
Prefix Tables: A Simple Mechanism for

Locating Files in a Distributed System

Brent Welch and John Ousterhout

Report No. UCB/CSD 86/261

October 1985

Computer Science Division (EECS)

University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1985 2. REPORT TYPE

3. DATES COVERED
 00-00-1985 to 00-00-1985

4. TITLE AND SUBTITLE
Prefix Tables: A Simple Mechanism for Locating Files in a Distributed
System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Prefix tables provide a mechanism for locating files in a system whose storage is distributed among many
servers. The result is a single file system hierarchy visible uniformly and transparently to all clients. Each
client of the filesystem maintains a local prefix table that identifies the server for a file based on the initial
part of the file name. Prefix tables are built and modified using a simple broadcast protocol that is flexible
enough to allow dynamic server reconfiguration and a simple form of replication.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Prefl~ Tables: A Simple Mechanism for Locating Files in a

Distributed System

Brent Welch and John Ousterhout

Computer Science Division

Electrical Engineering and Computer Sciences

University or California
Berkeley, CA 94720

ABSTRACT

Prefix tables provide a mechanism for locating files in a system whose

storage is distributed among many servers. The result is a single filesystem

hierarchy visible uniformly and transparently to all clients. Each client of

the filesystem maintains a local prefix table that identifies the server for a

file based on the initial part of the file name. Prefix tables are built and

modified using a simple broadcast protocol that is flexible enough to allow

dynamic server reconfiguration and a simple form of replication. t

October 3, 1985

t This work was supported in part by the Defense Advanced Research Projects Agency under contract

N00030-8&-C-02811 and in part by the Na.tional Science Founda.tion under grant ECS-8351081.

Prefix Tables: A Simple Mechanism for Locating Files in a

Distributed System

1. Introduction

Brent Welch and John Ousterhout

Computer Science Division

Electrical Engineering and Computer Sciences
University or California

Berkeley, CA 94720

This paper describes a mechanism that uses prefix tables to locate files in a distri

buted filesystem. Prefix tables allow the storage for a filesystem to be distributed among

many server machines in a network, yet provide client machines with the appearance of a

single hierarchical filesystem. The distribution of storage is transparent to the user-level

processes running on the clients. To them the filesystem appears just as it would if they

were executing on a traditional timesharing system.

Each client of the filesystem maintains a small prefix table that identifies the server

for a file based on the first few characters of the file's name. Prefix tables are constructed

using a simple broadcast protocol and are updated automatically as the configuration of

servers and files changes.

The prefix table mechanism has four attractive features. First, clients negotiate

directly with file servers to build the prefix tables; this means there is no need for a

separate name service. In Section 7.3 we suggest that if a name service is needed then it

should be built on top of the filesystem, rather than vice versa. The second advantage of

prefix tables is their dynamic nature: they permit the system to adapt gracefully as its

configuration changes. The third advantage is that each client machine has its own prefix

table; by placing slightly different entries in different clients, the mechanism can support

private files and a simple form of replication. Finally, clients need not have any local disk

storage: the information in the prefix tables is received over the network as part of file

name lookup.

Section 2 provides background about the filesystem and the network environment.

Section 3 outlines some approaches to server location other than prefix tables. Section 4

introduces prefix tables and their use in name lookup, and Section 5 describes how prefix

tables are maintained using a simple broadcast protocol. Section 6 presents a few

interesting applications of the prefix table mapping including private files and replication.

Section 7 compares the prefix table mechanism to other naming services. Section 8

describes a prototype implementation of prefix tables that we have constructed as part of

the UNIX operating system [7,4].

2. The Scenario

In designing the prefix table mechanism, our goal was to provide a distributed filesys

tem with the same appearance as the filesystems of typical timesharing systems like

UNIX. This includes facilities such as hierarchical directories, symbolic links, working

directories, and relative path names [7,4]. Besides the usual issues of storage and com

munication, which must be dealt with even in a centralized network filesystem, there are

- 1 -

Prefix Tables October 3, 1985

two additional issues that must be resolved to distribute the filesystem: (a) how to divide

the files among the various servers, and (b) how to locate the server for a file, given its

name.

