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ABSTRACT

We consider the problem of the translation of view updates to database updates. Our
research uscs an algcbraic approach in order to classify different propertics of views with
respect to the treatment of updates. In our classification, special attention is paid to a class
of views that we call “consistent”. Informally speaking, a consistent view is a view with the
following property: if the cffect of a view update program on a view state is determined,
then the corresponding databasc update is unambiguously determincd. Thus, in order to
know how to translate a given view update into a database update, it is not necessary to
know the soquéncc of particular operations of the view update program: it is sufficient to
be aware of a functional specification of such a program. We show how conditional updates
can be modeled and prove that consistent views have a number of interesting propertics
with respect to the concurrency of update transactions. Morcover, we show that the class of
consistent views includes, as a particular subsct, the class of views which translate updates
under maintenence of a constant complement. However, we give cxauples of important
realistic views that arc consistent but do not translate updates under constant complement.
The results of Bancilhon and Spyratos [ACM-TODS 6:4, 1981} arc gencralized in order to

capture the update semantics of the entire class of consistent views.
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1. INTRODUCTION

A view facility is an important part of many existing database systems, such as Query By
Example [14], System R [10], Ingres {13], DB2 [19]. In such a context, the problem of update
of views which are implemented on an underlying database, has been studied with different
approaches [1-3, 5-0, 11, 12, 18, 22, 23]. Updates on views must be translated into updates on
the underlying database. In general, there exists more than one database updatc that may
correspond to the same view update. The problem is how to choose a view update, avoiding
that the corresponding underlying da.tal')'asc update may create inconsistencies or have side
effcets on the view. Starting with the work of Paolini and Pelagatti 5], it was acknowledged
that a carcful analysis of views and databascs also needs to account for operations on views
and databases, and not just for states, as it was traditionally done. A database can be
described by the set of its possible legal states and by its operations. We model databases -
as algebras that we call data abstractions, that is a sct of values and a set of operations
to manipulate them. A view is a particular way of looking at a database and it can also be
described by its states (which are, in general, different from the database states) and by its

operations (which arc in genceral different from the database operations).

In this paper, as in_[7], both databases and views are defined as data abstractions. We
distinguish between the notions of static and dynamic view. A static view of a database
consists of a data abstraction and a mapping which establishes the correspondence belween
the databasc states and the view states. A dynamic view consists of a static view and an
update policy which states how to translate view updates into database updates. In the
paper, when we will use the general term “view”, we mean “dynamic view”.” Our research
uses an algebraic :1ppﬁ);1(fh in order to classify different properties of views with respect to
the treatment of updates. In our classification, special altention is given to a class of views,
that we call consistent. Informally speaking, a consistent view is a view with the following
property: if the cffect of a view update on a view state is determined, then the corresponding
database update is unambiguously determined. Thus, in order to know, how to translate

a given view-update program into a database update program, it is not necessary to know

* Some authors use the term “view” to designate static views [1].



the sequence of the single operations of the view update program, but it is sufficient to be

aware of a functional specification of such a program.”

Bancilhon and Spyratos [1] propose an clegant solution to the view-update problem. They
show that the choice of the databasc update policy can be made by deciding which por-
tion of the database should remain invariant; this invariant portion is called the constant

complement.

In our paper we show that the class of views treated by Bancilhou and Spyratos is a subclass
of the consistent vicws. We show, however, thal there are views of highly applicative impor-
tance which are consistent, but cannot be modeled by the approach of [1]. Conscquently, we
have extended the theory of Bancilhon and Spyratos to capture the update scmantics of the
much larger class of consistent views. Our approach uscs a notion of complement as defined
in [1]. However, we do not require that the information contained in the complement remain

invariant, but we permit that updates may cause the loss of parts of this information.
The paper is organized as follows.

In section 2, we introduce our notation and define the basic concepts that will be used
thronghout the rest of the paper. Database and views are defined as data abstractions
(algebras). In particular, among different other types of views, we introduce the notion of
cousistent view by using a purely algebraic definition. We also state a theoremn which shows

the relationship between the different types of views.

In scction 3, a comprchensive example of a database with a number of views of different

type is given. The example is discussed in detail sinee it will be used throughout the paper.

In section 4, we introduce the concept of conditional update. Informally, a conditional
view update is executed depending on the result of the evaluation of a predicate on a view

state. Conditional update cnables us to define complex and realistic view update programs.

In scction 5, we explain in more detail the importance of consistent views; we show the
b b

* Our definition of “consistency” does not coincide with the one given in {1].
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main properties of these views and give some exaﬁlples of views which are not consistent.
In particular, we define the concept of functional equivalence of update programs and
show that for a consistent view, a pair of functionally cquivalent view update programs are
translated into a pair of functionally equivalent database update programs. Morcover, we
analyze the properties of consistent views with respect to the concurrent execution of view

trausactions.

In section 6, we define the view update problem, with particular refercnce to the work of
Bancilhon and Spyratos. We define the notion of complement, recall and reintcrpret the
results of Bancilhon and Spyratos and cxplain the limitation of their approach in modeclling

the update semantics of some views of the example given in section 3.

In section 7, the cxtension of the theory of Bancilhon and Spyratos to the class of all

consistent views is carried out.

After giving a survey of related work in section 8, we conclude our paper with an overview

and some comments on our results and we state our plaus for future rescarch.



2. NOTATION AND BASIC CONCEPTS

In this section we introduce our notation and state the basic definitions that will be used
throughout the paper. In particular we will use the terminology and reintroduce a number
of definitions of [7], where both database and views are defined as data abstractions, i.e.

algebras.

A data abstraction is defined by a pair D = (D, Ep), where D is the sct of the possible

legal states of the abstraction and Tp is the set of operations of the abstraction.

In our general model {7], the set of operations Tp is composed of query operations Ip and
update operations Up : Zp = (Ip,Up). In this paper we arc interested only in update
operations, thus, for simplicity, we will disregard the query operations Ip and assume
p = Up. Our simplificd model of a ('1at.n. abstraction therefore consists of a pair D =
(D, Up), where D is the set of legal states and Up is a set of update operations. Each

update operation is a function from D in D.

Given a set Up of update operatious on D, it is casy to define the corresponding sct of
update expressions. The set Ep of update expressions is the collection of all possible

compositions of update operations:
Yu & Up,u € Fp
Yu,v €Ep,u-v € Ep
no other clements are in Ep

Throughout the paper we assume that for cach data abstraction D, U contains only total
operations. A generalization of most of onr results to partial operations is straightforward.

The outline of such a gencralization can be found in {7].

Some of the properties of data abstractions defined in 7] that will be used in this paper are

now described.
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DETINITION 2.1. Given two data abstractions A and B, A statically includes B
through a denoted by Ala] = B iff there exists a surjective function « from A to B which

is called abstraction function.

The static inclusion is a necessary condition for having a data abstraction A as a possible
representation for another data abstraction B. When Ala] = B, the pair (a,B) is called a

static view of A.

Regarding the scts of operations of two data abstractions, the basic notion is that of a

translation function.

DEFINITION 2.2. A translation function 7 fromn B to A is a function that maps

opcrations of B into expressions of A:

TITIB - EA.

The translation function 7 is extended to the domain Eg as follows:

Yul, u2 € Eg : 7(ul-u2) = mul . ru2.

Since 7 is a function which maps operations to operations (also called “functional”), we
adopt the usual mathematical notation and write Tu instead of 7{u). whenever parenthesis

are not needed to delimit the argument of 7.

The abstraction function a and the translation function 7 arc the basic notious to define

the concept of implementation of a data abstraction.

DEFINITION 2.3. An abstraction A implements an abstraction B through « and 7,

denoted by Ala, 7] = B if and ouly if a is surjective and
Yue Ug¥b € BVa€ A : b = afa) = u(b) = a(ru(a)).

That is: a is a homomorphism with respect to r.

When Ale, 7] = B, the triple V = (a,7,B) is called a (dynamic) view of A, and A is said



to be the base. The clements of A are said to be base states; the clements of B, are called
view states. The members of Ua are called base operations; the elements of Up are

called view operations.

DEFINITION 2.4. Let D = (D, Ep) denote a database. For static views D[] = A, we

can define an equivalence relation == as follows:
vdl,d2 € D: dl ==d2 & a(dl) = a(d2)

that is, :== groups together the states of D which correspond by a to the same state of B.

For any data abstraction A, we can define two graphs:

DEFINITION 2.5. The natural transition graph T connccts states of A as follows:
Ta(al,a2) & (Fu € U, :ufal) = a2)

that is, al is conuccted to a2 iff there exists an update operation of A, which maps the first

state into the second. Ta(al,a2) in the rest of the paper will be denoted as al — a2.

DEFINITION 2.6. The natural connection graph Cya of A is the transitive closure

of Ta. The following is immediately to sce:
Cp(al,a2) & (Ju € E4 : u(al) = a2)

that is, al is connected to a2 if there cxists an update expression of D, which maps the
first state into the second. Ca(al,a2) in the rest of the paper will be denoted as al —— a2.
A 3 f

We will use the notalion al =+=> a2 to express the disjnuction @ (al —— a2 V al = a2).

The definition of the two graphs are uscful in order to characterize some propertics of data

abstractions.

DEFINITION 2.7. An abstraction A is cyclic iff

Val, a2 € A : (al —+— a2 & a2 —— al)



that is, if state al can be updated to a2 then there also exists an inversc update expression

which transforins a2 to al.
Each of the above defined graphs Tp and Cp refers to a single data abstraction.

When an abstraction D (basc) is used to implement an abstraction A (view), two other
graphs are defined, which are uscful to represent the cffects of the translation of the opera-

tions of A into operations of D.

DETFINITION 2.8. Let D be a data abstraction and let V = (a, 1, A} be a view of D.
The Transition Graph induced by V on D, Tpy. is defined as follows:

Tov(dl, d2) & Ju € U, :ru(dl) = d2

that is, two states of the base D are connected by Tpy, iff there exists an update operation
of the view V, the translation of which maps the first base state into the second. In the rest

of the paper, Tpy(dl, d2) will be denoted by dl —v— d2.

