
. '

PR.OPERTIES AND UPDATE SEMANTICS

OF CONSISTENT VIEWS

G. Gottlob

Institute for Applied Mathematics
C.N.H.., G<•nova, Italy

Compnt.<•r Sden<.~e Department
St.<Uifonl Univl'r::!ity

P. Paolini

D<~partuwut. of Ell~ctrouics
Politecuinl di Mil<uw, Milan, Italy

A.R..G., Milauo, Italy

ll. Zicari

])ppari.HI<'ttl. of g!<'d.rouk~

Politemico tli Milano, MH<m, Italy

El<'d.rical EngiJI(~eriug aucl
Comput.<'r Sci<~nec D<'partnu!nt
UniVI!rsil.y of California, Dcrkdcy

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 1985 2. REPORT TYPE

3. DATES COVERED
 00-00-1985 to 00-00-1985

4. TITLE AND SUBTITLE
Properties and Update Semantics of Consistent Views

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We consider the problem of the translation of view updates to database updates. Our research uses an
algebraic approach in order to classify different properties of views with respect to the treatment of
updates. In our classification, special attention is paid to a class of views that we call "consistent".
Informally speaking, a consistent view is a view with the following property: if the effect of a view update
program on a view state is determined, then the corresponding database update is unambiguously
determined. Thus, in order to know how to translate a given view update into a database update, it is not
necessary to know the sequence of particular operations of the view update program; it is sufficient to be
aware of a functional specification of such a program. We show how conditional updates can be modeled
and prove that consistent views have a number of interesting properties with respect to the concurrency of
update transactions. Moreover, we show that the class of consistent views includes, as a particular subset,
the class of views which translate updates under maintenance of a constant complement. However, we give
examples of important realistic views that are consistent but do not translate updates under constant
complement. The results of Bancillion and Spyratos [ACM-TODS 6:4, 1981] are generalized in order to
capture the update semantics of the entire class of consistent views.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

67

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

We consid<'r the problem of the translation of view updates to database updates. Our

research uses <m algebraic approach in order to classify different properties of views with

respect to the treatment of updates. In our classification, special attention is paid to a class

of views that we call "consistent". Informally speaking, a consistent view is a view with the

following property: if the effect of a view update program on a view state is uetermincd,

then the corresponding database update is unambiguously determined. Thus, in oruer to

know how to translate a given view update into a database update, it is not ne~essary to

know the seqnence of particular operations of the view update program: .it is snffkient to

be aware of a functional specification of snch a program. We show how conditional updates

can be 1nodcled and prove that consistent views have a number of interesting properties

with rc~spect to the concurrency of update transactions. Moreover, we show that the class of

consistent views includes, as a particulm snbsct, the class of views which translate updates

under rnaint.cnence of a constant complement. However, we give examples of important

realistic vi<~ws that arc cousist.cnt but do not translate updat<~s under constant complement.

The re.mlts of llancilhon and Spyratos [ACM-TODS 6:4, 1981] arc generalized in order to

capture the update semantics of tlw entire class of consistent views.

KEYWORDS: DATABASE SYSTEMS, LOGICAL DESIGN, VIEW DEFINITION,

lJPDATE SEMANTICS, DATA ABSTRACTIONS, CONSISTENCY,

CONCURRENCY, THEORY.

NOTE: This research has .been partially t~ponsored by each of the following organizations:

-- Defl'use Advanced lt!'ll!'llfdt Proj1•cts Agency (N3tl-8·i-C-21l).

- Cousiglio Nazionale delle Ricl'rdt!! (C.N.R.) Italy.

University or California, Berkeley (MICRO grant).

1. INTRODUCTION

A view facility i~.; an important part of many exi~ting database systems, such as Query Dy

Example [14], System R [10], lngres [13], DD2 [19]. In such a context, the problem of update

of views which arc implemented ou an underlying databa~c, has been studied with different

approaches [1-3, 5-9, 11, 12, 18, 22, 23]. Updates on views mu~t be translated into updates on

the underlying database. In gen<'ral, there C'Xists more than one database update that may

correspond to the same view update. The problem is how to choose a vi<•w update, avoiding

that the corresponding underlying database update may create inconsistencies or have side

effects on the view. Starting with the work of Paolini and Pdagatt.i [5], it was ncknowlcdgcd

that a careful analysis of views and databases also needs to account f(Jr operations on views

and databases, and not just for states, as it was traditionally done. A database can be

described by the set of its possible legal states nnd by its operntions. We model databa8cs.

as algebrns that we call data abstractions, that is a s<'t of values awl a sd of operations

to IWtnipulate them. A view is a particular way of looking at a database and it can also be

described by its states (which are, in g<·ncral, different from the database states) and by its

opcratbus (which arc in gmcral different from the database operations).

In this paper, as in [7], both dat.abaHcs an<l views are defined as dat.a abstractions. We

distin1~nish bct.we<'ll the notions of static all(l dynamic view. A stati<· vi<~w of a database

cmtsi::;t.s of a data ahstrad.ion a11<l a Jllitppilt~ which <•st.ahlisll<'s the <"on·<·spon<lenn• lwt.W<'<'U

the database 8tatcs and the view states. A dynamic view eonsists of a static view and an

update policy which stat.<•s how to translat.<· vicw updates into database updates. In the

paper, when we will usc the general t.erm "vi<~w", we mean "dynamic view".* Our research

uses au algPhraic approach in or<lcr to classify different. prorH'rt.ies of vi<'ws with respect tc)

the treatment of updatc>H. In our rla.-;silkal.ioll, HI><'<"ial at.l.<•nt.iou iH ~iV<'II t.o a cla.'i::l of vit•ws,

that we call consistent. Informally sp<'akin~, a cousi::;t.<•nt view is a vi<·w with the following

propcrty: if the effect of a view update on a vi<•w state is detenuincd, then the corresporuliug

databaMe update is unambiguously d<'t.crmiu<•d. Thus, in order to know, how to translate

a given view-update program into a database update program, it is not necessary to know

* Some authors· usc the term "view" to desi~nate static vi<~ws [1].

,

2

the sequence of the single operations of the view update program, but it is sufficient to .be

aware of a functional specification of such a program.*

Bancilhon and Spyratos [1] propose an elegant solution to the view-update problem. They

show that the choice of the database update policy can be made by deciding which por­

tion of the database should remain invariant; this invariant portion is called the constant

complement.

In our paper we show that the class of views ·~reate<.! by Bancilhou and Spyratos is a subclass

of the consistent views. We show, however, tl:.at there arc views of highly applica.tive impor­

tru1CP which are consistent, but cannot be modeled by the approach of [1]. Consequently, we

have extended the theory of Bancilhon and Spyratos to capture the update semantics of the

much larger class of consistent views. O~r approach uses a notion of complement as defined

in [1]. However, we do not require that the information contained in the complement remain

invariant, but we permit that updates may <:<\use the loss of parts of this information.

The paper is organi7.ed as follows.

In sec·tiou 2, we introduce our notation alJ(l ddiue the basic concepts that will be used

throughout the rest of tlH' paper. Database awl views arc defined as data abstractions

(algc•hras). Iu part.icnlar, amoug dilfcrc•ut other types of vic•ws, we introduce the notion of

cousist.cut vi<'W by usi11!; a purdy alf!;chmic 1lcfinitiou. We also state a tlworem which shows

the relationship hc•twceu the difft•reut types of views.

In s<'ction 3, a comprehensive example of a database with a number of views of different

type is given. The example is clisntsscd in detail since it will be used throughout the paper.

In S<'d.ion 4, we• introduce the corH·c·pt. of cmulitioual update. Informally, a conditional

view npdat.c is <•xecutcd d<'pcudiug on the re~mlt: of the evaluation of a predicate on a view

state. Conditional update enables us to define complex and realistic view update programs.

In section 5, we explain in more ud.ail the importance of consistent views; we show the

• Our defiui tion of "consistency" docs not coiudclc with. the one given in [1].

3

main properties of these views and give some examples of views which arc not consi::;t-.eut.

In particular, we define the concept of functional equivalence of 11pdatc programs and

show that for a consistent view, a pair of functionally equiv:uent view update programs arc

trawdated into a pair of functionally equivalent database update programs. Moreover, we

analyze the properties of consistent views with respect to the concurrent execution of view

transactions.

In section G, we define the view update problem, with particular reference to the work of

Dancilhon ;md Spyratos. We define the notion of complement, recall and rcint.nprct the

rP~ults of Daucilhon and Spyrat.os and explain the limitation of their approach in modelling

the update semantics of some views of the example given in section 3.

In section 7, the extension of the theory of Dancilhon and Spyratos to the class of all

consistent views is carried out.

After ~iviug a survey of related work in section 8, we conclude our paper with a11 overview

and some comments on our results and we state our plans for future research.

2. NOTATION AND BASIC CONCEPTS

In this section we introduce our notation awl state the basic Jefiuitious that will be usc!.l

throughout the pap<'l". In particular we wil1 usc the terminology and reintroduce a number

of ddiuit!ons of [7], wlH're both database and views are defined as data abstractions, i.e.

algebras.

A data abstraction is <kfi11cd by a pair D = (D, L:n), where D is the set of the possible

legal states of the abstraction and L:n is the set of operations of the abstraction.

In our g(•ueral mudd [ij, the set of opcra.t.ions L:n is cou1posed of qncry opcratio11s In and

npdat(• operations Un : En = (In, Un). IH this paper WP arc int<•rest.cd only iu update

operations, thus, for simplicity, we will disregard the qw•ry Ofwratious In aw 1 assume

En = U n· Onr simplifit•d model of a data abstraction therefore consists of a pair D =

(D, U n), where D is the set of kgal states <md U n is a set of update OJH'rat.ious. Each

npdat.t• operation is a fnnctiou from D in D.

Given a set Un of update op<•ratious ou D, it is easy to define the corresponding sd of

update expressions. The set En of update expressions is t.lw colkd.iou of all possible

composit.iom; of npdat.<• operations:

VuE Un, n E En

Vu, v E En, n· v E En

no ot.ht•r deiiH'uts are in En

Thrmt~hont. t.lu· paper W<' asHillll<' that fo1· caclt dat.a abst.radiou D. Hn co1tl.aius o11ly total

operations. A g<'U<'ralil.at.ion of most of our rt'sult~ t.o partial OfH'mtious is straightforward.

The out.liuc of such a g<•ueralization can bt• found in [7J.

Som<' of the prop<•rties of data abstractions defined in [7J that will lw used in this paper arc

now descdh<~d.

5

DEFINITION 2.1. Given two data abstractions A and D, A statically includes D

through a denoted by A[a] => D iff there exists a. surjective function a from A to D which

is calh'd abstraction function.

The static inclusion is a necessary condition for having a data abstraction A <1$ a possible

representation for another data abstraction D. When A[a] => D, the pair (a,D) i:> called a

static view of A.

Reganling the sets of operations of two data abstractions, the basic uotiou 1s that of a

translation function.

DEFINITION 2.2. A translation function r from D to A 1s a fmwt.ion that maps

operations of D into expressions of A:

The translation function T is extended to the domain En as follows:

Vul, n2 E En : r(nl · n2) = rul · ru2.

Since T is a fundiou which maps operations to opt'ratious (also calkcl "fuuctiounl"), we

adopt the mmal mathematical not.at.iott awl write Til inst.c·ad of r(n). w lH'III'V<'r pan•nLhcsis

are not Iwedcd to delimit the argument of r.

The abstraction function a and the translation function r arc the basic notious to deline

the conc<'pt of implementation of a data abstraction.

DEFINITION 2.3. An abstraction A implements au abstraction .I3 th~·ongh o: and r,

denoted by A[(l!, r] => D if ami only if a is surjective and

Vn E Un Vb ED Va E A: b = o:(a) => n(b) = a(ru(a)).

That. is: a is a homomorphism with respect to r.

When A[a, r] => D, the triple V = (a, r, D) is called a (dynamic) view of A, and A is ~aid

6

to be the base. The clements of A arc sai<.l to be base states; the dements of n, are called

view states. The members of UA are callP<.l base operations; the elements of Un are

called view operations.

DEFINITION 2.4. Let D = (D, En) <.lcnote a database. For static views D[n] *A, we

can <.lefine an equivalence relation == as follows:
0<

'v'dl, d2 ED: dl =
0
= <12 <:? n(dl) = a(d2)

that. is, =-=o= groups together the states of D which COI"l"<'Spond by a to the same state of n.

For auy <lata abstraction A, we cau define two graphs:

DEFINITION 2.5. The natural transition graph TA connects sta.U•s of A a:-: follows:

TA(al,a2) <:? (3u E UA: u(al) = a.2)

that. is, al is conuectcd to a2 iff there exists au update operation of A, which maps the first

state iuto the second. TA(al,a2) in the rcst of the paper will he denoted as al - a2.

DEFINITION 2.6. The nat.ural connection graph CA of A is t.he tr:m:;it.ive closure

of TA Thl' followill g i:; inunt>diatl'ly to sec:

Cn(al,a2) <:? (3u E EA : n(al) = a2)

that is, al is comH•ctcd to a2 if there exists an update expression of D, which maps the

first state into the S('coud. CA(al,a2) iu the n~st of t.lH' paper will he <knoted as al -*- a.2.

W<· will tul<' t.h(' uot.at.ion al =*=> a2 t.o <'Xprcs:; tlw disjunction : (al -*- a2 Val = a2).