We assume that the division of files among servers is handled by system administra

tors much as the division of files among disk packs is handled today: the filesystem will be

divided up into several subtrees (which we call domains) with each server providing

storage for one or more of these domains. See Figure 1 for an example. Our goal is to

support a user community of several hundred or at most a few thousand people. We

expect that this requires a few tens of servers, each with a small number of domains.

Measurements in (6] indicate that one local-area network, or at most a small number of

connected networks, can provide enough bandwidth for a community of this size. We

assume that a broadcast facility exists for this (inter)network.

y

, I

Figure 1. An example of a distributed filesystem. The hierarchy is divided up into

four domains, each indicated by a dotted line. Server X contains storage for two of

the domains, and servers Y and Z each handle a single domain.

The main topic of this paper is the second issue, how to locate a file given its name.

This is handled by the lookup operation, which occurs whenever files are created or

opened. In a traditional timesharing system, the lookup operation processes a hierarchical

name such as /a/b/c by searching through directories, traversing symbolic links, and so

on until the descriptor for the file is reached. The result of the lookup is a· token that is

used later on to provide quick access to the descriptor when the file is read or written.

Typically, the token is an index into the operating system's internal table of open files.

In a distributed filesystem, the lookup operation invoked by clients must return two

things: a server address and a token. The server address is used to send read and write

requests to the appropriate server, and the token is passed to the server (as part of read

and write requests) to identify the file being manipulated. In this case the token is typi

cally an index into the server's table of open files; it saves the server from having to re

translate the file name on each read or write request.

3. Other Location Mechanisms

This section outlines three simple ways to locate servers. The prefix table mechan

ism includes aspects of each of these.

- 2-

Prefix Tables October 3, 1985

3.1. Broadcast

Perhaps the simplest way to locate files in a distributed system is to broadcast the

file name to all servers during the lookup operation. Each server searches its local direc

tories and the_ one successful server (if any) responds to the request with the server

address and token for the file. The broadcast approach is simple to implement and

adjusts automatically as the configuration of servers changes, but it suffers from high

overhead: each server must process each file lookup. This lookup overhead would prob

ably be the limiting factor in the size of the system.

3.2. Static Maps

A more efficient way of locating servers is to use part of the file name to identify the

server. The simplest approach is for each file name to consist of a server name followed

by a file name. For example, the name X:/a/b might refer to file /a/bon server X. In

this scheme, each client keeps a small table that maps server names to server addresses.

The table can be stored on the client's local disk or it might be loaded into memory as

part of the bootstrapping process (for diskless clients). To lookup a file, the client con

sults the server map and sends a message directly to the server for the file. The server

looks up the file and returns a token to use in read and write requests.

The advantage of the map approach is that it avoids the overhead of broadcasting on

every file lookup. However, any change to the system configuration requires all the maps

to be modified. For a system with hundreds or thousands of clients, this is a considerable

overhead. A second disadvantage with static maps is that the server names appear in the

file names. If a domain moves from one server to another then the names of all the files in

that domain will change.

3.3. Name Servers

The static mapping approach can be extended by using a general-purpose name ser

vice like Grapevine (1] to map server names to addresses. Before opening a file a client

first sends the file server name to the name service, which returns the address of the

server for that file. The client then sends the name to the file server to complete the

lookup process. Presumably the name service provides mechanisms for updating the map

information; this avoids the inflexibility of the static map scheme. In the most general

case, clients could send the entire file name to the name service, and the name servers

could do the complete translation from file name to token.