DEFINITION 2.9. Let D be as in the above definition. The Connection Graph

induced by V on D, Cpyv, is defined as follows:
Cpv(dl, d2) & Ju € Ep : Tu(dl) = d2

that is, two states of the base D are connected by Cpy iff there exists an update CXpression
of the view, the translation of which maps the first base state into the second. In the rest of
the paper, Cpv(dl,d2) will be denoted by dl —+v— d2. Whenever we want to express the

disjunction (d1 —v— d2 Vv dl = d2) we will write d1 =»v= d2.

A view V = (a, 7, A) implemented on a base D may have some interesting properties with
regard to its base. We will now define some of these propertics using the transition and

connection graphs induced by V on D.

DEFINITION 2.10. The view V preserves conncctions iff

vdl, d2, d2' €D : (d2==d2' A (AL —xv— d2 A dL —v— d2')) = a2 = d2".
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That is, from a given state of the base, it is not possible to reach in the connection graph

induced by V on D two different states which represent the same state for the view.

DEFINITION 2.11. The view V preserves loops iff
Vdl, d2 €D : (dl ==d2 A dl —v— d2) = d1 = d2.

This means: if an update cxpression leaves unchanged the state of the view (loop), then its

translation leaves unchanged the base’s state.

Note that the properties of preserving connections and of preserving loops do not imply one
another. In figure 2.1 we show a database (with only three states) and a view (with two
states) which preserves loops but not connections. Figure 2.2 shows a databasc with a view

preserving connections but not loops.

DEFINITION 2.12. The view V is consistent iff V preserves connections and preserves

loops.

LEMMA 2.1. V is cousistent iff

vdl, d2, 42’ € D : (d2 . d2' A dl =sv=> d2 A dL =sv=> d2') = d2 = 42

PROOF. The casy proof of this lemma is omitted.

As we already stated in the introduction, the class of consistent views is of highly theoretic
and applicative importance. Section 5 is dedicated to explain and prove the properties of
consistent views. Let us, however, anticipate that if a view V = {a,7,A), defined on a
database D, is consistent then the following property holds:

VE,Ea €Ep, Va €A, VdED:

((a(d) = a A & (a) = &2(a)) = 7€,(d) = 7&2(d)).

Informally, this property can be interpreted as follows: If we are able to give a fimctional

specification of a complex view update, say by a function F which maps cach view state
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a € A into an updated state F(a) € A, then all possible view update expressions &y, £2,€3, . ..
which implement precisely the function F have equivalent translations under 7. A functional
specification of a view update is therefore sufficient to define the translation of the update.
It isr therefore not necessary to inspect the particular sequence of operations of the view

update program.

Clearly, consistency is a very desirable property which makes a view much more accessible

for theoretic analysis and more tractable for practical management.

The above quoted property will be proved in a more gencral form in section 5 not only for
view update expressions, but for the more powerful class of “view update prograins”. Let

us now proceed by defining another important property of views.

DEFINITION 2.13. A view V partitions the basc D iff it is possible to decompose D
into a family of nonempty scts D1,... Dk, withi#j=>Di N Dj=¢and D1 UD2 U...U

Dk = D, such that the following propertics a) and b) hold:
a) (i# jAdi€DiAdjeDj)= ~(di =w= dj)

b) V1<i<k:(dl,d2eDiAdl # d2) = «{dl) # «(d2).
LEMMA 2.2. If a view partitions the base then it is consistent.

PROOF. Assumec the view V = (a,7,A) partitions the base D but is not consistent.
Then, by Lemma 2.1, there exist d1, d2, d2' € D, such that d1 ==d2 A dl ==
d2 A dl =+v=> 42 A 42 # 42, From Definition 2.13.4 it follows that dt, d2 and d2' are
all in the same component, say Di. But this is in contradiction to Definition 2.13.D, since
there it is required a(dl) # a(d2).

| QE.D.
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LEMMA 2.3. If a view is cyclic and preserves loops then it partitions the base.”

PROOF. Assume that V = (a,7,A) is a cyclic and loop preserving view of the base D.
It is easy to sce that the relation =+v=> then becomes an equivalence relation on D. Let
D1,D2,...,Dk denote the equivalence classes with respect to =#v=>, i.c.”the clements of
the quotient algebra D/ =+#v= . We will show, that D1,...,Dk form precisely a partition
into subsets of D as rcduired by definition 2.13. Property a) of definition 2.13 holds trivially
by the definition of D1,...,Dk. Assume that property b) does not hold. Then there exists a
Di and d1, d2 € Di such that d1 # d2 and a(dl) = «(d2). From d1 == d2 it then follows
that there exists an update expression u € E 4, such that n{a(d1)) = a{dl) and ru(dl) = d2.
But then, since V preserves loops, it must hold d1 = d2, which is a contradiction.

Q.E.D.

Note that a view, which partitions the basc is not necessarily cyclic (examples are given in
the next section). Therefore we will also consider the class of views which arc both cyclic
and partition the base (this class is a proper subclass of the class of views which partition

the base).

In figure 2.3 we give an overview of the inclusion relationship between the different classes

of views defined in this section.

We can sunmarize our results about the classifications of views in the following theorem:

THEOREM 2.1.
a) If V partitions the base then V is consistent (Lemma 2.2).

b) If V is consistent then V preserves loops (Def. 2.12).

* In (7], a property “V slices the base” has been defined, which is more general than the
property “V partitions the basc”. In the present paper, the slicing property will not be

uscd.
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¢) If V is consistent, then V preserves connections (Def. 2.12).
d) If V is cyclic and preserves loops then V partitions the base (Lemma 2.3).

A pictorial representation of this theoremn is given in figure 2.4. This figure also helps to

find all transitive consequences of the assertions stated in Theorem 2.1, such as for example:

If V is cyclic and preserve loops then V preserves connections.
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3. A COMPREHENSIVE EXAMPLE

This scction is entircly dedicated to the presentation of a comprchensive example of a
database on which different views are defined. In the next sections we will usc this example

to emphasize some problems and to illustrate our results.

In the following, we assume that the reader is familiar with the clementary concepts of the
relational data model [17], [24]. In particular. we use the following notation: Let R be a
relation, t € R a tuple of R and A an attribute of R, then t.A denotes the value of the tuple
t for the attribute A. The projection of the relation R to attribute A is denoted by R[A]. A
tuple of a relation is explicitly referenced by enclosing its attribute values in angle brackets,

c.g. (i, ], k).

Consider a relational database STORE, which maintains information about the type, name
and price of different products that are for sale in a store and about the single picces of cach

product which are available in the warchouse.

The databasc STORE consists of two relations BILL and PIECLES with the following

schemas:

. BILL : (PRODUCT#, NAME, PRICE)
PIECES : (PRODUCT#, PIECE#, BROKEN)

The single attributes have the following meaning:

PRODUCT# : an integer from 1 to 100 identifying a product-type.

NAME : the name of a product.

PRICE : the selling price for one piece of a product.

PIECE# : a number identifying each single piece available in the magazine.
BROKEN : a boolean value indicating whether the picce is broken or not.

We assune furthermore that the database is subject to the following integrity constraints:
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a) (PRODUCT#, PIECE#) is a key for the relation PIECES.
b) PRODUCT# is a key for the relation BILL.

¢) Yt € BILL(1 < t.PRODUCT# < 100) AVL <i < 100 3t € BILL (t.PRODUCT#

=1i). This mcans, that BILL always contains 100 rows, onc for each product-type.

d) vt € PIECES 3t' € BILL(t.PRODUCT# = t'"PRODUCT#). This means, that for
cach picce, the corresponding product is described in the relation BILL. Note that the
converse is not necessarily true: For some product description in BILL, there might

exist no picce in PIECES.

STORE is the set of all legal states of the database. A database state d € STORE cousists
of a pair (b, p), where b and p arc legal instances (with respect to the above integrity
constraints) of BILL and PIECES. Furthermore, let PIECES denote the set of all legal
states of the relation PIECES:

PIECES = {b | (b,p) € STORE} ;

and let BILL denote the set of all legal states of the relation BILL :

BILL = {p | (b,p) € STORE).

We assume that all computable database operations, such as insertion, deletion and updating
of tuples, as well as conditional combinations thercof are allowed update operations on our
database. Let  denote the set of all these operations, then our database is given by the
data abstraction STORE = (STORE, ). Note,that since Q is defined as the complete set
of all possible opcrations, the natural transition graph Tsrore connects every pair of states
of the basc set STORE in both directions (this holds also for the natural connection graph

Csrong, which, in this case, is equal to TsTORE)-

Let us now describe six views V1,..., V6 of this databasc. As defined in the previous section,

cach view consists of a triple («,7,A), where a is the abstraction function
a:STORE — A,

which associates to cach legal state of the STORE database a state of the view; A is a data

abstraction (A, U,), where A is the sct of view states and U is the set of update operations
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defined on A; 7 is the translation of each view update operation into an update expression

of the database STORE.
VIEW 1: The Acquisition view V1 = (ay, 71, (A1,U4))

description: This view “sces” at cach moment the present state of the relation PIECIES.
The store can acquire new picces of cach product, 'by issning the operation BUY(x, v, 7,
where x designates the product number identifying the product type, y the picce number
of the new picce and z indicates whether the new picce is broken or not (the view thus also
consents to acquire broken pieces). Formally, for cach different triple (x. y, #), BUY[x, y, 4

is a different view update operation.

Abstraction function «; and view state set %

Let d = (b,p) € STORE;  a(d) = a;(b,p) =p.
A, = PIECES

Set of update operations Uj:

U, = {BUY[x, y, 7|

x,y € INTEGER AL <x <100 A (z = true Vz = false)},
such that for all relational instances p € PIECES:

BUY[x, y, #}(p) = i {x,y) € p[PRODUCT#, PIECES#]| then p else pU {{x,y,2)}.
Note: INTEGER denotes a finite range of positive integers.

