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ABSTRACT 

We consid<'r the problem of the translation of view updates to database updates. Our 

research uses <m algebraic approach in order to classify different properties of views with 

respect to the treatment of updates. In our classification, special attention is paid to a class 

of views that we call "consistent". Informally speaking, a consistent view is a view with the 

following property: if the effect of a view update program on a view state is uetermincd, 

then the corresponding database update is unambiguously determined. Thus, in oruer to 

know how to translate a given view update into a database update, it is not ne~essary to 

know the seqnence of particular operations of the view update program: .it is snffkient to 

be aware of a functional specification of snch a program. We show how conditional updates 

can be 1nodcled and prove that consistent views have a number of interesting properties 

with rc~spect to the concurrency of update transactions. Moreover, we show that the class of 

consistent views includes, as a particulm snbsct, the class of views which translate updates 

under rnaint.cnence of a constant complement. However, we give examples of important 

realistic vi<~ws that arc cousist.cnt but do not translate updat<~s under constant complement. 

The re.mlts of llancilhon and Spyratos [ACM-TODS 6:4, 1981] arc generalized in order to 

capture the update semantics of tlw entire class of consistent views. 
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1. INTRODUCTION 

A view facility i~.; an important part of many exi~ting database systems, such as Query Dy 

Example [14], System R [10], lngres [13], DD2 [19]. In such a context, the problem of update 

of views which arc implemented ou an underlying databa~c, has been studied with different 

approaches [1-3, 5-9, 11, 12, 18, 22, 23]. Updates on views mu~t be translated into updates on 

the underlying database. In gen<'ral, there C'Xists more than one database update that may 

correspond to the same view update. The problem is how to choose a vi<•w update, avoiding 

that the corresponding underlying database update may create inconsistencies or have side 

effects on the view. Starting with the work of Paolini and Pdagatt.i [5], it was ncknowlcdgcd 

that a careful analysis of views and databases also needs to account f(Jr operations on views 

and databases, and not just for states, as it was traditionally done. A database can be 

described by the set of its possible legal states nnd by its operntions. We model databa8cs. 

as algebrns that we call data abstractions, that is a s<'t of values awl a sd of operations 

to IWtnipulate them. A view is a particular way of looking at a database and it can also be 

described by its states (which are, in g<·ncral, different from the database states) and by its 

opcratbus (which arc in gmcral different from the database operations). 

In this paper, as in [7], both dat.abaHcs an<l views are defined as dat.a abstractions. We 

distin1~nish bct.we<'ll the notions of static all(l dynamic view. A stati<· vi<~w of a database 

cmtsi::;t.s of a data ahstrad.ion a11<l a Jllitppilt~ which <•st.ahlisll<'s the <"on·<·spon<lenn• lwt.W<'<'U 

the database 8tatcs and the view states. A dynamic view eonsists of a static view and an 

update policy which stat.<•s how to translat.<· vicw updates into database updates. In the 

paper, when we will usc the general t.erm "vi<~w", we mean "dynamic view".* Our research 

uses au algPhraic approach in or<lcr to classify different. prorH'rt.ies of vi<'ws with respect tc) 

the treatment of updatc>H. In our rla.-;silkal.ioll, HI><'<"ial at.l.<•nt.iou iH ~iV<'II t.o a cla.'i::l of vit•ws, 

that we call consistent. Informally sp<'akin~, a cousi::;t.<•nt view is a vi<·w with the following 

propcrty: if the effect of a view update on a vi<•w state is detenuincd, then the corresporuliug 

databaMe update is unambiguously d<'t.crmiu<•d. Thus, in order to know, how to translate 

a given view-update program into a database update program, it is not necessary to know 

* Some authors· usc the term "view" to desi~nate static vi<~ws [1]. 
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the sequence of the single operations of the view update program, but it is sufficient to .be 

aware of a functional specification of such a program.* 

Bancilhon and Spyratos [1] propose an elegant solution to the view-update problem. They 

show that the choice of the database update policy can be made by deciding which por­

tion of the database should remain invariant; this invariant portion is called the constant 

complement. 

In our paper we show that the class of views ·~reate<.! by Bancilhou and Spyratos is a subclass 

of the consistent views. We show, however, tl:.at there arc views of highly applica.tive impor­

tru1CP which are consistent, but cannot be modeled by the approach of [1]. Consequently, we 

have extended the theory of Bancilhon and Spyratos to capture the update semantics of the 

much larger class of consistent views. O~r approach uses a notion of complement as defined 

in [1]. However, we do not require that the information contained in the complement remain 

invariant, but we permit that updates may <:<\use the loss of parts of this information. 

The paper is organi7.ed as follows. 

In sec·tiou 2, we introduce our notation alJ(l ddiue the basic concepts that will be used 

throughout the rest of tlH' paper. Database awl views arc defined as data abstractions 

( algc•hras). Iu part.icnlar, amoug dilfcrc•ut other types of vic•ws, we introduce the notion of 

cousist.cut vi<'W by usi11!; a purdy alf!;chmic 1lcfinitiou. We also state a tlworem which shows 

the relationship hc•twceu the difft•reut types of views. 

In s<'ction 3, a comprehensive example of a database with a number of views of different 

type is given. The example is clisntsscd in detail since it will be used throughout the paper. 

In S<'d.ion 4, we• introduce the corH·c·pt. of cmulitioual update. Informally, a conditional 

view npdat.c is <•xecutcd d<'pcudiug on the re~mlt: of the evaluation of a predicate on a view 

state. Conditional update enables us to define complex and realistic view update programs. 

In section 5, we explain in more ud.ail the importance of consistent views; we show the 

• Our defiui tion of "consistency" docs not coiudclc with. the one given in [ 1]. 
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main properties of these views and give some examples of views which arc not consi::;t-.eut. 

In particular, we define the concept of functional equivalence of 11pdatc programs and 

show that for a consistent view, a pair of functionally equiv:uent view update programs arc 

trawdated into a pair of functionally equivalent database update programs. Moreover, we 

analyze the properties of consistent views with respect to the concurrent execution of view 

transactions. 

In section G, we define the view update problem, with particular reference to the work of 

Dancilhon ;md Spyratos. We define the notion of complement, recall and rcint.nprct the 

rP~ults of Daucilhon and Spyrat.os and explain the limitation of their approach in modelling 

the update semantics of some views of the example given in section 3. 

In section 7, the extension of the theory of Dancilhon and Spyratos to the class of all 

consistent views is carried out. 

After ~iviug a survey of related work in section 8, we conclude our paper with a11 overview 

and some comments on our results and we state our plans for future research. 



2. NOTATION AND BASIC CONCEPTS 

In this section we introduce our notation awl state the basic Jefiuitious that will be usc!.l 

throughout the pap<'l". In particular we wil1 usc the terminology and reintroduce a number 

of ddiuit!ons of [7], wlH're both database and views are defined as data abstractions, i.e. 

algebras. 

A data abstraction is <kfi11cd by a pair D = (D, L:n), where D is the set of the possible 

legal states of the abstraction and L:n is the set of operations of the abstraction. 

In our g(•ueral mudd [ij, the set of opcra.t.ions L:n is cou1posed of qncry opcratio11s In and 

npdat(• operations Un : En = (In, Un). IH this paper WP arc int<•rest.cd only iu update 

operations, thus, for simplicity, we will disregard the qw•ry Ofwratious In aw 1 assume 

En = U n· Onr simplifit•d model of a data abstraction therefore consists of a pair D = 

(D, U n), where D is the set of kgal states <md U n is a set of update OJH'rat.ious. Each 

npdat.t• operation is a fnnctiou from D in D. 

Given a set Un of update op<•ratious ou D, it is easy to define the corresponding sd of 

update expressions. The set En of update expressions is t.lw colkd.iou of all possible 

composit.iom; of npdat.<• operations: 

VuE Un, n E En 

Vu, v E En, n· v E En 

no ot.ht•r deiiH'uts are in En 

Thrmt~hont. t.lu· paper W<' asHillll<' that fo1· caclt dat.a abst.radiou D. Hn co1tl.aius o11ly total 

operations. A g<'U<'ralil.at.ion of most of our rt'sult~ t.o partial OfH'mtious is straightforward. 

The out.liuc of such a g<•ueralization can bt• found in [7J. 

Som<' of the prop<•rties of data abstractions defined in [7J that will lw used in this paper arc 

now descdh<~d. 
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DEFINITION 2.1. Given two data abstractions A and D, A statically includes D 

through a denoted by A[a] => D iff there exists a. surjective function a from A to D which 

is calh'd abstraction function. 

The static inclusion is a necessary condition for having a data abstraction A <1$ a possible 

representation for another data abstraction D. When A[a] => D, the pair (a,D) i:> called a 

static view of A. 

Reganling the sets of operations of two data abstractions, the basic uotiou 1s that of a 

translation function. 

DEFINITION 2.2. A translation function r from D to A 1s a fmwt.ion that maps 

operations of D into expressions of A: 

The translation function T is extended to the domain En as follows: 

Vul, n2 E En : r(nl · n2) = rul · ru2. 

Since T is a fundiou which maps operations to opt'ratious (also calkcl "fuuctiounl" ), we 

adopt the mmal mathematical not.at.iott awl write Til inst.c·ad of r( n). w lH'III'V<'r pan•nLhcsis 

are not Iwedcd to delimit the argument of r. 

The abstraction function a and the translation function r arc the basic notious to deline 

the conc<'pt of implementation of a data abstraction. 

DEFINITION 2.3. An abstraction A implements au abstraction .I3 th~·ongh o: and r, 

denoted by A[(l!, r] => D if ami only if a is surjective and 

Vn E Un Vb ED Va E A: b = o:(a) => n(b) = a(ru(a)). 

That. is: a is a homomorphism with respect to r. 

When A[ a, r] => D, the triple V = (a, r, D) is called a (dynamic) view of A, and A is ~aid 
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to be the base. The clements of A arc sai<.l to be base states; the dements of n, are called 

view states. The members of UA are callP<.l base operations; the elements of Un are 

called view operations. 

DEFINITION 2.4. Let D = (D, En) <.lcnote a database. For static views D[n] *A, we 

can <.lefine an equivalence relation == as follows: 
0< 

'v'dl, d2 ED: dl =
0
= <12 <:? n(dl) = a(d2) 

that. is, =-=o= groups together the states of D which COI"l"<'Spond by a to the same state of n. 

For auy <lata abstraction A, we cau define two graphs: 

DEFINITION 2.5. The natural transition graph TA connects sta.U•s of A a:-: follows: 

TA(al,a2) <:? (3u E UA: u(al) = a.2) 

that. is, al is conuectcd to a2 iff there exists au update operation of A, which maps the first 

state iuto the second. TA(al,a2) in the rcst of the paper will he denoted as al - a2. 

DEFINITION 2.6. The nat.ural connection graph CA of A is t.he tr:m:;it.ive closure 

of TA Thl' followill g i:; inunt>diatl'ly to sec: 

Cn(al,a2) <:? (3u E EA : n(al) = a2) 

that is, al is comH•ctcd to a2 if there exists an update expression of D, which maps the 

first state into the S('coud. CA(al,a2) iu the n~st of t.lH' paper will he <knoted as al -*- a.2. 

W<· will tul<' t.h(' uot.at.ion al =*=> a2 t.o <'Xprcs:; tlw disjunction : (al -*- a2 Val = a2). 

The d<•llnitiou of the two graphs arc nsdul in or<lcr to charact<'rir.c some properties of data 

ab:st.ra~tion:i. 

DEFINITION 2. 7. Au ah:;trad.ion A i:-~ cyclic ilf 
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that is, if state al can be up(lated to a2 then there also exists an inverse update expressi<;m 

which tram;forms a2 to aL 

Each of the above defined graphs To and Co refers to a single data abstraction" 

When an abstraction D (base) is used to implement an abstraction A (view), two other 

graphs arc defined, which are useful to represent the effects of the tran~lation of the opcra­

tious of A into operations of D. 

DEFINITION 2.8. Let D bf' a data abdraction amllet V = (n~, r, A) be a view of D. 

TlJ<• Transition Graph induced by V on D, T 0 v. is Jefinc(l as follows: 

Tov(dl, d2) ~ 3u E UA: ru(dl) = d2 

that is, two statf's of the baseD are cmmf'rt.ed by T 0 v, iff tll<'re exists a.n updat<' operation 

of t.lH' YiC'W V, tll<' trauslation of which map:-; tlw first base stat<' into the sPcond. In the rest 

of tlH' paper, Tov(dl, d2) will be llcuoted by dl -v-+ d2. 

