
Graphic Presentation of Data Structures
in the DBX Debugger

David B. Baskerville

Report No. UCB/CSD 86/260

October 1985

Computer Science Dhision (EECS)
University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1985 2. REPORT TYPE

3. DATES COVERED
 00-00-1985 to 00-00-1985

4. TITLE AND SUBTITLE
Graphic Presentation of Data Structures in the DBX Debugger

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Debugging is a task that requires access to extensive information about a program and its execution state.
The more effectively this information can be presented to the user by a debugger, the better tool the
debugger becomes. Graphics is a meaningful and effective way of presenting a program’s data structures.
This paper describes the design and implementation of an extension to a standard debugger. The extension
presents data structures graphically and enables a user to control the format and extent of information
provided. The extension to the UNIX debugger DBX runs on a Sun Workstation using multiple windows, a
bitmap display, and a mouse pointing device.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

56

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Graphic Presentation or Data Structures in the DBX

Debugger

Dat>t·d B. Baskerville

Computer Science Division

Department of Electrical Engineering and Computer Sciences

University of California at Berkeley

Berkeley, California 94720

ABSTRACT

Debugging is a task that requires access to extensive information about a pr~

gram and its execution state. The more effectively this information can be

presented to the user by a debugger, the better tool the debugger becomes. Graph­

ics is a meaningful and effective way of presenting a program's data structures.

This paper describes the design and implementation of an ex tension to a stan­

dard debugger. The extension presents data structures graphically a.nd enables a

user to control the format and extent of information provided. The extension to the

Ul';"1Xt debugger DBX runs on a Sun Workstationt using multiple windows, a bitmap

display, and a mouse pointing device.

July 5, 1985

Sponsored by the Defense Advance Resea.rch Projects Agency (DoD), Arpa Order No. 4871, monitored by Nava.l

Electronic Syne!llll Comma.nd under Contra.ct No. N00030-$4-C.0080 Da.vid 8a3kerville Wil.! supported by a.n

NSF' Graduate Fellowship, gra.nt number RCD-84-50040

t UNIX is a Tra.dema.rk of Bell Lit.bora.tories

t Sun Worhta.tion a.nd SunWindotu a.re Tra.dema.rh of Sun Microsystelllll, Inc.

Table of Contents

1. Overview ..
...................................... 1

2. The De bug(i.n& Problem ..
........... 1

3. The Solution ····-·····················:··························-·············-···-··············
·························-····· 2

4. Objectives of the Graphical Debugger ..
2

5. Related Work ..
............................... 3

6. IDustrationa of Graphic Presentation ..
5

7. Command Description ...
.............. 37

8. Implementation ...
.......................... 41

9. Performance ...
............................... 48

10. Future Work ...
............................. 50

11. Conclusion ...
................................ 51

Appendix: Manual Page for GDBX ..
............... 52

Graphic Presentation of Data Structures in the DBX

Debugger

1. Oveniew

David B. Baskerville

Computer Sci.ence Division

Department of Electrical Engineering and Computer Sctences

University of California at Berkeley

Berkeley, California 94 720

This paper describes the design and implementation of an extension to a standard

debugger. The extension presents data structures graphically and enables a user to control the

format and extent of information provlded. The extension to the UNIX debugger DBX {UNIX

19841 runs on a Sun Workstation under the SunWi.ndows window manager [Sun 19831. The

system is successful in presenting even complex data structures in an effective manner with

good performance. A user may move and modify data structures on the screen and may

control the amount of information presented about records, arrays. or linked structures.

Sections 2 through 5 of this paper discuss desirable presentation features of a debugger

and delineate the objectives of the graphical debugger. Section 6 illustrates the graphical

presentation of data structures accomplished by the extended DBX. Section 7 describes the

commands for graphic display. Section 8 describes in some depth the implementation of the

graphic extension. The concluding sections relate performance results and ideas for further

work.

2. The Debugging Problem

Data structures are fundamental to computer programs. A computer program can often

be characterized by the data structures it creates and the operations it performs upon them.

In designing a program, or attempting to understand a program, a visual representation

of the program's data structures is often essential. Introductory programming courses teach

students to think about data structures in bol: form with pointers represented by arrows from

one box to another. Experience has proven this box-C1nd-t1rrow form to be a worthwhile way of

conceptualizing data structures. Advanced programmers think about data structures in the

same way, visualizing b<l%-Clnd-tlrrou· models of linked lists, binary trees, and symbol tables.

In debugging a program, the user has access to a potentially vast amount of information

about the program and its state. The debugger should be able to organize and present this

information in a way that is useful and natural to the user. In particular, the most common

presentation task of a debugger is to show the value of a variable, which may be a simple

value or a data structure. Therefore, it is incumbent on the debugger to be capable of

2

presenting such data structures in the same form in which users think of them. Linked

structures should be presented u boxes joined by arrows from one box to another, and nested

structures should appear visually as nested boxes. During interactive debugging, if data

structures are presented u users naturally think about them. errors can be spotted more

quick.ly and an understanding of the program's execution can be achieved more readily.

Traditionally, debuggers have presented information as text, making no attempt to

present data structures in a box-and --o.rrow format. Attempts to do so on a low resolution ascii

terminal would prove futile. The biggest drawback of text-based debuggers is the way in

which pointers are presented. These debuggers display the value of a pointer as a numerical

address of the structure pointed to is given. Yet it is the object pointed to, not its address, that

is usually of interest. The user must follow pointers, printing out components of a linked

structure individually, to reconstruct the state of a data structure on his scratch paper. If a

textual debugger were to present all the objects pointed to, the ftood of information would

quickly 9CI'Oll off the screen.

3. The Solution

The advent of high-resolution bit-mapped displays affords the possibility for debuggers to

present data structures as the user envisions them. Since the implementation is no longer

limited to text. a debugger can draw nested boxes and interconnecting arrows to represent a

data structure, ameliorating the debugging process.

Presenting data structures in the familiar boz-and--o.rrow form alone, however, is not

enough. It is vital that the user be allowed to control the format and extent of information

displayed about a data structure. A user may conceive of binary trees very differently from

linked lists, even though the underlying data structures are essentially the same. The user

should be able to specify how certain data structures are formatted on the screen so that the

presentation matches his conception. He should also be able to move the data structures once

they have appeared an the screen. This capability enables the user to alter the way he views a

data structure or to improve a layout that becomes inappropriate as data structures change

dynamically.

Presenting all the information held in a complex data structure may be too much detail.

It is important to allow the user to tailor a data structure's presentation to show only those

parts which he would like to focus upon. Such control can be provided by allowing the user to

close a certain .substructure, to suppress a pointer and its linked structure. or to elide parts of

an array.

•· Objectives of the Graphical Debugger

The UNIX debugger DBX is a symbolic, sourc:e language debugger, supporting C, Pa.sc:a.l,

Fortran, and assembly language. Breakpoints may be set at sourc:e code line numbers, at the

beginning of procedures, or upon a condition which the user specifies. After a breakpoint, the

execution of the program can be continued in single step mode, procedures may be called, etc.

3

A variable's value ie printed by entering its name symbolically. using its source code name. If

the variable is a record. its value is printed using one line per field. Pointer values are printed

as numerical addresses.

The extension to DBX described in this report, which presents data structures graphically

and allows user-tailorability, will be referred to as GDBX. for Graphical-DBX.

To achieve the previously described goals of improved debugger presentation, the

graphics extension project set the following objectives:

• A variable's value should be presented in boz-and-arrow format. Structures and nested

structures should present information and dependencies clearly.

• A variable's value should be updated after each eucutton step, with changes easily

identified. (An execution step means any further execution of the program being debugged.

This may result from such DBX commands as STEP, NEXT, CONT, CALL. or RtiN.l

Users should be able to control the amount of inform:.tion presented about a data structure

and its layout on the screen, even before beginning to debug a program.

Users should be able to change the presentation of a data structure by <>pening or closing

fields of a record. by moving structures or arrows, or by scrolling &rrciys.

The data structures should be displayed on a virtual screen, larger than the physical ~reen.

The virtual screen should be scrollllble, allowing the visible portion of the screen to be

moved up;down or left.Jright.