Translation function 7y:

Lel d = (b, p) € STORE,
nBUY[x, v, (b, p) = (b, BUY[x, v, #|(p))-

Thus the translation leaves the BILL relation invariant.
VIEW 2: The Repair Service V2 = (a2, 2, (A2, U2))

description: This view serves to alter the information about the state of cach picce avail-
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able in the magazine. A piece is broken or intact according to the boolean value of its
attribute “BROKEN”. Ouly the PIECES relation is visible to the view V2 (this is just as
for V1). There are two types of operations : BREAK][x, y] is issucd when picce number y
of product type x breaks during the storing phasc. REPAIR[x, y] is issued, if piece y of

product x was broken and has been repaired.

Abstraction function a; and view state set A,

as = ay; Ag = A, = PIECES.

Set of update operations Uj:
U, = {BREAK[x, vy}, REPAIR,[X, y] | x, y e INTEGERA L <x < 100},
such that for all relational instances p € PIECES:
BREAK[x, y}(p) = #f (x, v, falsc) € p then (p — {{x,y, falsc)}) U {(x,, true)}
else p.
REPAIR[x, y](p) = f (x, ¥, truc) € p then (p — {{x,y, truc}}) U {(x,, false)}

else p.

Translation function 73:
Let d = (b, p) € STORE.
rBREAK|x, y](b, p) = (b, BREAK[x, yi(p)).
REPAIR[x, y](b, p) = (b, REPAIR[x, y](p)).

Thus, as for view V1, the translation leaves the BILL reclation invariant.
VIEW 3: The Inventory V3 = (g, 73, (A3, Us))

dcséripﬁon: This view is defined cxactly in the same way as View 2, with the only
difference that the REPAIR operation docs not cxist, thus a transition between two states
due to the BREAK operation is irreversible in view V3.

Abstraction function ag and view state set As:

as = as; Ag = A, = PIECLS.
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Set of update operations Uj:

Us = {BREAK[x, y] | x,y € INTEGER A 1 < x < 100}, where BREAK][x, y] is defined as

for view V2.

Translation function r3:

Let d = (b,p) € STORE.

s BREAK[x, y|(b, p) = (b, BREAK]x, y|(p)).

VIEW 4: The vendor’s view V4 = (a4, 74, (Ag, Uy))

description: This view describes the information visible to a vendor. We assumnc that a
vendor has to know the description and i)rice of cach product (i.c.the complete information
contained in the relation BILL), as well as the number of intact picces available for each
product. The latter is an aggregate of information contained in the relation PIECES. We
assuine, however, that the vendor is not concerned with picce numbers or with broken pieces.
All this information is hidden to the vendor. The vendor therefore sees the BILL relation,
extended by a field QTY - AVAILABLE which for cach product reports the number of not

broken picces available.

In order to sell one picce of product i, the vendor issues the view operation SELL{]. The
number of available picces {i.c. the value of the field QTY - AVAILABLE) then is decre-
mented by 1. If there are no available picees for a specific product i (i.c. QTY_AVAIL-
ABLE = 0 in row i), then the operation SELL(i] has no cffect.

There are many different possibilitios to translate the view update operation SELL[H] into a
database updale, since in genceral, for product 1 there will exist mauy available picces, one
of which should be climinated frotu the databasc. For view V4 we have chiosen the following

update policy: from all intact picces, climinate the one with the lowest picce number.
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This choice may be motivated as follows: Assume that pieces of cach preduct are acquired
by ascending picce numbers,* then, at each time a product is sold, the picce with the longest
storing duration of this product is taken frow the warchouse. This FIFO policy is very uscful

in practice, especially when a single piece’s value decrements as storage time increases.

Abstraction function a4 and view state set X,;:

Let d = (b, p) be a database state. a4(d) = c4(b,p) = s, where s is an instance of the

schema

S: (PRODUCT#, NAME, PRICE, QTY _ AVAILADLE)

such that PRODUCT# is a key of s, silPRODUCT#, NAMEL, PRICE| = b aud Vt € S
+.QTY AVAILABLE = card({x | x € p A x PRODUCT# = t.PRODUCT# A x.3ROKEN
= falsc}).

Ay = {s|3d € STORE : s = my(d)}.

Set of update operations Uy:
Uy = {SELL[i] | i € INTEGER A 1 < i < 100}, where SELLi] is defined as follows:

Let s € A4 and let t; € s denote the unigue tuple of s with t;, PRODUCT# =i, then

SELL{i](s) = if t;.QTY AVAILABLE > 0 then
(s = {t:) U {{i, t; NAME, t;. PRICE, t;.QTY _ AVAILABLE — 1)}

else s.

Translation function 74:

Let d = (b,p) € S5 ‘ORE; Define for cach i a set Min(ij(p) by:

Min(i](p) = {t € p | t. PRODUCT# =i A .BROKEN = falsc A t.PIECE## = minimumn}.

[T Al

This means that for two clements of the same product type the one with higher piece
y

number has been acquired after the one with the lower picce number.
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Note that Min(i](p) is either a singleton or the empty set.

We define the translation function 4 by:

r{SELL{i|(b, p) = (b, p-Minli] (p)).

VIEW 5: The alternative vendor’s view V5 = (a5, Ts, (K5,U5))

description: This view is cqual to view V4 with the ouly difference that another update
policy (translation function 13) is used: When the operation SELL is issued, instead of
deleting the picee with the lowest picce number, this time, the piece with the highest picce

number is deleted (i.c. sold). This policy corresponds to a LIFO strategy.

Abstraction function o and view state set As:

as(d) = ag(d) aund As = Ay

Set of update operations Us:

Translation function 75:

Let d = (b, p) € STORE; Define for cach i a set Max[i|(p) by:
Max[i](p) = {t € p | t PRODUCT# = i A L. BROKEN = false A t.PIECE# = maximun }.

Note that Maxli}(p) is cither a singleton or the cmpty set.

The transtation function 7 is defined by:
SELL[i](b, p) = (b, p- Max(il(p)).
VIEW 6: The Price Sctting view V6 = (ag, 76, (Ag, Us))

description: Through this view, the store’s manager has the possibilibty to modify the

selling price of cach single product. Only the relation BILL is visible to the user of V6.
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Tor cach product x and for each {representable) integer y, an opcration SETPRICE[x, y].1s

defined, which sets the PRICE component of the record describing product x to value y.
Abstraction function ag and view state set Ag:

Let d = (b,p) € STORE. -

ag(d) = ag(b,p) =b; Ag = BILL.

Set of update opcrations Ug:
Ug = {SETPRICE[x, y] | x,y € INTEGER A L < x < 100},

where SETPRICE([x, y] is defined as follows: let b € Ag, and let t denote the tuple of b
with t. PRODUCT# = x; then

SETPRICE[x, y](b) = (b ~ {t}) U {{x,t.NAME, y)}.

Translation function 74:

Let d = (b, p) € STORE.
1sSETPRICE[x, y|(b, p) = (SETPRICE[x, y](b), p).
Note that among all views that we have deflined, V6 is the only one which allows to modify

the BILL part of the database STORE.

Let us now classify the different views of this example according to the properties defined

in the previous section.

1. V1 is not cyclic, since there exists no operation (or expression) which conld act as
an inverse of the BUY operatious. The BUY operalions irreversibly add tuples to the
view. The view V1 partitions the base: cach class Dj corresponds to a different

state by of the relation BILL. For fixed b;, let
D; = {{(b;,p) | (bi,p) € STORE}.

For this partition, it is casy to verify, that the propertics required by definition 2.13

hold.



O]

20

V2 is cyclic and partitions the base. The classcs D; of the partition are as for the

view V1.

V3 is not cyclic, but partitions the base. Also for this view, the classes D; are

the same as for the view V1.
V4 is not cyclic and does not partition the base. Nevertheless V4 is consistent.

The fact that V4 does not partition the base can be shown by a counterexample.
Figure 3.1 shows two states d1 = (bl, p1) and d2 = (b2, p2) of STORE, as wecll as
a third database state d. It clearly holds a4(dl) = a4(d2). Consider the operation
7,SELL[1]. It holds:” 7,SELL[1}(d1) = rsSELL[1](d2) = d. Assume, that V4 be
partitioned. Since d1 %= d2, these two states must belong to two different classes Di
and Dj of the partition (d1 € Di and d2 € Dj with i # j). Since 74SELL[1](d1) = d, it
holds d1 =+va= d, thercfore, by property a) of definition 2.13, it must hold: d € Di.
On the other hand, from 7,SELL[1](d2) = d, we immcdiately deduce d2 =#vs=> d,

and thercfore, d € Dj. This is in contradiction to the disjointness of the sets Di and

Dj (Def. 2.13). Thercfore V4 is not partitioned.

The consistency of V4 will be proved formally later in this paper. However, let
us explain informally, why V4 is consistent. If we know the cffect of a view update
program on a particular view state, than we know how many picees of each product
have been sold. By the particular update policy V4 (translation function 4) we then
also know cxactly which picces of cach product have been sold: namnely thosce with
the lowest PIECE# (provided they are not broken). Thus any functional specification
of a view update programn (expression) unambiguously determines the translation of.
this program into a database update program. As we have already rmu:;rk('d, this

property is equivalent to consistency.

V5, for similar rcasons as V4 is consistent, but does not partition the base and

is not cyclic.

6. V6 is clearly cyclic and partitions the base. The single classes of the partition are
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correspond to different instances of the PIECES relation . Every different instance of

this relation determines a different class Di.

