
Fault Tolerance for

VLSI Multicomputers

by

Yuval Tamir

Ph.D. Dissertation

Computer Science Division

Department of Electrical Engineering and Computer Sciences

University of California! Berkeley r CA 94720

August 1985

~- I

i

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 1985 2. REPORT TYPE

3. DATES COVERED
 00-00-1985 to 00-00-1985

4. TITLE AND SUBTITLE
Fault Tolerance for VLSI Multicomputers

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The performance requirements of future high-end computers will only be met by systems that facilitate the
exploitation of the parallelism inherent in the algorithms that they execute. One such system is a
multicomputer that consists of hundreds or thousands of VLSI computation nodes interconnected by
dedicated links. Some important applications of high-end computers, such as weather forecasting, require
continuous correct operation for many hours. This requirement can only be met if the system is
fault-tolerant, i.e., can continue to operate correctly despite the failure of some of its components. This
dissertation investigates the use of fault tolerance techniques to increase the reliability of VLSI
multicomputers. Different techniques are evaluated in the context of the entire system, its implementation
technology, and intended applications. A proposed fault tolerance scheme combines hardware that
performs error detection and system-level protocols for error recovery and fault treatment. Practical
design and implementation tradeoffs are discussed. A fault-tolerant system must identify erroneous
information produced by faulty hardware. It is shown that a high probability of error detection can be
achieved with self-checking nodes implemented using duplication and comparison. The requirements for
detecting errors caused by hardware faults are: (1) the comparator is fault-free, and (2) the functional
modules never produce identical incorrect outputs. Requirement (1) is fulfilled with a self-testing
comparator that signals its own faults during normal operation. An implementation of such a comparator
using MOS PLAs is discussed. Requirement (2) is fulfilled with two modules that are implemented
differently so that, although they perform identical functions, they have a low probability of failing
simultaneously in exactly the same way. Low-cost techniques for implementing such modules are
presented. The detection of an error implies that the state of the system has been corrupted. In order to
recover from the error and resume correct operation, a valid system state must be restored. A
low-overhead, application-transparent error recovery scheme for multicomputers is presented. It involves
periodic checkpointing of the entire system state, using protocols that ensure that the saved states of all the
nodes are consistent, and rolling back to the last checkpoint when an error is detected.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

152

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Fault Tolerance for VLSI Multicomputers

Copyright © 1g85 by Yuval Tamir

Fault Tolerance for VLSI Multicomputers

Yuval Tamir

Abstract

The performance requirements of future high-end computers will only be met by

systems that facilitate the exploitation of the parallelism inherent in the algorithms that

they execute. One such system is a multicomputer that consists of hundreds or thousands

of VLSI computation nodes interconnected by dedicated links. Some important

applications of high-end computers, such as weather forecasting, require continuous

correct operation for many hours. This requirement can only be met if the system is

fault-tolerant, i.e., can continue to operate correctly despite the failure of some o(its

components. This dissertation investigates the use of fault tolerance techniques to

increase the reliability of VLSI multicomputers. Different techniques are evaluated in the

context of the entire system, its implementation technology, and intended applications. A

proposed fault tolerance scheme combines hardware that performs error detection and

system-level protocols for error recovery and fault treatment. Practical design and

implementation tradeoffs are discussed.

A fault-tolerant system must identify erroneous information produced by faulty

hardware. It is shown that a high probability of error detection can be achieYed with

self-checking nodes implemented using duplication and comparison. The requirements for

detecting errors caused by hardware faults are: (1) the comparator is fault-free, and

(2) the functional modules never produce identical incorrect outputs. Requirement (1) is

fulfilled with a aelf-te3ting comparator that signals its own faults during normal

operation. An implementation of such a comparator using MOS PLAs is discussed.

Requirement (2) is fulfilled with two modules that are implemented differently so that.

although they perform identical functions, they have a low probability or failing

simultaneously in exactly the same way. Low-cost techniques for implementing such

modules are presented.

2

The detection or an error implies that the state or the system has been corrupted. In

order to recover rrom the error and resume correct operation, a valid system state must

be restored. A low-overhead, application-traD!parent error recovery scheme ror

multicomputers is presented. It involves periodic checkpointing or the entire system state,

using protocols that ensure that the saved states or all the nodes are coD!istent, and

rolling back to the last checkpoint when an error is detected.

tf?,.v-?.£, /If ei u,.;_, d-:~~:2 tJ I:J:y:,;-
cari.((H. Sequin D

(Committee Chairman)

Dedicated to my parents

Pinchas Tamir and Ruth Tamir

for raising me to be a nonconformist and

for their unconditional support.

II

Acknowledgements

On my trek towards a Ph.D. I was not alone. The advice, encouragement, and

friendship of my research advisor, Carlo Sequin, were not only essential for my

dissertation research, but also the major factor in making my six years at Berkeley both

productive and enjoyable. Many of the ideas presented in this dissertation were the result

of long discussions with Carlo. The quality of the dissertation itself was greatly improved

by his comments that followed meticulous reading of every page. Working with Carlo has

been a pleasure due to his openness to new ideas, willingness to consider different

approaches to solving problems, and interest in a wide variety of areas. I particularly

appreciate his unique ability to be a demanding advisor, yet treat his graduate students as

valued colleagues rather than subordinates. I am grateful for the freedom he gave me to

pursue my own interests and approaches to solving problems, as well as for the time he

spent working with me to ensure that I would be proud of the final results.

I would like to thank Chitter Ramamoorthy and Kjell Doksum for serving on my

Thesis Committee. Chittor Ramamoorthy provided useful comments on the dissertation

and was a valued advisor on technical and professional matters throughout my years at

Berkeley.

The research that culminated with this dissertation was not a large group project;

only Carlo Sequin and myself were involved. However, in our work we were inspired by

the exciting atmosphere at the U.C. Berkeley Computer Science Division where there are

always numerous ongoing creative and productive research projects. I would like to thank

all the members of the division for contributing to this environment.

Sudhakar Reddy introduced me to the field of fault-tolerant computing when I was

an undergraduate student at the University of Iowa. Without his influence, I would never

have chosen this field for my Ph.D. research.

This work was supported by the Defense Advanced Research Projects Agency (DoD).

ARPA Order No. 3803, monitored by Naval Electronic System Command under Contract

No. N00039-81-K-0251. During my first year of graduate studies I was supported by a

University of California Graduate Fellowship. In 1983 I was supported, in part, by a

State of California MICRO Fellowship.

Ill

Table of Contents

Chapter One - Introduction .. 1

1.1. Achieving High Performance Using Parallelism ... 3

1.2. Achieving High Reliability Using Redundancy .. 8

1.3. Architectures of Future Supercomputers ... 12

1.4. Thesis Organization 14

References ... 16

Chapter Two- Basic Concepts and Terminology 21

2.1. Terminology ... 21

2.1.1. Systems and their Components .. 22

2.1.2. Multicomputer Terminology .. 22

2.1.3. Terminology for Fault Tolerance ... 23

2.2. The Nature and Consequences of Hardware Faults 26

2.2.1. Hardware Faults in MOS Digital Circuits ... 2i'

2.2.2. A Fault Model for MOS Digital Circuits ... 29

2.2.3. Testing and Its Limitations .. 32

2.2.4. The Need to "Tolerate" Hardware Faults ... 34

2.3. The Requirements of a "Fault Tolerant" Multicomputer 35

References ... 36

Chapter Three - Error Detection in Multicomputers 39

3.1. System-Level Error Detection Techniques ... 39

3.2. Error Detection Using Self-Checking Nodes .. 43

References ... 48

Chapter Four- Selr-Testing Comparaton ... 50

4.1. A Fault Model for MOS PLAs ... 51

4.2. Background and Terminology .. 53

IV

4.3. Optimal Design or Self-Testing Comparators Using Two-Level Logic 55

4.4. Fault-Free Operation or the Comparator .. 59

4.5. Identification and Elimination of Undetectable Faults 60

4.5.1. A Short Between Adjacent Product Term Lines 61

4.5.2. A Short Between a Product Term Line and an Output Line

4.5.3. Shorts Resulting in Simultaneous WeakO and Weak1 Faults

61

62

4.5.4. Layout Guidelines for Eliminating Undetectable Faults 65

4.6. The Self-Testing Property of the Comparator .. 66

4.6.1. A Weak 0 and/or Weak 1 Fault on a Single Input Line 66

4.6.2. A Short Between Two Adjacent Input Lines 67

4.6.3. A Weak 0 or Weak 1 Fault on a Single Product Term Line 68

4.6.4. A Short Between Two Adjacent Product Term Lines 68

4.6.5. A WeakO or Weak1 Fault on a Single Output Line 69

4.6.6. A Short Between Two Adjacent Output Lines 69

4.6.7. A Short Between an Input Line

and a Crossing Product Term Line ... 69

4.6.8. A Short Between a Product Term Line

and a Crossing Output Line .. 71

4.6.9. An Extra Crosspoint Device in the AND Array 72

4.6.10. An Extra Crosspoint Device in the OR Array 72

4.6.11. A Break in a Product Term Line ... 72

4.6.12. A Break in an Output Line .. 73

4.7. Implementation and Application Considerations ... 74

References ... 76

Chapter Five - Error Reeovery ln Multieomputers 78

5.1. Basic Concepts and Techniques ... 78

5.2. Error Recovery Techniques for Multicomputers .. 82

5.3. Implementing Error Recovery Using Global Checkpoints 87

v

5.3.1. Msumptions ... 87

5.3.2. Normal Packets and Fail-Safe Packets .. 90

5.3.3. Types of Fail-Safe Packets ... 92

5.3.4. The Logic!\) States of a Node ·································-···························· 93

5.3.5. Creating a Global Checkpoint ... 95

,5.3.6. Fault Handling ... 98

5.4. Correctness Arguments .. 101

5.4.1. The Correctness or Individual Node States ... 101

5.4.2. The Consistency or Node States in a Single Checkpoint 103

5.5. Estimate of the Overhead (or Fault Tolerance .. 104

5.6. Relaxing Some o(the Msumptions .. 106

5.6.1. In~:.Hlt/Output from the System ... 107

5.6.1.1. Intelligent Peripherals ... 107

5.6.1.2. Simple Peripherals .. 108

5.6.2. Handling Errors Caused by Transient Faults 109

5.6.3. Faster Detection or Errors Caused by Faulty Links 110

5.6.4. Faults in Disk! and Disk Nodes ... 111

References 114

Chapter Six - Implementation Considerations .. 118

6.1. Reducing Common Mode Failures in Duplicate Modules 119

6.1.1. Implementing Modules with Independent Failure Modes 121

6.1.2. Dual Implementations .. 123

6.1.2.1. NMOS Implementation ... 126

6.1.2.2. CMOS Implementation ... 129

6.1.3. Other Implementation Techniques for Reducing CMFs 131

8.2. An Overview of Design and Implementation Tradeoffs 132

8.2.1. Fault Tolerance at the Component Level .. 133

6.2.2. The Interconnection Topology ... 134

VI

6.2.3. System Timing and Communication .. 135

6.2.4. Power Distribution ... 136

References ... 13i

Chapter Seven- Summary and Conelusions .. 139

Chapter One

Introduction

1

Since the development or the rlrst electronic computer, advances in technology haYe

lead to many orders of magnitude improvements in the available processing speeds. As

higher processing speeds became available, users continued to discover new applications

demanding yet faster processors and motivating the development of ever more powerful

systems. At each point in time, important applicatioll! seem to require processors that

are an order of magnitude faster than the fastest available systems [Fuss84].

~ a result of the constant demand for high-speed processing, each generation or

computers includes a group of large expensive systems, called "supercomputers;' in which

technology is pushed to its limits in order to implement computers that are only "one

generation behind the computational needs of certain key industries" [Linc82]. At the

pre!ent time, the technology used for implementing supercomputers has reached a point

where significant improvements in its raw speed will not be possible due to fundamental

physical constraints (such as the speed of light). Significant enhancements in the

computational power of high-end computers will only be possible if the parallelism

inherent in the algorithms that are executed on the!e computers is exploited.

Some of the computatioll! performed on supercomputers, such as large circuit

simulatioll!, weather forecasting, or aeronautical design, may require continuous operation

of the system for many hours (or even days)[Fern84}. In order to have high confidence in

the validity of the results obtained by such computations, the system must be highly

reliable. Thus, supercomputers require high reliability as well as high performance.

Unfortunately, the reliability of a system is inversely proportional to its site and

complexity. In order to achieve the maximum possible performance, supercomputers are

large complex systems with many thousands of components [Russ78J. The probability that

one component out of many thousands will fail is relatively high, even if each component

by itself is very reliable. If any single component failure can cause the system to produce

incorrect results, high system reliability cannot be achieved. Thus, supercomputer

systems must be able to continue correct operation despite the failure of individual

components, i.e., they must be fault-tolerant.

2

Due to advances in VLSI technology, a general purpose computing system composed

of thousands of microcomputers is now economically fea!ible. In such a system, high

performance may be achieved for computational ta!ks which consist of many subtasks

that can run simultaneously on different microcomputers. High reliability may be

achieved using fault tolerance techniques by exploiting the fact that the components or the

system (the microcomputers) are "intelligent" and can adapt their "behavior" to changes

in the system status caused by "faults:•

,----------------~

Fis. 1.1: A Computing Element (Node)

A possible building block for future supercomputer systems is a computing dement

composed of a processor, memory, and switching circuitry[Desp78, Barr83]. A system

that consists of a large number of such computing elements interconnected by high-speed

dedicated links is called a multicomputer (Fuji82, Se'qu83]. In a multicomputer there is no

single ha~dware component that is used by all (or a large number of) the computing

elements and which can become a performance bottleneck and/or a critical resource whose

failure results in system failure. Hence, a multicomputer is especially well suited for

reliability enhancements using fault tolerance techniques (Tami83].