5. Related Work

[Model 79 J and [Myers 80 l give a history of debuggers and defend the use of an analog £Ca.!

display for data structures. An analogical display is one that makes use of bit-mapped

graphics to present objects in the form of boxes. arrows, or icons, creating aMlogies to the

physical world.

The work most closely related to GDBX was done by Myers at Xerox PARC. INCENSE

(Myers 80) wa.s perhaps the first system to present graphical displays of data structures in a

standard compiled language using a bit-mapped display.

INCENSE displays data structures in bO%-and-arrow format, with boxes linked by curved

arrows. INCENSE includes a mechanism that allows users to define, by a Mesa program. the

presentation format of a record structure.

The placement of linked structures is accomplished using what Myers calls a loyout

mechanism. The layout mechanism gives all objects, at the time of their creation. a specified

area in which to display themselves. Parts of a linked data structure that are pointed to must

find a space for themselves within this area. Thus, components further down the pointer chain

shrink themselves to fit into the designated area. Beyond a certain minimum size these

structures do not present themselves.

4

GDBX extends the idea of graphical presentation of data structures in the spirit of

INCENSE. Areas in which GDBX improves upon INCENSE solutions are the following:

lntegnttion into a standard debugger: GDBX is an extension to a standard debugger.

wbere~s INCENSE is loosely connected to the Mesa debugger: "Although presently INCENSE

does not have an acceptable front end. it should increase the effectiveness of any debugger

into which it might be integrated." [Myers 80, p.ll

Two-dimensional space allocation: GDBX employs a two-dimensional space allocation

algorithm <albeit simplel to find places for linked structures on the screen. INCE:'JSE shied

away from this solution and developed the layout mechanism. The GDBX solution is more

general and can be extended to incorpora~ a specialized placement routine.

GDBX introduces the following ideas to graphical debugger display.s:

Dynamic user control over data structure presentation: OPEN'CLOSEing of record fields and

array elements, moving structures and arrows, scrolling arrays

Scroll bars and a virtual screen

Construction and presentation control: SHOWIUNSHOW, PTR.....DEPTH. AR.RAY....BEGIN,ARRAY..SIZE,

SUPPRESS L""!'\"SUPPRESS

6. lliustrations of Graphic Presentation

This section contains screen dumps from a Sun Workstation taken during sessions with

GDBX. These screens show how data structures are presented and show operations performed

upon the data structures. They illustrate how GDBX meets the objectives outlined above.

(Please refer to section 7 and the MAN page in the appendix for a more detailed discussion

of the GDBX commands and mouse operations used in making these screens.)

There are 10 sub-sections illustrating the following displays and operations:

6.1 Display of Data Structures in C and Pascal

6.2 Construction/Modification of Linked Data Structures

6.3 ACROSS•OOWN Layout Specification

6.4 OP~:-oiCLOSEing of a Record Field

6.5 Structure Movement

6.6 Arrow Movement

6.7 Array/Pointer Ellipsis

6.6 Array Scrolling

6.9 Array Suppression

6.10 Scroll Bars and Font Changes

6

6.1. Display of Data Structures iD C and Pascal

The following screens illustrate how data structures are presented in C and Pascal. The

presentation of a data structure is identical in the two languages, with the exception of type

names and scalar types of Pascal.

6.1.1 This screen shows the paradigmatic box form in which simple variables are

presented. The variable's name is shown on the left side of the box and its value

on the right. A variable of pointer type is represented by a value of '*' and an

arrow emanating from the right side of the box. Here. C variables of type

integer, character, real, string, and pointer are presented.

6.1.2 This screen presents Pascal variables of type integer, character, boolean, real,

scalar type, pointer, and record. A record is presented using nested boxes. The

record itself is an enclosing box. The fields of a record are shown as boxes

stacked vertically within the outer box.

6.1.3 This screen illustrates an array of strings, an array of pointers, an array of

integers, and a two-dimensional array. The presentation of arrays is similar to

records. An array is shown as an enclosing box. Each element of the array is

displayed in a separate box stacked vertically within the box representing the

array. The element number i.s shown .in brackets after the array name.

6.1.4 This screen shows an array of pointers, an array of integers, a record. a nested

record, and a recursive structure.

6.1.5 This screen shows a three.dimensional array of scalar litentls in Pascal.

letr1ng: "I.Dnfi Str1np" l

I tflar acur : '1'

(p1: 3.14285717Ci31S488

cUr
lc: 'ttl' I ... , ...
I~: true I
,...,

Jr: 1.1 I

.-rit,.
I Jl!llllr 1 : zs I

-~ ----- -..... ~-.. ---

, .', ~

1 nt..array[BJ: 1

1 nt..arrey[l): 1

1nt..array(2J: 2

1 nt_arrey(3]: 3

1nt...rra~:
1nt..array(4]: •

1nt..arrey(5): 5

1nt..erray(6]: 6

1nt.erray(i): 1

1nt..arrey[BJ: 1

1nt..erray(9]: !I

two~t_erra:;(IJ:
twod_array[BJ[B): I

twoiLrre:;:
twcd_array[B)[l]: I

tttoct.erre:;[1l:
twod_arrh[1J[BJ: a
twoc_a~-•~1: 1

------~
~

- .. - -... ~ ~

I
l.tt: tn1l)

r1_il'1t: (nn)

Hll: I

erra:;[BJ: •
ll"rQ: erray[l):

~___. ltH: (n11l
•

trH
ltft: (n1 1)

rec:ord: r1gl'1t: (n11)

1tll: 5

erray(2): • r1Qt~t: (n1ll

\til: 1 ... ,
chll"attar: 'II'

laH: (n1ll
left: (n1 1)

Ut r1 gtlt: (n11)

1 nt_arrey(IJ: 1 H11: 2

nnted: nutef: r1jtlt: (n11)

1tll: 3

1nt..errav(1): 1 tntagar: 1

[2): 2

(3): 3

MIC:Url1 "' : •

~array3[8)[8)[8): b11CI:.

~arra~3[8)[&J(1): 111'11 ta

parr~l(l) (I): ,parny3(8) (8) (2]: lll'lltl

[parray3[e)[~)[3): 11Mt1

~·-r-·~3[8)[1)(8]: Or'll'li_t

~_arra~3[8) [l) [1): 11Mtt

parrayl[l): p.,-ray3U)(1): ~arra~3(8)(l)[2): Iff\ Itt

ptrray3[8](1)[3): 111'11tt

.f8r,..ay3:eJ[2J [8): green

pirrly3!1lt2);
~erra~)(t)[2)(1): •"'~•

,parray3[8)(2)(2): lll'lltt

ptrray3[8)[2)[3): •~"~Itt

prreyl: [£_arra~3[1)[8) [8): purp 1e

p.,-rayl[1)(1):
parray3[1)[S)[l): lll'litt

~trra~3[1)[8)[2): lll'l,tt

parray3[1)(8)[3): lll'lite

_parra•3[l)[1)[8J: }'_t11o•

parray3(1)(1):
:.E_arra~3[1J[l)[!J: IIMte

parray3(1J: ~.,..,...~3[1)[1)(2): 111'11tt

parray3(1][1)[3): lll'l1tt

parra;3[1)[2J[eJ: 1:11ue

_pa'ra~3[!J[2)[l): 11!'11tl

fJVT"Iy3(1) (2)!
~array3(1)[2][2): 111'ntt

[_earra~3[1) [2) [3]: ~~~'~' te

Screen 6.1.5

10

6.2. Construction/Modification of a Linked Data Structure

The following 9Creens illustrate a program executed one step at a time using DBXTOOL

and GDBX. The program constructs and modifies a linked data structure.

DBXTOOL appears on the right with five subwindows. iSee lntegrn.tion with DBXTOOL

below.) A breakpoint that has been set is indicated by a stopsign. The current execution stop is

shown by a double-shafted arrow. The program is executed one step at a time by clicking the

step button in the third subwindow.

As each step is executed. the data structure is updated in the GDBX window on the left.

