierarchy is

derived by dividing the area of the design into regions uniformly covered by specific subcells

or combinations of subcells, and then creating a new hierarchy with these regions as the cells.

The disjointing process is continued recursively with each subcell, until leaf cells are reached.

In Newell's circuit extractor, the disjointing process is carried out using a scanline

algorithm. Results show that derivation of the disjoint hierarchy is quite efficient. Once the

disjoint hierarchy is obtained, checking can proceed just as with Scheffer's strict hierarchy.

This approach has the advantage or being general and not burdeni~g designers with

restrictions. Its major disadvantage is that a new intermediate internal representation must

be derived and used. Violations in derived cells must be converted back to violations in the

original hierarchy, and it is not trivial to determine which original cell a violation belongs in.

The use of polygonal boundaries (at least internally) also adds complexity.

8.3

HIERARCHICAL Al\oTI INCREMENTAL CHECKING

A
"A u _____ A

A J

(a) Original IDera?chy

p

(b) DlaJolnt Hler&J'ehy

Figure 8.5. • Tr&nsformatlon to Dlajolnt Hler&l'ehy. A disjoint hiearchy is automatically

created by turning regions of cell overlap into independent subcells. Notice that the derived

hierarchy can contain nonrectangular cell boundaries, even if the original hierarchy contains

only rectangular cells.

8.3. Direct Processing of Unrestricted Hierarchy

157

This section presents an alternative method of hierarchical checking I have developed

that allows unrestricted overlap of cells and works directly with the design hierarchy. This

method-has been implemented in Lyra, Leo and Leo45. George Taylor has implemented a

similar method in Magic.

In this approach, interaction regions are identified and checked; see Figure 8.5. The

maximum design rule interaction distance for a ruleset, !-Radius guides the process. The

vicinity of each subcell is searched for other subcells, or mask features. Any cell or mask

feature within !-Radius of the cell boundary is considered to interact with it. Check regions

for interacting objects are computed by expanding their bounding boxes by !-Radius in each

direction and then intersecting them. The resulting regions are checked in a context

8.3

HIERARCHICAL AND INCRE?-.1ENT AL CHECKING

exte::~ding out I-r3.d.ius in e3.cb direction.

A

A

A

L - ___ I

-'

I

'----+---' I --m---
!:1 t .

(a) Find Interactions

1%1 I I I :::·:-:-:-:-:-: --1
I) ::::::::~~ I
'-- ,·· ·.·.·.·.·.·. I

I I

I_ - - - _1

D

I, I

'-- -F'*r+ - -'

(b) Compute Interaction Regions

(c) Check Regions in Context

Flgure 8.8. • Checking lntera.etiona. Interactions are identified by searchir.g for cells or

features within !-radius of each subcell boundary (a). A check region is computed for each pair

of interacting objects, by growing their bounding boxes by !-radius and then intersecting them

(b). Check regions are checked in the context of a slightly larger region that extends beyond the

check region by !-radius in each direction (c).

168

8.3

HIERARCHICAL Ar..'D INCREMENTAL CHECKING 169

Chec\in; a ~ell divides into three ph:J.Sc5:

i. Check mask te:J.tures ccn~a::.ed dire:tiy in cell (oretending suocells do:-~·c

. exist). e

ii. Check subcells (recursively).

iii. Compute and recheck interaction :uea.'l, 3.'l described above.

Ignoring subcells i.n i., can introduce false violations. These will be removed in step iii. when

the regions involved are rechecked.

Performance is further enhanced by handling arrays snecially. Im,tead of checking all

interactions between cells of an array, only representative interactions are checked; see Figure

8.7. Since arrays account Cor much of the regularity of VLSI designs, and such special

handling greatly reduces the overhead required for checking arrays, this method improves

performance of the checker dramatically. For example the overhead (total interaction area /

area of chip) for Risci, which contains large explicit arrays, is only 11% and hierarc hicai

processing speeds up checking by almost a factor of six. In contrast the overhead for the

Delay chip, which contains no explicit arrays, is over 50%, and hierarchical checking is

actually slightly slower than flat checking. This is despite the fact that Delay is essentially a

single large array (though not explicitly specified as an array in the design file) and is more

regular than Riscl; see Chapter 9.

~~terging adjacent and overlapping interaction regions before checking them, improves

performance still further. Merging interaction regions reduces both the number of regions to

be checked and their total area. Leo45 uses the same merging algorithm employed in the

Caesar layout editor !Ousterhout 1984] to merge interaction regions into maximum horizontal

strips before checking them. This reduces check time by about 35%.

Though the above method of hierarchical checking does not restrict overlap between

cells, it does restricts designers in another way: each cell must be design rule correct in

8.3

HIERARCHICAL AND INCREMENTAL CHECKING

...------------------------------------,

I
i
i
I.

.._

A{3,0}

A{2,0}

A{1,0}
- --------------

- ·-·---------·;-
I

A{O,OJ
I
I
I

1---

,.---

check region
~

_;

A{3,1} A{3,2}

A{2,1} A{2,2}

A{1,1} A{1,2}
r-:

I

I
I

_j

I

~[1,0} A{2,0}
I
I
I

A{3,3}

A{2,3}

A{1,3}

A{3,0}

i'
I
I

L.

I
I
i

J

Flgul'e 8.7. • Speeial H&ndllng of Arrays. Interactions between component cells in an

array are repeated over and over. Performance is greatly improved by checking only

representative regions (the dashed regions above). All interactions in the array are identical to

intiractions in these regions.

170

isolation: a ·cell may not contain half a bus, half a contact or half a transistor. This seems to

be a reasonable restriction, and no designer has complained about it. Hierarchical processing

is of course most effective for designs involving little overlap, and degrades steadily as the

amount of overlap increases. In this methodology, designers are free to exercise their own

judgement, but must pay for their sins.

8.3

HJERARCHICA .. L AND INCREivfENT AL CHECKING lil

se•;erely. Designs containing large :!.mounts of ove~!ap C:!.:l take 5eve:3.l time3 lor:ge~ to c~ec:;:

hierarchically than fiat! This is because the m2..Sk features inside overlap regions c2.n end up

being checked multiple times, i.e., first while checking the cells involved in the overlap, and

then again when interactions between cells are checked.

