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Fault Tolerance for VLSI Multicomputers 

Yuval Tamir 

Abstract 

The performance requirements of future high-end computers will only be met by 

systems that facilitate the exploitation of the parallelism inherent in the algorithms that 

they execute. One such system is a multicomputer that consists of hundreds or thousands 

of VLSI computation nodes interconnected by dedicated links. Some important 

applications of high-end computers, such as weather forecasting, require continuous 

correct operation for many hours. This requirement can only be met if the system is 

fault-tolerant, i.e., can continue to operate correctly despite the failure of some o( its 

components. This dissertation investigates the use of fault tolerance techniques to 

increase the reliability of VLSI multicomputers. Different techniques are evaluated in the 

context of the entire system, its implementation technology, and intended applications. A 

proposed fault tolerance scheme combines hardware that performs error detection and 

system-level protocols for error recovery and fault treatment. Practical design and 

implementation tradeoffs are discussed. 

A fault-tolerant system must identify erroneous information produced by faulty 

hardware. It is shown that a high probability of error detection can be achieYed with 

self-checking nodes implemented using duplication and comparison. The requirements for 

detecting errors caused by hardware faults are: (1) the comparator is fault-free, and 

(2) the functional modules never produce identical incorrect outputs. Requirement (1) is 

fulfilled with a aelf-te3ting comparator that signals its own faults during normal 

operation. An implementation of such a comparator using MOS PLAs is discussed. 

Requirement (2) is fulfilled with two modules that are implemented differently so that. 

although they perform identical functions, they have a low probability or failing 

simultaneously in exactly the same way. Low-cost techniques for implementing such 

modules are presented. 
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The detection or an error implies that the state or the system has been corrupted. In 

order to recover rrom the error and resume correct operation, a valid system state must 

be restored. A low-overhead, application-traD!parent error recovery scheme ror 

multicomputers is presented. It involves periodic checkpointing or the entire system state, 

using protocols that ensure that the saved states or all the nodes are coD!istent, and 

rolling back to the last checkpoint when an error is detected. 
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Chapter One 

Introduction 

1 

Since the development or the rlrst electronic computer, advances in technology haYe 

lead to many orders of magnitude improvements in the available processing speeds. As 

higher processing speeds became available, users continued to discover new applications 

demanding yet faster processors and motivating the development of ever more powerful 

systems. At each point in time, important applicatioll! seem to require processors that 

are an order of magnitude faster than the fastest available systems [Fuss84]. 

~ a result of the constant demand for high-speed processing, each generation or 

computers includes a group of large expensive systems, called "supercomputers;' in which 

technology is pushed to its limits in order to implement computers that are only "one 

generation behind the computational needs of certain key industries" [Linc82]. At the 

pre!ent time, the technology used for implementing supercomputers has reached a point 

where significant improvements in its raw speed will not be possible due to fundamental 

physical constraints (such as the speed of light). Significant enhancements in the 

computational power of high-end computers will only be possible if the parallelism 

inherent in the algorithms that are executed on the!e computers is exploited. 

Some of the computatioll! performed on supercomputers, such as large circuit 

simulatioll!, weather forecasting, or aeronautical design, may require continuous operation 

of the system for many hours (or even days)[Fern84}. In order to have high confidence in 

the validity of the results obtained by such computations, the system must be highly 

reliable. Thus, supercomputers require high reliability as well as high performance. 

Unfortunately, the reliability of a system is inversely proportional to its site and 

complexity. In order to achieve the maximum possible performance, supercomputers are 

large complex systems with many thousands of components [Russ78J. The probability that 

one component out of many thousands will fail is relatively high, even if each component 

by itself is very reliable. If any single component failure can cause the system to produce 

incorrect results, high system reliability cannot be achieved. Thus, supercomputer 

systems must be able to continue correct operation despite the failure of individual 

components, i.e., they must be fault-tolerant. 
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Due to advances in VLSI technology, a general purpose computing system composed 

of thousands of microcomputers is now economically fea!ible. In such a system, high 

performance may be achieved for computational ta!ks which consist of many subtasks 

that can run simultaneously on different microcomputers. High reliability may be 

achieved using fault tolerance techniques by exploiting the fact that the components or the 

system (the microcomputers) are "intelligent" and can adapt their "behavior" to changes 

in the system status caused by "faults:• 

,----------------~ 

Fis. 1.1: A Computing Element (Node) 

A possible building block for future supercomputer systems is a computing dement 

composed of a processor, memory, and switching circuitry[Desp78, Barr83]. A system 

that consists of a large number of such computing elements interconnected by high-speed 

dedicated links is called a multicomputer (Fuji82, Se'qu83]. In a multicomputer there is no 

single ha~dware component that is used by all (or a large number of) the computing 

elements and which can become a performance bottleneck and/or a critical resource whose 

failure results in system failure. Hence, a multicomputer is especially well suited for 

reliability enhancements using fault tolerance techniques (Tami83]. 

This thesis deals with the implementation or fault tolerance ln supercomputers 

implemented as VLSI multicomputers. Since the main goal of a supercomputer is high­

performance, special emphasis is placed on minimizing the performance degradation 

caused by the fault tolerance techniques. In order to continue correct operation despite a 

failed component, the resulting errors must be detected, a valid system state must be 

recovered from the system state corrupted by the fault, and the system must be 

reconfigured to avoid using the faulty component. This thesis focuses on the error 

detection and error recovery phases. 
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Fig. 1.2: A Multicomputer 

1.1. Aebievins Hish Performance U•ing Paralleli.m 

3 

Over the past thirty-five years the execution time of simple iD!tructioD! on electronic 

computers has decreased by four or five orders of magnitude. This decrease has been due 

mainly to improvements in technology. Currently, the clock cycle time on the fastest 

supercomputers is It!! than ten nanoseconds [Hwan84]. In order to achieve the required 

high switching speed, the circuits used in these systems are characterized by high power 

dissipation. For example, in the CYBER 205 each one of the 1760 printed circuit boards 

dissipates 750W[Kozd80, Linc82}, and the total power required by the CRAY-1 1s more 

than 100KW[Russ78]. 

Two major factors limit further reductions in processor clock speeds: ( 1) signal 

propagation delays and (2) power dissipation. In vacuum, light travels approximately one 

foot per nanosecond. Since the propagation speed of signals on wires or inside chips is 

lower, severe timing problems can occur in synchronous circuits operating with clock 

cycles of a few nanoseconds due to related signals traveling through paths of different 

lengths with different delays. Removal of the heat dissipated by high-speed circuits 

requires expensive, complex cooling technologies. Even today, cooling is coD!idered by 

some to be one of the most difficult problem in supercomputer system design[Cray74]. 

Unit!! there is a breakthrough in technology, the problem can be expected to get worse in 

future supercomputers that will use faster circuits. 

Based on the above coD!iderations, it seems unlikely that another order of magnitude 

increase in computer proct!!ing speed will be achievable by simply enhancing the raw 
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speeds of circuits. lll!ltead, the greatest potential for achieving significantly higher 

process1ng speech is in techniques that exploit parallelism. The basic tradeoff here is 

simple: since it is getting more and more difficult to implement circuits that operate 

faster, the amount of information that is processed by an individual gate cannot be 

significantly increased. On the other hand, since it is becoming cheaper to implement 

more circuitry (gates) in a system, the amount of information processed by the BVBtem 

can be increased if different parts of the information can be processed by different gates 

simultaneously. 

Parallelism has always been used in computer systems for achieving high 

performance. A simple example is a "store" ill!ltruction that moves all the bits of a 

register to memory simultaneously rather than one bit at a time. At a higher level, 

pipelining techniques are currently used in all computers. With pipelining, at each point 

in time the processor contaill!l several ill!ltructioll!l that are at different stages of their 

execution. As a result, while the next ill!ltruction is being fetched, parts of the processor 

that are iiot used for ill!ltruction fetch (such as the ALU) are still doing useful work on 

some previous ill!ltruction. 

Most of todays supercomputers (e.g. the CRAY-1 [Russ78]} are "vector machines" 

where parallelism is exploited at an even higher level. Single ill!ltruc:tioll!l operate on 

vectors of numbers rather than on individual elements, thereby achieving speedups 

proportional to the size of the vectors. The vector ill!ltructioll!l are, of course, always used 

for vector operatioll!l specified by the programmer. In addition, all vector machines use 

sophisticated "vectorizing compilers" that can convert code segments which are not 

specified as simple vector operatioll!l into the vector operatioll!l supported by the 

hardware [Kuc:k84]. 

The main limitation of vector (or array) machines is that all the processing elements 

always perform the same operation. In many cases execution can be speeded up if the 

different processing elements are able to execute different code segments simultaneously. 

In order to exploit this potential for high performance, supercomputers of the future will 

eoll!list of multiple independent processing elements. 

Conceptually, there are two major types of systems with multiple independent 

processing elements: multiproeeuorB and multicomputer~. In a multiprocessor all the 

processiDg elements are connected to a shared memory which they can use to 
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communicate with each other (Fig. 1.3). A multicomputer consists of a number of 

computing el~:m~:nt~, each o( which is a complete computer that contains local memory as 

well as a processor. The computing elements do not share memory and communicate by 

sending messages through an interconnection network (Fig. 1.4). 

~ I Proee.or 1 
0 0 0 EJ 

I I 

Interconnection Network 

~ I 0 0 0 
I 

I Memory I I Memory I 
Fis. 1.3: A Multiprocessor 

: ~oceaor I I 

I I 

I I 

1 Memory 1 

I I 

• • • 

Interconnection Network 

Fis. 1.4: A Multicomputer 

The simplest way to connect multiple processors to a shared memory or to 

interconnect multiple computing elements is to use a common bus or Ethernet. This 

scheme is used in most or the current commercially available multiprocessors [Jone83] and 

multicomputers [Katr.82]. Unfortunately, the use or a common bus with a finite 

bandwidth limits the maximum number or processing elements that can be effectively 

utilized in the system. While a bU5 may be the best choice for a system with, say, ten 

processing elements, it is clearly not appropriate (or a system with hundreds or elements. 

The key to implementing a high-bandwidth interconnection network that can 

support a large number or processing elements is to ensure that different "messages" can 

be transmitted on different "wires" so that the transmission o( multiple messages can 
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occur 1n parallel. Interconnection networks that allow several units to communicate 

simultaneously are called alignment net~orb (IUJitching netUJorka)[Kuck78]. Many 

multiprocesSGr systems use alignment networks that allow N processors to communicate 

with N memory modules (Gott83]. Each processor can communicate with each one of the 

memory modules so that all the memory can be shared by all the processors. An example 

or such an alignment network is shown in Fig. 1.5. 

0 • 

0 
• . . ...................................................................... 

Fig. 1.5: An Alignment Network 

In multiprocessors that use an alignment network or the form shown in Fig. 1.5 to 

interconnect the processors to memory modules, all memory accesses are performed 

through the interconnection network and the access time from each processor to each 

memory location is uniform. Since accessing memory through the network is expensive, a 

cache is added to each processor module so that a large percentage of the accesses are 

actually performed locally without traversing the network (Gott83]. The use of caches 

introduces the problem of ensuring that all the processors access a consistent version of 

the data. The problem occurs when one of the processors modifies data held in the cache 

of a second processor. Before the second processor attempts to read the data, the 

modification must be propagated to the shared memory and the data held in the second 

processor's cache must be invalidated to ensure that the data will be read from the shared 

memory. The protocols required to ensure eoche coherenc~ (DuBo82] increase the 

communication overhead and slow down the system (Kell84]. 

In multicomputer systems each processor has exclusive control over the memory in 
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its own computing element. Sharing or data is accomplished by exchanging messages and 

is under the control or the software. The local memory in a computing element i!l simpler 

and cheaper to implement than a cache so that it is practical to implement a larger and 

faster memory tightly coupled with each processor. ~ a result, if the application exhibit!! 

high locality so that there is relatively little sharing between processor!!, higher 

performance may be achievable in the multicomputer than in a multiprocessor. 

It is possible to implement a multicomputer which provides uniform communication 

between every pair of computing elements. For example, all the computing elements can 

be on the same btl!, or an alignment network of the form shown in Fig. 1.5 may be ll!led. 

Jr an alignment network is U!ed, instead or connecting N processors to N memory 

modules, as in a multiprocessor, N computing elements are interconnected by attaching 

the output port of each element to one end or the network and the input port to the other 

end. 

An alternative approach to implementing a multicomputer is to Wle high-speed 

poin~to-point dedicated links to connect each computing element to a small sub!let of all 

the computing elements in the system [Desp78, Se'qu83, Kell84, Barr83]. Two computing 

elements connected by a dedicated link are called neighbora. Communication with a 

computing element that is not a neighbor is accomplished by transmitting a message to a 

neighbor that is closer to the final destination with instructions to forward the message to 

the final destination. This process is repeated until the final destination is reached. \Ve 

call a multicomputer in which the computing elements are interconnected by poin~to­

point dedicated linb a FTPI (poin~to-point interconnection) multicomputer. In the rest 

or this thesis, unless otherwise specified, the term multicomputer will be U!ed to denote a 

PTPI multicomputer (Fig. 1.2). 

In a PTPI multicomputer communication with a neighbor is significantly faster than 

with other nodes. Communication between neighbors can be faster than communication 

between computing elements in systems that U!e a uniform interconnection network. 

Furthermore, communication between any two neighbors cannot affect (slow down) 

communication between other neighbors in the system. Based on the above 

characteristics, the PTPI multicomputer is particularly well-suited for applications that 

can be partitioned so that each computing element communicates mostly with a small 

number or other elements and has relatively little direct interaction with the majority or 
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computing elements in the system. For such applications, the PTPI multicomputer has 

the potential of higher performance than other types of multicomputer or multiprocessor 

systems constructed uing similar technology. 

1.2. Achieving High Reliability U•ing Redundancy 

Over the past thirty-five years, the reliability of the basic components used to 

implement electronic computers has increased by several orders of magnitude. In the days 

of relays, vacuum tubes, and delay-line storage, it was considered a difficult task to simply 

keep the system operating for more than a few minutes [Aviz78]. With current VLSI 

components, whose failure rates are only a few hundred per billion part hours [Peat81, 

Budz82], systems are built whose expected down time is only a few minutes per 

year [Toy78] or with a failure rate of less than one failures per billion 3~stem 

hours [Hopk78]. 

Despite the low failure rates of the available components, the level of reliability 

desired for many of the current applications of computers cannot be achieved by simply 

relying on the high reliability of the components and allowing the system to fail whenever 

one of the components fails. For example, in a system that consists of 10,000 components, 

each with a failure rate of 500 per billion part hours, the probability that none of the 

components will fail during 100 hours of continuou operation is only 0.6. 

~ technology progresses, fewer chips are needed to implement a system with a given 

functionality and performance. However, the demand for ever more powerful computers 

for each application keeps up with technological developments. Thu, the additional 

functionality and performance per chip are often U5ed to increase system performance 

rather than decrease the number of chips in the system. Hence, the reliability of systems 

normally ued for a particular application area is likely to increase only to the extent that 

the reliability of the new, more powerful chips is higher than that of the previous 

generation of chips. 

Over the past two decades, the reliability of chips has increased simultaneously with 

increases in their functionality and performance. For example, the reliability of current 

microprocessor chips is higher than the reliability of the rll'St NAND gate chips. However, 

there are three major interrelated factors that limit reliability improvements achievable 

by technological developments alone: unexpected failure modes, incomplete testing, and 
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the use or state-of-the-art technology. 

With any new technology there may be unexpected failure mode! that defy detection 

using prevalent te!ting procedures or increase the chip's seD!itivity to environmental 

factors. For example, smaller feature si:r.es in memory chips increased the sensitivity to 

alpha particle! and cosmic rays [Brod80]. Testing procedures had to be modified for 

CMOS circuits since one of their major failure modes (stuck-open faults) was not usually 

coD!idered with other technologie! [Wads78J. Subtle problems that may make the testing 

of certain CMOS circuits unreliable have only recently been recogni:r.ed [Redd83]. Thus, 

products that use state-of-the-art technology may have unexpectedly low reliability. This 

problem has been recognized by NASA and as a result, in computers used in spacecrafts, 

only proven (5-10 years old) technology is used[Renn78]. 

Due to their complexity, exhaustive functional testing of VLSI chips is 

impoS!ible [Rasm82]. Manufacturers of VLSI chips perform partial testing of their chips 

based on the known likely failure modes. The tests used are often functional tests that 

are derived in an ad hoc way. In other cases the tests are based on restricted fault 

models, such as single stuck faults [Frie71], that do not cover all possible physical defects 

that can occur in VLSI circuits [Gali80, KodaBOJ. The result of the incomplete testing is 

that some or the chips that are delivered to the customers are faulty. The percentage or 

such faulty VLSI chips ranges from 0.1 percent for relatively simple chips that have been 

in production for a while to several percent for new complex chips [Peat81]. 

In implementing any system there is an important tradeoff between either using the 

most :..dvanced chips for high performance and taking the risk that the resulting system 

will be unreliable, or using proven technology for high reliability and (ailing to achieve the 

highest possible performance. ~ mentioned above, for specialir.ed critical applications 

only "proven" technology is used. Even in le!s critical systems, which do not include any 

special provisions for fault-tolerance, it is always necessary to be somewhat coD!ervative in 

making this tradeoff in order to eD!ure that the re!ulting system will be usable. However, 

the use of the most advanced chips available can result in systems with lower 

price/performance ratios than their predecessors or in systems that achieve a level or 

performance that has not been achievable in the past. Thus, there are strong pressure! to 

use state-of-the-art technologie! for most applications. This is particularly true for 

supercomputers where, as discuss~d in the previous section, the demand for more powerful 
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computers always rar exceed! the capabilities or the available systems. 

The previous subsection discussed the use or the hardware resources or the system to 

process different parts or the information simultaneously, thereby increasing the overall 

throughput or the system. Since the required reliability from systems cannot be achieved 

by relying on the "raw" reliability or the hardware, another use or system resources is to 

perform redundant operations that increase the reliability or the system rather than its 

performance. The redundant operations may be performed by dedicated (redundant) 

hardware whose sole purpose is to check and/or correct the results produced by other, 

possibly faulty, hardware. It is also possible to use redundanc:JI in time where the same 

hardware reexecutes the original operations, verifies the validity or the results, and 

attempts to correct invalid results. 

Redundancy is currently used in most computer systems to increase their reliability. 

The simplest example is the use or a parity bit to detect erroneous information as it is 

retrieved from main memory. The memory dedicated to the storage or the parity bit with 

each byte or word is redundant hardware. Redundancy in time is used when, for example, 

the processor spend! time calculating the CRC code for a block or data before storing it 

on disk. When the block is read, the CRC check bits are used to determine whether the 

data has heeL corrupted. 

There is a wide range or choices as to where and how redundancy is used to increase 

the reliability or a system. The choices that have to be made include: hardware versus 

software, the extent or hardware redundancy, the granularity or hardware redundancy, 

the extent or time redundancy, and granularity or time redundancy. 

The fault tolerance features of a computer system can be made entirely transparent 

to the software. For example, the output from the system is a majority vote on the 

outputs of three identical processors that operate in lock-step executing identical 

software [Plat80J. In this case the system can tolerate the failure or any one or the three 

processors. On the other hand, it is also possible to construct a system in which all the 

fau1t tolerant features are implemented in software. For example, the application 

program may periodically perform "acceptance tests" on intermediate results. Ir the test 

indicates an error, the last subtask may be reexecuted using a different 

procedure (Rand78J. The alternate procedure can attempt to use the hardware in a 

different way so that the error will not be duplicated. 
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If redundant hardware is used in the system in order to increase its reliability, an 

important design decision is what percentage of the system hardware is dedicated to 

increasing system reliability. A simple example is a memory system in which, using 

appropriate coding techniques, one redundant bit per word can provide error detection 

while several redundant bits per word can provide error correction. 

The granularity of hardware redundancy can be at the level of individual gates or 

complete processors. An arbitrary logic circuit that can tolerate any single line stuck-at­

zero or stuck-at-one can be implemented by a technique, called quadded logic, that 

requ1res quadrupling the number of gates and interconnectioru~ [Tryo62, Kohai8]. 

Hardware redundancy at the level of a complete processor is used in some multiprocessor 

systems where each task is simultaneously executed on several processors and the results 

are compared to determine their correctness [Weru~78J. 

The percentage of system processing time devoted to increasing the reliability of the 

system is another important parameter of any system. For example, an application may 

periodically perform low-cost "reasonableness" tests on intermediate results or, 

alternatively, the entire computation may be repeated, using a different algorithm, in 

order to provide a more accurate test of whether the results are correct. 

\Vhen time redundancy is used, a rlXed percentage of processing time for redundant 

operatio]).! may be used for a large number of short operatioru~ or a small number of large 

complex operatioru~. For example, if the system uses periodic acceptance tests to detect 

errors, those tests could be performed after every few iru~tructions, only when a procedure 

is about to return control to its caller, or only at the end of the entire program. The 

choice of the granularity of time redundancy cannot be based only on the probability of 

detecting errors. Even if one complex test at the end of the program has a higher 

probability of detecting errors, simpler intermediate tests might be chosen in order to 

fulfill requirements of low latency between error occurrence and detection or faster 

recovery when an error is detected. 

The issues discussed above do not include all possible optioru~ that must be 

coru~idered when choosing a scheme for enhancing system reliability. Rather, these are 

meant to be example of the ti/Pe of issues that come up. In general, the choice of a 

particular scheme for using redundancy is a result of complex tradeoffs involving 

performance requirements, reliability requirements, available technology, cost, market 
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pressure5, etc. This the5is discusses the options and tradeoffs for one particular type of 

system- a PTPI multicomputer implemented using VLSI technology. 

1.3. Architecture. of Future Supercomputers 

The goal of high-end computer systems is to execute compute-intensive task!! quickly. 

At the pre5ent time one of the critical re5earch issue5 in computer science is what type of 

architecture is most appropriate for computer systems whose goal is to achieve orders of 

magnitude greater performance than today's high-end systems. Proposed architectures 

include: bigger and faster vector uniproce5sors, such as the Cray-1 [Russi8, Miur84], a 

small number of interconnected high-end vector uniprocessors [Widd80, Lars84], several 

hundred or a few thousand or the most powerful microproce5sors available interconnected 

with each other [De5p78, Gott83], or tens of thousands of very small processors each 

performing simple (possibly bit-serial) operations [Hill81, Shaw84]. 

There are clear advantage5 to computers whose performance does not rely on a high 

degree of parallelism. With such systems there is no need to develop new parallel 

algorithms or sophisticated compilers that can extract the parallelism from programs that 

were written for sequential execution. However, as discussed earlier, there are 

fundamental limitations on the speed or logic circuits so that significant performance 

improvements in the future will require exploiting parallelism. Hence, future 

supercomputers will be multiprocessors or multicomputers. The only question that 

remains is whether it will be possible to develop algorithms and software to effectiYely 

utilize the5e systems. 

While there is general agreement that it is possible to utilize a small number of 

proce5sors effectively [Widd80, Lars84), it is unlikely that thousands of processors can be 

effectively used for all general purpose computation [Nico84). On the other hand, for some 

important applications in scientific computations, simulation studie5 have shown that it is 

possible to utilize several hundred [Nico84) or a few thousand [Gott83) processors. For 

some applications in artificial intelligence it is claimed that hundreds or thousands or 

processors could be effectively utilized (Hi1181, Shaw84]. 

The need to deal with the unreliability of the hardware is not usually considered 

when comparing different architectUre5 for supercomputers. ~ discussed earlier, large 

systems consisting or tens of thousands or chips have a significant hardware failure rate. 
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Fault tolerance techniques must therefore be used to allow the system to continue correct 

operation despite hardware faults. 

If the system is one large "monolith;' it is difficult to design it in such a way that it 

can isolate any faulty component and reconfigure itself to continue normal operation 

without that component. It is here that a multiprocessor or multicomputer with a large 

number of processors has a distinct advantage. The "components" or such systems are 

processors which are capable or independent "intelligent" actio~. One processor can 

detect that another is faulty and modify its behavior to allow the system to continue 

operating correctly. It is much more difficult for part of a large complex ALU to detect 

the failure of another part of the ALU and change its operation to compensate for that 

failure. 

The fact that a system consists or multiple processors does not guarantee that it is 

easy to isolate a faulty component and reconfigure the system to continue operating 

without that component. For example, in a multiprocessor system where a multistage 

alignment network is used to interconnect N processors with N memories [Gott83] the 

switches used in the alignment network are n9t "intelligent:• Therefore it may be difficult 

for the system to identify a faulty switch and for the other switches to accommodate that 

failure. Furthermore, in order to be able to tolerate a switch failure, the alignment 

network must have more than one path between each processor and each memory. This 

requirement leads to a more complex network with higher latency than in a network 

where there is only one path between each processor and each memory [Adam82]. 

It may also be difficult to implement fault tolerance in any multiprocessor or 

multicomputer system with a very large number of very small processors[Hill81, Shaw84]. 

If a node in the system contains a 32-bit microprocessor and thousands of bytes of 

memory, it is feasible to add to the node extra hardware and software that allows it to 

handle exceptional situations, such as the failure of another node. On the other hand, if 

the node is a small bi~serial processor with a few dozen bytes of memory, it necessarily 

has only a small repertoire of actio~ that it can take during normal operation. Such a 

node will have to be made many times more complex to provide it with the capabilities to 

diagnose other parts of the system and to modify its behavior accordingly. This may 

make the entire system infeasible. 

Based on the previous paragraphs, we can conclude that no one type of computer 
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architecture will emerge as the clear choice for all applications. Instead, different 

architectures, utilizing different degrees of parallelism, will be used for different 

applications. Reliability considerations are likely to be just as important as performance 

requirements in determining the type of system to be used. In this context, a 

multicomputer system with several hundred or a few thousand nodes, each containing a 

relatively powerful microprocessor, has several distinct advantages: (1) Nodes are 

"disposable" since the loss of a few nodes does not significantly reduce the hardware 

resources of the system, as they would in a system with a small number of processors. 

(2) There is no central resource, such as the alignment network in a multiprocessor, whose 

performance is critical to the performance of the entire system. (3) The nodes are 

sufficiently powerful to handle exceptional conditions. 

Recent experiments have demonstrated that, in terms of performance, a 

multicomputer system can be utilized effectively for important applications [Seit85]. 

Given the advantages of a multicomputer architecture for implementing fault tolerance, 

there is no doubt that this type of architecture will be used in a significant number of 

future supercomputers. 

1.4. Theeis Organisation 

This thesis focU5es on the U5e of fault tolerance techniques to increase the reliability 

of multicomputers implemented with VLSI and using point-to-point dedicated links for 

interprocessor communication. Effective implementation of highly reliable systems 

requires the use of a combination of hardware and software techniques carefully tailored 

to the technology as well as to the intended applications. Accordingly, the different fault 

tolerance techniques for the multicomputer are considered in the context of the entire 

system rather than in isolation. In each chapter relevant previoU5ly published work is 

reviewed and the choice of the approach most appropriate for a VLSI multicomputer is 

described. 

Technical discussions require the use of precise terminology whose meaning is agreed 

upon by all. Unfortunately, there is no "agreed upon" terminology for discussing "fault­

tolerant" computer systems. In Chapter 2 the terminology that is used throughout this 

thesis is introduced. In addition, Chapter 2 includes a discussion of the fundamental 

issues of the causes of faults in digital computers and fault modeling. 
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In order to be able to continue correct operation despite errors produced by faulty 

hardware, the system must identify the erroneous information. Various error-detection 

techniques for use in a multicomputer are discussed in Chapter 3. It is shown that, given 

the need for effective error-detection, computing elements that report their failure to the 

rest of the system at the same time they produce erroneous information, are the most 

desirable building blocks for multicomputers. With VLSI technology, such aelf-chr.cking 

computing elements are best implemented using duplicate functional modules that operate 

in lock-step, performing identical operations on the same inputs. The outputs of the two 

modules are continuously compared and any mismatch signals an error. 

No error detection scheme can guarantee that all hardware errors will be detected. 

One of the potential weaknesses of duplication and comparison for implementing the self­

checking computing elements is that if the comparator fails, a subsequent mismatch 

between the outputs of the two functional modules is not detected and erroneous 

information is accepted as correct by the rest of the system. It is therefore imperative 

that faults in the comparator be detected soon after they occur so that the rest of the 

system can be informed that the supposedly self-checking computing element has lost its 

self-checking capabilities. This requirement can be fulfilled by using a 1elj-te1ting 

comparator that signals its own faults during normal operation. The implementation of 

such a comparator is discussed in Chapter 4. The proposed implementation uses MOS 

PLAs and is shown to be self-testing with respect to a new fault model that represents 

many of the possible physical defects that were not considered in previously published 

models. 

\Vhen an error occurs, the state of the system is corrupted and correct operation 

cannot be resumed unless a valid system state is restored. Furthermore, if the faulty 

component that caused the error remains in the system after a valid system state is 

restored, it is likely to cause further errors and eventual system failure. Hence, after an 

error is .detected, as part of the process of "recovering" from the error, the faulty 

component must be located and isolated from the rest of the system. Chapter 5 includes a 

review of several techniques for locating a faulty component that has caused an error, 

restoring a valid system state, and reconfiguring the system so that it can operate without 

the faulty component. A new error recovery scheme for multicomputers is proposed. 

This new scheme is particularly well suited for a multicomputer executing non-interactive 
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applications. It involves periodic checkpointing of the entire system state and rolling back 

to the last checkpoint when an error is detected. No restrictions are placed on the actions 

of the application task!, and, during normal computation, there are no complex 

communication protocols of the type required by most other schemes. 

This thesis does not provide a complete detailed design of a high-performance faul~ 

tolerant multicomputer. There are many implementation details that have not been 

considered. For example: power distribution, clock signal distribution, synchronization 

between computing modules, and packaging. In addition, the topology of the 

interconnections between computing modules may be a maJor factor in determining 

system performance and reliability. A brief overview of these issues is presented in 

Chapter 6. One of the potential problems in using duplication and comparison for error 

detection is that if the two functional modules fail simultaneously in exactly the same 

way, the erroneous output is not detected. Chapter 6 also includes a discussion of 

implementation techniques that can help reduce the probability of such undetected errors. 

The major results of this thesis are summarized in Chapter 7. A few conclusions, 

that may serve as guidelines for future research on the implementation of fault tolerance 

in multicomputers, are presented. 
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Chapter Two 

Basic Concepts and Terminology 

This chapter distW!ses the concept and the need for fault tolerance in VLSI 

multicomputers-the system of interest in this thesis. The terminology to be Wled 

throughout this thesis is introduced in Section 2.1. The nature of hardware faults in 

systems implemented using MOS VLSI chips is discussed in Section 2.2. It is shown that 

acceptable sys-.em reliability cannot be achieved unless the multicomputer system can 

"tolerate" hardware faults, i.e., continue correct operation despite the failure of one of its 

components. A detailed discW!sion of the behavior required from a fault--tolerant 

multicomputer after one of its components has failed is presented in Section 2.3. 