DEFINITION 2.9. L<·t D be as in tlH' ahoy(~ d('fiuition. The Connection Graph 

induced by V on D, Cov, is defined as follows: 

Cov (dl, d2) ¢> 3u E EA : ru(d L) = <12 

that is, t.wo states of the ba.•w D are conu<'d.ed by Cov iff there exist.s <m npdat.c expression 

of tlw vi<'W, the translation of which nmps tlu• first has<' state into t.h<' S<'<'on<l. In the' n•st of 

the paper, Cov(dl,d2) will he denoted by dl -*V-+ d2. Wh<~nevcr we want t.o express the 

di:o~juudion (<11 -*V-+ d2 V dl = d2) we will write dl =*V=? d2. 

A Yi<~w V = ( o:, r, A) impl(~ltl('HI;<'d on a b<lSl' D may haY<' soJJH' iui.Prest.inl~ prop<•rth•s with 

n~gard to it.s bas(~. We will now dl'line some of these propt>rtics using the transition aml 

connection graphs iudnccd by V on D, 

DEFINITION 2.10. The vi('W V preserves connections iff 

Vdl, d2, d21 E D : ( d2 =a= d21 
/1. ( dl -*V-+ cl2 A dl -*V-; d2')) ~ d2 = d21

• 
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That is, from a given state of the base, it is not possible to reach in the connection graph 

induced by V on D two different states which reprcst>nt the same state for the view. 

DEFINITION 2.11. The view V preserves loops iff 

'v'dl, d2 ED : ( d1 = ... = d2 1\ dl -*V-+ d2) => dl = J2. 

This rncnns: if an update expression leaves unchanged the state of the view (loop), then its 

translation leaves unchanged the base's state. 

Note that the propertit~s of preserving com1ections and of preserving loops do not imply one 

another. In figure 2.1 we show a database (with ouly three stat.<·s) auJ a view (with two 

statcs) which pre:wrves loops hut not conucctions. Fignre 2.2 shows a database with a view 

preserving connections hut not loops: 

DEFINITION 2:12. The view Vis consistent iff V preserves connections and preserves 

loops. 

LEMMA 2.1. V is consistent iff 

Vd1, <12, d2' E D : ( d2 =;_i= d2' 1\ tll =*V=> d2 1\ d1 =*Y=> <12') => d2 = <l~'. 

PROOF. The easy proof of this lemma is omitted. 

As we aln•ady stated iu the introdndiou, the cla.-;s of consistent views is of highly theoretic 

and applicat.iVl' import.aucc. Sel'tion 5 is d<'dicat.<•d to <·xplain awl prove the pn~pcrties of 

cou::;isl.t•nt. vi1~ws. Let us, howev<•r, aul.idpat.t~ that. if a view V = (n, r, A), ddhu·d on a 

database D, is consistent then the following property holds: 

ve1.~2 EEA, 'v'a E A, 'v'd ED: 

((lr(d) =a 1\ ~l (a) = 6(a)) => r~l(d) = r6(d)). 

Informally, this property can be iut<~rpret.cd as follows: If we arc able to give a functional 

specification of a complc•x view update, say by a function F which maps each view state 
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a E A into an updated state F(a) E A, then all possible view update expressions ~1, ~2, 6, ... 

which implement preci:sely the function F have equivalent translations under r. A functional 

specification of a view update is therefore sufficient to define the translation of the update. 

It is therefore not necessary to inspect the particular sequence of operations of the view 

update progral'I!. 

Clearly, consistency is a very desirable property which makes a view much more accPssible 

for theoretic a.I1alysis and more tractable for practical management. 

The above quoted property will be proved in a more general form in sl'dion 5 not only for 

view update expressions, but for the more powerful cla .. 'ls of "view update programs". Let 

us now proceed by defining another important property of views. 

DEFINITION 2.13. A view V partitions the base D iff it is pos:sibk to d('composc D 

into a family of nonempty s<'ts Dl, ... , Dk, with i -:f. j => Di n Dj = <P and Dl U D2 U ... U 

Dk = D, such that the following properties a) and b) hold: 

a) (i -:f. j 1\ diE Di 1\ dj E Dj) => -,(di =w=> dj) 

b) Vl ~ i ~ k: {dl,d2 E Di 1\ dl -:f. d2) => u(11l) -:f. r~(d2). 

LEMMA 2.2. If a view partitions the base then it is consistent. 

PROOF. Assmuc the vi('W V = (a, r, A) partitions the base D but. is not cou:;isteut. 

Then, by Lemma 2.1, there exist dl, d2, d2' E D, such that. dl =
0
= d2 1\ dl =w=> 

d2 1\ dl =*Y* 112' 1\ d2 =/- d2'. From Ddinit io11 2.13.;L it follows I hat d L, d2 mHl d2' are 

all iu the snmt' comporwnt, say Di. Dut this is iu contradiction to Ddiuitiou 2.13.b, siuce 

there it is required a(dl) -:f. a(d2). 

Q.E.D. 
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LEMMA 2.3. If a view is cyclic and preserves loops then it partitions the base. • 

PROOF. Assume that V = (a, r, A) is a cyclic and loop preserving view of the base D. 

It is easy to see that the relation =*V=> then becomes an equivalence relation on D. Let 

D1, D2, ... , Dk denote the equivalence classes with respect to =*V=> , i.e.- the clements of 

the quotient algebra D/ =w=> . We will show, that D1, ... , Dk form precisely a partition 

into :mbsets of D as required by definition 2.13. Property a) of definition 2.13 holds trivially 

by the definition of D1, ... , Dk. Assume that property b) docs not hold. Then there exists a 

Di and d1, d2 E Di such that d1 =f. d2 and o{Jl) = a(d2). From d1 =*V=> d2 it then follows 

that there exists an npdntc expression u E EA, such that n(a(cll)) = a(d1) and ru(d1) = d2. 

Dnt th<.'n, since V preserves loops, it must hold d1 = d2, which iH a contradiction. 

Q.E.D. 

N otc that. a view, which partitions the base is not necessarily cyclic (examples are given in 

the next section). Therefore we will also consider the class of views which arc both cyclic 

and partition the base (this class is n proper subcla~s of the class of views which partition 

the base). 

. 
In figure 2.3 we give an overview of the indnsion relationship between the diffcrPnt classes 

of viPws defined in this section. 

We can smmwlrizc our results about the cla . ..,sifkatious of views in the following theorem: 

THEOREM 2.1. 

a) If V pal't.it;ious th<' base t.hm V is cou8ist<'Ht (L<'mrna 2.2). 

b) If V is ccmsistcut then V prcs<!rvcs loops (Dcf. 2.12). 

* In [7], a property "V siices the ba.'lc" has been defined, which is more general than the 

property "V partitions Lhc base". In the present paper, the slicing properLy will not be 

used. 
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c) If Vis consistent, then V preserves connections (Dcf. 2,12). 

d) If Vis cyclic and preserves loops then V pnrtitions the base (Lemma 2.3). 

A pictorial representation of this theorem is given in fignrc 2.4. This figure also helps to 

find all transitive consequences of the ass~rtious stated in Theorem 2.1, such as for example: 

If V is cyclic and preserve loops then V preserves connections. 
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3. A COMPREHENSIVE EXAMPLE 

This section is entirely dedicated to the presentation of a comprehensive example of a 

dat;ibase ou which different views arc defined. In the next sections we will use this example 

to emphasize some problems and to illustrate our results. 

In the following, we assume that the reader is familiar with the elementary concepts of the 

rdatiorw.l data model [17], [24]. In particular, W<' use the following notation: Let R be a 

relation, t E R a tuple of R and A au n.ttrihnte of R, then t.A dcuotes the value of the tuple 

t for th attribute k The projection of the rdatiou R to attribut<~ A is <knot.<•d by R[A]. A 

tuple or a relation is explicitly rd<'rcuccd by <·udosiug its attribute values i11 a.ugk brackets, 

e.g. (i, j, k). 

Cousi<ler a relational database STORE, which maiutaius information abunt the type, name 

and price of difft•rcnt products that arc for sale in a store and about the singlc pieces of each 

prodm t which arc availabl<' in the warehouse. 

The database STORE consists of two relations DILL aud PIECES with the following 

sch<'Illas: 

. DILL : (PHODUCT#, NAME, PRICE) 

PIECES : (PRODUCT#, PIECE#:, DHOKEN) 

The single attributes have the following meaning: 

PRODUCT# : au integer from 1 to 100 identifying a product-type. 

NAMI~: t.lte name of a prodnct. 

PRICE: the selling price for one pice(~ of a product. 

PIECE#: a number identifying each single piece available in the magazine. 

BROKEN: a boolean value indicating whether the pi<.'Ce is broken or not. 

We assume furthermore that th<~ database is subject to the following integrity constraints: 
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a) (PRODUCT#, PIECE#) is n. key for the relation PIECES. 

b) PRODUCT# is n. key for the relation DILL. 

c) Vt E BILL(1 ~ t.PRODUCT# ~ 100) A V1 ~ i ~ 100 3t E DILL (t.PRODUCT# 

= i). This means, that DILL always contains 100 rows, one for each 1Jrodnl't-type. 

d) Vt E PIECES 3t' E DILL(t.PRODUCT# = t'.PRODUCT# ). Thb means, that for 

each pic•ce, the corre:.-;poudiug product is described iu the n•lat.iou DILL. Noh· that the 

conv<'fs<' is not rwcessarily true: For :c-ome product description in DILL, th<Te might 

exist uo piece in PIECES. 

STORE is t.he set of all kgal states of t.he database. A d<\tabase state d E STORJ~ cousists 

of a pair (b, p), where h and p ar<' legal instances (with r<'spcct to t.lw above integrity 

constraints) of DILL and PIECES. Furtherworc, kt PIECES dcnot<• the set of all !<'gal 

states of the relation PIECES: 

PIECES= {b I (b,p) E STORE}; 

awl let DILL denote the set of all legal states of the relation DILL : 

DILL= {pI (b,p) E STOTI.E). 

We a.."!RliUH' that all comp11t.able databaH<' operations, Rtl<'h as ius<'rtiou, <1<-l<·t.ion an<l11pdat.ing 

of t.npk:;, a.-; well as coiHlHioual comhiuat.ionH t.IH·n·of an• allow<'d npdat<~ op<•rat.~olls on our 

clataba .. -;e. Let n denote the Hd. of all th<·sc op<•ratious, then our database is given hy the 

data abstraction STORE = (STORE, n). Note, that. siun• n is cl<·fin<·tl as the c·omplete set 

of all possible opcrationR, the natural transit.ion graph T STORE connects every pair of states 

of the base set STORE in both directions (this hold:,; also for the natural conuc•ctiou graph 

CsTonF., which, iu this ca .. ~c·, is equal t.o Ts-ronE)· 

Let ns now dc•scribc six vic·ws Vl, ... , VG of this dat.aha ... -;e. As defined in t.he previous :;cction, 

each view consists of a triple ( Lt, r, A), w her<' a is t.he abstraction function 

a: STORE- A, 

which a.s~mciat<•s to C'ach legal state of the STORE database a stat.<' of tlH' view; A is a data 

abstraction (A, U A), wlwrc A is the set of view states and U A is the set of npdak op<'ratious 
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dcfincu on A; r is the translation of each view update operation into an update expression 

of th<' Jatabase STORE. 

description: This vlew "sees" at each moment the present state of the relation PIECES. 

The ;;tore can acquire new piece:; of each product, by issniug the operation DUY[x, y, r,], 

where x <lesignat<'S the product number identifying the product type. y the piece number 

of t-lH' new piece and " indicnte8 whether the uew piece is brok<~u ot· not ( th<· viC'W thus a.l::;o 

coll~<·nts to acquire broker. pieccR). Formally, for ('n.ch diffcn'ut triple (x. y, :~.), TIUY[x, y, 11] 

is i\ diff<'n'ut view np<l<\tc OJH'ra.tion. 

Abstraction function a1 and view state set A1: 

Let d == (b,p) E STORE; a1(d) = at(b,p) = p. 

A1 =PIECES 

Set of update operations U 1 : 

U 1 = {DUY[x, y, z]l x, y E INTE(~ER 1\ 1 $ x $ 100 1\ (z = trnc V z = falR<')}, 

Rneh that for all rdatioual inRtance:; p E PIECES: 

DUY[x, y, :r.](p) =if (x, y) E p[PRODUCT#, PIECES#] then p el.~c p u { (x, y, :~.) }. 

Nutt:: INTEGER. denote:; a finite rang<' of positive integers. 