There are two problems with the name server approach. The first is that it adds a

third party to the lookup process: file names must be sent first to a name server and then

to a file server. Any reliability or performance problems in the name service will have a

direct impact on the filesystem. Second, the name server approach doesn't eliminate the

update problem for the sever information; it simply transfers it from the filesystem to the

name service. Implementing an efficient general-purpose name service with reliable distri

buted updates is a difficult programming task. It seemed both unnecessary and undesir

able to us for a filesystem to depend on such a service.

-'· Prefix Ta.bles

Prefix tables combine the simplicity and efficiency of static maps with the flexibility

of the broadcast approach. Each client keeps a server map called a prefix table, but

instead of being static it is dynamically built and updated with a broadcast protocol. The

server locations kept in the prefix table are hints that are corrected when they are found

-3-

Prefix Tables Octo her 3, 1985

to be wrong. This section describes how prefix tables are used during name lookups; Sec

tion 5 describes the mechanisms used to maintain the information in the tables.

Prefix Table

Prefix Server Token

I B 17

/a A 63
/d A 44

/d/k c 5

Figure I. An example of a filesystem hierarchy with four domains handled by

three different servers. The longest matching prefix in the prefix table determines

which server is responsible for a particular file. For example, the file /d/k/o will be

served by B, and the file /a/e will be served by A. When looking up the file

/d/k/o, the client will send the name o to server C along with the token 5 .

•. 1. The Prefix Table as a Map

Each entry in a prefix table corresponds to one of the domains of the distributed

filesystem: it contains the name of the topmost directory in the domain (called the prefix

for the domain), the address of the server storing the domain, and a token. See Figure 2.

To look up a file, the client searches the prefix table for directory names that match the

first characters of the file name. If there is more than one matching prefix then the long

est one is selected. The client strips the prefix from the file name and sends the remainder

of the name to the selected server along with the token from the prefix table entry. The

server uses the prefix token to locate the root directory of the domain, looks up the

remainder of the file name, and replies with a token for the open file.

The tokens in prefix tables serve the same purpose as the tokens returned by the

lookup operation: they allow the server to locate the descriptor for a file (in this case, the

root directory for a domain) without having to repeat an expensive name translation.

Prefix tokens are provided by servers to clients as part of the broadcast protocol described

in Section 5.

The prefix table mechanism is more general than the static maps described in Section

3.2, since it allows the root of a domain to appear anywhere in the filesystem rather than

just at the top level. Furthermore, the names of servers do not appear in file names.

This makes the distribution transparent to users and permits domains to be moved from

one server to another without affecting any file names.

- 4-

Prefix Tables October 3, 1985

In the examples so far, file names began at the root of the file hierarchy (they started

with '/'). Most modern filesystems provide additional mechanisms for naming files, such

as working directories and symbolic links. The remainder of this section describes how

prefix tables can be used to implement these facilities for a distributed filesystem .

•• 2. Working Directories and Relative File Names

Most filesystems allow each user to specify a working directory, and to name files

relative to the working directory instead of the filesystem root. For example, in UNIX the

file name c is relative (since it doesn't start with "/"). If the current working directory is

I alb then c names the file I alb I c.

Timesharing systems like UNIX implement working directories by opening the direc

tory and keeping its token as part of a process's state. \Vhen a program uses a relative

file name the token for the working directory is used to locate the descriptor for the direc

tory and the file name is looked up starting at that directory.

Working directories can be handled in almost exactly the same fashion in a distri

buted system. \Vhen a process specifies a new working directory, the prefix mechanism is

used to open the working directory. Both the token and the server name are saved in the

process's state. \Vhen a lookup operation detects a relative path name, it simply sends

the name to the server for the current working directory along with the working directory

token. From the server's standpoint the relative name lookup appears the same as the

absolute name lookup described in the previous section: in either case the server receives a

name to lookup and a token for the directory at which to begin the lookup .

