Graphic Presentation of Data Structures
in the DBX Debugger

David B. Baskerville

Y
H
K

Report No. UCB/CSD 86/260
October 1985

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
OCT 1985 2. REPORT TYPE 00-00-1985 to 00-00-1985
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Graphic Presentation of Data Structuresin the DBX Debugger £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Berkeley,Department of Electrical REPORT NUMBER
Engineering and Computer Sciences,Berkeley,CA,94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Debugging isatask that requires access to extensive information about a program and its execution state.
The more effectively thisinformation can be presented to the user by a debugger, the better tool the
debugger becomes. Graphicsisa meaningful and effective way of presenting a program’sdata structures.
Thispaper describesthe design and implementation of an extension to a standard debugger. The extension
presents data structures graphically and enablesa user to control the format and extent of information
provided. The extension to the UNIX debugger DBX runson a Sun Workstation using multiple windows, a
bitmap display, and a mouse pointing device.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 56
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Graphic Presentation of Data Structures in the DBX
Debugger

Dawd B. Baskerulle

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, California 94720

ABSTRACT

Debugging is a task that requires access to extensive information about a pro-
gram and its execution state. The more effectively this information can be
presented to the user by a debugger, the better tool the debugger becomes. Graph-
ics is a meaningful and eflective way of presenting a program's data structures.

This paper describes the design and implementation of an extension to a stan-
dard debugger. The extension presents data structures graphically and enables a
user to control the format and extent of information provided. The extension to the
UNTX* debugger DBX runs on a Sun Workstation} using multiple windows, a bitmap
display, and a mouse pointing device.

July 5, 1985

Sponsored by the Defense Advance Research Projects Agency (DoD), Arpa Order No. 4871, monitored by Naval
Electronic Systems Command under Contract No. N00039-84-C-0089. David Baskerville was supported by an
NSF Graduate Fellowship, grant cumber RCD-84-50040.

t UNIX is a Trademark of Bell Laboratories

1 Sun Workstation and SunWindows are Trademarks of Sun Microsystems, Inc.

Table of Contents

L, OVEIVIEW coroncecoeoereeresesseseceesessnsssoas s sess e smrese e s s e RS

3. THE SOIGEIOI rceevevrrersrorssseseerresss st s saas s s e T S
4. Objectives of the Graphical DebBUger s

5. Related Work ..o - . —

6. Mlustrations of Graphic Presentationcecce -

7. Command Description - eeeeessescsnseessessa st s se bt easemanasans

8. TMPIEMENLAtION .oooosersmsssses s smmmemmmsmsss s msmss s e

9. PerfOrMANCE .coovcereeensensemmmsansssssens e

10. Future Work - e eesstesaaesteraanseesmsensseomareomans

11, CONCIISION oooocorerreaerernereromssnmsose s sassssnmssas s e om0 000 . ——

Appendix: Manual Page o e 1) -5 G U e

41
48
50
51

52

Graphic Presentation of Data Structures in the DBX
Debugger

David B. Baskeruille

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, California 94720

1. Overview

This paper describes the design and implementation of an extension to 2 standard
debugger. The extension presents data structures graphically and enables a user to control the
format and extent of information provided. The extension to the UNIX debugger DBX [UNIX
1984 runs on a Sun Workstation under the SunWindows window manager (Sun 1983 The
system is successful in presenting even complex data structures in an effective manner with
good performance. A user may move and modify data structures on the screen and may
control the amount of information presented about records, arrays. or linked structures.

Sections 2 through 5 of this paper discuss desirable presentation features of a debugger
and delineate the objectives of the graphical debugger. Section 6 illustrates the graphical
presentation of data structures accomplished by the extended DBX. Section 7 describes the
commands for graphic display. Section 8 describes in some depth the implementation of the
graphic extension. The concluding sections relate performance results and ideas for further

work.

2. The Debugging Problem

Data structures are fundamental to computer programs. A computer program can often
be characterized by the data structures it creates and the operations it performs upon them.

In designing & program, OF attempting to understand a program. a visual representation
of the program’s data structures is often essential. Introductory programming courses teach
students to think about data structures in box form with pointers represented by arrows from
one box to another. Experience has proven this box-and-arrow form to be a worthwhile way of
conceptualizing data structures. Advanced programmers think about data structures in the
same way, visualizing bax-and-arrouw models of linked lists, binary trees, and symbol tables.

In debugging a program, the user has access to a potentially vast amount of information
about the program and its state. The debugger should be auble to organize and present this
information in a way that is useful and natural to the user. In particular, the most common
presentation task of a debugger is to show the value of a variable, which may be a simple
value or a data structure. Therefore, it is incumbent on the debugger to be capable of

presenting such data structures in the same form in which users think of them. Linked
structures should be presented as boxes joined by arrows from one box to another, and nested
structures should appear visually as nested boxes. During interactive debugging, if data
structures are presented as users naturally think about them, errors can be spotted more
quickly and an understanding of the program’s execution can be achieved more readily.

Traditionally, debuggers have presented information as text, making no attempt to
present data structures in a boz-and-arrow format. Attempts to do so on a low resolution ascii
terminal would prove futile. The biggest drawback of text-based debuggers is the way in
which pointers are presented. These debuggers display the value of & pointer as & numerical
address of the structure pointed to is given. Yet it is the object pointed to, not its address, that
is usually of interest. The user must follow pointers, printing out components of a linked
structure individually, to reconstruct the state of a data structure on his scratch paper. If a
textual debugger were to present all the objects p;oimed to, the flood of information would

quickly scroll off the screen.

3. The Solution

The advent of high-resolution bit-mapped displays affords the possibility for debuggers to
present data structures as the user envisions them. Since the implementation is no longer
limited to text, a debugger can draw nested boxes and interconnecting arrows to represent a
data structure, ameliorating the debugging process.

Presenting data structures in the familiar box-end-arrow form alone, however, is not
enough. It is vital that the user be allowed to control the format and extent of information
displaved about a data structure. A user may conceive of binary trees very differently from
linked lists, even though the underlving data structures are essentially the same. The user
should be able to specify how certain data structures are formatted on the screen so that the
presentation matches his conception. He should also be able to move the data structures once
they have appeared on the screen. This capability enables the user to alter the way he views 2
data structure or to improve a layout that becomes inappropriate as data structures change
dynamically.

Presenting all the information held in a complex data structure may be too much detail.
It is important to allow the user to tailor a data structure’s presentation to show only those
parts which he would like to focus upon. Such control can be provided by allowing the user to
close a certain substructure, to suppress a pointer and its linked structure, or to elide parts of

an array.

4. Objectives of the Graphical Debugger

The UNIX debugger DBX is a symbolic, source language debugger, supporting C, Pascal,
Fortran, and assembly language. Breakpoints may be set at source code line numbers, at the
beginning of procedures, or upon a condition which the user specifies. After a breakpoint, the
execution of the program can be continued in single step mode, procedures may be called, etc.

A variable's value is printed by entering its name svmbolically. using its source code name. If
the variable is a record. its value is printed using one line per field. Pointer values are printed
as numerical addresses.

Thbe extension to DBX described in this report, which presents data structures graphically
and allows user-tailorability, will be referred to as GDBX, for Graphical-DBX.

To achieve the previously described goals of improved debugger presentation, the
graphics extension project set the following objectives:

« A variable's value should be presented in box-and-arrow format. Structures and nested
structures should present information and dependencies clearly.

. A variable's value should be updated after each execution step, with changes easily
identifed. (An execution step means any further execution of the program being debugged.
This may result from such DBX commands as STEP, NEXT, CONT, CALL. or RUN.)

« Users should be able to control the amount of inform: tion presented about a data structure
and its layout on the screen, even before beginning to debug a program.

. Users should be able to change the presentation of a data structure by opening or closing
fields of a record. by moving structures or arrows, or by scrolling arrays.

. The data structures should be displayed on a virtual screen, larger than the physical screen.
The virtual screen should be scrollable, allowing the visible portion of the screen to be
moved up/down of left/right.

5. Related Work

(Model 79| and [Myers 80} give a history of debuggers and defend the use of an analogical
display for data structures. An analogical display is one that makes use of bit-mapped
graphics to present objects in the form of boxes. arrows, or icons, creating analogies to the
physical world.