This thesis deals with the implementation or fault tolerance ln supercomputers

implemented as VLSI multicomputers. Since the main goal of a supercomputer is high­

performance, special emphasis is placed on minimizing the performance degradation

caused by the fault tolerance techniques. In order to continue correct operation despite a

failed component, the resulting errors must be detected, a valid system state must be

recovered from the system state corrupted by the fault, and the system must be

reconfigured to avoid using the faulty component. This thesis focuses on the error

detection and error recovery phases.

Communie~tioD LiDk

Fig. 1.2: A Multicomputer

1.1. Aebievins Hish Performance U•ing Paralleli.m

3

Over the past thirty-five years the execution time of simple iD!tructioD! on electronic

computers has decreased by four or five orders of magnitude. This decrease has been due

mainly to improvements in technology. Currently, the clock cycle time on the fastest

supercomputers is It!! than ten nanoseconds [Hwan84]. In order to achieve the required

high switching speed, the circuits used in these systems are characterized by high power

dissipation. For example, in the CYBER 205 each one of the 1760 printed circuit boards

dissipates 750W[Kozd80, Linc82}, and the total power required by the CRAY-1 1s more

than 100KW[Russ78].

Two major factors limit further reductions in processor clock speeds: (1) signal

propagation delays and (2) power dissipation. In vacuum, light travels approximately one

foot per nanosecond. Since the propagation speed of signals on wires or inside chips is

lower, severe timing problems can occur in synchronous circuits operating with clock

cycles of a few nanoseconds due to related signals traveling through paths of different

lengths with different delays. Removal of the heat dissipated by high-speed circuits

requires expensive, complex cooling technologies. Even today, cooling is coD!idered by

some to be one of the most difficult problem in supercomputer system design[Cray74].

Unit!! there is a breakthrough in technology, the problem can be expected to get worse in

future supercomputers that will use faster circuits.

Based on the above coD!iderations, it seems unlikely that another order of magnitude

increase in computer proct!!ing speed will be achievable by simply enhancing the raw

4

speeds of circuits. lll!ltead, the greatest potential for achieving significantly higher

process1ng speech is in techniques that exploit parallelism. The basic tradeoff here is

simple: since it is getting more and more difficult to implement circuits that operate

faster, the amount of information that is processed by an individual gate cannot be

significantly increased. On the other hand, since it is becoming cheaper to implement

more circuitry (gates) in a system, the amount of information processed by the BVBtem

can be increased if different parts of the information can be processed by different gates

simultaneously.

Parallelism has always been used in computer systems for achieving high

performance. A simple example is a "store" ill!ltruction that moves all the bits of a

register to memory simultaneously rather than one bit at a time. At a higher level,

pipelining techniques are currently used in all computers. With pipelining, at each point

in time the processor contaill!l several ill!ltructioll!l that are at different stages of their

execution. As a result, while the next ill!ltruction is being fetched, parts of the processor

that are iiot used for ill!ltruction fetch (such as the ALU) are still doing useful work on

some previous ill!ltruction.

Most of todays supercomputers (e.g. the CRAY-1 [Russ78]} are "vector machines"

where parallelism is exploited at an even higher level. Single ill!ltruc:tioll!l operate on

vectors of numbers rather than on individual elements, thereby achieving speedups

proportional to the size of the vectors. The vector ill!ltructioll!l are, of course, always used

for vector operatioll!l specified by the programmer. In addition, all vector machines use

sophisticated "vectorizing compilers" that can convert code segments which are not

specified as simple vector operatioll!l into the vector operatioll!l supported by the

hardware [Kuc:k84].

The main limitation of vector (or array) machines is that all the processing elements

always perform the same operation. In many cases execution can be speeded up if the

different processing elements are able to execute different code segments simultaneously.

In order to exploit this potential for high performance, supercomputers of the future will

eoll!list of multiple independent processing elements.

Conceptually, there are two major types of systems with multiple independent

processing elements: multiproeeuorB and multicomputer~. In a multiprocessor all the

processiDg elements are connected to a shared memory which they can use to

5

communicate with each other (Fig. 1.3). A multicomputer consists of a number of

computing el~:m~:nt~, each o(which is a complete computer that contains local memory as

well as a processor. The computing elements do not share memory and communicate by

sending messages through an interconnection network (Fig. 1.4).

~ I Proee.or 1
0 0 0 EJ

I I

Interconnection Network

~ I 0 0 0
I

I Memory I I Memory I
Fis. 1.3: A Multiprocessor

: ~oceaor I I

I I

I I

1 Memory 1

I I

• • •

Interconnection Network

Fis. 1.4: A Multicomputer

The simplest way to connect multiple processors to a shared memory or to

interconnect multiple computing elements is to use a common bus or Ethernet. This

scheme is used in most or the current commercially available multiprocessors [Jone83] and

multicomputers [Katr.82]. Unfortunately, the use or a common bus with a finite

bandwidth limits the maximum number or processing elements that can be effectively

utilized in the system. While a bU5 may be the best choice for a system with, say, ten

processing elements, it is clearly not appropriate (or a system with hundreds or elements.

The key to implementing a high-bandwidth interconnection network that can

support a large number or processing elements is to ensure that different "messages" can

be transmitted on different "wires" so that the transmission o(multiple messages can

6

occur 1n parallel. Interconnection networks that allow several units to communicate

simultaneously are called alignment net~orb (IUJitching netUJorka)[Kuck78]. Many

multiprocesSGr systems use alignment networks that allow N processors to communicate

with N memory modules (Gott83]. Each processor can communicate with each one of the

memory modules so that all the memory can be shared by all the processors. An example

or such an alignment network is shown in Fig. 1.5.

0 •

0
•

Fig. 1.5: An Alignment Network

In multiprocessors that use an alignment network or the form shown in Fig. 1.5 to

interconnect the processors to memory modules, all memory accesses are performed

through the interconnection network and the access time from each processor to each

memory location is uniform. Since accessing memory through the network is expensive, a

cache is added to each processor module so that a large percentage of the accesses are

actually performed locally without traversing the network (Gott83]. The use of caches

introduces the problem of ensuring that all the processors access a consistent version of

the data. The problem occurs when one of the processors modifies data held in the cache

of a second processor. Before the second processor attempts to read the data, the

modification must be propagated to the shared memory and the data held in the second

processor's cache must be invalidated to ensure that the data will be read from the shared

memory. The protocols required to ensure eoche coherenc~ (DuBo82] increase the

communication overhead and slow down the system (Kell84].

In multicomputer systems each processor has exclusive control over the memory in

i

its own computing element. Sharing or data is accomplished by exchanging messages and

is under the control or the software. The local memory in a computing element i!l simpler

and cheaper to implement than a cache so that it is practical to implement a larger and

faster memory tightly coupled with each processor. ~ a result, if the application exhibit!!

high locality so that there is relatively little sharing between processor!!, higher

performance may be achievable in the multicomputer than in a multiprocessor.

It is possible to implement a multicomputer which provides uniform communication

between every pair of computing elements. For example, all the computing elements can

be on the same btl!, or an alignment network of the form shown in Fig. 1.5 may be ll!led.

Jr an alignment network is U!ed, instead or connecting N processors to N memory

modules, as in a multiprocessor, N computing elements are interconnected by attaching

the output port of each element to one end or the network and the input port to the other

end.

An alternative approach to implementing a multicomputer is to Wle high-speed

poin~to-point dedicated links to connect each computing element to a small sub!let of all

the computing elements in the system [Desp78, Se'qu83, Kell84, Barr83]. Two computing

elements connected by a dedicated link are called neighbora. Communication with a

computing element that is not a neighbor is accomplished by transmitting a message to a

neighbor that is closer to the final destination with instructions to forward the message to

the final destination. This process is repeated until the final destination is reached. \Ve

call a multicomputer in which the computing elements are interconnected by poin~to­

point dedicated linb a FTPI (poin~to-point interconnection) multicomputer. In the rest

or this thesis, unless otherwise specified, the term multicomputer will be U!ed to denote a

PTPI multicomputer (Fig. 1.2).

In a PTPI multicomputer communication with a neighbor is significantly faster than

with other nodes. Communication between neighbors can be faster than communication

between computing elements in systems that U!e a uniform interconnection network.

Furthermore, communication between any two neighbors cannot affect (slow down)

communication between other neighbors in the system. Based on the above

characteristics, the PTPI multicomputer is particularly well-suited for applications that

can be partitioned so that each computing element communicates mostly with a small

number or other elements and has relatively little direct interaction with the majority or

8

computing elements in the system. For such applications, the PTPI multicomputer has

the potential of higher performance than other types of multicomputer or multiprocessor

systems constructed uing similar technology.

1.2. Achieving High Reliability U•ing Redundancy

Over the past thirty-five years, the reliability of the basic components used to

implement electronic computers has increased by several orders of magnitude. In the days

of relays, vacuum tubes, and delay-line storage, it was considered a difficult task to simply

keep the system operating for more than a few minutes [Aviz78]. With current VLSI

components, whose failure rates are only a few hundred per billion part hours [Peat81,

Budz82], systems are built whose expected down time is only a few minutes per

year [Toy78] or with a failure rate of less than one failures per billion 3~stem

hours [Hopk78].

Despite the low failure rates of the available components, the level of reliability

desired for many of the current applications of computers cannot be achieved by simply

relying on the high reliability of the components and allowing the system to fail whenever

one of the components fails. For example, in a system that consists of 10,000 components,

each with a failure rate of 500 per billion part hours, the probability that none of the

components will fail during 100 hours of continuou operation is only 0.6.

~ technology progresses, fewer chips are needed to implement a system with a given

functionality and performance. However, the demand for ever more powerful computers

for each application keeps up with technological developments. Thu, the additional

functionality and performance per chip are often U5ed to increase system performance

rather than decrease the number of chips in the system. Hence, the reliability of systems

normally ued for a particular application area is likely to increase only to the extent that

the reliability of the new, more powerful chips is higher than that of the previous

generation of chips.

Over the past two decades, the reliability of chips has increased simultaneously with

increases in their functionality and performance. For example, the reliability of current

microprocessor chips is higher than the reliability of the rll'St NAND gate chips. However,

there are three major interrelated factors that limit reliability improvements achievable

by technological developments alone: unexpected failure modes, incomplete testing, and

9

the use or state-of-the-art technology.

With any new technology there may be unexpected failure mode! that defy detection

using prevalent te!ting procedures or increase the chip's seD!itivity to environmental

factors. For example, smaller feature si:r.es in memory chips increased the sensitivity to

alpha particle! and cosmic rays [Brod80]. Testing procedures had to be modified for

CMOS circuits since one of their major failure modes (stuck-open faults) was not usually

coD!idered with other technologie! [Wads78J. Subtle problems that may make the testing

of certain CMOS circuits unreliable have only recently been recogni:r.ed [Redd83]. Thus,

products that use state-of-the-art technology may have unexpectedly low reliability. This

problem has been recognized by NASA and as a result, in computers used in spacecrafts,

only proven (5-10 years old) technology is used[Renn78].

Due to their complexity, exhaustive functional testing of VLSI chips is

impoS!ible [Rasm82]. Manufacturers of VLSI chips perform partial testing of their chips

based on the known likely failure modes. The tests used are often functional tests that

are derived in an ad hoc way. In other cases the tests are based on restricted fault

models, such as single stuck faults [Frie71], that do not cover all possible physical defects

that can occur in VLSI circuits [Gali80, KodaBOJ. The result of the incomplete testing is

that some or the chips that are delivered to the customers are faulty. The percentage or

such faulty VLSI chips ranges from 0.1 percent for relatively simple chips that have been

in production for a while to several percent for new complex chips [Peat81].

In implementing any system there is an important tradeoff between either using the

most :..dvanced chips for high performance and taking the risk that the resulting system

will be unreliable, or using proven technology for high reliability and (ailing to achieve the

highest possible performance. ~ mentioned above, for specialir.ed critical applications

only "proven" technology is used. Even in le!s critical systems, which do not include any

special provisions for fault-tolerance, it is always necessary to be somewhat coD!ervative in

making this tradeoff in order to eD!ure that the re!ulting system will be usable. However,

the use of the most advanced chips available can result in systems with lower

price/performance ratios than their predecessors or in systems that achieve a level or

performance that has not been achievable in the past. Thus, there are strong pressure! to

use state-of-the-art technologie! for most applications. This is particularly true for

supercomputers where, as discuss~d in the previous section, the demand for more powerful

10

computers always rar exceed! the capabilities or the available systems.

The previous subsection discussed the use or the hardware resources or the system to

process different parts or the information simultaneously, thereby increasing the overall

throughput or the system. Since the required reliability from systems cannot be achieved

by relying on the "raw" reliability or the hardware, another use or system resources is to

perform redundant operations that increase the reliability or the system rather than its

performance. The redundant operations may be performed by dedicated (redundant)

hardware whose sole purpose is to check and/or correct the results produced by other,

possibly faulty, hardware. It is also possible to use redundanc:JI in time where the same

hardware reexecutes the original operations, verifies the validity or the results, and

attempts to correct invalid results.