Translation function r1 : 

Ld. d = (h, p) E: STORE. 

r1DUY[x, y, z](b, p) = (b, DUY[x, y, :~.](p)). 

Thus the translation l<~nves the DILL relation invariant. 

description: This view serves to alter the information abont the stntc of mch piece avail-
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able in the magazine. A piece is broken or intact according to the boolean value of its 

attribute "DROKEN". Only the PIECES rdation is visible to th<' view V2 (this is jnRt as 

for Vl). Th<'re are two types of operations : DREAK[x, y] is issuetl when piece number y 

of product type x breaks during the storing phase. REPAIR[x, y] is issued, if piece y of 

product x was broken aud has been repaired. 

Abstraction function a 2 and view state set A 2 : 

Set of update operations Uz: 

U2 = {DREAK[x, y], REPAIR[x, y]j x, y E INTEGER 1\ 1 :S x:::; 100}, 

snch that for all relational instances p E PIECES: 

DREAK[x, y](p) =if (x, y, false) E p then (p- {(x,y,false)}) U {(x,y,tnw)} 

else p. 

REPAIR[x, y](p) = zf (x, y, tnw) E p then (p- {(x,y,tnw)}) U {(x,y,falsc)} 

else p. 

Transl<ttion function iz: 

Let d = (b, p) E STORE. 

r:!DREAK[x, y](h, p) = (h, DH.EAK[x, yj(p)). 

r2REPAIR[x, y](b, p) = (b, REPAin.[x, y](p)). 

Thus, as for view V 1, tlt<• trmudation !<•aves the DILL relation invariant. 

VIEW 3: The Inventory V3 = (n:J, i:J, (A:J, 1h)) 

description: This vh•w is dditH'd exactly iu the same way as View 2, with t.hc only 

difference that the REP AIR operation docs not exist, thus a transition between two states 

due to the DREAK operation is irreversible in view V3. 

Abstraction function tl:J and view state set A3: 
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Set of update operations U 3: 

Th = {BREAK[x, y] I x, y E INTEGER/\ 1 :S x :S 100}, where BREAK[x, y] is defined as 

for view V2. 

Translation function r3: 

Let d = (b, p) E STORE. 

r 3BTI.EAK[x, y](b, p) = (b, BREAK[x, y](p)). 

description: This view describes tll<' information visible to a vendor. We assume that a 

vendor has to know the description and price of each prod net (i.e. the compl<-te information 

coHtaiued in tlH' relation BILL), as w<'ll as the number of intact pieecs available for each 

product. The latter is an aggregate of information contained in the relation PIECES. We 

;u.;smHc, however, that the vendor is not concerned with piece mtml)('rs or with broken pieces. 

All this information is hidden to the vendor. The vc•ndor therefore sc<'s tlw BILL relation, 

ex!.t·tHl<'<l by a fidd QTY _AVAILABLE which for each protlnd. rc•pot·b; tlH' zmmber of not 

brok<'ll pic•ccs available. 

In onl<'r to sell om• pi<'c<' of product i, tlw V<'Il<lor issue::-~ the view opt•rat.iou SELL[i]. The 

nmul><'r of available pieces (i.<!. the value of t.he fidel QTY _AVAILABLE) thcu is decre­

mented by 1. If tlwr<' arc no available pieces for a spc•cific product i {i.e. QTY _AVAIL­

ABLE= 0 in row i), th<'u the Of><'ratiou SELL[i] has no effect. 

Thc·n~ are many ditfc·r<'ut J>O::o~sihilit.ies to t.rauslal.<' the• vic•w npclat.<' op<'ral;itHt SJt~LL[i] into a 

dat.aha:w npclal.<', :;iucc• in gen<'ral, for proclnct i then' will exist mauy available pieces, one 

of whkh should be diminat<'d from the database. For view V 4 W{' hav<' dmsen t.hc following 

update policy: from all intact pi<~ces, climinatt• the one with the lowest piece number. 
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This choice may be motivated as follows: Assume that pieces of each product arc acquired 

by as<:<'lHling piece numbers,* then, at each time a product is sold, the piece with thf' longest 

storing duration of this product is taken from the warehouse. This FIFO policy is very useful 

in practice, especially when a single piece's value decrements as storage time increases. 

Abstraction function (..t 4 and view state set A 4 : 

Let d = (b, p) be a database state. a 4 (d) = a 4 (b,p) = s, where sis an instance of the 

schema 

S: (PRODUCT#, NAME. PRICE, QTY _AVAILABLE) 

such that PRODUCT# is ;:t. key of s, s[PRODUCT#, NAME, PRICE] = b awl Vt E s: 

t.QTY AVAILABLE= <'ard( {xI x E p 1\ x.PRODUCT# = t.PRODlTCT# 1\ x.BROKEN 

= fah;;c} ). 

Set of upd.;,te operations U 4 : 

U4 = {SELL[i]l i E INTEGER 1\ 1 :::; i :::; 100}, where SELL[i] is defined as follows: 

Let s E A4 aud let ti E s denote the uniqnc htplc of s with t;.PRODUCT# = i, thcu 

SELL[i]{s) = lf t.;.(~TY AVAILABLE> 0 thtm 

(s- {ti}) u { (i, t;.NAME, t.;.PRICE, t.;.QTY __ AVAILABLE- 1)} 

else s. 

Translation function r4 : 

Let. d = (b, p) E STORE; Dd\ne for each i a :wt Miu[i](p) by: 

Miu[i](p) == { t E p I t.PRO DUCT# = i !\ t..DROKEN = false !\ t.PIECE# -:-:: minimum}. 

• This mNuts that for two elt•meut.s of tlw same prodnct. type, the oue with higher piece 

nmubcr has been acqnin~d after the one with the lower piece numh<~r. 
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Note that Min[i](p) is either a singleton or the empty set. 

We define the translation function r4 by: 

r4 SELL[i](b, p) = (b, p-Min[i](p)). 

VIEW 5: The alternative vendor's view V5 = (a5, r5, (A5, U5)) 

description: This view is equal· to view V 4 with th<' only difference that another update 

policy (translation function r 5 ) is usetl: When the op<'ration SELL is is::;ued, instead of 

clelctin:~ t.lw pit·ce with the lowt•st piece uuml><'r, this tim<', t.lw pi<'ce with the highc::;t. piece 

nnmh<•r is ddekd (i.e. sold). This policy corr<•spouds to a LIFO strategy. 

Abstraction function a 5 and view state set A 5 : 

Set of update operations U 5 : 

Translation function r5 : 

Ld d = (h, p) E STORE; Deline for Pl\<:h i a sd Max[i] (p) by: 

Max[ij(p) = {t E pI t.PRODUCT# = i I\ t.DROKEN = fals<' I\ t.PIECE/1: = maximnm}. 

Note that Max[ij (p) is <.'ither a singleton or the empty set. 

Tlw lrauslat.ion fu11diou T:J is th•linc..'tl by: 

r5SELL[i](h, p) = (b, p Max[i](p)). 

VIEW 6: The Price Setting view VG = (a6 , r6 , (A6 , U6 )) 

description: Through this view, the store's mmmger has the pos::;ibilil.y t.o llltHlify the 

sdliug price of each single product. Only the relation DILL is visible to the user of VG. 
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For each product x and for each (representable) integer y, an operation SETPRICE[x, y]. is 

defined, which sets the PRICE component of the record describing product x to value y. 

Abstraction function a5 and view state set A 6 : 

Let d =:= (h, p) E STORE. 

Set of update operations U5: 

U6 = {SETPRICE[x, y]l x, y E INTEGER!\ 1 :S x :S 100}, 

where SETPRICE[x, y] is defined as follows: let b E A6 , and let t denote the tuple of b 

with t.PRODUCT# = x; then 

SETPRICE[x, y](b) = (h- {t}) u {(x, t.NAME,y)}. 

Translation function r5: 

Let d = (b, p) E STORE. 

r5SETPRICE[x, y](b, p) = (SETPRICE[x, y](h), p). 

Note that among all vi<•ws that wc havc 1ldhH'<l, VG il'l the ouly 0111' whkh allow::; to modify 

the DILL part of the tlat.ahase STORE. 

Let us now classify the different views of this example according to the prorH•rt.ic::; defined 

in the previous section. 

1. V 1 is not cyclic, si11cc t.lwr<• exi::;ts uo operation (or I'XJH'<'HHiou) whkh could act as 

au iuvcrse of t.lH! BUY op<•rat.ious. 1'11<' BUY op<:rat.ious irn•vprsibly add tupl<'::i to the 

view. The view V 1 partitions the base: each class Di correspond::; to a different 

state bi of the rdat.ion DILL. For fixed bi, let 

For t.hill partition, it ill easy to wrify, that tlu~ properties r<•qnin~d by <h•fiuit.iou 2.13 

hold. 
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2. V2 is cyclic and partitions the base. The classes Di of the partition arc as for the 

view V 1. 

3. V3 is not cyclic, but partitions the base. Also for this view, the classes Di arc 

the same as for the view Vl. 

4. V4 is not cyclic and docs not partition the base. Nevertheless V4 is consistent. 

The fact that V 4 docs not partition the base can be shown by a counterexample. 

Figure 3.1 shows two states dl = (bl, pl) and d2 = {b2, p2) of STORE, as well as 

a third database state d. It clearly holds a 4 ( dl) = a 4 ( d2). Consider the operation 

r4SELL[1]. It holds:· r4SELL[lj(dl) = r4SELL[l](d2) = d. Assume, that V4 be 

partitioned. Since dl == d2, these two states must belong to two different classes Di 
a4 

and Dj of the partition {dl E Di and d2 E Dj with i # j). Since r.1SELL[l](dl) = d, it 

holds dl =W4=} d, therefore, by property a) of definition 2.13, it must hold: dE Di. 

On the othc~ hand, from r4SELL[l](d2) = d, we immediately deduce d2 =*V4=} d, 

and therefore, d E Dj. This is in contradiction to the disjointness of the sets Di and 

Dj (Def. 2.13). Therefore V4 is not partitioned. 

The consistency of V4 will be proved formally later in this paper. However, let 

ns <'Xplaiu iuforma.lly, w lty V 4 is con~istC'nt. 1f we know t.lu~ effect. of a view update 

program on a pmticulnr view statf', than we know how many pi(•res of each product 

have been sold. lly the particular up<lat<! policy V 4 (translation fuu_ction r4 ) we then 

also know exactly which pieces of each product have b<!ell sold: umncly those with 

the lowest PIECE# (provided they arc not broken). Thus any fuuctional specification 

of a view update program (expression) unmubiguously cl<>t.ermiues the translation of. 

this pro~mm into a dat.ah<l.sc update pro~ram. As we h<W<' alr<'a<ly n~mark<·d, this 

property is equivalent. to consistency. 

5. V5, for similar reasons as V 4 is consistent, but does not partition the base and 

is not cyclic. 

6. VG is clearly cyclic all<l partitions the base. The single cla8S<'S of the partition arc 
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corn•spond to different instances of the PIECES relation . Every different instance of 

this relation dctNmines a different class Di. 

The properties of the views Vl, ... , V6 are summnrizcd in figure 3.2. 
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4. CONDITIONAL VIEW UPDATES 

We have shown in the last sectiou that our algebraic model of databases and views can be 

used to represent qnitc rPalistic situations. HowcvPr, it is not difficult to sec, that the choice 

of the s .. t UA of update operations of view V = (a,r,(A,UA)) is critical in the seme that 

it may impose a serious limit 011 the rcpn•s<>ntability of vi<'W update program,; (abo view 

transactions). 

Considt·r for cxa.mph· the view V 4 of section 3. Suppose that a di<•ut wants to huy three 

pit•c<'s ol' protlnd 5, bnt if tlwr<' arc less pit•c.c•s availahk, the client prefer:< not to mak<' the 

deal and to look for another compauy. It is cl<•ar what tlw vendor has to do, in order to 

satisfy ,;nch a "cou<lit.ional" ret}ll<'St. He first mnst. inspect the pn•scnt st ;~t(• s of his view 

;mel r<'•td the rmml><'r of available items for product 5. If the number is Hot lPss than 3 he 

will issue the expression 

SELL [5] (SELL [5] (SELL[5] ( s))). 

If tlw nmubcr of available items is less than 3, then the V0udor leaves the vit•w unchanged. 