For example, pads and global wiring ar--e frequently placed in one subcell, while the rest

of the design is placed in another. A hierarchic2.l check of such a design checks t~e design

hierarchica\ly, and then once again fiat. The fiat check is done because the entire design is

one large interaction region between the pad and wiring cell and the cell containing the rest of

the design. This particular problem can be avoided by making the body of the design a

subcell of the pad and wiring cell, rather than making them both subce!ls of a common top­

level cell.

8.4. Incremental Checking

Incremental checking involves only checking the parts of a design taat have been

modified since the last DRC check. Incremental checking greatly reduces the time required

for individual DRC runs, particularly near the end of the layout process. Benchmarks on the

Rise! chip show that an incremental check of the chip after modification of the toplevel cell

(which contains the global wiring) takes 40% of the time of a full hierarchical check, and the

incremental check time after modification of a leaf cell is 1% of the time for a full check.

By reducing the computing resources required for design rule check runs, incremental

checking permits frequent checks, creating a much more interactive environment. Early

detection of design rule violations can save much effort later, since, for example, a spacing

violation can be fixed before it is boxed in by other parts of the design. Incremental design

rule checking also encourages greater experimentation and refinement at the end of the design

process, since each change does not require another full DRC run on the design. Finally,

incremental checking provides automatic checkpointing. If a long DRC run is interrupted

8.4

HIERARCHIC . .o\L A!\'D INCREMENTAL CHECKING 172

bec::J.us.e of computer bilure, the next iocremeatal r~n will automatically re~ume where the

last one left off.

I know of only two incremental design rule checkers: Leo45 (and its predecessor Leo),

developed as part of this research, and the recently developed Magic design rule checker.

These two systems are discussed below.

8.4.1. Leo45

Leo45 is incremental by cell. It rechecks only the cells that have been modified since the

last check, and interactions involving those cells. Since each cell is stored as a separate Unix

file, the date of last modification is available from the operating system. The time of the last

design rule check is stored in each cell. Thus modified cells can be detected by comparing

the modification date for the file containing the cell with the last-checked-date recorded in

that file. In addition to the notion of a modified cell, the incremental algorithm makes use of

the concept of an impacied cell. A cell is impacted if one of its descendent cells (e.g. subcell

or subcell of a subcell, and so on) is modified. Cell interactions involving impacted cells must

be rechecked. Incremental checking in Leo45 is achieved by adapting the hierarchical

algorithm presented in the last section to distinguish between modified, impacted, and

unaffected cells. In outline the algorithm goes as follows:

8.4.1

HIERARCHICAL Al\."D INCREHENT AL CHECKING

c!lec:kCell(c):
l<l' (t I _. cu~c•r·-~j)'
.~.~ c no., a.~rec. ... y ,.J.""J.C .l'\ . .CL j

for e~ch !ubceil sc

checkCeil(sc);

lf (sc J.\JPA.CTED or },fODIFIED)
mark c IMPACTED;

endlf
endfor

tt (c AfODIFIED)
check mask features in c;
!or each (Jubcell, sc)

check interactionJ involving sc;

endfor

else if (c J.\fPAC"IED)
for each subcell sc

if (sc MODIFIED or !AfPACTED)
check interactionJ involving sc;

lf (bounding box of sc changed)

recheck region of previou.~ bounaing box;

endlf
endif'

endfor
endlf

mark c CHECKED;
endlf'

return;

173

Figure 8.8 illustrates an incremental check by Leo45. Note that modified cells are

entirely rechecked, while all interactions involving impacted cells are rechecked. Modifying a

cell can change its bounding box. When this occurs, violations may be introduced or removed

in the region formerly occupied by the bounding box as well as in the region of the new

bounding box. Thus old bounding boxes of subcells are stored with each cell, and the relevant

regions are checked when a subcell is modified.

Incremental checking in Leo45 has proven very effective in reducing the time required

for DRC runs, and has facilitated frequent use of the DRC during the design process. See

Chapter 9 for numerical examples.

8.4.~

HIERARCHIC.AL AND INCRE.MENTAL CHECKING

(a)

(b)

modified
I

A B

A

Flgure 8.8. Incremental Checking In Le<J & Leo45. For purposes of incremental

checking, subcells are classifed into those modified since the last DRC, those impacted (i.e.

having a descendent that has been modifed), and those that are neither modified nor impacted,

(a). All interactioru; between parent cells and modifed or impacted children are rechecked, (b).

In addition all mask features and subcell interactions in modifed cells are rechecked (not shown) .

. ·-

8.4.2. Magic

174

The Magic design rule checker runs as a background process, incrementally checking

each modification to the design and giving, in most cases, instantaneous feedback on design

rule violations. The Magic editor marks regions that have been modified with to-be-checked

rectangles on a special layer. As the design rule checker checks these regions, it removes the

to-be-checked rectangles. The use of to-be-checked rectangles, made possible by the close

coupling between the layout editor and the DRC, eliminates the need to completely recheck

modified cells: incremental checking proceeds on a much finer grain.

Because Magic is hierarchical as well as incremental, the impact of changes must be

checked both up and down the hierarchy. Back pointers to parent cells are kept internally in

8.4.2

HIERARCHICAL AND U'JCREMENTAL CHECKING 175

the Magic syst~::-:1, :o that the irppact oi c!:.J.n:;es c2.n b-= tr::.ced 'lP ~he hier::J.:ch;r.

Continuous de~;gn rule ched.:i::Jg in ~bgic wo:k.s ver; welL The conc~;:;t o! cesign ruie

checking as a long batch run to be performed at the end of the design cycle is completely

absent in Magic.

8.5. Summary

Most design rule checkers check an entire design on every invoc2.tion. This is Wa5teful

m two ways. First, repeated structures :ue rechecked at every occurrence. Second, parts of

the design that have not been modified since the last DRC run are rechecked. This chapter

has presented two techuiques for reducing such wasteful redundant checking, hierarchical

checking to avoid rechecking repeated instances of the same structure, and incremental

checking to avoid rechecking parts of designs that have not changed since the last DRC run.

Both techniques have proven effective. A hierarchical check of Riscl by Leo45 takes only 17%

of the time of a flat check, and an incremental check after minor modifications to a design

takes only about 1% of the time for full check.

The basic idea of hierarchical checking is to check each,cell only once, regardless of the

number of instances of the cell in the design. However this is complicated by the need to

check interactions between cells. Several methods have been proposed to solve this problem.