The work most closely related to GDBX was done by Myers at Xerox PARC. INCENSE
[Myers 80) was perhaps the first system to present graphical displays of data structures in a
standard compiled language using bit-mapped display.

INCENSE displays data structures in bax-and-arrow format, with boxes linked by curved
arrows. INCENSE includes a mechanism that allows users to define, by a Mesa program. the
presentation format of 8 record structure.

The placement of linked structures is accomplished using what Myers calls a loyout
mechanism. The layout mechanism gives all objects, at the time of their creation, a specified
area in which to display themselves. Parts of a linked data structure that are pointed to must
find a space for themselves within this area. Thus, components further down the pointer chain
shrink themselves to fit into the designated area. Beyond a certain minimum size these

structures do not present themselves.

cDBX extends the idea of graphical presentation of data structures in the spirit of

INCENSE. Areas in which GDBX improves upon INCENSE solutions are the following:

Integration into a standard debugger. GDBX is an extension to 8 standard debugger.
whereas INCENSE is loosely connected to the Mesa debugger Although presently INCENSE
does not have an acceptable front end. it should increase the effectiveness of any debugger
into which it might be integrated.” (Myers 80, p.1l

Two-dimensional space allocation: GDBX employs a two-dimensional space allocation
algorithm (albeit simple' to find places for linked structures on the screen. INCENSE shied
away from this solution and developed the layout mechanism. The GDBX solution is more
general and can be extended to incorporate a specialized placement routine.

GDBX introduces the following ideas to graphical debugger displays:

Dynamic user control over data structure presentation: OPEN/CLOSEing of record fields and
array elements, moving structures and arrows, scrolling arrays

Scroll bars and a virtual screen

Construction and presentation control: SHOW/UNSHOW, PTR_DEPTH, ARRAY_BEGIN/ARRAY_SIZE,
SUPPRESS‘UNSUPPRESS

6. INlustrations of Graphic Presentation

This section contains screen dumps from a Sun Workstation taken during sessions with
GDBX. These screens show how data structures are presented and show operations performed
upon the data structures. They illustrate how GDBX meets the objectives outlined above.

(Please refer to section 7 and the MAN page in the appendix for a more detailed discussion

of the GDBX commands and mouse operations used in making these screens.)
There are 10 sub-sections illustrating the following displays and operations:
6.1 Display of Data Structures in C and Pascal
62 Construction/Modification of Linked Data Structures
6.3 ACROSS'DOWN Layout Specification
64 OPENCLOSEing of a Record Field
6.5 Structure Movement
66 Arrow Movement
6.7 Array/Pointer Ellipsis
6.6 Array Scrolling
69 Array Suppression
6.10 Scroll Bars and Font Changes

6.1. Display of Data Structures in C and Pascal

The following screens illustrate how data structures are presented in C and Pascal. The
presentation of a data structure is identical in the two languages, with the exception of type

names and scalar types of Pascal.

6.1.1

612

6.1.3

6.14

6.1.5

This screen shows the paradigmatic box form in which simple variables are
presented. The variable’s name is shown on the left side of the box and its value
on the right. A variable of pointer type is represented by a value of '*" and an
arrow emanating from the right side of the box. Here. C variables of type
integer, character, real, string, and pointer are presented.

This screen presents Pascal variables of type integer, character, boolean, real,
scalar type, pointer, and record. A record is presented using nested boxes. The
record itself is an enclosing box. The fields of a record are shown as boxes
stacked vertically within the outer box.

This screen illustrates an array of strings, an array of pointers, an array of
integers, and a two-dimensional array. The presentation of arrays is similar to
records. An array is shown as an enclosing box. Each element of the array is
displayed in a separate box stacked vertically within the box representing the
array. The element number is shown in brackets after the array name.

This screen shows an array of pointers, an array of integers, a record. a nested
record, and a recursive structure.

This screen shows a three-dimensional array of scalar literals in Pascal.

“Long String” |

[string

1at

$lost

3.1426578747375488

pi

2

1

.

S_creenG

int

next: (m1)

1tes: §

next: (n11)

srray(8l: * el
arrayf{1): *

srrey: M’rty[l’]: P next: (m1)
srray(3): ¢ ftea: 2
erreyla]: *

next: (nil)

Lit 3 |

next: (nil)

iten: 4

str_srrey:

str_srray(B]: "This s b

str_arrayli): “an array *

int_erray:

int_array(e]}:

int_arrayf1):

int_srray(2]:

1nt_srray(3]:

int_array(dl:

tnt_srrayis):

int_array(6]):

int_arrsy(7]:

int_srray[B]:

1nt_array{8):

wlofajoirnjasjwl])™

tewod_orray:

tyoc_arrsy(8]):

twod_srraylil:

twod_array{gl{g): &
twod_array(ej[1]: @
twod_array(il{el: @

twod_ar-ayl1il1): 1

&

srray(el: o

srrayfid: *

srrayle): °®

tnt

Teft: (m1)

int_erraylel: &

rignt: (n11)

1ten: 2
tnt_erray[1): 3
Int_errsy: [int_erray[2): 2
1nt_orrayf3]): 3
int_srrey(d): &
8:3
recurs? ot |
[recursive: ® |

tree

1eft: (n11)

rightt

(n11)

1ten: 5

nest

character: ‘b’

nested:

teft: (n1)

rignt: (mV)

1ten: 3

1nteger

HRS

Gr aphres

array3{elel(e): biack
array3[6[63(11: whte
array3(8)[e(2]: wnite
array3lel{e)(3]: wnite
array3[8Ji[1]{8]: orange
array3[8)[i)[1]: white
‘ srray3{8){1][2]: wnite
par'ay3[83[1)[3): white

parrey3(el[1l:

ar-ay3[e){2]{8]): green
errav2{@)[21[1]: wnite
array3(01(2}(2]): enite
parray3[83[21[3): white

array3[1]8](6]: purple
parre 3[1308)[1]: white
array3(1)[ej[2]: wmte
arrey3[12{6](3]: white
e) low

perray3[el(2]:

parray3[1]1LE]:

arrav3il white
parray3l1d: |parray3ldlid: ey . white
parray3l : white
blue

wnite

array3ii white
srray3(l white

parray3[11[2):

Screen 6.1.5

10

6.2. Construction’Modification of a Linked Data Structure

The following screens illustrate a program executed one step at a time using DBXTOOL
and GDBX. The program constructs and modifies a linked data structure.

DBXTOOL appears on the right with five subwindows. (See Integration with DBXTOOL
below.) A breakpoint that has been set is indicated by a stopsign. The current execution stop is
shown by a double-shafted arrow. The program is executed one step at a time by clicking the
step button in the third subwindow.

As each step is executed. the data structure is updated in the GDBX window on the left.
This series of screens illustrates how the progress of a program can be seen visually.

| v y :))) ¥ctopped st 1ine 97 1n function asIn In f11e /tres.c

| ~ource displayed: f1le ./tres.c lines 85 - 101
struct recursl ® recursivel ;

struct recurs2 ® recursivel ;

recursive = (struct recurs *) calloc(1, sizeof(

struct recurs)) ;
recursive->next & recursive ;

A tres

rocursivel = {struct recursi ®*) celloc(1, sizeo
4(struct recursl)) ;

pocursivel-Dnext2 = recursivel ;

ptr = (struct tres *)
calloc(3, sizeot{ struct tree)) ;
ptr->ites = 4 ;
ptr->left = (struct tree *)
calioc(§, sizeof(struct tree))
ptr->rignt = (struct tree *® Yptr-Dleft

- &5 D

‘seaging syabolic inforsation...
-Resc 131 sysbols

itdbxtocl) stop st 9%

i11) stop st “"tres.c”:98
‘dbxtool) run

{dbxtool} print ptr

,'dbxtocl) display ptr

2 apxtoct)

kstoppsc at line SE n function pain n f1le /tree.l
«ipyurce displayed: file _/tree.c Vines 85 - 181

struct recursi ® rscursivel ;
struct recurs2 ® recursivel ;

recurgive = (struct recurs ®) ealloc! 1, sizeoé(
' struct recurs)) ;
recursive->next ¢ recursive ;

rocursivel = (struct recurst & } calloc(&, sizeo
¢(struct recursl))
recursivel->next2

left: (m1)

recursivel |

s (struct tree *)
ealioc(.3, sizecf(struct tree »
adptr-yiten = & ;
ptr->lest = (struct tres *)
calloc(1, sizecf(struct tree M
r-dright = (struct tree ¢ Yptr->left |