Tht• ov .. rall transaction can lH~ called a conditional update. We arc not. ahlc to rPprcscnt 

a cowlitioual update through the update op<'ratious or npdatc <'Xpn•ssiom; of our view V 4 • 

Of cours<', we conld add a s<•t. of new operal.ious to U.t, say {SELL[u,m]} which JH'rform 

t'X<lcl:ly t.lw ta .. -;k of our roudit io11al npdat.<·, llaJlll'ly l.n "sell" u pi<·ccs of product. m, only if 

u pieces of this prothtd arc available. Howev<•r, this woul<l he a very application dt!IH'Bdent 

IIlO<lifieation of tht• operation Set lJ4. 

R<·uwmher that for each update operation sd U, we have a corresponding set of uptlatc. 

cxpr<~Hsions E (St•<'l.ion 2). Wt• pref<>r to <'XtcJHl t.lw H<'t. of updatt' <'Xpr<•ssious E to a Het 

E 1 :J E, surh t.hat I~ 1 nmt.nins all po:;:;ible mudit.ioual 11pdal<~S thai. cm1 h<' buill. from the 

"primitive" update cxpr<>ssions of E. 

A ncc<'ssary concept. for the formali:.-.atiou of mudit.ioual updat<•s is the notion of predicate. 

A coudit.ioual update is cxccut.<'tl dt•p<'1H1ing on the result of Uw evaluation of a predicate 

ou a vit•w state. If A = (A, U A) is a <lata ahst.rart.ion, tlwu P A <leuotcs the s<·t of decid;lhle 

predicates over A. W<~ do not undertake the teclious task of d<·fiuing formally what a 
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decidable predicate on clements of A IS. The syntactical form of such predicates wo1l)d 

dep<'nd heavily on the formalism chos<'n for representing or manipulating the clements of A 

(for <'Xmnple the relational model). Semantically speaking, P A consists of all predicates p 

that allow to distinguish a particular subset S ~ A among others, such that for all clements 

s E S, p(s) is true, but for all clements s1 E A-S, p(:..') is false. The number_ of semu.ntically 

different predicates in PAis tlms essentially 21AI (we suppose that A is a finite set). Clearly, 

in most formalisms the same predicate can be syntactically represented in many (possibly 

infinite) different ways. Rather than prescribing a specific formalism, we leav<' the syntax of 

predicates to the dcsign<'r of a particular database system. When we usc pr<~dicate:; without 

naming a particular state, to which pn~di<"af·es ar<' applied, W<' will nse Chnrdt 's Lambda 

Notation for representing t.lH• predicate. For example tlw predicate which is trm• ill" the state 

to which it is applied is <'qual to state "a" can be denoted by 

Ax(x =a). 

In this expression, x is a placeholder for the argument. If this predicate is applied to a 

specific state c, the cxpr<~ssion "Ax(x = a) (c)" is eq11ivaleut to "c = a". 

The next ddini tion int rod ncPs more formally tlw basic concepts uc<•<l<~d iu order to deal 

with conditional updates. 

DEFINITION 4.1. Let A= (A, U A) be a data abstraction. 

a) ic:lA denotes the identity on A, P A denotes th<• sd of all evaluabh• prPc:licates on A 

b) Let HS define the IH'W compound operation "if [p, <' 1, c2]" with the following H<'lllantks: 

Va E A :if [p, <'t, e:,l](a) = if p(a) t.hcu cl(a) else <'2(a). 

The set ProgA of Update Programs on A is recursively c:lefiuec:l as follows: 
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• V e1, e2 E ProgA: e1 · c2 E ProgA (composition of operations) 

• ProgA does not contain mlY other operations 

c) A Conditional View Update is a view update program which contains a subex­

pression of the form if [p, ell e2J· 

EXAMPLE. Consider the view V 4 of Section 3. Assume a vendor wants to :>ell three 

pieces of product 5 if the lll1~1ber of availahl<' piecl's of product 5 hi equal to 3 or greater than 

3. Let avail(s,n) be a fuuet.iou which retums for each view state• s the munbcr of ;.wailablc 

pieces for product n. The conditional view update then can be formulated as follows: 

if [.Xx(avail(x, 5) 2:: 3), SELL[5]SELL[5]SELL[5], idA.]· 

Since we extended the set EA of view update <'Xpressions to the set ProgA of view update 

programs, we have to extend the domain of the translation fnuctiuu T to Prc>!!:A· In order to 

do this, it is sufficient to specify, how idA awl how conditional view updah·s arc translated. 

DEFINITION 4.2. (cxteu::;iou of r to ProgA) 

Let V = (a, r, A) be a view of D <md let A= (A, U A)· We (•xtcud T: EA -+·E0 to a function 

T: ProgA - Prog0 as follows: 

b) Vp EPA, V<.'11e2 E ProgA: r(if [.Xxp(x),<'J,e2J) =if [.Xxp(n~(x)),r(et),r(c2)J. 

Note that .Xxp(a(x)) is a predicate on D. 

It is easy to see, that this is the' mo::;t natural awl probably the only "reasouabh~" extension 

of T to ProgA. 
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For a dat <1base designer who wants to specify a translation function T, it is thus sufficient that 

he spcciJi.cs the translatiou of each primitive update in U A· By definition 4.2 this function 

T is unambignously extended to the set ProgA of all possible view update programs. 

DEFINITION 4.3. Let V =(a, r,A) be a view of D with A= (A, UA)· 

We define the conditional closure y+ of V as follows: 

v+ is a view of D; 

v+ = (a+' T+' A+) where 

A+ = (A, ProgA) 

r+ = T extended to ProgA as in definition 4.2 

Note that it holds v++ = v+. 

v+- is tile view which has as primitive op<'rations all possible update programs of v. 

In t.he following we will show that v+ is consistent iff Vis consistent. This is a useful result. 

It rau be interpr<'ted aH follows: The adtlitiou of conditional updates docs not alter the 

consistc•ncy state of view. It is therl'fore always sufficient to consi<lc•r n. view with primitive 

{non couclitioual) opc•ratioHH for a c·ousist.ency proof. View update programs can he used 

without tlw danger of inl.rodncing some hidden iw:om;istency. 

il<'fon• showing our result, let us prove <\ lemma. 

LEMMA 4.1. Ld V = (a, r, A) be a VH'W of D, then the two rclal;ions =*V~ and 

=*V 1 =? th•Hm~cl ou I5 <U'e the same. 

PROOF. We have to show, that for all d, d' ED: 

"~" this part of the proof is trivial, since EA ~ ProgA. 
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"<=" this part of the proof can be done by induction on the number of "if's" that occur 

in an update program of V. We only state the main idea of the proof: Let d =*v+=> d'; 

then there exists an update program g E ProgA such that. rg(d) = d'. If g does not contain 

any conditional subexpression, then g = idA or g E EA. If g = idA then rg = ido and 

d = d'; in this case d =*Y=> d' holds trivially. If g E EA then d =*V=> d'.by definition of 

"=*Y=> ". If g contains some conditional subexpressions, then consider g(cr(d)). It is easy 

to show that g(a(d)) = a(d'). Now consider the series of update expressions ei that occur 

in the program g and that arc effectively applied during the evaluation of g( a (d)). Combine 

those expressions in the right order into one single expression e. Clearly e E EA and it holcls 

C'(n:(d)) = n(d'). By how r is extended fr\)IIl EA to ProgA (dcf. 4.2) we also know that 

rg(d) = rc(d) = d'. From re(d) = d' we immediately concluded =*Y=> d'. o 

THEOREM 4.1. Let V be a view of D. Vis consist.eut iff v+ is consistent. 

PROOF. V and v+ have the same abstraction function a (dd. 4.3). The relations =*V=> 

and =*Y+=> on D coincide. Iu Lemma 2.1 we showed that the cousist<'ll<7 of a view V 

depends only on a and on =*Y=> . The tlworem follows imml'diatcly. o 

B<'fore conclndiug this section, l<•t us state a lt•mnm, whi<·h will be ns<·d in section 5. 

LEMMA 4.2. Let V = ( (~, r, A) be a view of D. v+ is consistent iff v+ is counectiou 

preserving. 

PROOF. It. suflices to show t.hat. if V1 pn•serves comwct.ious then V !- also pr<'S<'l'V<'s 

loops. R<'lll<'ll1lwr t.hat V 1 cnnt.aius idA as opt'ratiou aud t.hat r(i<lA) :=: idu. Suppose that 

v+ is connedion pr<•serviug but not loop preserving. It follows by definition 2.11 that th<'re 

exist dements d11d2 ED, such that a(dl) = (1(<12) and d1 -*v+-+ d2 and d1 i- d2. Since 

i<lo ( dl} = d 1 it also holds d1 -* yl---+ d1. This is iu contradiction with the assumption that 

v+ is connection preserving. 0 



5. PRESERVATION OF PROGRAM EQUIVALENCE 

AND CONCURRENCY 

The concept of view update program which was introduced in the lnst section is at the 

base of some fundamental properties of consistent views. In this s0ction we show that 

con:;isll'nt views have a uumb<'r of important- prcscrvntion properties. We will first consider 

the equivalence of update programs. We show that a view is consistent if and only if its 

translation function r trauslat<•s any pair of fuucl.ioually equivalent view updat!• programs 

into a pair of functionally equivalent databas<• update programs. Lat<>r we shall drn.w our 

attP!lt.ion to the prcs<.•rvatiou of concurrency prop<·rties. We will !lcfirw the conc<'pt of 

transaction and Wf' will show that the translation function r prf'scrv<'s couunnt ativity of 

trawmctions, non-int<•rf!•rcBcc and scriali:t.ability. 

5.1 PROGRAM EQUIVALENCE 

Let ns uow give a formal dcfini tion of functional equivalence of update programs. 

DEFINITION 5.1. Let e1 a11<l e2 he two update programs of a data aln;tradion A 

= (A, U A)· e1 and e2 an~ functionally equivalent iff 

If c1 a11d e2 arc functionally cqnivalt•nt, we write <'t = e2. 

DEFINITION 5.2. Let V = ((~, r, A) be a. view of D. r preserves equivalence iff 

If for a view V = (a, r, A), r prc:;<.•rve~ equivalence, th(•u we ahm say: V preserves equivalence" 

THEOREM 5.1. A view ill equivalence preserving iff it ill conllistcut. 



PROOF. 

"if" 

"only if" 
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This part of the theorem follows <'asily from the definition of consistency. 

Assume V = (a, r, A) is equivalence preserving but not roHsistcnt. By lemma 

5.2, v+ is not connection pr<'serving. Therefore there exist clements d, d1, 

d2 ED, such that 

d -*v+- dt 

a.ud d -* v+- <h 

and o:(dr) == <r(d2) 

a11<l d1 i- d2 

From this we i11fcr that tlH'n' 0xist. t.wo diffl·r('nt database update pro~ra.m:; h1 

and h2, h1,h2 E Prog 0 , such that ht(d) = d1 and h'!(d) = d2 aiHl such that 

h1 and h2 arc the translations hy r of two view update programs, respectively 

e1 and c2: 

ht = r(er) 

h2 = r(e2)· 

Clearly h1 and h2 arc uot fuud.ioually <'qnivah•nt, as they have diJfer<•nt imagl's 

in d. 

Not.in! that for ~'1 awl <'2 it. lwltlH: 

{This <'<ptation follows from the fact that r is a translation function). 

All.hon)!;h e, awl e2 arc~ <'qnivalt•ul. wil.h n•sp<!d. l.o t.ll<' si11~~lt· vi<•w :;l.at.<• n~(d), 

it does not JH'<"l'Hsmily hold that. <'1 awl <'2 ill'{' fuuctionally equival<'nt. They 

might differ with re~J;cct to oth<•r view state::~. We ther('forc cousl.rnct the 

following vi<'W update programs for f1 and f2: 

ft =if [.h (x = o:(d)) ,et,idA] 

f2 =if [,\x (x = o:(d)) ,c2,idA] 

It is clear that ft and f2 arc functionally equivalent view update programs. 



Let us examine their translations: 

T f 1 = if [A :c ( n (X) = o: (d)) , h 1 , id D j 

rf2 =if [.-\:r. (a(x) = o:(d)) ,h2,ido] 

20 

Clearly rf1 and rf2 arc not functionally equivalent since their images m J 

differ. Therefore V is not cquiYalence preserving. o 

Theorem 5.1 states that the class of consistent views is exactly thc class of views for which 

a functional specification of a view update ts sufficient in order to fnnctioually cktc•rmine 

its t rauslntion. 'This property is of highly practical rekvance. It ensmcs that a translation 

of a vif'w npdat<' program is cssf'ntially indepentleut. of the particnbr sC'qU<'Jl<'t' of the single 

opf'ral ions of the program, and that it only UC'pcnds on the scrnantics of thP view update. 