Redundancy is currently used in most computer systems to increase their reliability.

The simplest example is the use or a parity bit to detect erroneous information as it is

retrieved from main memory. The memory dedicated to the storage or the parity bit with

each byte or word is redundant hardware. Redundancy in time is used when, for example,

the processor spend! time calculating the CRC code for a block or data before storing it

on disk. When the block is read, the CRC check bits are used to determine whether the

data has heeL corrupted.

There is a wide range or choices as to where and how redundancy is used to increase

the reliability or a system. The choices that have to be made include: hardware versus

software, the extent or hardware redundancy, the granularity or hardware redundancy,

the extent or time redundancy, and granularity or time redundancy.

The fault tolerance features of a computer system can be made entirely transparent

to the software. For example, the output from the system is a majority vote on the

outputs of three identical processors that operate in lock-step executing identical

software [Plat80J. In this case the system can tolerate the failure or any one or the three

processors. On the other hand, it is also possible to construct a system in which all the

fau1t tolerant features are implemented in software. For example, the application

program may periodically perform "acceptance tests" on intermediate results. Ir the test

indicates an error, the last subtask may be reexecuted using a different

procedure (Rand78J. The alternate procedure can attempt to use the hardware in a

different way so that the error will not be duplicated.

11

If redundant hardware is used in the system in order to increase its reliability, an

important design decision is what percentage of the system hardware is dedicated to

increasing system reliability. A simple example is a memory system in which, using

appropriate coding techniques, one redundant bit per word can provide error detection

while several redundant bits per word can provide error correction.

The granularity of hardware redundancy can be at the level of individual gates or

complete processors. An arbitrary logic circuit that can tolerate any single line stuck-at­

zero or stuck-at-one can be implemented by a technique, called quadded logic, that

requ1res quadrupling the number of gates and interconnectioru~ [Tryo62, Kohai8].

Hardware redundancy at the level of a complete processor is used in some multiprocessor

systems where each task is simultaneously executed on several processors and the results

are compared to determine their correctness [Weru~78J.

The percentage of system processing time devoted to increasing the reliability of the

system is another important parameter of any system. For example, an application may

periodically perform low-cost "reasonableness" tests on intermediate results or,

alternatively, the entire computation may be repeated, using a different algorithm, in

order to provide a more accurate test of whether the results are correct.

\Vhen time redundancy is used, a rlXed percentage of processing time for redundant

operatio]).! may be used for a large number of short operatioru~ or a small number of large

complex operatioru~. For example, if the system uses periodic acceptance tests to detect

errors, those tests could be performed after every few iru~tructions, only when a procedure

is about to return control to its caller, or only at the end of the entire program. The

choice of the granularity of time redundancy cannot be based only on the probability of

detecting errors. Even if one complex test at the end of the program has a higher

probability of detecting errors, simpler intermediate tests might be chosen in order to

fulfill requirements of low latency between error occurrence and detection or faster

recovery when an error is detected.

The issues discussed above do not include all possible optioru~ that must be

coru~idered when choosing a scheme for enhancing system reliability. Rather, these are

meant to be example of the ti/Pe of issues that come up. In general, the choice of a

particular scheme for using redundancy is a result of complex tradeoffs involving

performance requirements, reliability requirements, available technology, cost, market

12

pressure5, etc. This the5is discusses the options and tradeoffs for one particular type of

system- a PTPI multicomputer implemented using VLSI technology.

1.3. Architecture. of Future Supercomputers

The goal of high-end computer systems is to execute compute-intensive task!! quickly.

At the pre5ent time one of the critical re5earch issue5 in computer science is what type of

architecture is most appropriate for computer systems whose goal is to achieve orders of

magnitude greater performance than today's high-end systems. Proposed architectures

include: bigger and faster vector uniproce5sors, such as the Cray-1 [Russi8, Miur84], a

small number of interconnected high-end vector uniprocessors [Widd80, Lars84], several

hundred or a few thousand or the most powerful microproce5sors available interconnected

with each other [De5p78, Gott83], or tens of thousands of very small processors each

performing simple (possibly bit-serial) operations [Hill81, Shaw84].

There are clear advantage5 to computers whose performance does not rely on a high

degree of parallelism. With such systems there is no need to develop new parallel

algorithms or sophisticated compilers that can extract the parallelism from programs that

were written for sequential execution. However, as discussed earlier, there are

fundamental limitations on the speed or logic circuits so that significant performance

improvements in the future will require exploiting parallelism. Hence, future

supercomputers will be multiprocessors or multicomputers. The only question that

remains is whether it will be possible to develop algorithms and software to effectiYely

utilize the5e systems.

While there is general agreement that it is possible to utilize a small number of

proce5sors effectively [Widd80, Lars84), it is unlikely that thousands of processors can be

effectively used for all general purpose computation [Nico84). On the other hand, for some

important applications in scientific computations, simulation studie5 have shown that it is

possible to utilize several hundred [Nico84) or a few thousand [Gott83) processors. For

some applications in artificial intelligence it is claimed that hundreds or thousands or

processors could be effectively utilized (Hi1181, Shaw84].

The need to deal with the unreliability of the hardware is not usually considered

when comparing different architectUre5 for supercomputers. ~ discussed earlier, large

systems consisting or tens of thousands or chips have a significant hardware failure rate.

13

Fault tolerance techniques must therefore be used to allow the system to continue correct

operation despite hardware faults.

If the system is one large "monolith;' it is difficult to design it in such a way that it

can isolate any faulty component and reconfigure itself to continue normal operation

without that component. It is here that a multiprocessor or multicomputer with a large

number of processors has a distinct advantage. The "components" or such systems are

processors which are capable or independent "intelligent" actio~. One processor can

detect that another is faulty and modify its behavior to allow the system to continue

operating correctly. It is much more difficult for part of a large complex ALU to detect

the failure of another part of the ALU and change its operation to compensate for that

failure.

The fact that a system consists or multiple processors does not guarantee that it is

easy to isolate a faulty component and reconfigure the system to continue operating

without that component. For example, in a multiprocessor system where a multistage

alignment network is used to interconnect N processors with N memories [Gott83] the

switches used in the alignment network are n9t "intelligent:• Therefore it may be difficult

for the system to identify a faulty switch and for the other switches to accommodate that

failure. Furthermore, in order to be able to tolerate a switch failure, the alignment

network must have more than one path between each processor and each memory. This

requirement leads to a more complex network with higher latency than in a network

where there is only one path between each processor and each memory [Adam82].

It may also be difficult to implement fault tolerance in any multiprocessor or

multicomputer system with a very large number of very small processors[Hill81, Shaw84].

If a node in the system contains a 32-bit microprocessor and thousands of bytes of

memory, it is feasible to add to the node extra hardware and software that allows it to

handle exceptional situations, such as the failure of another node. On the other hand, if

the node is a small bi~serial processor with a few dozen bytes of memory, it necessarily

has only a small repertoire of actio~ that it can take during normal operation. Such a

node will have to be made many times more complex to provide it with the capabilities to

diagnose other parts of the system and to modify its behavior accordingly. This may

make the entire system infeasible.

Based on the previous paragraphs, we can conclude that no one type of computer

14

architecture will emerge as the clear choice for all applications. Instead, different

architectures, utilizing different degrees of parallelism, will be used for different

applications. Reliability considerations are likely to be just as important as performance

requirements in determining the type of system to be used. In this context, a

multicomputer system with several hundred or a few thousand nodes, each containing a

relatively powerful microprocessor, has several distinct advantages: (1) Nodes are

"disposable" since the loss of a few nodes does not significantly reduce the hardware

resources of the system, as they would in a system with a small number of processors.

(2) There is no central resource, such as the alignment network in a multiprocessor, whose

performance is critical to the performance of the entire system. (3) The nodes are

sufficiently powerful to handle exceptional conditions.

Recent experiments have demonstrated that, in terms of performance, a

multicomputer system can be utilized effectively for important applications [Seit85].

Given the advantages of a multicomputer architecture for implementing fault tolerance,

there is no doubt that this type of architecture will be used in a significant number of

future supercomputers.

1.4. Theeis Organisation

This thesis focU5es on the U5e of fault tolerance techniques to increase the reliability

of multicomputers implemented with VLSI and using point-to-point dedicated links for

interprocessor communication. Effective implementation of highly reliable systems

requires the use of a combination of hardware and software techniques carefully tailored

to the technology as well as to the intended applications. Accordingly, the different fault

tolerance techniques for the multicomputer are considered in the context of the entire

system rather than in isolation. In each chapter relevant previoU5ly published work is

reviewed and the choice of the approach most appropriate for a VLSI multicomputer is

described.

Technical discussions require the use of precise terminology whose meaning is agreed

upon by all. Unfortunately, there is no "agreed upon" terminology for discussing "fault­

tolerant" computer systems. In Chapter 2 the terminology that is used throughout this

thesis is introduced. In addition, Chapter 2 includes a discussion of the fundamental

issues of the causes of faults in digital computers and fault modeling.

15

In order to be able to continue correct operation despite errors produced by faulty

hardware, the system must identify the erroneous information. Various error-detection

techniques for use in a multicomputer are discussed in Chapter 3. It is shown that, given

the need for effective error-detection, computing elements that report their failure to the

rest of the system at the same time they produce erroneous information, are the most

desirable building blocks for multicomputers. With VLSI technology, such aelf-chr.cking

computing elements are best implemented using duplicate functional modules that operate

in lock-step, performing identical operations on the same inputs. The outputs of the two

modules are continuously compared and any mismatch signals an error.

No error detection scheme can guarantee that all hardware errors will be detected.

One of the potential weaknesses of duplication and comparison for implementing the self­

checking computing elements is that if the comparator fails, a subsequent mismatch

between the outputs of the two functional modules is not detected and erroneous

information is accepted as correct by the rest of the system. It is therefore imperative

that faults in the comparator be detected soon after they occur so that the rest of the

system can be informed that the supposedly self-checking computing element has lost its

self-checking capabilities. This requirement can be fulfilled by using a 1elj-te1ting

comparator that signals its own faults during normal operation. The implementation of

such a comparator is discussed in Chapter 4. The proposed implementation uses MOS

PLAs and is shown to be self-testing with respect to a new fault model that represents

many of the possible physical defects that were not considered in previously published

models.

\Vhen an error occurs, the state of the system is corrupted and correct operation

cannot be resumed unless a valid system state is restored. Furthermore, if the faulty

component that caused the error remains in the system after a valid system state is

restored, it is likely to cause further errors and eventual system failure. Hence, after an

error is .detected, as part of the process of "recovering" from the error, the faulty

component must be located and isolated from the rest of the system. Chapter 5 includes a

review of several techniques for locating a faulty component that has caused an error,

restoring a valid system state, and reconfiguring the system so that it can operate without

the faulty component. A new error recovery scheme for multicomputers is proposed.

This new scheme is particularly well suited for a multicomputer executing non-interactive

16

applications. It involves periodic checkpointing of the entire system state and rolling back

to the last checkpoint when an error is detected. No restrictions are placed on the actions

of the application task!, and, during normal computation, there are no complex

communication protocols of the type required by most other schemes.

This thesis does not provide a complete detailed design of a high-performance faul~

tolerant multicomputer. There are many implementation details that have not been

considered. For example: power distribution, clock signal distribution, synchronization

between computing modules, and packaging. In addition, the topology of the

interconnections between computing modules may be a maJor factor in determining

system performance and reliability. A brief overview of these issues is presented in

Chapter 6. One of the potential problems in using duplication and comparison for error

detection is that if the two functional modules fail simultaneously in exactly the same

way, the erroneous output is not detected. Chapter 6 also includes a discussion of

implementation techniques that can help reduce the probability of such undetected errors.

The major results of this thesis are summarized in Chapter 7. A few conclusions,

that may serve as guidelines for future research on the implementation of fault tolerance

in multicomputers, are presented.

References

Adam82. G. B. Adams and H. J. Siegel, 41The Extra Stage Cube: A Faul~ Tolerant

Interconnection Network for Supersystems," IEEE Tranaactiona on

Computer~ C-31(5) pp. 443-454 (May 1982).

Aviz78. A. Avizienis, "Fault-Tolerance: The Survival Attribute of Digital Systems,"

Proceedinga IEEE 86(10) pp. 1109-1125 (October 1978).

Barr83. I. Barron, P. Cavill, D. May, and P. Wilson, "Transputer Does 5 or More MIPS

Even When Not Used in Parallel," Electronica, pp. 109-115 (November 1983).

Brod80. M. Brodsky, "Hardening RAMs Against Soft Errors," Electronica 63(10) pp.

117-122 (April 24, 1980).

Budz82. R. L. Budziniski, J. Linn, and S. M. Thatte, "A Restructurable Integrated

Circuit for Implementing Programmable Digital Systems," Computer 16(3) pp.

43-54 (March 1982).

17

Cray74. S. Cray, "Design of Large Computers." Oral Presentation, Stanford

University, Stanford, CA (December 5, 1974).

Desp78. A. M. Despain and D. A. Patterson, "X-TREE: A Tree Structured Multi­

Processor Computer Architecture," Proceeding4 of the Fifth Annual

SJ1mpo3ium on Computer Architecture, pp. 144-150 (April 1978).

DuBo82. M. DuBois and F. A. Briggs, "Effects of Cache Coherency in Multiprocessors,"

IEEE Tran3actione on Computer3 C-31(11) pp. 1083-1099 (November 1982).