Telle \Vhitney invented a hierarchical-filter based on pairwise interactions. The idea is that

geometries are output only for the first instance of each pairwise interaction between cells,

and then a traditional DRC is run on the output of the filter. unfortunately, this method is

not completely reliable.· A second approach, championed by Louis Scheffer, simplifies

interactions between cells by disallowing overlaps between cells. Yet another approach,

proposed by Martin Newell and Dan Fitzpatrick, permits ubitrary overlap between cells, but

generates a modified disjoint (or nonoverlapping) hierarchy prior to checking.

My approach to hierarchical checking, implemented in Lyra, Leo, and Leo45, permits

arbitrary overlap between cells, and works directly on the hierarchy specified by the user.

8 .. 5

HIERARCHIC.:\L AND INCRE?vfENTAL CHECKING 175

Cdl inc.~::;.cdcr~ :egwc:s :>:e comput-ed on the ay and c!J.ecked fl.:1t. .!.::2-ys are h3.ndl·:!':l

speci:llly, to minimize inter:>.ction ched: overhead. T:::is approach allows f:J..St checkinz of well

structured designs, :>.nd degr:>.des steadily as the amount of cell overbp increases. (Poorly

structured designs can take longer to check hierarchically than flat, due to a huge amount of

interaction checking.) Designers are permitted flexibility in handling shared buses, edges of

arrays and global wiring.

There are only a couple ot incremental design rule checkers I am aware of: The Leo-15

(and Leo) systems, designed as part of this research, and the Magic design rule checker

recently developed by George Taylor, and John Ousterhout. In Leo45 only cells that have

been modified since the last check, and interactions involving those cells are rechecked. This

is achieved by modifying the hierarchical algorithm to take into account modification- and

check-dates on cells. The Magic system goes one step further, by taggin each each design

modification as it is entered and checking them independently, keeping users continually up to

date. Both systems provide much more interactive design rule checking than traditional

systems, giving users more timely information on design rule violations, allowing errors to be

more easily fixed, and encouraging more experimentation and refinement at the late stage of

the design cycle.

8.6. References

!Newell & Martin 1 983]

M.E. Newell & D .T. Fitzpatrick, "Exploiting Structure in Integrated Circuit Design

Analysis," Proc. Conference on Advanced Research in VLSI, MIT, 1982, pp84-92.

[Ousterhout 1984]

J.K. Ouster~out, "The User Interface and Implementation of an IC Layout Editor,"

IEEE Trans. on Computer-Aided De3ign, Vol. CAD-3, No.3, July 1984, pp. 242-249.

[Scheffer 1983]

L.K Scheffer, The Use of Strict Hierarchy for Verification of Intergrated Circuits, PhD

Thesis, Stanford University, May 1983.

[Taylor & Ousterhout 1984]

G.S. Taylor & J.K. Ousterhout, "Magic's Incremental Design-Rule Checker," Proc. 21st

De3ign Automation Conference, June, 1984, pp. 160-155.

8.6

HIERARCHICAL AP.l) INCREMENTAL CHECKING 177

T. \Vbitney, Pe:son:?.l Comm1;nic:nion. Califomi3. Instit:.!te oi Te-.:b.clOlogy, P3..:ade::n.,

C2.lifornia, 1983.

8.6

178

CHAPT:~::a 9

t1Ieasure:ments

9.1. Int:roduetlon

This chapter presents performance figures Cor a number or design rule checkers.

Measurements a~e also preseuted that relate to various topics discussed in the previous

chapters. These include numbers on hier:uchical/incremental checking, data organintion,

layer expression evaluation, constraint processing and rule indexing.

Most of the measurements were done on three corner-based checkers: Lyra, Leo, and

Leo45. Recall that Lyra, the original corner-based design rule checker, is coded in Lisp and

uses a two-dimensional bin structure to organize data.. Leo and Leo45, belonging to Metheus

Corporation, are coded in C and use a scanline_ organization. Lyra and Leo are strictly

manhattan. Leo45 can handle 45-degree angles as well. All three programs are capable or

hierarchical checking. Leo and Leo45 also check incrementally
Performance figures for a number of other DRC's are also given. These include the

NCA and ECAD commercial region-based systems, Mart, a corner-based DRC written by

Mark Shand at CSffiO in Australia, the Magic DRC, which uses an edge-based algorithm

similar to the corner-based approach, and Baker's pixel-based DRC. More details on these

systems are provided in Chapters 4 and 7.

Most benchmarks were done on V A.'X-11/780's running Berkeley 4.2 BSD Unix. Some

benchmarks were done on the Metheus >., a 68000 based workstation running a port or 4.lc

BSD Unix. The Delay, 3Zplus and Ioc chips, provided by Mark Shand, and the Riscl processor

chip from Berkeley were used for the benchmarks. These designs range in size from 484

transistors (Delay) to 44,000 transistors (Riscl). All or them have a significant amount or

hierarchical structure but only the Riscl chip contains explicit arrays. All use the Mead-

9.1

~1EASUREMENTS
179

Ccnw:?.:r n\WS d-:s:I.:l rules. The channel w\dtb is .) microns, which CC)r:'e5f:>~n·23 to). = '2.5

micro:::s, 3nd e~:h desip is resolYed by a I\ 3z-:d, i.e., by pixels of dimension p. .. Plots, and

detailed statistics on the benchm:uk designs are given in the appendix.

Q.2. Raw Performance

This section gives timings and check rates for nonhierarchical, nonincremental checks of

;\1ead-Conway nMOS designs. Figure 9.1 gives timings for Shand's examples. The numbers

were obtained from actual runs on lightly-loaded V AX-ll/780's, except that the Magic time

for Ioc was extrapolated from the smaller examples. ~hgic could not check Ioc

(nonhierarchically) bec3use of memory limitations.

DRC

l
D =IOC

[}] = 32PLUS

QJ = DELAY

Figure 0.1. • Raw Pel"forma.nee on Sha.nd'a Exa.mplea. The ch:>.rt shows run times (or :>.

number or systems checking Shand's three examples on V A.X-11/780's. All checks were

nonhier:uchical and nonincremental. Magic could not check Ioc nonhierarchically because of

memory limitations; the time given on the chart was extrapolated from sm:.ller benchmarks.