As long as update programs are at.omic actious, functionally cqnivalcut upLlatc programs 

might lH' interchanged without any probl<•m. Thc•rt'fnrC' a view programiiH'r who operates 

on a consistent view might change the st.ructmc of his view update program, for example 

in order to perform some optimization. As long m; he docs not change the semantics, the 

view update program needs not to be retmnslat<'d into a D<'W database npdat.C' program. 

This high l<•vd of iutl<'p<•ndt'IH:e between viPW and database makt•s a d;~tahase systPm umch 

mon• ;we<'ssihk for tht•ordical ;maly::;is. Corn•d.II<'HH proofs and verifica.l.ioll of ~lohal trans~ 

act.ious (possibly involving Jilfen•nl. vit•ws) can lH' don<' by nsiug formal sp<'cifit"ation tech­

niques. 

At tll<' entl of this S<'dion, we will give an example of a view which is not rousist.<'nt and we 

will show that in this case equivalent vi<•w update programs arc translated into database 

npdat.Ps which arc uol. <'<Ittivalcut .. 

5.2 CONCURRENCY 

Let us now draw onr attention to the concurrency problem. Control over concurrency is 

one of tlw most important features of advanced d;lt.l\ba.o.;e lllc'l.W\gt'lll<'Ut systems [28,20,30J, 

but the interaction between views and concurrency has hardly ever been analyzed. 
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There are three main questions arising when the interaction between views and concurrency 

control is con~idered: 

1) How can a set of concurrent tram;actions, operating on the same view, be correctly 

translated to a set of (hopefully) concurrent transactions on the base? 

2) How can a set of concurrent transaction:; on diffen•ut views be correctly trau,;]atcd to 

a set of (hopefully) concurrent transactions on the base? 

3) What is the intf'raction (or side eff<•ct) bctwccn trausnctions of difff'n•ut viPws imple­

liLCHted on the same ba::;e? 

In thi::; pap<•r we limit oursdvc::; to con~ider the' fir~t. question. We will ~how that t.lw 

tran~act.iou function of consi::;tent views pr<·servcs commut.ntivit.y, Bon-iniPrft>renc<' and seri­

alizability of transactions. 

Defore we can proceed, we have t<J define our concf'pt. of transaction and the above men­

tioned propcrtie::; of pairs of transactions. 

Siuce we are mainly iut<·n~stc<l in tramdatiug updates, we define the coucmT<'IICY prop<•rtics 

of two tran~action~ with n•spect to tlw <'ffed. that. Uwsc llp<lat.cs have 011 t.ll<'ir data ab::;trac­

tiou (<·it.h<·r vi<•w or dat.aba.-;e) and nut with r<'SP<'d. to th<• outputs !.h;tt the trausnct.ioni:! 

may i:~snc to the vkw nscr. 

DEFINITION 5.3. Let A = (A, U A) be a data ahstrru:tion. 

a) A transaction Ton A is a tiuit.e s<>riPs of np<lat.<' programs Pi: T = [Pl, p2, ... , p11 ], 

wh<·n~ Pi C: ProgA, for l ~ i ~ u. Tltt• siu~l<' programs Pi an~ also calkd atornic 

actions of T and it is <UlSIIIUed !.hat <'ach Pi be 1wrforuwd "atomkally" and without 

the parallel interaction of any other programs. 

If T is a transaction t.hcu T 0 de110tes the view update program which is the result of 

the composition of all atomic act.ious of T: 

To = P 1 · P2 · · · Pn 
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Note that it holds (T 1 · Tzt = TJ' · T2° 

b) Two transactions T 1 and T 2 arc commutative iff it holds: 

A mix ( n.l::;o "schcdnl<•") of a pair of trausactiom T 1 = [P 1, ... , Pn], T 2 = [p~, ... , P:n] 

i:; a transaction T = [p~,. 0 0, p::.~ml snch thn.t each p;' belongs either to T 1 or to Tz 

<Hld 

Vl ~ i < j ~ 11 + m, Vl ~ h, k ~ n: 

(p:' = Ph E T 1 1\ pj' = Pk E T t) => h < k 

Vl ~ i < j ~ u + m, Vl ~ h, k ~ m: 

(p~' = Ph E T 2 1\ pj' = Pk E T 2) => h < k. 

Mix(T 1 , Tz) denotes the set of all trausact.ion mixes of T 1 and Tz. 

Two trausactions T 1 aud T 2 M<' non- intcrfcaring (or cornpletcly concurrently 

executable) if the following prop<'rt.y holds: 

Note that if two transactions are non iut.crf<'aring, they arc also collmmt<\ti vc, since 

T2 · T1 repr<'s<'nts a particular mix of Tt and T2. 

L<'t. T h<' a mix of T 1 aiHl T 2 . Tis said to lH~ serializable if it holds 

Note thn.t the concepts of non intcrfer<~nce and scrizability are easily generalizable to 

sets of more than two trmumction!'!. For the sake of simplicity, we jnst cousi<ler pairs 

of transactions in this paper. 

c) Let V = (a, r, (A, UA)) be a view of D and letT= [p1, ... ,p11 ] be a transaction ou 
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A. We then define the translation rT ofT to D as follows: 

r(T) = [r(pl), ... ,r(pn)]. 

Note tlwt it holds r(T ) = (r(T)) 0
• 

d) The translation function T of V is 

• co:mrnutativity preserving iff any pair of commutative transactions T 1 , T 2 is 

translated by r into a pair of commutative trawmctions r(T I), r(T 2 ) on D. 

• concurrency preserving iff ;my pair T 1 , T 2 of 11on-intcrfemiug trau~actious is 

translated by T into a pair of 11011-iutcrfcariug transactions T ( T I), T ( T 2) on D. 

• scrializahility preserving iff any scriali:t.abk nux T of trammct.ions T1 , T 2 is 

translated by r into a scriali:t.able mix r(T) of r(T I) and r(T2 ). Whenever r has 

a preservation prop<'rty, we also ::;ay that V has this property, for instance if T is 

comrmttativity preserving, then W«' :my that Vis a commutativity preserving view. 

THEOREM 5.3. Any consistent view is 

a) comumtativity prcs<'rving 

b) COilClll'reJU:y prCM<'l'ViJI!~ 

c) seriali:t.ability presPrving. 

PROOF. Let. V = (ex, r, A) be a couMisteut vi<'W of D. Dy theorem 5.1, we know that Vis 

<'<}ltivakun' prPH«'rving. 

a) Assume that T 1 aud T 2 me two cotmnutative vww transactions: (1\ · T 2 ) 0 = 

(T 2 · T 1 ) o. Therefore it must hoi <.I 

Thus 

r(T~ · T2) ::: r(T2 · Tn 
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and hence · 

and 

and finally 

thus r(T t) and r(T 2) ar<! commutative transactions on D. 

Q.E.D 

b) Assume that T1 = [Pll ... ,p 11 ] and T2 =[pi, ... ,p~.] arc two nou-interf<'aring trans­

actions on V. We have to show that rT 1 and rT 2 are noll intcrfcariug tnmsactions 

on D. LetT~ be an arbitrary mix of rT1 and rT2. T' is of the form [rp~ .... ,p~~+n.J 

where p"i E T1 or p"i E T2 for 1 ~ i ~ n + m. Let us ddiuc a trarumctiou T ou A a.s 

follows: 

T [ II II l = P 1' · · · 'Pn-1-m · 

Clearly T is a m.ix of T 1 and T 2 and it holds rT = T'. Since T 1 awl T 2 are not 

iut<'rf<'aring, we have T = T 1 · T2. Since V is <'<l'tivah·w·<· pr<~s<>rviug, it imm<'diat<•ly 

follows: rT = r(T1·T2 ) which <'aulH' rewritt.<~ll a. .. o.;: T' = r(T 1 ·T2). Sinn· r(T1·T2) = 
r(T 1) · 1·(T2) we finally gd T' = r(T 1) · r(T2). 

Thus r(Tl) and r(T2) are nou-int<~rfeariug. 

Q.E.D. 

without l<~8s of geu<•ralit.y that T = T 1 · T 2· It thcu follows 

Therefore r(T) is scriali:r.ahl<! with respect to r(T 1) a.nd r(T2). 

Q.E.D 

0 
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Notice that the properties of commutativity, non-interference and serializability arc defined 

iwlcpewlently of particular operations, such as, for example, lock and release operations of 

diffcrcrcnt grn.nularitie~. 

Lock awl release primitives can bc modeled explicitdy as particular clements of the ::;et of 

operations U A of a data abstraction A. Clearly the static data model (the set A) has to 

be predisposed for locking. For example, if the possibility of write-locks at the granularity 

of relations is desired, then to each datarclation of the static model should be attached 

a bookan value with the function of "locking flag". Locking and releasing then can be 

mockkrl by setting and resetting this flag. Update operations in such a model arc programs 

which iLre conditional ou the value of loc~iug flags. 

Note that the preservation of commutativity, concurrency and s<•riali:~:ability arc necessary 

but not ;mfficient conditions for the consistency of a view. It is possible to construct "patho­

logical views'', which arc for instance commutativity preserving but. not consistent. 

We conclude this section with a brief example of a non consistent view. 

Cousi<kr tlw database of s<~ction 3. Let view V7 lw as view V5 with adclitional operations 

DUY[i] clcfiued as follows: 

Vi<~W op<·ratious: DUY[i] increments t.lw QTY-AVAILABLE valn<' for product i by 1. 

Translation: r(DUY[i]) = DUY[i] ndds a new tuple for product i to the PIECES rela­

tion. Let d be a database state. Let max(i, x) be a function which for a 

database ~tate x retums the higlH•st value of PIECE# that exists in st.nt~ 

x for product i (if there is no pic<"e for product i t.ltt'll max(i, x) = 0). 

The DUY[ij op<'ration applied to a database state d then adds the tuple 

(i, lll<L'C(i,d) + 1, fals<~) to the PIECES n•lation. 

Consider the <latabase and view state dcpicked in figure 3.1 and the following two view 
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update programs Pt and P2 for V7: 

p 1 : if [.Xx(avail(l,x) 2:: l),SELL[l]DUY[l],idA7 ] 

P2 : if [.Xx{avail(l, x) 2:: 1), DUY[l]SELL[l],id A7 ] 

where avail(n,x) is a function which returns the number of available pieces for product n 

an<l for view state x .. 

Ckarly p 1 <md P2 arc functionally equivalent view updates. Unfortunately this does not 

hold for the translation: Consider the database state d2 of figurc 3.1. r (p 1) will first delete 

the piece with uumber 087 from the database and thcu introduce a new piece of productl 

with piece umubcr 067. r(p2) first introduces a new piece with munbcr 088 for product 

mnnbcr 1 and then deletes this piece. Therefore our view V7 is not equivalence preserving 

aml tlms not consistent. 

It is easy to see that V7 docs not preserve commutativity; consider for example the two 

transactions 
T 1 = [SELL[l]] 

T2 = [DUY[l]]. 



6. THE TRANSLATION OF VIEW UPDATES 

In this sC'ction we will discuss some aspects of t.ll<' well known view up<late problem. Let us 

first rC'fornmlate this problem, using the notation awl formalism iutr<>~lnceu in section 2. 

Let D = (D, Un) he a database, let A= (A, lh) be a data ab~traction snch that there Pxists 

a surjective function a:D---+ A. The pn.ir (a, A) then constitutes a static view uf D (uef. 

2.1). The view update problem can be stated by m<~ans of th<' following thre0 qw·stious: 

1. Is it pot-:Hible to find a trcu\slation function r, such that the trip!<· (n, r, A) is a (dy­

nmuic) view '! 

2. Which conditions ou a and on UA mnst be satisfied m oruer to guarantee that a 

trauslatiou r exists? 

3. If there are different possibilities to choose a t.ran~lation r, how can we d1aracteri;r,e 

the dlffereut possiblt! choice~:~'! 

The pioneer work in solving the view UJHlat(' problem has b<'en carrie1l ont by F. I3ancilhou 

aud N. Spyratos. h1 thdr pap<'r [1] it "is shown how the choice of au update policy r ran 

be• made by ckdding which portions of tlw clat;~basc• should r<'main cou::;tant (com pl<'m<·ut.). 