This series of screens illustrates how the progress of a program can be seen visually.

r"eCUN1VI : (ttriiCt f'ICIIF'I •) C8110C(1, t1ZIOf(

ttriiCt recur•)) :
reeurt1VI"' >neJrt : rtelll"t1 VI ;

reeurt1VI1 : (ttrYCt ~ur11 •

f(1tr11tt reeurl1)) ;
reeurtiV11·>MKt2 : rteurt1¥t1

trt r : (ttruc1 trtt •)

ea11oc(1, 11zao

~ c.lloc(1, t1zeof(rtr~~et tr11))

ptr·)1ttl: C ;
ptr·)ltft : (ttruct trtt •)

ea11oc:(1, t1zeof(str~~c:t

: (ttruct trte •)

1ng tyabo
131 lytbOll

r lib Ktoc 1) ttop 11 15
.1) atop It •tr'M .e• :115
: clb~<too 1 l run
:cSbMtocl} print ptr
!cSbMtool) d1splt) ptr
ODKtocl) 1

~VI : (strul:t r.ara •) c.lloc(1, t1nof(

rtruet reeUN l l ;
rtewri1VI"'}Mirt : r«::r11VI ;

recur" II Vl1 : (l'triiCt rtarl1 •

f (l'trllt t l"'teUU"S1)) ;

~11VI1->nelrt2 : f'KUF'S1¥11

ptr : (ltr'uet tree •)
! till De (.1, t1 z.ctf (lti"'IC1 tree))

~tr-}1tll : • ;
ptr-)ltft : (ltrlltt trte •)

c.noe (1, t1 zaof (lti"'IC1 trM) l
: (struct tree • ·)left

·~'· \ dbrtool) stop tt •
(1) ttop tt •tr ... r:":•
. ~tt~Jrtoo 1) rv1

, ~tt~Jrtool) pr1at ~
, dt»CtOO 1) f1tpl., ptr
\ dtiKtOO 1) ltlp
(dt»CttO, , I

ptr : (ttruct trM • }
! ttlloc(1, t1ztof{ at~uct trtt }}

ptr·)1tM : • ;
ptr·)lett : Ctt~uct trtt •)

.. tt11ot(1, t1zeof(ttruct trtt))
ptr->rtght : Ctt~uct t~•• • lpt~·>ltft
ptr•)ltft·)1ttt : I ;
ptr-)ltft·)ltft : Cst~uct trtt •)

ttllot(1, t1ztof(ttruct t~••))
ptr-)1tft·)r1ght : Cttruct tree •)

ca1locC 1, t1ztof(tt~wct t~••))

ng ay.oc
131 ~11

12bwtoo 1) ttOfl tt 16
1 l atop tt •trtt.e• :15
IStuctoo 1) I"Un

ISbKtCIO 1) pr1 nt pt~
clbwtool) 11~11~ ptr
abwtoo 1) 1t1;1
12DK1CI01) tUp

. dblltCIO 1) I

ptr : (It~ tree •)
! canocc 1, t1Ztof(ttrutt trtt))

ptr-)1tee : • :
ptr-}ltft : (ttrutt trtt •)

ca1loc(1, 11nDf(ttrutt trtt })
.. ptr->Mgtlt : (ltrutt trtt •.)ptr-}1tft

pt~-)1tft·}1tll : 5 ;
ptr->1~t-}1tft : (at~UC1 tree •)

tt1lot(1, t1Ztof(tt~utt trlt))
ptr·)ltft·)r1ght : Catruct tr .. •)

canoe{ 1 .• 11ztef(atruct tree)) ;

tiel 131 ·~1·
. crtool) ~ tt •
.. 1) ltOfl tt .,... .e- =•
. crtoo 1) ,...

· CII>Ktoo1) ,nnt ptr
@II tOO 1) f1" 1a, F

• crtoo 1 > tU!I
. abwtoo 1) tUp
*'rtool) tUp

. *•tool) I

ptr : (ltriiCt ti"M •)
! ealloe(1, t1Zt~(etruet tree))

ptr·)1t• : • ;
ptr·)1tft : (struct tr• •)

ta11oc(1, a1ztof(struct trea))
ptr·>r'1gflt : (atruct tr• •)ptr·)ltft

~ptr-)1aft-)1taa : S :
ptr·)ltft·)1tft : (struct tree •)

ca11oc(1, s1zeof(struet tree))
ptr-)1eft-)r1ght : (str~~tt tree •)

canoe(1, a1zaof(struct trtt))

ptr : (rtr-uet tree •)
f canoe(1, 11zecf(rtruct tree))

ptr":')1ta : • ;
ptr-)1tft : (atruet tree •)

canoe< 1, 11zaofC nruct tree))
ptr-)r1gflt : (ttr~~tt traa •)ptr->1eft
ptr-)1tft·)1tll : s ;
ptr->1eft·)laft : (struct tr• •)

~ealloc(1, t1zaof(atruct tree))
ptr-)1aft·>r1ght : Cstr~~tt ti"M •)

tallot(11 11Z.of(ltrUCt trll))

'dbxtD01l nop tt •
1> nop at •trtt.c"':•
dbxtDO 1 > run
!IDrtDO 1) pr1 nt ptr
~bwtoo 1) ., lp 11) ptr
CSblrtDO 1) ltllp
dllrtDO 1) ltep

. e~~~xtD01) nep
' CltlrtDO 1) ltep
dllxtDOl) nap

. ClbxtDO\)

14

6.3. ACROSS'OOWN Layout Specification

The following screens show the linked structure constructed in the previous program

displayed first ACROSS and then OOW!'J the screen.

lift: (111,)

r1 t: (1111)

1tM: I

16

8.4. OPENiCLOSEine of a Record Field

The following screens illustrate an operation on the linked structure constructed above.

A field of a record is first selected. then CLOSED or OPENED.

6.4.1 The linked data structure is displayed ACROSS the screen.

6.4.2 Clicking the left mouse button while pointing at a box selects and highlights the

top-level structure. Here. the second box is selected.

6.4.3 Clicking the left mouse button within a highlighted record structure selects a

field within the structure. Here, the field named right is selected.

6.4.4 Depressing the right mouse button summons a menu of operations that may be

applied to the selected record field. Here, the operation Close Selection is chosen.

As illustrated, the field named right is clcsed and the pointer and structure

emanating from it are erased. A closed pointer is indicated by the value'*'""'.

6.4.5 The closed record field right is once again selected.

6.4.6 A menu is called and the operation Open Selection is applied. This re-opens the

n.ght field, and the structure to which this field points is once again displayed.

[ptr: ·~ left: • ~ left: • t--1 left: Cn11)

ngl'lt: • r1gl'lt: • r1111'1t: (n11)

1tn: • 1111: 5 1t11: I

leH: (n11)

r1gl'lt: (n1l)

1t11: I

(ptr: • 1--t , left: • ~ le•t: • ~ left: (n11)

r-1 !ltlt: • p •9f't! • •• Mgl'lt: (n11)

1ttl:. 1tll: 5 1tel: •

[ltr: • ..t---4 1tft: • H 1tft: • ,__.... ltf1: (n1 l)

.. ,,., . • • • r1gf'lt: (n1l)

1ttt: • 1tll: 5 'IIi 1ttt: I

20

8.6. Structure Movement

The following screens illustrdte how the middle mouse button is used to move structures

on the screen.

6.5.1 This screen illustrdtes a layout of an array of pointers created by the positioning

algorithm.

6.5.2 To move a structure, the middle button is depressed while pointing to the

structure. Here, the array of pointers was pointed to. Moving the mouse while

continuing to depress the middle button drags an outline of the structure along

with the mouse.

6.5.3 When the middle button is released. the array structure is displayed at its new

position.

• 1_ .. ·%.f1 •

arrt:;(l): • f.---4 ltft: (n1l)

rn,: array(l): • r11Jilt: (n1l)

arrty[2J: • 1t .. : I

. L. left: (n11l

r1gl'lt: (n1l)

1ttl: 1

.... left: (n1 1 l

r1gllt: (n11)

1ttt: 2

array(&): • ~ ltft: (n1l)

rray: arr~[l): • ngM: (n11)

arrty[2): • 1t .. : •

r ,,~ ltft: (n11)

ngP'It: (n1l)

1t .. : 1

.... ltft: (n11)

r1gt~t: (nnl

1tn: 2

r left: (n1 l)

r1_flt: (n1l}

1t11: I

erny[e}: • v 11ft: (n1 1)

rra,: tri'IJ~[1): • r'!J_tlt: (n1 1)

errt_t[2J: • 1ttl: 1

left: (n1 1)

r1 gt\t : (n11)

1tll: 2

23

6.6. Arrow Movement

The following screens illustntte how an arrow, which represents a pointer. can be moved.