2.1. TerminoJoiY 

Technical discussioD! require the use of terminology whose meaning is agreed upon 

by all. Unfortunately, there is no "agreed upon" terminology for computer systems in 

ceneral and "faul~tolerant" computer systems in particular. The terminology Wled in this 

thesis is derived mainly from the proposals or Anderson and Lee [Ande81, Ande82] (also in 

Randell et al [Rand78]). A few of the terms specific to the study of faul~tolerant systems 

are from proposals by Avizienis[Aviz.78, Aviz.82]. Most of the terms related to the 

interconnection topology of the multicomputer are distWised by Tanenbaum [Tane81]. 

The main characteristic or the proposed terminology is that it is fundamentally 

hierarchical and thWI correspond! to the hierarchical structure of computer systems in 

general and the multi-level hierarchical implementation or faul~tolerance schemes in 

particular. Many alternative system models and terminology schemes have been proposed 

in the literature. One of the most widely used proposals is the "four-universe information 

system model" which is based on four flXed views or the system: physical, logical, 

informational, and external [Aviz82]. These views correspond to the "universe or 

discourse" or the engineer, the Iogie designer, the programmer, and the user, respectively. 

In this model there is DO representation or the hierarchical nature or the 1tructure of 

systems. One of the difficulties in using this alternative terminology is evident when 

COD!idering systems composed of faul~tolerant subsystems. 

In the following three subsectioD! the terminology used throughout the thesis is 
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summariz.ed. The emphasis is on a clear semantic understanding of the terms rather than 

on abstract mathematical definitions. 

2.1.1. Syatem• and their Component. 

A •¥•tem is any identifiable mechanism that maintains a pattern of behaYior at an 

interface between the mechanism and its environment. 

AD inter for.e is the place or interaction between two systems. 

The environment or a system is another system that provides inputs to and receives 

outputs from the rll'St system. 

The external behavior or the system can be described by a set of ezterna/ 1tate8 

(output values), and a function defining the transitions between these states. 

A system consists or a set or component• which interact under the control of a 

tle•ign. Each component is itself a system. The design of the system is the way in which 

the components are interconnected. The internal 1tate of a system is an ordered set of 

the external states or its components. 

If the internal structure or a relatively simple system is of DO interest and is to be 

ignored, the system is said to be atomic. For example, if the system under consideration 

is a circuit board populated by resistors, capacitors, and discrete transistors, each one of 

these components would typically be considered atomic. 

2.1.2. Multicomputer Terminolol)' 

The term multicomputer, as used in this thesis, was defined in Chapter 1 to mean a 

collection or computing element• interconnected by high-speed point-~point dedicated 

linb. A computing element is a complete Von Neumann computer containing local 

memory as well as a processor. Others have called this type of system a network 

·computer. The computing elements are also called node•. A link is a bidirectional 

connection between two nodes called nei1h6or1. 

A multicomputer system must be connected to various peripheral devices, such as 

disk drives, tape drives, printers, and terminals. Furthermore, there may also be 

connectious to other systems via a local-area--network. Each of these devices is connected 

to -one or more of the nodes of the multicomputer. When discussing a multicomputer 

system, the nodes and linb are considered the component• as discussed in Section 2.1.1. 
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Devices that are usually collSidered input/output devices, such as disk drives, but -which 

exchange information only with nodes of the multicomputer, must also be viewed as 

components of the system. On the other hand, a tape drive that is used to read a tape 

created on some other system must be collSidered part of the environment. 

Nodes in a multicomputer exchange information via meuage1. A message is simply 

a sequence of bits containing all the information trallSferred as well as any overhead 

necessary to ellSure that the information reaches the desired destination. Messages may 

be very long (milliollS or bytes) and may have to pass through several intermediate nodes 

if the source and destination nodes or the message are not neighbors. A packet is the 

smallest unit or information trallSferred between nodes. In order to trallSmit a large 

message, the sender breaks it up into packets and it is the respollSibility of the receiver to 

assemble the original message from the sequence or packets it receives. 

The interconnection topolog~ or the multicomputer is the specification of which 

nodes are neighbors. A path between two nodes, i and j, is a sequence or adjacent 

(neighbor} nodes starting with i and ending with j. The length of the path is the number 

of links in the path (i.e. one less than the number or nodes). A geoduic is a path of 

minimum length between a given pair or nodes. Between a given pair or nodes there may 

be several different paths. These paths are said to be di1joint if they have only nodes i 

and j in common. The system is said to be connuted if there is at least one path 

between every pair or nodes. 

Two important parameters characterize the interconnection topology: diameter and 

connutivitJI. The diameter or the system is the length of the longest geodesic. The node 

(link) connectivity is the minimum number or nodes (links) that must be removed in order 

to partition the system so that it is no longer connected. 

In this thesis, the interconnection topology, the protocols used for inter-node 

communication, the operating system, and the application software, are all collSidered 

part or the duign or the system. 

1.1.1. Terminolo11 for Fault Toleruce 

M discussed iD Section 2.1.1, a system is defined to the "outside world" by its 

specified behavior at its interlace with the environment. System failure occurs when its 

behavior deviates from the specificatiollS. 
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An erroneou~ internal state is a state that could lead to a failure by a sequence of 

valid transitions. An error is a part of an erroneous state that constitutes a difference 

from a valid state. 

An erroneous internal state is a result of either design failure or component failure. 

A component failure is a result of an error in the internal state of the component. A 

design failure means that the choice of components or the way in which the components 

are interconnected is incorrect. M a result, although each one of the components is 

operating according to its specifications, the set of external states of all of the system's 

components (at a particular point in time) is erroneous and may lead to system failure. 

An error in a component is a (component) fault in the system. Such a. fault mav 

lead to a component failure which is a system error. The system error mav lead to 

system failure. 

Permanent fault~ are faults that are present for a long period of time (longer than 

some threshold). Tran~ient fault~ are present for a limited period of time (less than the 

threshold) and then disappear from the system. An intermittent fault is a recurring 

transient fault. 

M discussed above, system failure may occur, as a result of design faults, even if all 

the components are operating according to their specifications. Component failures may, 

in turn, be a result of faulty design of the components. On the other hand, it is often the 

case that the design of the entire hierarchy of components above the atomic components is 

correct, and the failure of the system is the result of the failure of atomic components. 

Under these circumstances it is said that the system failure is the result of a hardware 

fault or a phv~it:al defect. Since the design of the system and all of its components is 

fixed when the system is constructed, any system failure that is a consequence of physical 

changes in the system or its environment is classified as the result of a hardware fault. 

There are two basic approaches to the construction of highly reliable systems: fault 

prevention and fault tolerance. With the first approach an attempt is made to ensure 

that the design of the system is correct, and all of its components are functional when 

installed in the system and are highly reliable so that they will not fail in the future. 

Fault prevention is accomplished using a combination of fault avoidance and fault 

removal techniques. Fault avoidance techniques, such as specialized design methodologies 

(such as the use of extra large tolerances in critical components) and strict quality control, 
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help avoid introducing faults into the system. Fault removal techniques, such as testing 

and validation, are used to find and remove faults that were introduced into the system 

during its construction. 

Fault tolerance techniques attempt to prevent component failures (which are caused 

by faults) from causing system failure. The process of "tolerating" a fault involves four 

phases: 

(1) Error detection: The existence of a fault can be detected by the system only after the 

fault generates an errCJr somewhere in the system. Detection of an erroneous state is the 

starting point for any fault tolerance technique. 

(2) Damage aueument: Between the time a fault occurs and the resulting error is 

detected, invalid information may spread throughout the system and lead to additional 

errors. Before an attempt to "recover" from the error is made, the extent to which the 

system state has been damaged must be determined. 

(3) Error rer:overv: .. _,.ue e:..·roneous system state detected and assessed in phase (1) and (2) 

is transforn:.td into c.n error-free state, from which normal system operation can continue. 

(4) Fault treatment and continued 8ervice: If the fault that had caused the error is 

permanent, steps must be taken to repair the fault or "reconfigure" the system to avoid 

the fault. This is necessary to prevent the same fault from generating a new error in the 

system. 

The above four phases are not always distinct and their identification in a particular 

system may not be clear. Nevertheless, these phases are, at least conceptually, part of all 

fault tolerance techniques. The effectiveness of any fault tolerance technique depends on 

how well these phases are implemented explicitly or how valid are the implicit 

assumptions made regarding these phases. 

In a system where fault tolerance technique are employed, some faults are 

"tolerated" (i.e. they cannot lead to system failure) while other faults are still potentially 

fatal. Hence there is an ambiguity in the use of the terms erroneou8 •tate, error, and 

fault. In order to resolve this ambiguity, these terms are defined as recoverable or fatal: 

A recoverable erroneou8 internal •tate is a state that could lead to system failure by a 

sequence of valid transitions in the absence of actions for fault tolerance. This term is 

only meaningful in a system where fault tolerance techniques are employed. In such a 

system, there is no sequence of valid transitions that begins with a recoverable erroneou" 
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internal &tate and leads to system failure. A fatal erroneous internal state is a state 

that could lead to system failure by a sequence of valid transitions despite any actions for 

fault tolerance ir. the system. A recoverable error is a part of a recoverable erroneous 

state that constitutes a difference from a valid state. A fatal error is a part of a fatal 

erroneous state that coDStitutes a difference from a valid state. A recoverable fault is an 

error in a component that may lead to a component failure resulting in a recoverable 

erroneous state. A recoverable fault cannot lead to a component failure that will result 

in a fatal erroneous &tate. A fatal fault is an error in a component that may lead to a 

component failure resulting in a fatal erroneous state. Note that both recoverable and 

fatal faults are fatal with respect to the component in which they occur since they may 

lead to component failure. 

A "fault-tolerant" system only "tolerates" recoverable faults. \Vhether or not a 

fault is recoverable depends on the system. It is possible to have two systems with the 

same specificatioDS and the same components, yet a specific fault in one of the 

components may be recoverable in one system and fatal in the other. Furthermore, a 

given fault in a particular component of a system may be recoverable at some point in 

time but fatal at some later time, if, in the interim, some characteristic of the system has 

changed. This change may be due to reconfiguration done in order to "tolerate" some 

previous (recoverable) fault. 

In order to be able to use the terms "fault-tolerant system" or "fault tolerance;' we 

must establish the following convention: \Vhen discussing a system that has special 

provisioDS for "fault tolerance;• the terms "erroneous state;• "error;' and "fault;' when 

they are not further qualified, mean "recoverable erroneous state;' "recoverable error;· 

and "recoverable fault;' respectively. 

2.2. The Nature and Con.equence. of Hardware Faults 

~ discussed above, a multicomputer system may fail due to faulty design or faulty 

components. For the rest of this thesis it is assumed that the design of the system and all 

of its components is correct. CoDSequently, any system failure must be a result of 

component failures caused by hardware faults, i.e., caused by physical changes in the 

system OF its environment, that prevent the components from operating according to their 

specificatioDS. 
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hardware faults is sufficiently high to warrant special provisions for fault tolerance. In 

order to answer this question and choose appropriate fault tolerance techniques. it is 

necessary to understand the nature of physical defects in the hardware components and 

the effects or these defects on the behavior or the components at their interfaces with 

their environments. This section discusses the causes and characteristics of physical 

defects in hardware components implemented with the technology assumed in this 

thesis-MOS VLSI. A simplified model of the behavior of MOS digital circuits under 

faults is presented. Since faults that are not detected during fabrication can cause 

component failw-e when the component is part of a working system, the problem of 

testing VLSI components dw-ing fabrication is discussed. Finally, it is shown that in a 

large VLSI multicomputer hardware faults cannot be ignored and there must be special 

provision in the system that allow it to continue correct operation despite such faults. 

2.2.1. Hardware Faulta in MOS Digital Circuits 

VLSI chip failw-e may be due entirely to design or fabrication flaws, due entirely to 

environmental (acton, or is the end result of a degenerative process due to operational 

and environmental stresses but partially attributable to design or manufactw-ing 

defects (Doyl81, Howa82]. Fabrication defects in MOS chips consist mainly of shorts and 

opens in each interconnection level (metallization, diffusion, and poly-silicon), shorts 

through the insulator separating different levels, and large imperfections such as scratches 

across the chip [Gali80]. Other fabrication defects include incorrect dosage of ion 

implants, contact windows that fail to open, misplaced or defective bonds, and penetration 

o( the package by humidity and other contaminants (Doyi81J. Ow-ing the operation o( the 

chip, faults may be caused by electromigration, corrosion, electrical breakdown of oxide, 

cracks due to different thermal expansion coefficients, power supply fluctuation, and 

ionizing or electromagnetic radiation (Doyl81, Cast82]. 

The probabilities (rates) of the different types of chip failw-es are difficult to 

determine experimentally and the manufactw-en are reluctant to release any available 

iDlormation. In 1981 it was reported that, due to manufactw-ing defects and incomplete 

testing, the number of defective VLSI chips reaching customers is between 100 to 1000 

parts per million [Peat81). The rate of permanent hardware faults, which are a result or 

aging and deterioration dw-ing the operation or the chip (e.g. corrosion or oxidation, 
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insulation breakdown or leakage, ionic migration or me(als, shrinking or craeking of 

plastic material), has been reported to be on the order of 300 per billion part 

hours [Peat81, Budz82]. Measurements of complete systems indicate that the the rate of 

transient faults, which are related to environmental factors (e.g. electromagnetic radiation 

received by interconnections, power supply fluctuations, ionizing radiation), is at least an 

order of magnitude greater than the rate of permanent faults [Cast82J. 

The failure rates above reflect the reliability of relatively mature chips that have 

been in production for several years. New chips exhibit much higher failure rates. For 

example, the Texas Instruments TMS-1000 microcomputer, which had a failure rate of 300 

per billion part hours in 1979, had a failure rate of 5000 per billion part hours when it was 

introduced in 1974-1975 [Budz82}. Similarly, when a new complex VLSI chip is first 

introduced, it is common for more than one percent of the chips sent to customers to be 

clef ective. t 

It should be noted that the above failure rates are for a single VLSI chip, such as a 

microprocessor, and do not take into account the other sources of failure in a complete 

system, which include printed circuit boards, cables, interconnections between the chips 

and the boards, etc. For example, measurements on a "real" system, the Cm•, have 

shown that the rate of permanent failures of a "Computer Module;' consisting of an 

LSI-11 microprocessor, memory, and a "switch" (approximately 400, mostly SSI/MSI. 

chips), is on the order of 200 per million module hours [Siew78J. Since the failure rate of 

the standard SSI and MSI chips is at least an order of magnitude smaller than the failure 

rates mentioned above for VLSI chips, the rate of module failures cannot be explained by 

chip failures alone. 

Although design faults are not considered in this thesis, faults caused by marginal 

design are often indistinguishable from faults caused by environmental factors or marginal 

fabrication and must therefore be taken into account even if the "basic" design is assume 

to be correct. For example, if the specified width of a metal line is too small, the result of 

an open line due to electromigration is identical to the result or a fabrication defect that 

causes a properly specified metal line to be too narrow. Due to the steadily increasing 

complexity of chips and the fact that they must deal with interacting 1-'ynchronous 

events, it is becoming more difficult to ensure that the design is correct so that the chip 

t No formal reference for this information is known to the author. 
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can properly deal with all possible combinations of events. Incorrect behavior due to a 

rare, unexpected combination of events may be indistinguishable from incorrect behavior 

due to a random burst of cosmic rays modifying a value in memory. 

Marginal de!ign problems are often detected only after the chip has been in use. The 

detection and correction of marginal design faults are one important explanation of the 

previously discussed increased reliability of later releases of chips compared to their 

reliability when they are first introduced. 

2.2.2. A Fault Model for MOS Digital Circuits 

At the lowest level, any digital circuit is a non-linear electrical circuit with analog 

values of voltage! and currents. Determining the precise effects of the physical defects 

discussed in the previous subsection on the operation of the circuit requires complex 

analysis which involve! solutions of non-linear differential equations. Given the size of 

VLSI chips and the variety and complexity of the physical defects that can occur, it is 

very difficult (practically impossible) to perform such analysis for each possible defect. A 

higher level simplified model (fault model) of how the circuit is affected by physical 

defects must therefore be used. 

Even low-level de!ign of digital circuits is often done •ithout direct consideration of 

the detailed electrical characteristics of the components. Instead, the designer works at 

the level of Boolean logic ("ones and teros"). The electrical characteristics are taken into 

account by following simple "design rules" that are expre!sed at the level of ones and 

teros, logic gate!, etc., rather than at the level of voltages and currents. 'While these 

de!ign rule! prevent the use of some circuits that could provide an effective 

implementation of desired functionality, the simplification of the design process and the 

analysis of that de!ign is, in most cases, worth the potential limitations. Just as design 

rule! make it possible to design very complex systems, high-level fault models make it 

possible to predict the behavior of complex faulty circuits. 

The highest level fault model is the genera/ functional model [Haye85]. It allows 

arbitrary change! in the functionality of the circuit due to physical defects. In its 

"pure!t" form this model is u.sele!s since it simply indicates that the circuit can exhibit 

arbitrary behavior due to defects. This model is used by applying it to simple modules 

that make up a more complex system. It is then assumed that only a small number of 
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modules (typically one) will fail simultaneotl!ly and the behavior or the system due to the 

arbitrary failure of one or several of these modules is determined. The result is a 

restricted functional fault model for the entire system [That80]. 

High level functional fault models are specific to a particular system and are of no 

help in understanding the effects or physical defects on the operation or arbitrary circuits. 

To gain such an understanding, it is necessary to consider the characteristics that are 

common to all circuits of a particular technology. A logic level fault model for MOS 

circuits is therefore introduced in the remainder of this subsection. 

Prior to the advent of VLSI, most digital circuit design was done at the level of basic 

combinational logic ptes (AND, OR, NOT) and simple flip-Oops. A relatively low level 

fault model was developed to correspond to these modules. This so called stuck-at model 

was based on the assumption that most physical defects have the same effect on the 

operation of the circuit as a set or gate inputs and outputs that are stuck at logic 0 or 

logic 1 [Frie71]. While the stuck-at fault model can represent the effects or a significant 

percentage of the physical defects that occur in modern NMOS and CMOS VLSI circuits. 

it cannot represent the effects of several other possible defects and is therefore 

insufficient [Cour81, Gali80, Wads78J. 

The effects of most defects can be represented, at the logical level, by a circuit model 

that consists of a network of switches, loads (for NMOS), and interconnection lines which 

directly correspond to the transistors and interconnections in the actual circuit [Gali80]. 

Shorts and breaks in lines can be represented with this circuit model in an obvious 

way [Cour81]. Shorts to "ground" and "power" are the traditional stuck-at faults. A 

"switch" may be permanently on or permanently orr, corresponding to a gate input 

stuck-at-1 or 0, respectively. Shorted NMOS loads (pull-ups) are equivalent to an output 

line s-a-1. Disconnected pte inputs are usually equivalent to s-a-0 or s-a-1 faults. A 

single break in a line that fans out to many inputs is equivalent to multiple stuck-at faults 

(all of the same type). 

Some physical defects have a more complex effect on the circuit. In NMOS, 

incorrect dosage of ion implants may cause a threshold shift in a load transistor. This can 

result in an output voltage that lies between the voltages assigned to logic 0 and logic 1. 

If the fanout from the gate is greater than one, some or the attached gates may 

"interpret" its output as logic 1 while others will interpret it as logic 0. If, at some point 
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in time (clock cycle), the line is supposed to be a logic 1 but is interpreted by at least one 

o( the gates as logic 0, it is called a weak 1 fault. Conversely, i( the line is supposed to be 

a logic 0 but is interpreted by at least one or the gates as logic 1, it is called a u.•eak 0 

fault [Tami83J. A line may exhibit both a weak 0 fault and a weak 1 fault, as a result of a 

single physical defect. 

A stuck-at-1 fault is a degenerate case o( a weak 0 fault while a stuck-at-0 fault is a 

degenerate case or a weak 1 fault. I( a line is stuck-at-1, all the devices connected to it 

alwa~s interpret its value as logic 1. I( a line has a weak 0 fault, at least one of the 

devices connected to it alwa~s interprets it as a logic 1. 

Breaks in lines are another possible source o( weak 0 and weak 1 faults. A break 

may result in a segment or the line that is only connected to gates or MOS transistors and 

is therefore essentially "floating:' The gates connected to the floating segment of the line 

receive an incorrect value for the line in one or its states (0 or 1 ). 

A single break in the line can result in the line being stuck-at-1 if all the pull-down 

devices are disconnected from the rest or the line, and in the line s-a-0 i( all the pull-up 

(or load) devices are disconnected from the rest or the line. Furthermore, if only some or 

the pull-up or pull-down devices are disconnected from the line, the line may not be s-a-0 

or s-a-1 but assume the wrong value for some inputs that only turn on the disconnected 

pull-ups or pull-downs. A particularly troublesome case may arise in CMOS or dynamic 

logic circuits: a break in a line or a transistor that is permanently off can make the 

output or a supposedly combinational logic circuit dependent on the previous output 

rather than the current input alone. Such a fault is called a stuck-open fault [Wads78]. A 

testing procedure that is designed to detect any single fault but assumes that the circuit is 

strictly combinational, may fail to detect a stuck-open fault. 

A short between adjacent or crossing lines that are supposed to have complementary 

values may affect the value of one or both of the lines, depending on the conductivity or 

the short and the strength of the driven attached to the two lines. A line whose value is 

affected is either forced to the value of the other line or to an intermediate value between 

logic 0 and logic 1. In the wont case, the result or a short is that the line that is supposed 

to be at logic 1 has a weak 1 fault, and the line that is supposed to be at logic 0 has a 

weak 0 fault. The circuit may be designed so that most shorts force both lines to a well 

defined logic 1 or logic 0. This value may be always the value of one of the two lines that 
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"dominates" the other beca\15~ it is driven with larger devices. Alternatively, the Yalue 

may always be logic 0 (AND operation) or always logic 1 (OR operation). 

Traditionally, the term aingle fault has been U5ed to denote an erroneous logic nlue 

on a single line in the circuit. From the above it is clear that a single physical defect may 

result in erroneo\15 logic values on several lines in the circuit. Hence, the term single 

/CTult will be U5ed in this thesis to denote the effect, at the logical level, of a single 

physical defect. 

If faults randomly appear and disappear in the circuit having a different effect on its 

operation every time, the fault model is of no use for either determining how to test the 

circuit or predicting its behavior when a fault occurs. Similarly, if it is assumed that an 

arbitrary number of faults may occur simultaneoU5Iy in a complex VLSI circuit, the result 

is nearly identical to, and just as useless as, a general functional fault model. Several 

restrictive assumptions must therefore be made. These assumptions are based on the 

likely consequences of the physical defects under consideration. 

It is assumed that, for the duration of the fault (defect), the effects of the defect are 

deterministic so that under identical conditions the ~ffects or a particular defect are 

always the same. Thus, if a line has a weak 1 fault due to its driver, those devices 

connected to it that misinterpret the logic 1 as a logic 0, alwa~a misinterpret the logic 1 

as a logic 0. Although a transient fault may ca\15e a permanent change in the atate of a 

circuit with memory elements, it is assumed that the circuit returns to its original physical 

structure after the fault has disappeared. 

2.2.3. Testin& and Ita Limitation• 

The final step in the fabrication process of VLSI chips is extensive testing which 

attempts to ensure that no faulty chips reach the customers. Conceptually, the simplest 

way to test a circuit is based on the general functional fault model. The circuit can be 

placed in a system where it performs all its specified functions and the results are 

compared with the correct results. Unfortunately, such testing is not practical. For 

example, in order to test a microprocessor every possible instruction must be executed, 

with every possible addressing mode, with every possible data combination, starting with 

all possible internal states, and "modulated" by all possible external events (interrupts). 

Daniels and Bruce (Dani85) estimate that such testing of a simple 8-bit microprocessor 
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would take two million years! 

Typically, integrated circuits are either "very good" or "very bad:' [Dani85] It has 

been shown that less than a hundred test patterns, even if randomly generated, are 

sufficient to detect most faulty chips [Dani85, 'Will85]. The problem is how to identify the 

very small percentage of faulty chips that pass the initial test. 

Given the impracticality of complete functional testing, the test procedure must be 

based on a more restrictive fault model. The single-stuck-at fault model has traditionally 

been used to evaluate the errectiveness of various testing procedures. It is assumed that 

chips that pass the initial test may have only one stuck-at fault. After a testing sequence 

is developed, simulation is used to determine the percentage of single stuck faults detected 

by that sequence. It has been shown that a few hundred to a few thousand test patterns 

are sufficient to achieve nearly a hundred percent coverage of single stuck faults in a 

microprocessor chip [Dani85, That80]. 

Unfortunately, teat grading based on single stuck faults is too optimistic. It ignores 

the fact that many of the possible physical defects cannot be modeled by single stuck 

faults (see the previous subsection). 

Another problem is caused by the widespread use of a facility intended to simplify 

testing: modern VLSI chips often allow direct control over all the latches on chips by 

chaining them together into a large shift-register [Eich78J. 'With this scan-in/scan-out 

facility, the problem of testing a large sequential circuit (the chip) is reduced to testing 

many combinational circuit blocks. A test pattern is shifted into the latches and after one 

clock cycle, results are shifted out. 'With this testing procedure the chip is not tested 

under normal operating conditions. Since many circuits used in VLSI chips are dynamic, 

it is either impossible to test them at all with this scheme or, even if testing is possible, 

the test does not reflect their normal operation. 

Even the testing of small combinational circuits is not as simple as it might first 

appear. In particular, as discussed in the previous subsection, a break in a line of a 

CMOS logic gate can cause its output to be dependent on the previous output rather than 

the current input alone. This atuck-open fault may escape detection even if all possible 

input vectors are used to test the circuit (Wads78). 

Using aequencea of test patterns it is usually possible to detect the stuck-open faults 

discussed above [Wads78J. Unfortunately, even this is not guaranteed. In particular, 
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Reddy et al [Redd83] have shown that for a multi-input combinational CMOS gate it is 

possible for small time skews in changes or the inputs to invalidate all possible test 

sequences for detecting particular stuck-open faults. Thus, a chip may pass an extensive 

testing procedure only to fail later due to slight changes in the environment (temperature, 

time skews in inputs to the chip, etc.) [Redd83J. 

1.2.4. The Need to "Tolerate" Hardware Fault. 

The previous subsections discuss a wide variety of physical defects and their effects 

on the operation of VLSI integrated circuits. From this discussion, it is clear that chips 

cannot be guaranteed to always operate according to their specifications. They will 

always be susceptible to internal physical changes that permanently modify their 

functionality, as well as to environmental factors that can modify their internal state and 

cause them to fail without any physical changes in their structure. Furthermore, since it 

is impossible to completely test chips during production, it can be expected that a small 

percentage or the chips installed in any system are faulty. 

As discussed in Chapter 1, as long as the most up-to-date technology is always used, 

unreliability of chips will continue to be a problem. With advances in technology, chips 

become more complex and thus more difficult to test. Furthermore, with each change in 

technology, new unexpected failure modes may become important, and the identification 

or these failure modes may only occur after years or experience. 

Given the fact that chips do, and will, fail, the question arises whether they fail often 

enough to significantly afl'ect the operation of a large multicomputer system. To answer 

this question, consider a system with ten-thousand VLSI chips. From the discussion in the 

previous subsections, the rate or permanent hardware faults for each chip can be expected 

to be between one hundred and five hundred per billion part hours. The rate of transient 

fault can be expected to be at least an order of magnitude greater. Assuming that chips 

fail independently and that the failure or a single chip will cause the entire system to fail, 

the mean time between failure (MTBF) of the system due to permanent faults can be 

expected to be between two hundred and one thousand hours. The MTBF due to 

transient fault can be expected to be between twenty and one hundred hours. 

It should be noted that the above calculation of the system MTBF takes into account 

only chips failures. The failure of the interconnections between chips is ignored. Thus, in 
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reality, the MTBF of the system can be expected to be significantly lower. However, eYen 

if an optimistic MTBF of, say, fifty hours is assumed, there are severe consequences as to 

the ability of the system to perform its intended function. For example, in such a system, 

assuming that component failures are exponentially distributed, the probability that a 

task that executes for one hundred hours will produce the correct results is only fourteen 

percent! 

2.3. The Requirement. of a "Fault Tolerant" Multicomputer 

Since a system foil& when its behavior deviates from its specifications, whether a 

system is or is not fault-tolerant depends on the point of view. The "point of view" is the 

system's specifications. A system "tolerates" a specific fault if it continues to behave 

according to its specifications despite the existence of that fault. Thus a "fault-tolerant" 

system does not necessarily exhibit identical behavior before and after the occurrence of a 

fault. AJI that is required is that it continues to comply with its specifications. Hence. if 

the specifications are sufficiently lenient, almost every system can be described as "fault­

tolerant:' For example, if the specifications of a computing system indicate that "the 

system will never blow up. even in the presence of all possible faults;' then all computing 

systems may be considered "fault-tolerant:' lf, on the other hand, the specifications 

require that "the system will continue normal operation in the presence of all possible 

faults;' then no computing system is "fault-tolerant:' 

The minimal meaningful requirement is that for a large majority of faults, the 

system will either continue to function correctly (perhaps at lower performance) or 

indicate tbat an error has occurred. Hence the system must be &elf-checking. If this 

requirement is satisfied, it is highly Ulllikely that incorrect outputs will be considered 

correct. The maximal practical specifications require that the system continue normal 

operation (perhaps at lower performance) despite the occurrence of most faults. The 

system must continue to be •elf checking at all times, including during and after 

"recovery" from a previous fault. 

Based on the previous section, the minimal requirement, that the system be self­

checking, is insufficient for a large multicomputer. If the system is self-checking but is 

unable to continue any tasks that it was executing when a fault occurs, such tasks must 

be restarted from scratch after the system is repaired. Considering, once again, a system 

with an MTBF of fifty hours and a task that requires one hundred hours to execute, the 
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expected execution time for this task, due to the need to restart it after each fault, is 

more than seven hundred hoW'!. Thus, the multicomputer must be able to recover from 

most faults and continue the correct execution of tasks in the system. 
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Chapter Three 

Error Detection in Multicomputers 

\Vhen one or the components or a system fails, it causes an error in the system, i.e., 

it results in an erroneous internal system state that can lead to system failure unless some 

special action is taken by the system to recover or to reconstruct a valid internal state. In 

order to prevent system failure, such errors must be detected soon after they occur. 

Thus, the system must include a mechanism for detecting the failure of its components. 

The only way to guarantee error detection is to compare the outputs from all 

components with apriori known correct results using a comparison mechanism the can 

never fail. Since the correct outputs are not known ahead of time and there is no failure­

proof comparison mechanism, this "scheme" is not useful for implementing error detection 

in a multicomputer. It is clear that no error detection is perfect; for every scheme there is 

a subset of the possible errors that cannot be detected. Different error detection schemes 

must therefore be evaluated with respect to the percentage of errors that can be detected 

as well as the required system overhead in hardware, design complexity, and extra 

operations that must be performed during normal operation. In addition, an important 

consideration is bow difficult it is to locate the faulty component once an error is 

detected. 