Choosing a compleuu·nt that. n·maius invariant. uuclc•r all tran:;lat<•d op1•ratious a~:;igus un­

ambiguous semantics to a view upda.t.e. Formally. a complt'meut of the static vi<~w (a, A) 

can bc~ defined as a mapping f-J as follows: 

·DEFINITION 6.1. Let (t~,A) he a static view of a dataha:w D = (D, Un). I!et {J be a· 

Hllrjccl.iw fnudion from D onto a :-;1'1; n, jj: D ---? IT. fl is a COIHplenwnt of ~~ jff 

Vd, d' ED: a( d)= a(u') => {J(d) i= jJ(<l'). 

It is easy to sec that, if jJ is a complement of a, then the knowledge of o~(d) and of fi(cl) 

uniqndy det.ermiJlt'S t.he clat.ahasc Htat.(~ d. ThnH f-J is in<l<'<'d a mapping "n>mplcuwntary" 

to a, and the knowJe<igc of both, l.Y auu {3, iH suflicitmt for computing the UC\tabase. 
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In [1], tht> property of a set of update operations U ~ U A to be translatable under 

constant complement {3 is refprred to as the {3-translatability of U. 

DEFINITION 6.2. U is {3-translatable iff V'd ED, V'u E U 3 v E Eo 3d' ED: 

(v(d) = d' 1\ a(d') = n(a(d)) 1\ f:J(d') = {J(d)). 

Our <ldinition of {3-trnmlat.ability differs slightly from the original ouc [1]. lH•rmtsc in our 

modd the datab<lse Dis ;m alg<'hra with a well ddiw•1l s<'t Uo of possibl(' OJH'rations, while 

in [ 1] a dalahas<' is a s<•t of states ou which all computable- op<'ratious Juay be p«'rforrned; 

therefore we mu::~t require the cxist.eur<· of v, surh that v( d) = d'. This difference does not 

esscutidly chang<• the coucPpt. of {:J-trauslat.abilit.y. Our algebraic ddiui tion of a <!at abase 

is mor•' g<'ncral and has the ;ulvant.agc that it may l><' US<'U in "cascade:;", i.e., a. vi<·w of a 

<lataba::;e may act as a base for a d<'l'pcr lcvd viC'W to constitute a layerPd sysL<'lll of views. 

We cau, more g<'tH•rally, cldhw t.h<' {:J-translatability of a static view (a, A) by : 

DEFINITION 6.3. ( n, A) is {1-t.ranslat.ablc i1f fJ is a compkmmt of t:t and the t•utire set 

of view npdate op<•rat.iou:; U A is {:1-trau:~lat.ablc. 

DEFINITION 6.4. If (n,r,A) is a vi<'W of D, awl /1 is a complmwnt of o:, snch that 

V'n E UA V'd CD: [j(ru(d)) = fi(d), t.hcn we say that the complement {J is constant under 

translation r orr translates under constant complement {3. 

If ( n, A) i::o~ {1-translatable for some complenwut {1, we also say that it. is translata hlc under 

constaul. cmnplentcnt. 

Among the results of Dandlhon awl Spyratos, we present. the two most import.aut ones, 

transli\t.cd into onr t<'rminology. 

PROPOSITION 6.1. If A is cydir all<l (a, A) is (:1-t.ranslatahk, then there exisb; exactly 

one traBslal.ion r such that V = (o:, r, A) is a loop preserving view of D and {'J is constant 
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under tramlation r. r is uniquely determined by f3 through: Vu E U A ru = ( o: x f3) ~ 1 

(no: x /3). (for more details sec [1]). 

PROPOSITION 6.2. If A is cyclic, then for each translation r, such that V =(a:, r,A) 

is a loop preserving view of D, t.hcre exists a complement fJ of o:, such that-

a) (o:, A) is /3-trm1slatablc 

b) the relation " = *V=> " is an equivalenc,~ relation 

e) tlw COlllJJlcmcnt fJ of (.X is given by: /J(d) = d wlH·n· J is the equiv-al<'llcc class of cl 

with re~pcct to =*V=> . 

Consider view V2 of the database-example defined in section 3. It i::~ ea::~y to sec, that the 

complement fJ2 of o:2 which corresponds to the translation r2 is as follow::~: 

Vd = (b, p) E D : {32 (b, p) = b. 

Clearly /32 is coustant under r2 , since hreakiug or repairing pieces docs not alter the DILL 

rdation. 

In a similar way, a complcuu•ut {J6 of o~ 6 which dd<•nuim•:-; r0 is defiucd hy 

V<l = (h,p) ED: fJ6 (h,p) = p. 

Clearly fJa is coustant under ra, since changing the prk<' of some pro<lnd:-; do<~s not affed 

the information contained in the relation PIECES. 

Note that. the static VH'WS considered hy Dandlhon aud Spyratos must h<• cyclic. Note 

fnrt.h<·rtuon• that. t.ll<'ir tlwory appliP:o~ only for lhP charad.c•ri~al.ion of looJI ]1Tt!.H:n1iny vi<'w:o~. 

Dy t.lH'orem 2.1, we thcn.fon• coudude that the vi<'WS t.n•ate1l hy Daucilhou and Spyratos 

arc exactly the cyclic partitiont'ng view.'1. This i::i the cla.o.;s of views corr<'sponding t.o the 

innermost area of figure 2A (or respectively figure 3.2). 

How<•ver, t.hc r<'<tnir<•mcut of cyclicity is not. strictly ll<'ccs:-~;'Lry for trauslat.iou nuder eoustant 
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complement. The following observations will lead to a first generalization of the theory of 

Bancilhon and Spyrat.os. 

OBSERVATION 6.1. The cyclicity condition of proposition 6.1 can be omitted. This 

is justified by the fact that the proofs in [1] for the odgiual formulation of proposition 6.1 

do not usc the cyclicity property. 

OBSERVATION 6.2. In proposition G.2.a, instead of requiring the cyclicity of A, the 

more general requirement that ( u, r, A) be base partitioning is sufficient. Iu the• context 

of proposition 6.2 this requirement is indeed more general, since we arc consid<·ring only 

loop preserving but not necessarily cyclic views. Any loop pre~erviug and cyclic view is 

partitioning, but there exist many interesting views whic·h arc partitioning (anJ therefore 

also loop preserving) but not cyclic (for example View 1 and View 3 of section 3). Note 

that the parts b arrd c of Proposition 6.2 arc• not necessarily valid if we replnce tlw cyclicity 

requirement by the more general reqnir<•mcnt of a Jmrtitioning view: the relation =*V=? then 

is not necessarily an equivalence relation. We can ovPrcome this clifiicuity by considering the 

equivalence relation incluc:t•d by the partition of the view, inst.<•;ul of considering =*V=? . 

Let <I> denote the cquivalen<:e relation on D iwlucecl by the partition. Parts "b and c of 

Proposition 6.2 become tnw if wc snbst.it.nte <I> for =*V=? . 

The above observations suggest that tlwre exist a strong connection between the concept 

of "partitioning view" and the couc<>pt of "translatability uud<•r constant complt>mcnt". In 

facts, these two concepts arc cquiv<\lent. This is formally stat(•cl in t.lw following theorem. 

TIIEOilEM 6.1. A vi<'W {u:, r,A) of 1m.·'<~ D part.it.ioll<'H t.lw lm:-~e iff Ll]('fl' exists a com­

plement {J of a, such that {"J is coust.ant uuucr trawslation r. 

PROOF. 

"if" Let {"J be a ("omplemmt which is constant under r. L(•t D = {J(D). L<'t Dx denote 

{J- 1 (x) fur x E D. Thus, Dx denotes the set of all (:lemcuts of D which arc 
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mapped to X by f3. It is trivial to verify that the family of sets {Dx I X E n} has 

exactly the properties of partitioning classes required by Definition 2.13. 

"only if" Assume (a, r, A) 1s partitioned. Consider the cqnival<'ncc classes Dt, ... , Dk 

which constitute the partition as defined in dcf. 2.13. Let f3 be defined as: 

Vd E D : f3(d) = d where d denotes the unique equivalence class Di, snch that 

d E Di. It follows trivially from property b of Definition 2.13 that f3 is a com­

plement. From property a of the same definition it follows that f3 is constant 

under T. 

Q.E.D. 

By thi~ simple generalization of Dancilhon and Spyratos' theory, we are now able to state 

the nptlatc S<'rnantics of our view V1 by defining the complement {31 as follows: 

{31 : STORE---+ DILL; V(b,p) ED: f31(b,p) =b. 

For the compl<'ID<'nt /33 of the view V3 it holds: /33 = f3t· 

Not<• tlJat, the views Vl awl V3 arc kiud of views which are not cousidcrcd in [lj because 

they ar<' not cycle. . 

W<' t.lms hav<· charad.eri?.cd t.he class of partitioning vi<~ws a.'! the claHs of view:'! whi<:h arc 

updatable uuder constant complcrn<'nt. Tlw equival<'ncc of these two uotious was quite obvi­

ouH. A more dilfirnlt problem is the charact<'ri?.ation of consistent but not partitioning 

views. By tlworcm 6.1 we kuow that such views do not. translate updates under constant 

complement. 

li'or example, l<·t. tul consider Vl<'W v 1 dditH·d in section 3 .. It is ca .. '!y to verify that the 

mapping {j4 ~uch that V(b, p) E D : 84 (b, p) =pis a complement of a4. 

{34 is in a sense the most. "reasonable" complement we can find, in order to express the 

information hiddeu to the tul<'r by a4. However, this comph~mcnt does not. remain constant. 

H looses inforrnation wh<'IH'Ver a nontrivial update op<·ration is isHtt<•tl. Morc geiH'rally, 

it is easy to show that every complement of a 4 looses information wlwn the view V 4 is 
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updated, using the strategy r4: when a piece of a product is sold, the tuple associated 

with the piece is eliminated from the database. This tuple rontains also the piece number, 

which is invisible to the view user. Therefore we can say that updating V4 causes a loss of 

information not visible to the view. Since the lost information was not visible to the view, 

it did bdong to the complement. 

Since we have shown that the class of consistent views is of practical relevance, it is necessary 

to define exactly what is the characterization of their update semantics. In the next section, 

we show how it is possible to extend the npproach of Dancilhon and Spyratos in order to 

captme the update semantics of the entire dass of consistent views. 



7. UPDATE SEMANTICS OF CONSISTENT VIEWS 

The basic idea of the theory developed in this section can be stated as follows. 

Let (a, A) be a static view of a database D and let {3: D-. B he a compkment of (a, A). 

We will structure the set D of complement. values by a partial ordering '·:::;", snch that it 

becomes a partially ord<'red set (pol:let). Iut.nitivcly, f3 ( d') :=:; {3 (d) has the following llH'<ming: 

All infornw.tion containc'cl iu ,B(d') is also contained in ,B(d), but (1(d') may coutain less 

information than ,B (d). 

W<' will furt.h<'rmore require that t.hc part ia.l ordering :=:; det<'nuiueH uuambiguou;•.ly ;m 11p-

-
cl<ttc policy. For this reason we will introduce the not.iou of r.r-,8-dccisivcncss {D<'f. 7.2). We 

will restrict the number of po:;sihle ord<'riugs $ on (J(D) by cousickriu!~ only n-{J-dcdsivc 

orderings. It will become dear later, that th<'sc orderings arc l:lllflirient to determine all 

consistent update policies. 

DEFINITION 7.1. Let (X, :=:;) denote a finite poset. Lc't a awl b he two dcmmts of X. 

Au dement r E X is au upper bound of a awl b with respc'ct to $ iff a $ c and b :::; c. If 

there <'Xi~:>ts au npper bomul for a and b then we write a T b else we write <\ t b. 

DEFINITION 7.2. Let. (a, A) be a static view of D, let {3 b(! a <"omplcment of a awl let 

":::;" be a partial orclcriug defined ou ,LJ(D). The partial ordering ~ is callcil (.\(-{3-decisivc iff 

Vd, d' ED: {(d -j:. d' A a( d) = a(d')) => f3(d) f- ,B(J')). 

We arc now able to iutrodnc<' our gcncralbmt.ion of the notion of (:J-t.ran::;lat.ability of Dan­

c-ilhou and Spyratos. 

DEFINITION 7.3. Let (a, A) be a static view ofD, let {3 be a complement of a an<llct ~ 

be au a-{3-<lecisive ordering on f3(D). A view update operation u E UA is j:J-:=:;-translatable 

itfVd ED, 3d' ED: 

d =*=> d' A a(cl') = u(o~{d)) A J3(d') ~ f3(cl)~ 
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If each update operation of the static view (a, A) is ,8-:::;-translal.able, then we say that the 

static view (a,A) is {3-:::;-translatable. 