<esding sysbolic inforsation...
»2e8¢ 131 sysbols

{dbatool) stop st 96

(1) stop st "tree.c”:%6
[dbxtool) run

.dbxtool) print ptr

j: goxtoo)) @isplay ptr

(dbxtool) step

{apxtool) §

Dyt

e

-ource displayed: file ./tree.c Vlines 92 - 118
1 recursivel->next2 = recursivel ;

ptr = (struct tres *)
colloc(1, sizeof(struct tres))

ptr->ites = 4 ;

ptr->lett = (struct tree ®)

whcalloc(1, sizeof(struct tres))

ptr-d>right = (struct tree *)ptr->left

ptr-dleft->ites = 5 ;

ptr->leti->1eft = (struct tres *)
estioc(3, sizeof(struct tree))

ptr-disft-d>right = (struct tres *)

calioc(1, stzeot(struct trese)) ;

oy
o~

e

[ef1: (m1)
right: (m1)

. we

K

~eading syabchic inforsstion...
+<ead 131 sysdols
gbxtool) stop st 86
i) stop st "tree.c”:9
dbxto01) run
dbxtool) print ptr
ubxtool) @tsplay ptr
gbxtool) step
gbxtocl) step
.doxtosl)

toppec at line 18i 1n function main In t1le ./tree.c
ource displayec: #ile /tree.c lines 82 - 118

recursiveli-onsx12 : recursivel

ptr = (struct tres *)
calloc(1, stzeof(struct tres)) |

- " ptr-diten = 4 ;
LAY LA PEIARY pte->left = (struct tree *)
gt (ml) raght: (nfl) calioc{ 1, sizeof(struct tres)) ;
: [1ten: 4 1ten: 8 adptr-dright = (struct tres ® Jptr->left ;

ptr-)lsft->1tes = § ;

prr->lett-dleft = (struct tres *)
ealloc(1, sizeof(struct tres)) ;

ptr->lett->right = (struct tree *)
catloc(§, sizeof(struct tree))

we

T T U T

H
i

Fesging sysbolic inforsation...
ad 131 sysbols

; obxtool) stop ot 96

1) stop st "tres.c" %6
ddxtool) run
‘dbxtaol) print ptr
dbxt00l) eisplay ptr

Chasasatrasaaseenss

itoppsc at line 1< n tunction sain wn tile Jlres.c
Source displayed: ¢ile ./tres.c Yines 82 - 118

recursivel-ynext2 = recursivel ;

ptr = (struct tree ®)
catioc(1, sizeof(struct tres)) ;

e ptr->iten = & ;
letr: Joft: (m1) ptr->left = (struct tres ¢)
right: (nt1) calloc(1, s1zeof(struct tres)) ;
1ten: § ptredright = (struct tres * ptr-dleft ;
. Dptr-dleft->iten = 8 ;

ptr->laft->laft = (struct tres ¢)
calioc(1, sizeof(struct tree))

ptr->left->right = (struct tres *)
caltoc(&, sizsof(struct tres)) ;

-

mm?mmmm

Feading syspbclic 1nforsstion...
y-ead 131 sysbols

doxtocl) stop st 96

1) stop st "tree.c”:%
apxtool) run

gbxtoal) print ptr

doxtool) @ispiay ptr

goxtool) step

dbxtool) step

Joxtool) siep

abxto0l) step

gbxtoel)

Stoppec at line 184 'n function sain in file ./tree.c
iSource displayed: ¢#1le ./tres.c Yines 82 - 118

recursivei-onextZ = racursivel ;

ptr = (struct tree ®)
calloc(1, sizect(struct tree }) ;

lptr: & b—aliigee: o 7—1 left: (ni1) | "J;‘,.‘:’ : :: tres *)
L : ptr- t = (struct .
right: ® right: (nil) : calloc(1, s1zecf(struct tres)) ;
1ten: & 1tes: § ptr-dright = (struct tres ¢)ptr->left ;

ptr->ieft->ites = § ;
ptr->lett->1eft = (struct tres *)
«dcalioc(3, sizeof(struct tree))
ptr-Dleft-Dright = (struct tree ¢)
calloc(1, sizeof(struct tres }) ;

we

Read 131 sysbois
‘gbxtool) stop ot 96
1) stop st “tree.c":9%
adxtool) run
dbxtool) print ptr
% dbxtocl) gtsplay ptr
i dbxtool) step -
dbxtool) step
. dbxt001) step
‘gbxtool) step
.gBxto0l) step
.gbxteo?)

s 52 e g o

14

6.3. ACROSS'DOWN Layout Specification

The following screens show the linked structure constructed in the previous program

displayed first ACROSS and then DOWN the screen.

18ft: (n1))

(MG VI

Teft: (mi1)

18ft: (n11)

n 6.

3.2

16

6.4. OPEN/CLOSEing of a Record Field

The following screens illustrate an operation on the linked structure constructed above.
A field of a record is first selected. then CLOSED or OPENED.

64.1
642

643

6.4.4

6.4.5
6.4.6

The linked data structure is displayed ACROSS the screen.

Clicking the left mouse button while pointing at a box selects and highlights the
top-level structure. Here. the second box is selected.

Clicking the left mouse button within a highlighted record structure selects a
field within the structure. Here, the field named right is selected.

Depressing the right mouse button summons a menu of operations that may be
applied to the selected record field. Here, the operation Close Selection is chosen.
As illustrated, the field named right is closed and the pointer and structure
emanating from it are erased. A closed pointer is indicated by the value ™**¥.
The closed record field right is once again selected.

A menu is called and the operation Open Selection is applied. This re-opens the
right field, and the structure to which this field points is once again displaved.

right: @
ites: S

19¢t: (n1))
right: (n11)
1200: 8

S
M
s

QPips
e

jeft: (nt11)

right: (n11)

1tee: 8

ieft: (n1Y)
right: (nt1)

iten: @
¥ % a7

3

i

R 455

Teft: (m))
right: (mD)
1ten: 8

left: *

1e€t; ®

1eft: (nid)

rignt:

right: m B ®

right: (ntl}

1tes: 4

1ton: §

1tes: §

Open Selection

5crol selsction to Top
Scro11 Selection to Bottos

Teft: ®
cipht: B 8 0
1ten: 4

Teft: (n1))
right: (1)
1te8: 6

1eft: (1))

rignt: (n11)

~1ei Ty fper FTIINS

pets Jeie IO

scroll Selection to Top

20

6.5. Structure Movement

The following screens illustrate how the middle mouse button is used to move structures

on the screen.

651 This screen illustrates a layout of an array of pointers created by the positioning
algorithm.

652 To move a structure, the middle button is depressed while pointing to the
structure. Here, the array of pointers was pointed to. Moving the mouse while
continuing to depress the middle button drags an outline of the structure along
with the mouse.

653 When the middle button is released. the array structure is displayed at its new

position.

srray(@]: * 19t (n11)
erray(1): * right: (n1})
arrayf2): *® iten: 8

Teft: (ntl)
right: (m1)
1A3

tett: (1)

srrayifl: ® teft: (m))
array(1): * right: (nt1)
srray(2]: ® 1tes: 6

1eft: (nil}
rignt: (m1)
item: 1

teft: (m1)
right: (m1)
1tes: 2

Teft: (m1)

right: (n11)

[1ten: @

srray(@]:

Tett: (m1)

array{1]):

rignt: (nil)

srray[2]:

1ten: 3

yor

A

7

Teft: (m1d)

t: (m1)

23

6.8. Arrow Movement

The following screens illustrute how an arrow, which represents a pointer. can be moved.

The actual value of the pointer, as well as the screen representation, is modified by moving the

arrow to point to a different object on the screen.

66.1

6.6.2

6.6.3

66.4
6.6.5

6.6.6

This screen presents three tree variables. each of which has two fields that are
pointers to other trees. The fields are currently nil.

To move an arrow f(or to create an arrow if the current value is nil), the box
holding the pointer is first selected using the left mouse button. Here. the a field
of variable x is selected.

If the middle button is depressed when a pointer field is the current selection, the
arrow will be moved. This screen illustrates a new arrow following the motion of
the mouse.