The d<•llnitiou of the two graphs arc nsdul in or<lcr to charact<'rir.c some properties of data

ab:st.ra~tion:i.

DEFINITION 2. 7. Au ah:;trad.ion A i:-~ cyclic ilf

7

that is, if state al can be up(lated to a2 then there also exists an inverse update expressi<;m

which tram;forms a2 to aL

Each of the above defined graphs To and Co refers to a single data abstraction"

When an abstraction D (base) is used to implement an abstraction A (view), two other

graphs arc defined, which are useful to represent the effects of the tran~lation of the opcra­

tious of A into operations of D.

DEFINITION 2.8. Let D bf' a data abdraction amllet V = (n~, r, A) be a view of D.

TlJ<• Transition Graph induced by V on D, T 0 v. is Jefinc(l as follows:

Tov(dl, d2) ~ 3u E UA: ru(dl) = d2

that is, two statf's of the baseD are cmmf'rt.ed by T 0 v, iff tll<'re exists a.n updat<' operation

of t.lH' YiC'W V, tll<' trauslation of which map:-; tlw first base stat<' into the sPcond. In the rest

of tlH' paper, Tov(dl, d2) will be llcuoted by dl -v-+ d2.

DEFINITION 2.9. L<·t D be as in tlH' ahoy(~ d('fiuition. The Connection Graph

induced by V on D, Cov, is defined as follows:

Cov (dl, d2) ¢> 3u E EA : ru(d L) = <12

that is, t.wo states of the ba.•w D are conu<'d.ed by Cov iff there exist.s <m npdat.c expression

of tlw vi<'W, the translation of which nmps tlu• first has<' state into t.h<' S<'<'on<l. In the' n•st of

the paper, Cov(dl,d2) will he denoted by dl -*V-+ d2. Wh<~nevcr we want t.o express the

di:o~juudion (<11 -*V-+ d2 V dl = d2) we will write dl =*V=? d2.

A Yi<~w V = (o:, r, A) impl(~ltl('HI;<'d on a b<lSl' D may haY<' soJJH' iui.Prest.inl~ prop<•rth•s with

n~gard to it.s bas(~. We will now dl'line some of these propt>rtics using the transition aml

connection graphs iudnccd by V on D,

DEFINITION 2.10. The vi('W V preserves connections iff

Vdl, d2, d21 E D : (d2 =a= d21
/1. (dl -*V-+ cl2 A dl -*V-; d2')) ~ d2 = d21

•

8

That is, from a given state of the base, it is not possible to reach in the connection graph

induced by V on D two different states which reprcst>nt the same state for the view.

DEFINITION 2.11. The view V preserves loops iff

'v'dl, d2 ED : (d1 = ... = d2 1\ dl -*V-+ d2) => dl = J2.

This rncnns: if an update expression leaves unchanged the state of the view (loop), then its

translation leaves unchanged the base's state.

Note that the propertit~s of preserving com1ections and of preserving loops do not imply one

another. In figure 2.1 we show a database (with ouly three stat.<·s) auJ a view (with two

statcs) which pre:wrves loops hut not conucctions. Fignre 2.2 shows a database with a view

preserving connections hut not loops:

DEFINITION 2:12. The view Vis consistent iff V preserves connections and preserves

loops.

LEMMA 2.1. V is consistent iff

Vd1, <12, d2' E D : (d2 =;_i= d2' 1\ tll =*V=> d2 1\ d1 =*Y=> <12') => d2 = <l~'.

PROOF. The easy proof of this lemma is omitted.

As we aln•ady stated iu the introdndiou, the cla.-;s of consistent views is of highly theoretic

and applicat.iVl' import.aucc. Sel'tion 5 is d<'dicat.<•d to <·xplain awl prove the pn~pcrties of

cou::;isl.t•nt. vi1~ws. Let us, howev<•r, aul.idpat.t~ that. if a view V = (n, r, A), ddhu·d on a

database D, is consistent then the following property holds:

ve1.~2 EEA, 'v'a E A, 'v'd ED:

((lr(d) =a 1\ ~l (a) = 6(a)) => r~l(d) = r6(d)).

Informally, this property can be iut<~rpret.cd as follows: If we arc able to give a functional

specification of a complc•x view update, say by a function F which maps each view state

DATABASE

(INDUCED TRANSITION GRAPH)

VIEW

dJ.. ~c(uJ
-~7;(U~

, , z:(uJ

d, '

•8' \ \

I c.;.(uJ
-c(u~ I

I ?::(UJ I

I

lo(.

I

/

(NATURAL TRANSITION GRAPH

LEGEND: • DATABASE STATES

0 VIEW STATES

Ui. UPDATE OPERATIONS ON THE VIEW

'"t (Ui) TRANSLATED UPDATE OPERATIONS

--~--- ABSTRACTION FUNCTION

FIGURE 2.1. A VIEW WHICH PRESERVES

LOOPS BUT DOES NOT

PRESERVE CONNECTIONS

DATABASE
(INDUCED CONNECTION GRAPH)

VIEW

ds 't(u) d2

0 -·~--------------· I

\
I

\

\

'o<.
\

\

\

I

\ I

"Qtb

u
u

I L: (u)
I

10(

I

I

I

(CONNECT I ON GRAPH)

LEGEND: .• DATABASE STATES

0 VIEW STATES

Ui UPDATE OPERATIONS ON THE VIEW

c (u) TRANSLATED UPDATE OPERATIONS

ABSTRACTION FUNCTION

FIGURE 2.2. A VIEW WHICH PRESERVES

CONNECTIONS BUT DOES

NOT PRESERVE LOOPS

a E A into an updated state F(a) E A, then all possible view update expressions ~1, ~2, 6, ...

which implement preci:sely the function F have equivalent translations under r. A functional

specification of a view update is therefore sufficient to define the translation of the update.

It is therefore not necessary to inspect the particular sequence of operations of the view

update progral'I!.

Clearly, consistency is a very desirable property which makes a view much more accPssible

for theoretic a.I1alysis and more tractable for practical management.

The above quoted property will be proved in a more general form in sl'dion 5 not only for

view update expressions, but for the more powerful cla .. 'ls of "view update programs". Let

us now proceed by defining another important property of views.

DEFINITION 2.13. A view V partitions the base D iff it is pos:sibk to d('composc D

into a family of nonempty s<'ts Dl, ... , Dk, with i -:f. j => Di n Dj = <P and Dl U D2 U ... U

Dk = D, such that the following properties a) and b) hold:

a) (i -:f. j 1\ diE Di 1\ dj E Dj) => -,(di =w=> dj)

b) Vl ~ i ~ k: {dl,d2 E Di 1\ dl -:f. d2) => u(11l) -:f. r~(d2).

LEMMA 2.2. If a view partitions the base then it is consistent.

PROOF. Assmuc the vi('W V = (a, r, A) partitions the base D but. is not cou:;isteut.

Then, by Lemma 2.1, there exist dl, d2, d2' E D, such that. dl =
0
= d2 1\ dl =w=>

d2 1\ dl =*Y* 112' 1\ d2 =/- d2'. From Ddinit io11 2.13.;L it follows I hat d L, d2 mHl d2' are

all iu the snmt' comporwnt, say Di. Dut this is iu contradiction to Ddiuitiou 2.13.b, siuce

there it is required a(dl) -:f. a(d2).

Q.E.D.

10

LEMMA 2.3. If a view is cyclic and preserves loops then it partitions the base. •

PROOF. Assume that V = (a, r, A) is a cyclic and loop preserving view of the base D.

It is easy to see that the relation =*V=> then becomes an equivalence relation on D. Let

D1, D2, ... , Dk denote the equivalence classes with respect to =*V=> , i.e.- the clements of

the quotient algebra D/ =w=> . We will show, that D1, ... , Dk form precisely a partition

into :mbsets of D as required by definition 2.13. Property a) of definition 2.13 holds trivially

by the definition of D1, ... , Dk. Assume that property b) docs not hold. Then there exists a

Di and d1, d2 E Di such that d1 =f. d2 and o{Jl) = a(d2). From d1 =*V=> d2 it then follows

that there exists an npdntc expression u E EA, such that n(a(cll)) = a(d1) and ru(d1) = d2.

Dnt th<.'n, since V preserves loops, it must hold d1 = d2, which iH a contradiction.

Q.E.D.

N otc that. a view, which partitions the base is not necessarily cyclic (examples are given in

the next section). Therefore we will also consider the class of views which arc both cyclic

and partition the base (this class is n proper subcla~s of the class of views which partition

the base).

.
In figure 2.3 we give an overview of the indnsion relationship between the diffcrPnt classes

of viPws defined in this section.

We can smmwlrizc our results about the cla . ..,sifkatious of views in the following theorem:

THEOREM 2.1.

a) If V pal't.it;ious th<' base t.hm V is cou8ist<'Ht (L<'mrna 2.2).

b) If V is ccmsistcut then V prcs<!rvcs loops (Dcf. 2.12).

* In [7], a property "V siices the ba.'lc" has been defined, which is more general than the

property "V partitions Lhc base". In the present paper, the slicing properLy will not be

used.

11

c) If Vis consistent, then V preserves connections (Dcf. 2,12).

d) If Vis cyclic and preserves loops then V pnrtitions the base (Lemma 2.3).

A pictorial representation of this theorem is given in fignrc 2.4. This figure also helps to

find all transitive consequences of the ass~rtious stated in Theorem 2.1, such as for example:

If V is cyclic and preserve loops then V preserves connections.

if~~~:::
~~-

all -u1ews

FIGURE <..3

~-----~1

IPARTITI~
, CYCLIC
I
I

II L CYCLIC---I
I . ,....----..::!"':.____.,.e___----;1 I

CONSISTENT

1
CONNECTION
PRESERVING

CYCL C

LOOP
PRESERVING

FIGURE 2.4.

II

I,

3. A COMPREHENSIVE EXAMPLE

This section is entirely dedicated to the presentation of a comprehensive example of a

dat;ibase ou which different views arc defined. In the next sections we will use this example

to emphasize some problems and to illustrate our results.

In the following, we assume that the reader is familiar with the elementary concepts of the

rdatiorw.l data model [17], [24]. In particular, W<' use the following notation: Let R be a

relation, t E R a tuple of R and A au n.ttrihnte of R, then t.A dcuotes the value of the tuple

t for th attribute k The projection of the rdatiou R to attribut<~ A is <knot.<•d by R[A]. A

tuple or a relation is explicitly rd<'rcuccd by <·udosiug its attribute values i11 a.ugk brackets,

e.g. (i, j, k).

Cousi<ler a relational database STORE, which maiutaius information abunt the type, name

and price of difft•rcnt products that arc for sale in a store and about the singlc pieces of each

prodm t which arc availabl<' in the warehouse.

The database STORE consists of two relations DILL aud PIECES with the following

sch<'Illas:

. DILL : (PHODUCT#, NAME, PRICE)

PIECES : (PRODUCT#, PIECE#:, DHOKEN)

The single attributes have the following meaning:

PRODUCT# : au integer from 1 to 100 identifying a product-type.

NAMI~: t.lte name of a prodnct.

PRICE: the selling price for one pice(~ of a product.

PIECE#: a number identifying each single piece available in the magazine.

BROKEN: a boolean value indicating whether the pi<.'Ce is broken or not.

We assume furthermore that th<~ database is subject to the following integrity constraints:

13

a) (PRODUCT#, PIECE#) is n. key for the relation PIECES.

b) PRODUCT# is n. key for the relation DILL.

c) Vt E BILL(1 ~ t.PRODUCT# ~ 100) A V1 ~ i ~ 100 3t E DILL (t.PRODUCT#

= i). This means, that DILL always contains 100 rows, one for each 1Jrodnl't-type.

d) Vt E PIECES 3t' E DILL(t.PRODUCT# = t'.PRODUCT#). Thb means, that for

each pic•ce, the corre:.-;poudiug product is described iu the n•lat.iou DILL. Noh· that the

conv<'fs<' is not rwcessarily true: For :c-ome product description in DILL, th<Te might

exist uo piece in PIECES.

STORE is t.he set of all kgal states of t.he database. A d<\tabase state d E STORJ~ cousists

of a pair (b, p), where h and p ar<' legal instances (with r<'spcct to t.lw above integrity

constraints) of DILL and PIECES. Furtherworc, kt PIECES dcnot<• the set of all !<'gal

states of the relation PIECES:

PIECES= {b I (b,p) E STORE};

awl let DILL denote the set of all legal states of the relation DILL :

DILL= {pI (b,p) E STOTI.E).

We a.."!RliUH' that all comp11t.able databaH<' operations, Rtl<'h as ius<'rtiou, <1<-l<·t.ion an<l11pdat.ing

of t.npk:;, a.-; well as coiHlHioual comhiuat.ionH t.IH·n·of an• allow<'d npdat<~ op<•rat.~olls on our

clataba .. -;e. Let n denote the Hd. of all th<·sc op<•ratious, then our database is given hy the

data abstraction STORE = (STORE, n). Note, that. siun• n is cl<·fin<·tl as the c·omplete set

of all possible opcrationR, the natural transit.ion graph T STORE connects every pair of states

of the base set STORE in both directions (this hold:,; also for the natural conuc•ctiou graph

CsTonF., which, iu this ca .. ~c·, is equal t.o Ts-ronE)·

Let ns now dc•scribc six vic·ws Vl, ... , VG of this dat.aha ... -;e. As defined in t.he previous :;cction,

each view consists of a triple (Lt, r, A), w her<' a is t.he abstraction function

a: STORE- A,

which a.s~mciat<•s to C'ach legal state of the STORE database a stat.<' of tlH' view; A is a data

abstraction (A, U A), wlwrc A is the set of view states and U A is the set of npdak op<'ratious

14

dcfincu on A; r is the translation of each view update operation into an update expression

of th<' Jatabase STORE.

description: This vlew "sees" at each moment the present state of the relation PIECES.