Fern84. S. Fernbach, "Applications of Supercomputers in the U.S. - Today and

Tomorrow," pp. 421-428 in Supercomputer3: Deeign and Applications, ed. K.

Hwang, IEEE Computer Society (1984).

Frie71. A. D. Friedman and P. R. Memon, Fault Detection an Digital Circuits1

Prentice Hall (1971).

Fuji82. R. M. Fujimoto and C. H. Sequin, "The Impact of VLSI on Communications in

Closely Coupled Multiprocessor Networks," Proceeding4 of COMPSAC 82,

Chicago, IL, pp. 231-238 (November 1982).

Fuss84. D. Fuss and C. G. Tull, "Centralized Supercomputer Support for Magnetic

Fusion Energy Research," Proceeding3 of the iEEE 72(1) pp. 32-41 (January

1984).

Gali80. J. Galiay, Y. Crouzet, and M. Vergniault, "Physical Versus Logical Fault

Models MOS LSI Circuits: Impact on Their Testability," IEEE Transactions

on Computer4 C-29(6) pp. 527-531 (June 1980).

Gott83. A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M.

Hill81.

Snir, "The NYU Ultracomputer - Designing an MIMD Shared Memory Parallel

Computer," IEEE Ttaneaction.! on Computer~ C-32(2) pp. 175-189 (February

1983).

W. D. Hillis, "The Connection Machine (Computer Architecture For a Ner.

Wave)," AI Memo 646, Massachusetts Institute of Technology, Cambridge,

MA (September 1981).

Hopk78. A. L. Hopkins, T. B. Smith, and J. H. Lala, "FTMP- A Highly Reliable Fault-

Tolerant Multiprocessor for Aircraft," Proceeding3 IEEE 86(10) pp. 1221-1239

(October 1978).

18

Hwan84. K. Hwang, Supercomputer~: De~ign and Application~, IEEE Computer Society

(1984).

Jone83. S. E. Jone5, "The Synap5e Approach to High Sy5tem and Database

Availability," Databa~e Engineering 8(2) pp. 29-34 (June 1983).

Ka.tz82. J. A. Katzman, "The Tandem 16: A Fault-Tolerant Computing System," pp.

47(}.480 in Computer Structure~: Principle~ and Example~, ed. D. P.

Siewiorek, C. G. Bell, and A. Newell, McGraw-Hill (1982).

Kell84. R. M. Keller, F. C. H. Lin, and J. Tanaka, "Rediflow Multiproce5sing,"

COMPCON, San Francisco, CA, pp. 41(}.417 (February 1984).

Koda80. K. L. Kodanda.pani and D. K. Pradhan, "Undetectability of Bridging Faults

and Validity or Stuck-At FauJt Te5t Sets, II IEEE Tran~action~ on Computer~

C-29(1) pp. 55-59 (January 1980).

Koha78. Z. Kohavi, SttJitching and Finite Automata ThcorJJ, McGraw-Hill (1978).

Kozd80. E. W. Kozdrowicki and D. J. Thei5, "Second Generation of Vector

Supercomputer5," Computer 13(11) pp. 71-83 (November 1980).

Kuck78. D. J. Kuck, The Structure of Computer~ and Computation&, \Viley (1978).

Kuck84. D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, "The Structure of an

Advanced Retargeta.ble Vectorizer," pp. 163-178 in Supercomputer~: De~ign

and Application&, ed. K. Hwang, IEEE Computer Society (1984).

La.rs84. J. L. La.r50n, "Mu1titasking on the CRA Y X-MP-2 Multiproce55or," Computer

17(7) pp. 62-69 (July 1984).

Linc82. N. R. Lincoln, "Technology and Oe5ign Tradeorfs in the Creation of a. Modern

Supercomputer," IEEE Tran1action1 on Computer~ C-31(5) pp. 349-362 (May

1982).

Miur84. K. Miura. and K. Uchida., "FACOM Vector Processor System: VP-100/VP-200,"

pp. 59-73 in Supercomputer&: Duign and Application,, ed. K. Hwang, IEEE

Computer Society (1984).

Nico84. A. Nicolau and J. A. Fisher, "Measuring the Parallelism Available for Very

Long Iutruction Word Architecture5," IEEE Tran&action& on Computer~

C-33(11) pp. 968-976 (November 1984).

19

Peat81. G. Peattie, "Quality Control for ICs," IEEE Spatrum 18(10) pp. 93-97

(October 1981).

Plat80. -D. G. Platteter, "Transparent Protection of Untestable LSI Microprocessors,"

10th Fault-Tolerant Computing Svmpoaium, Kyoto, Japan, pp. 345-347

(October 1980).

Randi8. B. Randell, P. A. Lee, and P. C. Treleaven, "Reliability Issues in Computing

System Design," Computing Surveva 10(2) pp. 123-165 (June 1978).

Rasm82. R. A. Rasmussen, "Automated Testing of LSI," Computer 15(3) pp. 69-78

(March 1982).

Redd83. S. M. Reddy, M. K. Reddy, and J. G. Kuhl, "On Testable Design for CMOS

Circuits," International Teat Conference, Philadelphia, PA, pp. 435-445

(October 1983).

Renn78. D. A. Rennels, "Architectures (or Fault-Tolerant Spacecraft Computers,"

Proeeedinga IEEE 86(10) pp. 1255-1268 (October 1978).

Russi8. R. M. Russell, "The CRAY-1 Computer System," Communicationa of the

ACM 21(1) pp. 63-72 (January 1978).

Seit85. C. L. Seitz, "The Cosmic Cube," Communicationa of the ACM 28(1) pp. 22-

33 (January 1985).

Sequ83. C. H. Sequin and R. M. Fujimoto, "X-Tree andY-Components," pp. 299-326 in

VLSI Architecture, ed. B. Randell and P.C. Treleaven, Prentice Hall,

Englewood Cliffs, NJ {1983).

Shaw84. D. E. Shaw, "SIMD and MIMD Variants of the NON-VON Supercomputer,"

COMPCON, San Francisco, CA, pp. 360-363 (February 1984).

Tami83. Y. Tamir and C. H. Sequin, "Self-Checking VLSI Building Blocks (or Fault­

Tolerant Multicomputers," International Conference on Computer Deaign,

Port Chester, NY, pp. 561-564 (November 1983).

Toy78. W. N. Toy, "Fault-Tolerant Design of Local ESS Processors," ProceedingB

IEEE 88(10) pp. 1126-1145 (October 1978).

Tryo62. J. G. Tryon, "Quadded Logic," pp. 205-228 in Redundancv Techniquea for

Computing Svatcma, ed. R. H. \Vilcox and W. C. Mann, Spartan Books (1962).

20

Wad!78. R. L. Wad!ack, "Fault Modeling and Logic Simulation of CMOS and MOS

Integrated Circuits," The Bell S~Btem Technical Journal 67(5) pp. 1449-1474

(May-June 1978).

Wens78. J. H. Wensley, L. Lamport, J. Golberg, M. W. Green, K. N. Levitt, P. M.

Melliar-Smith, R. E. Shostak, and C. B. Weinstock, "SIFT: The Design and

Analysis of a Fault-Tolerant Computer for Aircraft Control," Procu.dings

IEEE 88(10) pp. 1240-1255 (October 1978).

Widd80. L. C. Widdoes and S. Correl, "The S-1 Project: Developing High-Performance

Digital Computers," COMPCON , San Francisco, CA, pp. 282-291 (February

1980).

21

Chapter Two

Basic Concepts and Terminology

This chapter distW!ses the concept and the need for fault tolerance in VLSI

multicomputers-the system of interest in this thesis. The terminology to be Wled

throughout this thesis is introduced in Section 2.1. The nature of hardware faults in

systems implemented using MOS VLSI chips is discussed in Section 2.2. It is shown that

acceptable sys-.em reliability cannot be achieved unless the multicomputer system can

"tolerate" hardware faults, i.e., continue correct operation despite the failure of one of its

components. A detailed discW!sion of the behavior required from a fault--tolerant

multicomputer after one of its components has failed is presented in Section 2.3.

2.1. TerminoJoiY

Technical discussioD! require the use of terminology whose meaning is agreed upon

by all. Unfortunately, there is no "agreed upon" terminology for computer systems in

ceneral and "faul~tolerant" computer systems in particular. The terminology Wled in this

thesis is derived mainly from the proposals or Anderson and Lee [Ande81, Ande82] (also in

Randell et al [Rand78]). A few of the terms specific to the study of faul~tolerant systems

are from proposals by Avizienis[Aviz.78, Aviz.82]. Most of the terms related to the

interconnection topology of the multicomputer are distWised by Tanenbaum [Tane81].

The main characteristic or the proposed terminology is that it is fundamentally

hierarchical and thWI correspond! to the hierarchical structure of computer systems in

general and the multi-level hierarchical implementation or faul~tolerance schemes in

particular. Many alternative system models and terminology schemes have been proposed

in the literature. One of the most widely used proposals is the "four-universe information

system model" which is based on four flXed views or the system: physical, logical,

informational, and external [Aviz82]. These views correspond to the "universe or

discourse" or the engineer, the Iogie designer, the programmer, and the user, respectively.

In this model there is DO representation or the hierarchical nature or the 1tructure of

systems. One of the difficulties in using this alternative terminology is evident when

COD!idering systems composed of faul~tolerant subsystems.

In the following three subsectioD! the terminology used throughout the thesis is

22

summariz.ed. The emphasis is on a clear semantic understanding of the terms rather than

on abstract mathematical definitions.

2.1.1. Syatem• and their Component.

A •¥•tem is any identifiable mechanism that maintains a pattern of behaYior at an

interface between the mechanism and its environment.

AD inter for.e is the place or interaction between two systems.

The environment or a system is another system that provides inputs to and receives

outputs from the rll'St system.

The external behavior or the system can be described by a set of ezterna/ 1tate8

(output values), and a function defining the transitions between these states.

A system consists or a set or component• which interact under the control of a

tle•ign. Each component is itself a system. The design of the system is the way in which

the components are interconnected. The internal 1tate of a system is an ordered set of

the external states or its components.

If the internal structure or a relatively simple system is of DO interest and is to be

ignored, the system is said to be atomic. For example, if the system under consideration

is a circuit board populated by resistors, capacitors, and discrete transistors, each one of

these components would typically be considered atomic.

2.1.2. Multicomputer Terminolol)'

The term multicomputer, as used in this thesis, was defined in Chapter 1 to mean a

collection or computing element• interconnected by high-speed point-~point dedicated

linb. A computing element is a complete Von Neumann computer containing local

memory as well as a processor. Others have called this type of system a network

·computer. The computing elements are also called node•. A link is a bidirectional

connection between two nodes called nei1h6or1.

A multicomputer system must be connected to various peripheral devices, such as

disk drives, tape drives, printers, and terminals. Furthermore, there may also be

connectious to other systems via a local-area--network. Each of these devices is connected

to -one or more of the nodes of the multicomputer. When discussing a multicomputer

system, the nodes and linb are considered the component• as discussed in Section 2.1.1.

23

Devices that are usually collSidered input/output devices, such as disk drives, but -which

exchange information only with nodes of the multicomputer, must also be viewed as

components of the system. On the other hand, a tape drive that is used to read a tape

created on some other system must be collSidered part of the environment.

Nodes in a multicomputer exchange information via meuage1. A message is simply

a sequence of bits containing all the information trallSferred as well as any overhead

necessary to ellSure that the information reaches the desired destination. Messages may

be very long (milliollS or bytes) and may have to pass through several intermediate nodes

if the source and destination nodes or the message are not neighbors. A packet is the

smallest unit or information trallSferred between nodes. In order to trallSmit a large

message, the sender breaks it up into packets and it is the respollSibility of the receiver to

assemble the original message from the sequence or packets it receives.

The interconnection topolog~ or the multicomputer is the specification of which

nodes are neighbors. A path between two nodes, i and j, is a sequence or adjacent

(neighbor} nodes starting with i and ending with j. The length of the path is the number

of links in the path (i.e. one less than the number or nodes). A geoduic is a path of

minimum length between a given pair or nodes. Between a given pair or nodes there may

be several different paths. These paths are said to be di1joint if they have only nodes i

and j in common. The system is said to be connuted if there is at least one path

between every pair or nodes.

Two important parameters characterize the interconnection topology: diameter and

connutivitJI. The diameter or the system is the length of the longest geodesic. The node

(link) connectivity is the minimum number or nodes (links) that must be removed in order

to partition the system so that it is no longer connected.

In this thesis, the interconnection topology, the protocols used for inter-node

communication, the operating system, and the application software, are all collSidered

part or the duign or the system.

1.1.1. Terminolo11 for Fault Toleruce

M discussed iD Section 2.1.1, a system is defined to the "outside world" by its

specified behavior at its interlace with the environment. System failure occurs when its

behavior deviates from the specificatiollS.

24

An erroneou~ internal state is a state that could lead to a failure by a sequence of

valid transitions. An error is a part of an erroneous state that constitutes a difference

from a valid state.

An erroneous internal state is a result of either design failure or component failure.

A component failure is a result of an error in the internal state of the component. A

design failure means that the choice of components or the way in which the components

are interconnected is incorrect. M a result, although each one of the components is

operating according to its specifications, the set of external states of all of the system's

components (at a particular point in time) is erroneous and may lead to system failure.

An error in a component is a (component) fault in the system. Such a. fault mav

lead to a component failure which is a system error. The system error mav lead to

system failure.