9.2

NiEAS1JREMENTS 180

Figure 9.2 gives che~k-r:J.tes for a numbe; of syste:-:15. The numbers are for Mead-

Conway desi~r:s on VA_X-ll/780's. The benchmarks these numbers were b:;.sed on were on ::..

number o{ machines. YA..X-11/780 rates were computed based on t!:J.e rebtive speed of the

machines. The 0iCA and ECAD numbers correspond to about 5/84. Their current systems

are probably faster.

The numbers in this section give a broad perspective on the raw performance of DRC's,

but it -is dangerous to give them too much weight. There are several problems with

comparing DRC's in this way. First, the checkers are not all doing the same job. Baker's

DRC, for example, does not check all the rules (e.g. the implant rules are not checked), while

Mart, NCA, and ECAD go the exra mile and do the node-extraction necessary for accurate

checking of internode spacing rules. (The DRC part of Mart also serves as the first pass for

circuit extraction.) The NCA and ECAD systems do accurate diagonal checks and have

transistors/hour

25,000

20,000

15,000

10,000

5000

Figun g,:. · Cheek Rate. This chart compares check rates (transistors/hour) for a. number

o(systems. The numbers are Cor nonhierarchica.l nonincremental checks of Mead-Conway

n.\108 designs on a VAX-11/780. Some of the numbers estimates based on benchmarks on

different machines and/or different rulesets.

9.2

MEASURE~NTS 181

provisions to ~::1.::<.:!:~ ::1.E-:;.ngle d,_ta.. Exduding ~--iCA. ar:d EC.-LD. Leo~S cbecb c:~gon::d

dist3r..ces :nuc~ more ~ccur2.tely than the other system::. Second, those DRC's with

hierarchiC3.l and increr.1ental checking op2.bility (Lyra, Leo, Leo-1.5 J.nd ~vbgic) perform much

better in practice than suggested by these fiat numbers.

The above data is particuhrly misleading with respect to ~fagic. In Magic, cont:1cts are

normally explicitly specified by the user and stored in the database. Similarly transistors are

identified and explicitly stored in the database at user entry time. In the Magic benchmarks

reported above, 85% of the time was devoted to reading in the maskdata (CIF) and

perfor~ing the logic::d operations necessary to convert cont:J.cts and transistors to internal

form; checking designs already in Magic format is much faster. The Magic DRC runs in the

background throughout an edit session, and generally appears instantaneous to the user.

g,a. Hierarchical and Incremental Checking

As discussed in Chapter 8, hierarchical processing, particularly when done incrementally,

can greatly improve the effective performance of a DRC system. This section gives statistics

on hierarchical and incremental checks done by Leo45 on the Metheus >. workstation.

Hierarchical checking is done by verifying each cell separately and then rechecking all regions

where cells interact. Incremental checking in Leo45 is done on a per cell basis: only those

cells changed since the last check, and the interaction regions involving those cells, are

rechecked.

Figure 9.3 gives timings for the four example designs. The first two columns give the

times required for fiat, and complete hierarchical checks, respectively. The third column gives

the time required for an incremental check after modification o(the top-level cell, and the

fourth column gives the time required for an incremental check after a lea(cell has been

modified. This chart dramatically illustr:1tes the advantages of incremental checking. The

only exception is the small Delay example, where a change to the top-level cell required the

majority of the design to be rechecked. The chart also shows how the advantages of

9.3

MEASUREMENTS 182

hierarchical checking alone :l.re v3riable: hie:-:uchically checking Deb.y w3.5 actually slower,

while hierarchically checking R:sci resdted i::1 an almost si.xiold speedup.

Additiona.l statistics on the hier::uchical checking of these designs are given in Table 9.1.

The regularity factor, large in all four o{ the example designs, gives the speedup that would be

obtained from ideal hierarchical checking involving no overhead from cell interactions. The

regularity factor is defined as the ratio of the number or rectangles in the fully instantiated

design to the number in the hierarchical representation. Overhead is measured as the ratio of

minutes

20

15

10

5

hours
6

5

4

3

2

1

inc-eaf

fiat hier 1foJ,· }~ij

IOC

minutes
50

40

30

20

10

hours

30

20

10

inc-ea.f

fiat hier 1foJ,- }~ij

RISCI

Figure Q.3. • IDerarehleal & Ineremental Performanee. This chart compares the flat,

hiera.rchical, a.nd incrementa.! performance of Leo45. Two incremental times are given, one for

a change to the top-level cell, and one ror a change to a. le3.f cell. The benchmarks were run on

a. Metheus A.

9.3

MEASlJRE:MENTS 183

that overb.e2.d is o{t;on brge in pr3.c~ice, and tilJ.t it critic:>.il:-- eff-ects hieruchical performJ.nce.

Tfie efficiency of hierarchical checking is also affected by how fragmented the interaction

regions are: because of overhead in starting up a check, one large check can be done more

quickly than several smaller checks summmg to the same area. The aver:1ge s1ze of

interaction regions given m Table 9.1 provides a measure of fragmentation. Note that

performance does appear to be related to this figure.

Fragmentation of inter:J.ction regions is minimized 10 Leo45 by merging adjacent or

overlapping check regions before doing the checks. The effectiveness of this process is

illustrated in Figure 9.4. Notice that mergmg not only reduces the number o(interaction

regions, but also their total area. This is because there 1s significant overlap between the

original check regions.

9.4. Sensitivity of Check Rate to Design Density

In pixel-based systems the processing rate per pixel element is approximately constant.

Thus (or a given resolution (pixels/area) the processing rate (time/area) is approximately

constant. In corner-based systems, in contrast, the processing rate is approximately

Statistics on Hierarchical Checking

average

design speedup overhead interaction regularity arrays

area

Delay .97 52% 253 19.4 I NO

82plus 1.9 36% 461 12.1 NO

Joe 1.3 33% 251 8.3 NO

Rise/ 5.8 11% 709 16.6 YES

Table g.l These statistics were collected for Leo45 running on a V AX-11/780. The columns

give, respectively, the speedup factor for h;~rarchical checking over flat, the are:J. of interaction

checks a..s a percentage of the total chip area, the average area of interaction regions, the ratio

of rectangles in the fully instantiated design to rectanges in the hierarchical representation, and

whether the design contains arrays.