•. 3. Domain Crossings

There are several cases where the initial choice of server can be wrong. A file name

can specify an arbitrary path through the file hierarchy and that path might cross the

boundary between server domains. \Vhen this happens the initial server detects that the

file name is leaving its domain and it returns a new file name to the client. The client

uses the new name to select a new entry in its prefix table, and initiates a new lookup

operation with that server. Several such retries may be necessary before the correct

server for a file is finally found. The next subsections discuss specific situations where

domain crossings occur.

- 5-

Prefix Tables October 3, 1985

''·. n m /

Figure 3. An example of symbolic link usage. The symbolic links at /a/e and

/b/h both refer to the same directory. The link at /a/e is absolute: when encoun

tered, the name is returned to the client for prefix processing. The link at /b/h is

relative so server X can continue processing it. For example, when looking up the

name /b/h/m, the client will pass h/m to server X along with a token for b. X

will encounter the symbolic link at b, and will combine that with the remainder of

the name to form a new name f/J/m. Since this is a relative name, it will keep

processing it from b, eventually reaching file m.

4.3.1. Symbolic Links

A symbolic link is just a file whose contents are another file name [4). When a server

encounters a symbolic link during name lookup it prepends the contents of the symbolic

link to the remaining portion of the file name before continuing the lookup. If this results

in a relative path name then the server continues the lookup from the directory that con

tained the symbolic link. If, however, the new name is an absolute name (e.g. it starts

with "/" in UNIX), then the server sends the new name back to the client. The client

looks up this new name in its prefix table and retries the lookup with a new server. See

Figure 3 for examples.

4.3.2. Parent Directories

Another common feature in filesystems is a notion for referring to the parent of a

directory. For example, in UNIX the name " .. "refers to the parent of the current direc

tory. If a server encounters a sequence of " .. " components in a file name, it may ascend

the filesystem hierarchy past the root of its domain. At this point the server can no

longer continue processing the name, so it returns the remainder of the name to the client.

The client combines the remainder of the name with the prefix for the domain that was

just exited to form a new absolute name. It then searches the prefix table for this name

and chooses a new server to process it.

- 6-

Prefix Tables October 3, 1985

Figure 4. This filesystem is divided into four domains stored by servers Q, R, S,

and T. If a user's working directory is /c then the relative file name f/h will cross

a domain boundary. The name is initially sent to server Q. When Q encounters the

remote link at /c/f it returns the name /c/f/h back to the client for prefix pro

cessing. The client will then select server T and retry the lookup.

4.3.3. Remote Links

A file name can descend down into a domain as well as ascend off the top as

described in the last sub-section. This happens when the root of a domain is beneath the

working directory in the filesystem hierarchy. See Figure 4 for an example. The solution

to this problem is to place a marker in the filesystem that indicates the start of a new

domain. The marker is just a special kind of file called a remote link. A remote link is a

kind of circular symbolic link; its contents are its own complete name. 'When a server

encounters a remote link it does the same kind of expansion as with a symbolic link and

returns the new file name to the client for prefix matching.

For each domain in the distributed filesystem there is a remote link in the parent

directory of the domain's root. In addition to trapping relative names that cross domains,

the remote links give the domains a tangible appearance in directory listings. For exam

ple, in Figure 4 a directory listing for /c will show the entries d, e, and r, all of which are

remote links. Remote links also assist in building up prefix tables dynamically (see Section

5 below).

5. Managing-Prefix Tables

As explained so far, prefix tables appear much like the static maps of Section 3.2.

There is a substantial difference, however. Prefix tables are not static: they are created

and modified dynamically using a broadcast protocol. This allows the tables to be filled in

incrementally and to adapt as the server configuration changes.

A single broadcast operation is used to maintain prefix tables. To obtain prefix

information, a client broadcasts a file name. One of the servers responds with the prefix

table entry for that file, including the string to use as prefix, the server's address, and the

token corresponding to the domain. This operation is very similar to the procedure used

for broadcast lookup in Section 3.1, except that it is only used to fill in and update prefix

tables.