The actual value of the pointer. as well as the screen representation, is modified by moving the

arrow to point to a different object on the screen.

6.6.1 This screen presents three tree variables. each of which has two fields that are

pointers to other trees. The fields are currently nil.

6.6.2 To move an arrow cor to create an arrow if the current value is nitl, the box

holding the pointer is first selected using the left mouse button. Here. the a field

of variable z is selected.

6.6.3 If the middle button is depressed when a pointer field is the current selection, the

arrow will be moved. This screen illustrates a new arrow following the motion of

the mouse.

6.6.4 The new arrow is positioned to point to the structure %1.

6.6.5 If the arrow is positioned to point to a record structure, the user selects which

field within the record be would like the arrow to point to. Here. the entire

record ::1 is selected. The value of pointer a is changed and the screen is updated

to reflect its new value.

6.6.6 This screen illustrates the three records after field c of: is made to point to z2.

Recursive structures may also be defined in this way.

tree
a: (n1 1)

tel: c: ("' 1)

II: 3

a: (n11)

lt2: t: Cn1l)

II: 2

a: (n11)

111: t: (n1l)

II: 3

e: (n11)

tc2: t: (1111)

•= 2

a: (nn l

111: c:: (n11)

tl: 3

a: (n1 1 l

IC2: c:: (n1 1)

b: 2

a: (n1ll

IC2: c:: (n1ll

tl: 2

a: (n11)

112: t: (n11 l

~= 2

a: (n11)

112: c: (n11l

~: 2

27

6.7. Array/Pointer Ellipsis

The follov.ing screens illustrate ellipsis of array elements IUld of linked structures beyond

a certain depth.

6.7 .1 This screen illustrates an B.ITliy for which only the first five elements are

presented. This ellipsis is accomplished by either the ARRAY ...SIZE or PRlN'LSIZE

command. The element value '' indicates elision. The number of array

elements that are constructed is set by ARR.AY...SIZE. PR.C"o"T...SIZE sets the number

of array elements to be present«/..

6.7 .2 This screen illustrates a linked list of structures that is displayed only to a depth

of five. Ellipsis such as this is accomplished by either the PTR....DEPTH or

PR!N'T..DEPTH command. A pointer value ···-· indicates an elision caused by

PTILDEPTH. A pointer value (not shown herel represents an elision caused

by limiting the PRL"-'T..DEPTH of a pointer. The latter elision is equivalent to a

CLOSED box. A linked structure thus elided may be OPE!'.'ED to display subsequent

levels.

29

8.8. Array Scrollinc

The following BCTeens illustrate bow an array may be ~erolled.

6.8.1 This screen illustrates an array for which only the fi.rst five elements are

displayed.

6.8.2 Here, an element of the array is selected using the left mouse button.

6.8.3 Depressing the right mouse button calls a menu from which the operation

SCROLL SELECTION TO TOP is selected. The selected element, number 4, is scrolled

to the top portion of the visible array. The beginning element of an array

presentation may also be set using the command PRIN'T.JlEGIN. PR!J',i'..SIZE sets

the number of array elements that are shown.

---- ~- -- - - -

- - -

: •'

:'

32

6.9. Array Suppression

This screen pictures two arrays of identical values. The left array is

presented normally. All values are show. up to the portion that is elided due to

PRINT~IZE. In the right array, the 0-valued elements of the array are elided by

the command st.;PPRESS.

err-ey[eJ: I ll"l"ly2 [l J: 1

erra_y(1): 1 arrl)2[3): 3

erray[2]: I

erray[3): 3
array2:

arra~2[S): 5

arrt~Z [7): 7

errty(4): I erray2[9): 9

rrey: erray(S): S
err~[6): •
erray[7): .,
errty[8): •
errey[9): 9

....

34

8.10. Scroll Bars and Font Changes

The following screens il1ustrate how large data structures. or many data

structures, may be viewed on a small screen. The visible screen can be scrolled,

presenting different portions of the virtual screen. Alternatively, the font in

which data structures are shown may be changed to shrink or enlarge the

presentation.

The data structure shown is that of an optwn_subwindow. a standard

subwindow structure in SunWmdows.

6.10.1 This screen shows a linked option_subwindow structure that does

not fit on the screen. The mouse is positioned in the top horizontal

scroll bar.

6.10.2 After clicking the left button, the portion of the virtual screen

presented is shifted. The presented portion of the screPn now

begins at the mouse's position in the scroll bar.

6.10.3 Here, a smaller font is chosen. With the entire data structure

scaled down, the linked option_subwindow fits inside the visible

portion of the screen.

6.1 0.4 This screen illustrates the data structure presented in a larger font

size.

Screen 6.10.1

Screen 6.10.2

•

ttt,.tNIIt .. J.It.

t •• _ ••• ,t .. ll! •

.,._ ... ~~----~----------------------------4
ts ••• , ~'~··~-~·~"'~·~·~·; .. ~·~·-· .. •

,,._,,.,, (l't\)

tte.ttMr: (ltf1)

t~t .. aetacte•t ,.twt .. t""'tttl<)

t t..:
tt ... eatal ••

Screen 6.10.3

----- :

·---~~ -_

1&11. •ft , .. $: • I--t ts_aert: <all >

ts.,Jita4owfd: I

ts_aal'lle: -
tS..J~Icltll: -1
h..heitht: 10

~ i o_taputsd:: •
'\ ~ lt_l1ltPUtllaGk: •

U-1•:
~ lt_n:ceptask.: •
~~•-tl~r: <ail)

~ h .. llaud les I tMI acb.: •ptst~_llaadleslgMtacil()

~lt_aelected.: •ptsM..aelected()

ts_(eatrey: •PtSM_(tile 0

ta_(ata: -

37

7. Command Description

Commands to present or modify data structures graphically may come from the keyboard

or the mouse. Commands entered at the keyboard will be referred to as GDBX commands.

GDBX commands include the standard DBX commands which are unmodified. GDBX commands

can be issued before beginning to debug a program interactively. Mouse commands operate on

structures already displayed.

7 .1. GDBX Commands

GDBX commands may be issued during interactive debugging, or may be placed in an

initialization fi.le. If the commands are placed in the startup .db:xinit fi.le, they are read and

processed at the beginning of each GDBX session. This mechanism can be used to define an

envirOnment tailored to an individual user. ~The same mechanism is used in the original DBX.l

If the commands are placed in a file named .db:xfile (where file is the name of the program to be

debugge. .. D they are read and processed only when this particular program is debugged. This

second usage creates an environment tailored to a particular program and the data structures

within it.

7 .1.1. Presentation Commands

DISPLAY variable_name [, variable...name

DISPLAY presents the variable's value on the screen. The value is presented as a box

structure. This DISPLAYed variable is placed on a list of variables whose values .are

presented each time execution stops, after a STEP, NEXT, or CO!'-'TINUE command. The

position of DISPLAYed data structures is maintained aaoss execution steps.

Ul"'"DlSPLAY variable...name [, variable...name I

IDo'DlSPLAY clears the variable's value from the screen and removes it from the list

of variables that are updated after each execution step.

PRINT variable...name r ' variable_name I

PRTh'T presents the variable's value on the screen in the same manner as DISPLAY.

PRTh'Ted variable~ are erased from the screen after each execution step.

ERASE variable...name [, variable_name 1

ERASE clears the variable's value from the screen. The entire screen can also be

cleared (see CLEAR below).

7 .1.2. Layout Commands

ACROSS structu.re.......name [, structure_name

ACROSS causes pointers to succeeding boxes cia linked structure to point a.cross the

screen. The default direction is ACROSS.