The new arTow is positioned to point to the structure xI.

If the arrow is positioned to point to & record structure, the user selects which
field within the record he would like the arrow to point to. Here. the entire
record xl is selected. The value of pointer a is changed and the screen is updated
to reflect its new value.

This screen illustrates the three records after field ¢ of z is made to point to 2.
Recursive structures may also be defined in this way.

tr

s: (nit)
c: (ml)
o: 3

tres
s: (m1)
¢: (mY)
b: 2

ochn
S

1ssse uss Left Button 1o sslect 8 f1e1d within this record to potnt to
1ok outside the box when Wighlight is o

¢: (n1))
b: §

tree
(nil)
c: (n11)
b: 3

trse
8 (M)
e (m1)
p: 2

1sase uss Left Button to sslsct 8 fleld within this record to point to
T1ck outsige the box when mghtignt 1s 0K

b:
.

s (n11)
c: (mY)
b: 2

ST : > :
R e s - :
S o > : % i ; ; : _

2 2 v . 2 o 7 G R 'Nwﬁﬂﬁ ::’g 2%

27

8.7. Array/Pointer Ellipsis

The following screens illustrate ellipsis of array elements and of linked structures bevond

u certain depth.

6.7.1

6.72

This screen illustrates an arruy for which only the first five elements ure
presented. This ellipsis is accomplished by either the ARRAY SZE or PRINT SIZE
command. The element value '..' indicates elision. The number of array
elements that are constructed is set by ARRAY_SIZE. PRINT_SIZE sets the number

of array elements to be presented.

This screen illustrates a linked list of structures that is displayed only to a depth

of five. Ellipsis such as this is accomplished by either the PTR DEPTH or

PRINT_DEPTH command. A pointer value "**—' indicates an elision caused by
PTR_DEPTH. A pointer value "*** (not shown here) represents an elision caused
bv limiting the PRINT_DEPTH of a pointer. The latter elision is equivalent to a
CLOSED box. A linked structure thus elided may be OPENED to display subsequent
levels.

next: (nil)
1ten: 8

srray(8): * ites: }
srray(1): ®

srrayf2): next: (1)
arrayl3): ® item: 2
srray[dl: *®

next: (nt1)

11e

Teft: * L— jeft: * teft: o Teft: o Tett: * & =)
right: (nil) right: (M) right: (nil) right: (m?1) right: (ri1)
1tes: @ 1tew: 1 1t00: 2 1tem: 3 ites: 4

N

29

8.8. Array Scrolling

The following screens illustrate how an array may be scrolled.

6.8.1

6.8.2
6.8.3

This screen illustrates an array for which only the first five elements are
displayed.
Here, an element of the array is selected using the left mouse button.

Depressing the right mouse button calls a menu from which the operation
SCROLL SELECTION TO TOP is selected. The selected element, number 4, is scrolled
to the top portion of the visible array. The beginning element of an array
presentation may also be set using the command PRINT_BEGIN. PRINT_SIZE sets
the number of array elements that are shown.

sr-aylel:
srray(il:
srcey(2): next: (m1)
srray(3l: 11e8: 2
srray(d]l:
cene next: (ri1)
1tem: 3

next: (n1))

i
6.8.1

R

next: (1Y)

erray(d]:
arraylil:
srray(2]:
srray(3]):

next: (n1l)

errayla]:

srray(S]:

srray(6]:

srray(?):

array(8l:

next:

Wt 110000 Sipreer 3TV0E 0

lose Selsction

next: (nil)

|1t|l: S ‘

[0zen Selsction

“zreW Telertion te Ty
crol) Selection to Bottos

next: (m1)

1ten: 7

next: (ntl)

1ten: 6

32

6.9. Array Suppression

This screen pictures two arrays of identical values. The left array is
presented normally. All values are show. up to the portion that is elided due to
PRINT.SIZE. In the right array, the O-valued elements of the array are elided by
the command SUPPRESS.

1
3

.

erray2{1]
array2(3)

array2(5):
sreay2(7): 7
srray2{8): 8

srray?

srray(8]

s
3
[
S

array[2)
srrayl3)
srrayldl
srray(5)

8

srrayl9]

.

srrey

1

9

Screen 6

34

6.10. Scroll Bars and Font Changes

The following screens illustrate how large data structures, or many data
structures, may be viewed on a small screen. The visible screen can be scrolled,
presenting different portions of the virtual screen. Alternatively, the font in
which data structures are shown may be changed to shrink or enlarge the

presentation.

The data structure shown is that of an option_subwindow. a standard

subwindow structure in SunWindows.

6.10.1 This screen shows a linked option_subwindow structure that does
not fit on the screen. The mouse is positioned in the top horizontal
scroll bar. ’

6102 After clicking the left button, the portion of the virtual screen
presented is shifted. The presented portion of the screen now
begins at the mouse's position in the scroll bar.

6.10.3 Here, a smaller font is chosen. With the entire data structure
scaled down, the linked option_subwindow fits inside the visible
portion of the screen.

6.10.4 This screen illustrates the data structure presented in a larger font

size.

fs11.options_sw: ¢ Ts next: ® ts_attr m B

ts_wingowtc: 8 ts_winoowto:
ts_name: “d%

ts_nsee: "
}(§'u1dtn: -1 te_wigth: -3
1s_height:

ts_haignt: 68

t10_inputsask: 8 tic_1
tio_outputsask: 8 o,
tic_sxceptnask: @ tio.
tio_tiaer: (r1l) t10_
t10_handlestguinch: optsw_hanglies! tio_
1h0_selected: optsv_selectedl) 110

ts_destroy:

ts_oata: ™"

ts_Gestroy: optsu_oono()

uzg_datuz "

Screen 6.10.1

tg et B 8 | |
l1s_vindowtd: 9
ts_nase: “girse”
ts_wigth: =1
ts_heignt: 156

I — tio_inputsask: 8

tg_next: @

ts_wingowfd: 8

ts_nase: "

tg_wigth: -3

ts_neignt: 68
tig_inputsask: &
tic_outputsask: @

tio_sxcepteask: @

tig_timer: (nil)

tic_handlesigeinch: optsv_hano1c:19u1ncn()
tic_selocted: optsy_selected()

ts_gestroy: optsu_gons()
ts_date: °

tio_outputsask: 8
tic_exceptsask: @

tic_tiser: (m1)
tio_handlssigeinch: _txt_nandle
tio_sslected: _txt_tnputstal)

4*_"'7 ts_oestroy: txt_destroy()
ts_dats: "

Screen 6.10.2

lu P TIORS _Bu! 1 s mext: (wi)

ts wingowre: §

Ly _namm °° ta_nams: SEirsw®

ts widthi =1 ts_wigth: =1

ts_hetgnt 88 ts_heipat: 188

Cie_ (mpUTEIEE: @O Cre_tmputmase: @

tie_sutpytaask: @ tis_outputmask: &

tio_amceptoass &

' ;) 5 tie_enceptanss: &

tis timM [L330] tee timmrt (REV)

tie_nandlgs iguinch: optsu_hansiesipuinehl) Lo _RAREIGE {QUWIRCH UXT_Mhaneles i guwiRCASTEC

!1'-'.'0&!“! eptsv_Se1aCted() '1..’."“..! JEXX_IBPULSTOC 3

{[Rosan 12
e _Gastrey: sptsu_SoRe() .
8010 14 t5.eestroy’ TNT_SeSTrevc)
s _ssta: *°

Ro..n 1‘ ts 8ats: os
8016 16
Rosan 16
Rosan 19

Screen 6.10.3

[all.eptions _su: © tsmext: (ail)
ts_nindoufd: 8
ts_pame: "7
tsuidth: -1
ts_beight: 80
tio_ipputmask: §
tie_outputmsk: &
tie_exceptmask: ¢
tie_timer: (nil)
tio_bhandlesiguinch: oytsu_.hndleslgu!nch()
tie_selected:. optisu_se lected)
S
ts destroy: eptsu_done()

37

7. Command Description

Commands to present or modify data structures graphically may come from the keyboard
or the mouse. Commands entered at the keyboard will be referred to as GDBX commands.
GDBX commands include the standard DBX commands which are unmodified. GDBX commands
can be issued before beginning to debug a program interactively. Mouse commands operate on

structures already displayed.