Initially, each client starts with an empty prefix table. 'When a lookup operation

finds no matching prefix in its table then it broadcasts the file name as described above.

It uses the response to create a new entry in the prefix table. If there is no response to

the broadcast then the file is not accessible and an error is returned to the user. Entries

- 7-

Prefix Tables
October 3, 1985

are added to the prefix table only when needed: a domain that has never been accessed

will not appear in the prefix table.

Remote links play an important role in building up prefix tables by indicating when

new prefixes are required. For example, consider a filesystem containing two domains, /

and /a. If a client's prefix table contains only the entry / and it attempts to open the file

/a/b it will send the request to the server for / instead of fa. The server for /

encounters the remote link fur /a and returns information about it to the client so that

the client can broadcast foi' !\ new prefix. Without the remote link it would appear that

the file / a/b did not exist.

If a server crashes, clients will get timeout errors when they attempt to invoke opera

tions on that server. \\Then this happens, the client returns an error to the user process

(just as if a disk had suddenly gone off-line). In addition, the client removes its prefix

table entries for the crashed server. Until the server reboots, clients will be unable to

access its files: each attempted access will result in a broadcast for a prefix, followed by a

timeout. However, when the server reboots then its files will be accessible again: the next

attempted access will result in a successful broadcast that will re-establish the prefix table

entry. This same mechanism also works if the server reboots at a different network

address, or if the domains are moved to other servers. It isn't necessary to reboot clients

after server crashes, although programs running at the time of a crash will probably have

to be restarted if they were using files on the crashed server.

6. Private Storage and Replication

Until now we have been considering the case where all the clients have the same view

of the filesystem. We expect this to be the most common case. However, each client's

view is defined by its own private prefix table, and the prefix tables could vary from client

to client. Different clients may have different sets of prefixes or may use different servers

for the same prefix. They may even have more than one prefix that refers to the same

domain.

This flexibility is possible because the information in a prefix table entry is reached

by negotiation-· between the client and a server rather than being hardwired into the

filesystem. Either the client or the server may take actions that result in different prefix

table entries in different clients. Three examples are described below; private files, replica

tion of heavily-used files, and support for heterogeneous clients.

6.1. Private Files

A client may wish to keep private files on a local disk for performance or security

reasons. It can accomplish this by acting as a server for the local storage and placing an

entry for the domain in its prefix table. The workstation can guarantee the privacy of the

files by refusing to answer broadcast queries about them. One use of this facility in

UNIX-like systems might be for the directory /usr/tmp, which holds temporary files

generated by many UNIX programs. Every workstation needs access to /usr/tmp, but

workstations with local disks would probably prefer to use their own disks for the tem

porary space. They can set up their own /usr/tmp domains for private use, with a net

work file server providing a public version of /usr/tmp for diskless clients. All broad

casts for the /usr/tmp prefix would be handled by the public server. Workstations with

local disks wouldn't broadcast for the /usr/tmp prefix, but would initialize their prefix

tables with a prefex referring to the local storage.

- 8-

Prefix Tables October 3, 1985

6.2. Replication

In the private-storage example, a particular client conspired to arrange for special

entries in its prefix table. Servers may also conspire to give different clients different

prefix table entries: this provides for a simple form of file replication. For example, in a

large network there may be a lot of traffic to certain files such as the binary images of sys

tem programs. The domain containing these files could be replicated on two or more

different servers. The servers can then negotiate between themselves to decide which

server will service which clients. When a client broadcasts for information about the

prefix, only one of the servers responds. If a server becomes overloaded it can arrange

with another server to handle particular clients, then ignore future open requests from

those clients (while continuing to service read and write requests for already-open files).

The clients will rebroadcast the prefix and receive information from the new server.

Shuffiing between servers in this way is completely transparent to processes running on

the clients.