The properties of the views V1,..., V6 are summarized in figure 3.2.
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by P4
PROD.# NAME PRICE PROD.# PIECE# BROKEN
1 ny | 800 1 005 |FALSE
2 np 60 1 087 FALSE
3 n3 | 10000 3 001 | TAUE
\
\
o’
AN
~N

b = b, = bz_ P
PROD.# NAME PRICE PROD.# PIECE# BROKEN
1 n, | 800
2 np | 60 1 087 | FALSE
3 ng | 10000 3 001 | TRUE ‘
Vit
dy d,
bz o bi F 2
PROD.# NAME PRICE PROD.# PIECE# BROKEN
1 ny | 800 1 066 | FALSE
2 no | 60 1 "087 | FALSE
3 ny | 10000 3 001 | TRUE
/
Vv 7o
/
Ve
rd

PROD.# NAME PRICE

GTY-AVAILABLE

.
1 ny 800 2
2 np | 60 0
3 N3 | 10000 0

FIGURE 3.1.
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4. CONDITIONAL VIEW UPDATES

We have shown in the last section that our algebraic model of databases and views can be
used to represent quite realistic situations. However, it 1s not difficult to sce, that the choice
of the st U4 of update operations of view V = (a,7, (A, Ua)) is critical in the scuse that
it may imposc a scrious limit on the ropros}’ntability of view update programs (also view

trausactions).

Consider for example the view V4 of section 3. Suppose that a client wants to buy three
picces of product 5, but if there are less picees available, the client prefers not to make the
deal and to look for another company. It is clear what the vendor has to do, in order to
satisfy such a “conditional” request. He first must inspect the present state s of his view
and read the number of available items for product 5. If the number is not less than 3 he

will issne the expression
SELL(5](SELL[5](SELL[5](s)))-

If the number of available items is less than 3, then the vendor leaves the view unchanged.

The overall transaction can be called a conditional update. We arc not able to represent
a conditional update through the update operations or update expressions of our view V4.
Of course, we could add a set of new operations to Uy, say {SELL{n,m]} which perform
exactly the task of our couditional update, namely to “soll” 1 picces of product m, only if
1 picces of this product are available. However, this would be a very application dependent

modification of the operation set Uy.

Remember that for cach update operation set U, we have a corresponding set of update
expressions E (Section 2). We prefer to extend the set of update expressious I to a set
' 5L, such that B! contains all possible conditioual updales that cau be built from the

“primitive” update cxpressions of E.

A necessary concept for the formalization of conditional updates is the notion of predicate.
A conditional update is cxecuted depending on the result of the cvaluation of a predicate
on a view state. If A = (A, U,) is a data abstraction, then Py denotes the set of decidable

predicates over A. We do not undertake the tedious task of defining formally what a



decidable predicate on clements of A is. The syntactical form of such predicates would
depend heavily on the formalism chosen for representing or manipulating the clements of A
(for exanple the relational model). Semantically speaking, Pa consists of all predicates p
that allow to distinguish a particular subset S C A among others, such that for all elements
s € S, p(s) is true, but for all clements s’ € A -8, p(s') is false. The number of semantically
different predicates in P, is thus essentially 9iAl (we suppose that A is a finite sct). Clearly,
in most formalisms the same predicate can be syntactically represented in many (possibly
infinite) differcnt ways. Rather than prescribing a specific formalisni, we leave the syntax of
~ predicates to the designer of a particular database system. When we usc predicates without
naming a particular state, to which predicates are applied, we will nse Church’s Lambda
Notation for representing the predicate. For example the predicate which is true iff the state

to which it is applied is equal to state “a” can be denoted by

In this expression, x is a placeholder for the argument. If this predicate is applicd to a

n

specific state ¢, the expression “Ax(x = a) (c)” is equivalent to “c = a”.

The next definition introduces more formally the basic concepts needed in order to deal

with conditional updates.

DEFINITION 4.1. Let A = (A, U4) be a data abstraction.
a) ida denotes the identity on A, D pdenotes the set of all evaluable predicates on A

b) Let us define the new compound operation “if [p, e1, 2] with the following semantics:

Va € A :if [p, ey, eq)(a) = if p(a) then ey (a) clse eg(a).

The sct Proga of Update Programs on A is recursively defined as follows:
[} idA € Pl'OgA

e Ve €Ea: e € Proga
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e Vey, ey €Prog,, Vp € Pa: if [pes 2] € ProgA.
e Yei, e, €Prog,: e - eg € Prog, (composition of operations)
e Prog, does not contain any other opcrations

¢) A Conditional View Update is a view update program which contains a subex-

pression of the form if [p, ey, ea).

EXAMPLE. Cousider the view V4 of Section 3. Assume a vendor wants to scll three

pieces of product 5 if the mumber of available picces of product 5 is cqual to 3 or greater than

3. Let avail(s.n) be a function which returns for each view state s the munber of available
N b

pieces for product n. The conditional view update then can be formulated as follows:

if [Ax(avail(x,5) > 3), SELL{5|SELL[5|SELL{5],ida,]-

Since we extended the set E5 of view update expressions to the set Proga of view update
programs, we have to extend the domain of the translation function 7 to Proga. In order to

do this, it is sufficient to specify, how ida and how conditional view updates are translated.

DEFINITION 4.2. (cxtension of 7 to Proga)

Let V= (a,7,A) beaview of D and let A = (A, UA). We extend 7: Ep — Tp to a function

7 : Prog, — Progp as follows:
a) 7(ida) =1idp

b) Vp € Pa, Vey,eq € Progy: r(if [Axp(x), e, eq]) = if [Axp(a(x)), 7(c1), T(ea)]-
Note that Axp(a(x)) is a predicate on D.

c) Vey,eq € Progs: (e -ez) = r{eg) - 7{cg).

It is casy to see, that this is the most natural and probably the only “reasonable” extension
)

of 7 to Proga.
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For a database designer who wants to specify a translation function , it is thus sufficient that
he specilies the translation of cach primitive update in Ua. By dcfinition 4,2 this function

7 is unambiguously extended to the set Proga of all possible view update programs.

DETFINITION 4.3. Let V = (a,7,A) be a view of D with A = (A, Ua).

We define the conditional closure V* of V as follows:
V™ is a view of D;
V* =(at,r%,A"Y) w;vherc
AT = (A, Prog,)
at =a |
¥ = 7 extended to Prog, as in definition 4.2

Note that it holds V** =V,
V* is the view which has as primitive operations all possible update programs of V.

In the following we will show that V* is cousistent iff V is consistent. This is a uscful result.
It can be interpreted as follows: The addition of conditional updates does not alter the
consistency state of view. It is therefore always sufficient to consider a view with primitive
(non conditional) operations for a consistency proof. View update programs cau be used

without the danger of introducing sowme hidden inconsistency.

Before showing our result, let us prove a lemma.

LEMMA 4.1. Let V = (@,7,A) be a view of D, then the two relations == and

=+v ! = defined on D are the same.

PROOF. We have to show, that for all d, d' € D:

(d =w=d') & (d=+v=>d)

“=" this part of the proof is trivial, since Eo C Progy.
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“«=” this part of the proof can be done by induction on the number of “if’s” that occur
in an update program of V. We only state the main idea of the proof: Let d =xvr= d;
then there exists an update program g € Prog, such that rg(d) = d’. If g does not contain
any conditional subcxpression, then g = ida or g € Ex. If g = ida then 7g = idp and
d = d'; in this case d =#v= d' holds trivially. If g € EA then d =+v=- d’ by definition of
« —sy=>". If g contains somc conditional subexpressions, then consider g{«(d)). It is easy
to show that g(a(d)) = a(d'). Now consider the series of update expressions ei that occur
in the program g and that are effectively applied during the cvaluation of g(a(d)). Combine
thosc expressions in the right order into one single expression ¢. Clearly ¢ € Ea and it holds
o(a(d)) = a(d’). By how r is extended from Ea to Proga (def. 4.2) we also know that

rg(d) = re(d) = d'. From 7e(d) = d' we immediately conclude d =+= d'. o
THEOREM 4.1. Let V be a view of D. V is consistent iff V7 is consistent.

PROOF. V and VT have the same abstraction function o (def. 4.3). The rclations =+v=>
and =*vT= on D coincide. In Lemma 2.1 we showed that the consistency of a view V

depends only on @ and on =#v=> . The theoremn follows imnmediately. a

Before concluding this section, let us state a lemnma, which will be used in section 5.

LEMMA 4.2. Let V = (a,7,A) be a view of D. V¥ is consistent iff V¥ is councction

preserving.

PROOF. Tt sullices to show that if V' preserves conncctions then V' oalso preserves
loops. Remember that V1 contains ida as operation and that 7(ida) = idp. Suppose that
V' is connection preserving but not i()Op proserving. It follows by definition 2.11 that there
exist clements d;,dg € D, such that a(d;) = a(dz) and d; —+v*— dz and d; # da. Since
idp(d;) = d; it also holds d; —* vt— d,. This is in contradiction with the assumption that

V1 is connection preserving. o



5. PRESERVATION OF PROGRAM EQUIVALENCE
AND CONCURRENCY

The coucept of view update program which was introduced in the last section is at the
base of some fundamental propertics of consistent views. In this section we show that
consistent views have a number of important preservation properties. We will first consider
the equivalence of update programs. We show that a view is consistent if and only if its
translation function 7 translates any pair of functionally equivalent view update programs
into a pair of functionally cquivalent database update programs. Later we shall draw our
attention to the preservation of concurrency propertics. We will define the concept of
transaction and we will show that the translation function 7 preserves commutativity of

transactions, non-interference and serializability.
5.1 PROGRAM EQUIVALENCE

Let us now give a formal definition of functional cquivalence of update programs.

DEFINITION 5.1. Let ¢; and ¢y be two update programs of a data abstraction A

= (A,U,). ¢; and c; are functionally equivalent iff
Vae A ey(a) = cy(a).

If ¢y and ey arc functionally equivalent, we write ¢ = e».

DEFINITION 5.2. Let V = (a,7,A) be a view of D. 7 preserves equivalence iff
Vey,eg € Progy (01 = e2) => (r{eg) = 7{e2)).