9.4

MEASUREMENTS

I 0 -VI-'!I.hoat~

F~e 0.4. • Importance of Merglns Cheek Regiona Merging adjacent and/or

overlapping check regions prior to checking reduces the total number of regions to check,

increases the average size of check regions, and decreases the total area to check. The

combination of les8 setup overhead for checks (mce the average check region is larger) and lees

total area to check, results in considerable saving11 in total check time.

proportional to the density or the layout and independent or resolution.

184

These relationships are illustrated in Figure 9.5. The first graph shows that the

processing r:l.te of Baker's pixel-based system is approximately constant across Shand's three

examples. The similarity or the second and third graphs show that the processing rate of Leo

is approximately proportional to layout density.

9.4

MEASlJRE~IENTS

PIXEL-BASED CORNER-BASED
II->•*" - .. ,..,)

LA YOl.rr DENSITY
~ .. ,..';

Figun 0.5.- Proeeaalng Rates &nd Layout Denalty. The :a.boYe chart.s illustrate how the

processing rate per unit area of pixel-ba-"ed systems is app:cxi:nc.tei;r c:msta.nt, while the check

rate of corner- based systems is correlated with the layout denisity. The data. is from

benchmarks on V AX-ll/780's.

g.s. Sensitivity to Data Or~aniz.atlon

185

The efficiency of corner-based checking depends on the ability to quickly reference all

features geometrically near a given point. There are many ways to organize data to allow

quick local reference, and I do not know which is best, but there is no doubt that performance

is sensitive to the details of data organization. This is illustrated in Figure 9.6 showing

sensitivity to bin-size in Lyra.

g.o. Layer Expression Evaluation

This section presents statistics on layer expression evaluation for Lyra, Leo and Leo-!5.

The statistics are based on runs on a V.A...:X-11/780, the Delay example, and Mead-Conway

rules. The statistics demonstrate the importance of efficient expression evaluation, and

document the value of the bitmapped DJ';'F method. Differences in the layer expression usage

patterns of Lyra, Leo and Leo45 are also analyzed.

Efficient layer expression evaluation is important because of the sheer number of

evaluations that must be performed during corner-based checking. Figure 9.7 gives numbers

for Lyra, Leo and Leo45 on Shand's Delay example. Note that even for this small 484

9.6

MEASlJRE?v1El'\TS

EXEOJTION
TIME

(in «.eond•)

ZO 40 BIN DI:\JEIER W 100 j

~-------------------------------------(_m __ mo_·~--~ __ "_nd __ wW_·_u._~_J _______________ ___j

Flgtll'e g,e. - Bl.xu ln Lyra. If too small a bin-size is used bin handling overhe~d becomes

excessive. If too large a. bin-size is used too much data. must be searched at each corner. Thus

the performance of Lyra is very sensitive to bin-size. In general the performance or a DRC is

likely to be very sensitive to the details of the data organization employed. The aboYe data is

from benchm:uks of Lyn on l\ VAX-11/780.

185

transistor design, millions of expression evaluations are required. Table 9.2 translates these

numbers into rates.

Given the amazing number of expression evaluations required in corner-based checking,

it is natural to ask what purposes they serve. The layer expression evaluations in Figure 9.7

are subdivided into those required for corner classification, (i.e., for determining which ru!es

apply at the corners), for checking immediate conditions, and for che::king regional conditions.

Corner classification in Leo and Leo45 require about three times as many expression

evaluations as in Lyra. This is due partly to the different indexing methods used by Lyra and

the Metheus systems. The edge-crossing method of Leo and Leo45 result in about 1.5 times

as man~ layer candidates as the layers-present method of Lyra. This is exacerbated in Leo

because false edges are not filtered out prior to indexing. Leo45 filters out false edges, but

requires twice as many layer expression evaluations per layer candidate (one for each octant,

rather than one per quadrant).

9.6

h1EASURE:MENTS

I

2,000,000 1
l,OOO,OCO -

[[ill] = ret;ional conditions

[1:;[~ =- immediate conditions

F< : :j =- corner cb.ssification

Flgun 0.7 •• Numbe1" of Laye!' Expl'~slon Ev&lu~~~.tion4- The chart shows t.he number

of layer expressions required by three corner-based programs to c?eck. the ~84-tr~nslZtor D.e::.y

design. Evaluations are divided into thore used for corner classJ.ficatwn, Immediate-conditiOn

evaluation, and region-conditon evaluation.

Layer Expression Ratea

program exprs./'A 2 exprs./ corner e.xprs./rectangle e:cprs./tramistor

Lyra 4.07 20 150 1408

Leo 12.3 61 455 4267

Leo../.5 16.7 82 614 5761

Table ;.: These expression evaluation ra.t.es were computed from a. benchmark of Delay on a

VAX-11/780.

187

The number or layer expression evaluations required for checking immediate conditions

remains small and approximately constant across the three programs.

The number or evaluations employed during regional condition checking is small in Lyra,

but grows by a factor of four for Leo, and by another factor of three for Leo45. The number

for Lyra is small because layer expressions are evalu3.ted only when mask features on layers

involved in the expressions impinge on the condition regions. In most cases there will be

either no or one impinging feature: none in spacing rules and one in width rules. The number

of eva!uations in Leo is greater because the scanline method used in Leo requires layer

expression evaluations for all impinging features, regardless of layer. Leo45 requires still more

layer expression evaluations because the more complex region shapes employed in this 45-

9.6

MEASUREMENTS 188

de~ree system are checked in pieces, a.nd because extr~ l:;.yer expres~ico. evalu:J.tions :'.r~

required to support inclusive sector edg~s.

Fortun3.tely byer expression evaluation can be done quickly. In Lyra layer expression

evaluation times range from 69.8 microseconds for the simplest layer expression to 8.).5

microseconds for the most complex. They average i 5.9 microseconds. Each byer expression

is compiled as a separ3.te function, so evaluation time is dominated by function call overhead.

The bitmapped D!'iF method, recommended in Chapter 5, and employed by Leo and Leo45 is

even faster. Evaluation times range from 20 microseconds to 32 microseconds, averaging 22

microse-:onds.

Figure 9.8 gives the time required for layer expression evaluation in the context of total

processing time. The hypothetical performance of each system, using the alternate layer

expression evaluation method is also shown. The chart shows that the compiled function

method--would consume over 50% of the processing time in Leo. The Di\TF method requires

23% of processing time in Leo, 12% in Leo45 and would require only 2% in Lyra. Thus it is

apparent that the bitmapped D~'F method of layer expression evaluation is fast enough not to

dominate processing time in corner-based systems, but that significantly less efficient methods

of layer expression evaluation would be too slow.