DOWN structure_na me [, structure.....name I

DOWN causes pointers to succeeding boxes of a linked structure to point down the

screen.

38

7 .1.3. Commands Limitin&' Construction or Presentation

In presenting a data structure on the screen, GDBX first construct~ boxes to represent

the data structure's value and then presentl these boxes on the 80"'een. The user can

control the amount of information GDBX processes at either the construction or

presentation phase. Limiting the amount of information constructed by GDBX increases

the speed with which data structures are presented and conserves memory. Limiting the

amount of information presented on the screen increases presentation speed and decreases

the amount of information shown on the screen.

Construction is done only in response to a PRINT or DISPL.AY command. Only

constructed boxes can be presented.

There are three data structure types that can grow very large for which limitation

may be important: records, arrays, and linked {pointer) structures. GDBX commands exist

to limit processing of these three types during construction and presentation phases.

7 .1.3.1. Record.

SHOW 1.:'"NSHOW are used to specify the fields of a record for which information is

constructed Without any specification, all fields f1 a record are constructed. The mouse

commands OPENtCLOSE (Bee below.1 control which fields are presented on the screen.

SHOW fieltl.Jlame [, field.....name I

SHOW is called with a fielcLname of a record structure type (e.g., SHOW tree.rightJ.

SHOW causes a box for the given field to be constru.cted the next time a variable of

this type is PRDI'I'ed or DISPLAYed. Only fields that are SHOWn will be constructed;

all fields not explicitly SHOWn will be suppressed. The SHOW command is used to

focus attention oo a few particular fields of a large record structure. SHOW's affects

all variables of the given type.

t.JNSHOW fiehLname [, fielcLname I
UNSHOW is called with a field...name of a record structure type. A box will not be

constructed (or presented! for this field the next time a variable of this type is

PJm.'Ted or DISPL.AYed. The UNSHOW command is used to suppress particular fields

that are not of interest. SHOW and t.JNSHOW are not exact antonyms: SHOW entail5

that fields left unspecified will be auppruud, whereas L'NSHOW entails that

unspecified fields will have boxes constructed.

7 .1.3.2. Arrays

ARRAY...BEGINiARRAY...SIZE control the starting element and number of array elements

for which boxes are constructed. PRINT...BEGINIPRINT...SIZE control where the presentation of

array elements begins and bow many elements are shown. An array can also be scrolled

(see SCROLL SELECTION below) to change the beginning element. St;'PPRESS!UNSUPPRESS

control the construction of 0-valued array elements.

ARRAY ...BEGIN a.ZTay ...name integer

ARRA Y...BEGIN sets the element number from which construction of boxes

representing array elements begins. The default starting element number is 0.

39

ARRAY ..SIZE array _name integer

ARRAY..SIZE sets the number of elements for which boxes will be constructed for the

given array variable. The default array size is 10.

PRL',_B!:GIN array_name integer

Pft.D., .. LBEGIN' sets the element number from which the presentation of an array

begms. The default beginning array element is 0. The element from which array

presentation begins may also be controlled by scroUing array isee SCROLL SELECTION

below.1.

PRL',....SIZE array_name integer

PRINT....SIZE sets the number of elements that will be presented for the given array

variable. The default print size is 10.

S~PPRESS a~y_name

Sti"PPRESS instructs GDBX to suppress construction of ~y elements whose values

are 0 or nil.

lJNS~PPRl:SS a~y......name

UNSL"PPRESS instructs GDBX to construct even those array elements whose values are

0 or nil. This is the default condition.

7 .1.3.3. Linked (Pointer) Structures

PTR..J>EPTH controls the number of pointer levels constructed whereas PRIN'L...DEPTH

controls the number presented. Elision due to limiting PJWio''L.DEPTH is equivalent to a

CLOSEd box.

PTR....DEPTB ptr_name integer

PTILDEPTH sets the number of pointer levels that will be constructed for the giVen

pointer variable. The default pointer construction depth is 5.

PR.L"'-.'T....DEPTB ptr......name integer

PJU!>."'!.....DEPTH sets the numbe:- of pointer levels that will be prl!sented for the given

pointer variable. The default print depth is 5. The numher of levels presented may

also be controlled by OPENING or CLOSING pointers..

7 .2. Mouse Commands

The follo9ring operations are initiated from the 3-button mouse when it is pointing into

the graphics window.

7 .2.1. Left Button

Clicking the left button while pointing into a structure selects that structure or a

field within it. The structure selected is called the current selection. Multiple clicks in the

same structure will cycle through nested fields within the structure. A selected structure

can then be acted upon <see the Selection Menu below). Clicking the left button outside of

a structure clears the current selectWn.

40

Clicking the left button while it is in the horizontal or vertical scroll bar causes ll

new portion of the virtual screen to be presented. In the scroll bar, the dark gray

~tangle represents the size of the entire virtual screen; the white rectangle represents

the currently displayed portion. The new portion to be displayed is determined by the

position of the mouse within the scroll bar when it is clicked.

Clicking the mouse in the top left hand box resets the portion of the screen

presented to be the upper left-hand corner.

7 .2.2. Middle Button

The middle button is used to move structures or arrows. If a pointer value is not

the current selection, depressing the middle button will move the structure to which the

mouse is pointing. Moving the mouse while holding the middle button down drags the

structure along with the mouse. The str.1cture is re-positioned to th·e mouse's position

when the middle button is released.

If a pointer value is the current sekction, depressing the middle button moves the

arrow emanating from the selected box. The structure pointed to by the mouse when the

button is released becomes the new value of the pointer. If a record structure is pointed

to, the left button is used to select which field the arrow should point to.

7 .2.3. Rieht Button

Depressing the right button presents several banks of menus. The banks and their

commands are:

7 .2.3.1. General Commands

• CLEAR: Clears the entire screen of both PRINI'ed and DlSPLA Yed structures. Sets the

portion of the virtual screen presented to be the upper left-hand corner.

• Qt:Tr: Closes the widow and causes GDBX to exit.

7 .2.3.2. Selection

The following commands operate on the current selection (see Left Button above).

• OPEN: Causes the selected structure, field. or array element to be presented normally.

• CLOSE: Causes the selection to be presented as a single box. If the box is a simple value

it is presented in small font. If the box is a record structure, its substructure is replaced

by the string 'record' displayed in small font. If the box is a pointer, '***' is presented in

the box, indicating a suppressed pointer.

• SCROLL SELECTION TO TOP: If the selected box is an array element, the aiTay is 6CT'Olled

80 that this element is displayed at the top of the array. This is equivalent to the

ARRAY~EGIN command.

• SCROLL SELECTION TO BOTTOM: If the selected box is an array element, the array is

scrolled 80 that this element is displayed at the bottom of the array.

41

7 .2.3.3. Fonte

A font with which to present values within boxes is selected. When a new font is

chosen, the graphics window is cleared and all DISPLAYed variables are presented in the

new font.

7.2.3.4. Show Cba.nres

This series of commands emphasizes, by blinking, changes to the values of

DISPLAYed variables that occurred over the last execution step.

• Bl.ll'lo"K !'ltLW: The new values, i.e., the values different from the previous values. of the

DISPLAYed data structures are made to blink.

• Bl.I."."K OLD: The old values of the DISPLAYed data structures are made to blink.

• Bl.ll'lo'X OLD-'NEW: The values within the data structures DISPLAYed are made to blink

between previous and current values.

8. Implementation

8.1. Oveniew and Processes

The graphic version of DBX (GDBXI is implemented using three processes. GDBX is the

initial program executed. GDBX.....TOOL is forked by GDBX.. and GDBLSHOW is in turn forked by

GDBLTOOL. Integration with DBXTOOL requires a multiple-window implementation for GDBX.

Multiple windows, in tum, requires multiple processes, because in SunWindows each window

has an underlying process. The processes communicate using the UNIX pipe mechanism, and

synchronize using the SELECT system call. Following is an overview of the three processes.

•GDBX

GDBX is executed from the shell with the command DBX -G or is forked by DBX'I'OOL (see

Integration wi.th DBXTOOL below). GDBX aeates a &dtetpair (two pipes), then forks GDB:x.....TOOL.

passing to it the file descriptors of the socketpair. After the socket has been formed. GDBX does

a SELECT system call and waits for input either from the keyboard or the mouse.