This chapter discusses var1ous techniques for error detection and location in 

multicomputers. An overview of system level techniques is presented in Section 3.1. 'With 

these techniques the key to the detection or errors and the identification of faulty nodes is 

the information exchanged between the nodes. An alternative approach to error detection 

and location relies on the node to test itself and to notify the rest of the system when an 

error occurs. This approach is discussed in Section 3.2. 

3.1. Sy1tem-Level Error Detection Technique. 

~ mentioned above, the best way to detect erroneous outputs from a component is 

to compare those outputs with known correct outputs. Since the correct outputs are not 

known ahead or time, this technique can only be approximated. One way to accomplish 

this approximation is for each component in the system to subject all the information it 

receives from other components to acceptance teata [Rand78]. It is assumed that the 
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information is either correct, or it will fail to satisfy some simple criterion. For example, 

if it is known that the correct results must be positive, negative results indicate an error. 

Error detection based on acceptance tests is well-suited for a multicomputer where 

the components (nodes} are "intelligent" enough so that they can be programmed to 

perform the necessary acceptance tests. The problem is that the acceptance tests are 

dependent on the application. For some applications it may be easy to come up with 

simple low-cost acceptance tests that will detect most errors. For other applications, the 

only acceptance tests that yield a sufficiently high probability of error detection require as 

much computation as the original task that produced the results. In either case, the 

application programmer is burdened with the task or developing and evaluating the 

acceptance tests. 'While this may be reasonable for some special purpose systems, it is not 

acceptable for a multicomputer intended for a variety of general purpose applications. 

Instead of evaluating the results of each task using acceptance tests, error detection 

can be achieved by performing the task simultaneously on two components (subsystems) 

and comparing the results. A5 long as both components do not fail in exactly the same 

way, errors are identified by results that are not identical. This scheme can be 

implemented in a multicomputer so that when a process is initiated a duplicate process is 

initiated on a diff~rent node. Messages intended for the process are sent to both nodes 

and both copies of the process send messages to other nodes. A node receiving "a 

message" actually receives two copies of the message that are supposed to be identical. 

Error detection is accomplished by the comparison of the two copies. 

The above system-controlled node-level duplication and comparison scheme has the 

advantage that error detection is implemented entirely in software and there is no need 

for any special hardware. Furthermore, the scheme is completely independent or the 

application. On the other hand, task assignment and message routing are more 

complicated. Furthermore, as discussed below, the restrictions on the operation of the 

system posed by this scheme result in lower performance. 

The need to assign each process to two nodes increases the overhead of initiating new 

processes. Since a node can fail while simply forwarding a message, the system must 

ensure that the results from the two copies or each process are sent to their destinations 

via different paths. Thus, message routing can no longer always be done in a distributed 

dynamic manner. Specifically, the source node or a message has to compute the entire 
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path for that message rather than simply forward it to a neighbor and let that neighbor 

decide on the next step in the path towards the final destination. Thus, dynamic local 

load balancing of the link traffic and or the forwarding overhead or nodes is precluded. 

The two copies of an application process must coordinate their choices of message paths to 

ensure that they are disjoint. Since all the destination nodes for messages from a process 

may not be known when the process is initiated, this coordination must be done during 

normal operation whenever communication with a new node is initiated. The pre­

computed communication paths also make error recovery more complicated: messages "in 

transit" that have pre-computed paths through a failed node cannot simply be re-routed 

locally; they mWit be removed and the source node has to send a new copy of such 

messages with pre-computed paths that are disjoint from the paths used by the duplicate 

application process on some other node. 

The two copies of a process cannot be allowed to both execute independently without 

any coordination. For example, without coordination, if the process is accessing a disk 

file, duplicate access requests will be received by the disk controller and result in duplicate 

"writes" and in sequential "reads" that provide different data to the two copies of the 

process. Furthermore, accesses to any centralized resource must be checked to make sure 

that they were not initiated by a process on a faulty node. Thus, all centralized resources 

must be controlled by "reliable" nodes that wait for two copies of each request and 

compare them in order to detect errors. The implementation of these "reliable" nodes 

requires the use of other fault tolerance techniques and the coordination of each access is 

bound to result in lower performance. 

Since each process can spawn new processes, and two cop1es of each new process 

must be initiated, without coordination there will be an exponential growth in the number 

of processes in the system. Furthermore, if one node is allowed to spawn new processes, 

both copies of the new process may begin execution in an erroneous internal state that 

will not be detected and may cause system failure. Coordination of process initiation 

requires overhead in time and in the storage for the extra "bookkeeping" information. 

To minimize communication delays, the system must attempt to assign processes 

that communicate often to nodes that are close to each other. With the above scheme, 

the number of processes that interact "often" in a particular application is doubled. Since 

each node has only a small number of neighbors (equal to the number of its 
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communication ports), the average distance between nodes executing these processes 1s 

increased, resulting in increased communication delays in the system. 

Even if the above problems with syst(m-controlled duplication and comparison are 

overcome, the scheme does not provide adequate support for locating faulty components 

so that after an error is detected they can be logically removed from the system before 

normal operation is resumed. When a node receives two unequal copies of a message it 

cannot determine which one or the originating nodes failed or whether the error was 

caused by a faulty communication link or by one of the nodes that forwarded the message. 

The need to locate faulty nodes and links, rather than simply determine that they 

exist, favors more localized schemes for error detection. Ir the failure of a node can be 

detected by an immediate neighbor that is fault-free, the entire system can determine 

which node has failed if the diagnostic information can be reliably distributed from the 

neighbor. 

One way for nodes to determine if their neighbors (or adjacent links) are faulty is to 

periodically execute "diagnostics" on these neighbors. Preparata et al [Prep67] performed 

pioneering work on the correct interpretation of such diagnostic information under the 

assumption that a test performed by a faulty node is invalid. Using this work, Hakimi 

and Amin [Haki74] have shown that if all the nodes test their neighbors simultaneously, all 

faulty nodes can be identified based on the results of these tests if the following conditions 

hold: (1) the number or faulty nodes is less than half the total number or nodes, (2) the 

node connet:tivity or the system is greater than the number or faulty nodes.t 

The results of the work mentioned above are not diret:tly applicable to the diagnosis 

of a multicomputer. In a multicomputer the nodes operate asynchronously and cannot 

perform the tests "simultaneously:' Furthermore, there is no "central observer" that can 

reliably obtain and interpret the results of all the local tests. The need for a central 

observer is eliminated in a tlietri6uted diagnosis algorithm developed by Kuhl and 

Reddy (Kuhl80). In a system using this algorithm each node tests its neighbors directly 

and then forwards to all of them the results of these tests. A node accepts and propagates 

diagnostic information for a neighbor only after testing that neighbor to ensure that it is 

not faulty. Based on the tests it performs and the diagnostic information it ret:eives, each 

node can independent/11 diagnose the system as long as the node connet:tivity of the 

t Thia ia a simplification or the actual results. 
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system i! greater than the number of faulty node!.t 

There are !everal difficulties with the use of di!tributed diagnosis for error detection 

as part of a fault tolerance scheme: 

( 1) The diagnosi! relies on the ability of node! that are interconnected via asynchronous 

communication link! to test each other. Furthermore, since these tests are 

performed during normal operation, they must be relatively short. Given the 

difficulties of testing VLSI chips (!ee Chapter 2), the quality (coverage) of !uch tests 

is doubtful. 

{2) Most fault! are traD!ient rather than permanent [Cast82]. A node may produce 

incorrect output! and later pas! an exhaustive test. 

(3) A node can oniy ''\:.:-ust" a message it receives after every node on the path of the 

mes!age has tested the link through which the message arrived as well as the node 

that forwarded it. This requirement leads to more complicated communication 

protocols and restrictions on the allowable behavior of applications [Hoss83]. 

3.2. Error Detection Using Self-Checking Nodes 

The problems with error detection schemes based on periodic testing stem from the 

distance between error occurrence and detection in both space and time. As a result of 

the distance in space, once an error is detected, it is difficult to determine which 

component was originally respoD!ible for the error. As a result of the distance in time, 

erroneous information is able to spread throughout the system before an error is detected. 

The key to developing an effective error detection scheme is thus to minimize the 

distance between error occurrence and detection in both space and time. Ideally, these 

distances can be reduced to zero so that as soon as an error occurs, i.e., a component 

produces incorrect results, the error is detected by all the other system components that 

are receiving this erroneous information. This "ideal" can be achieved if all the 

components in the system are 1t.l/-checking so that in addition to their normal outputs 

they also indicate to the rest of the system whether these outputs are correct. 

All possible outputs from a self-checking component are divided into two di!joint 

sets. Outputs that contain an error indication are called noncode outputs, and outputs 

that do not contain an error indication are called code outputs. The self-checking 

t This is a simplification or the actual results. 
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mechanism of the component is said to have failed if the component produces code output 

that is incorrect. Another component tests the validity of the outputs of a self-checking 

component by determining whether these outputs are code or noncode. 

Just as complete testing of a VLSI chips is impossible (see Chapter 2), no component 

can be self-checking with respect to all possible combinations of hardware faults. Instead, 

for· all likelv faults, the component must either produce the correct outputs or produce 

noncode outputs. A component that satisfies this requirement is said to be fault 

1eeurc [Ande73}. 

\Vhen a fault occun, it does not necessarily cause immediate component failure; the 

outputs from the component may continue to be indistinguishable from those of a fault­

free component for a long time. The fact that a fault occun only means that there is a 

possibility that, for a particular input or state, the outputs will deviate from those of a 

fault-free component some time in the futw-e, and that the deviation will be directly 

attributable to the occurrence of the fault. 

No con.ponent is fault-secw-e with respect to all possible combinations of all possible 

faults. Since the component is not guaranteed to produce a noncode output immediately 

following the occw-rence of the frrst fault, several different faults may exist in a 

component without any indication to the rest of the system. If the component is not fault 

secw-e with respect to the particular combination of faults, futw-e incorrect outputs from 

the component may be accepted as correct by the rest of the system. In order to prevent 

this situation, there should be a high probability that after a small number of faults occw-. 

a noncode output is produced by the component before the fault-secure property of the 

component is destroyed by additional faults. 

A component is •elf-tuting [Ande73] if it is guaranteed to produce a noncode output, 

due to the occw-rence of one or more faults, before additional faults can occw- and lead to 

the fail w-e of the self-checking mechanism (in which case the component may no longer be 

fault-secw-e ). Thus, if one or more faults occw- dw-ing normal operation of the 

component, a noncode output will be produced within some bounded period of time. In 

order to achieve the goal of providing reliable error detection, self-checking components 

must be both fault-secw-e and self-testing. Such components are said to be totallv •elf­

checking [Ande73) (TSC). 

One of the difficulties in implementing self-checking nodes in a multicomputer is that 
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such nodes must be capable of sending an error indication to the rest of the system while 

failing to correctly perform their normal function. This implies that the transmission of 

the error indication must not rely on the correct functionality of most of the node. It is 

therefore unacceptable for the error indication related to a particular packet to be sent 

separately from that packet. Not only does this introduce a distance in time between 

error occurrence and detection, but also, the process of recording the error indication and 

later transmitting it is relatively complex and unreliable in a node that is already failing. 

The indication of whether a particular output is correct must therefore be transmitted 

together with that output. 

In one approach to implementing TSC nodes, a variety of techniques are used for 

different parts of the node. For example, buss~, memori~ and registers may include one 

or more "parity bits" carrying redundant information that can be used to detect 

errors [Tsao82]. Complex r~idue codes and parity prediction schem~ can be used for 

checking ALUs [A viz71, Kraf81]. Error detecting codes ~e not useful for self-checking 

shifters, modules that perform logic functions, and control logic; self-checking modules of 

this type can only be implemented by duplication of the functional modules and 

comparison of the r~ults [Tsao82]. 

If the TSC node is implemented wnng a variety of self-checking techniques for 

different parts of the node, error signals from all the self-checking subcomponents must 

somehow be combined to generate the error signal to the rest of the system. 

Unfortunately it is not clear how such signals can be combined in a "reliable" manner. 

The need to consider error detection in every part of the module increases the complexity 

of the design and its verification, thereby decreasing the confidence that the design is 

correct and reducing the overall reliability of the system. Furthermore, the effectiveness 

of a combination of different localized self-checking techniques inside a chip is very 

difficult to evaluate. 

An alternative approach to implementing a TSC node us~ two identical, 

independent modul~, each performing the function of the node. If the two modules 

operate synchronously, their outputs should always be identical. ~ long as the two 

modul~ do not fail simultaneously in exactly the same way, producing identical incorrect 

outputs, an error can be detected by a simple comparison. 

If the outputs from the two modules are transmitted through independent links to 
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the neighbors, then the comparison can be done by the neighbors. ~ long as the two 

parts of the duplex link never fail in exactly the same way at the same time, the 

comparison done by the neighbor checb the link as well as the source node. There are 

two disadvantages to this approach: (1) it doubles the required communication bandwidth, 

and (2) the error signal is not available within the faulty node for possible local action in 

response to a mismatch (see below). 

Instead of transmitting the outputs from both modules, the comparison can be done 

inside the node (Fig. 3.1). The outputs from the comparator can be used as an error 

indication to the rest of the system as well as for local action. The output from one of the 

modules is the "functional" output from the node. 
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Fig. 3.1: A Self-Checking Self-Resetting Node 

An important property of the self-checking node in Fig. 3.1 is that the output from 

the comparator is used to reset the node when an error occurs. This allows the node to 

attempt to reestablish a "sane state" so that the system can continue to use it. At the 

same time, the error signal is also received by neighbor nodes which can make an 

independent decision whether they are willing to continue to interact with this node. 

Since the comparison of the outputs of the two modules is done locally within each 

node, some other technique is used to detect errors caused by faulty communication links. 

This can be done using error-detecting codes. For example, using cyclic codes, any desired 

probability or detecting errors can be achieved by adjusting the number or check bits sent 
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with each packet [Elki82j. Errors in the encoding and decoding of packets are also 
detected since packets are encoded before they are compared at the output of a node. and 
packets ~e decoded separately by the duplicate modules in each node. 

A component in which the TSC property is achieved by duplication and comparison 
requires more than twice the hardware of a component that is not TSC. 'While at first 
glance this approach may seem wasteful, it is well worth the cost when the resulting low 
design complexity and high fault coverage are considered. 

There still are situations in which duplication and comparison fails to detect errors: 
(1) the comparator may fail and mask a mismatch between the outputs of the two 
modules, and (2) the two modules may fail simultaneously in exactly the same way. Due 
to the rmt problem, faults in the comparator must not. remain undetected, i.e., the 
comparator must be self-testing. The probability that two complex VLSI modules will 
simultaneously fail in exactly the same way is very low. In Chapter 6 it is shown how this 
probability can be reduced further, but for now it will be assumed that this probability is 
zero. 

Even without the selr-testing requirement, all possible outputs from the comparator 
can be divided into two disjoint domains: code outputs that indicate that the two modules 
are producing identical results and noncode outputs that indicate an error. For the rest 
or the system it is important to determine whether the outputs or a particular node can be 
"trusted:' It does not matter whether the node cannot be trusted due to the failure of the 
functional modules or due to the failure of the comparator. Thus, the self-testing 
comparator should be implemented in such a way that a fault in the comparator will 
result in an output that is in the same domain as comparator outputs that indicate a 
mismatch between the functional modules. 

Unfortunately, it is not possible to implement a comparator that will produce a 
noncode output immediately when a fault occurs. Different parts of any self-testing 
circuits are tested by different inputs. Thus, the comparator must be driven by some 
subset of the possible inputs in order to perform a complete self-test. Since during normal 
operation the outputs from the two functional modules are always identical, only inputs to 
the comparator generated by identical outputs from the functional modules are considered 
(these inputs are eode input3 to the comparator). In the worst case, all possible code 
inputs may be required for a complete self-test. 
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The realistic requirements from the self-testing comparator are therefore that it will 

produce noncode output a "short time" after a fault occurs. In this ca!e "short" is 

relative to the failure rate of the hardware. The noncode output must be produced soon 

enough after the fault occurs so that there is a very low probability that one of the 

functional modules will fail in the interim. Thus, the minimal requirement of the 

comparator used in a TSC node is that for any likely single fault there is some code input 

that results in a noncode output. The implementation of a comparator that satisfies this 

requirement is discussed in Chapter 4. 
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Chapter Four 

Self-Testing Comparators 

In Chapter 3 it was shown that duplication and comparison is an effective technique 

for implementing self-checking computing elements. One of the potential weaknesses of 

this technique is that if the comparator fails, a subsequent mismatch between the outputs 

or the two functional modules may not be detected and erroneom information will be 

accepted as correct by the rest or the system. Hence, it is imperative that faults in the 

comparator be detected soon after they occur so that the rest or the system can be 

informed that the supposedly selC-checking computing element has lost its self-checking 

capabilities. h discussed in Chapter 3, this requirement can be fulfilled by ming a ~elf­

te~ting comparator that signals its own faults during normal operation. The design, 

implementation, and application of such a comparator are discmsed in this chapter. 

h discussed in Chapter 2, large VLSI chips are far too complex to allow detailed 

analysis or all the possible physical defects that can ~cur and or the effects or these 

defects on the operation of the circuit. On the other hand, PLh are characterized by a 

simple regular structure and are therefore more amenable to thorough analysis. PLAs are 

therefore a preferred implementation technique Cor combinational circuits whose behavior 

under faults is or critical importance. Since the correct operation of the self-testing 

comparator is critical to the error-detection technique proposed in this thesis, this chapter 

focuses on the use or PLh for implementing the comparator. 

Section 4.1 presents a new fault model Cor MOS PLh that is based on the fault 

model for general MOS VLSI circuits that was discmsed in Chapter 2. The model reflects 

some physical defects that are likely to occur in integrated circuits but are not taken into 

account in previously published models. 

Comparators implemented with tw~level AND-OR or NOR-NOR circuits, which are 

claimed to be self-testing, have been presented in the literature [Cart68, Wang79]. Some 

of this work and related terminology are reviewed in Section 4.2. The comparator 

implementation discussed in this chapter is based on the designs proposed by Carter and 

Schneider[Cart68J and Wang and Avizienis [Wang79J. In Section 4.3 it is proven that 

these prev1ous designs, which require that the number of product terms grow 
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exponent.ially with the number or input bits, are optimal in terms or site. The correct 

operation or the proposed circuit under fault-free conditions is verified in Section 4.4. In 

Section 4.5 it is shown that the circuit cannot he self-testing with respect to several type~ 

o( faults unless a few simple layout guidelines are observed in its implementation. 

Section 4.6 presents a formal proof that a comparator implemented as a NOR-NOR PLA, 

based on the design or Wang and Avizienis (Wang79J and following the layout guidelines or 

Section 4.5, is self-testing with respect to all single faults in the fault model introduced in 

Section 4.1. Section 4.7. discusses the application or the self-testing comparator as a 

basic building block (or implementing fault-tolerant systems. 

4.1. A Fault Model for MOS PL.Aa 

The effect or a single physical defect on the output or an integrated circuit is 

dependent on layout details such as which lines are adjacent, which lines cross each other, 

etc. One or the advantages or using PLA.s is that their regular structure simplifies 

analysis or the effects or faults on its outputs and therefore facilitates test vector 

ceneration and determination or fault coverage. This section describes how the faults 

discussed above affect the operation or a two-level NOR-NOR MOS PLA. To facilitate 

this discussion, a "typical" NMOS PLA is shown in Fig. 4.1. 

··········································--·········-··-····-···-····················-······························· 
. :vDD . 

VDD Product Term Line OR 

+ ~~ 

,, ................................ ~-~-~~--~~-~---····----········--··········-~~~~~-~~----············· 
Fis. 4.1: A Self-Testing NMOS Two-Rail Code Checker 

A commonly used fault model Cor MOS PLA.s includes three types of faults [Mak82, 

Osta79, Wang79J: 
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(I) A stuck-at fault on an input line, product term line, or output line. 

(II) A s,tlort between two adjacent or crossing lines that forces both of them to the same 

logic value. 

(III) A missing or extra crosspoint device in the AND array or in the OR array. 

The ftrst two types or faults were explained above and correspond directly to physical 

defects in the circuit. The third type of faults refers to faults whose effect on the 

operation of the circuit is equivalent to the effect of a missing or extra crosspoint device. 

This may be the result of the gate of the crosspoint device stuck-at its "off'" value (0 for 

NMOS, 1 for PMOS) when it should be connected to an input or product term line, or 

connected to an input or product term line when, by design, it should be permanently 

held at its "off'" value. 

A missing crosspoint device has the same effect as a device that always misinterprets 

the line that drives it as a logic 0 even when it is a logic 1. Thm, a missing crosspoint 

device fault in the AND array is equivalent to a weak 1 fault on the corresponding input 

line while a missing crosspoint device fault in the OR array is equivalent to a weak 1 fault 

on the corresponding product term line. "Hence, if weak 1 faults on input lines and 

product term lines are colll!idered, there is no need to COIUiider missing crosspoint device 

faults separately. 

The above three fault types do not include weak 0 and weak 1 faults or breaks in 

lines that are not equivalent to stuck faults. Since breaks in lines are one of the main 

causes of failures in VLSI circuits [Cour81, Gali80J, it is clear that the above simple fault 

model does not accurately reflect likely physical defects in aMOS PLA. 

Some of the effects of breaks on general MOS circuits cannot occur in PLAs due to 

their structure. This fact can be used to reduce the complexity of the fault model that 

must be colll!idered in analyzing the operation of PLAs under faults. One such 

simplification relies on the fact that input lines are only connected to gates of devices in 

the PLA. A break in an input line causes a segment of that line to "float" and is 

therefore equivalent to a weak 0 and/or weak 1 fault. Hence, if weak 0/1 faults on inputs 

lines are taken into account, there is no need to collllider breaks in input lines separately. 

Another important simplification of the fault model is based on the fact that product 

term lines and output lines only have one pull-up (load) device and that this device is 

independent of the inputs to the circuit. Every point in a product term or output line is 
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either connected to the single pull-up {load) or permanently disconnected (rom it (due to a 

break). For any input, segments or the line that are connected to the pull-up are either 

set to logic 1 or set to logic 0 by some pull-down device that is turned on by that 

particular input. A segment of the line that is disconnected from the pull-up is set to 

logic 0 b;y the first input that is supposed to set it to 0 and stays stuck-at-0 for a long 

time thereafter. Hence no state is preserved on lines between inputs {clock phases). The 

troublesome faults that can convert a 'eneral combinational circuits into a sequential 

circuit cannot occur. 

Based on the above discussion, a realistic fault model for PLAs must include 

weak 0/1 faults as well as the possible effects of breaks in product term lines and output 

lines. Specifically, the following faults must be considered: 

(A) Weak 0 or weak 1 or both on one input line. 

(B) A short between two adjacent input lines. 

(C) Weak 0 or weak 1 or both on one product term line. 

(D) A short between two adjacent product term lines. 

(E) Weak 0 or weak 1 or both on one output line. 

(Ff A shor;;, between two adjacent output lines. 

(G) A short between an input line and a crossing product term line. 

(H) A short between a product term line and a crossing output line. 

(I) An e>:::-a crosspoint device in the AND array. 

(J) An extra crosspoint device in the OR array. 

(K) A break in a product term line. 

(L) A break in an output line. 

4.2. Background and Terminology 

Since self-testing comparators are key elements in many computer systems with on­

line error detection, the design and implementation of self-testing comparators has been 

an active research area for many years. This subsection discusses some of that work and 

introduces the terminology and notation that will be used in the rest of this chapter. 

It 1s assumed that two n-bit vectors, and 

B - (b.-~rb~ ... ,60), are to be compared. In much of the literature tUJo-rail code 

eht.cker• rather than comparator• are discussed. Given two n-bit vectors 

X - (z._1,z.-21 ... , z0 ) and Y- (y._1,y.-¢. ... , y0) , the combined 2n bit vector 
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XY - (z._1, ..• I z 0,y._11 ••• I ro) is a two-rail code word if z1 - y'1 for all i such that 

0 ~ i ~ n-1 (where r'1 means the complement of r1). AJl n-bit vector whose elements 

are the complements of the elements of B will be denoted B • . Thus, 

B • - (b'._1,b'•-2l ... ,6'0). A two-rail code checker whose input is the bit vector AB • 

is, effectively, a comparator of vectors A and B . Assuming that all the input bits are 

available in both complemented and uncomplemented form, there is no difference between 

the design of comparators and two-rail code checkers. Hence, the terms "comparator" 

and "tw~rail code checker" will be used interchangeably. 

Pioneering work in the field of self-testing checkers was reported by Carter and 

Schneider [Cart68J whose design of a self-testing two-rail code checker serves as a basis for 

the comparator discussed in this paper. For the case n -= 2 , Carter and Schneider 

presented a design of a circuit that checks whether the input is a two-rail code word and 

that is also self-testing with respect to any single stuck-at fault [Cart68]. The circuit, 

shown in Fig. 4.2 [Cart68J, has two output lines c1 and c0 where (c1,c0 ) = (0,1) or 

(c1,c0) - (1,0) for code input, and (c1,c0)- (0,0) or (c1,c0)- (1,1) for noncode input. 

cl co 
Fia. ,.2: A Self-Testing Two-Rail Code Checker 

Carter and Schneider's checker has the property that, with no faults, every line in 

the circuit is 0 for at least one code input and 1 for at least one code input. If any line is 

stuck-at-0 (s-a-0) or s-a-1, the code input for which the line is supposed to be at 1 or 0, 

respectively, results in the output (0,0) or (1,1). 

Wang and Avizienis [Wang79} extended Carter and Schneider's design to arbitrary 

size input vectors. For each one of the 2• input code words there is a single unique 

product term that is selected (set to 1) only by that code word. Each product term line 
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selects exactly one of the two output lines. Depending on the parity of the vector 

A - (a"_1,a"_z, ... , a0 ) , half the code inputs select output c0 and the other half select 

output c1• 

The checker proposed by Wang and Avizienis can be described by sum-of-products 

equations as follows: For any integer k , let lk denote the set of the k integers between 

0 and k-1 , i.-e. I,- {0,1, ... ,k-2,k-1} . If Q is a set, let I Q I denote the 

number or elements in Q . 

co- E jl II a .. ] I II b'i] 
(Q I QCI,.ud I Ql ewt0} (i lieQ} {i I JEII.-Q)} 

(1) 

c1 - E jl II ail! II b·,Jl 
{QIQC/,.udiQICIIIU} {ilieQ} (il.fEll.-Q)} 

AB will be shown in Section 4.4, similar functionality can be achieved in NOR-NOR 

form based on the Equation (2). An NMOS PLA which implements these equations for 

the case n - 2 is shown in Fig. 4.1. It should be noted that there are a total of 2n 

input bits to this circuit: all the "a" bits uncomplemented and all the "b" bits 

complemented. Each "product term" contains exactly n literals. 

c0 = NOR I NOR[{ai I iEQ} U {b'i I iE(/"-Q)}J] 
(QI QCI,.ud I QICIIIU} 

(2) 

c1 - NOR I NOR[{ai I iEQ} U {b'i I jE(l"-Q)}l] 
{Q I QCI,.ud I Ql ewoa} 

4.3. Optimal Design of Selr-Teeting Comparators Using Two-Level Logic 

Published work on self-testing checkers usually consists of a circuit design and a 

proof that the circuit is self-testing. There has been no attempt to show that the 

proposed desigm are optimal in any respect. This section discusses the design of self­

testing comparators which are optimal with respect to the number of output lines, the 

number or input lines, and the number or product term lines. 

Since the comparator must be self-testing with respect to stuck-at faults on the 

output lines, it must have at least two output lines !Cart68]. The use of more than two 
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lines ha! been proposed[Son81); however, since limited communication bandwidth is a 

severe problem in VLSI systems, it is preferable to minimize the bandwidth dedicated to 

transmitting self-testing information. Hence only comparators with two output lines will 

be considered. 

There are two possible -ways to "code" the output from the comparator and still 

allow self-testing of the output lines: (A) The code (correct) output is {0,1) or (1,0) and the 

noncode (error indication) output is (0,0) or {1,1). (B) The code output is (0,0) or (1,1) 

and the noncode output is {0,1) or (1,0). Option (A) is preferable since it allows the 

comparator to be self-testing with respect to shorts between the output lines a! well as 

any other fault that causes a unidirectional error. A unidirectional error means that, due 

to a fault, some lines that are supposed to be at logic 0 are at logic 1 or some of the lines 

that are 'supposed to be at logic 1 are at logic 0, 6ut not 6oth. It ha! been shown that the 

faults that are most likely to occur in PLAs (fault types (I), {II), and (III) in Section 4.1 ), 

can result only in a unidirectional error [Mak82). Therefore only comparators with the 

option (A) encoding of the outputs will be considered. 

The self-testing comparator design proposed by Wang and Avizienis requires 2" 

product terms for comparing n-bit vectors. However, it is possible to implement a 

comparator that ha! two outputs that are {0,1) or (1,0) for code inputs and (1,1) for 

noncode inputs based on the equations: 

~--1 

c0-a '0+6'0+ E (a;b';+a '1bt} ,. 
~-1 

c1-=a0+b0+ E (a;b ';+a ';b;) ,_ 
This comparator is self-testing with respect to faults in the input lines and output lines 

but requires only 4n product terms. Unfortunately, this comparator is not self-testing 

wit-h respect to stuck faults on the product term lines. The question thus arises what is 

the minimum number of product terms necessary for a comparator that is self-testing 

with respect to a realistic fault model thai also takes into account faults affecting the 

product term lines. 

Although the design of a self-testing comparator presented by Wang and 

Avizienis [Wang79) uses 2• product terms, one for each code input, this is never shown to 

be a necessary property of self-testing comparators implemented with PLAs. In several 

papers [Khak82, Wang79) it is claimed that it is "desirable" to use PLAs that are 

nonconcurrent, i.e., where each code input selects only one product term. Wang and 
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Avitienis propose a general approach to the design of self-testing PLAs that always results 

in a nonconcw-rent circuit. They also give an example of a PLA where concw-rency leads 

to a circuit which is not self-testing[Wang79}. However, nonconcw-rency is uot presented 

as a n~ce.,.,ar11 property nor is there any mention of a problem with product terms that 

are selected by more than one code input. 

In the following we will show that the exponential growth in the number of product 

term lines is indeed nec~a.ry for self-testing. For any two-level NOR-NOR 

implementation, we also show that every code input must select exactly one product term 

line and that no two different code inputs can select the same product term line. This is 

necessary even if the only faults considered are single stuck-at faults on the input, output 

and product lines. The proof that the same requirement also applies to two-level AND­

OR implementations is almost identical and will not be presented explicitly. 

umma 1: Every product term must be selected (set to 1) by least one code word. 

Proof: Assume that there is a product term that is not selected by any code word. 