In order to update replicated files, clients must be able to access each of the copies of

the file. The prefix tables can provide this facility, although they do not provide any

assistance in making atomic updates to all the copies. Access to the different copies of a

domain can be accomplished with extra prefixes that reference particular copies explicitly.

See Figure 5 for an example.

Client 1 Prefix Table Client 2 Prefix Table

Prefix Server Index Prefix Server Index

I A 3 I A 3

/bin B 13 /bin c 25

/bin1 B 13 /bin1 B 13

/bin2 c 25 /bin2 c 25

Figure 6. An example or replication. Identical copies or domain bin are stored on

servers B and C. The prefix tables cause Client 1 's accesses to /bln to be handled

by server B, while Client 2's accesses are handled by server C. Ir client 1 needs to

access the copy or /bin on server C (e.g. to write a new version or one or the files),

it can do so using prefix /blnZ.

This same technique for replication can be used to allow clients with different

instruction sets to share the filesystem, even though they require different binary files for

system programs. This is handled with several different domains, each containing versions

of system programs for a particular instruction set. A single prefix, say /bin, refers to all

of these domains. Servers can consult tables stored in the filesystem to determine which

clients have which instruction sets and respond appropriately to prefix broadcasts so that

each client uses the version of /bin corresponding to its instruction set.

'1. Comparisons

'1.1. Prefixes va. Network Filesyatema

Most of the network filesystems discussed in the literature to date have been con

cerned primarily with issues of data storage and synchronization, rather than naming.

The earliest filesystems, such as WFS [8], XDFS[5), and CFS [5), did not even provide

directories; files were named by unique identifiers (similar to the tokens we've used here),

and more user-friendly naming facilities were to be provided in an unspecified fashion by

client programs. More recent systems, discussed below, do provide naming facilities, but

- g-

Prefix Tables
October 3, 1985

mostly along the lines of the simple mechanisms presented in Section 3.

Apollo's Aegis operating system [3] provides what is probably the most widely-used

network filesystem. It includes a network-wide name space, but files on remote machines

must be identified by their machine name as in Section 3.2; the mapping of files to serYers

is not transparent as it is with prefix tables.

LOCUS is a distributed UNIX system that provides a transparently-distributed

filesystem [9]. Here too, though, the focus has been on storage, replication, and transac

tions, rather than naming. Although file names do not contain machine names, servers

are located with static mount tables replicated at each site. The LOCUS authors note

that this scheme would have to be modified in order for the system to scale up to hun

dreds or thousands of sites. LOCUS also uses a different lookup mechanism in which

clients process the directories themselves by reading the directory files over the network.

This results in more network traffic than a scheme where directory lookups are handled

by the servers.

The closest existing mechanism to our prefix scheme is a new naming mechanism

recently added to the V system [2]. It combines naming facilities with object storage and

uses prefixes for name storage in a way very similar to what is described here.

7 .2. Prefixes vs. Timesharing

Prefix tables present a view of the filesystem identical to that seen by a user process

in a uniprocessor timesharing system, with one exception. The prefix tables bypass part

of the directory lookup mechanism, and this can alter the permission checking done dur

ing lookup. For example, if there is a prefix /a/b/c and a client looks up the file

/a/b/c/d, neither of the directories /a or /a/b is examined: the client communicates

directly with the server containing / a/b /c. This means that any access controls in /a or

/a/b will be ignored. The effect is that all programs implicitly have search permission

along the paths to all the prefixes. If access to a prefix is to be restricted, it must be res

tricted with access controls at the level of the prefix or below. The directory bypass has

advantages in performance and reliability, though: the root server will be less congested

and clients can still access files even when the root server is unavailable.

7 .3. Name Service vs. Filesystem

Much of the distributed-system research to date appears to be based on the assump

tion that a general-purpose name service lies at the heart of any distributed system, and

that other facilities such as filesystems should be built on top of the name service. We

disagree with this approach. On the contrary, we believe that a general-purpose filesys

tem lies at the heart of distributed systems just as it does in the timesharing world. It is

unclear whether name servers are even necessary given a filesystem, since the directory

structure of the filesystem already provides a naming service. Instead of attaching infor

mation to well-known names in a name server, it can be left in well-known files in the

filesystem.