7.1. ¢DBX Commands

GDBX commands may be issued during interactive debugging, or may be placed in an
initialization file. If the commands are placed in the startup dbzxinit file, they are read and
processed at the beginning of each GDBX session. This mechanism can be used to define an
environment tailored to an individual user. (The same mechanism is used in the original DBX.)
If the commands are placed in a file named .dbxfile (where file is the name of the program to be
debuggel) they are read and processed only when this particular program is debugged. This
second usage creates an environment tailored to a particular program and the data structures

within it.
7.1.1. Presentation Commands

DISPLAY variable_name |, variasble_name |

DISPLAY presents the variable’s value on the screen. The value is presented as & box
structure. This DISPLAYed variable is placed on a list of variables whose values are
presented each time execution stops, after a STEP, NEXT, or CONTINUE command. The
position of DISPLAYed data structures is maintained across execution steps.

UNDISPLAY variable_name | , variable_name |
UNDISPLAY clears the variable’s value from the screen and removes it from the list
of variables that are updated after each execution step.

PRINT variable_name [, variable name |
PRINT presents the variable’s value on the screen in the same manner as DISPLAY.
PRINTed variables are erased from the screen after each execution step.

ERASE variable_name [, variable_name |
ERASE clears the variable’s value from the screen. The entire screen can also be
cleared (see CLEAR below). :

7.1.2. Layout Commands

ACROSS structure_name [, structure_nameé]

ACROSS causes pointers to succeeding boxes of a linked structure to point across the
screen. The default direction is ACROSS.

DOWN structure_name { , structure name]
DOWN causes pointers to succeeding boxes of 8 linked structure to point down the
screen.

38

71.3. Commands Limiting Construction or Presentation

In presenting a data structure on the screen, GDBX first constructs boxes to represent
the data structure’s value and then presents these boxes on the screen. The user can
control the amount of information GDBX processes at either the construction or
presentation phase. Limiting the amount of information constructed by GDBX increases
the speed with which data structures are presented and conserves memory. Limiting the
amount of information presented on the screen increases presentation speed and decreases
the amount of information shown on the screen.

Construction is done only in response to a PRINT or DISPLAY command. Only
constructed boxes can be presented.

There are three data structure types that can grow very large for which limitation
may be important: records, arrays, and linked (pointer) structures. GDBX commands exist

to limit processing of these three types during construction and presentation phases.

7.1.3.1. Records
SHOW UNSHOW are used to specify the fields of a record for which information is
constructed. Without any specification, all fields of a record are constructed. The mouse
commands OPEN/CLOSE (see below! control which fields are presented on the screen.

sHOW field_name | , field_name | i

SHOW is called with a field_name of a record structure type (e.g., SHOW tree.right).
SHOW causes a box for the given field to be constructed the next time a variable of
this type is PRINTed or DISPLAYed. Only fields that are SHOWn will be constructed;
all fields not explicitly SHOwn will be suppressed. The SHOW command is used to
focus attention on a few particular fields of a large record structure. SHOW's affects

all variables of the given type.

UNSHOW field_name | , field name |

UNSHOW is called with a field_name of a record structure type. A box will not be
constructed (or presented) for this field the next time a variable of this type is
pRINTed or DISPLAYed. The UNSHOW command is used to suppress particular fields
that are not of interest. SHOW and UNSHOW are not exact antonyms: SHOW entails
that fields left unspecified will be suppressed, whereas UNSHOW entails that
unspecified fields will have boxes constructed.

7.1.3.2. Arrays
ARRAY_BEGIN/ARRAY_SIZE control the starting element and number of array elements
for which boxes are constructed. PRINT_BEGIN/PRINT_SIZE control where the presentation of
array elements begins and how many elements are shown. An array can also be scrolled
(see SCROLL SELECTION below) to change the beginning element. SUPPRESS/UNSUPPRESS
control the construction of O-valued array elements.

ARRAY_BEGIN array_name integer
ARRAY_BEGIN sets the element number from which construction of boxes
representing array elements begins. The default starting element number is 0.

39

ARRAY_SIZE array_name integer
ARRAY_SIZE sets the number of elements for which boxes will be constructed for the
given array variable. The default array size is 10.

PRINT_BEGIN array_name integer

PRINT_BEGIN sets the element number from which the presentation of an array
begins. The default beginning array element is 0. The element from which array
presentation begins may also be controlled by scrolling array {see SCROLL SELECTION

below!.

PRINT_SIZE array_name integer
PRDNT_SIZE sets the number of elements that will be presented for the given array
variable. The default print size is 10.

SUPPRESS array.name
SUPPRESS instructs GDBX to suppress construction of array elements whose values
are 0 or nil.

UNSUPPRESS array.-name
UNSUPPRESS instructs GDBX to construct even those array elements whose values are
0 or nil. This is the default condition.

7.1.3.3. Linked (Pointer) Structures

[]

PTR_DEPTH controls the number of pointer levels constructed whereas PRINT_DEPTH
controls the number presented. Elision due to limiting PRINT_DEPTH is equivalent to a

CLOSEd box.

PTR_DEPTH ptr_name integer
PTR_DEPTH sets the number of pointer Jevels that will be constructed for the given
_pointer variable. The default pointer construction depth is 5.

PRINT_DEPTE ptr_name integer
PRINT_DEPTH sets the number of pointer levels that will be presented for the given
pointer variable. The default print depth is 5. The number of levels presented may
also be controlled by OPENING or CLOSING pointers.

2. Mouse Commands

The following operations are initiated from the 3-button mouse when it is pointing into

the graphics window.

72.1. Left Button

Clicking the left button while pointing into a structure selects that structure or a
feld within it. The structure selected is called the current selection. Multiple clicks in the
same structure will cycle through nested fields within the structure. A selected structure
can then be acted upon (see the Selection Menu below). Clicking the left button outside of
a structure clears the current selection.

40

Clicking the left button while it is in the horizontal or vertical scroll bar causes a
new portion of the virtual screen to be presented. In the scroll bar, the dark gray
rectangle represents the size of the entire virtual screen; the white rectangle represents
the currently displayed portion. The new portion to be displayed is determined by the
position of the mouse within the scroll bar when it is clicked.

Clicking the mouse in the top Jeft hand box resets the portion of the screen
presented to be the upper left-hand comer.

72.2. Middle Button

The middle button is used to move structures or arrows. If a pointer value is not
the current selection, depressing the middle button will move the structure to which the
mouse is pointing. Moving the mouse whilé holding the middle button down drags the
structure along with the mouse. The structure is re-positioned to the mouse’'s position
when the middle button is released. :

If a pointer value is the curren! selection, depressing the middle button moves the
arrow emanating from the selected box. The structure pointed to by the mouse when the
button is released becomes the new value of the pointer. If a record structure is pointed
to, the left button is used to select which field the arrow should point to.

72.3. Right Button
Depressing the right button presents several banks of menus. The banks and their

commands are:

72.3.1. General Commands

. CLEAR: Clears the entire screen of both PRINTed and DISPLAYed structures. Sets the
portion of the virtual screen presented to be the upper lefi-hand corner.

« QUIT: Closes the widow and causes GDBX to exit.

723.2. Selection

The following commands operate on the current selection (see Left Button above).

« OPEN: Causes the selected structure, field. or array element to be presented normaliy.

« CLOSE: Causes the selection to be presented as a gingle box. If the box is a simple value
it is presented in small font. If the box is a record structure, its substructure is replaced
by the string ‘record’ displayed in small font. If the box is a pointer, "™*** is presented in
the box, indicating a suppressed pointer.

« SCROLL SELECTION TO TOP: If the selected box is an array element, the array is scrolled
so that this element is displayed at the top of the array. This is equivalent to the

ARRAY_BEGIN command.

« SCROLL SELECTION TO BOTTOM: If the selected box is an array element, the array 1is
scrolled so that this element is displayed at the bottom of the array.

41

723.3. Fonts
A font with which to present values within boxes is selected. When a new font is
chosen, the graphics window is cleared and all DISPLAYed variables are presented in the

new font.

72.3.4. Show Changes
This series of commands emphasizes, by blinking, changes to the values of

DISPLAYed variables that occurred over the last execution step.