A stuck-at-0 fault on this product term line will not be detected during normal operation, 

thus violating the self-testing requirement. 

umma f: Every code word must select at least one product term. 

Proof: I( there is some code word that does not select any product term, the 

comparator output for that code word will be the noncode output (1,1), which incorrectly 

signals an error. 

umma 9: All the product terms selected by a single code word must be connected to 

the same single output in the OR array. 

Proof: If any of the product terms selected by a code word is connected to both 

outputs in the OR array, then, for that code word, the output will be the noncode output 

(0,0), which incorrectly signals an error. Similarly, the output will be (0,0) if the product 

terms are not all connected to the same output line. 

umma -4: No product term can be selected by more than one code word. 

Proof: B11 eontradietion. Assume that P1 is a product term which is selected by 

the two code inputs 

.AA - ( a._1, ••• 1 a0,a._11 ••• 1 a0) and BB - ( b._1, .•• 1 bo,b.-1, ••• , bo) . 

Since the two code words are different, there exists an integer k (0 ~ k ~ n-1) such 
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that a* "" b* . Pt is selected only if all the literals in the expression corresponding to Pi 

are 0. Since Pt is selected by both code words, it must be independent of bit k from 

the two functional modules. Hence P, is also selected by the code input 

W\-V - (a._11 ••. 1 a·*~ ... 1 ao,a.-11 ... 1 a·*~ ... 1 a0) and by the none ode input 

Q - (aa-v .. · 1 a·*~ · · . 1 ao,aa-11 · · . 1 a*, · .. 1 ao) · 

Since Q is a noncode input, the corresponding output produced by the comparator must 

be noncode. When Pt is selected, it sets to 0 the one output line it is connected to. 

Hence, Q must select another product term, Pi, connected to the other output line, so 

that the noncode output {0,0) will be produced. By Lemma 1, Pi must also be selected 

by at least one code word CC - (c_11 ••• I c*l ... I c0,c .. -11 ... I c*l ... 1 c0) • 

Since in CC , bit 1 from both functional modules is the same, and in Q bit k from 

one unit is the complement of bit k from the other unit, Pi must not include the literal 

corresponding to bit k from at least one of the two functional modules. Hence, since Q 

selects Pi, either AA or W\-V must also select Pi. Without loss of generality, assume 

W\-V selects Pi . From the above, W\-V also selects P, . But in the OR array Pi is 

connected to a different output line from P, . Hence, Lemma 3 above is "violated" and 

the code word W\-V results in the noncode output {0,0). Thus the assumption that there 

exists a product term that is selected by more than one code input must be incorrect. 

Lemma 5: Every code word must select one, and only one, product term. 

Proof: By Lemma 2, every code word must select at leaat one product term. 

Assume that the code word AA -= (a._11 ••• 1 a0,a._11 ••• , a0) selects the two product 
• 

terms P, and Pi . By Lemma 4, no other code word except AA can select P; or Pi . 

Hence, a stuck-at-0 fault on the P, or Pi lines can only be detected by the input AA . 

By Lemma 3, both P, and Pi must be connected to the same output line in the OR 

array. Hence, when the code word AA is applied, the output from the PLA will be the 

same whether or not one of the product term lines Pt or Pi is stuck-at-0. Thus a 

stuck-at-0 fault on one of the product term Jines Pt or Pi will not be detectable by any 

code word, thus violating the self-testing requirement. 

Theorem 1: A self-testing comparator of two n-bit vectors that has two output lines and 

is implemented as a two level NOR-NOR PLA, must have ezodlfl 2" product terms. 

Proof: By Lemma 1, every product term line is selected by at least one code word. 

By Lemma 5, every code word s~lects one, and only one, product term line. Hence, the 
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number of product term lines is equal to the number of code word!. Since there are n 

bits of output from each one of the two functional modules, there are 2" code words. 

Therefore the num her of product term lines is exact/~ 2" . 

Q.E.D. 

In summary: any comparator of two n-bit vectors must have at least 2n input lines 

(two lines for every pair of bits being compared), at least two output lines are necessary, 

and, based on the proof presented in this section, exactly 2" product term lines are 

necessary for any tw~level NOR-NOR implementation. Hence, the design based on 

Equation (2), which was discussed in the previous section, is optimal. In the next three 

sections a PLA implementation of a self-testing comparator based on this design is 

analyzed in detail. 

4.4. Fault-Free Operation of the Comparator 

In the previous section it was shown that any self-testing comparator implemented as 

a single tw~level NOR-NOR PLA must have 2• product terms. This section and the two 

subsequent sections discuss a specific self-testing comparator, based on Equation (2) in 

Section 4.2, which satisfies this necessary property. 

Although a comparator based on Equation (2) has been discussed in the 

literature [Wang79], there is no rigorous proof that it indeed functions as a comparator. 

Such a prooi is presented in this section. To prove that, with no faults, the circuit 

described by Equation (2) is a comparator, it is shown that if A -= B , the output is (0,1) 

or (1,0). It is then shown that if A .,. B , the output is (0,0} or (1,1). 

If A - B , there are exactly n ones and n zeros at the inputs. If U is a set of 

integers U -= { i I a, - 0} , then for every integer j such that j E (I" -U) , 

a1 - b1 -= 1 . Thus, b•1 - 0, and the one product term that correspond! to Q == U in 

Equation {2) is selected. Every other product term includes the literal a1 for some 

jE(J.-U) or b·, for some iEU. Hence, all of the other product terms are set to 0. 

ThJlS, only the one output line connected to the single selected product term is set to 0, 

and the output is (0,1) or (1,0). 

If A 'f' B , the two bit-vectors differ by at least one bit. Consider the product term 

(3) 

for some Q C I. . Assume that A and B differ in bit r, r E !,. , so ap == 1 and 
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b ·r - 1 in the input .AB . Ir r E Q , the product term is set to 0 since it contains the 

literal ar . Ir r ~Q , the product term is set to 0 since it contains the literal b'r . Hence, 

all of the product terms are set to 0 and the output is (1,1). 

Since the two bi~vectors differ by at least one bit, if there does not exist any integer 

r e r. such that ar - 1 and b'r - 1 , there must exist an integer , e r. such that 

a.- 0 and b'• - 0 in the input .AB . If .AB doesn't select any product term, the 

output is (1,1). Assume that the product term that corresponds to Q - Q1 

(Equation (3)) is selected. Ir •EQ1 , consider the set Q2 -= Q 1-{"}. Since Q 2 C Q 1 , 

r.-Q2- r.-Ql+{,} ' and b'.- 0' the product term that corresponds to Q - Q2 will 

also be selected. Ir '~Q 1 , consider the set Q3 - Q 1+{"} . Since a. -= 0 and 

I.-Q3 C r .. -Q 1 , the product term that corresponds to Q -= Q3 will also be selected. 

Thus, either the product terms corresponding to Q 1 and Q2 will be selected, or the 

product terms corresponding to Q1 and Q1 will be selected. The number of elements in 

Q1 is one greater than the number of elements in Q2 and is one less than the number of 

elements in Q3 • Hence, either I Q2 1 and I Q3 I are even while I Q 1 I is odd, or 

I Q2 1 and I Q3 I are odd while I Q1 1 is even. Thus, the product terms corresponding 

to Q2 and Q3 are connected to the same output line, which is different from the output 

line to which the product term corresponding to Q1 is connected. Therefore, product 

terms collnectec t.O both output lines are always selected and the output is (0,0) . 

•• 5. Identification and Elimination of Undetectable Faults 

Given that the circuit described by Equation (2) functions as claimed when it is 

fault-free, it remains to be shown that the circuit is self-testing with respect to any single 

fault in the fault model described in Section 4.1. Specifically, it must be shown that for 

any such fault there exists a code input that results in a noncode output (0,0) or (1,1) from 

the comparator. In this section it is shown that there are a few faults in the fault model 

with respect to which the circuit is not self-testing. These problematic faults are referred 

to as undetectable faults. Layout guidelines that prevent these faults from occurring in 

the actual circuit are discussed. 
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4.5.1. A Short Between Adjacent Product Term Linea 

One of the possible faults is a short between two adjacent product term line~ that 

forces both of the lines to logic 1 when they are supposed to be carrying different value~ 

(fault type (D)). If the two product term lines are connected to the same output line, 

there is no code input that results in a noncode output. In fact, the circuit continue~ to 

function correctly despite this fault. The reason for this is that if one of the product term 

lines connected to an output line is selected, that output line is set to logic 0 regardless of 

the value of any other product term connected to it. It is undesirable to allow this fault 

to remain undetected since the situation may deteriorate in time and intermittently cause 

weak 0 or weak 1 faults that will not be detected and will later combine with an 

additional fault to caU!e more serioU! undetectable faults. 

As indicated by Wang and Avizienis [Wang79J, the pos!ibility that this undetectable 

fault will occur can be eliminated by ensuring that product term lines connected to the 

same output line are not adjacent. Since the same number of product term lines are 

connected to each output line, this guideline is easy to obey and incurs no penalty in 

terms of the size or performance of the circuit. The guideline is satisfied by simply 

alternating between product term lines connected to one output line and those connected 

to the other line. 

4.5.2. A Short Between a Product Term Line and an Output Line 

Another potentially undetectable fault is a short between a product term line, P,. , 

and an output line, c,. , where there is no device at the crosspoint of the two lines. This 

fault is undetectable if whenever the two lines are supposed to carry a different logic 

value, they are both forced to logic 1. 

The short between P1 and c,. is not detectable since the faulty circuit will behave 

as follows: For the code input XX that is supposed to select P1 , Pi is supposed to be 

at logic 1 and c,. at logic 1 (since the other output line, c,.·, is supposed to be at 

logic 0). Hence there is no change in the output from the circuit. On the other hand, Pi 
, 

is supposed to be at logic 0 and c,. is supposed to be at logic 1 for every code input, l'Y , 

such that YY rf. XX and the number of c1 ( i E I. ) inputs that are at logic 0 in lY has 

the •arne parity as the number of c1 inputs that are at logic 0 in XX . For these code 

inputs, P1 is forced to logic 1 but this has no effect on c,.· which is supposed to be at 
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logic 0. For the remaining 2•-l code inputs, P1 is supposed to be at logic 0 and em ts 

supposed to be at logic 0. Hence there is no change in the output from the circuit. 

The short between P1 and c,. can be made detectable if it is possible to ensure 

that when P; is at logic 0, it forces c,. to logic 0 as well. In NMOS, this can be done by 

using large crosspoint devices in the AND array so that a single device can pull down two 

load devices - the output line pull-up as well as the product term line pull-up. In 

CMOS, this can be done by using large crosspoint devices in the AND array so that a 

single device can discharge the precharged output line and product term line together 

within the circuit's clock period. UnfortUilately, larger AND array crosspoint devices lead 

to a larger PLA that is also slower due to larger capacitances. 

It is possible that, due to a short between a product term line, P, , and an output 

line, c,. , both lines always assume the value at which c,. is supposed to be ( em 

dominates). In this case, the short is undetectable regardless of whether or not there is a 

device at the crosspoint of the two lines. This short is not detectable since the faulty 

circuit behaves as follows: The output line c,. always forces P1 to the value that em is 

supposed to be at. If there is a device at the crosspoint of P1 and c,. , there is no device 

at the crosspoint or P, and the other output line, c,. .. Hence c,.. cannot be afTected by 

Pi , so the output of the circuit cannot be afTected and is a code output despite the fault. 

If there is DO device at the crosspoint or P; and the output line, c,. ' then when Cm 

forces P; to logic 0, c,.· is supposed to be at logic 1 and a possible change in P, to 

logic 0 cannot change the value or c,.. from logic 1. When c,. forces P; to logic 1, Cm· 

is supposed to be at logic 0 so the change in P, from logic 0 to logic 1 cannot possibly 

change the value of c.,.. from logic 0 to logic 1. Hence the output from the circuit 

remains the code output despite the fault. 

The short between P1 and c.,. can be made detectable if it is possible to ensure 

that w ben P, is at logic 0, it forces c,. to logic 0 as well. As previously discussed, this 

can be done by using large crosspoint devices in the AND array. 

4.&.3. Shorta Reeultinc in Simultaneoua Weak 0 and Weak 1 Faulta 

In this subsection we consider the possibility that, due to a short, two lines that are 

supposed to carry complementary values are both forced to a value between logic 0 and 

logic 1. The result is a weak 0 fault on one of the lines and a weak 1 fault on the other 
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line. Such shorts may be undetectable by any code input. To show that the circuit is not 

self-testing with respect to such a short, it is sufficient to show that the fault is 

undetectable under the worst possible combination of devices that misinterpret the values 

on the lines. 

1) A Short Between Adjacent Product Term Line1: ~ discussed lD 

Subsection 4.5.1, adjacent product term lines should be connected to different output 

lines. If a short between two product term lines, P, and Pi , forces both to a value 

between logic 0 and logic 1 when they are supposed to be carrying different values, this 

fault may be undetectable. For a code input XX , the short can affect the output only if 

XX 1s supposed to select either P, or Pi . Without loss or generality, assume that 

XX 1s supposed to select P, . All other product term lines (including Pj ) are not 

supposed to be selected by XX . However, a short between P, and Pi can cause the 

OR array device connected to P, to misinterpret it as logic 0 and the device connected to 

Pi to misinterpret it as .logic 1. Hence, despite the fault, only one product term line 

( Pi ) is interpreted as being selected and the output from the circuit is a code output. 

Thus, this short is not detected by any code input. 

It can be shown that there exists a noncode input that, due to the short between 

product term lines, results in code output. Hence this short, that is not detectable by 

code inputs, can mask noncode inputs. Thus, the PLA should be laid out in such a way 

that either this short cannot occur, or if it does occur, both lines are guaranteed to be 

forced to the same logic value instead or some value between logic 0 and logic 1. 

We have already shown that the crosspoint devices in the AND array should be 

made large enough so that they can pull down both the product term line and an output 

line that it may be shorted to. Ir pull-ups or the same size are used for the product term 

lines and the output lines, each crosspoint device in the AND array is also able to pull 

down two product term lines. Hence, a short between two product term lines is 

paranteed to force them both to logic 0 when they are supposed to be carrying 

complementary values. It will be shown in Section 4.6 that this ensures that the short can 

be detected by some code input. 

2) A Short Bet.,een Adjacent Input Line1: A short. between adjacent input lines 

may also be undetectable by any code input if, whenever the lines are supposed to be 

carrying complementary values, both lines are forced to a value between logic 0 and 
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logic 1. Consider a short between two adjacent input lines a" and a1 ( h rf= j ). There 

exists a code input XX - (z._11 .•. ,z0,z ·._1, ... ,z '0) for which a• is supposed to be at 

logic 0 and a; is supposed to be at logic 1. Clearly z~~,- 0 and z1 - 1 so 

, , 1 , , 0 , ') 
Z a-11 · · · ,z A+l• ,z A-ll··· 1% J+l• ,% j-11 · · · 1% 0 

Assume that the single product term line that is supposed to be selected by XX is P; . 

Since :r• - 0 , there is a device CA., at the crosspoint of the input line a~~, and the 

product term line P; . Assume that, due to the short, the common value of both a" and 

a1 is forced to some value between logic 0 and logic 1 and that CAw misinterprets line 

a• to be at logic 1. Hence product term line P; is not selected by code input XX . In 

the fault-free circuit, the code input 

• • 1 • • 1 • ') 
z a-ll··· ,:r A+l• ,% A-ll· • • 1% J+h ,z i-1• · · • 1% 0 

is supposed to select product term line P11 • Hence there is a device CAl< at the 

crosspoint of input line a1 and product term line P, . Assume that, due to the short, 

when the input is XX , CAJr misinterprets a1 to be a logic 0 although it is supposed to 

be at logic 1. In addition, we assume that CAu and CAJr are the only Al'\D array 

crosspoint devices that misinterpret the values or a. and Q.i (in particular CAM 

interprets a• correct/~). Under these assumptions, all the input lines that are supposed 

to be at logic 0 when the input is YY are interpreted as being at logic 0 by all the Al'\D 

array crosspoint devices connected to P11 when the input is XX . Hence P11 is selected 

by input XX while P; is not selected by XX . Since no other crosspoint devices are 

effected py the short, no other product term line except P11 is selected by XX , and the 

output is a code output. This short does not affect the output from the circuit for any 

other code input since such input selects a product term other then P, or P, . Hence, 

the short is not detectable by any code input. 

In the fault-free circuit, the noncode input 

• • 1 • • 1 • ') 
Z -~~ • • · ,:r A+l• ,Z l-11 · · · ,z J+l• ,Z i-1• · • • ,z 0 

does not select an~ product term and the output is noncod.e. However, due to the short 

described above between 4 1 and a1 , W selects P11 and tpe result is a code output from 

the circuit. Hence this short, that is not detectable by code inputs, masks a noncode 
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input. 

It can be shown that if the adjacent input lines are a11 and b'i, a short between 

these lines may also be undetectable by code inputs and can mask noncode inputs. Thus, 

in order to ensure that the comparator is self-testing, it is necessary to prevent shorts 

between input lines that can force both lines to a value between logic 0 and logic 1 from 

occurring. This can be done by laying out the PLA so that the separation between input 

lines is large enough that the probability or a short between them is negligible. 

Alternatively, the circuits that drive the inputs of the PLA can be designed so that a 

single pull-down device can overcome two pull-up devices so that a short between input 

lines when they are supposed to be carrying different values will always results in both of 

them being forced to logic 0. Unfortunately, these solutions lead to a larger PLA that is 

also slower due to larger capacitances. 

3) A Short Between an Input Line and a Product Term Line: Using arguments 

similar to the above, it can be shown that if a short between an input line and a product 

term line is allowed to force both or them to a value between logic 0 and logic 1, an 

undetectable fault, that can mask noncode inputs, may result. Here again, one way to 

prevent this situation is to guarantee that when the lines are supposed to be at 

complementary values they are both always forced to logic 0. This can be done using 

large pull-down devices in the circuits that drive the inputs of the PLA and using large 

AND array crosspoint devices. A single AND array crosspoint device or a single pull­

down in an input driver must be able to overcome both the pull-up device or the input 

driver and the pull-up device or the product term line. 

4.5.4. Layout Guidelines for Eliminating Undetectable Faults 

In the previous three subsections we identified several possible faults that are not 

detectable by any code inputs. All of these faults are shorts between adjacent or crossing 

lines. In particular, any short that results in both lines being forced to a value between 

logic 0 and logic 1 when they are supposed to be carrying complementary values may lead 

to an undetectable fault. The layout guidelines for preventing these faults from occurring 

in the actual circuit are summarized below. 

(1) Adjacent product term lines must be connected to OR array crosspoint devices that 

control different output lines. 



(2) The AND array crosspoint devices must be large enough so that a single device can 

pull down two pull-ups - a product term line pull-up and an output line pull-up or 

two product term line pull-ups. 

(3) The circuits that drive the inputs of the PLA must be designed so that a single pull­

down device can overcome hvo pull-up devices. 

(4) The separation between adjacent input lines and between adjacent product term 

lines should be larger than the minimum separation required by the design rules. 

This can help reduce the probability of a short between adjacent lines. 

4.8. The Selt-Testin& Property ot the Comparator 

In the previous section it was shown that the proposed comparator is not self-testing 

with respect to some or the possible faults, unless certain guidelines about the layout or 

the circuit and the size of some of its devices are followed. In this section we will show 

that the circuit is self-testing with respect to all the other faults in the fault model. It is 

assumed that some measures, such as those discussed in the previous section, are taken so 

that the undetectable faults cannot occur. In particular, it is assumed that if there is a 

short between two lines and the lines are supposed to be carrying complementary values, 

the value of one of the lines is modified so that they both carry the logic value of the 

other line. 

4.8.1. A Weak 0 and/or Weak 1 Fault on a Sin&le Input Line 

1} A Weak 0 Fault: Assume that the input line with a weak 0 fault is ale for some 

k El •. By definition, there is at least one AND array crosspoint device, CA'" , connected 

to ale that always misinterprets a logic 0 on a• as a logic 1. Hence, the device CAm is 

always turned on. Thus, the product term line Pi that is connected to CA'" can never 

be selected. Therefore the code input that is supposed to select P1 results in no product 

term line being selected and the output is noncode (1,1). An identical argument can be 

made regarding a weak 0 fault on a 11·1 (iei.) input line. 

In the presence of a weak 0 fault on one of the input lines, for every crosspoint 

device that misinterprets the input line to be a logic 1 when it is supposed to be a logic 0, 

the code input that selects the corresponding product term line in the fault-free circuit 

results in a (1,1) output. Thus the number of code inputs that detect this fault varies 

between 1 and z•-l 1 depending on the number of affected crosspoint devices. 
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2) A Weak 1 Fault: Assume that the line with a weak 1 fault is a, for some k E In . 

By definition, there is at least one AND a.rray crosspoint device, CAlri , connected to a, 

that always misinterprets a logic 1 on a, as a logic 0. We denote the product term line 

connected to that crosspoint device by Pi . In the fault-free circuit, P, is selected by 

some code input XX - (z._11 ••• I : 0,z ·.-11 ••• I: ·o) . Since there is a device at the 

crosspoint of a, and P, , the literal a, is in the product term that corresponds to P, . 

Hence : 11 - 0 . Thus, 

In the fault-free circuit, the code input 

selects some other product term line Pi. Since CA., misinterprets a logic 1 on a, to be 

a logic 0, code input YY selects P, . Since there is no device at the crosspoint of a, and 

Pi , Pi is independent of a, . Thus YY also selects Pi despite the fault. 

Since the number of a, ( i E I. ) inputs that are at logic 0 in XX has a different 

parity from the number of ai inputs that are at logic 0 in YY, Pi and Pi are 

connected to different output lines (see Equation (2) Section 4.2). Since in the faulty 

circuit the code word YY selects both P1 and Pi , the output is (0,0). An identical 

argument can be made regarding a weak 1 fault on a b •1 (j E I. ) input line . 

•• 8.2. A Short Between Two Adjacent Input Lines 

As previously mentioned, we assume that appropriate layout guidelines are followed 

so that a short between lines always forces both of the lines to the same logic value rather 

then to a value between logic 0 and logic 1. Since the inputs to the comparator are the 

outputs from one functional module and their complements from the duplicate module, no 

two input lines are supposed to have the same value for all code inputs. If the two 

adjacent.shorted lines are a, and b·, (0 < k ~ n-1), everv code input is transformed to 

noncode input which, as previously shown, results in (0,0) or (1,1) output. AD.y other two 

input lines are supposed to transfer different values for half of the code inputs. For these 

code inputs, the short forces a change in value on one of the lines. Since we assume that 

there are no other faults, this is equivalent to noncode input which, as previously shown, 

results in (0,0) or (1,1) output. 
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4.8.3. A Weak 0 or Weak 1 Fault on a Single Product Term Line 

Each product term line is connected to only one output line. Hence, a weak 0 fault 

on a product term line is simply a stuck-at-1 fault and a weak 1 fault is a stuck-at-0 fault. 

1) A Weak 1 (a-o-0} Fault: If one of the product terms is ,_a-0, for the code input 

that is supposed to select that product term, all product terms are set to 0 and the output 

is ( 1,1 ). 

2) A Weak 0 (a-o-1) Fault: Assume that the product term line P, that corresponds 

to set Q - Q 1 in Equation (3), is ,_a-1. Fo~· any code input that selects a product term 

corresponding to some Q - Q 2 EI,., where the parity of I Q 1 I and I Q 2 1 are 

different, product terms coDJlected to both output lines are selected, and the output is 

(0,0). Thus half the code inputs will result in a (0,0) output due to the ,_a-1 fault on P, . 

4.6.4. A Short Between Two Adjacent Product Term Linea 

Since only one product term line is supposed to be selected by every code input, for 

any pair of ad: acent product term lines, P, and Pi there is one code input that is 

supposed to select. P, but not Pi and there is another code input that is supposed to 

select P1 but not P, . We consider the three possible effects of the short when the lines 

are supposed to carry complementary values: 

(1) Both lines are always forced to logic 0: In this case, for the two code inputs that 

correspond to the two product terms (i.e. that are supposed to select them), no product 

term line will be set to 1 and the output will be (1,1). 

(2) Both lines are always forced to logic 1: Since the two product term lines are 

connected to different output lines, for the two code inputs that correspond to these 

product term lines, the output will be (0,0). 

(3) Both product term lines always assume the value of one of the lines: Assume that 

the two lines are P, and Pi , and that P, always dominates. The code input YY , that 

is supposed to select Pi, does not select it, since Pi is pulled to logic 0 by P, , which is 

not selected by YY. Hence YY does not select any product term and the output is (1,1). 

The code input XX , that selects P, also selects P1 which is pulled to logic 1 by Pi . 

Since adjacent product term lines are connected to different output lines, XX results in 

(0,0) output. 
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4.6.5. A Weak 0 or Weak 1 Fault on a Single Output Line 

The output lines do not fan out within the comparator circuit. Thus, we need only 

consider the value on the output line at the point of interface with the "outside world:' 

Hence, a weak 0 fault on a product term line is equivalent to a stuck-at-1 fault and a 

weak 1 fault is equivalent to a stuck-at-0 fault. 

Based on Equation (2), any code input where the number of ai (i El,.) bits that are 

at logic 0 is odd, is supposed to result in the output (c 1,c0} == (1,0} . Thus, in the faulty 

circuit, if c0 is s-a-1, the output is (1,1), and if c1 is s-a-0, the output is (0,0). A similar 

argument can be made for any code input where the number of ai bits that are at logic 0 

is even and the output is supposed to be (c1,c0} == (0,1). Hence 2"-1 code inputs will 

detect a s-a-1 on c0 and a s-a-0 on c1 w bile the other 2"-1 code inputs will detect a s­

a-O on c0 and a s-a-1 on c1 • 

4.6.6. A Short Between Two Adjacent Output Lines 

There are only two output lines that are supposed to carry different values for every 

code input. Hence, a short will result in (0,0) or (1,1) output for every code input. 

4.6.7. A Short Between an Input Line and a Crossing Product Term Line 

Assume that the short is between input line a11 and product term line Pi . Let 

XX denote the code input that selects Pi in the fault-free circuit. We must consider 

the case where a11 is connected to a crosspoint device that is connected to Pi ( CAiri 

exists) as well as the case where CA,.,. does not exist. 

If CA,.,. exists, every one of the 2"-1 code inputs for which a11 is supposed to be at 

logic 1, is supposed to result in Pi at logic 0. The code input XX is the only code input 

for which a11 is supposed to be at logic 0 while Pi is supposed to be at logic 1. For the 

rest of the 2"-1-1 code inputs, both a11 and Pi are supposed to be at logic 0. 

If CAlli does not exist, the product term corresponding to Pi includes the literal 

6'11 • For the 2"-1 code inputs with 6'11 at logic 1, both a11 and Pi are supposed to be 

at logic 0. For the code input XX , 6'11 is supposed to be at logic 0, and both a• and 

P1 are .supposed to be at logic 1. For the rest of the 2"-1-1 code inputs, 6'11 is 

supposed to be at logic 0, a11 is supposed to be at logic 1, and Pi is supposed to be at 

logic 0. Thus, if CAlli does not exist, there is no code input for which a11 is supposed to 
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be at logic 0 and P, is supposed to be at logic 1. 

As in the proof for a short between product term lines, we corusider the three possible 

effects of the short when a* and P1 are supposed to carry complementary values: 

( 1) Both line! are forced to logic 0: Ir CA.,. exists, for the code input XX , Pi is 

supposed to be the only selected product term line, while a• is supposed to be at logic 0. 

We assume that, due to the short, P1 is forced to logic 0 by a1c . Hence, no product term 

line is selected and the output is (1,1). 

On the other hand, if CA.,. does not exist, the literal a• is not included in the 

product term that corresponds to P, . Hence, the code input that selects P, in the 

raul~free circuit is or the form: 

Let YY be one or the 2•-1-1 code inputs such that YY 'I' XX and YY is also of the 

form 

In the raul~free circuit yy selects some product term line pi . Since there is DO device 

at the crosspoint or Cljc and pi ' pi is independent or Cljc so the short between a. and 

P, cannot affect Pi . Thu.s Pi is selected by YY de!pite the fault. In the faul~free 

circuit, the code input 

selects some product term P. . Since there is no device at the crosspoint of b •• and P. , 

P. is independent of b '• . For the code input YY , a* is supposed to be at logic 1 and 

P, at logic 0. Due to the fault, P, forces a~c to logic 0. Therefore, YY selects P. as 

well as Pi. Since the number or a, ( i EI. ) inputs that are at logic 0 in YY has a 

different parity from the number of a1 inputs that are at logic 0 in ZZ , Pi and P. 

are connected to different output lines (see Equation (2) Section 4.2). Hence, for the code 

input YY the output is (0,0). 

(2) Both lines are forced to logic 1: Let yy be one or the 2•-<l code inputs for 

which a• is supposed to be at logic 1 and the number or a, inputs that are at logic 0 in 

YY has a different parity from the number or a1 inputs that are at logic 0 in XX . Due 

to the s~ort, when the input is YY, a• forces P1 (that is supposed to be at logic 0) to 

logic 1. In addition, as in the faul~free circuit, YY selects another product term that 

controls a different output line from P1 • Hence the output from the circuit is (0,0). 
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(3) Both lines are always forced to the value of a1e or they are always forced to 

value or pi : 

(a) Line a~e always dominates: The proof is identical to case (2) above. 

(b) Line P.. always dominates: There are at least 2"-1-1 code inputs of the form 

that do not select P; in the fault-free circuit. In the faulty circuit, if P.. always 

"dominates;' YY selects two product term lines that are connected to different output 

lines. One is the product term line selected by YY in the fault-free circuit and the other 

is the product term line selected by 

ZZ- (Ya-1• · · · ,Y•+1• 0 ,y,_1, · · · ,yo,y·"-v · · · ,y·lc+l> 1 ,y··-1, · · · ,y·o) 

in the fault-free circuit. Hence, the output is (0,0) . 

•• 8.8. A Short Between a Product Term Line and a Crossing Output Line 

Assume that the short is between product term line P; and output line em , where 

mE {0,1} . Let m • denote 0 when m is 1 and denote 1 when m is 0. Let XX denote 

the code input that selects Pi in the fault-free circuit. 

As in the proof for a short between product term lines, we consider the three possible 

effects of the short when P; and em are supposed to carry complementary values: 

( 1) Both lines are forced to logic 0: In the fault-free circuit there are at least 2"-1-1 

code inputs that do not select Pi and for which the output is (cm,Cm·) = (1,0) . For any 

one of these inputs, due to the short, P; forces em to logic 0 and the output is (0,0). 

( 2) Both lines are forced to logic 1: If there is a device at the crosspoint of P; and 

em ( COim exists), in the fault-free circuit, for the code input XX that selects P .. , the 

output is (cm,Cm·)- (0,1) . In the faulty circuit, due to the short, em is forced to logic 1. 

Since none of the product term lines are affected, the output is (1,1). If CO;m does not 

exist, then, as discussed in Subsection 4.5.2, the fault cannot be detected by any code 

input. 