If for a view V = (a, 7, A), 7 preserves equivalence, then we also say: V preserves cquivalence.

THEOREM 5.1. A view is cquivalence preserving iff it is consistent.
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PROOF.
“if” This part of the theorem follows casily from the definition of consistency.
“only if” Assume V = (a, 7, A) is cquivalence preserving but not consistent. By lemma

5.2, V* is not connection prescrving. Therefore there exist clements d, dy,

d, € D, such that

d —+vi—d,
and d —=vh—dy
and  afd;) = a(dy)
cand  dy # ds
TFrom this we infor that there exist two different database update programs hy
and hg, by, hy € Progp, such that hy(d) = d; and ha(d) = dg and such that
h; and hg are the translations by 7 of two view update programs, respectively

¢y and cg:

hy = 7(ey)

he = 7(e2).
Clearly hy and hy are not functionally equivalent, as they have different images

in d.

Notice that for o; and c¢g it holds:
ey (a(d)) = afdy) = a(ds) = cq (a(d)).

(This equation follows from the fact that 7 is a translation function).

Although ¢ and g are equivalent with respect to the single view state «(d),
it does not necessarily hold that ¢; and ¢q are functioimlly cquivalent. They
might differ with respect to other view states. We therefore construct the
following view update programs for fy and f:

fi; =if [MAx(x = a(d)),ey,ida]

fo =il [Ax(x = a(d)),es,ida]

It is clear that [ and fy arc functionally cquivalent view update programs.



Let us examine their translations:
fy = if ha (ax) = a(d)),hy,idp]

fy = if Az (a(x) = a(d)) , he,idp]

Clearly 7f; and 7f; are not functionally equivalent since their images in d

differ. Therefore V is not equivalence prescrving. o

Theorem 5.1 states that the class of consistent views is exactly the class of views for which
a functional specification of a view update is sufficient in order to functionally determine
its translation. This property is of highly practical relevance. Tt cnsures that a translation
of a view update program is essentially independent of the particular sequence of the single

operations of the program, and that it only depends on the semantices of the view update.

As long as update programs arc atomic actions, functionally cquivalent update programs
might be interchanged without any problem. Therefore a view programmer who operates
on a consistent view might change the structure of his view update program, for example
in order to perform some optimization. As long as he docs not change the semantics, the

view update program nceds not to be retranslated into a new database update program.

This high level of independence between view and database makes a database system much
more accessible for theoretical analysis. Correctness proofs and verification of global trans-
aclions (possibly involving dilferent views) can be done by using formal specitication tech-

niques.

At the end of this section, we will give an example of a view which is not cousistent and we
will show that in this casc equivalent view update programs arce translated into database

updates which are not. equivalent.

5.2 CONCURRENCY

Let us now draw our attention to the concurrency problem. Control over concurrency is
one of the most important feabures of advanced database management systems [28,29,30],

but the interaction between views and concurrency has hardly ever been analyzed.
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There are three main questions arising when the interaction between views and concurrcucy

control is considered:

1) How can a sct of concurrent transactions, operating on the same view, be correctly

translated to a sct of (hopefully) concurrent transactions on the base?

2) How can a set of concurrent transactions on different views be correctly translated to

a set of (hopefully) concurrent transactions on the base?

[o4]
———

What is the interaction (or side effect) between transactions of different views imple-

mented oun the same base?

In this paper we limit ourselves to consider the first question. We will show that the
transaction function of consistent views preserves commutativity, non-interference and seri-

alizability of transactions.

Before we can proceed, we have to define our concept of transaction and the above men-

tioned propertics of pairs of transactions.

Since we are mainly interested in translating updates, we define the concurrency properties
of two transactions with respeet to the effect that these npdates have on their data abstrac-
tion (cither view or database) and not with respect to the outputs that the transactions

may issuc to the view uscr.

DEFINITION 5.3. Let A = (A, U,a) be a data abstraction.

a) A transaction T on A is a finite series of update programs p;: T = [p1,p2, .- Pul,
where p; G Progy, for 1 €1 < n. The single programs p; arc also called atomic
actions of T and it is assumed that cach p; be performed “atowically” and without

the parallel interaction of any other programs.

If T is a transaction then T° denotes the view update program which is the result of

the composition of all atomic actions of T:

T®° =py-p2*Pn
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I T; =[p1,...,pn and Tq = Pis---sPi), then Ty - Tois defined as:
i ml

T, -T2 = [P1,P2:- s PusP1s- -+ Pia)

Note that it holds (T; - T2)° = T7 - T3.

Two transactions T; and Ty arc commutative iff it holds:
(T1 'T2)O = (T2 . Tl)o.

A mix (also “schedule™) of a pair of transactions Ty = [P1,--»Pnls T2 = [P1,---» Pl
is a transaction T = [pY,...,pil..m] such that each p!' belongs cither to Ty or to T

and
Vi<i<j<n+m, ViI<hk<n:

(Pg'=Ph€T1/\p§'=pkET1):h<k
Vi<i<j<n+m, ViI<hk<m:

(p! =pn € T2 AP =pr € T2) > h < k.

Mix(Ty, T2) denotes the set of all transaction mixes of T and Ts.

Two transactions T; and Ty are non-interfearing (or completely concurrently

executable) if the following property holds:
VT € MjX(Tl,Tz) T° = (T1 -Tg)o.

Note that if two transactions are non interfearing, they are also commutative, since

T, - T, represents a particular mix of Ty and Ts.
Lot T be a mix of Ty and Ty, T is said to be serializable if it holds
T = (T, -Ty)°vT° = (T T,)°.

Note that the concepts of non interference and scrizability are casily gencralizable to
sots of wore than two transactions. For the sake of simplicity, we just consider pairs

of transactions in this paper.

Let V = (a,7,(A,UA)) be a view of D and let T = [py,...,Pu] be a transaction on



A. We then define the translation 7T of T to D as follows:

(T) = [r(p1). -, 7{pa)]-

Note that it holds 7(T7) = {r(T))°.
d) The translation function 7 of V is

e commutativity preserving iff any pair of commutative transactions T;, Ty is

translated by 7 into a pair of commutative transactions 7(T,), 7(T2) on D.

e concurrency preserving iff any pair T, Ty of non-interfearing transactions is

translated by 7 into a pair of non-interfearing transactions 7(T;), 7(T2) on D.

e scrializability preserving iff any scrializable mix T of transactions T, Ts is
translated by 7 into a serializable mix 7(T) of 7(T;) and 7(T3). Whenever 7 has
a prescrvation property, we also say that V has this property, for instance if 7 is

commutativity preserving, then we say that V is a commutativity preserving view.

THEOREM 5.3. Any consistent view is
a) commutativity preserving
b) concurrency preserving

¢) serializability preserving.

PROOT. Let V= (a,7,A) be a consistent view of D. By theorem 5.1, we know that V is

cquivalence preserving.
a) Assumec that T; and Ty are two commutative view transactions: (T; - Ty)° =
(T2 - Ty)°. Therefore it must hold
T((T1 . Tg)o) = T((T2 'Tl))o.
Thus

(T} - T3) = (T3 - T1)

il
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and hence

r(T7) - 7(T3)

it

m(T2%) - 7(T7)

and

and finally .
(r(T1) - 7(T2))° = (7(T2) - 7(T4))°

thus 7(Ty) and 7(T3) are commutative transactions on D.

. QE.D

Assume that Ty = [p1,...,pu] and T2 = [p};...,ph] are two noun-interfearing trans-
actions on V. We have to show that 7T; and rTs are non interfearing transactions
on D. Let T' be an arbitrary mix of 7Ty and 7Ts. T’ is of the form [rpY...., Py nl
where p"i € Ty or p'i€ Tp for 1 <i<n+ m. Let us define a transaction T ou A as
follows:
T=[pl, .. Patml

Clearly T is a mix of T; and T2 and it holds T = T'. Since T, and T2 arc not
interfearing, we have T = Ty - T2. Since V is equivadenee preserving, it immediately
follows: 7T = (T -Ts) which can be rewritten as: T/ = 7(Ty-Tq). Since 7(T, ‘To) =

7(Ty) - v(T2) we finally get T' = 7(Ty) - 7(T2).

Thus 7(T;) and 7(T2) arc non-interfearing.

Q.E.D.

Let Ty, Tg be transactions on V and let T be a serializable mix of T and Ty, Assume
without less of generality that T = Ty - Ty. It then follows
7(T) = (T - Tg) = 7(Ty) - 7(Ta)-

Thercfore 7(T) is scrializable with respect to 7(T;) and r(T2).

Q.ED
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Notice that the properties of commutativity, non-interference and serializability arc defined
independently of particular operations, such as, for example, lock and relcase operations of

differerent granularities.

Lock and release primitives can be modeled explicitely as particular clements of the set of
operations Uy of a data abstraction A. Clearly the static data model (the sct A) has to
be predisposed for locking. For example, if the possibility of write-locks at the granularity
of relations is desired, then to cach datarclation of the static model should be attached
a boolean value with the function of “locking flag”. Locking and rcleasing then can be
modeled by sctting and resctting this flag. Update operations in such a miodel arc programs

which are conditional on the value of locking Hags.

Note that the preservation of commutativity, concurrency and serializability arc necessary
but not suflicient conditions for the cousistency of a view. It is possible to construct “patho-

logical views”, which are for instance commutativity prescrving but not consistent.
We conclude this section with a brief example of a non consistent view.

Consider the database of section 3. Let view V7 be as view V5 with additional operations

BUY([i] defined as follows:
View operations: BUY(i] increments the QTY-AVAILABLE value for product i by L.

Translation: 7(BUY[i]) = BUY[i] adds a new tuple for product i to the PIECES rela-
tion. Let d be a database state. Let max(i, x) be a function which for a
databasc state x returns the highest value of PIECE# that cxists in state

x for product i (if there is no picce for product i then max(i,x) = 0).