« BLINK NEW: The new values, ie., the values different from the previous values, of the
DISPLAYed data structures are made to blink.

« BLINE OLD: The old values of the DISPLAYed data structures are made to blink.

« BLINK OLD'NEW: The values within the data structures DISPLAYed are made to blink
between previous and current values.

8. Implementation

8.1. Overview and Processes

The graphic version of DBX (GDBX! is implemented using three processes. GDBX is the
initial program executed. GDBX_TOOL is forked by GDBX. and GDBX_SHOW is in turn forked by
GDBX_TOOL. Integration with DBXTOOL requires a multiple-window implementation for GDBX.
Multiple windows, in turmn, requires multiple processes, because in SunWindows each window
has an underlying process. The processes communicate using the UNIX pipe mechanism, and
synchronize using the SELECT system call. Following is an overview of the three processes.

* GDBX

GDEX is executed from the shell with the command DBX <G or is forked by DBXTOOL (see
Integration with DBXTOOL below). GDBX creates a socketpair (two pipes), then forks GDBX_TOOL,
passing to it the file descriptors of the socketpair. After the socket has been formed. GDBX does
a SELECT system call and waits for input either from the keyboard or the mouse.

The GDBX commands PRINT and DISPLAY create a structure that represents the value of
the variable (data structurej to be displayed on the screen. After the size of the data structure
and its position on the screen have been determined, commands to present the data structure
are sent to GDBX.SHOW across the pipe. Other GDBX commands, such as ACROSSDOWN,
SHOW/UNSHOW, PTRDEPTH, or ARRAY_BEGIN/ARRAY_SIZE, affect the construction of the data
structure representation or its positioning on the screen. Original DBX commands, unrelated to
presenting a variable’s value, are unaffected by GDBX.

Input from the mouse is received by GDBX through the pipe from GDBX_SHOW. This input
is interpreted by GDBX and the appropriate response, usually a screen update, is calculated and
sent back to GDBX_SHOW for display.

42

GDBX maintains all the information about the data structures displayed and about the
display itself, such as the font size and the part of the virtual screen currently displayed.

*« GDBX_TOOL

GDBX_TOOL is forked by GDBX. This process opens & window on the screen, and creates a
tty and a graphics subwindow. GDBX_TOOL passes the socketpair file descriptors it has received
from GDBX on to GDBX_SHOW when it forks this new process. After creating GDBXSHOW,
GDBX_TOOL is no longer involved in GDBX processing. However, it does retain global tool
functions such as CLOSE, which turns the window into iconic form, and QUTT, which ends the
process.

+ GDEX_SHOW

GDBX_SHOW is forked by GDBX_TOOL. It receives a pair of file descriptors through which it
communicates with GDBX. GDBX SHOW takes over the graphics subwindow created by
GDBX_TOOL. GDBX_SHOW is responsible for displaying data structures in this subwindow and
for sending mouse input from this window to GDBX.

To present data structures on the screen, GDBX_SHOW first initializes a set of pixrects
(pixel rectangles, bit patterns held in internal memory). These pixrects are written according
to commands received from GDBX. When a data structure has been completely writien to a8
pixrect. the contents of the pixrect are written to the visible screen at & single instant.

Mouse input from the graphics window consists of a button type (left, middle, or right)
and a set of x,v coordinates or menu selection. Mouse input is sent to GDBX. which processes it
and sends back commands to appropriately update the screen.

8.2. Integration with DBXTOOL

GDBX was designed to be integrated into the DBXTOOL product of Sun Microsystems.
DBXTOOL is a multiple subwindow tool which runs DBX inside one subwindow. The subwindows
present the following information: a status subwindow names the source file displayed; a text
subwindow presents the source file context of the present stopping point; & pane! shows DBX
commands; a tty subwindow runs DBX; and a text subwindow displays values of variables.

The graphics subwindow of GDBX_TOOL and GDBX_SHOW replace the last text subwindow.

The following aspects of GDBX were influenced by the decision to integrate GDBX into

DBXTOOL.

. It was decided to make GDBX_SHOW operate in a separate graphics window rather than
attempt to use the fifth subwindow of DBXTOOL. The sizes of DBXTOOL's four other
subwindows severely constrain the size attainable by the fifth subwindow. This constraint is
due to subwindows inside a SunWindows tool being tiled, rather than overlapped, and
because each subwindow in DBXTOOL has an absolute and practical minimum size. Rather
than restrict users to a small tiled window area, an overlapping window was implemented by
creating an independent tool (GDBX_TOOL) and having GDBX SHOW take over the graphics
subwindow within this tool.

43

« Since GDBX will be forked by DBXTOOL and will operate within the tty emulator of the fourth
subwindow, GDBX was designed to remain a normal shell command. An alternative would
have been to fork GDBX from GDBX_TOOL, whereupon GDBX itself could take over the graphics
subwindow of GDBX_TOOL. However, this would have meunt that GDBX could only be run from
inside a graphics tool, making it less general and making it impossible to integrate with
DBXTOOL. The process hierarchy described in this paper was necessitated by the desire to
integrate GDBX into DBXTOOL.

The following sections describe in more detail, by process and chronology. the algorithms

that present data structures graphically.

83. Box Construction Algorithm

When a command to display a variable’s value (a data structure) is given, GDBX
constructs a representation of the value that is a linked box structure. All further graphics
processing takes place upon this box structure. Each box is an object that will later be
physically presented on the screen to portray part of the data structure. Each box holds a
value, memory address, name, size in pixels, and an x.y position on the screen. Associated
with the box are user-definable characteristics that affect the construction of the box
representation or its subsequent presentation on the screen. The commands SHOW, PTR.DEPTH,
ARRAY_BEGINARRAY.SIZE, and SUPPRESSUNSUPPRESS set a box structure's construction
characteristics, while the commands OPEN/CLOSE and ACROSSDOWN affect a box’s presentation.

The box structure is linked together as follows: A nested data structure is represented by
a box with links to child boxes. A box that has no parent and that appears as the outermost
box when displayed will be referred to as a top-level box. A record structure tin C or Pascal) is
composed of a top-level box with a pointer to a linked list of child boxes each representing 4
field of the record. An array is also represented in this way, with each child representing an
array element.

A box representing a2 pointer has a link to the box representing the data structure it
points to. Boxes that are pointed to have links to each box which points to them.

The algorithm that creates the box structure is a revision of the DBX print routine.
Where the ariginal DBX prints 2 value to the terminal, the GDBX routine creates a box into
which the value is printed (as a string). The memory address of this value is calculated and
associated with the box. The box is then linked to those boxes that define its context.

There are several interesting additional modifications to the DBX print algorithm that
were necessary in GDBX:

. In the original DBX, pointers are printed as addresses. In GDBX, boxes representing the
structure at this address are recursively constructed. The values beginning at this point in
the program’s address space must be made available to GDBX. These values (data structures)
are pushed onto the GDBX stack, evaluated, and then boxes for them are constructed
recursively. These boxes are then linked into the existing box structure.

44

. Since structures pointed to are evaluated in GDBX, rather than just their addresses being

printed, the possibility of infinite recursion is introduced. A hash table of boxes, indexed by
memory address, is maintained to prevent such recursion. This box table also ensures that a
box that is pointed to by several other boxes will itself appear on the screen only once, with
many arrows pointing to it.
A subtle exception to the above aolution occurs with record-type data structures. In record
structures, the first field of the record has the same location in memory a8 the top-level
record. A special provision is made to recognize this case as being non-recursive. In effect,
there are two different boxes that share the same memory address.

. Although boxes could hold only the values to be presented on the screen, GDBX adds the type
of the variable represented to the box as well. This additional information allows operations
such as SHOW/UNSHOW, DOWN/ACROSS, to be applied generically to types. In addition, the
type of a variable (int, char, a typedef of a structure, etc) can be displayed with the top-level
box on the screen. Type information could also be used to influence how a data structure 1is
displayed.

8.4. User Controlled Modifications to Box Construction
There are several commands available to the user that modify the constructon of the box

structure described above.

8.4.1. SHOW/UNSHOW

These commands allow the user to specify that a certain field of a record structure should
be included in‘excluded from box construction. When the boxes representing the fields of a
record are being constructed, the show field of the variable’s type is consulted. If the value is
unshow. the corresponding box is not constructed and not linked to the other fields’ boxes.