The ;;tore can acquire new piece:; of each product, by issniug the operation DUY[x, y, r,],

where x <lesignat<'S the product number identifying the product type. y the piece number

of t-lH' new piece and " indicnte8 whether the uew piece is brok<~u ot· not (th<· viC'W thus a.l::;o

coll~<·nts to acquire broker. pieccR). Formally, for ('n.ch diffcn'ut triple (x. y, :~.), TIUY[x, y, 11]

is i\ diff<'n'ut view np<l<\tc OJH'ra.tion.

Abstraction function a1 and view state set A1:

Let d == (b,p) E STORE; a1(d) = at(b,p) = p.

A1 =PIECES

Set of update operations U 1 :

U 1 = {DUY[x, y, z]l x, y E INTE(~ER 1\ 1 $ x $ 100 1\ (z = trnc V z = falR<')},

Rneh that for all rdatioual inRtance:; p E PIECES:

DUY[x, y, :r.](p) =if (x, y) E p[PRODUCT#, PIECES#] then p el.~c p u { (x, y, :~.) }.

Nutt:: INTEGER. denote:; a finite rang<' of positive integers.

Translation function r1 :

Ld. d = (h, p) E: STORE.

r1DUY[x, y, z](b, p) = (b, DUY[x, y, :~.](p)).

Thus the translation l<~nves the DILL relation invariant.

description: This view serves to alter the information abont the stntc of mch piece avail-

15

able in the magazine. A piece is broken or intact according to the boolean value of its

attribute "DROKEN". Only the PIECES rdation is visible to th<' view V2 (this is jnRt as

for Vl). Th<'re are two types of operations : DREAK[x, y] is issuetl when piece number y

of product type x breaks during the storing phase. REPAIR[x, y] is issued, if piece y of

product x was broken aud has been repaired.

Abstraction function a 2 and view state set A 2 :

Set of update operations Uz:

U2 = {DREAK[x, y], REPAIR[x, y]j x, y E INTEGER 1\ 1 :S x:::; 100},

snch that for all relational instances p E PIECES:

DREAK[x, y](p) =if (x, y, false) E p then (p- {(x,y,false)}) U {(x,y,tnw)}

else p.

REPAIR[x, y](p) = zf (x, y, tnw) E p then (p- {(x,y,tnw)}) U {(x,y,falsc)}

else p.

Transl<ttion function iz:

Let d = (b, p) E STORE.

r:!DREAK[x, y](h, p) = (h, DH.EAK[x, yj(p)).

r2REPAIR[x, y](b, p) = (b, REPAin.[x, y](p)).

Thus, as for view V 1, tlt<• trmudation !<•aves the DILL relation invariant.

VIEW 3: The Inventory V3 = (n:J, i:J, (A:J, 1h))

description: This vh•w is dditH'd exactly iu the same way as View 2, with t.hc only

difference that the REP AIR operation docs not exist, thus a transition between two states

due to the DREAK operation is irreversible in view V3.

Abstraction function tl:J and view state set A3:

16

Set of update operations U 3:

Th = {BREAK[x, y] I x, y E INTEGER/\ 1 :S x :S 100}, where BREAK[x, y] is defined as

for view V2.

Translation function r3:

Let d = (b, p) E STORE.

r 3BTI.EAK[x, y](b, p) = (b, BREAK[x, y](p)).

description: This view describes tll<' information visible to a vendor. We assume that a

vendor has to know the description and price of each prod net (i.e. the compl<-te information

coHtaiued in tlH' relation BILL), as w<'ll as the number of intact pieecs available for each

product. The latter is an aggregate of information contained in the relation PIECES. We

;u.;smHc, however, that the vendor is not concerned with piece mtml)('rs or with broken pieces.

All this information is hidden to the vendor. The vc•ndor therefore sc<'s tlw BILL relation,

ex!.t·tHl<'<l by a fidd QTY _AVAILABLE which for each protlnd. rc•pot·b; tlH' zmmber of not

brok<'ll pic•ccs available.

In onl<'r to sell om• pi<'c<' of product i, tlw V<'Il<lor issue::-~ the view opt•rat.iou SELL[i]. The

nmul><'r of available pieces (i.<!. the value of t.he fidel QTY _AVAILABLE) thcu is decre­

mented by 1. If tlwr<' arc no available pieces for a spc•cific product i {i.e. QTY _AVAIL­

ABLE= 0 in row i), th<'u the Of><'ratiou SELL[i] has no effect.

Thc·n~ are many ditfc·r<'ut J>O::o~sihilit.ies to t.rauslal.<' the• vic•w npclat.<' op<'ral;itHt SJt~LL[i] into a

dat.aha:w npclal.<', :;iucc• in gen<'ral, for proclnct i then' will exist mauy available pieces, one

of whkh should be diminat<'d from the database. For view V 4 W{' hav<' dmsen t.hc following

update policy: from all intact pi<~ces, climinatt• the one with the lowest piece number.

17

This choice may be motivated as follows: Assume that pieces of each product arc acquired

by as<:<'lHling piece numbers,* then, at each time a product is sold, the piece with thf' longest

storing duration of this product is taken from the warehouse. This FIFO policy is very useful

in practice, especially when a single piece's value decrements as storage time increases.

Abstraction function (..t 4 and view state set A 4 :

Let d = (b, p) be a database state. a 4 (d) = a 4 (b,p) = s, where sis an instance of the

schema

S: (PRODUCT#, NAME. PRICE, QTY _AVAILABLE)

such that PRODUCT# is ;:t. key of s, s[PRODUCT#, NAME, PRICE] = b awl Vt E s:

t.QTY AVAILABLE= <'ard({xI x E p 1\ x.PRODUCT# = t.PRODlTCT# 1\ x.BROKEN

= fah;;c}).

Set of upd.;,te operations U 4 :

U4 = {SELL[i]l i E INTEGER 1\ 1 :::; i :::; 100}, where SELL[i] is defined as follows:

Let s E A4 aud let ti E s denote the uniqnc htplc of s with t;.PRODUCT# = i, thcu

SELL[i]{s) = lf t.;.(~TY AVAILABLE> 0 thtm

(s- {ti}) u { (i, t;.NAME, t.;.PRICE, t.;.QTY __ AVAILABLE- 1)}

else s.

Translation function r4 :

Let. d = (b, p) E STORE; Dd\ne for each i a :wt Miu[i](p) by:

Miu[i](p) == { t E p I t.PRO DUCT# = i !\ t..DROKEN = false !\ t.PIECE# -:-:: minimum}.

• This mNuts that for two elt•meut.s of tlw same prodnct. type, the oue with higher piece

nmubcr has been acqnin~d after the one with the lower piece numh<~r.

18

Note that Min[i](p) is either a singleton or the empty set.

We define the translation function r4 by:

r4 SELL[i](b, p) = (b, p-Min[i](p)).

VIEW 5: The alternative vendor's view V5 = (a5, r5, (A5, U5))

description: This view is equal· to view V 4 with th<' only difference that another update

policy (translation function r 5) is usetl: When the op<'ration SELL is is::;ued, instead of

clelctin:~ t.lw pit·ce with the lowt•st piece uuml><'r, this tim<', t.lw pi<'ce with the highc::;t. piece

nnmh<•r is ddekd (i.e. sold). This policy corr<•spouds to a LIFO strategy.

Abstraction function a 5 and view state set A 5 :

Set of update operations U 5 :

Translation function r5 :

Ld d = (h, p) E STORE; Deline for Pl\<:h i a sd Max[i] (p) by:

Max[ij(p) = {t E pI t.PRODUCT# = i I\ t.DROKEN = fals<' I\ t.PIECE/1: = maximnm}.

Note that Max[ij (p) is <.'ither a singleton or the empty set.

Tlw lrauslat.ion fu11diou T:J is th•linc..'tl by:

r5SELL[i](h, p) = (b, p Max[i](p)).

VIEW 6: The Price Setting view VG = (a6 , r6 , (A6 , U6))

description: Through this view, the store's mmmger has the pos::;ibilil.y t.o llltHlify the

sdliug price of each single product. Only the relation DILL is visible to the user of VG.

19

For each product x and for each (representable) integer y, an operation SETPRICE[x, y]. is

defined, which sets the PRICE component of the record describing product x to value y.

Abstraction function a5 and view state set A 6 :

Let d =:= (h, p) E STORE.

Set of update operations U5:

U6 = {SETPRICE[x, y]l x, y E INTEGER!\ 1 :S x :S 100},

where SETPRICE[x, y] is defined as follows: let b E A6 , and let t denote the tuple of b

with t.PRODUCT# = x; then

SETPRICE[x, y](b) = (h- {t}) u {(x, t.NAME,y)}.

Translation function r5:

Let d = (b, p) E STORE.

r5SETPRICE[x, y](b, p) = (SETPRICE[x, y](h), p).

Note that among all vi<•ws that wc havc 1ldhH'<l, VG il'l the ouly 0111' whkh allow::; to modify

the DILL part of the tlat.ahase STORE.

Let us now classify the different views of this example according to the prorH•rt.ic::; defined

in the previous section.

1. V 1 is not cyclic, si11cc t.lwr<• exi::;ts uo operation (or I'XJH'<'HHiou) whkh could act as

au iuvcrse of t.lH! BUY op<•rat.ious. 1'11<' BUY op<:rat.ious irn•vprsibly add tupl<'::i to the

view. The view V 1 partitions the base: each class Di correspond::; to a different

state bi of the rdat.ion DILL. For fixed bi, let

For t.hill partition, it ill easy to wrify, that tlu~ properties r<•qnin~d by <h•fiuit.iou 2.13

hold.

20

2. V2 is cyclic and partitions the base. The classes Di of the partition arc as for the

view V 1.

3. V3 is not cyclic, but partitions the base. Also for this view, the classes Di arc

the same as for the view Vl.

4. V4 is not cyclic and docs not partition the base. Nevertheless V4 is consistent.

The fact that V 4 docs not partition the base can be shown by a counterexample.

Figure 3.1 shows two states dl = (bl, pl) and d2 = {b2, p2) of STORE, as well as

a third database state d. It clearly holds a 4 (dl) = a 4 (d2). Consider the operation

r4SELL[1]. It holds:· r4SELL[lj(dl) = r4SELL[l](d2) = d. Assume, that V4 be

partitioned. Since dl == d2, these two states must belong to two different classes Di
a4

and Dj of the partition {dl E Di and d2 E Dj with i # j). Since r.1SELL[l](dl) = d, it

holds dl =W4=} d, therefore, by property a) of definition 2.13, it must hold: dE Di.

On the othc~ hand, from r4SELL[l](d2) = d, we immediately deduce d2 =*V4=} d,

and therefore, d E Dj. This is in contradiction to the disjointness of the sets Di and

Dj (Def. 2.13). Therefore V4 is not partitioned.

The consistency of V4 will be proved formally later in this paper. However, let

ns <'Xplaiu iuforma.lly, w lty V 4 is con~istC'nt. 1f we know t.lu~ effect. of a view update

program on a pmticulnr view statf', than we know how many pi(•res of each product

have been sold. lly the particular up<lat<! policy V 4 (translation fuu_ction r4) we then

also know exactly which pieces of each product have b<!ell sold: umncly those with

the lowest PIECE# (provided they arc not broken). Thus any fuuctional specification

of a view update program (expression) unmubiguously cl<>t.ermiues the translation of.

this pro~mm into a dat.ah<l.sc update pro~ram. As we h<W<' alr<'a<ly n~mark<·d, this

property is equivalent. to consistency.

5. V5, for similar reasons as V 4 is consistent, but does not partition the base and

is not cyclic.

6. VG is clearly cyclic all<l partitions the base. The single cla8S<'S of the partition arc

21

corn•spond to different instances of the PIECES relation . Every different instance of

this relation dctNmines a different class Di.

The properties of the views Vl, ... , V6 are summnrizcd in figure 3.2.

\
\

\
o(

'
'

'
'"-.i

d

I b::hl:::b, p '
PROD.f NAME PRICE PROO.f PIECEf BROKEN

i n1 BOO
2 n2 60 i 087 FALSE

3 n3 10000 3 001 TRUE

2..

v

PROO.f NAME PRICE QTY-AVAILABLE
i BOO I n1 2 I

2 n2 60 0

' 3 n3 10000 0 I --- ____ ..____ _____

' . . , ...

....,.....

bl. = bi

PROD.f NAME PRICE

1

2

3

/

/
,.,

n 1

"2
n3

.I

BOO
60

10000

I

'o<.

I

h.
PROO.f PIECEf BROKEN

i 066 FALSE
1 . 087 FALSE
3 001 TRUE

FIGURE 3.1.

CONSISTENT VIEWS V5 V4

PARTITIONING VIEWS

V1

V3

ALL VIEWS

V2
V6

CYCLIC
PARTITIONING VIEWS

FIGURE 3.2.