The notion of ,8-:::;-translatability is the basic definition which is nPccss<liY for introducing tlw 

concept of "trauslation nuder loss of information." Informally, the c-ondition ,B(d') :::; ,8(d) 

states that the complement of an updated dat.aba .. ':lc state can IH'V<'r contain more information 

than the complement of the original state, if the database update is a translation of a view 

update. 

It is ca,:y to see, that {1-:::;-translatability is iwlPed a gt>ucruli:t.aLiou of ,8-tr;1ut:~latability a..~ <lc­

fiw·d ill [ 1]. Obsl•rvc that "=" cou~ti t.ll t<•s an n-/3-dccisive partial ordNin~ ou /1 (f)). ilaucil­

hon\; a:1d Spyrat.os' cmlc<'pt of {J-tram;latability tlH'reforc coiuci<l<·s with {1-=-trma~lat.ability. 

Iu the following, let us assume that (a, A) is a static view of D m1<l that ,8 <lenotcs a 

compl<·meut of a, su<"h that (a, A) is ,8-:::;-t.rauslatablc for a giv<'n pmt.ial ord<•ring :::; on 

{J(D). [This assumption is made for the following Ddinitiou 7.4, for Lemma 7.1 and for 

Definition 7.5]. 

DEFINITION 7.4. For each npdat.<• expn•sswn u E EA awl for <'ach database state 

J E D, W<~ define a s<•t Su,d a.'l follows: 

Su,.J = {<1' I d' ED 1\ <1 :;_*::...> <11 1\ n(d') == u(n(<l)) 1\ (J(d'):::; fJ(d)}. 

Su,<l consists of all database states iu which d is allowed to be transformed whenever u:( d) 

is npclat0d by u. 

LEMMA 7.1. card(Su,d) = 1. 

PROOF. Since (~ is fi-:::;-translat.able, Su,d is not empty. Assume, Su,d has two differ­

ent. ch.•mmts dl and d2. Dy the ddinitiou of Su,d it hol<k o:(d1) = o:(d2); since dl =/:- d2 

it tll<'r<•fore umst hold fi(dl) -:j:. fi(d2). Fnrthermort• it i::; ,8(<11) :::; .8(<1) aud {1(<12) :::; ,8(d) and 
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thus f3(d1) i ,B(dl). This is a contradiction to the a:-jJ-decisivcness of:::;. Therefore, Su,d ,is 

a singleton. 

Q.E.D. 

DEFINITION 7 .5. For each updi.l.te opcrat.iou u E U A, we d<·fiue a fun<:·tiou a 11 on the 

set ,B(D) as follows: 
au: ,B(D) -t ,B(D}; 

au{!J(d)) = fl(d') such that d' E Su,d· 

Tiy L<'mma 7.1 au is wl'!l ddinP< l for <'ach {-J and :::; . Since 0' u dcpc1Hls ou fJ awl on the 

particular partial ord('ring :::; W<' slwuhl corn·ctly writ<' af3.~~.u instead of a11 • For simplicity 

W<' just write a 11 , when fJ and :::; are <ldt•rmined by t.lw context. 

Informally sp<'aking, au is the np<latP t.liat must lH' applied to the complement, when the 

view is updated by au updat.t• operation u. 

We arc liually able to state t.lH' first import ant theorem of this section, which establishes 

the correspondence lwtw<'Cll ordcn•d complements of a static view on one hand mul update 

policiPs which <'Xteud the static view t.o a dynamic vi<'W on the other hand. 

THEOREM 7 .1. Assmll<' that. ( n, A) is a static vi<'W of D ;uul that f-J tlenot.t•s i\ t·om­

plcm<'llt of n, such that. ( n, A) is {J-::=;-translat.ahle for a giv<'n partial onkriug :::; ou {J(I5). 

The tr;m::;lat.ion function T, tldined below t'xteud8 the static view ( n:, A) to a dynamic view 

(a,r,A) ofD: 
r: U A -+ Eo Huch that 

VuE Ua: TU = (n X f:J)- 1 (ua X aufJ), 

wlwn• (1 11 is delinctl as in Ddinition 7.fi from fl mHl :::;. 

Tis called the {J-:S-translator for UA. 

PROOF. Let m1 first observe that T iH well defined, since (a: x fJ)- 1 is a function. This 

ht't:ause fl is a complcm<'nt of lk aud tlwrefore ( £1 x {-J) is om•-to-oue. Let d' de Hot(• t.lw only 

clement of the singleton Su,d· It then lwltls by D<·fiuitiou 7.5: 0'11 ({J(d)) = fJ(tl') awl by 



definition 7.4: u(a(d)) = a(d'). Therefore we have 

nt (d) = (a x I') -l ( u a x au ,8 (d)) 

=(a X ,B)- 1 (ua(d) X tru,B(d)) 

=(ax j3)- 1 (o~b(d') x ,B(d')) 

=d' 

Tlm:> Vd ED: ru(d) = d' such that d' E Su,d· 
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We• umst now show that a is a homomorphi:;m with respect to r (see <lcf. 2.3). W<~ have to 

:>bow that Vd E D Vu E th: (a = n(d) => ua = ru(d) ). Since rn(d) = d' E Su,.l· it holds 

o:(ru(d)) = a(d') = u(a(tl)). Dnt u(n(d)) = n(a). Then.fon• a(rn(c1)) = n(tl') = n(a). 

Q.E.D. 

COROLLARY 7.1. Let (o~,A) be a static view of D and r be a ,8-S-trauslat.or for UA. 

It holds: VuE EA, "Vd ED: ru(cl) = d' sneh that d' E Su,d· 

PROOF. For 11 E U A the i\SS<'rtion of this corollary W<J.S already proved in the proof of 

Tlworem 7.1. Tlw g<'uc•rali?.at.iou to EA follows easily by induction. 

THEOREM 7.2. If (a, A) is a static view of D and T is a ,8-$-t.ranslat.or for U A then 

the view ( o~, r, a) is consistent. 

PROOF. Assmlte ( o, r, A) is not consistent: there• exist d, d', d" E D with d' i= cl", such 

that <1 =*V=> d' a11<l d =*V::::> d" aJHl ct(d') i= n(<l"). Then ther<' exist v, w E EA, .stH"h t.hat 

d' == r v(d) aud <I" = T w(d). By Corollary 7.1. it. follows d' E Sv,tl and <1" E Sw,tl· Since 

r is a translator and a is a homomorphism wit.h respect. tor it holds: v(n(d)) = w(a(d)); 

therefore Sv,d = Sw,d and thus <l' = <1". Contradiction. 

Q.E.D. 

We haV(! thus shown t.hat all views ( u~, r, A), wlwre r is a ,8-S-trau::-!lat.or for U A are <'<>nsisteut. 

If we succC<'U in showing the couverse, i.e. that for all consistent views (a, r, A) there exist 
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/3 and :S such that r is a /3-:S-translator, then we have completely characterized the variety 

of consb tent views. 

DEFINITION 7.6. Let V = (a, r, A) be a view of D. Let f3can he a function defined as 

follows: 
f3can: D --+ 2 D (powerset of D) 

- I '} Vd ED: f3can(<1) = {d I d =*Y=? d · 

We call ,Beau the canonical complement of /3 for the view V. (This term is ju~tifi.ed by 

the follt)wing Lemma). 

LEM!\IA 7.2. If Vis consistent tlwn f3cnn is a complement of a. 

PROOF. Let a(d) = a(d') and d i= d'. Then it cannot hold d =*V=? d', since V is 

cousist.cut ( aml therefore loop preserving). Thus d' tt .Beau ( cl). On the other hand, by 

ddinitiou of f:Jcnn and of "=*V=?" it holds d' E f3cnu(d'). Therefore .Bcan(u') f. ,8.,,.11 (d). 

Thus f3cnu is a complement of a. 

Q.E.D. 

We now ~tate the second iwport.aut t hPon•m of this section. • 

THEOREM 7.3. Let V = (a, r, A) b<• a cousist.mt vww of D. Let f3c•m <h-uote the 

cauonkal complt•ment of a for V. Let "~" deuot.e t.h<' set-theoretic iuduHion. It then holds: 

UA is /3ca 11 -~-t.ranslatable aud r is th<• f3cuu-~-translator for UA. 

PROOF. 

a) .We first show that ~ is a-/3-dccisive, i.e. 

Vd',d" ED: (u' i= d" 1\ a(d') = a(d")) =? .Bc~u(d') t .Bcau(d"). 

• The s<•t t.lwordical induction ~ is a partial ordering whkh sath;fies lhe crit<•ria for a-,8 

decisiveness. 
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Assume d' =/; d" and a(d') = a(d") but .Bean (d') i .Bean(d"). Let d E D su~h 

that .Bean (d) is an upper bound for both .Bean ( d') and.Bean ( d"). This me;ms 

.Bean(d') ~ .Bean(d) and Peau(d") ~ .Bcau(d). Since d' E .Bcnn(d') and d" E .Bean(d") 

it follows d', d" E .Bean (d), and therefore d =*V=* d' and d =*V=? d". This is in 

contradiction with the consistency of V. Thus ~ is a-,8-decisive. 

b) We show that UA is .Bcan-~-translatahle. Let TU E: Eo, and d. d' ED such that 

d' = ru(d). It then holds d =*V='? d' and therefore d' E .Bcnu(d). From the definition 

of .Beau and from the trau:sitivity of" =*V=?" it then follows easily .Bcu.u(d') ~ .Bcnn(d), 

which proves the .Bcan-~-translatabilii.y of U A· 

c) That Tis the .Bean -~-tran~lator for U A <'illl ea...;ily be vcrifi<·d by coH::>id<'ring an update 

u E U A, the corresponding mappin_g a,1 as introduced iu Definition 7.5 and by showing 

TU =(a X ,B)- 1 (ua X au.B). 

Q.E.D. 

This theorem completes the formal frmu<'work, which euahks us to d<•fiuc the update se­

mantics of any consistent vi('W hy SJH'dfying a complcm<'ut and a partial ordering on the set 

of complement values. Let us HOW r<~cou::;id<•r t.he vi<•ws V'l and V5 of our exmu pl<•-<latabasc. 

We choose the same complPUH'Ut for both Vi<'ws: 

V(h,p) ED: f;,.(h,p) = f:lu(b,p) = p. 

Since both views V 4 and V5 have the sauw complenH'nt, we must cxpn•8::> their different 

update semantic:; through diff<'reut partial onlt•riug:-~ on t.he H<'t. of complem<'nt, valn<':-1. ll<'forc 

doing so, let 11s d<'fiue two particular partial onl<·ring r<'lat.ions h<'I.W<'<'ll sets of intcg<'rs, which 

will hdp to simplify our nol.at.ion. 

DEFINITION 7. 7. Let. X and Y denote two :,;ets of int<'gcrs. We say that. X is a postfix 

of Y, denoted by X$Y iff X ~ Y awl Vx E X, Vy E Y- X : y < x. (Here "<" has it.s 

conveutioual meaning). We say !.hat X is a prefix of Y, dmot.ed by X@Y iff X.~ Y aud 

Vx E X, Vy E Y - X : y > x. 
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EXAMPLE. Consiticr the example of section 2. Let Y = {1, 2, 5, 7, 8, 10, 14, 15}, then 

{1, 2, 5}«~Y but {14, 15}$Y. Note that j34(D) = j35 (D) = PIECES, i.e. the set of legal 

instances of the relation PIECES. If p is a relational instance and A an attribute of p, let 

p[A] d<'!lote the projection of p over the attribute A; if c is a predicate on tuples of p, let 

p(c) denote the set of all tuple~ of p which satisfy c (selection). Combinations of selections 

anti projections arc written without parenthesis, e.g. p(c)[A]. 

We are now reatiy for specifying the partial orticrings ~4 and ~ 5 for respectively the view 

V4 anti V5. 

~4: 'v'p, p' E PIECES : p ~4 p' <=> 

p' ~ p /\ p' (BROKEN =true) = p(BROKEN =true)/\ 

\1'1 ~ Il ~ 100 : 

p'(BROKEN =false/\ PRODUCT#= n)[PIECE#]$p(BH.OKEN = 

false/\ PRODUCT#= n)[PIECE#]. 

~s: 'v'p, p' E PIECES : p ~5 p' <=> . 

p' ~ p /\ p' (DB.OKEN =true) = p(DROKEN = t.rne) /\ 

'v'1 ~ 11 ~ 100: 

p' (BROKEN = false I\ PRODUCT# = u) [PIECE# j@p(DROKEN = 

false I\ PRODUCT#= u)[PIECE#]. 