The GDBX commands PRIN'I' and DISPLAY aeate a structure that represents the value of

the variable (data structure) to be displayed on the screen. After the size of the data structure

and its position on the screen have been determined. commands to present the data structure

are sent to GDBX...SHOW across the pipe. Other GDBX commands, such as ACROSS'DOWN,

SHOW!U'NSHOW, PTR..DEPTH, or ARRAY...BEGIN/ARRAY..SIZE, affect the construction m the data

structure representation or its positioning on the screen. Original DBX commands, unrelated to

presenting a variable's value, are unaffected by GDBX..

Input from the mouse is received by GDBX through the pipe from GDB:LSHOW. This input

is interpreted by GDBX and the appropriate response, usually a screen update, is calculated and

sent back to GDBX...SHOW for display.

42

GDBX maintains all the information about the data structures displayed and about the

display itself, such as the font size and the part of the virtual screen currently displayed.

• GDBLTOOL

GDBX...TOOL is forked by GDBX. This process opens a window on the screen, and creates a

tty and a graphics subwindow. GDBx....TOOL passes the socketpair file descriptors it has received

from GDBX on to GDBX....SHOW when it forks this new process. After creating GDBX..SHOW,

GDB>LTOOL is no longer involved in GDBX processing. However, it does retain global tool

functions such as CLOSE, which turns the window into iconic form, and QUIT, which ends the

process.

•GDBX...SBOW

GDBX.....SHOW is forked by GDBX...TOOL. It receives a pair of file descriptors through which it

communicates with GDBX. GDBX....SHOW takes over the graphics subwindow created by

GDBX...TOOL. GDBLSHOW is responsible for displaying data structures in this subwindow and

for sending mouse input from this window to GDBX.

To present data structures on the screen, GDBX...SHOW first initializes a set of pi:Lrects

tpi.xel rectangles, bit patterns held in internal memory;. These pi.xrects are vnitten according

to commands received from GDBX. When a data structure bas been completely written to a

pixrect.. the contents of the pixrect are written to the visible screen at a single instant.

Mouse input from the graphics window consists of a button type (}eft, middle. or rightl

and a set of x,y coordinates or menu selection. Mouse input is sent to GDBX. which processes it

and sends back commands to appropriately update the screen.

8.2. Interration with DBXTOOL

GDBX was designed to be integrated into the DBXTOOL product of Sun Microsystems.

DBXTOOL is a multiple subwindow tool which runs DBX inside one subwindow. The subwindows

present the following information: a status subwindow names the source file displayed; a text

subwindow presents the source file context of the present stopping point; a panel shows DBX

commands; a tty subwindow runs DBX; and a text subwindow displays values of variables.

The graphics subwindow of GDBx....TOOL and GDBX....SHOW replace the last text subwindow.

The following aspects of GDBX were influenced by the decision to mtegrate GDBX into

DBXTOOL.

• It was decided to make GDBX...SHOW operate in a separate graphics window rather than

attempt to use the fifth subwindow of DBXTOOL. The sizes of DBXTOOL's four other

subwindows severely constrain the size attainable by the fifth subwindow. This constraint is

due to subwindows inside a SunWindowr tool being tiled, rather than overlapped, and

because each subwindow in DBXTOOL has an absolute and practical minimum size. Rather

than restrict users to a smali"tiled window area, an overlapping window was implemented by

creating an independent tool (GDB>LTOOL) and having GDBX..SHOW take over the graphics

subwindow within this tool

43

• Since GDBX will be forked by DBXTOOL and will operate within the tty emulator of the fourth

subwindow, GDBX was designed to remain a normlll shell command. An alternative would

have been to fork GDBX from GDBX-TOOL. whereupon GDBX itself could take over the graphics

subwindow of GDBx.....TOOL. However, this would have mellnt that GDBX could only be run from

inside a graphics tool. making it less general and making it impossible to integrate with

DBXTOOL. The process hierarchy described in this paper was neceSbitated by the desire to

integrate GDBX into DBXTOOL.

The following sections describe in more detail, by process and chronology. the algorithms

that present data structures graphically.

8.3. Box Coru~truction Algorithm

When a command to display a variable's value (a data structure) is given. GDBX

constructs a representation of the value that is a linked box structure. All further graphics

processing takes place upon this box structure. Each box is an object that will later be

physically presented on the screen to portray part of the data structure. Each box holds a

value, memory address, name, size in pixels, and an x.y position on the screen. Associated

with the box are user-definable characteristics that affect the constructwn of the box

representation or its subsequent presentation on the saeen. The commands SHOW, PTILDEPTH,

ARRAY...BEGIN!ARRAY..SIZE, and SUPPRESS.'t.TNStJPPRESS set a box structure's construction

characteristics, while the oommands OPENrCLOSE and ACROSS/DOWN affect a box's presentation.

The box structure is linked together as follows: A nested data structure is represented by

a box with links to child boxes. A box that bas no parent and that appears as the outermost

box when displayed will be referred to as a top-level box. A record structure 1 in C or Pascal\ is

composed of a top-level box with a pointer to a linked list of child boxes each representing a

field of the rerord. An array is also represented in this way, with each child representing an

array element.

A box representing a pointer has a link to the box representing the data structure it

points to. Boxes that are pointed to have links to each box which points to them.

The algorithm that aeates the box structure is a revision of the DBX print routine.

Where the original DBX prints a value to the terminal, the GDBX routine creates a box into

which the value is printed (as a string). The memory address of this value is calculated and

associated with the box. The box is then linked to those boxes that define its context.

There are several interesting additional modifications to the DBX print algorithm that

were necessary in GDBX:

• In the original DBX, pointers are printed as addresses. In GDBX, boxes representing the

structure at this address are recursively constructed. The values beginning at this point in

the program's address space must be made available to GDBX. These values (data structures)

are pushed onto the GDBX stack, evaluated, and then boxes for them are constructed

recursively. These boxes are then linked into the existing box structure.

44

• Since structures pointed to are evaluated in GDBX, rather than just their addresses being

printed, the possibility of infinite recursion is introduced. A hash table of boxes, indexed by

memory address, is maintained to prevent such re<:Ursion. This box table also ensures that a

box that is pointed to by several other boxes will itself appear on the screen only once, with

many arrows pointing to it.

A subtle exception to the above solution occurs with record-type data structures. In record

structures, the first field of the record has the same location in memory as the top-level

record. A special provision is made to recognize this case as being non-recursive. In effect.

there are two different boxes that share the same memory address.

• Although boxes could hold only the values to be presented on the screen. GDBX adds the type

of the variable represented to the box as well. This additional information allows operations

such as SHOW/UNSHOW, DOWN/ACROSS, to be applied generically to types. In addition, the

type of a variable (int, char, a typedef of a structure, etc.) can be displayed with the top-level

box on the screen. Type information could also be used to influence how a data structure is

displayed.

8.4. User Controlled Modifications to Box Construction

There are several commands available to the user that modify the constructwn of the box

structure described above.

8.4.1. SHOW!L"NSBOW

These commands allow the user to specify that a certain field of a record structure should

be included in/excluded from box construction. When the boxes representing the fields of a

record are being constructed, the show field of the variable's type is consulted. If the value is

un.shou:, the corresponding box is not constructed and not linked to the other fields' boxes.

8.4.2. ARRAY..BEGIN:ARRAY...5IZE

The user may set the element number from which array construction begins. or may limit

the number of elements for v.·hich boxes are constructed. To implement this, the beginning

element and size limit associated with the array variable are consulted within the loop that

constructs the boxes representing the array elements.

8.4.3. SUPPRESS:T.JNSlJPPRESS

If the user requests that 0-valued elements of an array be suppressed, boxes representing

elements whose value is 0 or (nil) are unlinked from the chain of boxes representing the array.

8.4.4. PTR-DEPTB

The user may set the depth to which he would like pointers for a given type to be

constructed. Depth is a count of the number of pointer levels emanating from the top

structure. To implement the depth limit, a count of recursions due to following a pointer (as

opposed to a nesting) is maintained. Recursion is terminated when this count is above the

45

depth limit set for this variable type.