4. CONDITIONAL VIEW UPDATES

We have shown in the last sectiou that our algebraic model of databases and views can be

used to represent qnitc rPalistic situations. HowcvPr, it is not difficult to sec, that the choice

of the s .. t UA of update operations of view V = (a,r,(A,UA)) is critical in the seme that

it may impose a serious limit 011 the rcpn•s<>ntability of vi<'W update program,; (abo view

transactions).

Considt·r for cxa.mph· the view V 4 of section 3. Suppose that a di<•ut wants to huy three

pit•c<'s ol' protlnd 5, bnt if tlwr<' arc less pit•c.c•s availahk, the client prefer:< not to mak<' the

deal and to look for another compauy. It is cl<•ar what tlw vendor has to do, in order to

satisfy ,;nch a "cou<lit.ional" ret}ll<'St. He first mnst. inspect the pn•scnt st ;~t(• s of his view

;mel r<'•td the rmml><'r of available items for product 5. If the number is Hot lPss than 3 he

will issue the expression

SELL [5] (SELL [5] (SELL[5] (s))).

If tlw nmubcr of available items is less than 3, then the V0udor leaves the vit•w unchanged.

Tht• ov .. rall transaction can lH~ called a conditional update. We arc not. ahlc to rPprcscnt

a cowlitioual update through the update op<'ratious or npdatc <'Xpn•ssiom; of our view V 4 •

Of cours<', we conld add a s<•t. of new operal.ious to U.t, say {SELL[u,m]} which JH'rform

t'X<lcl:ly t.lw ta .. -;k of our roudit io11al npdat.<·, llaJlll'ly l.n "sell" u pi<·ccs of product. m, only if

u pieces of this prothtd arc available. Howev<•r, this woul<l he a very application dt!IH'Bdent

IIlO<lifieation of tht• operation Set lJ4.

R<·uwmher that for each update operation sd U, we have a corresponding set of uptlatc.

cxpr<~Hsions E (St•<'l.ion 2). Wt• pref<>r to <'XtcJHl t.lw H<'t. of updatt' <'Xpr<•ssious E to a Het

E 1 :J E, surh t.hat I~ 1 nmt.nins all po:;:;ible mudit.ioual 11pdal<~S thai. cm1 h<' buill. from the

"primitive" update cxpr<>ssions of E.

A ncc<'ssary concept. for the formali:.-.atiou of mudit.ioual updat<•s is the notion of predicate.

A coudit.ioual update is cxccut.<'tl dt•p<'1H1ing on the result of Uw evaluation of a predicate

ou a vit•w state. If A = (A, U A) is a <lata ahst.rart.ion, tlwu P A <leuotcs the s<·t of decid;lhle

predicates over A. W<~ do not undertake the teclious task of d<·fiuing formally what a

23

decidable predicate on clements of A IS. The syntactical form of such predicates wo1l)d

dep<'nd heavily on the formalism chos<'n for representing or manipulating the clements of A

(for <'Xmnple the relational model). Semantically speaking, P A consists of all predicates p

that allow to distinguish a particular subset S ~ A among others, such that for all clements

s E S, p(s) is true, but for all clements s1 E A-S, p(:..') is false. The number_ of semu.ntically

different predicates in PAis tlms essentially 21AI (we suppose that A is a finite set). Clearly,

in most formalisms the same predicate can be syntactically represented in many (possibly

infinite) different ways. Rather than prescribing a specific formalism, we leav<' the syntax of

predicates to the dcsign<'r of a particular database system. When we usc pr<~dicate:; without

naming a particular state, to which pn~di<"af·es ar<' applied, W<' will nse Chnrdt 's Lambda

Notation for representing t.lH• predicate. For example tlw predicate which is trm• ill" the state

to which it is applied is <'qual to state "a" can be denoted by

Ax(x =a).

In this expression, x is a placeholder for the argument. If this predicate is applied to a

specific state c, the cxpr<~ssion "Ax(x = a) (c)" is eq11ivaleut to "c = a".

The next ddini tion int rod ncPs more formally tlw basic concepts uc<•<l<~d iu order to deal

with conditional updates.

DEFINITION 4.1. Let A= (A, U A) be a data abstraction.

a) ic:lA denotes the identity on A, P A denotes th<• sd of all evaluabh• prPc:licates on A

b) Let HS define the IH'W compound operation "if [p, <' 1, c2]" with the following H<'lllantks:

Va E A :if [p, <'t, e:,l](a) = if p(a) t.hcu cl(a) else <'2(a).

The set ProgA of Update Programs on A is recursively c:lefiuec:l as follows:

24

• V e1, e2 E ProgA: e1 · c2 E ProgA (composition of operations)

• ProgA does not contain mlY other operations

c) A Conditional View Update is a view update program which contains a subex­

pression of the form if [p, ell e2J·

EXAMPLE. Consider the view V 4 of Section 3. Assume a vendor wants to :>ell three

pieces of product 5 if the lll1~1ber of availahl<' piecl's of product 5 hi equal to 3 or greater than

3. Let avail(s,n) be a fuuet.iou which retums for each view state• s the munbcr of ;.wailablc

pieces for product n. The conditional view update then can be formulated as follows:

if [.Xx(avail(x, 5) 2:: 3), SELL[5]SELL[5]SELL[5], idA.]·

Since we extended the set EA of view update <'Xpressions to the set ProgA of view update

programs, we have to extend the domain of the translation fnuctiuu T to Prc>!!:A· In order to

do this, it is sufficient to specify, how idA awl how conditional view updah·s arc translated.

DEFINITION 4.2. (cxteu::;iou of r to ProgA)

Let V = (a, r, A) be a view of D <md let A= (A, U A)· We (•xtcud T: EA -+·E0 to a function

T: ProgA - Prog0 as follows:

b) Vp EPA, V<.'11e2 E ProgA: r(if [.Xxp(x),<'J,e2J) =if [.Xxp(n~(x)),r(et),r(c2)J.

Note that .Xxp(a(x)) is a predicate on D.

It is easy to see, that this is the' mo::;t natural awl probably the only "reasouabh~" extension

of T to ProgA.

25

For a dat <1base designer who wants to specify a translation function T, it is thus sufficient that

he spcciJi.cs the translatiou of each primitive update in U A· By definition 4.2 this function

T is unambignously extended to the set ProgA of all possible view update programs.

DEFINITION 4.3. Let V =(a, r,A) be a view of D with A= (A, UA)·

We define the conditional closure y+ of V as follows:

v+ is a view of D;

v+ = (a+' T+' A+) where

A+ = (A, ProgA)

r+ = T extended to ProgA as in definition 4.2

Note that it holds v++ = v+.

v+- is tile view which has as primitive op<'rations all possible update programs of v.

In t.he following we will show that v+ is consistent iff Vis consistent. This is a useful result.

It rau be interpr<'ted aH follows: The adtlitiou of conditional updates docs not alter the

consistc•ncy state of view. It is therl'fore always sufficient to consi<lc•r n. view with primitive

{non couclitioual) opc•ratioHH for a c·ousist.ency proof. View update programs can he used

without tlw danger of inl.rodncing some hidden iw:om;istency.

il<'fon• showing our result, let us prove <\ lemma.

LEMMA 4.1. Ld V = (a, r, A) be a VH'W of D, then the two rclal;ions =*V~ and

=*V 1 =? th•Hm~cl ou I5 <U'e the same.

PROOF. We have to show, that for all d, d' ED:

"~" this part of the proof is trivial, since EA ~ ProgA.

26

"<=" this part of the proof can be done by induction on the number of "if's" that occur

in an update program of V. We only state the main idea of the proof: Let d =*v+=> d';

then there exists an update program g E ProgA such that. rg(d) = d'. If g does not contain

any conditional subexpression, then g = idA or g E EA. If g = idA then rg = ido and

d = d'; in this case d =*Y=> d' holds trivially. If g E EA then d =*V=> d'.by definition of

"=*Y=> ". If g contains some conditional subexpressions, then consider g(cr(d)). It is easy

to show that g(a(d)) = a(d'). Now consider the series of update expressions ei that occur

in the program g and that arc effectively applied during the evaluation of g(a (d)). Combine

those expressions in the right order into one single expression e. Clearly e E EA and it holcls

C'(n:(d)) = n(d'). By how r is extended fr\)IIl EA to ProgA (dcf. 4.2) we also know that

rg(d) = rc(d) = d'. From re(d) = d' we immediately concluded =*Y=> d'. o

THEOREM 4.1. Let V be a view of D. Vis consist.eut iff v+ is consistent.

PROOF. V and v+ have the same abstraction function a (dd. 4.3). The relations =*V=>

and =*Y+=> on D coincide. Iu Lemma 2.1 we showed that the cousist<'ll<7 of a view V

depends only on a and on =*Y=> . The tlworem follows imml'diatcly. o

B<'fore conclndiug this section, l<•t us state a lt•mnm, whi<·h will be ns<·d in section 5.

LEMMA 4.2. Let V = ((~, r, A) be a view of D. v+ is consistent iff v+ is counectiou

preserving.

PROOF. It. suflices to show t.hat. if V1 pn•serves comwct.ious then V !- also pr<'S<'l'V<'s

loops. R<'lll<'ll1lwr t.hat V 1 cnnt.aius idA as opt'ratiou aud t.hat r(i<lA) :=: idu. Suppose that

v+ is connedion pr<•serviug but not loop preserving. It follows by definition 2.11 that th<'re

exist dements d11d2 ED, such that a(dl) = (1(<12) and d1 -*v+-+ d2 and d1 i- d2. Since

i<lo (dl} = d 1 it also holds d1 -* yl---+ d1. This is iu contradiction with the assumption that

v+ is connection preserving. 0

5. PRESERVATION OF PROGRAM EQUIVALENCE

AND CONCURRENCY

The concept of view update program which was introduced in the lnst section is at the

base of some fundamental properties of consistent views. In this s0ction we show that

con:;isll'nt views have a uumb<'r of important- prcscrvntion properties. We will first consider

the equivalence of update programs. We show that a view is consistent if and only if its

translation function r trauslat<•s any pair of fuucl.ioually equivalent view updat!• programs

into a pair of functionally equivalent databas<• update programs. Lat<>r we shall drn.w our

attP!lt.ion to the prcs<.•rvatiou of concurrency prop<·rties. We will !lcfirw the conc<'pt of

transaction and Wf' will show that the translation function r prf'scrv<'s couunnt ativity of

trawmctions, non-int<•rf!•rcBcc and scriali:t.ability.

5.1 PROGRAM EQUIVALENCE

Let ns uow give a formal dcfini tion of functional equivalence of update programs.

DEFINITION 5.1. Let e1 a11<l e2 he two update programs of a data aln;tradion A

= (A, U A)· e1 and e2 an~ functionally equivalent iff

If c1 a11d e2 arc functionally cqnivalt•nt, we write <'t = e2.

DEFINITION 5.2. Let V = ((~, r, A) be a. view of D. r preserves equivalence iff

If for a view V = (a, r, A), r prc:;<.•rve~ equivalence, th(•u we ahm say: V preserves equivalence"

THEOREM 5.1. A view ill equivalence preserving iff it ill conllistcut.

PROOF.

"if"

"only if"

28

This part of the theorem follows <'asily from the definition of consistency.

Assume V = (a, r, A) is equivalence preserving but not roHsistcnt. By lemma

5.2, v+ is not connection pr<'serving. Therefore there exist clements d, d1,

d2 ED, such that

d -*v+- dt

a.ud d -* v+- <h

and o:(dr) == <r(d2)

a11<l d1 i- d2

From this we i11fcr that tlH'n' 0xist. t.wo diffl·r('nt database update pro~ra.m:; h1

and h2, h1,h2 E Prog 0 , such that ht(d) = d1 and h'!(d) = d2 aiHl such that

h1 and h2 arc the translations hy r of two view update programs, respectively

e1 and c2:

ht = r(er)

h2 = r(e2)·

Clearly h1 and h2 arc uot fuud.ioually <'qnivah•nt, as they have diJfer<•nt imagl's

in d.

Not.in! that for ~'1 awl <'2 it. lwltlH:

{This <'<ptation follows from the fact that r is a translation function).

All.hon)!;h e, awl e2 arc~ <'qnivalt•ul. wil.h n•sp<!d. l.o t.ll<' si11~~lt· vi<•w :;l.at.<• n~(d),

it does not JH'<"l'Hsmily hold that. <'1 awl <'2 ill'{' fuuctionally equival<'nt. They

might differ with re~J;cct to oth<•r view state::~. We ther('forc cousl.rnct the

following vi<'W update programs for f1 and f2:

ft =if [.h (x = o:(d)) ,et,idA]

f2 =if [,\x (x = o:(d)) ,c2,idA]

It is clear that ft and f2 arc functionally equivalent view update programs.

Let us examine their translations:

T f 1 = if [A :c (n (X) = o: (d)) , h 1 , id D j

rf2 =if [.-\:r. (a(x) = o:(d)) ,h2,ido]

20

Clearly rf1 and rf2 arc not functionally equivalent since their images m J

differ. Therefore V is not cquiYalence preserving. o

Theorem 5.1 states that the class of consistent views is exactly thc class of views for which

a functional specification of a view update ts sufficient in order to fnnctioually cktc•rmine

its t rauslntion. 'This property is of highly practical rekvance. It ensmcs that a translation

of a vif'w npdat<' program is cssf'ntially indepentleut. of the particnbr sC'qU<'Jl<'t' of the single

opf'ral ions of the program, and that it only UC'pcnds on the scrnantics of thP view update.