9.7. Region Condition Processing

Benchmarks on the Delay example show th:1t corner-based systems spend a large part of

their time processing constraints: 30% in Lyra, 56% in Leo and i5% in Leo45. This is shown

graphically in Figure 9.9. Additional statistics are provided in Table 9.3.

Region condition processing is particularly slow in Leo45, because of the added

complexity of the region shapes, and because of extra processing to support inclusive edges.

(~otice that the support for inclusive edges reduces the total number of condition regions).

9.8

r-.iEASu'REMENTS

600

200

Lura Leo

Flgul'e 9.8. - T'...me Required for L.e.yer Expreatalon Evaluation. The chart contrasts

the time required for layer expression evaluation in three programs with the time required for

all other purposes. For each program two evaluation schemes are considered: function-b:..sed

evaluation as used in Lyra, and DNF-based evaluation, as implemented in Leo and Leo45. The

numbers come from benchmarks of Delay on a VAX-11/780. The time that would be required

by each program for the alternate evaluation method was computed from a trace of layer

expression evaluations for th3.t program.

fiilli)] - region-condition checking

~ - region-condition construction

[::J -not region-condition re!J.ted

Fta;w-e ~.0. • Ttme Required tor ~on Condition P:roeesalng. The chart divides total

check time for Delay on. a V A..'{-11/780, into the time required for region-.condition checking,

the time required fo region-condition construction, and all other check time. Region conditon

processing clearly dominates processing time in the 4,S..degree program, Leo45.

189

9.8

~fEASl.JRE~fENTS

r ora~r,.m # conditions ! condi~lons/s.ec. 1 # b.yer ex~r~:cns exprs./ .:onciit!cn
~----+---

-j~ _L_y_ra_~-------~-----------~---------------r------l_.l_S _____ j
Leo 4.72 I

86.990 462
1

100,1.)9 I
I 86,990 787 410,520

.50,272 1''- I 1,239,359 -I Leo..f.5 24.6-5 i

Table 9..3 These statistics a.re for Delay on a. V A.'<-11/780. The columns give the total

number of region conditions checked, the avenge number of conditions checked per second, the

total number of layer-expression evaluations required to process the conditions, and the aversge

number of layer-expression evaluations per condition, respectively.

Q.8. Rule Indexing

190

In corner-based systems, rules are indexed so that those applying to a g1ven comer c:J.n

be found quickly. Indexing is important because rulzsets contain many rules, only a few of

which apply at any given corner. This is illustrated by the numbers in Table 9.4. These

numbers are based on checks of Delay by Lyra and Leo45. Note that, for Lyra, less than 5 or

the 44 rules in the Me:?.d-Conway ruleset are relevant at the average corner. The number of

relevant rules is higher in Leo45, because rules for convex and conc:!ve corners are not

separate. The number of corner-points varies slightly between the two programs, because

different methods are used to filter out false corners.

The basic indexing strategy in corner-based systems is to group rules by the layer they

apply to. Then given a corner-point, layer candidates are determined by some method and

then tested to see if corners on those layers are present. The rules corresponding to the layers

for which corners are actually present are then applied to those corners. Lyra generates

Statistics on Rule Appllcatl.on

program # or Corner Points #of Rules Maximum Rules Average Rules

(/Corner Point) (/Corner Point)

Lyra 20591 44 17 4.78

Leo45 19088 43 20 7.66

Table 0.-' These statisitics apply to checks or Delay. The columns give the total number of

corner points processed, the total number or rules in the ruleset, the maximum number of rules

applying at a single corner point, and the average number or rules applying at a corner point,

respectively.

9.8

tvfEASUREMENTS 191

corae!'-po!n:s by the rr:ethod suggested :n Cha?tcr 6, based on the m2-Sk:-byers present at a

cor::1er-poir:c. Leo-!5 uses a method b~ed on edge intersections. St::.tistics !or the two

methods are presented m Table 9.5. The average number of layer-candidates for the edge-

intersection scheme is about 1.5 times greater than in the byers-present method. But the

number or layers actually applying is also higher.

Two measures of indexing effectiveness are the ratio of layers for which corners a;e

actually present to the number of layer candidates, and the average number of false

candidates per corner. These statistics are shown in Table 9.6. It is clear (rom these

statistics that the layers-present method of Lyra is more effective than the edge-intersection

method of Leo45. Both methods are significantly more effective than sequential testing of

rules or sequential testing of all layers indexing rules. Rule indexing becomes more important

as ruleset size and complexity increases.

Statistics on Indexing Methods

program Total Index Layers Avg # of Candidates Avg # that Apply

Lyra 15 6.12 1.87

Leo45 15 9.64 2.36

Table 0.5 Again, these statistics were obtained for Delay. The columns give the number or
distinct index layers used to index the rules, the average number or index layers considered at

each corner point, and the average number of index layers for which corners are actually

present at a. corner point, respectively.

Indexing Efficiency

program # that apply I candidate #false layers I corner

Lyra 31% 4.25

Leo45 24% 7.28

Table V.& These statistics, obtained Cor Delay, are measures of the effictency of indexing. The

first column gives the percentage of index-layer candid::.tes that actually apply. The second

column gives the aver:l.ge number of layer candidates that do not apply at a corner point.

9.8

192

CHAPTER 10

Summary

This cbpter briefly summarizes the major points of the thesis.

10.1. Previoua Appro~hes to Design Rule Checking

Design rules specify minimum tolerances for topological rebtionships on and between

mz.sk regions. These illclude minimum width, spa.cbg, enclosure and extension tolerances.

Rules can apply to regions formed by combinations of mask layers (such as transistor gates)

as well as to regions on the individual mask layers. Some rules are unconditional, that is they

apply equally to all regions on the specified layers (or layer combinations). Others are

condition:?.!. Conditional rules give tolerances that apply only to selected regions on the given

layers. Conditional rules can depend on the presence of nearby mask features, the length of

conducting line!!, connectivity information, and even the intended function or the features

involved.