Permanent fault~ are faults that are present for a long period of time (longer than

some threshold). Tran~ient fault~ are present for a limited period of time (less than the

threshold) and then disappear from the system. An intermittent fault is a recurring

transient fault.

M discussed above, system failure may occur, as a result of design faults, even if all

the components are operating according to their specifications. Component failures may,

in turn, be a result of faulty design of the components. On the other hand, it is often the

case that the design of the entire hierarchy of components above the atomic components is

correct, and the failure of the system is the result of the failure of atomic components.

Under these circumstances it is said that the system failure is the result of a hardware

fault or a phv~it:al defect. Since the design of the system and all of its components is

fixed when the system is constructed, any system failure that is a consequence of physical

changes in the system or its environment is classified as the result of a hardware fault.

There are two basic approaches to the construction of highly reliable systems: fault

prevention and fault tolerance. With the first approach an attempt is made to ensure

that the design of the system is correct, and all of its components are functional when

installed in the system and are highly reliable so that they will not fail in the future.

Fault prevention is accomplished using a combination of fault avoidance and fault

removal techniques. Fault avoidance techniques, such as specialized design methodologies

(such as the use of extra large tolerances in critical components) and strict quality control,

25

help avoid introducing faults into the system. Fault removal techniques, such as testing

and validation, are used to find and remove faults that were introduced into the system

during its construction.

Fault tolerance techniques attempt to prevent component failures (which are caused

by faults) from causing system failure. The process of "tolerating" a fault involves four

phases:

(1) Error detection: The existence of a fault can be detected by the system only after the

fault generates an errCJr somewhere in the system. Detection of an erroneous state is the

starting point for any fault tolerance technique.

(2) Damage aueument: Between the time a fault occurs and the resulting error is

detected, invalid information may spread throughout the system and lead to additional

errors. Before an attempt to "recover" from the error is made, the extent to which the

system state has been damaged must be determined.

(3) Error rer:overv: .. _,.ue e:..·roneous system state detected and assessed in phase (1) and (2)

is transforn:.td into c.n error-free state, from which normal system operation can continue.

(4) Fault treatment and continued 8ervice: If the fault that had caused the error is

permanent, steps must be taken to repair the fault or "reconfigure" the system to avoid

the fault. This is necessary to prevent the same fault from generating a new error in the

system.

The above four phases are not always distinct and their identification in a particular

system may not be clear. Nevertheless, these phases are, at least conceptually, part of all

fault tolerance techniques. The effectiveness of any fault tolerance technique depends on

how well these phases are implemented explicitly or how valid are the implicit

assumptions made regarding these phases.

In a system where fault tolerance technique are employed, some faults are

"tolerated" (i.e. they cannot lead to system failure) while other faults are still potentially

fatal. Hence there is an ambiguity in the use of the terms erroneou8 •tate, error, and

fault. In order to resolve this ambiguity, these terms are defined as recoverable or fatal:

A recoverable erroneou8 internal •tate is a state that could lead to system failure by a

sequence of valid transitions in the absence of actions for fault tolerance. This term is

only meaningful in a system where fault tolerance techniques are employed. In such a

system, there is no sequence of valid transitions that begins with a recoverable erroneou"

25

internal &tate and leads to system failure. A fatal erroneous internal state is a state

that could lead to system failure by a sequence of valid transitions despite any actions for

fault tolerance ir. the system. A recoverable error is a part of a recoverable erroneous

state that constitutes a difference from a valid state. A fatal error is a part of a fatal

erroneous state that coDStitutes a difference from a valid state. A recoverable fault is an

error in a component that may lead to a component failure resulting in a recoverable

erroneous state. A recoverable fault cannot lead to a component failure that will result

in a fatal erroneous &tate. A fatal fault is an error in a component that may lead to a

component failure resulting in a fatal erroneous state. Note that both recoverable and

fatal faults are fatal with respect to the component in which they occur since they may

lead to component failure.

A "fault-tolerant" system only "tolerates" recoverable faults. \Vhether or not a

fault is recoverable depends on the system. It is possible to have two systems with the

same specificatioDS and the same components, yet a specific fault in one of the

components may be recoverable in one system and fatal in the other. Furthermore, a

given fault in a particular component of a system may be recoverable at some point in

time but fatal at some later time, if, in the interim, some characteristic of the system has

changed. This change may be due to reconfiguration done in order to "tolerate" some

previous (recoverable) fault.

In order to be able to use the terms "fault-tolerant system" or "fault tolerance;' we

must establish the following convention: \Vhen discussing a system that has special

provisioDS for "fault tolerance;• the terms "erroneous state;• "error;' and "fault;' when

they are not further qualified, mean "recoverable erroneous state;' "recoverable error;·

and "recoverable fault;' respectively.

2.2. The Nature and Con.equence. of Hardware Faults

~ discussed above, a multicomputer system may fail due to faulty design or faulty

components. For the rest of this thesis it is assumed that the design of the system and all

of its components is correct. CoDSequently, any system failure must be a result of

component failures caused by hardware faults, i.e., caused by physical changes in the

system OF its environment, that prevent the components from operating according to their

specificatioDS.

The question ar1ses whether or not the frequency of component failures due to

hardware faults is sufficiently high to warrant special provisions for fault tolerance. In

order to answer this question and choose appropriate fault tolerance techniques. it is

necessary to understand the nature of physical defects in the hardware components and

the effects or these defects on the behavior or the components at their interfaces with

their environments. This section discusses the causes and characteristics of physical

defects in hardware components implemented with the technology assumed in this

thesis-MOS VLSI. A simplified model of the behavior of MOS digital circuits under

faults is presented. Since faults that are not detected during fabrication can cause

component failw-e when the component is part of a working system, the problem of

testing VLSI components dw-ing fabrication is discussed. Finally, it is shown that in a

large VLSI multicomputer hardware faults cannot be ignored and there must be special

provision in the system that allow it to continue correct operation despite such faults.

2.2.1. Hardware Faulta in MOS Digital Circuits

VLSI chip failw-e may be due entirely to design or fabrication flaws, due entirely to

environmental (acton, or is the end result of a degenerative process due to operational

and environmental stresses but partially attributable to design or manufactw-ing

defects (Doyl81, Howa82]. Fabrication defects in MOS chips consist mainly of shorts and

opens in each interconnection level (metallization, diffusion, and poly-silicon), shorts

through the insulator separating different levels, and large imperfections such as scratches

across the chip [Gali80]. Other fabrication defects include incorrect dosage of ion

implants, contact windows that fail to open, misplaced or defective bonds, and penetration

o(the package by humidity and other contaminants (Doyi81J. Ow-ing the operation o(the

chip, faults may be caused by electromigration, corrosion, electrical breakdown of oxide,

cracks due to different thermal expansion coefficients, power supply fluctuation, and

ionizing or electromagnetic radiation (Doyl81, Cast82].

The probabilities (rates) of the different types of chip failw-es are difficult to

determine experimentally and the manufactw-en are reluctant to release any available

iDlormation. In 1981 it was reported that, due to manufactw-ing defects and incomplete

testing, the number of defective VLSI chips reaching customers is between 100 to 1000

parts per million [Peat81). The rate of permanent hardware faults, which are a result or

aging and deterioration dw-ing the operation or the chip (e.g. corrosion or oxidation,

28

insulation breakdown or leakage, ionic migration or me(als, shrinking or craeking of

plastic material), has been reported to be on the order of 300 per billion part

hours [Peat81, Budz82]. Measurements of complete systems indicate that the the rate of

transient faults, which are related to environmental factors (e.g. electromagnetic radiation

received by interconnections, power supply fluctuations, ionizing radiation), is at least an

order of magnitude greater than the rate of permanent faults [Cast82J.

The failure rates above reflect the reliability of relatively mature chips that have

been in production for several years. New chips exhibit much higher failure rates. For

example, the Texas Instruments TMS-1000 microcomputer, which had a failure rate of 300

per billion part hours in 1979, had a failure rate of 5000 per billion part hours when it was

introduced in 1974-1975 [Budz82}. Similarly, when a new complex VLSI chip is first

introduced, it is common for more than one percent of the chips sent to customers to be

clef ective. t

It should be noted that the above failure rates are for a single VLSI chip, such as a

microprocessor, and do not take into account the other sources of failure in a complete

system, which include printed circuit boards, cables, interconnections between the chips

and the boards, etc. For example, measurements on a "real" system, the Cm•, have

shown that the rate of permanent failures of a "Computer Module;' consisting of an

LSI-11 microprocessor, memory, and a "switch" (approximately 400, mostly SSI/MSI.

chips), is on the order of 200 per million module hours [Siew78J. Since the failure rate of

the standard SSI and MSI chips is at least an order of magnitude smaller than the failure

rates mentioned above for VLSI chips, the rate of module failures cannot be explained by

chip failures alone.

Although design faults are not considered in this thesis, faults caused by marginal

design are often indistinguishable from faults caused by environmental factors or marginal

fabrication and must therefore be taken into account even if the "basic" design is assume

to be correct. For example, if the specified width of a metal line is too small, the result of

an open line due to electromigration is identical to the result or a fabrication defect that

causes a properly specified metal line to be too narrow. Due to the steadily increasing

complexity of chips and the fact that they must deal with interacting 1-'ynchronous

events, it is becoming more difficult to ensure that the design is correct so that the chip

t No formal reference for this information is known to the author.

29

can properly deal with all possible combinations of events. Incorrect behavior due to a

rare, unexpected combination of events may be indistinguishable from incorrect behavior

due to a random burst of cosmic rays modifying a value in memory.

Marginal de!ign problems are often detected only after the chip has been in use. The

detection and correction of marginal design faults are one important explanation of the

previously discussed increased reliability of later releases of chips compared to their

reliability when they are first introduced.

2.2.2. A Fault Model for MOS Digital Circuits

At the lowest level, any digital circuit is a non-linear electrical circuit with analog

values of voltage! and currents. Determining the precise effects of the physical defects

discussed in the previous subsection on the operation of the circuit requires complex

analysis which involve! solutions of non-linear differential equations. Given the size of

VLSI chips and the variety and complexity of the physical defects that can occur, it is

very difficult (practically impossible) to perform such analysis for each possible defect. A

higher level simplified model (fault model) of how the circuit is affected by physical

defects must therefore be used.

Even low-level de!ign of digital circuits is often done •ithout direct consideration of

the detailed electrical characteristics of the components. Instead, the designer works at

the level of Boolean logic ("ones and teros"). The electrical characteristics are taken into

account by following simple "design rules" that are expre!sed at the level of ones and

teros, logic gate!, etc., rather than at the level of voltages and currents. 'While these

de!ign rule! prevent the use of some circuits that could provide an effective

implementation of desired functionality, the simplification of the design process and the

analysis of that de!ign is, in most cases, worth the potential limitations. Just as design

rule! make it possible to design very complex systems, high-level fault models make it

possible to predict the behavior of complex faulty circuits.

The highest level fault model is the genera/ functional model [Haye85]. It allows

arbitrary change! in the functionality of the circuit due to physical defects. In its

"pure!t" form this model is u.sele!s since it simply indicates that the circuit can exhibit

arbitrary behavior due to defects. This model is used by applying it to simple modules

that make up a more complex system. It is then assumed that only a small number of

30

modules (typically one) will fail simultaneotl!ly and the behavior or the system due to the

arbitrary failure of one or several of these modules is determined. The result is a

restricted functional fault model for the entire system [That80].

High level functional fault models are specific to a particular system and are of no

help in understanding the effects or physical defects on the operation or arbitrary circuits.

To gain such an understanding, it is necessary to consider the characteristics that are

common to all circuits of a particular technology. A logic level fault model for MOS

circuits is therefore introduced in the remainder of this subsection.

Prior to the advent of VLSI, most digital circuit design was done at the level of basic

combinational logic ptes (AND, OR, NOT) and simple flip-Oops. A relatively low level

fault model was developed to correspond to these modules. This so called stuck-at model

was based on the assumption that most physical defects have the same effect on the

operation of the circuit as a set or gate inputs and outputs that are stuck at logic 0 or

logic 1 [Frie71]. While the stuck-at fault model can represent the effects or a significant

percentage of the physical defects that occur in modern NMOS and CMOS VLSI circuits.

it cannot represent the effects of several other possible defects and is therefore

insufficient [Cour81, Gali80, Wads78J.

The effects of most defects can be represented, at the logical level, by a circuit model

that consists of a network of switches, loads (for NMOS), and interconnection lines which

directly correspond to the transistors and interconnections in the actual circuit [Gali80].

Shorts and breaks in lines can be represented with this circuit model in an obvious

way [Cour81]. Shorts to "ground" and "power" are the traditional stuck-at faults. A

"switch" may be permanently on or permanently orr, corresponding to a gate input

stuck-at-1 or 0, respectively. Shorted NMOS loads (pull-ups) are equivalent to an output

line s-a-1. Disconnected pte inputs are usually equivalent to s-a-0 or s-a-1 faults. A

single break in a line that fans out to many inputs is equivalent to multiple stuck-at faults

(all of the same type).

Some physical defects have a more complex effect on the circuit. In NMOS,

incorrect dosage of ion implants may cause a threshold shift in a load transistor. This can

result in an output voltage that lies between the voltages assigned to logic 0 and logic 1.