8.S. Positioninc Alcorithm

After the linked boxes representing a data structure have been created, a search is made

for a place to present each top-level box. First, the size of the top-level box is determined. The

size of each internal box is calculated recursively and summed to give the size of the top-level

box. A position on the virtual screen for this top-level box is then found that also defines the

positions of all the internal boxes.

The procedure that finds a position for a box is an efficient one that formats linked data

structures dynamically and produces reasonable layouts. It does not attempt to calculate

specialized or refined layouts. The procedure is given the size of a box. and it returns an x.y

position. This routine is not deeply embedded in the GDBX code and may therefore be replaced

by a program that specializes in more accomplished layouts.

The user may command a data structure of a given type to be presented either ACROSS or

DOWN the screen. Presenting a data structure ACROSS the screen means that pointers to

structures will point from left to right and large data structure will grow horizontally. Data

structures presented DOWN will grow vertically.

The ACROSS DOWN oommands are one example of bow a user might define the way in

which be would like to format particular data structures on the screen. A more intelligent

layout algorithm could incorporate other layout variations, such as a binary tree format, a

linked list format, etc. Wben the layout options are thus extended, the GDBX command

interface should also be generalized.

A two-dimensional array is maintained of the parts of the virtual screen that are

occupied. A search is made for the firBt space into which the top-level box will fit. The search

for an open space on the screen proceeds as defined by the direction of growth lACROSS DOWN!

of the data structure's type. The size of the rows and oolumns is determined dynamically by the

size of the data structures already on the screen. The search algorithm first attempts to fine!

an open place on the visible portion of the virtual ~-

The position of DISPLAYed variables is maintained across execution steps. DISPLAYing

these structures at the same position allows apparently instantaneous update of the data

structure's values, and enables changed values to be emphasized (see BLINKing below;. The

new position of a DISPI...AYed data structure that the user has MOVED is also maintained.

The position of PRIN'I'ed data structures is not maintained across execution steps. Any

number of variables may be PRINTed in any order: Thus, to present PJID.'Ted variables in an

orderly fashion, data structures that were PRINTed are cleared from the screen after each

execution step. The position of a PRINTed variable is re-<:alculated for each PRINT request.

8.6. Box Display

A box is displayed by sending GDBX...SHOW the coordinates of the four oomers that define

46

the box, the box's name, and the value to be printed inside. A box is erased by displaying the

box again with an XOR raster operation.

Top-level boxes are placed on a display-list which is searched when a selection is made. A

box is displayed with one of three presentation types: PRINT, DISPLAY, or ERASE. The

presentation type of the box is consulted to determine whether a box has already been

presented or erased, thus terminating recursion. ERASEd boxes are removed from the dlSplay·

list immediately and PR!Jio'Ted boxes are removed after an execution step.

8.7. Screen Presentation

GDBX..SHOW receives messages from GDBX that indicate the coordinates and values of the

box to present. The primitive graphics operations of printing vectors and strings are made to a

pixel rectangle (pi.:crectl in memory.

There are four pixrects that GDBX...SHOW manages. Two pixrects are for DISPLAYed boxes.

The pi.xrect into which DISPLAYed boxes are written changes with each execution step, and the

previous pixrect's values are preserved. Changes occurring in a DISPLAYed data structure are

then easily made apparent by comparing these two pixrect representations through raster

operations (see BL!JioXing belowl.

Another pixrect is used for PJID.'Ted data structures, which are not re-displayed at each

step. This pixrect is cleared on each execution step.

Just before presenting the pixrects to the screen, the current DISPLAY pixrect. and PRIJI,'T

pixrect are written to a scratch pixrect which is then written to the screen. This use of a

scratch pixrect avoids the undesirable fiicker which occurs if two separate pixrects are written

to the screen in succession, and makes the screen appear to be instantaneously updated.

The size of the pixrects maintained by GDBX...SHOW is larger than the area of the graphics

subv.'indow on the physical saeen. Only a portion of the entire pixrect is actually written to

the screen, thus affording a 'virtual window' capability. The portion of the pixrect actually

displayed on the screen is changed by clicking the mouse in the vertical or horizontal scroll

bar.

8.8. Mouse Operations

8.8.1. Selection

A top-level box, a field within a record structure, or an array element, is selected by

pointing to the field or element and clicking it with the left mouse button. The x,y coordinates

of the mouse position are sent to .GDBX. GDBX searches through the boxes on the display-list

and determines, by comparing ooordinates, which field or element was pointed to.

Once the selected box is determined, it is highlighted on the screen by XORing a box of

background color over the selected box. The highlighting is removed before the selected box is

ERASED or when the left button is clicked outside of any box.

47

8.8.2. Structure Movement

GDBX allows a user to move data structures to improve the screen display, or to present a

data structure as he conceives of it. Structure movement is implemented by first identifying

the top-level box that the mouse is pointing to. This identification is done as in ~election. The

box's dimensions are then sent to GDB~HOW which continuously presents an outline of the

box as it is dragged along, following the mouse. When the middle button is released, the top­

level box \and all its internal boxes! is erased, along with the arrows into it and out from it.

The new coordinates for the top-level box, are placed into the box and the box is re-presented.

Arrows out of the moved box are correctly re-displayed automatically, connecting to boxes

already present on the screen. Pointers into the moved box are updated by re-displaying each

of the boxes that contain pointers to the moved box.

8.8.3. Arrow Movement

Creating an arrow or "'"'loving an arrow to point to a different box changes not only the

screen representation of the data structures but also the actual value (an address) of the

pointer variable.

The implementation of arrow movement is similar to that of structure movement

described above. When the middle button is depressed the type of the current sekction is

checked. If the selection is a pointer variable, this fact is sent to GDBX..SHOW. along with the

coordinates from which an arrow should begin. While the middle button remains depressed.

GDB~HOW continually presents an arrow from the current selection to the position of the

mouse.

When the middle button is released, the mouse coordinates are sent to QDBX which

identifies the box to which the mouse is pointing. If the box is a record structure, the user is

asked to select a field within this structure, an operation for which the standard selection

mechanism is used. The memory location of the box to which the arro·w now points is written

to the pointer variable in the address space of the program being debugged. Lastly, the

representation of the pointer on the screen is updated.

8.8.4. Fonts

A variet)" of sizes of Roman and Bold fonts are available. Requests for a font change are

sent to GDBX.._ which compensates for changes in height and width when calculating the pixel

dimensions of a box. The font in which text is presented is sent to GDBX..SHOW by GDBX as one

of the parameters of the text print command.

8.8.5. Blinkinr

A DlSPI...AYed data structure is presented after the completion of each execution step.

Within a complex data structure, it may be difficult to spot changes that occurred as the result

of this execution step (which may consist of many instructions). By using two pixrects, one for

the previously DlSPLAYed values and one for the currently DlSPI..AYed values, changes in value

can be made to blink, thus rendering them readily apparent.

48

An AND raster operation of the two pixrects together gives those values that were

unchanged by the execution step. Repeated XOR raster operations between the current values

and the result of the AND operation makes the new values blink. Through various raster

operations, different types of blinking can be obtained.

8.9. Multiple Languaee Support

GDBX was originally written and debugged using only the C-language facilities of DBX.

The language-dependent routines in DBX are isolated in a single file for each language

supported. Addition of graphic debugging for Pascal programs was readily accomplished.

9. Performance

GDBX does a considerable amount of work in addition to the fixed overhead of DBX: box

data structures are built, information is sent over a pipe, and displays are created on the

creen. These additions are substantial and there was concern that performance could be poor.

In fact. the implementation of GDBX displays data structures with an acceptable, even

surprising, rapidity. Simple values and small structures are shown almost instantaneously.

The presentation of larger records or linked structures have a notice!ible lag time of perhaps a

second or two. Yet this is little more time than is required to present a structure on a normal

tty ac:reen. and far less time than it would take for the user to print out the structures pointed

to manually.

The elapsed time and the CPU time mnsu med by various display operations was measured

using the mn:x system call time. A script of commands placed in a .db:rinit file was used to

take the measurements. GDBX and DBX were each run on the same script of commands four

times. For scalar values GDBX ran approximately 30fk slower than DBX. GDBX required from

2-10 times as long to present structured data.