The traditional, almost universally used, approach to design rule checking use sequences

of region operations. Each region operation takes one or two layers as input aud generates an

(intermediate) output layer. Each design rule is coded as a sequence of ulection operations,

isolating the regions to which the tolerance applies, followed by a tolerance check operation.

The region operations in a typical system include several tolerance checks, boolean operations,

sizing operations (to grow or shrink. regions) and topological operations that Cor example select ,

all regioas partially overlapped by a specified layer. Other operations allow selections based

on connectivity, or node labels. The main problem with this approach is that it involves a

yery large amount .of data manipulation. Each design rule involves several operations, and

the more complex ones can involve dozens. In checking VLSI designs, each region-operation

in the sequence involves hundreds or thousa"nds of input and output edges. Relatively little

10.1

SUMMARY 103

design ;-u]e c:Oec\in; ;s done per I/0 operation, so the overall result 15 a slow I/0 'Jc2l!,:

system.

Some experimentation has been done with pi_xel-based systems employing special

purpose hardware. These systems represent a design in terms of a fine grid of pixels where

e:l.ch pi_xel is tag,ged with the mask layers present in it. Such a representation involves an

even larger amount of data, and hence has the same problem that the region-operation

approach has: relatively simple processing must be done on a very luge amount of data. Of

course the special purpose hardware might be built with sufficient bandwidth to handle such

data quickly. HoweYer the ballooning of the design into such a b.rge amount of da.ia seems to

be inherently unbalanced. The problem or I/0 to and from the special purpose hardware

remains, and the hardware itself is likely to be expensive. No system of this type has yet

been completed.

10.2. The Corner-Based Approach

The corner-based approach solves the I/0 bottleneck problem plaguing most design rule

check systems. Corner-based checking uses pattern-directed rule application. Patterns at

each corner in a design determine which rules apply, and hence which tolerances are to be

checke.d. The rule patterns are indexed so that the rules applying to a given corner can be

quickly determined (i.e. much faster than a linear search through the rules). Just one paBs is

made through the design data, and no intermediate layers are generated.

Corner-based checking can be used in general settings. Though current corner-based

implementation are restricted to manhattan or 45-degree mask data, their is nothing intrinsic

in the approach that limits it to these settings. Corner-based rules directly replace the

tolerance check and boolean operations of the traditional operation-based system. In addition

multiple condition rules can often (but not always) establish context that would otherwise

require sizing operations. Corner-based checking alone can not replace nonlocal region

operations, such as topological operations, or operations for deriving connectivity. If rules

10.2

SUMMARY 194

requirin3 such operat.\ons :J.:e to be checked, a hybrid syst<:rn :S required, where re_;;io::>.·

ope:ations a:e used to establi~b. nonloc:J.l ccntex'. prior to the co;::1e~-ba.sed cbec!<:n~.

Corner-ba5ed systems :ue quite flexible. V2.riants of rules, that would require the coding

of a new operation in an operation-b3..5ed system, can often be captured by simply modiiying

the comer-based rule specification. Another advantage of the corner-based approach is that it

can easily handle anisotropic rules that are difficult or impossible to handle in region-operation

based systems. This is bec:J.use conditions in corner-based rules can be combined to establish

directional context.

Tolerance checks m corner-b:J.Sed systems are done differently from tolerance· c hec: :,s ln

region-operation systems: they involve distances between corner-points and the boundaries of

regions, rather than distance!3 between pairs or edges. Such point/edge tolerance checking

n:1turally identifies violations with points in the design. This makes corner-based checking

particularly well suited for hierarchical and incremental systems, where piece-wise checking is

required.

10.3. Hlerarchlcal and Incremental Checking

Hierarchical checking avoids redundant checking by checking each cell only once

regardless ot how many times it is repeated in a design. In addition to checking cells,

interactions between cells must be checked. The hierarchical algorithm I used in Lyra and

Leo has three steps:

i. Check sub cells recursively.

ii. Check :1!1 m:l.Sk fe:1tures in current ceil

iii. Find :1nd recheck regions where cells interact.

No special restrictions on cell interaction are required. Arrays of cells are checked specially:

instead or checking all cell interactions in an array, only representative interactions are

checked. The :>lgorithm is effective tor checking hier:J.rchical designs with moderate overlap

10.3

SUM~iARY
195

between c~lls. The sp~r.::.J tre::.tment of ::..rr::.ys :n::..:.:~s ror p~.rticuh:-l;r effic!e::t checking. SlD.~e

most ot the regularity in \"LSI desi~:1s comes in t3.e form of ur:J.ys. However tl::e ::..!go;it2m

handles designs with large amounts of overb.p poorly. Such designs can take sever::.! times

longer to check hier3rchically than fiat. This is because mask features in regions of overlap

are checked multiply, first as part of the overlapping cells, ::.nd then again when the

interaction resulting from the overlap is checked.

The Leo and Leo45 programs were also made incremental. Incremental checking avoids

redundancy by only checking cells that have been modified since the last design rule check.

It was surprisingly easy to ad:J.pt the hierarchical algorithm to be incremental as well.

Hierarchical/incremental checking after small changes to a large design typically takes from

5% to less than 1% of the time for a full flat check. This makes it possible to run design rule

checks frequently during the design process, and hence to catch violations early when they are

still easy to fix.

10.4. Implementatlona

The viability of corner-based checking, and related ideas developed in this thesis, haYe

been demonstrated by a number of systems. Lyra, my initial, manhattan, corner-based

system, has been used on a number of university and industrial projects involving several,

Mead-Conway style, nMOS and C~10S rulesets. Lyra was also the first hierarchical design

rule checker, and demonstrated that hierarchical checking can be effective without special

restrictions on cell interactions. Leo, a second implementation I developed in conjunction

with Metheus corpor:.tiou, showed that corner-based checking can be fast. Leo also

demonstrated the feasibility and usefulness of incremental checking. Mart, a corner-based

design rule checker, developed by Bruce Nelson & Mark Sh:md or CSIR.O, handles somewhat

more complex rules than Lyra., and, in terms of raw speed, is probably the world's fastest

design rule checker.