Although a filesystem requires some sort of simple name service for locating file

servers, a special-purpose mechanism like prefixes is much simpler and more efficient than

a general-purpose name service like that provided by Grapevine [1]. On the other hand, a

powerful name service like Grapevine requires data storage facilities. Without a pre

existing filesystem, the name server must duplicate these facilities. If a name service is

necessary, it seems to us that the best way to construct it is to use the filesystem facilities

as a base. In this fashion the name service can focus on issues of redundancy, update, etc.

without having to worry about low-level storage mechanisms.

- 10-

..

Prefix Tables
Octo her 3, 1985

8. A Prototype Implementation

We have implemented a prototype version of the prefix mechanism, running on a

duster of about ten Sun workstations as an extension to the UNIX operating system. The

implemented mechanism was simplified slightly in order to avoid having to add remote

links to UNIX. Instead of remote links, the implementation uses symbolic links. These

work just as well as remote links except that servers and clients cannot tell whether or

not a symbolic link indicates the root of a new domain; this leads to problems in building

up prefix tables dynamically. As a consequence, all prefix names are entered into each

prefix table statically at boot time so that all domains are identified. The server and

token information for prefix table entries is still located using broadcasts, but the names

of the prefixes are static.

9. Conclusion

Prefix tables are a special-purpose mechanism used to locate file servers. The single

shared file hierachy provided by the servers replaces a general name service as the founda

tion of a distributed system. A client's view of the filesystem is kept consistent with

changes and additions to the filesystem by using a broadcast protocol to update the prefix

tables. Furthermore, by adjusting different clients' prefix tables the mechanism supports

private files and file replication.

10. Acknowledgements

Garth Gibson and Susan Eggers developed the basic prefix table idea during a class

project last spring, and Walter Scott participated in the initial design of the prototype

implementation.

11.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

Andrew D. Birrell et al. "Grapevine: An Exercise in Distributed Computing." Com

munications of the ACM, Vol. 25, No.4, April1982, pp. 260-274.

David R. Cheriton and Timothy P. Mann. "A Decentralized Naming Architecture."

·Internal Report, Computer Science Department, Stanford University, July 1985.

Paul J. Leach et. al. "The Architecture of an Integrated Local Network." IEEE

Journal on Selected Areas in Communications, Vol. SAC-1, No.5, November 1983,

pp. 842-857.

Marshall K. McKusick et al. "A Fast File System for UNIX", ACM Transactions

on Computer SJJstems, Vol. 2, No.3, August 1984, pp. 181-197.

James G. Mitchell and Jeremy Dion. "A Comparison of Two Network-Based File

Servers." Communications ofthe ACM, Vol. 25, No.4, April1982, pp. 233-245.

John K. Ousterhout et al. "A Trace-Driven Analysis of the 4.2 BSD UNIX File Sys

tem." Proceedings of the 10th SJJmposium on Operating SJJstems Principles, to

appear, December 1985.

Dennis M. Ritchie and Ken Thompson. "The UNIX Time-Sharing System." Com

munications of the ACM, Vol. 17, No.7, July 1974, pp. 365-375.

Daniel Swinehart, Gene McDaniel and David Boggs. "WFS: A Simple Shared File

System ·for a Distributed Environment." Proceedings of the 7th SJJmposium on

Operating SJJstems Principles, December, 1979, pp. 9-17.

Bruce Walker et. al., "The LOCUS Distributed Operating System." Proceedings of

the 9th SOSP, Operating SJJstems Review, Vol. 17, No. 5, November 1983, pp. 49-

- 11-

Prefix Tables October 3, 1985

,
70.

- 12-