Submitting oommands automatically from a script produced results for DBX and GDBX that

could be oompared easily. However, this technique does not accurately refiect actual oommand

submission to a debugger when it is being used interactively. When a user takes time to

digest the information displayed and to consider his next oommand, the additional time that

GDBX requires to calculate and display a data structure will be far less evident than it is in

these performance measurements.

By far the largest additional overhead incurred by GDBX is that of writing display

information over the pipe to GDBX....SHOW. For the display of large structures, writes consume

approximately 50% of the CPU time. Intelligent encoding of display information could reduce

this appreciably.

A description and analysis of the types of display operations measured are given below:

1. Startup/Run: This script began the debugger, ran the program without breakpoints, and

quit without doing any printing or graphic processing. Compared to DBX, the additional time

required to start up GDBX. due to forking GDB:x..TOOL, GDBX...SHOW, and initializing the window

on the sc:reen, was calculated. This additional time was factored out of the following

49

measurements, whose intention is to determine the time required for displaying objects once

processing has begun.

2. Inteeen. Characters, StrinJs : These scripts DtsPLA Yed the value of variables of one of

these scalar types. The results show that there i.8 an insignificant additional delay incurred by

GDBX. CPt: time i.8 increased by only 10-15% and elapsed time by approximately 304. These

results imply that the additional overhead of box construction, the placement algorithm, and

pipe communication is acceptably low for these fundamental types.

The presentation of these simple types is the only type of display operations that can be

directly compared between GDBX and DBX. In the remaining operations. GDBX actually displays

more information about the data structures, or displays it in a more meaningful way, than

does DBX.. Thus, any large performance degradation is mitigated by the value added by GDBX.

3. Linked Structures: This script DtsPLAYed a variable that is a pointer to a record structure.

The number of structures DtsPLAYed by GDBX grew from one, when the pointer value was nil,

to a maximum of five record structures of three fields apiece. The corresponding presentation

of the variable's value by DBX always consisted of a single address. The time required for the

display of the linked structures by GDBX was approximately twice that required by DBX.

4. Record Structures: This script DtsPLAYed several complex, nested record structures. In

this case, the same amount of information was displayed by GDBX and DBX., but in quite a

different format. The time required by GDBX was about triple that by DBX. The SHOW!UNSHOW

commands may be used to trim the amount of information displayed to achieve better

performance.

5. Arrays: The script Integer Array DtsPLAYed a H)-element integer array, and the script

Pointer Array DtsPLAYed a H)-element array of pointers to record structures. In the GDBX

implementation, arrays are cast into a box structure similar to records. This imposes overhead

on an array that DBX does not, but allows operations such as OPENrCLOSE to operate on arrays

as well as records.

In Pomter Array, GDBX DtsPLAYed the structures that are pointed to by each of the array

elements, whereas DBX printed only the structure's address. This display of additional

information accounts for the large increase in time required for this saipt.

The final script, Elided Array, DtsPLAYed the same 10-element pointer after setting

ARRAY...SIZE and PRINT...SIZE to 5, replacing the default values of 10. The CPU time was cut in

half. This reduction came primarily from fewer writes due to a smaller PR!NT...SIZE. The use of

commands to control presentation is effective in improving GDBX performance.

Below are tables of elapsed time and CPU statistics for the various types of display

operations..

50

t.l.Bpsea Tune 'NC)

Tn- DIX Avt GDUAVJ NcrmaliJM! ~ Incnue

GDIXAVJ

I StartupRWl 7.0 16.~ 19.5)

Chancten 13.3 :.!16.8 17.3 30.1~

Intepr~ 13.3 n.o 17.5 31.6'!

Stnnp 14.0 28.0 18.5 32..1'!

Lin k.ed Struc:tun! 11.3 33.0 23.5 108.0'7c

I~ 10.3 43.5 34, 230.1~

Integer Amy 6.5 37.3 27.8 327.7~

Pointer Amy 6.0 78.5 69.0 1050.~

Elided Array 6.0 49 39.5 558.~

Oser + System 'I'une :~~e) I
Type DBJ. AVi GDBJ. Avg Normali.Ja! ~ lncruM I

GPIX A"i I
I

Startup/Run 1.38 2..4 <1.02) I
I

ilntegen 7.0 8.83 7.81 lLS':l I

I String! 7.03 9.1 8.08 1(.9'! I
I

Charaa.en 6.86 8.95 7.93 1.5.8'k I

I

Linked Stru cr. 5.15 11.25 10.23 98.~
I
I

Reconia 4.68 16.1 14.08 200.~

Integer Array a.5 13.55 U.53 258.0~

Pam ter Array 3.38 34.25 33.23 883.1~

Elided Array 3.38 2013 19.11 4654~

10. Future \Vork

GDBX succeeded in presenting data structures graphically and in creating a user­

tailorable environment. Following are some ideas about how GDBX can be further enhanced

and extended.

• A more intelligent layout mechanism for linked structures can be added. The ACROSSJDOWN

command£ are a beginning in showing how a dab structure's layout can be tailored to a

particular user or program. Ultimately, a layout algorithm similar to that employed by

GRAB [Davis 85], which statically formats directed graphs, can be incorporated into GDBX.

Performance would become a concern, however, as layout calculations increase in

51

complexity.

• The facilities established by GDBX for displaying data structures graphically can be

extended to other objects that DBX currently presents textually. For example, the

presentation of the call stack or of a structure's definition could be enhanced by using

graphic displays.

• Further work on displaying two-dimensional arrays in matrix format or allowing entire

sections of an array to be selected, OPENed, or CLOSEd would be useful.

• The graphic presentation abilities of GDBX can be used for applications other than

debugging. Programs illustrating algorithms that manipulate data structures, as in Pecan

[Reiss 85! or algorithm animation !Brown 851, could be composed using command scripts

placed in the .db::cinit initialization files.

11. Conclusion

GDBX has shown that graphical displays of data structures can be accomplished in a

user-controlled environment. It is a large application built upon the Sun Workstation window

manager, a machine and environment that will exert a strong influence on the academic

research community in the future.

GDBX was used, in later stages, to debug itself. It proved to be valuable in this self­

referential task, aiding in the understanding of complex internal data structures. GDBX has

also been well received by the user oommunity at UC Berkeley.

GDBX was implemented by one person over a period of approximately five months.

Similar extensions to other debuggers in similar environments would be practical. The value

derived by a large user oommunity may make it well worth the effort.

The major strengths of the GDBX project stem from it being integrated fully into a well­

known and widely used debugger. GDBX uses the standard debugger command interface to

perform its graphical displays and to create debugging environments suited to a particuiar

user or program. GDBX uses the graphics and mouse interface of Su.nWindows to afford the

user control over the presentation of data structures. successfully creating a more powerful and

effective debugger.

Referenees

[Brown 1 085]

[Davis 1 085)

!Model 1979J

[Reiss 1985]

!Sun 1983]

!\.;'NIX 1984j

Marc H. Brown and Robert Sedgewick., "Techniques for Al!orithm

Animation", IEEE Software, Vol. 2, Number 1, Jan. 1985, pp. 28--39.

Michael Davis, "A Layout Algorithm ror a Graph Browser", Masters Report,

Division or Computer Science, University or California, Berkeley, June, 1985.

Mitchell I. Model, Monitoring Sy!tem Behavior In 4 Complex Computational

Ent:ironment, Palo Alto: Xerox PARC CSL-79-1, January, 1979.

Brad A. Myers, Di~playing Data Structure~ for Interactive Debugging, Palo

Alto: Xerox PARC CSL-80-7, June 1980.

Steven P. Reiss, "PECAN: Program Development Systems That Support

Multiple Views", IEEE Transactions on Software Engineering, Vol. SE-ll,

Number 3, March 1985, pp. 276-285.

"Programmer's Reference Manual for Sun Windows", Sun Microsystems, Inc.,

Jan. 7, 1983.

t.'NIX User's Manual, Reference Guide, "DBX," 4.2 Berkeley Software

Distribution, March, 1984.