(3) Both lines are always forced to the value of P; or they are always forced to 

value of Cm: 

(a) If the value of P, always "dominates;' the proof is identical to case (1) above. 

(b) If the value of c,. always "dominates;• then, as discussed in Subsection 4.5.3, the fault 
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cannot be detected by any code input. 

4.6.9. An Extra Crosspoint Device in the AND Array 

In the fault-free circuit, every product term line, P; , is connected to n crosspoint 

devices in the AND array. For every code input, n of the input lines are at logic 0 and 

n are at logic 1. Ir, due to a fault, there are n + 1 crosspoint devices connected to P; , 

every code input turns on at least one of these devices and sets P; to logic 0. Thus, the 

single code input that selects P; in the fault-free circuit does not select P; in the faulty 

circuit. Hence, for that input, no product term line is selected, and the output is (1, 1 ). 

4.6.10. An Extra Croeapoint Device in the OR Array 

An extra crosspoint device in the OR array means that there is one product term 

line, P; that is connected to both output lines. Hence, for the single code input that 

selects P; , the output is (0,0). 

4.6.11. A Break in a Product Term Line 

Each product term line controls one OR array crosspoint device and is controlled by 

n AND array pull-down devices and one pull-up (or precharge) device. All the pull-down 

devices are connected to the "middle" of the line. The pull-up device and the OR array 

crosspoint device are either connected on opposite ends of the product term line (as shown 

in Fig. 4.1) or on the same end of the line. 

Ir the product term line pull-up device and the OR array crosspoint device are on 

opposite ends of the line, any break in the product term line prevents the segment of the 

line connected to the OR array device from being pulled up. ~ a result, the product 

term line is either floating or stuck-at-0. If the line is floating, its value is constant and 

independent of the input. Hence, in any case, the product term line segment that controls 

the output line is either stuck-at-0 or stuck-at-1. Earlier in this section it is shown that a 

stuck-at fault on a product term line is detectable by some code input. 

If the product term line pull-up device and the OR array crosspoint device are on the 

same end of the line, a break in the product term line disconnects some of the AND array 

crosspoint devices from the segment of the line connected to the OR array device. ~ a 

result, the product term line is selected when it is not supposed to be selected. Let P; 

denote the product term line that 1s selected by the code input 
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XX== (z,._11 .•• ,z~~., ... ,z0,z'.-v ... ,z·., ... ,z'0 ) in the fault-free circuit. A break in 

P; disconnects some AND array crosspoint device, CA..- , from the segment of P, that 

controls the OR array device. Since CA..- is controlled by input line a• , in the fault­

free circuit, P; can only be selected if alt. -= 0. Hence, zit. -= 0. In the fault-free circuit, 

the code input YY- (z._11 .•. ,z·., ... ,z0,z'._1, .•• ,z~~., ... ,z'0 ) selects the product 

term Pi where P; and Pi are connected to different output lines. Since the crosspoint 

device CA..- is disconnected from Pi in the faulty circuit, P; is not affected by a11 and 

the code input l'Y selects both P; and Pi . Hence, the output is a (0,0). 

4.6.12. A Break in an Output Line 

Each output line is controlled by 2"-1 OR array pull-down devices and one pull-up 

(or precharge) device. All the pull-down devices are connected to the "middle" of the line. 

The pull-up device and the output from the circuit are either on opposite ends of the 

output line (as shown in Fig. 4.1) or on the same end of the line. 

If the output line pull-up device and the circuit output are on opposite ends of the 

line, any break in the output line prevents the segment of the line that serves as the 

output from the circuit from being pulled up. As a result the output line is either floating 

or stuck-at-0. If the line is floating, its value is constant and independent of the input. 

Hence, in any case, the segment of the line that serves as the circuit output is either 

stuck-at-0 or stuck-at-1. Earlier in this section it is shown that a stuck-at fault on an 

output line is detectable by some code input. 

If the output line pull-up device and the circuit output are on the same end of the 

line, a break in the output line disconnects some of the OR array crosspoint devices from 

the segment of the line that is the output from the circuit. As a result, the output line is 

selected when it is not supposed to be selected. Let em denote the output line with a 

break. Let CO;m denote an OR array crosspoint device that is disconnected from the 

segment of em that serves as the circuit output. In the fault-free circuit, the product 

term line P; , that controls COm. , is selected by the code input XX. In the faulty 

circuit, due to the break, the crosspoint device COm. cannot afTect the output line em . 

For the code input XX , Pi is the only selected product term. Hence COm. is the only 

OR array crosspoint device that is turned on. Therefore neither output line is pulled 

down and the circuit produces the noncode output (1,1). 
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4.1. Implementation and Application Considerations 

In the previous three sections it was shown that, using a single two-level NOR-:\OR 

PLA, it is possible to implement a comparator that is self-testing with respect to any 

single fault that is likely to occur in MOS VLSI circuits. This result is a necessary 

prerequisite for the use of duplication and comparison as the basic scheme for 

implementing error detection. However, two main problems remain to be discussed: First, 

the size of the comparator, implemented as a single PLA, grows exponentially with the 

number of bits in the two vectors to be compared. Second, it is necessary to ensure that 

all the code inputs will appear as inputs to the comparator often enough so that a 

complete self-test of the comparator will be performed before there is a chance for 

multiple faults to occur in the system. 

In Section 4.3 it was shown that a self-testing comparator implemented as a single 

two-level NOR-NOR PLA, must have 2" product term lines. If the output from each 

one of the duplicated functional modules is, say, 16 bits, this implementation is 

impractical since it requires 2111 - 65536 product terms. Fortunately, efficient 

implementations of a self-testing two-rail code checker (comparator) for large input 

vectors can be achieved by using checkers for smaller input vectors as cells that are 

connected together in a tree structure (Fig. 4.3)[Khak82, Wake78) . 

•• 6i •• 6'. •• 6i •• 6i 

Fia. 4.3: A Self-Testing Two-Rail Code Checker Tree 

Each cell is a self-testing comparator for relatively small bit vectors (two to six bits 

wide) which 1s implemented with a single two-level NOR-NOR PLA as outlined in 

Section 4.2. A complete tree with h levels of cells, where each cell is an m-bit 

comparator, can be used to compare m1 bits and contains (m1 -1)/(m-1) cells. Hence, 

if the vectors to be compared are n bits wide, the number of levels in the tree is ~ogmn 1 
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while the total number of cells in the tree is at most (n-1)/(m-1). Thus the number of 

cells as (approximately) linearly related to n . Hence, tree-structured cellular 

implementations of self-testing comparators are practical for large input bit vectors. 

In the cellular tree-structured implementation of the comparator, a noncode output 

from any one of the cells presents a noncode input to the cells at the next level. This 

forces the output from the entire tree to be noncode. Hence, the tree-structured 

implementation presenes the self-testing property of the cells. 

If duplication and comparison is used for error detection, the first fault that occurs 

in the comparator must be detected before additional faults can occur in the comparator 

or in the functional modules. Thus, a set of code words that achieves a complete self-test 

of the comparator must appear as inputs to the comparator within a time interval that is 

significantly smaller than the mean time between failures for the two functional modules 

and the comparator together. Based on the results of sections 4.3 and 4.6, a complete 

self-test of a comparator implemented as a single NOR-NOR PLA requires all 2" code 

words to appear at the inputs. If n is large, this requirement may imply that the 

complete self-test takes so much time that there is &n unacceptably high probability that 

additional faults may occur in the comparator or functional modules before the self-test is 

completed. Fortunately, for the tree-structured cellular implementation, the number of 

code inputs required for a complete self-test is only 2m , where m is the size of the bit 

vectors compared by each cell [Boss70, Khak82]. This efficient self-test is possible since, 

assuming that only one of the cells may be faulty, zm properly selected code inputs test all 

the cells in parallel. Thus, if the cells are 2-bit comparators, four code inputs are 

sufficient for a complete self-test of the entire tree. 

Even with the relatively small number of code inputs needed for a complete self-test, 

it may still be difficult to satisfy the requirement that all code worcb appear as inputs to 

the comparator with some specified frequency. This would be particularly problematic if 

the duplicate functional modules were low-level passive circuits such as an ALU or an 

instruction decoder within a processor. Hence, for such low-level modules duplication and 

comparison is inappropriate. On the other hand, the technique is highly effective if the 

modules are high-level, "intelligent" sub8ystems, such as the computation nodes in a 

multicomputer system, which are interacting with similar high-level sub8ystems. In this 

ease, a sub8ystem may periodically initiate action that causes it to generate all the 
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necessary patterns at its interrace with other subsystems. The subsystem initiating the 

selC-test or its comparator can in(orm the other subsystems that the next "message" is 

simply a test and should not be interpreted as "real work:' 
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Chapter Five 

Error Recovery in Multicomputers 

In Chapter 3 and Chapter 4 it was shown that a VLSI multicomputer can be 

implemented u,ing self-checking nodes that ensure that there is a very high probability of 

detecting any error cau,ed by node failure. ~ discussed in Chapter 3, errors cau,ed by 

faults in the communication links can be detected using error-detecting codes. However, 

detecting an error is only the fU'St step towards fault tolerance, i.e., the fU'St step of any 

technique that allows the system to continue correct operation despite a hardware fault. 

When a component fails, the part of the system state that is stored in that component 

may become inaccessible to the rest of the system. Thu,, even if the fault-free 

components of the system never accept the erroneou, output of failed components, it may 

be impossible to restore a valid system state from which normal operation can be 

resumed. The recovery of a valid system state following component failure is discu,sed in 

this chapter. 

Section 5.1 presents some of the basic concepts and techniques for error recovery. 

Section 5.2 is a brief survey of the current state of the a.rt in error recovery techniques for 

multiprocessors and multicomputers. Section 5.3 presents a new technique for error 

recovery in multicomputers. This technique involves periodically saving the entire system 

state and restoring a previou,ly saved state when an error is detected. The section 

inc:ludes algorithms for checkpointing the entire system state, distributing diagnostic 

information, and using the checkpointed state for error recovery. An informal "proof" 

that the algorithms are correct is presented in Section 5.4. An estimate of the overhead 

required by this scheme is given in Section 5.5. Section 5.6 discu,ses how the scheme can 

be expanded to allow interactions with the "outside world;' deal more effectively with 

transient faults, reduce the latency in detecting errors in communication links, and handle 

the fai)~e of disks and the nodes that control them. 

&.1. Buic Concepti and Techniqu• 

Error recovery is the process of transforming an erroneou, system state, which may 

lead to system failure, into a valid system state, that guarantees correct system operation 

as long as all the system components continue to operate correctly. Most schemes for 
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performing error recovery can be classified as forward error recoverJI schemes or 

6ock1Vord error recover11 schemes [Rand78). Fonrard error recovery techniques attempt to 

modify an erroneous system state so that it becomes a valid state. Backward error 

recovery ~hniques involve resetting (backing up) the system to a previous valid state 

rather than trying to modify the current state. 

Fonrard error recovery techniques are usually designed as an integral part or the 

system they sene. By their very nature, they are only useful for recovering from 

onticipoted errors, i.e., the designer anticipates that a particular erroneous state may 

occur and provides a specific technique for transforming that state into a valid state. 

Fonrard error recovery is often used in systems where there are strict real-time 

coDStraints. For example, the main controller of an unmanned aircraft my operate by 

continuously reading several sensors and sending commands to various actuators. Ir one 

or the sensors fails and sends a reading that does not pass the occeptonce te.!t [Rand78], 

the controller does not use this erroneous reading for computing the next set of commands 

to the actuators. IDStead, the controller recovers from the error by replacing the 

erroneous value with some "guess" or a reasonable value. that is unlikely to have any 

disastrous consequences. 

Ir the use or fault tolerance techniques in the system has to be taken into account by 

the application programmer, the programming task becomes more complicated, time­

coDSuming, and error-prone. Hence, fault-tolerant systems in general and, particularly, 

those that are intended for more-or-less ceneral-purpose use, attempt to "hide" their use 

of fault tolerance techniques from the application programmer. Since forward error 

recovery techniques are usually dependent on a particular application and can handle only 

anticipated errors, such techniques will not be discussed any further in this thesis. 

Backward error recovery techniques can cope with unanticipated errors. The state 

or the system is periodically recorded. When an erroneous state is detected, it is 

abandoned and the system is reset to this previously recorded error-free state, called a 

reeover11 point or a checkpoint. The process or creating a recovery point is called 

checkpointing. 

The main advantage or backward error recovery techniques is their ability to handle 

unanticipated errors. No matter what type or error occurs, as long as it can be detected, 

some valid system state can be reiDStated. Hence, a backward error recovery scheme can 
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be totally independent or the application. 

The main disadvantage or backward error recovery techniques is the overhead or 

establishing and maintaining the recovery points. In a uniprocessor the recovery point 

includes the contents or memory and other storage devices as well as the contents or all 

the processor registers. 

There are two basic approaches to maintaining the information necessary for 

backward· error recovery: (1) Maintaining, at all times, multiple up-to-date copies or the 

entire system state [Kast83]. (2) Maintaining information that allows the restoration or a 

valid system state by redoing some computations that were already performed by the 

system [Bari83, Borg83]. The rll'St approach allows nearly instantaneous error recovery 

without any loss or work. The system is restored to its state that immediately preceded 

the occurrence or the error. This scheme--requires the duplication or all system resources 

just for error recovery, in addition to any redundancy used for error detection or system 

reconfiguration. 

The second approach above requires periodic saving or the entire system state. 

\Vhen an error is detected, the system 1s restored to a previous state and the 

computations that were performed since that state are redone. This scheme involves 

overhead in both time and storage. The time overhead results from the periodical 

creation or the recovery points as well as from the computation that has to be redone 

when an error occurs. The storage overhead is the extra storage required to save the 

recovery points. The frequency or generating recovery points is an important parameter 

for minimizing the time overhead. Too much time may be spent generating recovery 

points if the frequency is "too high:' Ir the frequency is "too low;' too much time will be 

lost (on the average) redoing computations following an error. 

The simplest way to generate a recovery point is to save the entire state or the 

system, i.e., the contents or all registers, memory, and secondary storage. An alternative 

technique is to usually save only the changu in the system state since the last recovery 

point. Periodically, the entire state is saved since, at some point, the "history" or changes 

can take up more space than the entire state and/ or generating the entire state from some 

original state and a sequence or changes would take too much time. 

In a uniprocessor system the recovery technique discussed in the previous paragraph 

can be facilitated by a device called a recovcrv cache [Ande76, Lee78, Lee80, Rand75}. In 
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order to establish a recovery point, the contents of the CPU's registers are saved. The 

contents of memory are not saved. During normal operation, whenever the processor 

modifies the contents of a memory location, the old contents are saved in the recovery 

cache. The state at the recovery point can be reestablished at a later time by restoring 

the contents o( memory from the recovery cache and the contents of the register! (rom 

where they were saved when the recovery point was established. 

The recovery cache technique has been used for recovering from error! caused by 

transient ·hardware faults in a microprocessor chip. Kubiak et al designed a VLSI 

recovery cache chip, called Penelope, that is connected to the processor/memory bus o( a 

microprocessor system [Kubi82]. Penelope maintaiu the previous content of modified 

memory locatiou. \Vhenever Penelope's "save stack" becomes full, a new recovery point 

is established by saving the contents of the processor's register! and reinitializing the 

"save stack" to an "empty" state. Initial measurements of Penelope's performance with a 

save stack of 256 bytes show that the performance penalty caused by Penelope, when 

compared with an equivalent system with no provisiou for error recovery, is less than 

10%. 

A recovery point may be generated by periodically "freezing" the entire system and 

saving this frozen state (or information necessary to generate this state). \\Then error 

recovery occurs, the restored system state is a state that actually existed in the past. An 

alternative is to store dirrerent parts of the system state independently. For example, in a 

uniprocessor system that is executing several processes, the states of the dirrerent 

processes may be checkpointed at dirrerent times. If there is any interaction between the 

processes, when recovery occurs, care must be taken to euure that the recovery points to 

which the different processes are restored are eon3t3tent with each other (i.e., that the 

ordered set of the recovered external states of all the processes coutitute a valid system 

state). However, since the processes do not run in lock-step, commUllicating at each step, 

the state of one process, after executing t1 time units, may be couistent with the state o( 

a second process that has executed anywhere between t1 and t• time units. Thus the 

restored system state is not necessarily a state that actually existed in the past. Rather, it 

is a state that could have existed in the past and will result in correct system output. 

The error recovery techniques discl15Sed so far all require some special action 

following error detection in order to recover a valid system state. Maaking 
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redundoncJI [Rand78] or error mo~king techniques involve always performing some action 

that hides the effect.s of a certain class of errors. These actions are performed regardless 

of whether or not an error has actually occurred. A canonical example of error masking is 

Triple Modular Redundancy (TMR) (Plat80, Siew78, Wake76]. In this approach a system 

consists of three identical subsystems and a majority voting circuit. The output of the 

system is the majority vote of the output.! of the three subsystems which are executing 

identical tasks. An error caused by the failure of one of the subsystems is masked since 

the majority vote is the correct output of the two fault-free subsystems. A relatively high 

overhead during normal operation is always associated with error-masking techniques. 

However, when an error occurs, the system continues to operate normally and error 

recovery occurs "automatically:' 

5.2. Error Recovery Techniquee ror Multicomputen 

A multicomputer system consists of several more-or-less independent components 

(the nodes) that interact with each other asynchronously. This makes the coordination of 

any joint task, including error recovery, difficult and prone to subtle "bugs:' Error 

masking and backward error recovery techniques for multicomputers are discussed in this 

section. 

In the previous section, TMR with hardware voting circuits was mentioned as an 

example of error masking. The same idea can be used in a multicomputer in which each 

task is executed on three (or more) different nodes and the results are transmitted to 

other nodes via independent communication paths. A node receiving the result.! can take 

a bit-by-bit majority vote, thereby masking the erroneous output from one of the nodes or 

the corruption of one of the outputs during transmission. This technique has been used in 

the SIFT multiprocessor system that was designed to serve as the main controller of an 

aerodynamically unstable airplane [Wens78]. The performance requirements from SIFT 

are rather modest since it reads and controls mechanical devices that change relatively 

slowly. Due to the nature of the application of SIFT, there must not be any sudden break 

in it.s operation, a.e., error recovery cannot involve temporarily stopping normal 

processang. This type of TMR error masking is particularly well suited to the 

combination of modest performance requirements and strict constraint.! on the operation 

of the system following an error. 

There are many similarities between the error recovery technique described in the 
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previous paragraph and the error detection scheme based on system-controlled node-level 

duplication and comparison discussed in Chapter 3. In Chapter 3 this error detection 

scheme was shown to be unsuitable for a multicomputer used for general purpose 

applications. For similar reasons, the error recovery scheme discussed in the previous 

paragraph is also not suitable for such a system. S~ifically, the shortcomings or this 

technique are: (1) it dedicates two thirds of the hardware for error recovery, (2) it 

increases interprocessor communication delays, (3) it is not, by itself, sufficient for 

locating faulty components, (4) it does not adequately handle erroneous routing or packets 

by intermediate nodes on a communication path, and (5) it poses severe requirements on 

the routing and task assignment algorithms used in the system. 

Over the last five yean, a great deal of research has been devoted to the 

development of algorithms that enable all the working nodes in a multicomputer to reach 

a unanimous decision despite the failure of some nodes and links [Dole81, Peas80, Stro83]. 

Specifically, if one node broadcasts a packet, the problem is to ensure that all the other 

working nodes agree on the content or that packet or agree that the sender is faulty since 

the packets it sent to its immediate neighbors were not all equal. When these algorithms 

are used, the faulty (even malicious) behavior of links and nodes are masked. Hence, these 

are error-masking algorithms. In the literature they are called algorithms for reaching 

Byzantine Agreement. 

Algorithms for reaching Byzantine Agreement are extremely useful for the very 

specialized task of ensuring that all the nodes in a system reach a consistent decision. 

However, they are not useful for masking errors in transmission between pairs of nodes 

unless every message in the system is broadcast. Hence, these algorithms are not directly 

applicable to general-purpose computations performed on a multicomputer and will not be 

discussed any further in this thesis. 

As mentioned in the previous section, one technique for backward error recovery 

involves maintaining, at all times, multiple up-~date copies of the entire system 

state [John84, Kast83]. In a multicomputer, one way to maintain a copy or the system 

state is for the state or each node (primary node) to be maintained on some other node 

(backup node)[Bari83}. The primary node and the backup node contain the same code 

and data, and execute this code at approximately the same time. Ir an error occurs as a 

result of a transient fault in a node, the node may be reset and its state restored to what 
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it was immediately prior to the fault using the information in the backup node. Since an 

error may be a result or a permanent fault, the backup node must be able to take over the 

task or a failed primary node. 

I:o a multicomputer the system state is the ordered set or the external states or all 

the nodes. For the rest or the system, the external state or a node is defined by the set or 

packets that it bas already received and the set or packets that it has already sent. 

Keeping the backup node "completely u~~date" with the primary node requires that 

the external states or these nodes be kept identical. This can be accomplished by sending 

each packet to the destination node and the destination backup and notifying the sender's 

backup that the packet has been sent. Since this entire operation must be performed 

otomiealiJI (i.e. it must either be completed or aborted but never partially completed), a 

two-phase-commit [Gray78] must be performed for eoeh packet (or message). The 

disadvantages or this technique in terms or overhead and restriction or system operation 

are obvious and similar to the problems with the the error detection scheme based on 

system-controlled node-level duplication and comparison that was discussed in Chapter 3. 

This technique is therefore not suitable for a multicomputer executing general-purpose 

application,.,. 

It. should be noted that the above backward error recovery technique is used in 

several multiprocessor and multicomputer systems in which all interprocessor 

communication is over a common bus or Ethernet [John84, Kast83]. Since all the "nodes" 

can easily monitor all interprocessor communication, it is possible to implement an 

efficient atomic (indivisible) operation that trammits a message to a primary node and its 

backup [Borg83]. 

Since neither error masking nor backward error recovery with u~to-date backups 

are well-suited for multicomputers used for general-purpose application,.,, backward error 

recovery in which some computation,., have to be redone as part of the recovery process 

appears to be the best technique for such systems. ~ mentioned in the previous section, 

a recovery paint may be generated by periodically freezing and saving the entire system 

state. The main disadvantage of this technique is that it requires normal computation 

throughout the system to stop for the duration of the cbeckpointing process. An 

alternative technique that appears more attractive is for the nodes to establish recovery 

points independently and to attempt to restore a couistent system state from the 
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individual recovery points during error recovery .. 

Establishing independent recovery points for the different nodes poses the problem 

that restoring a previous state of one node may require that other nodes be backed up to 

previous states. Jn the following situation, for example, restoring a previous state of a 

node PA requires an illtf!racting node P8 to restore its stat4!: At time t 1 node P8 establishes 

a recovery point. At sowe later time t2 > t1 node PA establishes a recovery point. At 

time t 1 > t 2 PA sends a message to P8 • The message causes P8 to change its state (e.g. 

modify a memory location) and send a message back to PA at time t4 > t 1. At time 

t 6 > t 4 an error in P A ia detected and requires the state of P A to be restored to the state 

saved at time t2• Since the state of PA ia restored, it will send to P8 a message identical 

to the one sent at time t1• For the computation to proceed correctly, the message 

returned to PA by P8 should be identical to the message returned at time t 4• Ir the state 

of P8 is not restored, the message it returns may be different leading to failure of the 

computation. Hence the state of P8 should be restore to its value before t 1. Since a 

recovery point for P8 was last established at time t 11 the state or P8 must be restored to 

its value then. 

Ir, in the above example, PA and P8 also interacted between time t 1 and t 2, then, 

restoring P8 to its state at time t 1 would, in turn, require that the state of PA be restored 

to some recovery point established prior to t 1• In fact, it is possible that a single error in 

one node may result in an uncontrolled domino effect [Rand75], requiring that all the 

nodes in the system back up all the way to system initialization. 

Wood [Wood81) has developed a scheme for keeping track of the recovery actions 

that must occur in all the nodes in the system if a particular node is rolled back. Each 

node is required to maintain several recovery points, starting from an initial state. 

Maintaining the multiple recovery points as well as all the information necessary to ensure 

consistent recovery poses significant overhead both in time and storage. Furthermore, 

there is always the possibility that the entire system will have to be rolled back to its 

initialization due to the domino effect. In order to increase the efficiency of the recovery 

scheme, either some restrictions have tO be placed on the actions of the nodes or the nodes 

must no longer checkpoint their state completely independently but rather must somehow 

coordinate when and how to create checkpoints. 

Barigazzi and Strigini [Bari83] propose an error recovery scheme for multicomputers 
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that does net reqwre storing multiple recovery point!. Like most other scheme~, the 

states or individual processes are checkpointed and recovered rather than the complete 

state or nodes. The scheme involves periodic saving or the state or each process by storing 

it both on the nnde where it is executing and on another backup node. All interacting 

processes are ched(pointed together, so that their checkpointed states are guaranteed to 

be consistent with each other. Thus, the domino effect is avoided. 

The recovery scheme described in (Bari83] is well suited for applications that must 

satisfy strict real-time constraint!. However, it results in significant performance 

degradation. For each process, a complete backup is maintained both on the node 

executing the process as weH as on another node. Thus, a large percentage or the memory 

cannot be ued by active processes. The resulting increase in paging activity also reduce~ 

performance by increasing the average memory access time and the load on the 

communication links. 

Another difficulty with the recovery scheme described in [Bari83] is that it requires 

the "send" and "receive" operations to be atomic. In order to accomplish this, the use or 

a two-phase commit protocol [Gray78] is proposed. Such a protocol requires explicit 

acknowledgement for each message and implies that af'ter a "send" operation, the sending 

process is not able to continue executing until an acknowledgement is received. Thi~ 

restriction on process "behavior" and the associated increase in message traffic lead! to 

reduced performance relative to an identical system where no error recovery is 

implemented. 

The idea or simultaneously checkpointing the state or all processes belonging to the 

same "task" [Jone79J can be taken a step further: simultaneous checkpointing or the 

complete state of all the user and system processes on the system, i.e., simultaneous 

checkpointing the complete state or all the nodes in the system. Creating and saving such 

a global checkpoint is expensive since it requires moving large blocks or data through the 

system and then storing them "reliably:' However, if the time between checkpoints is 

sufficiently large compared with the time it takes to establish a new checkpoint, the net 

system overhead Cor error recovery is relatively small. In a large multicomputer the 

expected time to establish a new checkpoint is on the order of one minute (see 

Section 5.5). Thus, keeping the overhead low requires that a new checkpoint be 

establi~hed only once or twice an hour. It is clear that the los~ o( as much as an hour or 



87 

p~essing when an error is detected is tolerable only for non-interactive applications. 

The rest of this chapter presents an error recovery acheme that is based on 

periodically checkpointing the entire syste!ll state. The global checkpoints are stored on 

disk so that all of local memory can be used for active processes. It is shown that if global 

checkpoints are used for error recovery, it is possible to avoid any restriction on the 

behavior of processes and to eliminate the need for message acknowledgement. 

Furthermore, there is no need to use up valuable communication bandwidth by encoding 

the messages in some error-detecting code (see Subsection 5.3.2). 

5.3. Implementin& Error Recover7 U1in1 Global Checkpoints 

The basic idea is for some designated node to periodically initiate and coordinate the 

creation of a new global checkpoint. When any node detects an error, it initiates the 

distribution or diagnostic information throughout the system. All the nodes are then set 

to a consistent system state using the last global checkpoint. Finally, normal operation is 

resumed. 

In the following six subsections we describe in detail the creation and storing of a 

global checkpoint and its use for recovery. In Subsection 5.3.1 we present some basic 

assumptions that are made about the system. In Subsection 5.3.2 we differentiate 

between normal packets that are used for the application tasks and fail-aafe packets that 

are used to coordinate the creation of checkpoints and the recovery from errors. 

Subsection 5.3.3 contains a brief description of the eight types of fail-safe packets used by 

the system. At each point in time, a node may be engaged in normal computation, 

creation of a checkpoint, or recovery from an error. A description of the possible modes 

or logical atatea of a node is presented in Subsection 5.3.4. Subsection 5.3.5 describes how 

a consistent global checkpoint is established and stored on disk. Finally, in 

Subsection 5.3.6, we show how the global checkpoints can be used to recover from errors. 

5.3.1. AaumptiODI 

We will begin by introducing several simplifying assumptions that will be used in the 

algorithms for establishing global cheekpoints and for using those checkpoints for error 

recovery. We will later discuss how some of these assumptions can be relaxed. 

We assume a closed system that consists of nodes, links, and disks (or some other 

form of mass storage). All "input" is stored on disk before operation begins. All 
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"output" is stored on disk when the job ends (Fig. 5.1). 

Fig. 5.1: A Multicomputer 

~ previously mentioned, the nodes are self-checking and are guaranteed to signal an 
error to their neighbors immediately when they send incorrect output [Tami83]. ~ a first 
step, any node that generates an error signal is assumed to be permanently faulty and no 
attempt is made to continue to use it. 

Hardware faults either cause a node to generate an error signal or cause an error in 
transmission. It is assumed that a fault can occur at any time, including during the 
creation of a checkpoint. However, if a second fault occurs during recovery from a 
previous fault, the system stops execution and does not attempt recovery. This and other 
situations-where the system must stop due to an unrecoverable state will henceforth be 
called a cro6h. It should be noted that, even if a crash occurs, the system still does not 
generate incorrect results. Furthermore, since recovery takes only a few minutes and the 
system has an MTBF of tens of hours, the probability of a fault occurring during recovery 
is very small. 

Since the disks are extensively used for paging, checkpointing, and I/0, the average 
number or "hops" from each node to the nearest disk should be made small. Hence, disks 
are connected to several nodes throughout the system. ~ a first step, we allow an error 
in disk I/0 or a fault in a node that controls a disk (henceforth called a di6k node) to 
cause a crash. Each disk node uses an error-detecting code for all data written on the 
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disk. When the node reads from the disk, any error ca115ed by a faulty disk or a fault on 

the path between the node and the disk is detected by using the code. Ir an error is 

detected, the disk node signals a crash. 

The structure of the system is relativ~ly stable - it changes only due to hardware 

faults. Since all the nodes in the system are informed or each fault, every node is able to 

maintain tables that refiect the structure or the operational part or the system. This 

includes information about which nodes and links are operational and which nodes are 

disk nodes. 

Each node has a unique identifier and there is a total ordering or these identifiers 

( U5ed to establish successorship for the designated node that initiates periodic 

checkpointing). All the nodes in the system know the identifiers or all the other nodes. 

For simplicity, we assume that the identifiers or an n node system are the integers 1 

through n. 

In order to send a message, a process assembles the message in memory and executes 

a system call. The kernel may divide the message into packda which are the unit of 

information actually transmitted. Packets may arrive at their destination out or order (if 

they arrive at all). We assume that it is the responsibility of the kernel of the receiving 

node to put the packets in order before they are made available to the receiving process. 