As long as update programs are at.omic actious, functionally cqnivalcut upLlatc programs

might lH' interchanged without any probl<•m. Thc•rt'fnrC' a view programiiH'r who operates

on a consistent view might change the st.ructmc of his view update program, for example

in order to perform some optimization. As long m; he docs not change the semantics, the

view update program needs not to be retmnslat<'d into a D<'W database npdat.C' program.

This high l<•vd of iutl<'p<•ndt'IH:e between viPW and database makt•s a d;~tahase systPm umch

mon• ;we<'ssihk for tht•ordical ;maly::;is. Corn•d.II<'HH proofs and verifica.l.ioll of ~lohal trans~

act.ious (possibly involving Jilfen•nl. vit•ws) can lH' don<' by nsiug formal sp<'cifit"ation tech­

niques.

At tll<' entl of this S<'dion, we will give an example of a view which is not rousist.<'nt and we

will show that in this case equivalent vi<•w update programs arc translated into database

npdat.Ps which arc uol. <'<Ittivalcut ..

5.2 CONCURRENCY

Let us now draw onr attention to the concurrency problem. Control over concurrency is

one of tlw most important features of advanced d;lt.l\ba.o.;e lllc'l.W\gt'lll<'Ut systems [28,20,30J,

but the interaction between views and concurrency has hardly ever been analyzed.

30

There are three main questions arising when the interaction between views and concurrency

control is con~idered:

1) How can a set of concurrent tram;actions, operating on the same view, be correctly

translated to a set of (hopefully) concurrent transactions on the base?

2) How can a set of concurrent transaction:; on diffen•ut views be correctly trau,;]atcd to

a set of (hopefully) concurrent transactions on the base?

3) What is the intf'raction (or side eff<•ct) bctwccn trausnctions of difff'n•ut viPws imple­

liLCHted on the same ba::;e?

In thi::; pap<•r we limit oursdvc::; to con~ider the' fir~t. question. We will ~how that t.lw

tran~act.iou function of consi::;tent views pr<·servcs commut.ntivit.y, Bon-iniPrft>renc<' and seri­

alizability of transactions.

Defore we can proceed, we have t<J define our concf'pt. of transaction and the above men­

tioned propcrtie::; of pairs of transactions.

Siuce we are mainly iut<·n~stc<l in tramdatiug updates, we define the coucmT<'IICY prop<•rtics

of two tran~action~ with n•spect to tlw <'ffed. that. Uwsc llp<lat.cs have 011 t.ll<'ir data ab::;trac­

tiou (<·it.h<·r vi<•w or dat.aba.-;e) and nut with r<'SP<'d. to th<• outputs !.h;tt the trausnct.ioni:!

may i:~snc to the vkw nscr.

DEFINITION 5.3. Let A = (A, U A) be a data ahstrru:tion.

a) A transaction Ton A is a tiuit.e s<>riPs of np<lat.<' programs Pi: T = [Pl, p2, ... , p11],

wh<·n~ Pi C: ProgA, for l ~ i ~ u. Tltt• siu~l<' programs Pi an~ also calkd atornic

actions of T and it is <UlSIIIUed !.hat <'ach Pi be 1wrforuwd "atomkally" and without

the parallel interaction of any other programs.

If T is a transaction t.hcu T 0 de110tes the view update program which is the result of

the composition of all atomic act.ious of T:

To = P 1 · P2 · · · Pn

31

Note that it holds (T 1 · Tzt = TJ' · T2°

b) Two transactions T 1 and T 2 arc commutative iff it holds:

A mix (n.l::;o "schcdnl<•") of a pair of trausactiom T 1 = [P 1, ... , Pn], T 2 = [p~, ... , P:n]

i:; a transaction T = [p~,. 0 0, p::.~ml snch thn.t each p;' belongs either to T 1 or to Tz

<Hld

Vl ~ i < j ~ 11 + m, Vl ~ h, k ~ n:

(p:' = Ph E T 1 1\ pj' = Pk E T t) => h < k

Vl ~ i < j ~ u + m, Vl ~ h, k ~ m:

(p~' = Ph E T 2 1\ pj' = Pk E T 2) => h < k.

Mix(T 1 , Tz) denotes the set of all trausact.ion mixes of T 1 and Tz.

Two trausactions T 1 aud T 2 M<' non- intcrfcaring (or cornpletcly concurrently

executable) if the following prop<'rt.y holds:

Note that if two transactions are non iut.crf<'aring, they arc also collmmt<\ti vc, since

T2 · T1 repr<'s<'nts a particular mix of Tt and T2.

L<'t. T h<' a mix of T 1 aiHl T 2 . Tis said to lH~ serializable if it holds

Note thn.t the concepts of non intcrfer<~nce and scrizability are easily generalizable to

sets of more than two trmumction!'!. For the sake of simplicity, we jnst cousi<ler pairs

of transactions in this paper.

c) Let V = (a, r, (A, UA)) be a view of D and letT= [p1, ... ,p11] be a transaction ou

32

A. We then define the translation rT ofT to D as follows:

r(T) = [r(pl), ... ,r(pn)].

Note tlwt it holds r(T) = (r(T)) 0
•

d) The translation function T of V is

• co:mrnutativity preserving iff any pair of commutative transactions T 1 , T 2 is

translated by r into a pair of commutative trawmctions r(T I), r(T 2) on D.

• concurrency preserving iff ;my pair T 1 , T 2 of 11on-intcrfemiug trau~actious is

translated by T into a pair of 11011-iutcrfcariug transactions T (T I), T (T 2) on D.

• scrializahility preserving iff any scriali:t.abk nux T of trammct.ions T1 , T 2 is

translated by r into a scriali:t.able mix r(T) of r(T I) and r(T2). Whenever r has

a preservation prop<'rty, we also ::;ay that V has this property, for instance if T is

comrmttativity preserving, then W«' :my that Vis a commutativity preserving view.

THEOREM 5.3. Any consistent view is

a) comumtativity prcs<'rving

b) COilClll'reJU:y prCM<'l'ViJI!~

c) seriali:t.ability presPrving.

PROOF. Let. V = (ex, r, A) be a couMisteut vi<'W of D. Dy theorem 5.1, we know that Vis

<'<}ltivakun' prPH«'rving.

a) Assume that T 1 aud T 2 me two cotmnutative vww transactions: (1\ · T 2) 0 =

(T 2 · T 1) o. Therefore it must hoi <.I

Thus

r(T~ · T2) ::: r(T2 · Tn

33

and hence ·

and

and finally

thus r(T t) and r(T 2) ar<! commutative transactions on D.

Q.E.D

b) Assume that T1 = [Pll ... ,p 11] and T2 =[pi, ... ,p~.] arc two nou-interf<'aring trans­

actions on V. We have to show that rT 1 and rT 2 are noll intcrfcariug tnmsactions

on D. LetT~ be an arbitrary mix of rT1 and rT2. T' is of the form [rp~ ,p~~+n.J

where p"i E T1 or p"i E T2 for 1 ~ i ~ n + m. Let us ddiuc a trarumctiou T ou A a.s

follows:

T [II II l = P 1' · · · 'Pn-1-m ·

Clearly T is a m.ix of T 1 and T 2 and it holds rT = T'. Since T 1 awl T 2 are not

iut<'rf<'aring, we have T = T 1 · T2. Since V is <'<l'tivah·w·<· pr<~s<>rviug, it imm<'diat<•ly

follows: rT = r(T1·T2) which <'aulH' rewritt.<~ll a. .. o.;: T' = r(T 1 ·T2). Sinn· r(T1·T2) =
r(T 1) · 1·(T2) we finally gd T' = r(T 1) · r(T2).

Thus r(Tl) and r(T2) are nou-int<~rfeariug.

Q.E.D.

without l<~8s of geu<•ralit.y that T = T 1 · T 2· It thcu follows

Therefore r(T) is scriali:r.ahl<! with respect to r(T 1) a.nd r(T2).

Q.E.D

0

34

Notice that the properties of commutativity, non-interference and serializability arc defined

iwlcpewlently of particular operations, such as, for example, lock and release operations of

diffcrcrcnt grn.nularitie~.

Lock awl release primitives can bc modeled explicitdy as particular clements of the ::;et of

operations U A of a data abstraction A. Clearly the static data model (the set A) has to

be predisposed for locking. For example, if the possibility of write-locks at the granularity

of relations is desired, then to each datarclation of the static model should be attached

a bookan value with the function of "locking flag". Locking and releasing then can be

mockkrl by setting and resetting this flag. Update operations in such a model arc programs

which iLre conditional ou the value of loc~iug flags.

Note that the preservation of commutativity, concurrency and s<•riali:~:ability arc necessary

but not ;mfficient conditions for the consistency of a view. It is possible to construct "patho­

logical views'', which arc for instance commutativity preserving but. not consistent.

We conclude this section with a brief example of a non consistent view.

Cousi<kr tlw database of s<~ction 3. Let view V7 lw as view V5 with adclitional operations

DUY[i] clcfiued as follows:

Vi<~W op<·ratious: DUY[i] increments t.lw QTY-AVAILABLE valn<' for product i by 1.

Translation: r(DUY[i]) = DUY[i] ndds a new tuple for product i to the PIECES rela­

tion. Let d be a database state. Let max(i, x) be a function which for a

database ~tate x retums the higlH•st value of PIECE# that exists in st.nt~

x for product i (if there is no pic<"e for product i t.ltt'll max(i, x) = 0).

The DUY[ij op<'ration applied to a database state d then adds the tuple

(i, lll<L'C(i,d) + 1, fals<~) to the PIECES n•lation.

Consider the <latabase and view state dcpicked in figure 3.1 and the following two view

35

update programs Pt and P2 for V7:

p 1 : if [.Xx(avail(l,x) 2:: l),SELL[l]DUY[l],idA7]

P2 : if [.Xx{avail(l, x) 2:: 1), DUY[l]SELL[l],id A7]

where avail(n,x) is a function which returns the number of available pieces for product n

an<l for view state x ..

Ckarly p 1 <md P2 arc functionally equivalent view updates. Unfortunately this does not

hold for the translation: Consider the database state d2 of figurc 3.1. r (p 1) will first delete

the piece with uumber 087 from the database and thcu introduce a new piece of productl

with piece umubcr 067. r(p2) first introduces a new piece with munbcr 088 for product

mnnbcr 1 and then deletes this piece. Therefore our view V7 is not equivalence preserving

aml tlms not consistent.

It is easy to see that V7 docs not preserve commutativity; consider for example the two

transactions
T 1 = [SELL[l]]

T2 = [DUY[l]].

6. THE TRANSLATION OF VIEW UPDATES

In this sC'ction we will discuss some aspects of t.ll<' well known view up<late problem. Let us

first rC'fornmlate this problem, using the notation awl formalism iutr<>~lnceu in section 2.

Let D = (D, Un) he a database, let A= (A, lh) be a data ab~traction snch that there Pxists

a surjective function a:D---+ A. The pn.ir (a, A) then constitutes a static view uf D (uef.

2.1). The view update problem can be stated by m<~ans of th<' following thre0 qw·stious:

1. Is it pot-:Hible to find a trcu\slation function r, such that the trip!<· (n, r, A) is a (dy­

nmuic) view '!

2. Which conditions ou a and on UA mnst be satisfied m oruer to guarantee that a

trauslatiou r exists?

3. If there are different possibilities to choose a t.ran~lation r, how can we d1aracteri;r,e

the dlffereut possiblt! choice~:~'!

The pioneer work in solving the view UJHlat(' problem has b<'en carrie1l ont by F. I3ancilhou

aud N. Spyratos. h1 thdr pap<'r [1] it "is shown how the choice of au update policy r ran

be• made by ckdding which portions of tlw clat;~basc• should r<'main cou::;tant (com pl<'m<·ut.).

Choosing a compleuu·nt that. n·maius invariant. uuclc•r all tran:;lat<•d op1•ratious a~:;igus un­

ambiguous semantics to a view upda.t.e. Formally. a complt'meut of the static vi<~w (a, A)

can bc~ defined as a mapping f-J as follows:

·DEFINITION 6.1. Let (t~,A) he a static view of a dataha:w D = (D, Un). I!et {J be a·

Hllrjccl.iw fnudion from D onto a :-;1'1; n, jj: D ---? IT. fl is a COIHplenwnt of ~~ jff

Vd, d' ED: a(d)= a(u') => {J(d) i= jJ(<l').

It is easy to sec that, if jJ is a complement of a, then the knowledge of o~(d) and of fi(cl)

uniqndy det.ermiJlt'S t.he clat.ahasc Htat.(~ d. ThnH f-J is in<l<'<'d a mapping "n>mplcuwntary"

to a, and the knowJe<igc of both, l.Y auu {3, iH suflicitmt for computing the UC\tabase.

37

In [1], tht> property of a set of update operations U ~ U A to be translatable under

constant complement {3 is refprred to as the {3-translatability of U.

DEFINITION 6.2. U is {3-translatable iff V'd ED, V'u E U 3 v E Eo 3d' ED:

(v(d) = d' 1\ a(d') = n(a(d)) 1\ f:J(d') = {J(d)).