The ﬁW[i] operation applied to a database state d then adds the tuple

(i, max(i,d) + 1, false) to the PIECES relation.

Consider the database and view state depicked in figure 3.1 and the following two view
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update programs p; and ps for VT:
py @ if [Ax(avail(l,x) > 1),SELL{1|BUY{1],id ,,]
pe : if [Ax(avail(1,x) > 1), BUY{1|SELL[1],d ,,]
where avail(n,x) is a function which returns the number of available picces for product n

and for view state x. .

Clearly p; and pg are functionally equivalent view updates. Unfortunately this does not
hold for the translation: Consider the database state dg of figure 3.1. 7{p,) will first delete
the picce with munber 087 from the database and then introduce a new picce of productl
with picce number 067. 7(pg) first introduces a new piecce with number 088 for product
number 1 and then deletes this picce. Thercfore our view V7 is not equivalence preserving

and thus not consistent.

It is casy to sce that V7 does not preserve commutativity; consider for example the two

transactions

T, = [SELL{1]]
T, = [BUY[1]].



6. THE TRANSLATION OF VIEW UPDATES

In this scction we will discuss some aspects of the well known view update problem. Let us

first reformulate this problem, using the notation and forinalism introduced in section 2.

Let D = (D, Up) be a databasce, let A = (A, U4) be a data abstraction such that there exists
a surjective function a:D — A. The pair (@, A) then constitutes a static view of D (def.

2.1). The view update problem can be stated by means of the following three questions:

1. Is it possible to find a translation function 7, such that the triple (e, 7, A} 13 a (dy-

namic) view ?

9. Which conditions on a and on U, mmust be satistied in order to guarantee that a

translation 7 exists?

If there are diffcrent possibilities to choose a translation 7, how can we characterize
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the different possible choices?

The pioncer work in solving the view update problem has been carried out by F. Bancilhon
and N. Spyratos. In their paper [1] it is shown how the choice of an update policy 7 can
be made by deciding which portions of the database should remain constant (complement).
Choosing a complement that remains invariant under all translated operations assigns un-
ambiguous semantics to a view update. Formally. a complement of the static view (a, A)

can be defined as a mapping g as follows:

"DETFINITION 6.1. Let (, A) be a static view of a database D = (D,Up). Let A bea

surjective function from D onto aset B, :D -+ B. A is a complement of « iff
vd,d' €D : a(d) = afd') = B(d) # B(d").
It is casy to sce that, if 8 is a complement of e, then the knowledge of a(d) and of p(d)

uniquely determines the database state d. Thus g is indeed a mapping “complementary”

to o, and the knowledge of both, « and g, is sufficient for computing the database.
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In [1], the property of a set of update operations U C U to be translatable under

constant complement 3 is referred to as the S-translatability of U.

DEFINITION 6.2. U is g-translatable iff Vd € D,VvueU3dveEp3de D:

(v(d) = d' A a(d') = u(a(d)) Ag(d") = B(d)).

Our definition of B-translatability differs slightly from the original one [1]. because in our
model the database D is an algebra with a well defined set Up of possible operations, while
in [1] a database is a set of states on which all computable operations may be performed;
therefore we must require the existence of v, such that v(d) = d'. This difference does not
essentially change the concept of f-translatability. Our algebraic definition of a database
is more general and has the advantage that it may be used in “cascades”, i.e., a view of a

database may act as a base for a deeper level view to constitute a layered system of views.
We can, wore generally, define the g-translatability of a static view (a, A) by :

DEFINITION 6.3. (a,A)is ﬁ-l,r;'mslatablc iff A is a complement of « and the entire set

of view npdate operations Up is f-translatable.

DETINITION 6.4. If (a,7,A) is a view of D, and f§ 15 a complement of a, such that
Va € Ux Vd € D : g(ru(d)) = B(d), then we say that the complement f§ is constant under

translation 7 or 7 translates under constant complement 3.

If (v, A) is B-translatable for some complement B, we also say that it is translatable under

constant coanplement.
Among the results of Bancilhon aud Spyratus, we present the two most important ones,

translated into our terminology.

PROPOSITION 6.1. I[Aiscyclic and (@, A) is f-translatable, then there exists exactly

onc translation 7 such that V = (a,r,A) is a loop preserving view of D and 8 is constant
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under translation 7. 7 is uniquely determined by B through: Vu € Uy @ Tu = (ax p)7t

(na x B). (for more details see [1]).

PROPOSITION 6.2. If A is cyclic, then for cach trauslation 7, such that V = (a,7,A)

is a loop preserving view of D, there exists a complement B of a, such that-
a) (a,A) is B-translatable
b) the relation “ =+v=>" is an cquivalence relation
¢) the complement 8 of « is given by: A(d) = d where dis thé equivalence class of d
with respect to =#= .

Cousider view V2 of the databasc-example defined in section 3. It is casy to sce, that the

complement fo of as which corresponds to the translation 7o is as follows:
vd = (b,p) € D: f2(b,p) =b.

Clearly B9 is constant under 74, since breaking or repairing picces docs not alter the BILL

relation.

In a similar way, a complement Bg of ag which determines 7g is defined by
vd = (bap) € D: ﬂ(;(l),p) =p.

Clearly fg is constant under 7g, since changing the price of some products does not affect

the information contained in the relation PIECES.

Note that the static views considered by Bancilhon and Spyratos must be cyclic. Note
furthermore thal their theory applies only for the characterizalion of loop preserving views.
By theorem 2.1, we therefore conclude that the views treated by Bancillion and Spyratos
arc cxactly the cyclic partitioning views. This is the class of views corresponding to the

innermost arca of figure 2.4 (or respectively figure 3.2).

However, the requirement of cyclicity is not. strictly necessary for translation under constant
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complement. The following observations will lead to a first gencralization of the theory of

Bancillion and Spyratos.

OBSERVATION 6.1. The cyclicity condition of proposition 6.1 can be omitted. This
is justificd by the fact that the proofs in [1] for the original formulation of proposition 6.1

do not usc the cyclicity property.

OBSERVATION 6.2. In proposition 6.2.a, instcad of requiring the cyclicity of A, the
more general requirement that (e, 7,A) be base partitioning is sufficient. In the context
of proposition 6.2 this requirement is indeed more general, since we arc considering only
loop preserving but not necessarily cyclic views. Any loop preserving and cyclic view is
partitioning, but there exist many interesting views which are partitioning (and therefore
also loop preserving) but not cyclic (for cxample View 1 and View 3 of section 3). Note
that the parts b arrd ¢ of Proposition 6.2 are not necessarily valid if we replace the cyclicity
requircmént by the more general requirement of a partitioning view: the relation =+v=> then
is not necessarily an equivalence relation. We can overcome this difficulty by considering the
equivalence relation induced by the partition of the view, instead of considering =#v= .
Let ® denote the cquivalence relation on D indueed by the partition. Parts’b and c of

Proposition 6.2 becomne true if we substitute @ for == .

The above observations suggest that there exist a strong connection between the concept
of “partitioning view” and the concept of “translatability under constant complement”. In

facts, these two concepts are cquivalent. This is formally stated in the following theorem.

THEOREM 6.1. A view (a,7,A) of base I partiliones the base il there exists a coms-
plement 8 of @, such that 4 is constant under translation 7.
PROOF.

“f” Let 8 be a complement which is constant under 7. Let B = (D). Let Dy denote

B~1(x) for x € B. Thus, Dy denotes the set of all clements of D which are
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mapped to x by 8. It is trivial to verify that the family of sets {Dy | x € B} has

exactly the propertics of partitioning classes required by Definition 2.13.

“only if” Assume (a,7,A) is partitioned. Consider the equivalence classes Dy,..., Dy
which constitute the partition as defined in def. 2.13. Let § be dcfined as:
Vd € D : 8(d) = d where d denotes the unique equivalence class Di, such that
d € Di. It follows trivially from property b of Definition 2.13 that g is a com-
plement. From property a of the same definition it follows that g is constant

under 7.

Q.E.D.

By this simple genceralization of Bancilhon and Spyratos’ theory, we arc now able to state

the update semantics of our view V1 by defining the complement f; as follows:

B,:STORE — BILL; V(b,p) €D: Bi(b,p) =b.

For the complement B3 of the view V3 it holds: 3 = 8.

Note that, the views V1 and V3 are kind of views which are not considered in {1} because

they are not cycle.

We thus bave characterized the class of partitioning views as the class of views which are
updatable under constant complement. The equivalence of these two notions was quite obvi-
ous. A more difficult problem is the characterization of consistent but not partitioning
views. By theorem 6.1 we know that such views do not translate updates under constant

complement.

For cxample, let us consider view V4 defined in section 3. It is casy to verify that the

mapping A4 such that ¥(b,p) € D : B4(b,p) = p is a complement of ay.

B4 is in a sensc the most “rcasonable” complement we can find, in order to express the
information hidden to the user by aq. However, this complement does not remain constant.
It looses information whenever a nontrivial update operation is issued. More generally,

it is casy to show that cvery complement of ay looses information when the view V4 is
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updated, using the strategy 74: when a piece of a product is sold, the tuple associated
with the piece is climinated from the database. This tuple contains also the picce number,
which is invisible to the view user. Thercfore we can say that updating V4 causes a loss of
information not visible to the view. Since the lost information was not visible to the view,

it did belong to the complement.

Since we have shown that the class of consistent views is of practical relevance, it is necessary
to define cxactly what is the characterization of their update scmantics. In the next section,
we show how it is possible to extend the approach of Bancilhon and Spyratos in order to

capture the update semantics of the entire class of consistent views.



7. UPDATE SEMANTICS OF CONSISTENT VIEWS

The basic idea of the theory developed in this section can be stated as follows.

Let (a, A) be a static view of a database D and let f: D — B be a complement of («, A).
We will structure the set B of complement values by a partial ordering “<”, such that it
becomes a partially ordered set (poset). Intuitively, A(d') < 8(d) has the following meaning:
All information contained in B(d') is also contained in f(d), but A(d') may contain less

information than g(d).