The interconnection topology or the system is or crucial importance for achieving 

fault tolerance. A large body of research on the tradeoffs between various topologies is 

available [Witt81, Prad82] and will not be discussed in this paper. One parameter that is 

especially important for fault tolerance is the connectivit11 or the network. The 

node/edge connectivity is the minimum number of nodes/edges whose failure partitions 

the network so that there is at least one pair of working nodes that can no longer 

communicate. We assume that the connectivity of our system is sufficiently large that 

there is a very low probability or partitioning. Hence, it is acceptable if partitioning 

causes a crash. 

Ir a node or a link fails, routing or packets through the network has to be modified 

to use alternate paths. This process o·r reconfiguration requires updating routing tables 

throughout the network. We assume that one or the well-known reconfiguration 

procedures [Taji77, Bozy82] is used in conjunction with our recovery scheme but do not 

discuss this problem any further in this paper. 
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6.3.2. Normal Packet. ud Fail-Safe Packet. 

A3 previously mentioned, one or the main advantages or our error detection and 

error recovery schemes is that it does not require the substantial delays in normal inter­

processor communication that are a necessary part or most other such schemes. In 

particular, during normal operation (i.e nQt. in the process or creating a checkpoint or 

recovering from an error), no redundant bits for error detection are transmitted with the 

messages or packets, no acknowledgement or messages or packets are transmitted by their 

recipients, and neither processes nor processors have to wait for acknowledgement or 

messages or packets. 

Since errors can occur in transmission, there must be some provision (or detecting 

errors in messages. However, since the probability or an error in transmission is low, it is 

wasteful to check the validity or each message or packet independently. Instead, in each 

node each port has two special purpose registers for error detection. One or these 

registers contains the CRC (Cyclic Redundancy Check) check bits (or all the packets that 

have been sent (rom the port. The other register contains the CRC check bits or all the 

packets received. Initially these special purpose registers are initialized to some known 

value. By making these registers linear feedback shift registers (LFSRs) the contents or 

the register can be updated in parallel with the actual transmission or each packet [Elki82]. 

In order to check the validity or all the packets transmitted through a particular 

link, each node sends to its neighbor the contents or the LFSR used (or outgoing packets. 

The neighbor can then compare the value it receives with the value in its LFSR for 

incoming packets and signal an error if it finds a mismatch. The normal procedure used 

to recover (rom a node failure is then initiated. 

The validity or all packet transmissions must be checked immediately prior to the 

creation or a checkpoint. Ir this is not done, the state or a node corrupted by an 

erroneous message may be checkpointed and later used (or recovery. The procedure for 

creating a checkpoint must therefore include checking all the linb before committing to 

the new checkpoint. 

The above procedure as not appropriate (or the packets used to coordinate the 

creation or checkpoints and Cor error recovery. In this case the information in the packet 

must be verified before it is used. Hence, (or these packets, an error detecting code such 

as CRC is used and redundant bits must be transmitted with the packet. Thus, there are 



two types of packets in the system: the normal packets that do not include any 

information for error deteetion and special control packets that are used only for 

transmitting information between kerneb and that inelude a suff'ieient number or 

red.undant bits to recognize any likely error in transmission. These special packets are 

called foil-•ofe packets since they are either error-free or the error is easily detectable by 

the receiving node. 

~ discussed in Subsection 5.6.3, it is possible to speed up the deteetion of errors 

caused by faulty links if some redundant bits are transmitted with each normal packet. 

However, even if this is done, the normal packets ean still be handled more efficiently 

than the fail-safe pa.ckds. In particular, the latency associated with (orwarding a normal 

packet through a node can be significantly reduced if the node can begin forwarding the 

packet before all of it has arrived (Sequ83]. This is not possible for a fail-safe packet since 

a node receiving such a packet must verify that it is correct before forwarding it. A node 

receiving a normal packet may begin forwarding it immediately and initiate error recovery 

i(, alter the complete packet is received, it is found to be invalid. 

The first bit or each packet is used to distinguish between a normal packet (0) and a 

(ail-safe packet (1). Ir the bit is 0, the packet is usually accepted and processed or 

forwarded regardless of whether it is correct or not. The LFSR for incoming packets is 

updated as the packet is received. I( the node is in the middle of making a checkpoint or 

recovering from an error, it may expect to receive only fail-safe packets. In this case, if 

the first bit or the packet is 0, the node signals an error. If the first bit of the packet is 1, 

the packet is not accepted until it is cheeked. If an error in the packet is found, the node 

signals an error. The two LFSRs in each port are not modified by incoming or outgoing 

fail-sare packets. 

It should be noted that the above scheme works in the ease where a fault on the link 

modifies \he first bit or the packet. If the original· packet is a normal packet, the fault 

causes it to become a (ail-safe packet. The receiving node cheeks the packet, assuming it 

is coded using some error-detecting code, and finds an error. Jr the original packet is a 

(ail-safe packet, the rault causes it to become a normal packet. The LFSR for incoming 

packets in the receiver node is modified. The error is detected when the two nodes 

compare the value or the sender's LFSR (or outgoing packets with the value of the 

receiver's LFSR for incoming packets. 
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6.3.3. T:yp~ of Fail-Safe Packeta 

Any two nodes i and j are neigh6or~ if, and only if, there is a link between them. 

For every node j that is a neighbor or node i, CKVV ,j) is the correct CRC check 

vector of all the normal packets sent by i to j since the last checkpoint was made. At 

any point in time CKV1(i ,j) is the value of CKV(i ,j) generated and stored in the output 

LFSR in node i. CKVj(i ,j) is the value or CKV(i ,j) generated and stored in the input 

LFSR in node j. 

There are eight types or Cail-saf'e packets: 

chukp(CKV) 

Used to initiate the creation or a new checkpoint. When sent by some node i to its 

neighbor node j it contains CKVi( i ,j). 

1tate(de1t ,node,1eq,•i ze) 

Used to transmit the state or node node to node delt. The state is traDSmitted in 

fiXed length packets. The 1ize field contains the number of these packets required to 

transmit the entire state. Each packet includes a sequence number 1eq. These 

packets are used to transmit the state or a node to a disk node during checkpointing 

and to transmit the state or a node from a disk node during recovery. 

1aved{coord,node) 

Used by a disk node to inform the checkpointing coordinator coord that the disk 

node is prepared to commit to a new state (or node node. 

Used to signal the end of a checkpointing "session" or the end of a recovery session. 

fault (twe ,location ,1ource) 

Used to broadcast the (act that a fault has occurred and to initiate recovery. The 

field tvpe contains the type of fault detected: node, link, or unknown. The faulty 

node or link is indicated by location. The node that detected the error and initiates 

the distribution of diagnostic information is indicated by IOUrce. 

recover{ver~ion) 

Used- to let the disk nodes know which version of the node states stored on their 

disks they should recover. Ver8ion may be 0 or 1. 
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rutortd{coord,node} 

Used by the node node to inform the current checkpointing coordinator that node has 

received its complete state (as part of the recovery process) and is ready to resume 

normal operation. 

ero1h{twe ,loeation,,ouret) 

Used to broadcast the fact that an umecoverable situation has been encountered. 

The arguments are the same as those for the fault packet. 

6.3.4. The Losieal Statee of a Node 

At any point in time, a node in the system may be engaged in normal operation, 

ch~kpointing, distribution of diagnostic information, or error recovery. The node's 

respo115e to various packet types depends on its current activity. Hence, we can define 

several logieal-•tatu (henceforth 1-•tatu)t that are simply labels for the current activity 

o( the node: 

normal 

This 1s the 1-state of the node during normal operation. Normal packets are 

accepted and processed. The fail-safe packets checkp and re.,ume may be received. A 

checkp packet causes an 1-state transition to checkp-begin. A re.,ume packet 1s 

ignored. 

cheekp-begin 

This is the 1-state of the node after it has received the first checkp packet from one of 

its neighbors but before it receives a checkp packet from all of its other neighbors. 

The checkpointing coordinator enters this 1-state when it initiates checkpointing. 

Normal packets may be received only from neighbors that have not yet sent a checkp 

packet. Normal packets from other neighbors cause a transition to the error 1-state. 

The arrival of valid checkp packets from all the neighbors causes an 1-state transition 

to checkpointing. 

eheekpointing 

This is the 1-atate of the node af'ter it has received checkp packets from all its 

neighbors but before it completes sending its state to a disk node. No normal packet 

t Tbe 1-state or a node is not to be confused witb tbe node's "state" tbat is tbe contents 

or tbe node's memory tbat defines tbe state or all tbe proeeues and packets currently on 

tbe aode. 
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shollld ~ r~eived while in this 1-state. If a normal packet is received, it causes a 

transition to the error 1-state. The fail-saf'e packets 1tate and 1aved may be received. 

'When the node completes sending its entire state to a disk node, it changes its )-state 

to eheckpointed. 

checkpointed 

error 

This is the 1-state or the node af'ter it has completed sending its state to one or the 

disk node! but before it receive! the ruume packet. Ir a normal packet is received 

by the node while in this 1-state, it causes a transition to the error 1-state. The fail­

saf'e packets ruume, 1tate, and 1aved may be received. A ruume packet causes an 

1-state transition to normal. 

This is the 1-state or the node af'ter it has detected (or has been informed of) an error 

but before it is ready to accept its recovered state. The node enter! this 1-state when 

it receives a mismatch signal from a neighbor, receives an invalid fail-saf'e packet, 

receive! a normal packet when only fail-saf'e packets are expected, or receive! a fault 

packet. In addition, a transition to the error 1-state may be caused by a valid fail­

safe packet whose contents indicate some error condition (see next subsection). 

Normal packets are ignored if sent by neighbor! that have not yet sent a fault 

packet. Other normal packets cause a transition to the cra1hed 1-state. The fail-safe 

packets eheckp, 1aved, ruume, 1tate, and rutored are ignored if sent by neighbors 

that have not yet sent a fault packet. The fault packet is ignored if the location it 

refer! to is the same as the location of the fault that caused the transition to the 

error 1-state. Any other fault packet causes a transition to the cra1hed 1-state. The 

fail-saf'e packet recover causes a transition the the recovering )-state. 

r~coverang 

This is the 1-state or the node af'ter it has received the recover packet but before it is 

ready to resume normal operation with its recovered state. Ir a normal packet is 

received, it causes a transition to the cra1hed 1-state. The fail-saf'e packet recover is 

ignored. The fail-safe packets 1ta.te and rutored are processed (see Subsection 5.4.6). 

The arrival or the node's complete state via 1tate packets causes a transition to the 

recovered 1-state. 
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recovered 

This is the 1-state of the node after it has received its complete recovered state hut 

before it actually resumes normal operation. If a normal packet is received, it cau~e~ 

a traD.!ition to the cra~hed 1-state. The fail-safe packets •tate and rutored are 

processed (see Subsection 5.3.6). IJI recover packets are ignored. The ruume packet 

cause! a transition to the normal 1-state. 

crtuhed. 

This is the 1-state of the node after an unrecoverable error has been detected. 

Each node also includes the "state variable" ver1ion that determines what is the mo~t 

recent valid version of the node's state that is stored on disk. This variable may have the 

values 0, 1, or unknotvn. When the system is initialized, the value or ver~ion in all the 

nodes is set to 0. 

&.3.6. Creating a Global Checkpoint 

Initially, a designated node, typically node 1, is assigned the task or serving as the 

coordinator for establishing global checkpoints. If the coordinator fails, all the other 

nodes in the system are notified and the next node, according to the total ordering 

between the nodes, takes over the task of being checkpointing coordinator. 

Every node includes a "timer" that can interrupt the node periodically. 

Checkpointing is initiated by the checkpointing coordinator when it is interrupted by its 

timer [Bari83] and it is in the normal 1-state. Checkpointing is also initiated when a task 

is complete so that the system can commit to the output stored on disk. 

It should be noted that faulty operation of the timer is detected just like faulty 

operation or any other part or a node. ~ previously discussed, the self-checking node i~ 

implemented using duplication and comparison [Tami83]. Each duplicate module includes 

its own independent timer. Even if a fault disables one of the timers, the other timer still 

operates and causes the module it is part of to "behave" differently from the module with 

the faulty timer. & a result, the two modules produce different outputs, and an error 

signal is generated by the comparator that coD.!tantly monitors those outputs. 

(I) The Action• of the Checkpointing Coordinator 

When the checkpointing coordinator, say node i, initiates checkpointing, it does the 

following: 



(1] Node i stops all work on application processes and stops trammitting normal 

packets. The node's 1-state is changed to checkp-begin. 

(2] Node i send! to every neighbor node j the fail-•afe packet checkp ( CKV1(i ,j)) 

(3) Node i waits for checkp packets from all its neighbors. 

(4] 

(5) 

Ir a normal packet arrives, it is included with the rest of the node state that 

mu.st be checkpointed. 

Ir a checkp(CKV,t(j,i) packet arrives from neighbor j then: If 

CKV,t(j,i) rJ' CKVi(i,i), i changes its 1-state to error and send! the packet 

fault(link,(i,j),i) to all its neighbors. 

Ir no checkp packet arrives from a neighbor j within some fixed time limit, i 

changes its !-state to error and sends the packet fault (unknown ,j,i) to all its 

neighbors. 

Node i changes 1-state to checkpointing and send! its complete state to the disk node 

assigned to it. 

Node i changes !-state to checkpointed and waits for fail-safe packets or the type • 
.!aved(i ,j) (or all nodes j in the system that are known to be wor.lcing. 

If for one of the nodes, say node j, no such packet arrives within some fixed 

period or time, i changes its )-state to error and sends the packet 

fault(unknown,O,i) to all its neighbors. 

(6] After all the expected 6aved packets arrive, node i complements its ver,ion variable, 

changes 1-state to normal, and send! the packet renme to all its neighbors. 

(7] Node i resumes normal operation. 

(II) The Action1 of a Checkpointing Participant 

Every node j, that receives the packet checkp(CKVi(i,j)) (rom its neighbor i while in 

its normal 1-state, does the following: 

(1] Node j stops all work on application processes and stops trammitting normal 

packets. The node's 1-state is changed to checkp-begin. 

(2] Ir CKVi(i ,j) rJ' CKV,t(i ,j), node j changes its 1-state to error and send! the packet 

fault (link,( i ,j),j) to all its neighbors. 

(3) For every neighbor node k (including k - i), node j sends to node k the fail-aafe 

packet checkp(CKV,t(j,k )). 
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[4] Node j waits for checlrp packets from all its neighbors except i. 

If a normal packet arrives, it is included with the rest or the node state that 

must be checkpointed. 

Ir a checlrp(CKV11 (k ,j) packet arr1ves from neighbor k then: If 

CKV11 ( k ,j) " CKV ,t( k ,j) , j changes its I-state to error and sends the packet 

I cnlt (link,( k ,j),j) to all its neigh burs. 

Ir no checlrp packet arrives from some neighbor k (k -,' i) within some fixed 

period or time, j changes its 1-state to error and sends to all its neighbors the 

packet fault (unknown ,k ,j). 

[5] Node j changes its 1-state to chec/rpointing, and begins to send its state to the disk 

node assigned to it using ~tate packets. The complete node state except for one l~t 

~tate packet is sent. 

[6] Node j changes its 1-state to chec/rpointed, sets its old-ver~ion variable to ver8ion, 

sets its ver6ion variable to unknown, and sends the last packet containing its state to 

the disk node assigned to it. 

[7] Node j waits for a re6ume packet from one or its neighbors. 

[8] 'When node j receives a rt8u.mt packet from its neighbor i, it sets its vtr6ion variable 

to 1 - old-ver8ion, changes its 1-state to normal, and ~nels a rt6ume packet to all of 

its other neighbors. 

[9] Node j resumes normal operation. 

{III) The Action~ of a Di~k Node 

A disk node may be a checkpointing coordinator or a checkpointing participant. In 

either case, it executes most or the protocols (I) or (II) as a regular node. However, a disk 

node also performs two additional tasks: ( 1) It stores node states so that they can be 

recovered in case or an error. (2) It handles input/output. 

During a checkpointing session, a disk node acupts 6tate packets and stores them on 

its disk. Once the complete state or some node j is received and stored on disk, the disk 

node sends a 6aved(coord,j) packet to the checkpointing coordinator. Once a rt.!u.me 

packet is received, the disk node commits to the most recently saved versions or the node 

states. The version or these node states is the current value or the ver1ion variable or the 

disk node. 

In order to roll back the entire system to a previous state, it mu.st be possible to roll 
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back the state o( the disks as well as the state of the nodes. Hence, all files that are 
opened with write or read/write permission are duplicated by the disk node and 1/0 
operations are performed on the duplicates until the disk node commits to the next 
checkpoint. Newly created files exist only as "duplicates" until the disk node commits to 
the next checkpoint. When the disk node commits to a new checkpoint, all the new and 
duplicate files are incorporated with the committed state. .fo'iles that remain open with 
write or read/write permission must, once again, be duplicated since all operations until 
the nezt checkpoint must not affect the files that are part of the current checkpoint. 

6.3.8. Fault Handlins 

When a node detects an error, it informs its neighbors of the error. This diagnostic 
information is then distributed throughout the system. Since an error may be detected in 
the middle of creating a new checkpoint, some of the disk nodes may have access to 
subsets of two different system states: the state currently being checkpointed or the 
previous state. The rll'St node that is informed of the error and which has the information 
needed to determine which version o( the state should be used, distributes this 
information throughout the system. Once the disk nodes find out which version of the 
system state they should use, they begin sending the state to all the nodes in the system. 
When all the nodes receive their state, they inform the checkpointing coordinator, which 
subsequently initiates the resumption of normal operation. Since all working nodes in the 
system are informed of the cause of the error, these nodes are able to avoid using the 
failed node or link so that it cannot be the source o( any additional errors. 

The rest of this subsection is devoted to a detailed description of the actioD!! of the 
nodes when an error is detected. 

(!) The Action.! of a Regular Node 

\\'hen a node is in any I-state except error or_ crtuhed, it mar change to the error 

1-state at any time, as described in Subsection 5.3.4. When a node i enters the error 

1-state, it does the following: 

[1] Node i stops all work on application processes and deletes all normal and fail-safe 
packets that are waiting for transmission. If the fault is in one o( the node's 
neighbors or in a link to a neighbor, all communication with that neighbor is 
terminated. 



(2] Packets that arrive at the node are handled as follows: All normal packets and all 

fail-safe packets, except fault and cra&h, are ignored. Fault packets are ignored if 

their location field indicates that they were generated as a result of the same fault 

th3t cau~ node j to enter the error 1-state. 

(3] Nt.:dc j 1end.s fault packets to all its neighbors. 

(4] If the ver&ion variable in node j is uot set to unknown, node j sends a 

recover(ver&ion) packet to all its ueighbors. 

If ver&ion is set to unknown, node j waits for a recover packet from one of its 

neighbo"!. When the rtcover packet arrives, node j sets its ver&ion to the value in 

that packet aud lM:'~~ 11. recover(ver&ion) packet to all its neighbors. 

If the error is a result of a fault in the checkpointing coordinator, all the working 

nodes in the system may have their ver&ion variable set to unknown. Hence, if 

node j is a neighbor of the checkpointing coordinator whose ver&ion is set to 

•nbown, and if the fault packets indicate that the checkpointing coordinator ha.s 

failed, node j waits for a recover packet only up to some preset time limit and then 

sets its ver1ion to old-venion and sends a recover(ver1ion) packet to all its neighbors. 

(5] Node j changes 1-state to recovering and waits for its complete state to arrive from 

one or the disk nodes. 

(6] Node j sends a rutored packet to the (possibly new) checkpointing coordinator, 

changes 1-state to recovered, and waits for a ruume packet from one of its neighbors. 

(7] If node j is the checkpointing coordinator, when it receives rutored packets from all 

the nodes which are known to be working (including jtself), it sends ruume packets 

to all its neighbors and changes 1-state to normal. 

If node j is not the checkpointing coordinator, when a ruume packet arrives from 

one of its neighbors, it sends a ruume packet to all its neighbors and changes 1-state 

to normal. 

(8) Node j resumes normal operation. 

{II) The Attion• of a Did Node 

At. previously mentioned, if an error is detected in a disk node, a era1h is initiated 

(in Subsection 5.6.4 we discuss modifications to the system that enable it to recover from 

failed disk nodes). However, a disk node can participate, or even initiate, the recovery 

process when the source of the error is some other node. 
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During recovery, every disk node j sends the checkpointed state to those nodes 

whose state is stored on the disk controlled ·by j. The node states are sent usmg 

sequences of ~tate packets. Sending the checkpointed state to the nodes can begin only 

when it is detc~·!.Oined which version of the state should be used. Hence, the disk node 

begins sendiug tL.e checkpointed states only after it has gone through step [4] or the 

recovery proi-ocol described above. The value of vereion for the state that is sent by the 

disk node is the value or the vereion variable or the disk node following step [4] above. 

The disk nodes must ensure that the "files" on the disks are restored to a state that 

is consistent with the state or the nodes. If the value or the vereion variable in some disk 

node is ~ unkno.,n (i.e., it is set to 0 or 1) when it rll'St enters the error 1-state, the 

system is rolled back to the checkpoint to which the disk node has already committed. 

All updates to the disk that were performed alter the last checkpoint must be undone. 

Hence, the disk node removes all the duplicate files and creates new duplicates from the 

"master copy" for all the files that are marked in the master copy as open with write or 

read/write permission. 

If the di!k node is in the middle of a checkpointing session, its vereion variable may 

be set to unknown. If recovery requires rolling back to the previous checkpoint rather 

than to the one being established, the value of verBion changes to old-vereion when the 

1-state changes to recovering. In this case the disk node is required to perform the same 

actions as when the value of vereion is initially set to a value other than unknown. 

If recovery requires "rolling back" to the checkpoint that is currently being 

established, the value or vereion is unkno1Vn when the disk node rll'St enters the error 

1-state but changes to 1-old-ver~ion when the !-state changes to recovering. In thi! case 

the disk node must commit to all updates that were done to the disk since the last 

checkpoint. Hence, the disk node commits to the node states that were just received and 

updates all files for which there are temporary duplicates with the content! or the 

duplicates. For files that have been closed since the last checkpoint, the duplicates are 

removed. For files that are still active, the .duplicates remain and continue to be used by 

the disk node. 

A disk node may fail or receive an error packet in the middle of committing to a new 

checkpoint. For the time being, we assume that any error in the operation of the disk 

node causes a crash. If the disk node receives an error packet in the middle or 
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committing to a new checkpoint, it forwards the packet to all its neighbors but does not 

proceed with any recovery actions until it completes the process of committing to the new 

checkpoint. 

&.•. Correctnea Araumenta 

Since a complete proof of the correctness of the protocols presented in this chapter 

requires a lengthy case analysis, we limit our discl15Sion here to showing that, despite 

hardware faults, the system will never produce ("commit to") incorrect results. It is 

shown that errors that might lead to incorrect results are always detected. Furthermore, 

when recovery occurs, the state to which the system is rolled back is valid. This requires 

showing that disk nodes only commit to valid checkpoints and that during recovery all 

the working nodes are rolled back to the same con&iltent checkpoint. 

As previously mentioned, the last action of the system, before committing to the 

output of a task, is to establish a new checkpoint. Thus, in order to show that the output 

is correct it is sufficient to show that a checkpointing session can terminate successfully 

only if the states of all the nodes are correct and there are no errors in transmitting 

output from the various nodes to the disks. In Subsection 5.4.1 it is shown that the states 

of the individual nodes are correct. In Subsection 5.4.2 it is shown that the states of all 

the nodes that are saved as part of a single system checkpoint are consistent with each 

other. 

6 ••. 1. The Correc:tnea of Individual Node States 

The correct operation of a particular pair of neighboring nodes and the link 

connecting them is verified when both enter the checkpointing 1-state. Errors that are a 

result of faults in either node are always detected immediately when they occur. The two 

aeighbor nodes can both enter the checkpointing 1-state only after they have exchanged 

checkp packets. These checkp packets follow any normal packets transmitted between the 

two nodes. If the checkp packets do not cause one or both of the nodes to enter the error 

1-state (i.e., the CRC check bits match), then there have been no errors in the 

transmission of normal packets between the -nodes since the last checkpoint. Thus, if both 

nodes enter the checkpointing 1-state, the only way for one of the nodes to have received 

an incorrect normal packet from the neighbor is if the latter was correctly forwarding an 

incorrect packet from some other node. It is shown in the next paragraph that this 
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situation 1s also detected during the checkpointing process. Before checkpointing is 

complete, all the nodes in the system must go through the checkpointing 1-state. Thus. 

all the normal packets received by any one or the nodes since the last checkpoint must 

have been correctly forwarded. 

It is still possible for the internal state of a node to be erroneous. This erroneous 

internal state can only be a result or incorrect processing or correct packets. Since the 

nodes are self-testing, an erroneous internal state is detected when the state is sent to the 

disk node. For example, if duplication and comparison is used to implement the self­

testing nodes (see Chapter 3), the internal state is generated and stored independently on 

two identical functional units. 'When the state is sent to the disk node, the two versions 

are automatically compared and if they are not identical, the neighbor receives an error 

signal. Thus, if all the nodes complete sending their state (i.e., enter the checkpointt.d 

1-state), all those states must be valid. It remains to be shown that the states of the nodes 

that are sent to disk nodes during a particular checkpointing session are consistent with 

each other and are stored and retrieved correctly. 

The state of each node is sent to a disk node using fail-safe 1tate packets. After each 

"hop" these packets are checked and any error that resulted from a fault in the link is 

detected. Since the nodes are self-checking, any error in forwarding the 1tatt. packets is 

detected immediately. The node detecting the error is always the next node on the path 

to the disk node. Hence, if there is any error in transmitting the state packets from their 

source nodes to the disk nodes, some or the packets will not arrive at their destination. Ir 

a 1tate packet from some node i does not reach its destination, the corresponding disk 

node does not send the 1aved packet for node i to the checkpointing coordinator and the 

checkpointing session is never completed. Hence, a checkpointing session can be 

completed only if the states or all the nodes arrive at the disk nodes intact. 

Since the disk nodes are self-checking, errors in the operation of these nodes is 

detected immediately by neighbors and causes a crash. h previously mentioned, the disk 

nodes use an error-detecting code when storing any information on disk. If there are any 

errors in transmitting the information to the disk itself or in storing the information, the 

error is detected when the information is retrieved. Thus, during recovery, the disk nodes 

either retrieve the node states correctly or detect an error and initiate a crash. 

During recovery, the node states are sent from the disk nodes to their destination 
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nodes uslDg •tate packets. AD.y errors ID the traDSmission of the •tate packets are 

detected immediately aDd cause a crash. Each node can determine when it receives its 

entire state using the 1eq aDd •ize fields in the •tate packets. Normal operation is 

resumed only after all the nodes have sent a rutored packet to the checkpointing 

coordinator. Thus, normal operation can be resumed only if the entire checkpointed state 

ia retrieved correctly. 

5.4.2. The Conaiatency of Node States in a Sin&le Checkpoint 

The state of a node changes as a result of local computation, traDSmission of a 

normal packet, or reception of a normal packet. The saved states of two neighbor nodes 

are coDSistent if no normal packets are traDSmitted between the nodes after the state of 

one of the nodes has been saved but before the state of the other node is saved [Bari83]. 

When a node enters the eheckp-hegin 1-state, it stops local computation and traDSmission 

of normal packets. A node enters the eheckpointing !-state only after all its neighbors 

have entered the ehukp-hegin 1-state. Hence, after the node has entered the 

eheckpointing 1-state, no more normal packets are exchanged with on~ of its neighbors 

until normal operation is resumed. As the checkpointing session progresses, each one of 

the neighbors enters the eheckpointing 1-state aDd sends its own state to a disk node. 

Therefore, the saved state of each node is coDSistent with the saved states of all its 

neighbors. Thus, if a checkpointing session is not interrupted by ILI1 error, it is guaranteed 

that all the node states that are part of that checkpoint are coDSistent with each other. 

The system must be able to recover from ILI1 error that is detected in the middle of a 

checkpointing session. Under these circumstances, some of the disk nodes may receive the 

re•ume packet aDd commit to the new checkpoint while other disk nodes are still 

committed to the previous checkpoint. As a result, the two groups of disk nodes may 

cause working nodes to "recover" with incoDSistent states. The veuion variable stored 

with each node is introduced in order to solve this problem. During a checkpointing 

session, before ILDY node i completes sending its entire state to a disk node, it (node i) can 

determine independently of ILDY other node that ILDY recovery must involve rolling back to 

the previou• checkpoint rather than the one being saved. Once i completes sending its 

state, it can not longer determine whether recovery should involve rolling back to the 

previous checkpoint or to the one stored during the current checkpointing session; 

therefore, node i sets is ver1ion variable to unknown. After the check pointing coordinator 
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ha.s received 1aved packets for all the nodes in the system, it is guaranteed that all the 

disk nodes together have a complete and con.sistent new checkpoint. The ruume packet 

sent by the checkpointing coordinator informs all the other nodes that the new checkpoint 

is valid. If an error is det.a:terl, the checkpointing coordinator always "knows" whether 

the system should ~ rolled back to the previo~ checkpoint or to the one being 

established. Ir the chedpointing coordinator is in the middle of a checkpointing session 

and ha.s already received toved packets for all the nodes in the system, the checkpoint 

being established in the cw-rent checkpointing session m~t be used. Otherwise, only the 

previo~ ch~kpoint is guaranteed to be correct and the checkpoint that is in the process 

or being established m~t be discarded. Every node in the system either "knows" to what 

checkpoint the system should be rolled back, or "knows" that it is not able to make that 

determination. It is not possible for two nodes to have complementary values in their 

ver1ion variables. Since the disk nodes begin sending the checkpointed state only when 

their ver1ion variable is ~ unkno1Vn, the system is rolled back to a con.sistent state. 

M previo~ly mentioned, when the system commits to a new checkpoint, it also 

commits to the output generated since the la.st checkpoint. Disk output in the system is 

sent from the vario~ nodes to the disk nodes during normal operation ~ing normal 

packets. A checkpointing session can terminate successfully only if no errors occw-red as a 

result of faults in nodes or linb. Th~, if the checkpointing session completes, it is 

guaranteed that all the output received by disk nodes since the la.st checkpoint is correct. 

The disk nodes use error-detecting codes that guarantee that any error in storing the 

output on the disk will be detected when the information is retrieved. Thus, when the 

system commits to output on its disks, that output is either correct or, if it is incorrect, 

the error can be detected based on the error-detecting code used to store the information. 

5.5. E1timate of the Overhead for Fault Tolerance 

Accurate estimates of the overhead of making the mu.hicomputer fault tolerant using 

the scheme proposed in this chapter require detailed simulation or the system, including 

the queues at the communication ports, the time it takes to move data. in memory, etc. 