Our <ldinition of {3-trnmlat.ability differs slightly from the original ouc [1]. lH•rmtsc in our

modd the datab<lse Dis ;m alg<'hra with a well ddiw•1l s<'t Uo of possibl(' OJH'rations, while

in [1] a dalahas<' is a s<•t of states ou which all computable- op<'ratious Juay be p«'rforrned;

therefore we mu::~t require the cxist.eur<· of v, surh that v(d) = d'. This difference does not

esscutidly chang<• the coucPpt. of {:J-trauslat.abilit.y. Our algebraic ddiui tion of a <!at abase

is mor•' g<'ncral and has the ;ulvant.agc that it may l><' US<'U in "cascade:;", i.e., a. vi<·w of a

<lataba::;e may act as a base for a d<'l'pcr lcvd viC'W to constitute a layerPd sysL<'lll of views.

We cau, more g<'tH•rally, cldhw t.h<' {:J-translatability of a static view (a, A) by :

DEFINITION 6.3. (n, A) is {1-t.ranslat.ablc i1f fJ is a compkmmt of t:t and the t•utire set

of view npdate op<•rat.iou:; U A is {:1-trau:~lat.ablc.

DEFINITION 6.4. If (n,r,A) is a vi<'W of D, awl /1 is a complmwnt of o:, snch that

V'n E UA V'd CD: [j(ru(d)) = fi(d), t.hcn we say that the complement {J is constant under

translation r orr translates under constant complement {3.

If (n, A) i::o~ {1-translatable for some complenwut {1, we also say that it. is translata hlc under

constaul. cmnplentcnt.

Among the results of Dandlhon awl Spyratos, we present. the two most import.aut ones,

transli\t.cd into onr t<'rminology.

PROPOSITION 6.1. If A is cydir all<l (a, A) is (:1-t.ranslatahk, then there exisb; exactly

one traBslal.ion r such that V = (o:, r, A) is a loop preserving view of D and {'J is constant

38

under tramlation r. r is uniquely determined by f3 through: Vu E U A ru = (o: x f3) ~ 1

(no: x /3). (for more details sec [1]).

PROPOSITION 6.2. If A is cyclic, then for each translation r, such that V =(a:, r,A)

is a loop preserving view of D, t.hcre exists a complement fJ of o:, such that-

a) (o:, A) is /3-trm1slatablc

b) the relation " = *V=> " is an equivalenc,~ relation

e) tlw COlllJJlcmcnt fJ of (.X is given by: /J(d) = d wlH·n· J is the equiv-al<'llcc class of cl

with re~pcct to =*V=> .

Consider view V2 of the database-example defined in section 3. It i::~ ea::~y to sec, that the

complement fJ2 of o:2 which corresponds to the translation r2 is as follow::~:

Vd = (b, p) E D : {32 (b, p) = b.

Clearly /32 is coustant under r2 , since hreakiug or repairing pieces docs not alter the DILL

rdation.

In a similar way, a complcuu•ut {J6 of o~ 6 which dd<•nuim•:-; r0 is defiucd hy

V<l = (h,p) ED: fJ6 (h,p) = p.

Clearly fJa is coustant under ra, since changing the prk<' of some pro<lnd:-; do<~s not affed

the information contained in the relation PIECES.

Note that. the static VH'WS considered hy Dandlhon aud Spyratos must h<• cyclic. Note

fnrt.h<·rtuon• that. t.ll<'ir tlwory appliP:o~ only for lhP charad.c•ri~al.ion of looJI]1Tt!.H:n1iny vi<'w:o~.

Dy t.lH'orem 2.1, we thcn.fon• coudude that the vi<'WS t.n•ate1l hy Daucilhou and Spyratos

arc exactly the cyclic partitiont'ng view.'1. This i::i the cla.o.;s of views corr<'sponding t.o the

innermost area of figure 2A (or respectively figure 3.2).

How<•ver, t.hc r<'<tnir<•mcut of cyclicity is not. strictly ll<'ccs:-~;'Lry for trauslat.iou nuder eoustant

30

complement. The following observations will lead to a first generalization of the theory of

Bancilhon and Spyrat.os.

OBSERVATION 6.1. The cyclicity condition of proposition 6.1 can be omitted. This

is justified by the fact that the proofs in [1] for the odgiual formulation of proposition 6.1

do not usc the cyclicity property.

OBSERVATION 6.2. In proposition G.2.a, instead of requiring the cyclicity of A, the

more general requirement that (u, r, A) be base partitioning is sufficient. Iu the• context

of proposition 6.2 this requirement is indeed more general, since we arc consid<·ring only

loop preserving but not necessarily cyclic views. Any loop pre~erviug and cyclic view is

partitioning, but there exist many interesting views whic·h arc partitioning (anJ therefore

also loop preserving) but not cyclic (for example View 1 and View 3 of section 3). Note

that the parts b arrd c of Proposition 6.2 arc• not necessarily valid if we replnce tlw cyclicity

requirement by the more general reqnir<•mcnt of a Jmrtitioning view: the relation =*V=? then

is not necessarily an equivalence relation. We can ovPrcome this clifiicuity by considering the

equivalence relation incluc:t•d by the partition of the view, inst.<•;ul of considering =*V=? .

Let <I> denote the cquivalen<:e relation on D iwlucecl by the partition. Parts "b and c of

Proposition 6.2 become tnw if wc snbst.it.nte <I> for =*V=? .

The above observations suggest that tlwre exist a strong connection between the concept

of "partitioning view" and the couc<>pt of "translatability uud<•r constant complt>mcnt". In

facts, these two concepts arc cquiv<\lent. This is formally stat(•cl in t.lw following theorem.

TIIEOilEM 6.1. A vi<'W {u:, r,A) of 1m.·'<~ D part.it.ioll<'H t.lw lm:-~e iff Ll]('fl' exists a com­

plement {J of a, such that {"J is coust.ant uuucr trawslation r.

PROOF.

"if" Let {"J be a ("omplemmt which is constant under r. L(•t D = {J(D). L<'t Dx denote

{J- 1 (x) fur x E D. Thus, Dx denotes the set of all (:lemcuts of D which arc

40

mapped to X by f3. It is trivial to verify that the family of sets {Dx I X E n} has

exactly the properties of partitioning classes required by Definition 2.13.

"only if" Assume (a, r, A) 1s partitioned. Consider the cqnival<'ncc classes Dt, ... , Dk

which constitute the partition as defined in dcf. 2.13. Let f3 be defined as:

Vd E D : f3(d) = d where d denotes the unique equivalence class Di, snch that

d E Di. It follows trivially from property b of Definition 2.13 that f3 is a com­

plement. From property a of the same definition it follows that f3 is constant

under T.

Q.E.D.

By thi~ simple generalization of Dancilhon and Spyratos' theory, we are now able to state

the nptlatc S<'rnantics of our view V1 by defining the complement {31 as follows:

{31 : STORE---+ DILL; V(b,p) ED: f31(b,p) =b.

For the compl<'ID<'nt /33 of the view V3 it holds: /33 = f3t·

Not<• tlJat, the views Vl awl V3 arc kiud of views which are not cousidcrcd in [lj because

they ar<' not cycle. .

W<' t.lms hav<· charad.eri?.cd t.he class of partitioning vi<~ws a.'! the claHs of view:'! whi<:h arc

updatable uuder constant complcrn<'nt. Tlw equival<'ncc of these two uotious was quite obvi­

ouH. A more dilfirnlt problem is the charact<'ri?.ation of consistent but not partitioning

views. By tlworcm 6.1 we kuow that such views do not. translate updates under constant

complement.

li'or example, l<·t. tul consider Vl<'W v 1 dditH·d in section 3 .. It is ca .. '!y to verify that the

mapping {j4 ~uch that V(b, p) E D : 84 (b, p) =pis a complement of a4.

{34 is in a sense the most. "reasonable" complement we can find, in order to express the

information hiddeu to the tul<'r by a4. However, this comph~mcnt does not. remain constant.

H looses inforrnation wh<'IH'Ver a nontrivial update op<·ration is isHtt<•tl. Morc geiH'rally,

it is easy to show that every complement of a 4 looses information wlwn the view V 4 is

41

updated, using the strategy r4: when a piece of a product is sold, the tuple associated

with the piece is eliminated from the database. This tuple rontains also the piece number,

which is invisible to the view user. Therefore we can say that updating V4 causes a loss of

information not visible to the view. Since the lost information was not visible to the view,

it did bdong to the complement.

Since we have shown that the class of consistent views is of practical relevance, it is necessary

to define exactly what is the characterization of their update semantics. In the next section,

we show how it is possible to extend the npproach of Dancilhon and Spyratos in order to

captme the update semantics of the entire dass of consistent views.

7. UPDATE SEMANTICS OF CONSISTENT VIEWS

The basic idea of the theory developed in this section can be stated as follows.

Let (a, A) be a static view of a database D and let {3: D-. B he a compkment of (a, A).

We will structure the set D of complement. values by a partial ordering '·:::;", snch that it

becomes a partially ord<'red set (pol:let). Iut.nitivcly, f3 (d') :=:; {3 (d) has the following llH'<ming:

All infornw.tion containc'cl iu ,B(d') is also contained in ,B(d), but (1(d') may coutain less

information than ,B (d).

W<' will furt.h<'rmore require that t.hc part ia.l ordering :=:; det<'nuiueH uuambiguou;•.ly ;m 11p-

-
cl<ttc policy. For this reason we will introduce the not.iou of r.r-,8-dccisivcncss {D<'f. 7.2). We

will restrict the number of po:;sihle ord<'riugs $ on (J(D) by cousickriu!~ only n-{J-dcdsivc

orderings. It will become dear later, that th<'sc orderings arc l:lllflirient to determine all

consistent update policies.

DEFINITION 7.1. Let (X, :=:;) denote a finite poset. Lc't a awl b he two dcmmts of X.

Au dement r E X is au upper bound of a awl b with respc'ct to $ iff a $ c and b :::; c. If

there <'Xi~:>ts au npper bomul for a and b then we write a T b else we write <\ t b.

DEFINITION 7.2. Let. (a, A) be a static view of D, let {3 b(! a <"omplcment of a awl let

":::;" be a partial orclcriug defined ou ,LJ(D). The partial ordering ~ is callcil (.\(-{3-decisivc iff

Vd, d' ED: {(d -j:. d' A a(d) = a(d')) => f3(d) f- ,B(J')).

We arc now able to iutrodnc<' our gcncralbmt.ion of the notion of (:J-t.ran::;lat.ability of Dan­

c-ilhou and Spyratos.

DEFINITION 7.3. Let (a, A) be a static view ofD, let {3 be a complement of a an<llct ~

be au a-{3-<lecisive ordering on f3(D). A view update operation u E UA is j:J-:=:;-translatable

itfVd ED, 3d' ED:

d =*=> d' A a(cl') = u(o~{d)) A J3(d') ~ f3(cl)~

43

If each update operation of the static view (a, A) is ,8-:::;-translal.able, then we say that the

static view (a,A) is {3-:::;-translatable.

The notion of ,8-:::;-translatability is the basic definition which is nPccss<liY for introducing tlw

concept of "trauslation nuder loss of information." Informally, the c-ondition ,B(d') :::; ,8(d)

states that the complement of an updated dat.aba .. ':lc state can IH'V<'r contain more information

than the complement of the original state, if the database update is a translation of a view

update.

It is ca,:y to see, that {1-:::;-translatability is iwlPed a gt>ucruli:t.aLiou of ,8-tr;1ut:~latability a..~ <lc­

fiw·d ill [1]. Obsl•rvc that "=" cou~ti t.ll t<•s an n-/3-dccisive partial ordNin~ ou /1 (f)). ilaucil­

hon\; a:1d Spyrat.os' cmlc<'pt of {J-tram;latability tlH'reforc coiuci<l<·s with {1-=-trma~lat.ability.

Iu the following, let us assume that (a, A) is a static view of D m1<l that ,8 <lenotcs a

compl<·meut of a, su<"h that (a, A) is ,8-:::;-t.rauslatablc for a giv<'n pmt.ial ord<•ring :::; on

{J(D). [This assumption is made for the following Ddinitiou 7.4, for Lemma 7.1 and for

Definition 7.5].

DEFINITION 7.4. For each npdat.<• expn•sswn u E EA awl for <'ach database state

J E D, W<~ define a s<•t Su,d a.'l follows:

Su,.J = {<1' I d' ED 1\ <1 :;_*::...> <11 1\ n(d') == u(n(<l)) 1\ (J(d'):::; fJ(d)}.

Su,<l consists of all database states iu which d is allowed to be transformed whenever u:(d)

is npclat0d by u.

LEMMA 7.1. card(Su,d) = 1.

PROOF. Since (~ is fi-:::;-translat.able, Su,d is not empty. Assume, Su,d has two differ­

ent. ch.•mmts dl and d2. Dy the ddinitiou of Su,d it hol<k o:(d1) = o:(d2); since dl =/:- d2

it tll<'r<•fore umst hold fi(dl) -:j:. fi(d2). Fnrthermort• it i::; ,8(<11) :::; .8(<1) aud {1(<12) :::; ,8(d) and

44

thus f3(d1) i ,B(dl). This is a contradiction to the a:-jJ-decisivcness of:::;. Therefore, Su,d ,is

a singleton.

Q.E.D.

DEFINITION 7 .5. For each updi.l.te opcrat.iou u E U A, we d<·fiue a fun<:·tiou a 11 on the

set ,B(D) as follows:
au: ,B(D) -t ,B(D};

au{!J(d)) = fl(d') such that d' E Su,d·

Tiy L<'mma 7.1 au is wl'!l ddinP< l for <'ach {-J and :::; . Since 0' u dcpc1Hls ou fJ awl on the

particular partial ord('ring :::; W<' slwuhl corn·ctly writ<' af3.~~.u instead of a11 • For simplicity

W<' just write a 11 , when fJ and :::; are <ldt•rmined by t.lw context.