If the fanout from the gate is greater than one, some or the attached gates may

"interpret" its output as logic 1 while others will interpret it as logic 0. If, at some point

31

in time (clock cycle), the line is supposed to be a logic 1 but is interpreted by at least one

o(the gates as logic 0, it is called a weak 1 fault. Conversely, i(the line is supposed to be

a logic 0 but is interpreted by at least one or the gates as logic 1, it is called a u.•eak 0

fault [Tami83J. A line may exhibit both a weak 0 fault and a weak 1 fault, as a result of a

single physical defect.

A stuck-at-1 fault is a degenerate case o(a weak 0 fault while a stuck-at-0 fault is a

degenerate case or a weak 1 fault. I(a line is stuck-at-1, all the devices connected to it

alwa~s interpret its value as logic 1. I(a line has a weak 0 fault, at least one of the

devices connected to it alwa~s interprets it as a logic 1.

Breaks in lines are another possible source o(weak 0 and weak 1 faults. A break

may result in a segment or the line that is only connected to gates or MOS transistors and

is therefore essentially "floating:' The gates connected to the floating segment of the line

receive an incorrect value for the line in one or its states (0 or 1).

A single break in the line can result in the line being stuck-at-1 if all the pull-down

devices are disconnected from the rest or the line, and in the line s-a-0 i(all the pull-up

(or load) devices are disconnected from the rest or the line. Furthermore, if only some or

the pull-up or pull-down devices are disconnected from the line, the line may not be s-a-0

or s-a-1 but assume the wrong value for some inputs that only turn on the disconnected

pull-ups or pull-downs. A particularly troublesome case may arise in CMOS or dynamic

logic circuits: a break in a line or a transistor that is permanently off can make the

output or a supposedly combinational logic circuit dependent on the previous output

rather than the current input alone. Such a fault is called a stuck-open fault [Wads78]. A

testing procedure that is designed to detect any single fault but assumes that the circuit is

strictly combinational, may fail to detect a stuck-open fault.

A short between adjacent or crossing lines that are supposed to have complementary

values may affect the value of one or both of the lines, depending on the conductivity or

the short and the strength of the driven attached to the two lines. A line whose value is

affected is either forced to the value of the other line or to an intermediate value between

logic 0 and logic 1. In the wont case, the result or a short is that the line that is supposed

to be at logic 1 has a weak 1 fault, and the line that is supposed to be at logic 0 has a

weak 0 fault. The circuit may be designed so that most shorts force both lines to a well

defined logic 1 or logic 0. This value may be always the value of one of the two lines that

32

"dominates" the other beca\15~ it is driven with larger devices. Alternatively, the Yalue

may always be logic 0 (AND operation) or always logic 1 (OR operation).

Traditionally, the term aingle fault has been U5ed to denote an erroneous logic nlue

on a single line in the circuit. From the above it is clear that a single physical defect may

result in erroneo\15 logic values on several lines in the circuit. Hence, the term single

/CTult will be U5ed in this thesis to denote the effect, at the logical level, of a single

physical defect.

If faults randomly appear and disappear in the circuit having a different effect on its

operation every time, the fault model is of no use for either determining how to test the

circuit or predicting its behavior when a fault occurs. Similarly, if it is assumed that an

arbitrary number of faults may occur simultaneoU5Iy in a complex VLSI circuit, the result

is nearly identical to, and just as useless as, a general functional fault model. Several

restrictive assumptions must therefore be made. These assumptions are based on the

likely consequences of the physical defects under consideration.

It is assumed that, for the duration of the fault (defect), the effects of the defect are

deterministic so that under identical conditions the ~ffects or a particular defect are

always the same. Thus, if a line has a weak 1 fault due to its driver, those devices

connected to it that misinterpret the logic 1 as a logic 0, alwa~a misinterpret the logic 1

as a logic 0. Although a transient fault may ca\15e a permanent change in the atate of a

circuit with memory elements, it is assumed that the circuit returns to its original physical

structure after the fault has disappeared.

2.2.3. Testin& and Ita Limitation•

The final step in the fabrication process of VLSI chips is extensive testing which

attempts to ensure that no faulty chips reach the customers. Conceptually, the simplest

way to test a circuit is based on the general functional fault model. The circuit can be

placed in a system where it performs all its specified functions and the results are

compared with the correct results. Unfortunately, such testing is not practical. For

example, in order to test a microprocessor every possible instruction must be executed,

with every possible addressing mode, with every possible data combination, starting with

all possible internal states, and "modulated" by all possible external events (interrupts).

Daniels and Bruce (Dani85) estimate that such testing of a simple 8-bit microprocessor

33

would take two million years!

Typically, integrated circuits are either "very good" or "very bad:' [Dani85] It has

been shown that less than a hundred test patterns, even if randomly generated, are

sufficient to detect most faulty chips [Dani85, 'Will85]. The problem is how to identify the

very small percentage of faulty chips that pass the initial test.

Given the impracticality of complete functional testing, the test procedure must be

based on a more restrictive fault model. The single-stuck-at fault model has traditionally

been used to evaluate the errectiveness of various testing procedures. It is assumed that

chips that pass the initial test may have only one stuck-at fault. After a testing sequence

is developed, simulation is used to determine the percentage of single stuck faults detected

by that sequence. It has been shown that a few hundred to a few thousand test patterns

are sufficient to achieve nearly a hundred percent coverage of single stuck faults in a

microprocessor chip [Dani85, That80].

Unfortunately, teat grading based on single stuck faults is too optimistic. It ignores

the fact that many of the possible physical defects cannot be modeled by single stuck

faults (see the previous subsection).

Another problem is caused by the widespread use of a facility intended to simplify

testing: modern VLSI chips often allow direct control over all the latches on chips by

chaining them together into a large shift-register [Eich78J. 'With this scan-in/scan-out

facility, the problem of testing a large sequential circuit (the chip) is reduced to testing

many combinational circuit blocks. A test pattern is shifted into the latches and after one

clock cycle, results are shifted out. 'With this testing procedure the chip is not tested

under normal operating conditions. Since many circuits used in VLSI chips are dynamic,

it is either impossible to test them at all with this scheme or, even if testing is possible,

the test does not reflect their normal operation.

Even the testing of small combinational circuits is not as simple as it might first

appear. In particular, as discussed in the previous subsection, a break in a line of a

CMOS logic gate can cause its output to be dependent on the previous output rather than

the current input alone. This atuck-open fault may escape detection even if all possible

input vectors are used to test the circuit (Wads78).

Using aequencea of test patterns it is usually possible to detect the stuck-open faults

discussed above [Wads78J. Unfortunately, even this is not guaranteed. In particular,

34

Reddy et al [Redd83] have shown that for a multi-input combinational CMOS gate it is

possible for small time skews in changes or the inputs to invalidate all possible test

sequences for detecting particular stuck-open faults. Thus, a chip may pass an extensive

testing procedure only to fail later due to slight changes in the environment (temperature,

time skews in inputs to the chip, etc.) [Redd83J.

1.2.4. The Need to "Tolerate" Hardware Fault.

The previous subsections discuss a wide variety of physical defects and their effects

on the operation of VLSI integrated circuits. From this discussion, it is clear that chips

cannot be guaranteed to always operate according to their specifications. They will

always be susceptible to internal physical changes that permanently modify their

functionality, as well as to environmental factors that can modify their internal state and

cause them to fail without any physical changes in their structure. Furthermore, since it

is impossible to completely test chips during production, it can be expected that a small

percentage or the chips installed in any system are faulty.

As discussed in Chapter 1, as long as the most up-to-date technology is always used,

unreliability of chips will continue to be a problem. With advances in technology, chips

become more complex and thus more difficult to test. Furthermore, with each change in

technology, new unexpected failure modes may become important, and the identification

or these failure modes may only occur after years or experience.

Given the fact that chips do, and will, fail, the question arises whether they fail often

enough to significantly afl'ect the operation of a large multicomputer system. To answer

this question, consider a system with ten-thousand VLSI chips. From the discussion in the

previous subsections, the rate or permanent hardware faults for each chip can be expected

to be between one hundred and five hundred per billion part hours. The rate of transient

fault can be expected to be at least an order of magnitude greater. Assuming that chips

fail independently and that the failure or a single chip will cause the entire system to fail,

the mean time between failure (MTBF) of the system due to permanent faults can be

expected to be between two hundred and one thousand hours. The MTBF due to

transient fault can be expected to be between twenty and one hundred hours.

It should be noted that the above calculation of the system MTBF takes into account

only chips failures. The failure of the interconnections between chips is ignored. Thus, in

35

reality, the MTBF of the system can be expected to be significantly lower. However, eYen

if an optimistic MTBF of, say, fifty hours is assumed, there are severe consequences as to

the ability of the system to perform its intended function. For example, in such a system,

assuming that component failures are exponentially distributed, the probability that a

task that executes for one hundred hours will produce the correct results is only fourteen

percent!

2.3. The Requirement. of a "Fault Tolerant" Multicomputer

Since a system foil& when its behavior deviates from its specifications, whether a

system is or is not fault-tolerant depends on the point of view. The "point of view" is the

system's specifications. A system "tolerates" a specific fault if it continues to behave

according to its specifications despite the existence of that fault. Thus a "fault-tolerant"

system does not necessarily exhibit identical behavior before and after the occurrence of a

fault. AJI that is required is that it continues to comply with its specifications. Hence. if

the specifications are sufficiently lenient, almost every system can be described as "fault­

tolerant:' For example, if the specifications of a computing system indicate that "the

system will never blow up. even in the presence of all possible faults;' then all computing

systems may be considered "fault-tolerant:' lf, on the other hand, the specifications

require that "the system will continue normal operation in the presence of all possible

faults;' then no computing system is "fault-tolerant:'

The minimal meaningful requirement is that for a large majority of faults, the

system will either continue to function correctly (perhaps at lower performance) or

indicate tbat an error has occurred. Hence the system must be &elf-checking. If this

requirement is satisfied, it is highly Ulllikely that incorrect outputs will be considered

correct. The maximal practical specifications require that the system continue normal

operation (perhaps at lower performance) despite the occurrence of most faults. The

system must continue to be •elf checking at all times, including during and after

"recovery" from a previous fault.

Based on the previous section, the minimal requirement, that the system be self­

checking, is insufficient for a large multicomputer. If the system is self-checking but is

unable to continue any tasks that it was executing when a fault occurs, such tasks must

be restarted from scratch after the system is repaired. Considering, once again, a system

with an MTBF of fifty hours and a task that requires one hundred hours to execute, the

36

expected execution time for this task, due to the need to restart it after each fault, is

more than seven hundred hoW'!. Thus, the multicomputer must be able to recover from

most faults and continue the correct execution of tasks in the system.

References

Ande81. T. Anderson and P. A. Lee, Fault Tolerance Principle3 and Practice, Prentice­

Hall (1981).

Ande82. T. Anderson and P. A. Lee, "Fault Tolerance Terminology Proposals," 12th

Fault-Tolerant Computing SJ1mpo3ium, Santa Monica, CA, pp. 29-33 (June

1982).

Aviz78. A. Avizienis, "Fault-Tolerance: The Survival Attribute of Digital Systems."

Pr:>ceeding3 IEEE 88(10) pp. 1109-1125 (October 1978).

Aviz82. A. Avizienis, "The Four-Universe Information System Model for the Study of

Fault-Tolerance," Jf!th Fault-Tolerant Computing SJ1mpo3ium, Santa Monica,

CA, pp. ~13 (June 1982).

Budz82. R. L. Budziniski, J. Linn, and S. M. Thatte, "A Restructurable Integrated

Circuit for Implementing Programmable Digital Systems," Computer 15(3) pp.

43-54 (March 1982).

Cast82. X. Castillo, S. R. McConnel, and D. P. Siewiorek, "Derivation and Calibration

of a Transient Error Reliability Model," IEEE Tran3actions on Computers

C-31(7) pp. 658-671 (July 1982).

Cour81. B. Courtois, "Failure Mechanisms, Fault Hypotheses and Analytical Testing of

LSI-NMOS (HMOS) Circuits," pp. 341-350 in VLSI 81, ed. J. P. Gray,

Academic Press (1981).

Dani85. R. G. Daniels and W. C. Bruce, "Built-In Self-Test Trend! in Motorola

Microprocessors," IEEE Duign and Te3t 2(2) pp. 64-71 (April1985).

Doyl81. E. A. Doyle, "How Parts Fail," IEEE Spectrum 18(10) pp. 36-43 (October

1981).

Eich78. E. B. Eichelberger and T. W. Williams, "A Logic Design Structure for LSI

Testability," Journal of De3ign Automation and Fault-Tolerant Computing

37

2(2) pp. 165-178 (May 1978).

Frie71. A. D. Friedman and P. R. Memon, Fault Detection an Digital Circuits,

Prentice Hall (1971).

Gali80. J. Galiay, Y. Crouzet, and M. Vergniault, "Physical Versus Logical Fault

Models MOS LSI Circuits: Impact on Their Testability," IEEE Transactions

on Computers C-29(6) pp. 527-531 (June 1080). ,

Haye85. J. P. Hayes, "Fault Modeling," IEEE Design and Test 2(2) pp. 88-95 (April

1085).

Howa82. R. T. Howard, "Packaging Reliability: How to Define and Measure It," 9!2nd

Electronic Components Conference, San Diego, CA, pp. 376-384 (May 1982).

Peat81. G. Peattie, "Quality Control for ICs," IEEE Spectrum 18(10) pp. 93-97

(October 1981).