Such information can only be obtained for a particular application after a detailed design 

of the system is complete. In order to provide a rough estimate of the expected overhead 

associated with the proposed error recovery scheme, we make several assumption.s about 

the system based on the stated application· environment and on cw-rent and near-future 
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teehnology: 

(1) The system includes one thousand nodes, each consisting of a high-performance (for 

example, 5 MIPS [Barr83]) processor. The processor state is, on the average, 256 

thousand bytes. It should be noted that the state does not include code-space. 

(2) The topology of the system is dense, i.e., the diameter is proportional to the 

logarithm of the number of nodes. Specifically, we assume a diameter of 15. 

(3) Ten of the nodes in the !ystem are disk nodes, each handling checkpointing and 

recovery or the state or 100 nodes. 

(4) The communication links are assumed to have a bandwidth of 

1.5 X 108 bvtu / 1econd [Barr83, INM084). 

(5) Every fail-saf'e packet that is not a 1tate packet is 16 bytes long, including redundant 

bytes for error deteetion. 

(6) Each 1tate packet is 1000 bytes long and 260 such packets are required to transmit 

the entire state or a node. 

(7) Each node can be simultaneously receiving a packet, processing a previously received 

packet, and sending a previously processed packet [Barr83, INM083). 

(8) The bandwidth of the interface between the disk node and the disk drives it controls 

is much higher than the bandwidth of the communication linb, and the node can 

transfer data to the disk drive simultaneously with all its other activities. 

In order to initiate a checkpointing session, the checkp packets must propagate from 

the checkpointing coordinator to all the other nodes in the system. The 16 byte checkp 

packet goes through a link in 11 p1ee8. The processing required at each node to forward 

the packet is relatively simple. For a 5 MIPS processor with an architecture that is 

appropriate for a multicomputer (e.g., the INMOS TransputerPNM084]), 50 p1ec1 is a 

pessimistic estimate of the delay introduced by this processing. Since the diameter of the 

systems is 15, all the nodes in the system can enter the checkpointing 1-state within one 

milliseconds after the checkpointing session is initiated. 

The state of each node is transmitted to a disk node using 260 •tate packets. Each 

10QO.byte •tate packet can be transmitted through a single link in 670 plee8. Hence, 

every disk node begins receiving 1tate packets within one or two milliseconds after all the 

nodes enter the eheckpointing 1-state. A regular node receiving a 1tate packet, can 

certainly verify it and forward it to the appropriate output port within the 670 ~uc1 it 
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takes to trall!mit the packet over a link. Hence, even if a disk node can only receive ~tate 

packets through one or its ports, these packets can utilize the full bandwidth or the link. 

Since the bandwidth of the interface between the disk node and the disk drive has a much 

higher bandwidth than the communication link, the disk node can store the state packets 

u fast as they arrive. Thus, all 26,000 1tate packets containing the state of 100 nodes can 

be received by a disk node in approximately 18 seconds. 

Sending 1aved packets from the disk nodes to the checkpointing coordinator is a 

similar process to distributing ch.eckp packets from the checkpointing coordinator to the 

rest of the system. Hence, this process is expected to take approximately one milliseconds 

(see above). Similarly, distributing the resume packet from the checkpointing coordinator 

to the rest of the system is also expected to take approximately one milliseconds. Thus, 

the entire checkpointing session can be expected to take less than 1Q seconds to complete. 

If " checkpoint is created twice an hour, the overhead involved in maintaining the 

checkpoint is, approximately 1.1 percent. 

The process of recovery is very similar to the process of creating a checkpoint 

26,000 1tate packets are trall!mitted from the disk nodes to all the other nodes in the 

system. Hence, recovery can also be expected to take approximately 20 seconds. 'When 

an error is detected, the system is rolled back and any computation done since the last 

checkpoint is lost. Since a new checkpoint is created every 30 minutes, on the average, 

15 minutes of computation are lost every time the system is rolled back. If the MTBF of 

the system is 10 hours, the total overhead for fault tolerance during those 10 hours 

includes 6.6 minutes for creating checkpoints, 0.4 minutes for error recovery, and 

15 minutes of lost computation. The total of 22 minutes amounts to an overhead of 

3.7 percent. 

&.8. Relaxin& Some of the Auumption1 

In this section we outline how some of the restrictive assumption! made in 

Subsection 5.3.1 can be relaxed. In particular, it is no longer assumed that the system 

must be "closed!' Some communication with the "outside world" is allowed. Since 

trall!ient hardware faults are at least an order of magnitude more likely to occur than 

permanent faults (Cast82], it is wasteful to logically remove a node or a link after it suffers 

from a fault. A more efficient way or dealing with trall!ient faults is proposed. Finally, 
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modifications to the system that allow recovery from faults in disk nodes are discussed. 

5.8.1. Input/Output from the Syatem 

The basic problem in allowing communication with the outside world is that it may 

be impossible to roll back the effects of such communication: if a page is printed, it cannot 

be erased; if a file is read and then deleted, it may [lOt be possible to restore its contents; 

if input is obtained from a terminal, it is not acceptable to ask the user to retype all his 

commands after the system recovers from an error. The problem is especially difficult 

with our scheme thl\t allows the system to continue operating incorrectly for a relatively 

long time (up to the time between successive checkpoints) after an error has occurred. 

The multicomputer consists of nodes, links, and disk drives. We will call any other 

system (computer) or device that interacts with the multicomputer, a "peripheral:' Some 

peripherals, such as another computer system, may be able to commit to checkpoints and 

roll back to those checkpoints upon demand. We call such "devices" intelligent 

peripheral~. Most peripherals, such as printers or tape drives, cannot set checkpoints and 

roll back to them. We call these latter devices aimple peripheral~. 

Due to similarities between the actions performed by a node that controls a disk that 

is part of the system and a node that interacts directly with the outside world, it is 

convenient to refer to nodes that interact directly with the outside world as diak nodes. 

Information transfer from a disk node to a peripheral is output while information transfer 

in the opposite direction is input. 

5.8.1.1. Intelligent Peripher~la 

Wit"h intelligent peripherals, input/output may occur virtually at any time. As part 

of each checkpointing session, when the disk nodes commit to the new checkpoint, each 

disk node connected to a peripheral "commands" the peripheral to commit to any data it 

received from the disk node or transmitted to the disk node since the last checkpoint. If 

the peripheral signals an error, the disk node initiates a crash. 

If an error is detected in the multicomputer and a recovery session is initiated, the 

peripherals are instructed to roll back to a previous checkpoint or possibly, if the error is 

detected in the middle of a checkj,ointing session, to commit to a new checkpoint. The 

disk node connected to each peripheral is able to inform -the peripheral which of these 

actions to take as soon as it determines the correct value for its ver~ion variable (see 
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Subsection 5.3.6 ). 

If a peripheral accepts or transmits erroneous data without detecting the error, it is 

possible that the multiconaputer system will generate incorrect results. The probability of 

such incorrect result:! is red'!<:~ by using error detecting codes for all data transfers 

between disk nodes and puip!JC:rl\ls. 

6.8.1.2. Simple Peripheral• 

M mentioned earlier, only disk nodes interact directly with peripherals. Regular 

nodes can interact with any peripheral indirectly by sending input/output requests to the 

appropriate disk node. These requests are sent to the disk node using normal packets. 

Some of these packets may be erroneous due to faults in links that are only detected 

during checkpointing. Since operations on "simple peripherals" cannot be undone, the 

disk node does not execute any of the 1/0 requests until they are verified to be correct by 

a checkpointing session. Instead, 1/0 requests are accumulated in temporary files on disk 

drives controlled by the disk node. If the system is rolled back to a previous checkpoint, 

all these 1/0 requests are discarded. 

When the disk node commits to the new checkpoint, it also places the accumulated 

1/0 requests in a queue of verified peripheral operations to be executed. Since data 

transfers to/from the peripheral cannot be repeated, this queue is not part of the node 

state that may be rolled back during recovery. After the checkpointing session is 

completed, the disk node performs the peripheral operations in the queue and keeps track 

or all data transfers to/from the peripheral so that they are not repeated if the system is 

rolled back. 

When executing input operations, the disk node rll'St stores the data received from 

the peripherals in temporary files on disk and later forwards the data to the nodes that 

had initi"ted the input requests. If an error is detected and the system is rolled back, any 

packets transferring data from the disk node to other nodes are lost. These packets can 

be considered "salely on their way" only alter the next checkpointing session. Hence, the 

disk node must keep the temporary files until the next checkpointing session so that it is 

able to resend any packets containing data from the peripherals if the system is rolled 

back. It should be noted that, immediatdr alter they are created, the temporary files 

containing data from the peripherals are treated as though they are part of the previous 
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checkpoint. These temporvy files are logically "removed" when the data i! !ent from the 

disk node. However, since they are part or the previous checkpoint, they are only 

physically removed during the nezt checkpointing session. 

The disk node m•tst !-.ecp track of input requests that have been verified as correct 

(by a previous checkpoi.c.ti.tg :~~ioa) but are not yet completed since the data has not yet 

been sent to the node that request~d it. At the same time (during checkpointing) when all 

1/0 requests are placed in the queue or peripheral operations to be executed, the input 

requests alone are also placed on another queue or "input requests that are not yet 

completed!' This queue is handled in the same way as the temporary files mentioned 

above -it becomes part or the previoul checkpoint and all modifications (updates) to it 

are committed only during the next checkpointing session. 

The above scheme does not allow interactive access to the multicomputer. However, 

it does allow it to accept new tasks during every checkpointing session and to produce 

partial outputs as the task progresses. Hence, the multicomputer is no longer required to 

be a "closed system!' It is possible to allow regular data transfers with a a host system 

that interacts with the users directly, "prepares" jobs for the multicomputer, and handles 

the output from those jobs. 

5.8.2. Handling Erron Cau.ed by Tranaieni Faulia 

Most of the errors in computer systems are a result or transient faults [Cast82]. Such 

errors can corrupt the state or the system so that rolling back to the last checkpoint is 

necessary. However, the hardware itself is not permanently affected and should be used 

again once a valid system state is established. 

Since a link does not contain any state, no special actions are required in order to 

continue to use it alter recovering from an error caused by a transient fault on that link. 

On the other hand, the computation nodes do contain state that may be corrupted by a 

fault thereby preventing it from cooperating with the rest or the system in establishing a 

"sane state!' Thus, a node that fails due to a transient fault should be ruet to some valid 

initial st•te that allows it to communicate with other nodes in the system. Once the node 

is in this initial state, it can obtain information about the condition or the system (for 

example, which nodes or links are faulty) and accept its checkpointed state so that it can 

resume normal operation. 
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If the self-checking nodes are implemented usmg duplication and 

comparison [Tami83], the "no-match" signal from the comparator can be used to reset the 

node to a "sane" state following a transient fault. This reset causes the node to begin 

executing resident c~.;dc tbi'\t is stored in ROM. It should be noted that neighbor nodes 

must not _be given the .sut!.urity to reset a failed state since that would allow a failed node 

to reset its fault-free neighbors. 

Given the ability to reset ·a failed node, recovery from an error caused by a transient 

fault is simpler than recovery from an error caused by a permanent fault - there is no 

need to reroute packets around failed nodes or links and it is not necessary to migrate 

processes that were assigned to the failed node to other nodes. However, permanent faults 

must be distinguished from traD!ient faults in order to prevent repeated errors caused by 

a single permanent fault from disrupting the operation of the system. When an error is 

detected, the node or link that caused the error is identified by the location field in the 

fault packets. Each node in the system can keep a record, in its own memory, of the 

causes of the last few errors. If the same node or link is the source of several consecutive 

errors, that node or link is considered permanently faulty by all the other nodes in the 

system, which make no further attempts to use it. 

5.8.3. Futer Detection of Errore Cau1ed by Faulty Links 

'With the fault tolerance scheme described so far, errors caused by faulty links are 

only detected during the next checkpointing session. Thus, alter a faulty link causes an 

error, the system continues processing the erroneous information until the next 

checkpointing session. All this processing is useless since, upon detecting the error, the 

system is rolled back to the last checkpoint. In addition, the delay in detecting errors 

caused by faulty linb can lead to system crashes. If two linb are affected by faults 

during normal operation, the two independent faults may be detected simultaneously 

during the same checkpointing session and result in a system crash. 

In order to detect errors caused by faulty linb as soon as possible, every packet 

must include redundant check bits that are checked alter every transfer over a link (see 

Subsection 5.3.2). When a node detects an error it can initiate a recovery session using 

fault packets (see Subsection 5.3.6). The additional overhead required by this scheme 

includes the communication bandwidth used to transmit the redundant bits, possible 

additional delay in relaying the packet at each intermediate node on its path, and 
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additional hardware and/or software {firmware) at each node for performing the validity 

checks on each packet. 

It should be noted that the above scheme does not detect lost packets and therefore 

does not eliminate the need for checking the links during the checkpointing session, as 

described in Subsections 5.3.2 and 5.3.5. Faster detection of lost packets requires much 

more complicated protocols. After a node sends {or forwards) a packet to a neighbor, it 

waits for an aeknowledgement.· If no acknowledgement is received within a set time, the 

sender "times out" and initiates recovery. Wtth the system discussed in this chapter, 

losing a packet while it is tr&IL!mitted from one node to its neighbor, is a very unlikely 

failure mode. Hence, the additional overhead required for fast detection of lost packets is 

not justified. 

Another possible scheme for detecting errors caused by faulty links is to verify the 

validity of messages only at their final destination rather then at each intermediate node. 

Instead of including cheek bits with each packet, the system may use only one set of check 

bits for each message (that may be sent using several packet!). The check bit are 

generated by the source of the message and cheeked only by the destination. This scheme 

involves less overhead than verifying individual packets. However, the delay in detecting 

errors is greater and there are more possible errors that can only be detected during a 

checkpointing session. 

6.8.-'. Fault. in Di•kl and Diak Nod• 

Wtth the fault tolerance scheme described so far, the system cannot recover from 

errors caused by faults in disks or disk nodes. The basic problem in recovering from such 

errors is that data may be corrupted or no longer accessible. If the only access to parts of 

a checkpointed state or to data required by the task is through a single disk node, there is 

no way to recover from a permanent fault in this node. Similarly, if parts of the 

cheekpointed state or other data is stored on only one disk, the system cannot recover 

from a failure of the disk or or the disk controller. 

The solution to the above problem requires storing multiple copies of critical data 

and providing multiple paths to the data. In several commercial systems (Borg83, Katt82] 

this is being done by using multiple dual-ported disk drives and dual-ported disk 

controllers. The two ports of each disk drive are connected to two independent disk 
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controllers and the two ports of each disk controller are connected to two independent 

nodes. Each critical file is stored on two disk drives. With this scheme, critical data 

remains accessible despite ;.he failure of one of the disk nodes, one of the disk controllers. 

or one of the disk drives. 

The hardware described in the prev1ous paragraph is well suited to the fault 

tolerance schemes of most commercial systems. These schemes involve the use of "process 

pairs;' a "primary" and a "backup;' located on different nodes with the "backup" ready 

to take over the execution of the process if the "primary" fails. In accordance with this 

scheme, the process pair that interacts with the disk controller is located on the two nodes 

connected to the ports or the controller. 

The hardware described above can be used with the multicomputer. However, unlike 

the fault tolerance schemes used in commercial systems, the scheme presented in this 

chapter does not involve maintaining a process pairs. There are two possible ways of 

using the pair of disk nodes connected to dual-ported controllers: (1) ~ long as both disk 

nodes are operational, only one of the nodes performs the input/output tasks of a disk 

node w bile the second node operates as a normal node but is kept ready to take over 

input/output operations in case the first node fails. (2) Both nodes perform input/output 

operations and one of them begins performing all these operations if the other one fails. 

In this chapter we will only discuss the r~rst, simpler, alternative. 

For each pair of nodes connected to the same disk controller, we call the node that 

performs input/output operations "an active disk" node and the other node "a paBBiv~ 

disk node:' The other nodes on the system initially use the active disk node but they also 

"know" the identity of the corresponding passive disk node and begin using it if the active 

disk node fails. 

Each output operation is performed on both disk drives. Data is written with 

redundant bits for error detection. After the data is written, it is immediately read by 

the active disk node and verified as correct based on the error-detecting code. If an error 

is detected on both disk drives, the node (~rst retries the operation using the same disk 

controller and disk drive. If the retry fails, the disk node switches to the other disk 

controller. If the disk node detects the failure of both disk drives or both disk controllers, 

it must initiate a cro•h. 

The failure of an active disk node is detected by its neighbors just like the failure of 
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any other node. The r~t of the system is informed or the failure or the node by the fault 

packets. The passive disk node connected to the same disk controller takes ownership of 

the disk controllers and begins serving as the disk node [Katz.82]. All the nodes in the 

system are informed that 1\n al'tive disk node has failed and update their internal tables to 

indicate that the corr~spuodir.g passive disk node is now the active disk node. If an active 

disk node fails and the other node in the disk node pair is known to be faulty, a crash is 

initiated. 

Recovery from the failure of a disk node is similar to the recovery from the failure of 

any other node - the system rolls back to the previous checkpoint and resumes operation 

without the failed node. If an active disk node fails, the corresponding passive disk node 

must take over the tasks of the failed node, thereby becoming an active disk node, and 

every other node in the system must begin sending all input/output requests to the new 

active disk node. In order to be able to take over the tasks or an active disk node, the 

passive disk node must have some information on how data is stored on the disk. In 

particular the passive disk node must be able to acc~s a prearranged location on the disk 

that contains pointers to the last committed checkpoint including node states and disk 

files. 

If an active disk node fails, its passive "partner" must be able to obtain the correct 

version of the checkpointed state stored on the disks controlled by the two nodes even if 

the failure is detected in the middle of a checkpointing session. If the failure is detected 

before the checkpointing coordinator receiv~ 1oved packets for all the nodes in the 

system, recovery involv~ roll back to the previous checkpoint rather than to the 

checkpoint currently being saved. In this case the previous active disk node ha.s not yet 

begun committing to a new checkpoint and the new active disk node can access the 

previous checkpoint in the same way as when the error is detected during normal 

operation. 

If the failure of an active disk node is detected after the checkpointing coordinator 

has received 1oved packets for all the nodes in the system, recovery requir~ "roll back'' 

to the netV checkpoint that has just been saved. At this stage the previous active disk 

node may have completed committing to the new checkpoint, may be in the middle of 

committing to the new checkpoint, or may have not yet started committing to a new 

checkpoint. In order to be consistent with the r~t of the system, the new active disk 
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node mlll!t be able to access the new checkpoint (see Subsection 5.3.6) in all three cases. 

The key to solving the above problem is that the actioD! performed by the disk node 

in order to commit to a new checkpoint are rttr11able. If the passive disk. node "knows" 

of a prearranged location OD di!!k. that contaiD! pointers to the new checkpoint, it can 

restart the task. of committin, to the new checkpoint from scratch since all that is 

required is copying pointers from the new checkpoint area to the committed checkpoint 

area. After a disk. node completes committing to a new checkpoint, it stores the value of 

ver~ion that corresponds to the new committed checkpoint in a known place on the disk. 

During recovery, the disk node can compare the value of ver ~ion of the committed 

checkpoint with the value of ver~ion that corresponds to the checkpoint it is supposed to 

restore. If the two values differ, the disk node first commits to the new checkpoint and 

then proceeds with the rest of the recovery session as Ul!ual. 
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The previous five chapters presented the basic principles of an approach to 

implementing fault toterance in a VLSI multicomputer and discussed the advantages and 

disadvantages of this approach when compared with alternative approaches. However, the 

material presented is, by no means, a complete detailed design of a high-performance 

fault-tolerant multicomputer. Such a design must take into account the mix of 

applications for which the system is intended, the required performance and reliability, 

the properties of the particular implementation technology, the environment in which the 

system is expected to operate, and the acceptable range of system cost. A discussion of 

some of the issues and implementation tradeoffs that must be considered is presented in 

this chapter. 

The key to the fault tolerance technique presented in the previous chapters is the use 

of self-checking nodes implemented with duplication and comparison. As discussed in 

Chapter 3, one of the potential weaknesses of duplication and comparison is that if the 

two functional modules fail simultaneously in exactly the- same way, the failure is not 

detected and incorrect results are accepted as correct by the rest of the system. 

Techniques for reducing the probability of such common mode failure8 are presented in 

Section 6.1. This section includes a discussion of the possible causes of common mode 

failures and some basic definitions. It is shown that it is not possible to entirely 

eliminated common mode failures. Instead, there are some practical implementation 

techniques for reducing the probability or these failure in the context or commonly used 

NMOS and CMOS circuits. 

The technique presented in Section 6.1 is an important implementation detail that 

can increase the efiectiveness or the self checking nodes. Many other design choices and 

implementation details must be considered. A brief overview of some of these issues is 

presented in Section 6.2. 
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8.1. Reducins Common Mode Failure. in Duplicate Modules 

We have discussed the use of duplication and comparison to implement self-checking 

nodes. This teehnique is obviously also applicable to the implementation of any other 

•elf-checking functional module (henceforth, SCFAf). Hence, for generality, SCFM will 

be used iD!t~tod of "self-checking node" throughout this section. A general SCFM is 

shown in Fig. 6.1. 

modul~ modul~ 

T / 

\. ./ 
\•mpuaLo/ 

I 
~ • 

output error i.Dput 

Fis. 8.1: A Self-Checking Functional Module (SCFM) 

Modules that perform identical function! may fail simultaneously in exactly the same 

way and produce identical incorrect results. Such common mode failure8 (henceforth, 

CMFs) may be caused by environmental factors such as power supply Ouctua.tions, pulses 

of eleetromagnetic fields, or bursts of cosmic radiation, that can affect both modules at 

the same time, triggering similar design weaknesses and causing simultaneous identical 

failures of both modules. Simultaneous module failures may also be caused by faults that 

occur at different times in parts or the modules that sufTer from identical design 

weaknesses and are infrequently exercised. 

With advances in VLSI technology it will soon be possible to implement an entire 

SCFM (such as a self-cheeking node in a multicomputer), including the two functional 

modules and the comparator, on the same chip. In addition to providing error detection 

during normal operation, the aelf-cheeking capability of the chip may also be used to 

simplify the testing or the chip throughout its life: from wafer probe testing that is part of 

the manufacturing process through the acceptance tests by users and diagnostic testing for 

repair and preventive maintenance of the system containing the chip. The simplification 

of testing is achieved by eliminating the need to store the correct responses to long test 

sequences and compare them with the actual respoD!es of the chip during testing. Testing 
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can proceed at the normal system clock rate and only the outputs of the comparator need 

to be monitored. 

Unfortunately, if the two modules are fabricated on the same chip, the probability of 

CMFs during normal operation is greater than if they are on separate chips. This 

increased probability of CMFs is due to the tighter electrical and physical coupling 

between the two modules and to similar weaknesses in the two modules that may be 

caused by fabrication fiaws speeific to the wafer containing the chip. Furthermore, CMFs 

may be a significant problem if the self-checking capability of the chip is also be used to 

simplify its testing, espeeially fabrication testing. In chips that have never been tested, 

(i.e., have not yet gone through wafer probe testing), as a result of fabrication defects, 

CMFs may be relatively common, espeeially if the modules are physical duplicates. Hence, 

if wafer probe testing relies on the self-checking capability of the chip, different physical 

implementations or the two modules must be used. 

The simplest way to implement modules that perform identical functions is to use 

identical physical duplicates. For such modules the meaning of the term "common mode 

failures" appears obvious. However, if the two modules perform identical functions but 

are physically different, there is no direct correspondence between physical faults in the 

two modules, and the meaning of the term is unclear. Hence, there is a need for a 

definition of CMFs that is applicable to modules that are physically different. 

In the rest of this section, F will denote the set of all •ingle fault•, where a single 

fault is a fault caused by a single physical defect. In discussing the failure of the two 

modules in a SCFM, a "double faults" (! 1,/ 2) occurs when / 1 E F affects one of the 

modules while / 2 E F affects the other module. 

The two modules are denoted by A and B. When both modules are fault-free, both 

1'J'e implementations of some function Z. The implementation of Z by module A is 

denoted by z ..... For every input I, Z..t{l)- Z8 (I)- Z(I). When the module A is affected 

by-a fault f e F, it performs the function Z!. The two modules may produce identical 

incorrect results due to unrelated faults that just happen to affect the outputs in the same 

way. In this situation, / 1 affects A, / 2 affeets B (! 1,/ 2 E F), and there is an input I sue h 

that z!•(l)- Z~'(l) even though z!~I)-,' Z(I). Hence, there is a non-zero probability 

that a supposedly self-checking SCFM will fail to fiag erroneous output. Thus, the SCFM 

is not foult-•ecure [Wake78) with respect to certain 11double faults" that affect both 
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modules even if the modul~ are not physica.l duplicates. 

In the wont ease, the new function!, z~· and Z~', performed by the faulty modules 

are identical, and the fault is never detected since for everv input I, Z~'(I)- Z~V). In 

this ease, the SCFM is not even •elf-teating [Wake78] with r~pect to the "double fault'' 

(! 1,/ :z). 

While it is clearly impossible to ell!ure that the SCFM will be fault-secure with 

respect to every double fault (/ 1,/ 2) E FxF, one might hope that appropriate 

implementation of the modules can ell!ure that the two module function!, as modified by 

the faults (/ 1,/ 2), are not identical, so that the fault is detectable. If this is done, the 

SCFM is partiallv •elf-ehecking [Wake78] with respect to a.ll double faults(! 1,/ 2) E FxF. 

We thus make the following definition!: 

Def. 6.1: The two modules in a SCFM are said to be affected by common mode failures, 

if and only if, there exists at least one input vector for which both modules produce 

incorrect outputs, and for every input, the outputs from the two modules are identical. 

Def. 6.2: Two modules are said to have independent failure mode• with respect to a 

fault set F, if and only if, for every double fault(! 1,/ 2) E FxF, such that I 1 affects one of 

the modules and 12 affects the other, there exists at least one input that results in 

different outputs from the two modules. 

In the definition above, F does not include faults on the input and output lines of the 

modules since it is clearly impossible for the two modules to have independent failure 

modes with respect to such faults. The technique for handling such faults for the self­

checking node in a multicomputer has been discll!Sed in Chapter 3. 

8.1.1. lmplementins Modulea with Independent Failure Modes 

For a particular function it is sometimes possible to find two different 

implementation! with independent failure modes. for example, coll!ider the 

combinationa.l logic function defined by the truth table in Fig. 6.2. Fig. 6.3 contain! two 

possible implementation! of this function. It can be shown that these two 

implementation! have independent failure modes with respect to the single stuck-at fault 

model. 

Unfortunately, it is usua.lly very difficult or impossible to find implementation! with 

independent failure modes for even simple combinational function! and under the 
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Fig. 8.2: A Combinational Logic Function 
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Fig. 8.3: lmplementatioll5 of the Function Defined by Fig. 6.2 
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assumptioll5 of a simplistic fault model, such as the single stuck-at model. As an 

experiment, the implementatioll5 of several simple combinational functio115 were 

coll5idered. Except for the function described by the truth table in Fig. 6.2, 

implementatioll5 with independent failure modes with respect to single stuck faults could 

not be discovered. It is likely that such implementatioll5 do not exist for most 

combinational functioll5. 

As noted in Chapter 3, one of the benefits of using duplication and comparison for 

self-checking subsystems is that relatively little extra design effort is required in order to 

implement the self-checking property. Even if it is possible to design very simple modules 

that have independent failure modes with respect to single stuck faults, it is unlikely to be 

practical and economically feasible for complex functional modules (such as 

microprocessors), especially if we take into account the more realistic fault model 

described in Chapter 2. 

Assuming that there lS no practical way of implementing modules that have 

independent failure modes with respect to all double faults, we concentrate our efforts on 

reducing the probability of those double faults that are more likely to occur than random 

double faults. The technology and circuits used to implement the modules in an SCFM 
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determine which double faults are more likely to occur and whether they are detectable. 

Hence, a particular implementation technology and "representative" example circuits are 

considered rather than attempting to apply uniform analysis to all possible circuits. In 

particular, only NMOS and CMOS VLSI implementations are coD!idered. As a 

"representative" circilit iif': coD!ider the Berkeley RISC microprocessor [Patt82] for which 

there is an NMOS VLSI implementation (Sher84] as well as a nearly complete CMOS 

layout [Taka83]. 

Many mont~ (or years) are devoted to the design or VLSI chips in order to achieve 

maximum functionality, performance, and reliability with the given technology. In most 

cases it is unacceptable to double the design time and development cost of a VLSI chip 

simply to achieve more reliable error detection by reducing the probability of CMFs. 

Completely independent implementation! of the two modules in the SCFM are therefore 

not practical. The use of duplicate physical modules in the SCFM is the lowest cost 

alternative. However, given the time and resources spent on designing a VLSI chip, it is 

worthwhile to spend a few additional weeb on the implementation of both modules in 

order to minimiu eome or the performance and yield costs or using duplication and 

comparison. A practical approach to implementing modules with independent failure 

modes involves spending most or the effort designing and optimizing one module and then 

"designing" the second module by modifying the (ll'St one. In the following section! we 

discuss how this overall approach can be applied for representative circuits in the RISC 

microprocessor. 

8.1.2. Dual Implementation• 

For every combinational Boolean function l(z)- l(z 1,z2, • • · ,zn) there is a 

corresponding dual function 1 such that f(Z)- J(£) for every z. In the circuits c1 and 

c, that implement the runc:tioD! 1 and g, respectively, voltage levels represent the logic 

values. Ir the circuits are implemented using po•itive-/ogic, the "high" voltage level 

represents a logic: 1 and the "low" level represents a logic: 0. Because or the above 

relatioD!hip between the function! I and g, C1 is a negative-logic implementation of the 

function I and c, is a negative-logic implementation or the function g. The circuits c, 

and C1 are said to be dual implementation• or the function I, and c1 and C1 are said to 

be dual circuit•. 

Dual implementation! of arbitrarily complex sequential logic: circuits are also 
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possible. If the inputs to the negative-logic implementation are complements of the inputs 

to the positive-logic implementation, the corresponding outputs from the two 

implementations are complements of each other. 

Sedmak and Liebergot [Sedm80] have suggested that the probability of CMFs in a 

SCFM can be reduced by using dual modules rather than pairs of identical modules. The 

inputs to the SCFM are passed unmodified to the positive-logic module (henceforth called 

the p-module ), and are complemented for the negative-logic module ( n-module ). If the 

two modules are operating correctly, their outputs are complements of each other and can 

be "compared" using a two-rail code checker [Cart68] (Fig. 6.4). 

J>'module n-module 

output error input 

Fis. 8.4: An SCFM Based on Dual Implementations 

There are several advantages to the use of the above scheme over the use of two 

modules that are physical duplicates: (1) Ir the modules are VLSI chips and the same 

masks are used in fabricating both modules, circuit design faults and faults in the masks 

result in identical incorrect results. W.th the dual implementations, different masks must 

be used since the circuits are different (Sedm80]. (2) Some pattern sensitive faults, such as 

those caused by electromagnetic coupling between lines or marginal design of the circuit 

timing, may be more likely to cause errors during voltage tramitions in one direction. 