8.4.2. ARRAY_BEGINARRAY_SIZE

The user may set the element pumber from which array construction begins, or may limit
the number of elements for which boxes are constructed. To implement this, the beginning
element and size limit associated with the array variable are consulted within the loop that

constructs the boxes representing the array elements.

8.4.3. SUPPRESS/UNSUPPRESS

If the user requests that 0-valued elements of an array be suppressed, boxes representing
elements whose value is 0 or (nil) are unlinked from the chain of boxes representing the array.

8.4.4. PTR.DEPTH

The user may set the depth to which he would like pointers for a given type to be
constructed. Depth is a count of the number of pointer levels emanating from the top
structure. To implement the depth limit, a count of recursions due to following a pointer (as
opposed to a nesting) is maintained. Recursion is terminated when this count is above the

45

depth limit set for this variable type.

8.5. Positioning Algorithm

After the linked boxes representing a data structure have been created, 8 search is made
for a place to present each top-level box. First, the size of the top-level box is determined. The
size of each internal box is calculated recursively and summed to give the size of the top-level
box. A position on the virtual screen for this top-level box is then found that also defines the
positions of all the internal boxes.

The procedure that finds a position for a box is an efficient one that formats linked data
structures dynamically and produces reasonable layouts. It does not attempt to calculate
specialized or refined layouts. The procedure is given the size of a box. and it returns an Xx.y
position. This routine is not deeply embedded in the GDBX code and may therefore be replaced
by a program that specializes in more accomplished layouts.

The user may command a data structure of a given type to be presented either ACROSS or
DOWN the screen. Presenting & data structure ACROSS the screen means that pointers to
structures will point from left to right and large data structure will grow horizontally. Data
structures presented DOWN will grow vertically.

The ACROSS DOWN commands are one example of how a user might define the way in
which he would like to format particular data structures on the screen. A more intelligent
lavout algorithm could incorporate other layout variations, such as a binary tree format, a
linked list format, etc. When the layout options are thus extended, the GDBX command
interface should also be generalized.

A two-dimensional array is maintained of the parts of the virtual screen that are
occupied. A search is made for the first space into which the top-level box will fit. The search
for an open space on the screen proceeds as defined by the direction of growth (ACROSS DOWN!
of the data structure's type. The size of the rows and columns is determined dynamically by the
size of the data structures already on the screen. The gearch algorithm first attempts to find
an open place on the visible portion of the virtual screen.

The position of DISPLAYed variables is maintained across execution steps. DISPLAYIng
these structures at the same position allows apparently instantaneous update of the data
structure’s values, and enables changed values to be emphasized (see BLINKing below:. The
new position of a DISPLAYed data structure that the user has MOVED is also maintained.

The position of PRINTed data structures is not maintained across execution steps. Any
pumber of variables may be PRINTed in any order: Thus, to present PRINTed variables in an
orderly fashion, data structures that were PRINTed are cleared from the screen after each
execution step. The position of a PRINTed variable is recalculated for each PRINT request.

8.6. Box Display
A box is displayed by sending GDBX _SHOW the coordinates of the four corners that define

46

the box, the box's name, and the value to be printed inside. A box is erased by displaying the
box again with an XOR raster operation.

Top-level boxes are placed on a display-list which is searched when a selection is made. A
box is displayed with one of three presentation types: PRINT, DISPLAY, or ERASE. The
presentation type of the box is consulted to determine whether a box bas already been
presented or erased, thus terminating recursion. ERASEd boxes are removed from the display-
list immediately and PRINTed boxes are removed after an execution step.

8.7. Screen Presentation

GDBX_SHOW receives messages from GDBX that indicate the coordinates and values of the
box to present. The primitive graphics operations of printing vectors and strings are made to a
pixel rectangle (pixrect) in memory.

There are four pixrects that GDEX SHOW manages. Two pixrects are for DISPLAYed boxes.
The pixrect into which DISPLAYed boxes are written changes with each execution step, and the
previous pixrect’s values are preserved. Changes occurring in a DISPLAYed data structure are
then easily made apparent by comparing these two pixrect representations through raster
operations (see BLINKing below).

Another pixrect is used for PRINTed data structures, which are not re-displayed at each
step. This pixrect is cleared on each execution step.

Just before presenting the pixrects to the screen, the current DISPLAY pixrect and PRINT
pixrect are written to a scroich pixrect which is then written to the screen. This use of a
scratch pixrect avoids the undesirable flicker which occurs if two separate pixrecte are written
to the screen in succession, and makes the screen appear to be instantaneously updated.

The size of the pixrects maintained by GDBX SHOW is larger than the area of the graphics
subwindow or the physical screen. Only a portion of the entire pixrect is actually written to
the screen, thus affording a 'virtual window’ capability. The portion of the pixrect actually
displayed on the screen is changed by clicking the mouse in the vertical or horizontal scroll

bar.

8.8. Mouse Operations

8.8.1. Selection

A top-level box, a field within a record structure, or an array element, is selected by
pointing to the field or element and clicking it with the left mouse button. The x.y coordinates
of the mouse position are sent to GDBX. GDBX searches through the boxes on the display-list
and determines, by comparing coordinates, which field or element was pointed to.

Once the selected box is determined, it is highlighted on the screen by XORing a box of
background color over the selected box. The highlighting is removed before the selected box is
ERASED or when the left button is clicked outside of any box.

47

882. Structure Movement

GDBX allows a user to move data structures to improve the screen display, or to present a
data structure as he conceives of it. Structure movement is implemented by first identifying
the top-level box that the mouse is pointing to. This identification is done as in selection. The
box's dimensions are then sent to GDBX_SHOW which continuously presents an outline of the
box as it is dragged along, following the mouse. When the middle button is released, the top-
level box (and all its internal boxes) is erased, along with the arrows into it and out from it.
The new coordinates for the top-level box, are placed into the box and the box is re-presented.

Arrows out of the moved box are correctly re-displayed automatically,'connecting to boxes
already present on the screen. Pointers into the moved box are updated by re-displaying each
of the boxes that contain pointers to the moved box.

8.8.3. Arrow Movement

Creating an arrow or moving an arrow to point to a different box changes not only the
screen representation of the data structures but also the actual value (an address) of the
pointer variable.

The implementation of arrow movement is similar to that of structure movement
described above. When the middle button is depressed the type of the current selection is
checked. If the selection is a pointer variable. this fact is sent to GDBX_SHOW. along with the
coordinates from which an arrow should begin. While the middle button remains depressed.
GDBX_SHOW continually presents an arrow from the current selection to the position of the
mouse.

When the middle button is released, the mouse coordinates are sent to GDBX which
identifies the box to which the mouse is pointing. If the box is a record structure, the user is
asked to select a field within this structure, an operation for which the standard selection
mechanism is used. The memory location of the box to which the arrow now points is written
to the pointer variable in the address space of the program being debugged. Lastly, the
representation of the pointer on the screen is updated.

8.8.4. Fonts

A variety of sizes of Roman and Bold fonts are available. Requests for a font change are
sent to GDBX. which compensates for changes in height and width when calculating the pixel
dimensions of a box. The font in which text is presented is sent to GDBX_SHOW by GDBX as one
of the parameters of the text print command.

8.8.5. Blinking

A DISPLAYed data structure is presented after the completion of each execution step.
Within a complex data structure, it may be difficult to spot changes that occurred as the result
of this execution step (which may consist of many instructions). By using two pixrects, one for
the previously DISPLAYed values and one for the currently DISPLAYed values, changes in value
can be made to blink, thus rendering them readily apparent.

48

An AND raster operation of the two pixrects together gives those values that were
unchanged by the execution step. Repeated XOR raster operations between the current values
and the result of the AND operation makes the new values blink. Through various raster

operations, different types of blinking can be obtained.

8.98. Multiple Language Support

GDBX was originally written and debugged using only the C-language facilities of DBX.
The language-dependent routines in DBX are isolated in a single file for each language
supported. Addition of graphic debugging for Pascal programs was readily accomplished.

9. Performance

GDBX does a considerable amount of work in addition to the fixed overhead of DBX: box
data structures are built, information is sent over a pipe, and displays are created on the
¢-reen. These additions are substantial and there was concern that performance could be poor.