Informally sp<'aking, au is the np<latP t.liat must lH' applied to the complement, when the

view is updated by au updat.t• operation u.

We arc liually able to state t.lH' first import ant theorem of this section, which establishes

the correspondence lwtw<'Cll ordcn•d complements of a static view on one hand mul update

policiPs which <'Xteud the static view t.o a dynamic vi<'W on the other hand.

THEOREM 7 .1. Assmll<' that. (n, A) is a static vi<'W of D ;uul that f-J tlenot.t•s i\ t·om­

plcm<'llt of n, such that. (n, A) is {J-::=;-translat.ahle for a giv<'n partial onkriug :::; ou {J(I5).

The tr;m::;lat.ion function T, tldined below t'xteud8 the static view (n:, A) to a dynamic view

(a,r,A) ofD:
r: U A -+ Eo Huch that

VuE Ua: TU = (n X f:J)- 1 (ua X aufJ),

wlwn• (1 11 is delinctl as in Ddinition 7.fi from fl mHl :::;.

Tis called the {J-:S-translator for UA.

PROOF. Let m1 first observe that T iH well defined, since (a: x fJ)- 1 is a function. This

ht't:ause fl is a complcm<'nt of lk aud tlwrefore (£1 x {-J) is om•-to-oue. Let d' de Hot(• t.lw only

clement of the singleton Su,d· It then lwltls by D<·fiuitiou 7.5: 0'11 ({J(d)) = fJ(tl') awl by

definition 7.4: u(a(d)) = a(d'). Therefore we have

nt (d) = (a x I') -l (u a x au ,8 (d))

=(a X ,B)- 1 (ua(d) X tru,B(d))

=(ax j3)- 1 (o~b(d') x ,B(d'))

=d'

Tlm:> Vd ED: ru(d) = d' such that d' E Su,d·

45

We• umst now show that a is a homomorphi:;m with respect to r (see <lcf. 2.3). W<~ have to

:>bow that Vd E D Vu E th: (a = n(d) => ua = ru(d)). Since rn(d) = d' E Su,.l· it holds

o:(ru(d)) = a(d') = u(a(tl)). Dnt u(n(d)) = n(a). Then.fon• a(rn(c1)) = n(tl') = n(a).

Q.E.D.

COROLLARY 7.1. Let (o~,A) be a static view of D and r be a ,8-S-trauslat.or for UA.

It holds: VuE EA, "Vd ED: ru(cl) = d' sneh that d' E Su,d·

PROOF. For 11 E U A the i\SS<'rtion of this corollary W<J.S already proved in the proof of

Tlworem 7.1. Tlw g<'uc•rali?.at.iou to EA follows easily by induction.

THEOREM 7.2. If (a, A) is a static view of D and T is a ,8-$-t.ranslat.or for U A then

the view (o~, r, a) is consistent.

PROOF. Assmlte (o, r, A) is not consistent: there• exist d, d', d" E D with d' i= cl", such

that <1 =*V=> d' a11<l d =*V::::> d" aJHl ct(d') i= n(<l"). Then ther<' exist v, w E EA, .stH"h t.hat

d' == r v(d) aud <I" = T w(d). By Corollary 7.1. it. follows d' E Sv,tl and <1" E Sw,tl· Since

r is a translator and a is a homomorphism wit.h respect. tor it holds: v(n(d)) = w(a(d));

therefore Sv,d = Sw,d and thus <l' = <1". Contradiction.

Q.E.D.

We haV(! thus shown t.hat all views (u~, r, A), wlwre r is a ,8-S-trau::-!lat.or for U A are <'<>nsisteut.

If we succC<'U in showing the couverse, i.e. that for all consistent views (a, r, A) there exist

46

/3 and :S such that r is a /3-:S-translator, then we have completely characterized the variety

of consb tent views.

DEFINITION 7.6. Let V = (a, r, A) be a view of D. Let f3can he a function defined as

follows:
f3can: D --+ 2 D (powerset of D)

- I '} Vd ED: f3can(<1) = {d I d =*Y=? d ·

We call ,Beau the canonical complement of /3 for the view V. (This term is ju~tifi.ed by

the follt)wing Lemma).

LEM!\IA 7.2. If Vis consistent tlwn f3cnn is a complement of a.

PROOF. Let a(d) = a(d') and d i= d'. Then it cannot hold d =*V=? d', since V is

cousist.cut (aml therefore loop preserving). Thus d' tt .Beau (cl). On the other hand, by

ddinitiou of f:Jcnn and of "=*V=?" it holds d' E f3cnu(d'). Therefore .Bcan(u') f. ,8.,,.11 (d).

Thus f3cnu is a complement of a.

Q.E.D.

We now ~tate the second iwport.aut t hPon•m of this section. •

THEOREM 7.3. Let V = (a, r, A) b<• a cousist.mt vww of D. Let f3c•m <h-uote the

cauonkal complt•ment of a for V. Let "~" deuot.e t.h<' set-theoretic iuduHion. It then holds:

UA is /3ca 11 -~-t.ranslatable aud r is th<• f3cuu-~-translator for UA.

PROOF.

a) .We first show that ~ is a-/3-dccisive, i.e.

Vd',d" ED: (u' i= d" 1\ a(d') = a(d")) =? .Bc~u(d') t .Bcau(d").

• The s<•t t.lwordical induction ~ is a partial ordering whkh sath;fies lhe crit<•ria for a-,8

decisiveness.

47

Assume d' =/; d" and a(d') = a(d") but .Bean (d') i .Bean(d"). Let d E D su~h

that .Bean (d) is an upper bound for both .Bean (d') and.Bean (d"). This me;ms

.Bean(d') ~ .Bean(d) and Peau(d") ~ .Bcau(d). Since d' E .Bcnn(d') and d" E .Bean(d")

it follows d', d" E .Bean (d), and therefore d =*V=* d' and d =*V=? d". This is in

contradiction with the consistency of V. Thus ~ is a-,8-decisive.

b) We show that UA is .Bcan-~-translatahle. Let TU E: Eo, and d. d' ED such that

d' = ru(d). It then holds d =*V='? d' and therefore d' E .Bcnu(d). From the definition

of .Beau and from the trau:sitivity of" =*V=?" it then follows easily .Bcu.u(d') ~ .Bcnn(d),

which proves the .Bcan-~-translatabilii.y of U A·

c) That Tis the .Bean -~-tran~lator for U A <'illl ea...;ily be vcrifi<·d by coH::>id<'ring an update

u E U A, the corresponding mappin_g a,1 as introduced iu Definition 7.5 and by showing

TU =(a X ,B)- 1 (ua X au.B).

Q.E.D.

This theorem completes the formal frmu<'work, which euahks us to d<•fiuc the update se­

mantics of any consistent vi('W hy SJH'dfying a complcm<'ut and a partial ordering on the set

of complement values. Let us HOW r<~cou::;id<•r t.he vi<•ws V'l and V5 of our exmu pl<•-<latabasc.

We choose the same complPUH'Ut for both Vi<'ws:

V(h,p) ED: f;,.(h,p) = f:lu(b,p) = p.

Since both views V 4 and V5 have the sauw complenH'nt, we must cxpn•8::> their different

update semantic:; through diff<'reut partial onlt•riug:-~ on t.he H<'t. of complem<'nt, valn<':-1. ll<'forc

doing so, let 11s d<'fiue two particular partial onl<·ring r<'lat.ions h<'I.W<'<'ll sets of intcg<'rs, which

will hdp to simplify our nol.at.ion.

DEFINITION 7. 7. Let. X and Y denote two :,;ets of int<'gcrs. We say that. X is a postfix

of Y, denoted by X$Y iff X ~ Y awl Vx E X, Vy E Y- X : y < x. (Here "<" has it.s

conveutioual meaning). We say !.hat X is a prefix of Y, dmot.ed by X@Y iff X.~ Y aud

Vx E X, Vy E Y - X : y > x.

48

EXAMPLE. Consiticr the example of section 2. Let Y = {1, 2, 5, 7, 8, 10, 14, 15}, then

{1, 2, 5}«~Y but {14, 15}$Y. Note that j34(D) = j35 (D) = PIECES, i.e. the set of legal

instances of the relation PIECES. If p is a relational instance and A an attribute of p, let

p[A] d<'!lote the projection of p over the attribute A; if c is a predicate on tuples of p, let

p(c) denote the set of all tuple~ of p which satisfy c (selection). Combinations of selections

anti projections arc written without parenthesis, e.g. p(c)[A].

We are now reatiy for specifying the partial orticrings ~4 and ~ 5 for respectively the view

V4 anti V5.

~4: 'v'p, p' E PIECES : p ~4 p' <=>

p' ~ p /\ p' (BROKEN =true) = p(BROKEN =true)/\

\1'1 ~ Il ~ 100 :

p'(BROKEN =false/\ PRODUCT#= n)[PIECE#]$p(BH.OKEN =

false/\ PRODUCT#= n)[PIECE#].

~s: 'v'p, p' E PIECES : p ~5 p' <=> .

p' ~ p /\ p' (DB.OKEN =true) = p(DROKEN = t.rne) /\

'v'1 ~ 11 ~ 100:

p' (BROKEN = false I\ PRODUCT# = u) [PIECE# j@p(DROKEN =

false I\ PRODUCT#= u)[PIECE#].

It. is <'<l.-"Y to s<'<' that. ~4 aud ~5 a!'<' imlc(•d part.ial onh•riugs. It, is possihle to prove that

:54 is (t4-J34-dccisive anti that :Ss is as-J3s-decisive. A form<l.l proof thereof is given in the

appendix.

That U A4 is .8-:54-translatable aml tlmt U A5 is .8-:55-translatabl<.• is easily verified, as well

as the fact that :54 corresponds to r4 and :Ss corn•spouds to rs.

49

We thus have specified the update semanticH of V 4 and V5 by supplying for each of these

views a complement and a partial ordering on thE> complement values.

From the properties of these complements and partial orderings we furthermore deduce that

V 4 and V5 are consistent views.

8. RELATED WORK

Paolini and Pclagat.ti [5] considPr('d a database as an abstract object upon which one may

operate with a given set of operations. This approach is.fnrthcr devclop<•d in [G] and [7],

where databases and views an' mo<lcl<·d as data abstractions. Also Rowe aucl Schoen:; [20],

Claybrook et al. [lG], Lock<'Illi1llll et a.l. [21] and Weber [25] all use an abstract data type

approach to modd llatabase views.

:tvfost of the authors who hav<> b<>en :;tndyiug the vtcw update problem coun•utmtc their

att<>ntion on fiudiug ways for dc•riving translations automatically or semi-automatically by

usin1-; particular update policies or by n·stridiug the set of allowed npdat.c policies. Their

derivation rules usually arc based upon notions of "natural translation" (typically miuimality

of sid<'-elfccts) and upon constraints on the data model and on tlw database instaucc~s

(typically functional dependencies for rclatioual databases).

Examples of this approach arc Dayal aml Dernstciu [3] for automat.ic tran:;lat.iou within the

context of tlH' relational moll<'l and Dayal and D<·rnstc·in [22] for automatic tram;lation of

updat.c'8 on n<>hvork vicws. In [3] ouly vic•ws which are cmubiuat.ious of projPctious and se­

]Pd.ious and joins of rdations ar<' considered. A can.fnl <Ulaly~is of tliffPrPut t.yp<'s of npdat.e

OJH'rat.ious, such as imwrtious, ll<'l<'t.ious aU<l n·placemcuts is !;iV<'n. For tht'lH' type's of oper­

at.ious, Dayal and Dernstdn consid<·r translators which do uot. 1wcessarily]e;ul to consistent

vicw8 in t.he s<'usc of our ddiuitiou. On t.lw otlwr haucl, tlwir mod<'l of view tl<'Iiuition doc's

uot iududc aggregate fum:tions, lhns they arc uot able to haudlc such important views

as onr c•xamples V 1 aU<l V5 (s<·c·tion 3). A primary objective of [3] IS the JH"<'servation of

iut.<'~ri t.y c:oust-.rai ut.s (fnnct ional t lt•Jwml<•nci <'S).

Siklossy [23] c1SS111U<'S, ru~ a prerequh;ite, that views preserve loops, and call8 this property

"minimal adrnillsibility".

Furtado et al. [12] provide rules on permissivity of various type8 of npcl<\tcs. Tlu'y restrict the

Immlwr of allowed updat.c operation8 and r.ondwle that "some op<•ratiou must he prohibited

in order to assure harmonious interaction among d<\tabase users".

51

Fagin ct al. [11]" p"rovide a framework for the interpretation of updates m the context of

logical databases.

The work of Dancilhon and Spyratos [L], outlined in section G of our paper, h;ts st imnlatcd

many further investigations by different researchers. Cosmadakis and Papadimitriou [9]

show that finding a minimal complement of a given vww Is NP-complctc. Tl ~'Y adopt

the Universal Relation Assnmption [26] and their views arc esscutially projections of a

!,riven univ<'rsal relation. Kell<•r and Ullman [8] ddin<' tlw notion of iwl<•p0ndcnt vi0ws (i.e.

views whose mnges of values may he achi<'VPd indq><'ll<lcntly) and consider the rdat.ionship

lH't.W<'f'll complementary viewH awl iwl<'p<'ll<kut vi<•ws. Onr own work is part.i<1.lly t>a:seJ on

Daucillwu and Spyrat.os' ideas. Sections G awl 7 of th<.• pr<'scnt paper gcnerali;o;e the notion

of "constant complement.".