W.th dual circuits, the voltage transitions on corresponding lines in the two modules are 

in opposite directions; this reduces the probability of identical pattern sensitive faults 

occurring in the two modules simultaneously. (3) If the two modules are physical 

duplicates, all lines in both modules change value in the same direction at the same time. 

~ a result there may be "spikes" in the power supply lines to the SCFM which can 

triuer intermittent faults. W.th dual circuits the problem is alleviated since values in the 

two modules change in opposite directions. 
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If SSI technology is used, dual logic implementation is relatively straightforward -

the positive-logic module can be designed first and then converted into a functionally 

equivalent negative-logic module by a simple one-to-one replacement of gates and rlip-rlops 

with their negative-logic equivalents. Both modules have the same structure and the logic 

values on corres[Jonciio~ li.1es of the two modules arr: identical. However, since a logic 1 

(logic 0) in the n-moduk is represented by the sarue voltage as a logic 0 (logic 1) in the 

p-module, the voltages on corresponding wires of the two modules -are complements of 

each other. Following De Morgan's theorem, and "labeling" gates with their positive-logic 

functionality, for every OR (AND) gate in one of the modules there is a corresponding 

AND (OR) gate in the other. Similarly, for every positive-edge-triggered riip-riop there is 

a negative-edge-triggered fiip-riop, and vice versa [Sedm80]. In this environment the 

structure of the module and the performance of the corresponding "building blocks" is 

identical (or very similar), so the extra design time for the negative-logic module is small 

and there is no performance penalty. 

If VLSI technology is used, dual implementation! is more problematic since it is not 

possible to convert an existing positive-logic chip to negative-logic by a simple replacement 

of standard building blocks. Even the conversion of NOR gates and NAND gates to 

negative-logic (i.e., replacing NOR with NAND and vice versa) may be quite difficult due 

to two main factors: ( 1) The different gates have different topologies so the layout of the 

entire chip may have to be modified in order to accommodate the new gates. (2) The 

fan-in capability of different gates may be different - for example, in NMOS, it is 

possible to implement a NOR gate with a large number of inputs while a NAND gate with 

more than three or four inputs is not practical. Furthermore, the circuit is not simply a 

collection of standard Iogie gates and may contain traD!mission gates, precharged buses, 

register files, Pl.&, decoders, dynamic Iogie subeireuits, etc. In a given technology, 

converting some of these types of circuits to negative-logic may require significantly more 

area and/or result in lower performance. 

In the rest of this subsection we will evaluate the dual implementation! approach to 

reducing CMFs by coD!idering the conversion of positive-logic VLSI modules to negative­

logic. This conversion does not necessarily involve converting the entire module at the 

lowest level (i.e., individual FETs) to negative-logic. It may be preferable to design the 

n-module so that some of the subeircuits in the p-module have direct negative-logic 
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equivalents in the n-module while other subcircuits are used unmodified in the n-module. 

The only critical requirement is that the n-module "behave" as the negative-logic 

equivalent or the p-module at the interface between the n-module and the rest or the 

SCFM. We will discuss the possible choices of subcircuits to be converted and the 

consequences of these choices in terms of design effort and the types of <;MFs that can 

thus be eliminated. 

8.1.2.1. NMOS Implementation 

Standard NMOS circuits are fundamentally asymmetrical. The available devices are 

enhancement mode FETs (EFETs) and depletion mode FETs (DFETs). The EFETs are 

turned on by the "high" gate voltage and turned off by the "low" gate voltage. The 

DFETs are always "on" but have a higher conductivity when their gate voltage is high. 

There is no device that can perform the dual function of the EFET, i.e., be turned on by 

a low gate voltage and off by a high gate voltage. There are important consequences to 

this asymmetry: 

(1) One Qf the useful building blocks of NMOS circuits is the transmission gate that can 

be implemented using only one EFET without power or ground connections (Fig. 6.5-A). 

The dual implementation of this function requires three FETs as well as a power and 

ground connection since the control signal must be inverted (Fig. 6.5-B). 

Control 

~ 
~ 

A. Positive Logic B. Negative Logic 

Fis. 8.6: An NMOS Transmission Gate 

(2) Static logic gates use passive pull-up devices (DFETs). These gates are able to drive 

capacitive loads from high to low much faster than from low to high. 

(3) A3 mentioned earlier, positive-logic static NOR gates with a large number of inputs 

can be implemented. However, a correspondingly simple and fast NAND gate cannot be 

implemented since the delay of an NMOS ratioed logic NAND circuit increases in direct 

proportion to the number of inputs (Mead80). 

(4) Precharged buses &re often Used in VLSI chips as a space-efficient method of allowing 
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a large number or data sources to write to the bus. Since EFETs are the only devices that 

can be completely turned orr, both the pull-up and the pull-downs must be EFETs. Since 

EFETs make better pull-downs than pull-ups, it is much more efficient to precharge the 

buses to high and drive data on the bus with pull-downs than the other way around. 

The above consi.rr,i•·t~ on NMOS circvits prevent the simple conversion of many of 

the common subcircuits in an NMOS VLSI chip to ne~ative-lo~ic. One of the difficulties 

is that many of the control lines in such a chip are connected to pass transistors that are 

selectively turned on depending on the dock phase and the operation performed: buses are 

precharged and discharged through EFETs selected by control lines, the inputs to the 

ALU are selected with a multiplexer implemented with pass transistors, data is "loaded" 

to latches through pass transistors, etc. Due to the large number or these pass transistors, 

it is not feasible to replace them with their negative-logic equivalents that require much 

more area and power (Fig. 6.5). Given that it is impossible to convert the entire chip, 

including all control circuitry, to negative-logic, we will consider selective conversion of 

some subcircuits and study the errects of this conversion on the sensitivity of the system 

to CMFs. 

In terms of design errort, the most efficient way to implement the n-module is to use 

the original p-module and complement all its inputs and all its outputs. Unfortunately, 

this approach has DO benefits in term or reducing the probability or CMFs and results in a 

performance penalty due to the delays of the inverters. 

In order to reduce the probability of CMFs, mor~ dirrerences in the implementations 

of the two modules must be introduced. The next "step up" in this direction is to 

implement an n-module in which all data is stored and transferred in negative-logic but 

positive-logic subcircuits from the p-module are used for data processing and for control. 

The input data to the n-module is already in negative-logic (Fig. 6.4) and is transferred 

through internal buses and stored in internal registers without modification. The registers 

and buses require no circuit modification in order to store and transfer negative-logic 

data. Since the data on internal buses is negative-logic w bile the data processing 

subcircuits are desiped for positive-logic inputs, the inputs and outputs of subcircuits 

such as the ALU must be complemented at their interface with the rest of the chip. 

This approach avoides the problems with control circuits described earlier: buses, 

multiplexers, and latches are not modified and the transmission gate EFETs or pull-down 
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EFETs they contain are controlled by signals with the same polarity in both modules. 

Since the instructions, as well as the data, are complemented before the n-module, some 

modifications to the various decoders are necessary. Fortunately, decoders often require 

that each input will be available in both complemented and uncomplemented form. In the 

NMOS RISC chip) l.l.h:: opcode decoder, the register file decoder, the shift amount 

decoder, and the "jii:Hi~··ondition-eode" decoder, all already use inverters in order to 

cenerate the eomplewented form of their inputs. Due to the regular structure of the 

decoders, modifying them for the n-module is a trivial task: the connections made to the 

complemented and uneomplemented versions of each input are interchanged. 

In RISC, the main "data processing" subcircuits are the ALU, the shifter, and the 

program counter incrementer. As previously indicated, it is possible to use the p-module 

implementation or these subcircuits in the n-module if they are preceded and followed by 

inverters. In order to make room for the additional inverters, major parts of the circuit 

must be moved. \Vith appropriate design tools, making such a modification is not 

difficult. However, these inverters require additional area and increase the power 

consumption. Furthermore, the identical data processing circuits in both modules may be 

a source of CMFs which originate from both hardware defects and design weaknesses. 

Converting the ALU to negative-logic is suprisingly simple. Both the sum and the 

carry circuits of a full adder are their own self-duals [Take80]. Thus, no modification is 

required for that part of the circuit. In addition to the arithmetic sum, the RISC ALU 

also generates the logical AND, OR, and XOR (exclusive OR) of its inputs. The actual 

output of the ALU is determined by a 4-to-1 multiplexer. By interchanging two of the 

control lines to that multiplexer, the postive-logie OR can be selected by the AND 

instruction and the postive-logic AND can be selected by the OR instruction. The only 

function that requires modification is the XOR. For this particular ease, the simplest 

solution is to connect an inverter to the output of the postive-logie XOR function. Since 

the performance of the ALU is determined by the worst-ease addition time, the delay of 

the extra inverter in the XOR circuit does not affect system peformanee. 

One of the necessary modifications to the shifter is the conversion of the shift 

amount decoder to accept negative-logic inputs. As discussed earlier, this modification is 

very simple. The only other problem is with logical shifts that shift in logic O's to replace 

bits that are shifted out. In the n-module the "high" voltage level must be shifted in 
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instead of the "low" voltage as in the p-module. This change can be done with a small 

modification to the control circuitry that drives the shifter. 

There is no simple modification to the program counter incrementer. However, the 

basic cell of this circuit is so small that a complete negative-logic replacement can be 

developed very quickly. 

There are numerous ways in which the circuit modifications described •hove can help 

reduce CMFs. For example: (1) Shorts between data lines carrying complementary values 

usually result in both lines at the low voltage. Thus, both Jines in the p-module change to 

logic 0 while the corresponding lines in the n-module that are similarly shorted change to 

logic 1. {2) Buses that fail to precharge in both modules will be interpreted as all z.eroes 

in the p-module and all ones in the n-module. (3) If timing is not properly designed and 

there is insufficient time to drive the bus from one of its sources, different lines on the bus 

will be affected (the ones that must be discharged), and the failure will be detected. 

(4) The worst case delay for the ALU is determined by the carry propagation. If the ALl" 

is modified as described above, the worst-case propagation for the two modules occurs for 

different inputs since the sum and carry circuits are identical while the ALU inputs in the 

p-module are always complements of the ALU inputs in the n-module. Hence, ALl1 

failure, due to careless design of the timing or a particular fabrication run that yields 

especially slow devices, is unlikely to occur in both modules simultaneously. 

Sine~ most of the control circuits used in the n-module are identical to those used in 

the p-module, one might assume that there are many CMFs possible due to identical 

defects in those circuits in the two modules. This situation can be improved if the various 

decoders in the chip are modified as described in Subsection 6.1.3. Furthermore, many 

identical defects in the control circuitry lead to different effects on the data in the two 

modules. For example, if several bus sources (pull-downs) are selected at the same time 

(e.g., due to a fault in the opcode decoder), the resulting value on the bus will be the AND 

function of all the sources in the p-module and the OR of all the sources in the n-module. 

8.1.2.2. CMOS Implementation 

The p-channel FETs (PFETs), available in CMOS circuits, are turned on by the 

"low" voltage and turned off completely by the "high" voltage thereby providing the dual 

function of the n-channel FETs (NFETs). ~ a result, at fll'St glance, it appears that with 
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CMOS technology it is relatively simple to convert the positive-logic module to negatiYe­

logic. Specifically, it cax:. be shown that a positive-logic, ratioless CMOS circuit can be 

converted to a negative-logic circuit by replacing all NFETs with PFETs, replacing all 

PFETs with NFETs, connecting all VDD lines to ground, and connecting all ground lines 

to VDD (Fig. 6.6). 

A. Positive Logic B. Negative Logic 

Fig. 8.8: A CMOS NOR Gate 

Unfortunately, due to the different mobilities of the majority carriers in NFETs and 

PFETs, these devices are not completely symmetrical. The W /L ratio of a PFET has to 

be approximately twice the W /L ratio of an NFET in order to achieve similar drive 

capability. Thus, in order to optimiz.e performance when similar high-low and low-high 

propagation times are required, the PFETs used must be approximately twice the si:z.e of 

the corresponding NFETs. Since the gate capacitance is proportional to the si:z.e of the 

device, the delay caused by the PFETs due to their gate capacitance is larger than the 

delay caused by NFETs with equal drive capability. 

Due 1.o the advantages of NFETs, even in the CMOS RISC layout many more 

NFETs than PFETs are used. For example, NFETs are used in the shifter, which is 

basically an array or pass transistors. In the register file, the word lines, that select the 

register whose value drives the bus, do so by turning on a column of NFET pass 

transistors. In both these cases, PFET pass transistors and buses that are "precharged" 

low could be used. However, a design based on PFETs would be significantly larger 

and/or slower, as discussed above. Due to similar reasoning, NFETs are also used in the 

pull-down arrays or PLA5 and decoders, while large PFETs are used for precharging lines 
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to the VDD· Even with static: ptes used for random logic:, the PFET pull-ups are 

approximately twice the size of the corresponding NFET pull-dowll!. 

In order to maintain similar performance and module area, the p-module cannot be 

converted to an n-module by the simple procedure outlined earlier. The difficulties in 

achieving an efficient conversion are often similar to the difficulties eRc:ountered for 

NMOS circuits. Thus, similar aolutioll! and c:oll!ideratioll! apply. On the other hand, the 

availability of PFETs can, at times, simplify the conversion. For example, in RISC, a 

large 32-input NOR pte is used to generate the Z Oag, which is set when the result of an 

operation is r.ero. This pte is dynamic:, with a single pull-up and a column or NFET 

pull-dowll! connected to a latch holding the·result of the operation. In NMOS there is no 

simple way to convert this zero-detect circuit to neptive-logic:: a column or 32 inverters 

must be used to invert the output of the latch and drive the pull-dowll! of the large NOR. 

With CMOS, a large negative-logic: NOR gate can be implemented using a single NFET 

pull-down and a column of PFET pull-ups connected to the output of the latch. Ir the 

performance of the circuit is critical, the PFETs will have to be larger than the 

corresponding NFET pull-dowll! in the p-module. However, the PFETs do not increase 

the power c:oll!umption, and the extra area of the larger PFETs is much smaller than the 

area required by a column of inverters. 

8.1.3. Other Implementation Teehniqua for Reducing CMF• 

A.5 indicated in Subsection 6.1.2, not all the subc:irc:uits in a VLSI chip are amenable 

to dual implementations. In those cases where dual implementatioll! lead to unacceptable 

costs in terms of area and performance, other techniques for reducing CMFs are needed. 

The general "rule of thumb" is that the probability of CMFs can be reduced by increasing 

the "differences" between the modules. These differences may be introduced not only in 

the low-level circuits but also in the high-level module structure and in the fabrication 

process. 

Modules that are likely to fail in different ways may be developed from the same 

specific:atioll! by two independent teams or, in the not too distant future, by two different 

"silicon compilers:' [A viz82) The main problem with this approach is, or course, increased 

design cost, which makes it impractical for most applic:atioll!. 

If the two modules are not on the same chip, chips fabricated by different companies 
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may be v.se<f. Platteter [Plat80] utiliz.ed this idea in constructing a raul~ tolerant processor 

from three functionally identical microprocessors manufactured by different companies. 

Obviously, this can be done only with modules that are "popular" chips for which there 

are "second sources:' 

Even when it is not possible to convert a subcircuit to negative logic, it may still be 

possible to modify its structure without changing its function. We have previoW~Iy 

discussed the modification or decoders for use with negative logic inputs. Another simple 

modification to the decoder is to change the order or output lines in the layout so that 

shorts between adjacent lines will affect logically different lines in the two modules. 

Similar restructuring can also be done in a PLA where the order of both the product term 

lines and the output lines may be changed. 

If the register file decoder is restructured as suggested above, this also implies a 

"restructuring" of the register file itself. Different registers are next to each other and 

different registers are at the periphery or the register file where they may interact with 

other subcircuits and cause a module failure. 

8.2. An Overview of Detign and Implementation Tradeoff• 

The complexity of a faul~tolerant VLSI multicomputer system implies that the 

designer of such a system is faced with a very large number of design choices. At the 

highest level, choices include the topology or interconnections between the nodes and the 

principles or the fault tolerance scheme to be used. Lower level choices include the design 

of the nodes and communication links. Implementation details such as power distribution, 

clock signal distribution, packaging, and cooling may be as important as the higher level 

design choices in determining the system's performance and reliability. 

As mentioned earlier, design and implementation decisions must take into account 

the properties or the particular implementation technology, the environment in which the 

system will operate, and the characteristics of the intended applications. The effects or 

these factors on le"feral key design and implementation issues in faul~tolerant VLSI 

multicomputers are discussed in this section. 
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8.2.1. Fault Tolerance at the Component Level 

In the previo~ chapters we have disc~sed system-level fault tolerance techniques 

that can increase the reliability or a multicomputer system. An alternative approach to 

increasing the reliability or a multicomputer is to ~e fault tolerance techniques at the 

component level to increase the reliability of individual components. The choice of "how 

much" fault tolerance should be implemented at the component level and how much at 

the system level is or critical importance. 

The system-level fault tolerance technique disc~ed in the previo~ chapters is only 

effective if the reliability or the individual nodes is high. If nodes fail "too often;' the 

sysiem will spend all of its time recovering from faults and never do useful work. Thus, 

some fault tolerance techniques (such as TMR) m~t be ~ed at the node level to increase 

the reliability of the individual nodes. Simifarly, if the communication links are subjected 

to "too much" noise, local techniques m~t be used to increase the reliability of the 

communication. For example, it is possible to use error correcting codes that allow the 

correct information to be recovered from a packet that has been "damaged" by noise. 

The disadvantage of fault tolerance at the component level is that the required 

redundancy (overhead) is significantly higher than with. system-level fault tolerance. If 

the components in the system do not "cooperate;' they cannot share spare resources and 

use them to recover from faults. Instead, each component m~t contain spare resources 

to be ~ed for recovery. If faults are rare, most of these spare resources are not needed, 

so the component-level scheme is inefficient. For example, assume that within the 

"mission time" of some multicomputer system, consisting of one thousand nodes, only one 

processor module in only one node is likely to fail. If fault tolerance is implemented at the 

component level, TMR can be used in each node. Th~, approximately two thirds of the 

system hardware is "wasted" for fault tolerance. On the other hand, if fault tolerance is 

·implemented with the system-level scheme described in the previo~ chapters, duplication 

and comparison is used in each node for error detection and the system m~t contain one 

spare node that will be able to take over the tasks of the failed node. With this system­

level scheme, only about half the hardware is dedicated to fault tolerance. 

Given the inherent inefficiency of component-level fault tolerance schemes (no 

sharing of spare resources), they should only be used when necessary. The use of such 

schemes is necessary if the components are not sufficiently reliable or the particular 



134 

application has spedal requirements, such as instantaneous recovery (see Chapter 5 ), that 

cannot be met by a system-level scheme. Furthermore, even if some component-level 

fault-tolerance scheme is necessary, it is, in general, inefficient to attempt to achieve the 

reliability requirements or the system by relying 1oleiJ1 on such scheme. Instead, the 

component-level scb~m·! sltould be used only to increase reliability or the components to 

the point that it is pa~iLle to implement a system lev.el scheme/while meeting the other 

requirements or the system. 

8.2.2. The Interconnection Topology 

The interconnection topology or the system is a major factor in determining both its 

performance and its reliability. Ideally, the system would be completely connected so that 

there would be a communication link between every pair or nodes. This would minimize 

communication delays and maximize reliability since the ability or any two nodes to 

communicate would not be dependent on the correct operation of any other nodes. 

Unfortunately, it is not feasible to implement a large fully connected system due to the 

number of linb required as well as the number or communication ports in each node. For 

example, a fully connected system with 100 nodes requires 4950 linb and each node must 

have 99 communication ports. 

The number of communication linb per node is of critical importance in determining 

the interconnection topology. In order to minimize the complexity or the nodes as well as 

the difficulties or interconnecting the nodes (packaging), the number or ports per nodes 

should be small. Since the nodes are implemented with a small number of VLSI chips, the 

technological )imitations on the number of pins per chip also limit the number of ports. 

The limitation on the power that can be dissipated on a chip implies a limit on the total 

bandwidth for transmitting information from the chip. Thus, even if the pin limitation is 

ignored, there is a tradeorr between a small number of high-bandwidth ports and a large 

number or low-bandwidth ports. Given this tradeorr, simulation studies have shown that 

the best performance can be achieved with between three and five ports per node [Fuji83, 

Sequ83]. 

In order to maximize performance and reliability, the diameter or the interconnection 

topology must be minimized while the connectivity must be maximized. A small diameter 

leads to low communication delays while large connectivity implies that a large number or 

nodes or linb may fail before the system is partitioned into two disconnected networks. 
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It is also desirable for the topology to require that all the nodes have the aame number of 

ports so. that only one type or node has to be designed and implemented. Another 

desirable feature or the topology is the ability to use simple "algorithmic" routing rather 

than rely on table-driven routing that requires extensive hardware and software 

support [Prad82]. 

There are many riirr~rent classes d t.::a: •!v~e!'l that achieve near-optimal diameter 

and connectivity under the above coutrainte. Rather than di!lcuss them all, we will 

mention one example. Pradhan [Prad83] has developed a class or topologies with the 

following characteristics: (1) the number or ports per node is r, (2) the number of nodes in 

the system is ( r -1 )m with m > 3, ( 3) the diameter of t~e system is 2 X m -1, ( 4) the 

connectivity or the system is r-1. A3 an example, a system with 1024 nodes, each with 5 

communication ports, has a diameter or g and a connectivity or 4. Wtth these topologies 

.. simple algorithmic routing is possible not only when all the nodes are operational, but also 

af'ter some or the nodes have failed. 

8.2.3. Syetem TimiD& and Communication 

The physical size or a multicomputer system with hundreds or thousands of nodes 

and the high clock-rate at which it operates preclude the implementation of the system as 

one synchronous unit with a single clock. Not only will it be impossible to distribute the 

clock without significant clock skews, but the failure or this single clock may result in the 

failure or the entire system. Higher reliability can be achieved using a large number of 

independent clocks rather than one clock. In particular, each node or collection of a small 

number or nodes can operate with their own crystal-controlled clock. Thus, the nodes 

operate asynchronously. 

Since the nodes are asynchronous, there is a non-zero probability or errors in packet 

traumission due to •vnchronization failurea even if there is no noise on the link [Seit80]. 

However, the INMOS Corporation claims that in their implementation or the Transputer 

they have achieved a rate or synchronization failures or 0.1 per billion part hours through 

the use or appropriate circuitry and communication protocols [INM084]. Since this failure 

rate is at least three orders or magnitude lower than the failure rate or VLSI chips, it is 

not expected to be a significant factor in choosing a fault tolerance scheme. 
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8.2.4. Power Di.tribution 

The distribution of J.">Wer and ground throughout the system is a difficult problem, 

even if the issue of reliability is ignored. Power and ground must be routed to eYery 

board in the system, to e?ery chip within each board, and to every gate within each chip. 

The noi!le on the~ lin~ 'uust be minimized ~or{ care must be take to ensure that the 

correct voltage levels are available thro•.~ghuut the system. 

Unfortunately, just like every other part of the system, power suppli~ and power 

lin~ can fail at all levels of the system. The complete failure of the power delivery system 

is often easy to detect but difficult to tolerate. If the system has only one power supply 

and that power supply shorts, the entire system will stop operating. With such a 

catastrophic failure there is no danger of accepting incorrect results as correct. However, 

recovery is impossible. To combat the problem of catastrophic power supply failures, 

most faul~tolerant systems employ multiple power supplies [Katz82]. Using special 

circuitry on each board to "mix" the outputs or multiple power supplies, it is possible to 

ensure that the board will continue to operate despite the failure of one of the 

supplies [Katz82]. 

A technique similar to the above may be possible at the chip level. Specifically, 

power lines from multiple supplies may be routed to each chip and "mixed" internally. 

The disadvantag~ or this scheme are the resulting increased complexity or the boards, the 

chip area devoted to this "mixing" (which will have to be very large due to the current 

levels involved), and the extra pins on each chip devoted to multiple supplies. Thus, in 

most systems this scheme is impractical. 

Ir the system is to tolerate the failure of multiple nod~ due to problems with the 

power supply, special care must be taken in the construction of the system so that the 

failure or a set or nodes that depend on a particular supply "route" will not partition the 

system. This must also be taken into account in allocating processes to nodes and in the 

error recovery and reconf'iguration schemes. 

Failures or the power supply lin~ may also have less catastrophic effects that are 

more difficult to detect but easier to tolerate than the effects discussed above. For 

example, d~pite a break in the power supply line to a particular module inside the chip 

(such as the shifter in a microprocessor chip), the chip may continue to perform many of 

its tasks correctly yet occasionally produce incorrect outputs. 
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In general, any ertor detection scheme must be able to detect the effects of faults in 

the power supplies aud ~heir interconnections at all level of the system. The error 

detection scheme disc113!ed and Chapter 3, Chapter 4, and Section 6.1 fares quite well in 

this respect: (1) 'fhe L" .. ~P1~i.3 from the comparator (tw~rail code checker) are supposed to 

be 01 or 10. If the ti·;,.,~r to either the entire node or just to the comparator is 

disconnected, the uutput. will be 00 and the error will be detected immediately by a 

neighbor. (2) Since dual implementation is used for the two functional modules within 

each node, if power is disconnected to both modules (or the same submodules within each 

module) their outputs are identical (zero volts) rather than complementary, and the 

comparator detects the error. (3) Since duplication and comparison is used, there is no 

need to analyze in detail all the possible effects or breab and shorts in the power supply 

lines internal to the chip containing the functional modules-error detection is guaranteed 

even if the power-supply-line fault has the effect of multiple faults on logic lines and 

catl!es some arbitrary submodule within the module to produce incorrect results. 
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The current technology used for implementing high-end computing systems is fast 

approaching fundamental physical constraints, such as the speed of light, that limit the 

speed at which computations can proceed. The performance requirements of future high­

end computers will only be met by systems that facilitate the exploitation of the 

parallelism inherent in the algorithms that they execute. One such system is a 

multicomputer composed of a large number of independent computers (computation 

node!) interconnected by high-speed dedicated li:nb. With a multicomputer high 

performance is achieved by dividing each task into a large number of subta.sks that are 

executed simultaneoely on different nodes. 

Due to recent advances in VLSI technology, two impoctant types of chips are, or will 

soon be, commercially available: (1) general-purpose processors whose performance exceeds 

that of current mini-computers, and {2) sophisticated communication processors that can 

efficiently support high-bandwidth communication in point-to-point networks. With these 

chips, the implementation or a multicomputer consisting or hundreds or thoeand!! of 

VLSI computation nodes is technically and economically feasible. 

Some of the important applications of high-end computers, such as large circuit 

simulation, weather forecasting, and aeronautical design, require continuoU!I correct 

operation of the system for many hours {or even days). Due to the rate of failure of VLSI 

chips, this requirement cannot be met in a system that operates correctly only if all of its 

chips are fault free. The reliability requirements of a multicomputer can only be achieved 

,rith fault tolerance techniques that prevent component failure from leading to system 

failure. Compared to other architectures, a multicomputer is particularly well-suited to 

fault tolerance techniques since it does not contain any single component (such a.s a 

eommon memory or bus) whose performance is critical to the operation of the system. 

The effective implementation of highly reliable systems requires the use of a 

combination of hardware and software techniques, carefully tailored to the characteristics 

of the implement~tion technology and the intended applications. In this dissertation we 

have investigated the use of fault tolerance techniques to increase the reliability of VLSI 
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multicomputers. Many aspects or the design and implementation or the system were 

COD!idered: its basic architecture, details regarding the VLSI layout or key circuits, and 

high-level protocols that can use this hardware etrectively to achieve high reliability with 

only a small penalty in performance. The techniques presented were developed in the 

context or the entire system, taking into account all or the above-mentioned aspects or the 

proposed general approach to implementing fault tolerance in the multicomputer. 

A fault-tolerant system must be able to identify erroneous information produced by 

faulty hardware. The detection of an error implies that the state or the system has been 

corrupted. In order to recover from an error and resume correct operation a valid system 

state must be restored. The proposed general approach to implementing fault tolerance in 

a multicomputer involves a combination or hardware that performs error detection and 

system-level protocols that handle error recovery and fault treatment. 

It is shown that a very high probability or error detection can be achieved with self­

checking nodes that are implemented using duplication and comparison. This approach 

aeems wasteful since it more than doubles the required hardware. However, this cost is 

justified by the resulting low design complexity, high fault coverage, and ability to handle 

trall!ient faults etrectively. 

With duplication and comparison, all errors caused by hardware faults are detected 

as long as two requirements are met: (1) the comparator is fault-free and (2) the two 

modules never produce identical incorrect outputs. A comparator failure may mask a 

mismatch between the outputs or the two functional modules so that the rest or the 

system may accept erroneous outputs fro~ the node as correct. It is imperative that 

faults in the comparator be detected soon after they occur so that the system can be 

informed that the node has lost its self-checking capability. This requirement is fulfilled 

by using a 1el/-tuting comparator that signals its own faults during normal operation. 

Based on a new fault model for PLAs, it was shown that with both NMOS and CMOS 

technologies a PLA can be used to implement such a comparator. 

Unfortunately, it is not possible to guarantee that the two modules that perform 

identical functioll! do not fail simultaneously in exactly the same way and produce 

identical incorrect results. Such common mode failure' may occur as a result or 

environmental factors, common design weaknesses, as well as unrelated faults that just 

happen to cause the same incorrect results to be produced. Practical technique were 
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developed for implementing pain of VLSI modules that perform identical functions but 

are less susceptible to common mode failures than pairs of identical circuits. Based on 

examples of NMOS and CMOS circuits, it was shown that the likelyhood of common mode 

failures can be reduced, at a relatively low cost, using a combination of techniques 

carefully tailored to the functional and physical characteristics or the different types of 

circuits in a typical VLSI chip. 

An error recovery scheme for use in a multicomputer executing non-interactive 

applications has been presented. The scheme is based on periodically checkpointing of the 

entire system state and rolling back to the last checkpoint when an error is detected. 

Since the nodes in a multicomputer operate asynchronously, special protocols are required 

to ensure that the saved states of all of the nodes in the system are consistent with each 

other. The proposed scheme involves rll'St "freezing" the entire system in a consistent 

state and then saving the frozen state of each node individually. No restrictions are 

placed on the actions of the application tasks, and the communication protocols used 

during normal computation are simpler than those required by most other schemes. The 

scheme includes efficient handling or transient faults, input/output operations, and disk 

failures. For a "typical" multicomputer system with one thousand nodes, the 

performance degradation due to periodic checkpointing is expected to be a few percent. 

Although this dissertation does not provide a complete detailed design or a high­

performance fault-tolerant multicomputer, it does include a discussion or some practical 

design and implementation tradeoffs. A particular system must be tailored to the details 

or the intended applications, the operating environment, and the implementation 

technology. Based on this dissertation, a multicomputer implementation that follows the 

seneral techniques presented and uses the proposed self-checking nodes and error recovery 

sch~me can provide a seneral-purpose, high-performance computing environment in which 

the fault tolerance features are completely transparent to the user. 