It. is <'<l.-"Y to s<'<' that. ~4 aud ~5 a!'<' imlc(•d part.ial onh•riugs. It, is possihle to prove that 

:54 is (t4-J34-dccisive anti that :Ss is as-J3s-decisive. A form<l.l proof thereof is given in the 

appendix. 

That U A4 is .8-:54-translatable aml tlmt U A5 is .8-:55-translatabl<.• is easily verified, as well 

as the fact that :54 corresponds to r4 and :Ss corn•spouds to rs. 
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We thus have specified the update semanticH of V 4 and V5 by supplying for each of these 

views a complement and a partial ordering on thE> complement values. 

From the properties of these complements and partial orderings we furthermore deduce that 

V 4 and V5 are consistent views. 



8. RELATED WORK 

Paolini and Pclagat.ti [5] considPr('d a database as an abstract object upon which one may 

operate with a given set of operations. This approach is.fnrthcr devclop<•d in [G] and [7], 

where databases and views an' mo<lcl<·d as data abstractions. Also Rowe aucl Schoen:; [20], 

Claybrook et al. [lG], Lock<'Illi1llll et a.l. [21] and Weber [25] all use an abstract data type 

approach to modd llatabase views. 

:tvfost of the authors who hav<> b<>en :;tndyiug the vtcw update problem coun•utmtc their 

att<>ntion on fiudiug ways for dc•riving translations automatically or semi-automatically by 

usin1-; particular update policies or by n·stridiug the set of allowed npdat.c policies. Their 

derivation rules usually arc based upon notions of "natural translation" (typically miuimality 

of sid<'-elfccts) and upon constraints on the data model and on tlw database instaucc~s 

(typically functional dependencies for rclatioual databases). 

Examples of this approach arc Dayal aml Dernstciu [3] for automat.ic tran:;lat.iou within the 

context of tlH' relational moll<'l and Dayal and D<·rnstc·in [22] for automatic tram;lation of 

updat.c'8 on n<>hvork vicws. In [3] ouly vic•ws which are cmubiuat.ious of projPctious and se­

]Pd.ious and joins of rdations ar<' considered. A can.fnl <Ulaly~is of tliffPrPut t.yp<'s of npdat.e 

OJH'rat.ious, such as imwrtious, ll<'l<'t.ious aU<l n·placemcuts is !;iV<'n. For tht'lH' type's of oper­

at.ious, Dayal and Dernstdn consid<·r translators which do uot. 1wcessarily ]e;ul to consistent 

vicw8 in t.he s<'usc of our ddiuitiou. On t.lw otlwr haucl, tlwir mod<'l of view tl<'Iiuition doc's 

uot iududc aggregate fum:tions, lhns they arc uot able to haudlc such important views 

as onr c•xamples V 1 aU<l V5 (s<·c·tion 3). A primary objective of [3] IS the JH"<'servation of 

iut.<'~ri t.y c:oust-.rai ut.s ( fnnct ional t lt•Jwml<•nci <'S). 

Siklossy [23] c1SS111U<'S, ru~ a prerequh;ite, that views preserve loops, and call8 this property 

"minimal adrnillsibility". 

Furtado et al. [ 12] provide rules on permissivity of various type8 of npcl<\tcs. Tlu'y restrict the 

Immlwr of allowed updat.c operation8 and r.ondwle that "some op<•ratiou must he prohibited 

in order to assure harmonious interaction among d<\tabase users". 
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Fagin ct al. [11]" p"rovide a framework for the interpretation of updates m the context of 

logical databases. 

The work of Dancilhon and Spyratos [ L], outlined in section G of our paper, h;ts st imnlatcd 

many further investigations by different researchers. Cosmadakis and Papadimitriou [9] 

show that finding a minimal complement of a given vww Is NP-complctc. Tl ~'Y adopt 

the Universal Relation Assnmption [26] and their views arc esscutially projections of a 

!,riven univ<'rsal relation. Kell<•r and Ullman [8] ddin<' tlw notion of iwl<•p0ndcnt vi0ws (i.e. 

views whose mnges of values may he achi<'VPd indq><'ll<lcntly) and consider the rdat.ionship 

lH't.W<'f'll complementary viewH awl iwl<'p<'ll<kut vi<•ws. Onr own work is part.i<1.lly t>a:seJ on 

Daucillwu and Spyrat.os' ideas. Sections G awl 7 of th<.• pr<'scnt paper gcnerali;o;e the notion 

of "constant complement.". 

In [ 18] ;md [27] Keller analy;o;es the possiblf' translations of of particular classes of npdate 

operations for rcla~ional views (Tlw considf'r<'<l npdat.0s are, as in [3], insertions, dd<'tions 

and replacements.) I\dlcr giv0s fi vc criteria that all candidate npdat.e trausla.,iou:s must 

sati:sfy. The :satisfaction of these criteria implies restrictions ou the view definition function 

n and on the form of vi<'\V update expr<'~.sions tlwt our approach does uot. n•quire. In Kdh•r's 

model. for inst.auce, the k<•y of Pach <lat.a rdatiou tlt;~t may h<' a1fvdc<l hy updates must 

appcar in tlw view. Som<' combinations of view U}Hlat.<' op<•rat.ions are not allow('(}, such 

as th<• rPplaceull'ut. of a t.uph• A by a t.upl<· D follow<'<! hy tlH' d<'l<'l.ion of t.upl<• B. This is 

dm· to tlH' fact that K<'lkr's t.rau81ations depend oil the parti<-ular seqm'Il<"<' of the view 

update operations, and not. :solely Oil the functional s<'mantics of t.h<' vi<•w updat.t• (as in our 

approach). As iu [3], aggregate fnnctious arc not coven•d. On the other lullld, l{ellcr\; model 

includ<'s souw iut<~rcstillg vit~ws that arp not. eov<'n·d hy onr approach (for <~xmuple, some 

non-loop-presc•rving vic•ws). 1\<'ller al8o shows how t.lw choin• of a l.rau:-~lat.or can he dmw 

:wmi-aul.omat.ically by a program which roudnds a ditdog wit.h the data hasp administrator. 



9. CONCLUSIONS AND FUTURE RESEARCH 

The ovcrvww of related work given m the previous section shows that no approach un­

dertaken so far to solve the view-update problem is complete in tlw sense that it covers 

all po:-;sible views of practical relevance. This criticism is also valid for our approac]1. We 

tlo not da.im that the classc~ of view:> stndit•d in the present paper capture the complPte 

spectrum of all "reasonable" vi<'WH. We believe, how<'vcr, that the class of consistent views 

rovers a larg<• Immber of important and int.<•n•st.iug applications, some of which ar<~ not cov­

cre<l by oth<'r approaches. In particular, we have shown that the class of consistent views 

is a Sll]H'rset of the class of vi<'WS stnclied by Uancillwn aiHl Spyratos iu [ L ]. w~· h:tV<' given 

cx;uuplc•s of nontrivial applications that ·ran be modckd hy onr approach, but. not by the 

npproad1 dc•snibed in [1]. 

We have shown that. consistent views arc characterized by extremely usdnl properties. In 

particular, we proved that tlw consistency of a view is not affeded when the original set of 

npdat<• expressions is augmented by the possibility of conditional cxecntiou of view updates. 

We have shown that tlw translation function of a C<>Hsist.eut view preserves functional equi v­

alc·nn· of update programs, as well as a umuhcr of important t·mu·nrn·w·y propNti<'S. We 

hav<' ~howu that t.lw npdat.<• s<•mantics of cousistt•Ht views C<Ul be dct.<•rmitH~<l by imposing 

a partial ordc•r ou th<' valtws of the vi<'w t·ompl<•mt•ut. 

W<• bdiPV<' that th<' class of cousist.Put vi<'ws Hl<'rits att.eut.ion for its goo<l prop<•rti<'S. How­

<'V<'r, more r<'H<'arch is IH'<'<k<l in ord<•r to n·utl<•r our result.:; more applicable. Let us couchule 

t.his paper by giving some~ outliut•s of the r<'S<'arch we plan t.o carry out iu the ncar future: 

• St.udy t.h<' propt•rt.it•s of tlilf<'r<'nt. t.ypt•s of n·lat.ioual vwws (proj<'<·t.ive view::~, se­

l<'divP vi<'WH, join views ... ) for dilft•r<•ut types of npdat.<; op<•rat.ioHH (iu::~ert.iou, 

ddet.iou, n•placemeut). Derive nl'C<'Ssary a.n<l suiJicicnt coudit.iou:s for the consis­

tency of sueh views. 

• Extend our model of view update programs to cover recursively defined update 

programs. Not.e that. ~mch au extension wonld require the mp;\hility of handling 

view aU<l database updates which an' partial operations. 
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• Study the interaction between different views, 

o Find algorithms to compute all possible translation functions for a given static view 

in order to obtain a consistent dynamic view. Our ongoing research shows that 

there exists a strong relationship between the set of different consistent translation 

functions and the set of all spanning tr0es of a dircct(•fl graph. {This rPsult has 

not. yet been proved in full gen(•rality but only for some particular clas::-ws of st a.tic 

views.) Ther0fore we think that it conlu be m;cful to takl' proflt of <'Xist1ng graph 

theoretic algoritluns iu order to generate t.raw;lation functions. 

• Giv<'n <m inconsistent view V, find methodologies for splitting V into two or more 

consistent vi('WS whose s<'ts of operations are subsets of t.lw set of operations of V. 

With such a splittiug it is pos:;i_bk t.o replace a program P that origiually op<'ratcs 

on the incomdstent view V by a program P' which switches b<'twc<'n diff<'rent 

consistent views {for cxampl<• through explicit swi khing primitivf's). The parts 

of P' that are executed completely within one consistent view can l><! modified a.s 

long as th0ir functional semantics are not. afi"cct.cd. All advantag0s provided by 

consistent vi0ws apply to tll<'~l<~ program parts. 
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APPENDIX 

BcforP giving the proof that :::;4 aud :::;5 are ll':-/3-dccisive, let us state a simple lemma. 

LE1\-1MA. 

a) (X$Z 1\ Y$Z 1\ card(X) = card(Y)) =>X= Y. 

b) (X@Z 1\ Y$Z 1\ card(X)::: card(Y))=>X=Y. 

The trivial proof of this lemma is omitted. 

PROPOSITION. 

PROOF. a) Assume :::;4 is not. Q4-iJ4-d<•ci:;ive. Thcu tlwrc exist two database states 

d = (b, p) and d' = (b', p') snch that 

(b,p) -F(b',p') (a) 

and 

(b) 

and 

f3(h,p) T1 ,B(b',p') (c) 

From (a) awl (b) it. followR: 

b = b' (d) 

From (c) it follows that there cxist.R a p" with: 

p" s;; p 1\ p" s;; p' (c) 

and 

p(BROKEN =true) = p' {BROKEN= true) = p" (BROKEN= true) (f) 



and 

and 

Vl ~ n ~ 100: 

p(BROKEN =false 1\ PltODUCT# = u)[PIECE#J $ 

p"(BROKEN =false 1\ PRODUCT#== n)[PIECE#J. 

V1 ~ n ~ 100: 

p1 (BROKEN =false 1\ PRODUCT#= u)[PIECE#] $ 

p11 (DROKEN =false I\ PRODUCT#= n)[PIECE#J. 

Furthermore it follows from (b) by definition of a4: 

V1 ~ n: card(p(BROKEN =false 1\ PIECE#= u)) = 

card(p1 (BROKEN= fals<' 1\ PIECE# = n) ). 

It follow~ immediately: 

Vl ~ n: canl(p(DROKEN =false 1\ PIECE#= n)[PIECE#]) = 

58 

(g) 

(g) 

(h) 

<"ard(p1 (BROKEN= falH<' 1\ PlECE# = u)[PIECE#]). (i) 

From (g) aud (i), by our Lc•mma, it follows: 

Vl ~ n ~ 100: 

1/(BROKEN =false 1\ PRODUCT#= u)[PIECE#] = 

p(llH.OKEN = fahw 1\ PRODUCT//-= u)[PIECE-/1:]. 

(j) 

By the iut<·grity constraint~ c and d given in section 3 we know that 1 ~ p.PRODUCT# 

~ 100 mHl 1 ~ p 1.PRODUCT# ~ 100. 

Tht•rpfore from (j) we coudnde 

p1 (BROKEN = falsP) = p(BROKEN =false) (k) 



Putting together (k) and (f) we immediately get: 

p' =p 

but this, togt>thcr with (d) is in contradiction with (a). 

b) The proof is similar to the one of case a). 

5!) 

Q.E.D. 