Rand78. B. Randell, P. A. Lee, and P. C. Treleaven, "Reliability Issues in Computing

System Design," Computing Survevs 10{2) pp. 123-165 (June 1978).

Redd83. S. M. Reddy, M. K. Reddy, and J. G. Kuhl, "On Testable Design for CMOS

Circuits," International Test Conference, Philadelphia, P A, pp. 435-445

(October 1983).

Siew78. D. P. Siewiorek, V. Kini, R. Joobbani, and H. Bellis, "A Case Study of C.mmp,

Cm •, and C.vmp: Part II - Predicting and Calibrating Reliability of

Multiprocessor Systems," Proceedings IEEE 66(10) pp. 1200-1220 (October

1978).

Tami83. Y. Tamir and C. H. Sequin, "Self-Checking VLSI Building Blocks for Fault­

Tolerant Multicomputers," International Conference on Computer Design.

Port Chester, NY, pp. 561-564 (November 1983).

Tane81. A. S. Tanenbaum, Computer Networks, Prentice Hall (1981).

That80. S.M. Thatte and J. A. Abraham, "Test Generation for Microprocessors," IEEE

Transactions on Computers C-29(6) pp. 429-441 (June 1980).

Wads78. R. L. Wadsack, "Fault Modeling and Logic Simulation of CMOS and MOS

Integrated Circuits," The Bell Svstem Technical Journal 67(5) pp. 1449-147 4

(May-June 1978).

38

Wil185. T. W. Williams, "Test Length in a Self-Testing Environment," IEEE Dr.sign

and Tr.st 2(2) pp. 59-63 (April 1985).

39

Chapter Three

Error Detection in Multicomputers

\Vhen one or the components or a system fails, it causes an error in the system, i.e.,

it results in an erroneous internal system state that can lead to system failure unless some

special action is taken by the system to recover or to reconstruct a valid internal state. In

order to prevent system failure, such errors must be detected soon after they occur.

Thus, the system must include a mechanism for detecting the failure of its components.

The only way to guarantee error detection is to compare the outputs from all

components with apriori known correct results using a comparison mechanism the can

never fail. Since the correct outputs are not known ahead of time and there is no failure­

proof comparison mechanism, this "scheme" is not useful for implementing error detection

in a multicomputer. It is clear that no error detection is perfect; for every scheme there is

a subset of the possible errors that cannot be detected. Different error detection schemes

must therefore be evaluated with respect to the percentage of errors that can be detected

as well as the required system overhead in hardware, design complexity, and extra

operations that must be performed during normal operation. In addition, an important

consideration is bow difficult it is to locate the faulty component once an error is

detected.

This chapter discusses var1ous techniques for error detection and location in

multicomputers. An overview of system level techniques is presented in Section 3.1. 'With

these techniques the key to the detection or errors and the identification of faulty nodes is

the information exchanged between the nodes. An alternative approach to error detection

and location relies on the node to test itself and to notify the rest of the system when an

error occurs. This approach is discussed in Section 3.2.

3.1. Sy1tem-Level Error Detection Technique.

~ mentioned above, the best way to detect erroneous outputs from a component is

to compare those outputs with known correct outputs. Since the correct outputs are not

known ahead or time, this technique can only be approximated. One way to accomplish

this approximation is for each component in the system to subject all the information it

receives from other components to acceptance teata [Rand78]. It is assumed that the

40

information is either correct, or it will fail to satisfy some simple criterion. For example,

if it is known that the correct results must be positive, negative results indicate an error.

Error detection based on acceptance tests is well-suited for a multicomputer where

the components (nodes} are "intelligent" enough so that they can be programmed to

perform the necessary acceptance tests. The problem is that the acceptance tests are

dependent on the application. For some applications it may be easy to come up with

simple low-cost acceptance tests that will detect most errors. For other applications, the

only acceptance tests that yield a sufficiently high probability of error detection require as

much computation as the original task that produced the results. In either case, the

application programmer is burdened with the task or developing and evaluating the

acceptance tests. 'While this may be reasonable for some special purpose systems, it is not

acceptable for a multicomputer intended for a variety of general purpose applications.

Instead of evaluating the results of each task using acceptance tests, error detection

can be achieved by performing the task simultaneously on two components (subsystems)

and comparing the results. A5 long as both components do not fail in exactly the same

way, errors are identified by results that are not identical. This scheme can be

implemented in a multicomputer so that when a process is initiated a duplicate process is

initiated on a diff~rent node. Messages intended for the process are sent to both nodes

and both copies of the process send messages to other nodes. A node receiving "a

message" actually receives two copies of the message that are supposed to be identical.

Error detection is accomplished by the comparison of the two copies.

The above system-controlled node-level duplication and comparison scheme has the

advantage that error detection is implemented entirely in software and there is no need

for any special hardware. Furthermore, the scheme is completely independent or the

application. On the other hand, task assignment and message routing are more

complicated. Furthermore, as discussed below, the restrictions on the operation of the

system posed by this scheme result in lower performance.

The need to assign each process to two nodes increases the overhead of initiating new

processes. Since a node can fail while simply forwarding a message, the system must

ensure that the results from the two copies or each process are sent to their destinations

via different paths. Thus, message routing can no longer always be done in a distributed

dynamic manner. Specifically, the source node or a message has to compute the entire

41

path for that message rather than simply forward it to a neighbor and let that neighbor

decide on the next step in the path towards the final destination. Thus, dynamic local

load balancing of the link traffic and or the forwarding overhead or nodes is precluded.

The two copies of an application process must coordinate their choices of message paths to

ensure that they are disjoint. Since all the destination nodes for messages from a process

may not be known when the process is initiated, this coordination must be done during

normal operation whenever communication with a new node is initiated. The pre­

computed communication paths also make error recovery more complicated: messages "in

transit" that have pre-computed paths through a failed node cannot simply be re-routed

locally; they mWit be removed and the source node has to send a new copy of such

messages with pre-computed paths that are disjoint from the paths used by the duplicate

application process on some other node.

The two copies of a process cannot be allowed to both execute independently without

any coordination. For example, without coordination, if the process is accessing a disk

file, duplicate access requests will be received by the disk controller and result in duplicate

"writes" and in sequential "reads" that provide different data to the two copies of the

process. Furthermore, accesses to any centralized resource must be checked to make sure

that they were not initiated by a process on a faulty node. Thus, all centralized resources

must be controlled by "reliable" nodes that wait for two copies of each request and

compare them in order to detect errors. The implementation of these "reliable" nodes

requires the use of other fault tolerance techniques and the coordination of each access is

bound to result in lower performance.

Since each process can spawn new processes, and two cop1es of each new process

must be initiated, without coordination there will be an exponential growth in the number

of processes in the system. Furthermore, if one node is allowed to spawn new processes,

both copies of the new process may begin execution in an erroneous internal state that

will not be detected and may cause system failure. Coordination of process initiation

requires overhead in time and in the storage for the extra "bookkeeping" information.

To minimize communication delays, the system must attempt to assign processes

that communicate often to nodes that are close to each other. With the above scheme,

the number of processes that interact "often" in a particular application is doubled. Since

each node has only a small number of neighbors (equal to the number of its

42

communication ports), the average distance between nodes executing these processes 1s

increased, resulting in increased communication delays in the system.

Even if the above problems with syst(m-controlled duplication and comparison are

overcome, the scheme does not provide adequate support for locating faulty components

so that after an error is detected they can be logically removed from the system before

normal operation is resumed. When a node receives two unequal copies of a message it

cannot determine which one or the originating nodes failed or whether the error was

caused by a faulty communication link or by one of the nodes that forwarded the message.

The need to locate faulty nodes and links, rather than simply determine that they

exist, favors more localized schemes for error detection. Ir the failure of a node can be

detected by an immediate neighbor that is fault-free, the entire system can determine

which node has failed if the diagnostic information can be reliably distributed from the

neighbor.

One way for nodes to determine if their neighbors (or adjacent links) are faulty is to

periodically execute "diagnostics" on these neighbors. Preparata et al [Prep67] performed

pioneering work on the correct interpretation of such diagnostic information under the

assumption that a test performed by a faulty node is invalid. Using this work, Hakimi

and Amin [Haki74] have shown that if all the nodes test their neighbors simultaneously, all

faulty nodes can be identified based on the results of these tests if the following conditions

hold: (1) the number or faulty nodes is less than half the total number or nodes, (2) the

node connet:tivity or the system is greater than the number or faulty nodes.t

The results of the work mentioned above are not diret:tly applicable to the diagnosis

of a multicomputer. In a multicomputer the nodes operate asynchronously and cannot

perform the tests "simultaneously:' Furthermore, there is no "central observer" that can

reliably obtain and interpret the results of all the local tests. The need for a central

observer is eliminated in a tlietri6uted diagnosis algorithm developed by Kuhl and

Reddy (Kuhl80). In a system using this algorithm each node tests its neighbors directly

and then forwards to all of them the results of these tests. A node accepts and propagates

diagnostic information for a neighbor only after testing that neighbor to ensure that it is

not faulty. Based on the tests it performs and the diagnostic information it ret:eives, each

node can independent/11 diagnose the system as long as the node connet:tivity of the

t Thia ia a simplification or the actual results.

43

system i! greater than the number of faulty node!.t

There are !everal difficulties with the use of di!tributed diagnosis for error detection

as part of a fault tolerance scheme:

(1) The diagnosi! relies on the ability of node! that are interconnected via asynchronous

communication link! to test each other. Furthermore, since these tests are

performed during normal operation, they must be relatively short. Given the

difficulties of testing VLSI chips (!ee Chapter 2), the quality (coverage) of !uch tests

is doubtful.

{2) Most fault! are traD!ient rather than permanent [Cast82]. A node may produce

incorrect output! and later pas! an exhaustive test.

(3) A node can oniy ''\:.:-ust" a message it receives after every node on the path of the

mes!age has tested the link through which the message arrived as well as the node

that forwarded it. This requirement leads to more complicated communication

protocols and restrictions on the allowable behavior of applications [Hoss83].

3.2. Error Detection Using Self-Checking Nodes

The problems with error detection schemes based on periodic testing stem from the

distance between error occurrence and detection in both space and time. As a result of

the distance in space, once an error is detected, it is difficult to determine which

component was originally respoD!ible for the error. As a result of the distance in time,

erroneous information is able to spread throughout the system before an error is detected.

The key to developing an effective error detection scheme is thus to minimize the

distance between error occurrence and detection in both space and time. Ideally, these

distances can be reduced to zero so that as soon as an error occurs, i.e., a component

produces incorrect results, the error is detected by all the other system components that

are receiving this erroneous information. This "ideal" can be achieved if all the

components in the system are 1t.l/-checking so that in addition to their normal outputs

they also indicate to the rest of the system whether these outputs are correct.

All possible outputs from a self-checking component are divided into two di!joint

sets. Outputs that contain an error indication are called noncode outputs, and outputs

that do not contain an error indication are called code outputs. The self-checking

t This is a simplification or the actual results.

44

mechanism of the component is said to have failed if the component produces code output

that is incorrect. Another component tests the validity of the outputs of a self-checking

component by determining whether these outputs are code or noncode.

Just as complete testing of a VLSI chips is impossible (see Chapter 2), no component

can be self-checking with respect to all possible combinations of hardware faults. Instead,

for· all likelv faults, the component must either produce the correct outputs or produce

noncode outputs. A component that satisfies this requirement is said to be fault

1eeurc [Ande73}.

\Vhen a fault occun, it does not necessarily cause immediate component failure; the

outputs from the component may continue to be indistinguishable from those of a fault­

free component for a long time. The fact that a fault occun only means that there is a

possibility that, for a particular input or state, the outputs will deviate from those of a

fault-free component some time in the futw-e, and that the deviation will be directly

attributable to the occurrence of the fault.

No con.ponent is fault-secw-e with respect to all possible combinations of all possible

faults. Since the component is not guaranteed to produce a noncode output immediately

following the occw-rence of the frrst fault, several different faults may exist in a

component without any indication to the rest of the system. If the component is not fault

secw-e with respect to the particular combination of faults, futw-e incorrect outputs from

the component may be accepted as correct by the rest of the system. In order to prevent

this situation, there should be a high probability that after a small number of faults occw-.

a noncode output is produced by the component before the fault-secure property of the

component is destroyed by additional faults.

A component is •elf-tuting [Ande73] if it is guaranteed to produce a noncode output,

due to the occw-rence of one or more faults, before additional faults can occw- and lead to

the fail w-e of the self-checking mechanism (in which case the component may no longer be

fault-secw-e). Thus, if one or more faults occw- dw-ing normal operation of the

component, a noncode output will be produced within some bounded period of time. In

order to achieve the goal of providing reliable error detection, self-checking components

must be both fault-secw-e and self-testing. Such components are said to be totallv •elf­

checking [Ande73) (TSC).

One of the difficulties in implementing self-checking nodes in a multicomputer is that

45

such nodes must be capable of sending an error indication to the rest of the system while

failing to correctly perform their normal function. This implies that the transmission of

the error indication must not rely on the correct functionality of most of the node. It is

therefore unacceptable for the error indication related to a particular packet to be sent

separately from that packet. Not only does this introduce a distance in time between

error occurrence and detection, but also, the process of recording the error indication and

later transmitting it is relatively complex and unreliable in a node that is already failing.

The indication of whether a particular output is correct must therefore be transmitted

together with that output.