We will furthermore require that the partial ordering < determines unambiguously an up-
date policy. For this reason we will introduce the notion of a-B-decisiveness (Def. 7.2). We
will restrict the nuinber of possible orderings < on f}(b_) by considering only (.!-ﬂ-(]C('.iéiV()
orderings. It will become clear later, that these orderings are sufficient to determine all

consistent update policies.

DEFINITION 7.1. Let (X, <) denote a finite poset. Let a and b be two clements of X.
An clement ¢ € X is an upper bound of a aud b with respect to < iffa <cand b <e. If

there exists an upper bound for a and b then we write a T b else we write a +b.

DEFINITION 7.2. Let (@, A) be a static view of D, let 8 be a complement of a and let
“<” be a partial ordering defined on g (D). The partial ordering < is called a-f-decisive iff

vd,d' € D: ((d # d' A a(d) = a(d')) = B(d4) T B(d')).

We are now able to introduce our generalization of the notion of f-translatability of Ban-

cilhon and Spyratos.

DEFINITION 7.3. Lot (@, A) be a static view of D, let 8 be a complement of o and let <
be an a-B-decisive ordering on 3 (D). A view update operation u € U, is pB-<-translatable

iftvd e D, 30' € D:

d == d' A afd') = u(a(d)) A B(d') < B(d).
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If cach updatc operation of the static view (@, A) is f-<-translatable, then we say that the

static view (a, A) is f-<-translatable.

The notion of 8-<-translatability is the basic definition which is necessary for introducing the
concept of “translation under loss of information.” Informally, the condition 8(d') < 8(d)
states that the complement of an updated database state can never contain more information
than the complement of the original state, if the database update is a translation of a view

update.

It is casy to see, that 8-<-translatability is indeed a generalization of B-trauslatability as de-
fined in [1]. Observe that =" constitutes an «a-f-decisive partial ordering on B(D). Bancil-

hon’s aznd Spyratos’ concept of f-translatability therefore coincides with B-=-translatability.

In the following, let us assume that (a,A) is a static view of D and that f denotes a
complement of a, such that (a,A) is B-<-translatable for a given partial ordering < on
f(D). |This assunption is made for the following Definition 7.4, for Lemma 7.1 and for
Definition 7.5).

DEFINITION 7.4. Tor cach update cxpression u € Ea and for cach database state

d € D, we define a sct Sy,q as follows:

Sua = {d'|d €DAd=s=>d'A a(d') = ula(d)) A A(d") < B(d)}.

Su,a consists of all databasc states in which d is allowed to be transformed whenever «(d)

is updated by u.
LEMMA 7.1. card(S,q) = L.

PROOF. Since a is g-<-translatable, Sy,q is not cmpty. Assume, Sy,q has two differ-
ent clements di and d2. By the definition of Sy it holds: «(dl) = a(d2); since d1 # d2
it therefore must Lold A(d1) # A(d2). Furthermore it is f(d1) < B(d) and B(d2) < p(d) and
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thus B(d1) T B(d1). This is a contradiction to the a-p-decisiveness of <. Thercfore, §y,q is
a singleton.

Q.E.D.

DEFINITION 7.5. For cach update operation u € Uy, we define a funttion oy, on the
set B(D) as follows:

ou: B(D) = B(D);

o.(f(d)) = A(d") such that d' € S, 4.
By Lemma 7.1 oy is well defined for cach 8 and <. Since o, depends on 8 and on the
particular partial ordering < we should correctly write og <y instead of oy For simplicity

we just write o, when 8 and < are determined by the context.

Informally speaking, o, is the update thiat must be applied to the complement, when the

view is updated by an update operation u.

We arc linally able to state the first important theorem of this scction, which establishes
the correspondence between ordered complements of a static view on onc hand and update

policies which extend the static view to a dynamic view ou the other hand.

THEOREM 7.1. Assume that (o, A) is a static view of D and that 8 denotes a com-
plement of a, such that {«, A) is f-<-translatable for a given partial ordering < on B(D).
The translation function 7, defined below extends the static view (e, A) to a dynanic view

(a,7,A) of D:
7:Ua — Ep such that

Yu € U, : tu = (a x B) " (na X 0,f8),

where a,, is defined as in Delinition 7.5 from f# and <.
7 is called the p-<-translator for Ua.
PROOF. Let us first observe that 7 is well defined, since (a x B) ! is a function. This

because f is a complement of a and therelore (@ x B) is one-to-once. Let d' denote the only

clement of the singleton Sy 4. It theu holds by Definition 7.5: o, (8(d)) = B(d') and by



definition 7.4: u(a{d)) = a(d'). Thercfore we have
ru(d) = (@ x B)~}na x 0uB(1))
= (o % 8)" (nad) x 7B(d))
= (ax 8) '(ab(d') x B(d")
=d
Thus ¥d € D: ru(d) = d' such that d' € Sy q.

We must now show that o is a houomorphisim with respect to 7 (see def. 2.3). We have to
show that Vd € D Vu € Ua: (a = afd) = ua = ru(d)). Since ru(d) = d’' € S, 4. it holds
a(ru(d)) = a(d") = u(af{d)). But u(a(d)) = u(a). Therefore a(ru(d)) = a(d') = u(a).

‘ Q.E.D.

COROLLARY 7.1. Let (a,A) be a static view of D and 7 be a g-<-translator for Ua.
It holds: Yu € EA,Vd € D: ru(d) = d' such that d' € §,, 4.

PROOF. Tor u € U, the assertion of this corollary was alrcady proved in the proof of

Theorem 7.1, The generalization to E, follows casily by induction.

THEOREM 7.2. If (a,A) is a stalic view of D and 7 is a f-<-translator for U, then

the view (@, 7, ) is consistent.

PROOF. Assume (a,7,A) is not consistent: there exist d, d', d” € D with d’ # d", such
that d =sv= ' and d =wv=> d" and a(d') # «(1"). Then there exist v, w € B, such that
d' = 7 v(d) and 4" = 7 w(d). By Corollary 7.L. it follows d' € §, 4 and d" € Sy q4. Since
7 is a translator and « is a homomorphisin with respect to 7 it holds: v{a(d)) = w(ea(d));

therefore Sy g = Sw,a and thus d' = d". Contradiction.

QE.D.

We have thus shown that all views (a, 7, A), where 7 is a f-<-translator for U are consistent.

If we succeed in showing the converse, i.e. that for all consistent views (a, 7, A) there exist
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B and < such that 7 is a A-<-translator, then we have completely characterized the varicty

of consistent views.

DETFINITION 7.6. Let V= (a,7,A) be a view of D. Let Beay be a function defined as

follows: _
Bean: D — 2P (powerset of D)

Vd € D : Bean(d) = {d' | d =sv=>d'}.
We call Bean the canonical complement of § for the view V. (This term is justified by

the following Lemnma).
LEMMA 7.2. If Vis consistent then fea, is a complement of a.

PROOF. Let a(d) = a{d') and d # d'. Then it cannot hold d =+#v=d', since V is
consistent {(and therefore loop preserving). Thus d' ¢ Bean(d). On the other hand, by
definition of Bean and of “ =+wv=" it holds d' € Bean(d’). Thercfore Bean(d’') # Beun(d).

Thus fBean 18 a complement of a.

Q.ED.

We now state the second important theorem of this section.*

THEOREM 7.3. Let V = (a,7,A) be a consistent view of D. Let feun denote the
canonical complement of a for V. Let “C7 denote the set-theoretic inclusion. It then holds:

Up i Bean-C-translatable and 7 is the Bea,-C-translator for Ua.

PROOPF.

a) We first show that C is a-B-decisive, i.c.

vd',d"eD: (d' # d" Aa(d) = a(d")) = Bean(d’) + Pean(d").

The set theoretical induction € is a partial ordering which satisfies the criteria for o-g

decisivencss.
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Assume d' # d" and a(d') = a(d") but Bean(d’) T Bean(d"). Let d € D such
that Bcan(d) is an upper bound for both Bean(d') andfean(d”). This means
Brun(@) € Bean(d) and Pean (@) € Benn(d). Since d' € fena(d') and 0" € Peun(d")
it follows &', d” € Bean(d), and thercfore d =+v=>d' and d =+w= d". This is in

contradiction with the consistency of V. Thus C is a--decisive.

b) We show that U, is Beun-C-translatable. Let ru € Ep, and d, d’ € D such that
d' = ru(d). It then holds d =+v=> d' and therefore d" € Bean(d). From the definition
of Bean and from the trausitivity of “ =#v=-" it then follows casily Bean(d') € Bean(d),

which proves the Bcan-C-translatability of Ua.

¢} That ris the Bean-C-translator for Ua can casily be verified by considering an update
u € U,, the corresponding mapping 0, as introduced in Definition 7.5 and by showing
ru = (a x B)"Hua x 0,8).

Q.E.D.

This theorem completes the formal framework, which cnables us to define the update sc-
mantics of any consistent view by specifying a complement and a partial ordering on the set
of complement values. Let us now reconsider the views V4 and V5 of our example-database.

We choose the samne complement for both views:

V(b,p) €D : fa(b.p) = Bs(b,p) = p.

Since both views V4 and V5 have the same complement, we must express their different
update semantics through different partial orderings on the set of completent values. Before
doing so, let us define two particular partial ordering relatious between sets of integers, which

will help to simplify our notation.