In [18] ;md [27] Keller analy;o;es the possiblf' translations of of particular classes of npdate

operations for rcla~ional views (Tlw considf'r<'<l npdat.0s are, as in [3], insertions, dd<'tions

and replacements.) I\dlcr giv0s fi vc criteria that all candidate npdat.e trausla.,iou:s must

sati:sfy. The :satisfaction of these criteria implies restrictions ou the view definition function

n and on the form of vi<'\V update expr<'~.sions tlwt our approach does uot. n•quire. In Kdh•r's

model. for inst.auce, the k<•y of Pach <lat.a rdatiou tlt;~t may h<' a1fvdc<l hy updates must

appcar in tlw view. Som<' combinations of view U}Hlat.<' op<•rat.ions are not allow('(}, such

as th<• rPplaceull'ut. of a t.uph• A by a t.upl<· D follow<'<! hy tlH' d<'l<'l.ion of t.upl<• B. This is

dm· to tlH' fact that K<'lkr's t.rau81ations depend oil the parti<-ular seqm'Il<"<' of the view

update operations, and not. :solely Oil the functional s<'mantics of t.h<' vi<•w updat.t• (as in our

approach). As iu [3], aggregate fnnctious arc not coven•d. On the other lullld, l{ellcr\; model

includ<'s souw iut<~rcstillg vit~ws that arp not. eov<'n·d hy onr approach (for <~xmuple, some

non-loop-presc•rving vic•ws). 1\<'ller al8o shows how t.lw choin• of a l.rau:-~lat.or can he dmw

:wmi-aul.omat.ically by a program which roudnds a ditdog wit.h the data hasp administrator.

9. CONCLUSIONS AND FUTURE RESEARCH

The ovcrvww of related work given m the previous section shows that no approach un­

dertaken so far to solve the view-update problem is complete in tlw sense that it covers

all po:-;sible views of practical relevance. This criticism is also valid for our approac]1. We

tlo not da.im that the classc~ of view:> stndit•d in the present paper capture the complPte

spectrum of all "reasonable" vi<'WH. We believe, how<'vcr, that the class of consistent views

rovers a larg<• Immber of important and int.<•n•st.iug applications, some of which ar<~ not cov­

cre<l by oth<'r approaches. In particular, we have shown that the class of consistent views

is a Sll]H'rset of the class of vi<'WS stnclied by Uancillwn aiHl Spyratos iu [L]. w~· h:tV<' given

cx;uuplc•s of nontrivial applications that ·ran be modckd hy onr approach, but. not by the

npproad1 dc•snibed in [1].

We have shown that. consistent views arc characterized by extremely usdnl properties. In

particular, we proved that tlw consistency of a view is not affeded when the original set of

npdat<• expressions is augmented by the possibility of conditional cxecntiou of view updates.

We have shown that tlw translation function of a C<>Hsist.eut view preserves functional equi v­

alc·nn· of update programs, as well as a umuhcr of important t·mu·nrn·w·y propNti<'S. We

hav<' ~howu that t.lw npdat.<• s<•mantics of cousistt•Ht views C<Ul be dct.<•rmitH~<l by imposing

a partial ordc•r ou th<' valtws of the vi<'w t·ompl<•mt•ut.

W<• bdiPV<' that th<' class of cousist.Put vi<'ws Hl<'rits att.eut.ion for its goo<l prop<•rti<'S. How­

<'V<'r, more r<'H<'arch is IH'<'<k<l in ord<•r to n·utl<•r our result.:; more applicable. Let us couchule

t.his paper by giving some~ outliut•s of the r<'S<'arch we plan t.o carry out iu the ncar future:

• St.udy t.h<' propt•rt.it•s of tlilf<'r<'nt. t.ypt•s of n·lat.ioual vwws (proj<'<·t.ive view::~, se­

l<'divP vi<'WH, join views ...) for dilft•r<•ut types of npdat.<; op<•rat.ioHH (iu::~ert.iou,

ddet.iou, n•placemeut). Derive nl'C<'Ssary a.n<l suiJicicnt coudit.iou:s for the consis­

tency of sueh views.

• Extend our model of view update programs to cover recursively defined update

programs. Not.e that. ~mch au extension wonld require the mp;\hility of handling

view aU<l database updates which an' partial operations.

53

• Study the interaction between different views,

o Find algorithms to compute all possible translation functions for a given static view

in order to obtain a consistent dynamic view. Our ongoing research shows that

there exists a strong relationship between the set of different consistent translation

functions and the set of all spanning tr0es of a dircct(•fl graph. {This rPsult has

not. yet been proved in full gen(•rality but only for some particular clas::-ws of st a.tic

views.) Ther0fore we think that it conlu be m;cful to takl' proflt of <'Xist1ng graph

theoretic algoritluns iu order to generate t.raw;lation functions.

• Giv<'n <m inconsistent view V, find methodologies for splitting V into two or more

consistent vi('WS whose s<'ts of operations are subsets of t.lw set of operations of V.

With such a splittiug it is pos:;i_bk t.o replace a program P that origiually op<'ratcs

on the incomdstent view V by a program P' which switches b<'twc<'n diff<'rent

consistent views {for cxampl<• through explicit swi khing primitivf's). The parts

of P' that are executed completely within one consistent view can l><! modified a.s

long as th0ir functional semantics are not. afi"cct.cd. All advantag0s provided by

consistent vi0ws apply to tll<'~l<~ program parts.

10. REFERENCES

[1] Dancilhou F., Spyratos N., "Update Semantics of Relational Views", ACM TODS,

vol. G, u. 4, Dec. 1981.

[2] Dayal U., Bernstein P.A., "On the Updalability of Relational Views", Proc. 4th VLDB,

West Berlin,1978.

[3] Dayal U., Bernstein P.A., "On the Correct Translation of Update Operations on Rela­

tional Views", ACM TODS, vol. 8, n. 3, S<'pt. 1982.

[4] Goguen J.A., Thatcher J.W., Wagner E.G., Wright. J.D., "Au Initial Alg<•bra Approach

to the Specification, Correctness, aud Implementation of Abstract Data Types'', iu Data

Structuring (Current Trends in Programming Metlwdology, vol. 4), R. Yeh, Editor, Ellgle­

woou Cliffs, NJ, Prentice Hall, 1978.

[5] Paolini P., Pclagatti G., "Formal Definition of Mappings in a Database", Proc. ACM

SIGMOD, Toronto, 1977.

[G] Paolini P., "Verification of Views and Applications Pro~rams", Work:-;lwp Formal Bases

for Databases, Toulouse, France, Dec. 1979.

[7] Paolini P., Zicari R., "Properti<~s uf Vi<'Ws and t.lH'ir Im pl<·ment.ation" , iu Advances in

Database Theory, vol. 2, Jack Miuk<•r d al. <'ditor::~, Plenum Press, New Y.ork, 1984.

[8] Keller A.M., Ullman J.D., "On Compleuwutary and Indep<·wl<•nt Mappings on Data­

bases", Proc. ACM SIGMOD, Boston, June 1984.

[9] CosmadakiH S.S., Papadimit.riott C.II., "Update of lt<'lat.ioual Views", .JACM, vol. 31,

n. 4, Oct. 1984.

[10] Astrahau, M.M. et al., "Systt•m R: R<•l<LI.ioual Appro;Lch to Datah<tHe Management",

ACM TODS, vol. 1, u. 2,Juuc 1976.

55

[11] Fagin R., Ullman .J.D., Vardi M,Y., "On the Semantics of Updates in Databases", Proc.

2nd ACrvi SIGACT-SIGMOD Symp., 1983.

[12] Furtado A., Sevcik K.C., Dos Santos C.S., "Permitting Updates through Views of

Database'', Information System, vol. 4, n. 4, 1979.

[13] Steuebraker M., et al., "The Design and Implementation of INGRES'', ACM TODS,

vol. 1, n. 3, Sept. 1976.

[14] Zlnof M.M., "Query-by-exampl(': A database language", IBM Syst. J., 16, 4, 1977.

[15] Gottlob G., Paolini P., Zicari R., "Proving Properties of Programs ou Database Views",

Dipartiuwnto di Elcttronica, Politecnko di Milano (in preparation).

[16] Claybrook ll.G., Claybrook A.M., Williams J., "Defining Database Views as Data

Abstn~rtions", IEEE- TSE, vol. SE-11, n. 1,.Jan. 1985.

[17] Ullman J.D., "Principles of Database System", Computer Science Press, Potomac, MD,

second (•clition, 1982.

[18] Kl'llcr A.M., "Algorithms for Trnnslatiug View Up<l<ltcs to Database Updates for Views

iuvolviu~ Sd<·di.ous, Proj('d.i.ons awl .Joins", Proc. ACM SIGACT-SIGMOD Symp., March

1985.

[19] Date C.J., "A Guide to DI32", Addison Wesley, Reading, MA., 1984.

[20] Rowe L., Schoens KA., "Data Abstractions, Views and Updates in RIGEL", Proc.

ACM SICMOD, llost.ou, MA, May 1979.

[21] Lockemmm P.C., ct al., "Data Abstractions for Database Systems", ACM TODS,

vol. 4, Mm·ch 1979.

[22] Dayal U., llemstein P.A., "On the Updatability of Network Views- Extending Relational

Vi(!W Tlu•ory to t.lw N('twork Mudd", Iuformat.ion Syi:lt.cms, vol. 7, 11. 1, 1082.

5G

[23] SikJossy L., "Updating Views: a Constructive Approach", Proc. Workshop Logi~al

Bases for Databases, Toulouse, Dec. 1082.

[24] Maier D., "Theory of Relational Databases", Computer Science Press, Rockville, MD,

1083.

[25] Weber H., "A Software Engineering View of DataLase Systems", Proc. VLDD, Sept.

1978.

[26] Ullman J.D., "The U.R. Strikes Back'', Proc. ACM Principles of Database Systems,

Los Angeles, March 1982.

[27] Keller A.M., "Updatillg Relational Databases Through Views", Stanford Univcn.;ity,

Computc·r Science Dept., Ph.D. dissertation, 1985.

[28] Papa<limitrion C.H., "Serializability of Concurrent Updates", Journal of the ACM, 26:4,

1979.

[20] DC'rnstcin P.A., Goodman N., Lay M-Y., "On Analysing Concurrency Control Algo­

ritlnus Wheu User aucl System Operations Differ", IEEE-TSE, SE 9:3, 1083.

[.10] Dcrust<·iu P.A., Shipman D. W. aucl H.othnie J.D., "Concurrency Control in ;~ System

for Distrilmt<-d Dat;~hasc~s (SDD-1)", ACM-TODS, 5:1, 1080.

APPENDIX

BcforP giving the proof that :::;4 aud :::;5 are ll':-/3-dccisive, let us state a simple lemma.

LE1\-1MA.

a) (X$Z 1\ Y$Z 1\ card(X) = card(Y)) =>X= Y.

b) (X@Z 1\ Y$Z 1\ card(X)::: card(Y))=>X=Y.

The trivial proof of this lemma is omitted.

PROPOSITION.

PROOF. a) Assume :::;4 is not. Q4-iJ4-d<•ci:;ive. Thcu tlwrc exist two database states

d = (b, p) and d' = (b', p') snch that

(b,p) -F(b',p') (a)

and

(b)

and

f3(h,p) T1 ,B(b',p') (c)

From (a) awl (b) it. followR:

b = b' (d)

From (c) it follows that there cxist.R a p" with:

p" s;; p 1\ p" s;; p' (c)

and

p(BROKEN =true) = p' {BROKEN= true) = p" (BROKEN= true) (f)

and

and

Vl ~ n ~ 100:

p(BROKEN =false 1\ PltODUCT# = u)[PIECE#J $

p"(BROKEN =false 1\ PRODUCT#== n)[PIECE#J.

V1 ~ n ~ 100:

p1 (BROKEN =false 1\ PRODUCT#= u)[PIECE#] $

p11 (DROKEN =false I\ PRODUCT#= n)[PIECE#J.

Furthermore it follows from (b) by definition of a4:

V1 ~ n: card(p(BROKEN =false 1\ PIECE#= u)) =

card(p1 (BROKEN= fals<' 1\ PIECE# = n)).

It follow~ immediately:

Vl ~ n: canl(p(DROKEN =false 1\ PIECE#= n)[PIECE#]) =

58

(g)

(g)

(h)

<"ard(p1 (BROKEN= falH<' 1\ PlECE# = u)[PIECE#]). (i)

From (g) aud (i), by our Lc•mma, it follows:

Vl ~ n ~ 100:

1/(BROKEN =false 1\ PRODUCT#= u)[PIECE#] =

p(llH.OKEN = fahw 1\ PRODUCT//-= u)[PIECE-/1:].

(j)

By the iut<·grity constraint~ c and d given in section 3 we know that 1 ~ p.PRODUCT#

~ 100 mHl 1 ~ p 1.PRODUCT# ~ 100.

Tht•rpfore from (j) we coudnde

p1 (BROKEN = falsP) = p(BROKEN =false) (k)

Putting together (k) and (f) we immediately get:

p' =p

but this, togt>thcr with (d) is in contradiction with (a).

b) The proof is similar to the one of case a).

5!)

Q.E.D.