In fact. the implementation of GDBX displays data structures with an acceptable, even
surprising, rapidity. Simple values and small structures are shown almost instantaneously.
The presentation of larger records or linked structures have 2 noticeable lag time of perhaps &
second or two. Yet this is little more time than is required to present a structure on a normal
tty screen. and far less time than it would take for the user to print out the structures pointed
to manually.

The elapsed time and the CPU time consumed by various display operations was measured
using the UNIX system call time. A script of commands placed in 2 dbzinit file was used to
take the measurements. GDBX and DBX were each run on the same script of commands four
times. For scalar values GDBX ran approximately 30% glower than DBX. GDBX required from
2.10 times as long to present structured data.

Submitting commands automatically from a script produced results for DBX and GDBX that
could be compared easily. However, this technique does not accurately reflect actual command
submission to a debugger when it is being used interactively. When a user takes time to
digest the information displayed and to consider his next command, the additional time that
GDBX requires to calculate and display a data structure will be far less evident than it is in
these performance measurements.

By far the largest additional overhead incurred by GDBX is that of writing display
information over the pipe to GDBX_SHOW. For the display of large structures, writes consume
approximately 50% of the CPU time. Intelligent encoding of display information could reduce
this appreciably.

A description and analysis of the types of display operations measured are given below:

1. Startup/Run: This script began the debugger, ran the program without breakpoints, and
quit without doing any printing or graphic processing. Compared to DBX, the additional time
required to start up GDBX, due to forking GDBX_TOOL, GDBX_SHOW, and initializing the window
on the screen, was calculated. This additional time was factored out of the following

49

measurements, whose intention is to determine the time required for displaying objects once
processing has begun.

2. Integers, Characters, Strings : These scripts DISPLAYed the value of variables of one of
these scalar types. The results show that there is an insignificant additional delay incurred by
GDBX. CPU time is increased by only 10-15% and elapsed time by approximately 30%. These
results imply that the additional overhead of box construction, the placement algorithm, and

pipe communication is acceptably low for these fundamental types.

The presentation of these simple types is the only type of display operations that can be
directly compared between GDBX and DBX. In the remaining operations, GDBX actually displays
more information about the data structures, or displays it in a more meaningful way, than
does DBX. Thus, any large performance degradation is mitigated by the value added by GDBX.

3. Linked Structures: This script DISPLAYed a variable that is a pointer to a record structure.
The number of structures DISPLAYed by GDBX grew from one, when the pointer value was nil,
to a maximum of five record structures of three fields apiece. The corresponding presentation
of the variable's value by DBX always consisted of a single address. The time required for the
display of the linked structures by GDBX was approximately twice that required by DBX.

4. Record Structures: This script DISPLAYed several complex, nested record structures. In
this case, the same amount of information was displayed by GDBX and DBX, but in quite a
different format. The time required by GDBX was about triple that by DBX. The SHOW/UNSHOW
commands may be used to trim the amount of information displayed to achieve better
performance.

5. Arrays: The script Integer Arroy DISPLAYed & 10-element integer array, and the scnpt
Pointer Array DISPLAYed a 10-element array of pointers to record structures. In the GDBX
implementation, arrays are cast into a box structure similar to records. This imposes overhead
on an array that DBX does not, but allows operations such as OPEN/CLOSL to operate on arrays
as well as records.

In Pointer Array, GDBX DISPLAYed the structures that are pointed to by each of the array
elements, whereas DBX printed only the structure’s address. This display of additional
information accounts for the large increase in time required for this script.

The final script, Elided Array, DISPLAYed the same 10-element pointer after setting
ARRAY_SIZE and PRINT_SIZE to 5, replacing the default values of 10. The CPU time was cut in
balf. This reduction came primarily from fewer writes due to a smaller PRINT_SIZE. The use of
commands to control presentation is effective in improving GDBX performance.

Below are tables of elapsed time and CPU statistics for the various types of display

operations.

50

Elapsed Time ‘sec T
Type DaX Avg GDBX Avg. Normalized % Increase
GDBX AV

Startup'Run 1.0 16.5 19.5) -
Characters 133 2.8 17.3 30.1%
Integers 13.3 2.0 17.3 31.6%
Strings 140 28.0 18.5 321%
Linked Structure 113 33.0 .5 108.0%
Records 10.3 25 34 230.1%
Integer Array 6.5 373 8 327.7%
Pointer Array 6.0 78.5 69.0 1050.0%
Elided Array 6.0 49 398 558.3%

User + System 11ime ‘sec
Type DBX Avg GDBX AVE Normalized % [ncresse
GDRX Avg

Startup/Run 1.38 24 (1.02) -

Integers 7.0 8.83 1.81 11.6%

Strings 7.08 9.1 8.08 14 9%

Characters 6.85 8.95 7.8 15.8%

Linked Structs 5.15 11.2% 10.2 98.6%

Records 468 161 14.08 200.9%

Integer Array a5 13.55 1253 258.0%

Pointer ArTay 3.38 34.25 k<W<} 883.1%

Elided Array 3.38 20.13 18.11 465.4% |
S

10. Future Work

GDBX succeeded in presenting data structures graphically and in creating a user-
tailorable environment. Following are some ideas about how GDBX can be further enhanced
and extended.

. A more intelligent layout mechanism for linked structures can be added. The ACROSS'DOWN
commands are a beginning in showing how a data structure’s layout can be tailored to &
particular user or program. Ultimately, a layout algorithm similar to that employed by
GRAB [Davis 85), which statically formats directed graphs, can be incorporated into GDBX.
Performance would become & oconcern, however, as layout calculations increase in

51

complexity.

. The facilities established by cpBX for displaying data structures graphically can be
extended to other objects that DBX currently presents textually. For example, the
presentation of the call stack or of a structure's definition could be enhanced by using
graphic displays.

« Further work on displaying two-dimensional arrays in matrix format or allowing entire
sections of an array to be selected, OPENed, or cLosEd would be useful.

. The graphic presentation abilities of GDBX can be used for applications other than
debugging. Programs illustrating algorithms that manipulate data structures, as in Pecan
[Reiss 85] or algorithm animation {Brown 85}, could be composed using command scripts

placed in the .dbxinit initialization files.

11. Conclusion

GDBX has shown that graphical displays of data structures can be accomplished in a
user-controlled environment. It is a large application built upon the Sun Workstation window
manager, a machine and environment that will exert a strong influence on the academic
research community in the future.

GDBX was used, in later stages, t0 debug itself. It proved to be valuable in this self-
referential task, aiding in the understanding of complex internal data structures. GDBX has
also been well received by the user community at UC Berkeley.

GDBX was implemented by one person over a period of approximately five months.
Similar extensions to other debuggers in similar environments would be practical. The value
derived by a large user community may make it well worth the effort.

The major strengths of the GDBX project stem from it being integrated fully into 2 well-
known and widely used debugger. GDBX uses the standard debugger command interface to
perform its graphical displays and to create debugging environments suited to a particular
user or program. GDBX uses the graphics and mouse interface of SunWindows to afford the
user control over the presentation of data structures, successfully creating & more powerful and
effective debugger. '

References

[Brown 1985]

[Davis 1985)]
[Model 1979
[Myers 1980]

[Reiss 1985]

[Sun 1983]

[unx 1984

Marc H. Brown and Robert Sedgewick, "Techniques for Algorithm
Animation”, IEEE Software, Vol. 2, Number 1, Jan. 1985, pp. 28-39.

Michael Davis, "A Layout Algorithm for 3 Graph Browser”, Masters Report,
Division of Computer Science, University of California, Berkeley, June, 1985.

Mitchell 1. Model, Monitoring System Behavior In ¢ Complez Computational
Environment, Palo Alto: Xerox PARC CSL-79-1, January, 1979.

Brad A. Myers, Disploying Data Structures for Interactive Debugging, Palo
Alto: Xerox PARC CSL-80-7, June 1980.

Steven P. Reiss, »PECAN: Program Development Systems That Support
Multiple Views”, IEEE Transactions on Seoftware Engineering, Vol. SE-11,
Number 3, March 1985, pp. 276-285.

*Programmer’s Reference Manual for SunWindows”, Sun Microsystems, Inc.,
Jan. 7, 1983.

UNIX User's Manual, Reference Guide, "DBX,” 4.2 Berkeley Software
Distribution, March, 1984. '