DEFINITION 7.7. Let X and Y denote two sets of integers. We say that X is a postfix
of Y, denoted by X$Y if X C YandVx e X, Wy e Y -X:y <x (Here “<” has its
conventional meaning). We say that X is a prefix of Y, denoted by X@Y iff X CY and
VxeX,VyeY-X:y>x A
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EXAMPLE. Consider the example of section 2 Let Y = {1,2,5,7,8,10, 14,15}, then
{1,2,5}@Y but {14,15}3Y. Note that B:4(D) = Bs(D) = PIECES, ie. the st of legal
instances of the relation PIECES. If p is a relational instance and A an attribute of p, let
p[A] denote the projection of p over the attribute A; if ¢ is a predicate on tuples of p, let
plc) denote the set of all tuples of p which satisfy ¢ (sclection). Combinations of selections

and projections are written without parenthesis, e.g. p(c)[Al.

We are now ready for specifying the partial orderings <4 and <5 for respectively the view

V4 and V5.
<y Vp,p' € PIECES :p <47 &
p' € p Ap (BROKEN = true) = p(BROKLEN = true) A

V1<n<100:

p'(BROKEN = false A PRODUCT# = n)[PIECE#|$p(BROKEN =
false A PRODUCT# = n)[PIECE#].

<s: Vp,p' € PIECES :p <5 p' &
p' C p Ap' (BROKEN = truc) = p(BROKEN = true) A
¥1<n<100:

o/ (BROKEN = falsc A PRODUCT# = ) [PIECE#|@p(BROKEN =
false A PRODUCT# = n)[PIECE#].

It is casy to sce that <4 and <g are indeed partial orderings. It is possible to prove that
<4 is a4-B4-decisive and that <j is ag-fs-decisive. A formal proof thereof is given in the

appendix.

That Upy is B-<4-translatable and that Ups is B-<j5-translatable is casily verified, as well

as the fact that <4 corresponds to 74 and <y corresponds to 7s.
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We thus have spec.iﬁed the update semantics of V4 and V5 by supplying for cach of these

views a complement and a partial ordering on the complement values.

From the properties of these complements and partial orderings we furthermore deduce that

V4 and V5 are consistent views.



8. RELATED WORK

Paolini and Pelagatti [5] considered a database as an abstract object upon which one may
operate with a given sct of operations. This approach is.further developed in [6] and (7],
where databases and views are modcled as data abstractions. Also Rowe and Schoens [20],
Claybrook ct al. [16}, Lockemann et al. [21] and Weber [25] all use an abstract data type

approach to model database views.

Most of the authors who have been studying the view update problem concentrate their
attention on finding ways for deriving translations automatically or semi-automatically by
using particular update policies or by restricting the set of allowed update policies. Their
derivation rules usually are based upon notions of “natural translation” (typically minimality
of side-cffects) and upon constraints on the data model and on the database instances

(typically functional dependencies for relatioual databases).

Examples of this approach are Dayal and Bernstein [3] for automatic translation within the
context of the relational model and Dayal and Bernstein [22] for automatic translation of
updates on network views. In [3] ouly views which are combinations of projections and se-
lections and joins of relations arce considered. A careful analysis of different types of update
operations, such as insertions, deletions and replacements is given. For these types of oper-
ations, Dayal and Bernstein consider translators which do not necessarily Iead to cousistent
views in the sense of our definition. On the other hand, their model of view definition does
not include aggregate functions, thms they are not able to handle such important views
as our cxamples V4 and V5 (section 3). A primary objective of (3} is the preservation of

integrity constraints (functional dependencies).

Siklossy [23] assuwies, as a prerequisite, that views preserve loops, and calls this property

“minimal admissibility”.

Furtado ot al. [12] provide rules on permissivity of various types of updates. They restrict the
mmber of allowed update operations and conclude that “some operation must be prohibited

in order to assure harmonious interaction among database users”.



Fagin ct al. [11] provide a framework for the interpretation of updates in the context of

logical databases.

The work of Bancilhon and Spyratos [L], outlined in scction 6 of our paper, has stimnulated
many further investigations by different researchers.  Cosmadakis and Papadimitriou [9]
show that finding a minimal complement of a given view is NP-complete. Tley adopt
the Universal Relation Assumption [26] and their views are essentially projections of a
given universal relation. Keller and Ullman (8] define the notion of independent views (i.c.
views whose ranges of values may be achieved independently) and consider the relationship
between complementary views and independent views. Our own work is partially based on
Bancilhon and Spyratos’ ideas. Scctions 6 and 7 of the present paper generalize the notion

of “constant cowmplement”.

In [18] and [27] Keller analyzes the possible translations of of particular classes of update
operations for relational views (The considered updates are, as in [3], inscrtions, deletions
and replacements.) Keller gives five criteria that all candidate update translacons must
satisfy. The satisfaction of these criteria implies restrictions on the view definition function
« and on the form of view update expressions that our approach does not require. In Keller’s
model. for instance, the key of cach data relation that may be affeeted by updates must
appear in the view. Some combinations of view update operations are not allowed, such
as the replacement of a tuple A by a tuple B followed by the deletion of tuple B. This is
due to the fact that Keller's translations depend on the particular sequence of the view
update operatious, and not solely on the functional semantics of the view ﬁp(l:).tu (as in our
approach). Asin [3], aggregate functions are not covered. On the other hand, Keller’s model
inclndes some interesting views that are not covered by our approach (for example, some
non-loop-preserving views). Keller also shows how the choice of a translator can be done

semi-automatically by a program which conducts a dialog with the data base adwministrator.



9. CONCLUSIONS AND FUTURE RESEARCH

The overview of related work given in the previous section shows that no approach un-
dertaken so far to solve the view-update problem is complete in the sense that it covers
all possible views of practical relevance. This criticism is also valid for our approach. We
do not claim that the classes of views studied in the present paper capture the complete
spectrum of all “reasonable” views. We believe, however, that the class of consistent views
covers o large number of important and interesting applications, some of which are not cov-
cred by other approaches. In particular, we have shown that the class of consistent views
is a superset of the class of views studied by Bancilhon and Spyratos in [lj. We have given
examples of nontrivial applications that can be modeled by our approach. but not by the

approach described in [1].

We have shown that consistent views are characterized by extremely useful properties. In
particular, we proved that the consistency of a view is not affected when the original set of
update cxpressions is augmented by the possibility of conditional execution of view updates.
We have shown that the translation function of a consistent view preserves functional equiv-
alence of update programs, as well as a nunber of important concurrency properties. We
have shown that the update semantics of consistent views can be determined by imposing

a partial order on the values of the view complement.

We believe that the class of consistent views nerits attention for its good propertics. How-
ever, more research is needed in order to render our results more applicable. Let us conclude

this paper by giving some outlines of the rescarch we plan to carry out in the near future:

e Study the propertics of different types of relational views (projective views, se-
lective views, join views ...) for dilferent types of update operations (insertion,
deletion, replacement). Derive necessary and sufficient conditions for the consis-

teney of such views.

e Extend our model of view update programs to cover recursively defined update
programs. Note that such an extension would require the capability of handling

view and databasc updates which are partial opcerations.



e Study the interaction between different views.

o TFind algorithms to compute all possible translation functions for a given static view
in order to obtain a consistent dynamic view. Our ongoing research shows that
therc exists a strong relationship between the set of different consistent translation
functions and the set of all spanning trees of a directed graph. (This result has
not yet been proved in full generality but only for some particular classes of static

views.) Thercfore we think that it could be uscful to take profit of existing graph

theoretic algorithms in order to generate translation functions.

e QGiven an inconsistent view V, find methodologies for splitting V into two or more
consistent views whose sets of operations are subsets of the set of operations of V.
With such a splitting it is possible to replace a program P that originally operates
on the inconsistent view V by a program P’ which switches between different
consistent views (for example throngh explicit switching primitives). The parts
of P’ that arc exccuted completely within one consistent view can be modified as
long as their functional scinantics are not affected. All advantages provided by

consistent views apply to these program parts.
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APPENDIX
Before giving the proof that <4 and <j are a-8-decisive, let us state a simple lemma.
LEMMA.
a) (X$Z A Y$Z A card(X) = card(Y)) > X =Y.
b) (XQZ A Y$Z A card(X) = card(Y)) = X =Y.
The trivial proof of this lemma is omitted.
PROPOSITION.
a) <4 is ay-P4-decisive.
b) <5 is ag-Ps-decisive.

PROOF. a) Assume <4 is not aq-fB4-decisive.  Then there exist two databasc states

d = (b,p) and d' = (b',p’) such that

(b, p) # (b, p") (a)
and
as(b,p) = as(b',p) (v)
and
B(b,p) T4 A(B',p') (c)
From (a) and (b) it follows:
b=1 (d)

From (c) it follows that there cxists a p’’ with:
p'Cp AP'CP (c)

and

p(BROKEN = truc) = p'(BROKEN = true) = p"(BROKEN = truc) {f)
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and
¥1<n< iOO :
p(BROKEN = false APRODUCT# = n) [PIECE#] 3 (g)
p'' (BROKEN = false A PRODUCT# = n) [PIECE#].

and

V1<n<100:
p'(BROKEN = false A PRODUCT# = n)[PIECE#] $ ()
p" (BROKEN = false A PRODUCT# = n)[PIECE#].

Furthermore it follows from (b) by definition of ay:

VI <n: card(p(BROKEN = false A PIECE# =n)) =
card(p' (BROKEN = falsc A PIECE# = n)). (h)

It follows immediately:

Vi<n: card(p(BROKEN = false A PIECE# = n)[PIECE+#]) =
card(p' (BROKEN = false A PIECE# = n)[PIECE#]). Q)

Frowm (g) and (i), by our Lemma, it follows:

V1<n<100:
p'(BROKEN = false A PRODUCT# = n)[PIECE#] = (3)

p(BROKEN = false A PRODUCT#: = 1) [PIECEA].

By the integrity constraints ¢ and d given in scction 3 we know that 1 < p.PRODUCT#
< 100 and 1 < p'.PRODUCT# < 100.

Therefore from (j) we conclude

p'(BROKEN = false) = p(BROKEN = false) (k)



Putting together (k) and (f) we immediately get:

!

p =P

but this, together with (d) is in contradiction with (a).

b) The proof is similar to the onc of case a).

Q.E.D.