10.4

SUM~f.ARY 196

Two other systems, emplo;r id"!3.5 ;:w;scnted in this :.hesis. Intel recently develop<:c ::.

r~gion-b3.5ed design rule cb.ec~(er that uses cor:Je:-b:l.sed style (i.e. point/edge) toler::>;1ce

checks. This style of tolerance checking W3..5 chosen to f:J.cilita.te piecewise processing. Fina.lly

the, edge-b&:ed, ?t.bgic design rule checker, recently developed by John Ousterhout and

George T::>ylor at Berkeley, very effectively uses pattern-directed rule application. The :\bgic

design rule checker runs in the background throughout edit sessions, and provides virtually

instantaneous feedback on design rule violations.

10.-1

197

..-\..PPE~""DIX A

Benchmark Designs

This appendi-x contains statistics and a complete set of plots for the benchmark design!'

used for most of the measurements presented in Chapter 9.

A.l Sta.tbtk3

Four b,enchmarks are used: The Deby, 32plus and Ioc designs, provided by Mark

Shand, and the Riscl processor design from Berkeley. These designs range in size from 484

transistors (Delay) to 44,000 transistors (Riscl). All of them have a significant amount or

hierarchical structure but only the Riscl chip contains explicit arrays. All use the Mead-

Conway nMOS design rules. The ch:J.nnel width is 5 microns, which corresponds to >. = 2.5

microns, and each design is resolved by a p. grid, i.e., by pixels _or dimension t>-. Tables A.l,

A.2 and A.3 give detailed size, density, and hierarchical statistics on the four designs.

Size of Deslgna

design a.rea. a.rea. hiera.rchio.l flat tra.nsistcrs rectangles dnwn rect:..::.gles

(>..2) (rm12) (CIF-kbytu)

D~cv 157,433 157,513 13.5 1&5 48-f 282 &475

$1!tiu• 637,304 2515,077 l-f.IS l-47 1,3150 1,036 12,540

foe 5,290,000 2,133,060 357 2,~1 7,286 10,584 87,305

Ri•cl 20,002,750 8,065,608 510 13,ggl H,OOO 32,158 S32,g41

Table A..l

A.l

BENCHlvf.ARK DESIGNS 198

I r~ct3.::J.gles/>.'.) I tnnsistorsj\~ 1

Dei:::y l .02.3 I .00'23 i
qo..,zu • I .0'20 I .0021

I
t,..;-1"'

Joe I .016 .0013

Rise] I .027 .0022 I

Stathtk:s on Hierarchy

design % of d:1.ta in top cell regularity (rect.3/drawn-rect) cells hierarchy depth ..
Dela.y 42 19.4 16 4

S2plus 1.6 12.1 44 6

Joe .05 8.3 346 11

Rise! 26 16.6 202 7

Table A..3

A.2 Flota

Plots Cor the four designs are given below. Ea.ch design is plotted to successively deener

levels or its cell hierarchy (once for each level).

A.2

BENCHMARK DESIGNS
199

~------------·-------

I I

b

f .

Plot. A.l · Delay, top level.

A.2

BENCHMARK DESIGNS 200

ii~~-0 ..• ~ ··~:>:~~.,.::·-.c.: ... -.~~~::: ."~ ., ··':1

~;2l

~~~J~~~f;~~~ ~~:t 
.. F~ -..;~'e..~:-.&f/;'f."f.~··:;.·~: ... :.";.i; :.:cc . . ..... :::l 

··r'·-'~;~ -~!if , ~· ~ ~,. B b.~·.· 
~ · ·· ·· · ·· · · ··· · ,,, o~ r-;~· h . h:~ .o •! $J! r:: 

;:t~; f'iL-1a~r;~w"~ [L-~ ~- ~ac=~~1~ · ~~ i ~~ 
~ U., ';! r-1 ~,-/ hi h r~ ,-,'~ ..-, ,,1J,_, ~~~ i h ~ h ~~~ :r,\4 in~ r; ,_, n ~ 

; 1 [ ~f= ,~ L-. '.\]'-' 'CO ilil'- '- {/, W '11! '-<;!ij'-b'- . w .'- jW 1'-' '- ~ 
~ l!,E1L- ~,..., h~,_,~ n. ~ ,_ ~Q_~ h~.L_,I ,...,flw-1 ~ ,..., , ~ 

-~ ~ ~ ~ rw~ ~ca~ ~ ~ flJ'9r--!~1l~~'-J ~ ~~ ~ 1--- :~ 
""' ~~ .-, r-JIDr1 · h ~n~ [""'! h r-,

1 
n r-1b~..., r ~ ~ :r- :n .-,1&-, ;: 

~~~~~~~~~~~~~~~~~~~~~~~~ 
~![.__ .._ 1'- '- tL-J .._ w ~ L ~· '-'j! .._~ ~ .__ ~~ w. ;::

;.· ·.-.h~ ,_, [""1 ...,1 h ~r; h~~ bl ,_, w- ~- n~-~~ ., ;~
e-:• ~ lw · ~w ~y ~ ._~ If~'- ~"'l ,'- [1-l '-' 1-} i'-' HI~...; ~ r-l'"

~~ , M~l r;~ r~ !M~~ n~ n h~ r ·. r;~ ~~~ n ,....., ~·1 ic:!~ h r,~)·::{

~~,~~~~~~~~~~~~~~~~~~~~~~~ ..
~ ~ !L ~>-; "") ~-~~ ~~ ~.._ ~~ ,<

~, ~ r··
~;;;~··--:::·~·:::"":·~~·;. ~

!::~:·~::••'•·:•·.;.;.;.•.;:;:::<;:;:;:;:;.· .
. · ... '•. ·.·' ,·

Plot A.: - Delay, top two levels.

A.2

BENCHMARK DESIGNS 201

Plot A.3 - Delay, top three levels.

A.2

BENCHMARK DESIGNS 202

Plot A.4 - Delay, top four levels (complete).

A.2

BENCHMARK DESIGNS 203

. l - l l

I

Plot A.5 • 32plua, top level.

A.2

BENCHMARK DESIGNS 204

.....

Plot A.& - 32plus, top two levels.

A.2

BENCHMARK DESIGNS 205

, .
i

~ ~

·~ ~
-'

II:

II:

1:

II

~
I

lt:l
E-

r-
IJ 'iltff/,~.

:= ~

IHII-: ~
Lq!I

= ~o:::~~=r ~·
PU

Plot A.7 - 32plua, top three levels.

A.2

BENCH~I.ARK DESIGNS 205

-

-

11 -
-

-

-
-

Plot .(\..8 • 32plua, top four levela.

A.2