In one approach to implementing TSC nodes, a variety of techniques are used for

different parts of the node. For example, buss~, memori~ and registers may include one

or more "parity bits" carrying redundant information that can be used to detect

errors [Tsao82]. Complex r~idue codes and parity prediction schem~ can be used for

checking ALUs [A viz71, Kraf81]. Error detecting codes ~e not useful for self-checking

shifters, modules that perform logic functions, and control logic; self-checking modules of

this type can only be implemented by duplication of the functional modules and

comparison of the r~ults [Tsao82].

If the TSC node is implemented wnng a variety of self-checking techniques for

different parts of the node, error signals from all the self-checking subcomponents must

somehow be combined to generate the error signal to the rest of the system.

Unfortunately it is not clear how such signals can be combined in a "reliable" manner.

The need to consider error detection in every part of the module increases the complexity

of the design and its verification, thereby decreasing the confidence that the design is

correct and reducing the overall reliability of the system. Furthermore, the effectiveness

of a combination of different localized self-checking techniques inside a chip is very

difficult to evaluate.

An alternative approach to implementing a TSC node us~ two identical,

independent modul~, each performing the function of the node. If the two modules

operate synchronously, their outputs should always be identical. ~ long as the two

modul~ do not fail simultaneously in exactly the same way, producing identical incorrect

outputs, an error can be detected by a simple comparison.

If the outputs from the two modules are transmitted through independent links to

Ulj t SKU I.~

46

the neighbors, then the comparison can be done by the neighbors. ~ long as the two

parts of the duplex link never fail in exactly the same way at the same time, the

comparison done by the neighbor checb the link as well as the source node. There are

two disadvantages to this approach: (1) it doubles the required communication bandwidth,

and (2) the error signal is not available within the faulty node for possible local action in

response to a mismatch (see below).

Instead of transmitting the outputs from both modules, the comparison can be done

inside the node (Fig. 3.1). The outputs from the comparator can be used as an error

indication to the rest of the system as well as for local action. The output from one of the

modules is the "functional" output from the node.

Proce1110r I ~

~~
Proceseor

+Memory +Memory

ReM! Rad

'I' ~ 1 '!' j~

I

~ K ~

\ ~mpuaw' I
D v2 v2 VD

~·
~, ~' ~·

"Functional" Failure Nei,hbor's "Functional"

Output Indicator Status Input

Fig. 3.1: A Self-Checking Self-Resetting Node

An important property of the self-checking node in Fig. 3.1 is that the output from

the comparator is used to reset the node when an error occurs. This allows the node to

attempt to reestablish a "sane state" so that the system can continue to use it. At the

same time, the error signal is also received by neighbor nodes which can make an

independent decision whether they are willing to continue to interact with this node.

Since the comparison of the outputs of the two modules is done locally within each

node, some other technique is used to detect errors caused by faulty communication links.

This can be done using error-detecting codes. For example, using cyclic codes, any desired

probability or detecting errors can be achieved by adjusting the number or check bits sent

47

with each packet [Elki82j. Errors in the encoding and decoding of packets are also
detected since packets are encoded before they are compared at the output of a node. and
packets ~e decoded separately by the duplicate modules in each node.

A component in which the TSC property is achieved by duplication and comparison
requires more than twice the hardware of a component that is not TSC. 'While at first
glance this approach may seem wasteful, it is well worth the cost when the resulting low
design complexity and high fault coverage are considered.

There still are situations in which duplication and comparison fails to detect errors:
(1) the comparator may fail and mask a mismatch between the outputs of the two
modules, and (2) the two modules may fail simultaneously in exactly the same way. Due
to the rmt problem, faults in the comparator must not. remain undetected, i.e., the
comparator must be self-testing. The probability that two complex VLSI modules will
simultaneously fail in exactly the same way is very low. In Chapter 6 it is shown how this
probability can be reduced further, but for now it will be assumed that this probability is
zero.

Even without the selr-testing requirement, all possible outputs from the comparator
can be divided into two disjoint domains: code outputs that indicate that the two modules
are producing identical results and noncode outputs that indicate an error. For the rest
or the system it is important to determine whether the outputs or a particular node can be
"trusted:' It does not matter whether the node cannot be trusted due to the failure of the
functional modules or due to the failure of the comparator. Thus, the self-testing
comparator should be implemented in such a way that a fault in the comparator will
result in an output that is in the same domain as comparator outputs that indicate a
mismatch between the functional modules.

Unfortunately, it is not possible to implement a comparator that will produce a
noncode output immediately when a fault occurs. Different parts of any self-testing
circuits are tested by different inputs. Thus, the comparator must be driven by some
subset of the possible inputs in order to perform a complete self-test. Since during normal
operation the outputs from the two functional modules are always identical, only inputs to
the comparator generated by identical outputs from the functional modules are considered
(these inputs are eode input3 to the comparator). In the worst case, all possible code
inputs may be required for a complete self-test.

48

The realistic requirements from the self-testing comparator are therefore that it will

produce noncode output a "short time" after a fault occurs. In this ca!e "short" is

relative to the failure rate of the hardware. The noncode output must be produced soon

enough after the fault occurs so that there is a very low probability that one of the

functional modules will fail in the interim. Thus, the minimal requirement of the

comparator used in a TSC node is that for any likely single fault there is some code input

that results in a noncode output. The implementation of a comparator that satisfies this

requirement is discussed in Chapter 4.

References

Ande73. D. A. Anderson and G. Metze, "Design of Totally Self-Checking Check Circuits

for m-Out-\lf-n Codes," IEEE Tran.,actionl on Computer~ C-22(3) pp. 263-269

(March 1973).

Aviz71. A. Avizien:s, "Arithmetic Error Codes: Cost and Effectiveness Studies for

Application in Digital System Design," IEEE Tran1action1 on Computera

C-20(11) pp. 1322-1330 (November 1971).

Ca!t82. X. Castillo, S. R. McConnel, and D. P. Siewiorek, "Derivation and Calibration

of a TraD!ient Error Reliability Model," IEEE Tran.,actiona on Computera

C-31(7) pp. 658-671 (July 1982).

Elki82. S. A. Elkind, "Reliability and Availability Techniques," pp. 63-181 in The

TheorJI and Practice of Reliable SJ1atem De~ign, ed. D. P. Siewiorek and R. S.

Swarz, Digital Press (1982).

Haki74. S. L. Hakimi and A. T. Amin, "Characterization of Connection Assignment of

Diagnosable Systems," IEEE Tran1. Computer~ C-23(1) pp. 86-88 (January

1974).

Hoss83. S. H. Hosseini, J. G. Kuhl, and S. M. Reddy, "An Integrated Approach to Error

Recovery in Distributed Computing Systems," 19th Fault-Tolerant Computing

SJ1mpo1ium, Milano, Italy, pp. 56-63 (June 1983).

Kraf81. G. D. Kraft and W. N. Toy, Microprogrammed Control and Reliable De8ign

of Small Compute,.,, Prentice-Hall (1981).

Kuhl80. J. G. Kuhl and S. M. Reddy, "Distributed Fault-Tolerance for Large

49

Multiprocessor Systems," Proc. 7th Annual SJ1mpo3ium on Computer

Architecture, pp. 23-30 (May 1980).

Prep6i. F. P. Preparata, G. Metze, and R. T. Chien, "On the Connection Assignment

Problem or Diagnosable Systems," IEEE Tran3. Electronic Computer8 EC-

18(6) pp. 848-854 (December 1967).

Rand78. B. Randell, P. A. Lee, and P. C. Treleaven, "Reliability Issues in Computing

System Design," Computing SurveJ13 10(2) pp. 123-165 (June 1978).

Tsao82. M. M. Tsao, A. W. Wilson, R. C. McGarity, C. Tseng, and D. P. Siewiorek,

"The Design or C.rast: A Single Chip Fault Tolerant Microprocessor," lfth

Fault-Tolerant Computing SJ1mpo3ium, Santa Monica, CA, pp. 63-69 (June

1982).

50

Chapter Four

Self-Testing Comparators

In Chapter 3 it was shown that duplication and comparison is an effective technique

for implementing self-checking computing elements. One of the potential weaknesses of

this technique is that if the comparator fails, a subsequent mismatch between the outputs

or the two functional modules may not be detected and erroneom information will be

accepted as correct by the rest or the system. Hence, it is imperative that faults in the

comparator be detected soon after they occur so that the rest or the system can be

informed that the supposedly selC-checking computing element has lost its self-checking

capabilities. h discussed in Chapter 3, this requirement can be fulfilled by ming a ~elf­

te~ting comparator that signals its own faults during normal operation. The design,

implementation, and application of such a comparator are discmsed in this chapter.

h discussed in Chapter 2, large VLSI chips are far too complex to allow detailed

analysis or all the possible physical defects that can ~cur and or the effects or these

defects on the operation of the circuit. On the other hand, PLh are characterized by a

simple regular structure and are therefore more amenable to thorough analysis. PLAs are

therefore a preferred implementation technique Cor combinational circuits whose behavior

under faults is or critical importance. Since the correct operation of the self-testing

comparator is critical to the error-detection technique proposed in this thesis, this chapter

focuses on the use or PLh for implementing the comparator.

Section 4.1 presents a new fault model Cor MOS PLh that is based on the fault

model for general MOS VLSI circuits that was discmsed in Chapter 2. The model reflects

some physical defects that are likely to occur in integrated circuits but are not taken into

account in previously published models.

Comparators implemented with tw~level AND-OR or NOR-NOR circuits, which are

claimed to be self-testing, have been presented in the literature [Cart68, Wang79]. Some

of this work and related terminology are reviewed in Section 4.2. The comparator

implementation discussed in this chapter is based on the designs proposed by Carter and

Schneider[Cart68J and Wang and Avizienis [Wang79J. In Section 4.3 it is proven that

these prev1ous designs, which require that the number of product terms grow

51

exponent.ially with the number or input bits, are optimal in terms or site. The correct

operation or the proposed circuit under fault-free conditions is verified in Section 4.4. In

Section 4.5 it is shown that the circuit cannot he self-testing with respect to several type~

o(faults unless a few simple layout guidelines are observed in its implementation.

Section 4.6 presents a formal proof that a comparator implemented as a NOR-NOR PLA,

based on the design or Wang and Avizienis (Wang79J and following the layout guidelines or

Section 4.5, is self-testing with respect to all single faults in the fault model introduced in

Section 4.1. Section 4.7. discusses the application or the self-testing comparator as a

basic building block (or implementing fault-tolerant systems.

4.1. A Fault Model for MOS PL.Aa

The effect or a single physical defect on the output or an integrated circuit is

dependent on layout details such as which lines are adjacent, which lines cross each other,

etc. One or the advantages or using PLA.s is that their regular structure simplifies

analysis or the effects or faults on its outputs and therefore facilitates test vector

ceneration and determination or fault coverage. This section describes how the faults

discussed above affect the operation or a two-level NOR-NOR MOS PLA. To facilitate

this discussion, a "typical" NMOS PLA is shown in Fig. 4.1.

··--·········-··-····-···-····················-·······························
. :vDD .

VDD Product Term Line OR

+ ~~

,, ~-~-~~--~~-~---····----········--··········-~~~~~-~~----·············
Fis. 4.1: A Self-Testing NMOS Two-Rail Code Checker

A commonly used fault model Cor MOS PLA.s includes three types of faults [Mak82,

Osta79, Wang79J:

52

(I) A stuck-at fault on an input line, product term line, or output line.

(II) A s,tlort between two adjacent or crossing lines that forces both of them to the same

logic value.

(III) A missing or extra crosspoint device in the AND array or in the OR array.

The ftrst two types or faults were explained above and correspond directly to physical

defects in the circuit. The third type of faults refers to faults whose effect on the

operation of the circuit is equivalent to the effect of a missing or extra crosspoint device.

This may be the result of the gate of the crosspoint device stuck-at its "off'" value (0 for

NMOS, 1 for PMOS) when it should be connected to an input or product term line, or

connected to an input or product term line when, by design, it should be permanently

held at its "off'" value.

A missing crosspoint device has the same effect as a device that always misinterprets

the line that drives it as a logic 0 even when it is a logic 1. Thm, a missing crosspoint

device fault in the AND array is equivalent to a weak 1 fault on the corresponding input

line while a missing crosspoint device fault in the OR array is equivalent to a weak 1 fault

on the corresponding product term line. "Hence, if weak 1 faults on input lines and

product term lines are colll!idered, there is no need to COIUiider missing crosspoint device

faults separately.

The above three fault types do not include weak 0 and weak 1 faults or breaks in

lines that are not equivalent to stuck faults. Since breaks in lines are one of the main

causes of failures in VLSI circuits [Cour81, Gali80J, it is clear that the above simple fault

model does not accurately reflect likely physical defects in aMOS PLA.

Some of the effects of breaks on general MOS circuits cannot occur in PLAs due to

their structure. This fact can be used to reduce the complexity of the fault model that

must be colll!idered in analyzing the operation of PLAs under faults. One such

simplification relies on the fact that input lines are only connected to gates of devices in

the PLA. A break in an input line causes a segment of that line to "float" and is

therefore equivalent to a weak 0 and/or weak 1 fault. Hence, if weak 0/1 faults on inputs

lines are taken into account, there is no need to collllider breaks in input lines separately.

Another important simplification of the fault model is based on the fact that product

term lines and output lines only have one pull-up (load) device and that this device is

independent of the inputs to the circuit. Every point in a product term or output line is

53

either connected to the single pull-up {load) or permanently disconnected (rom it (due to a

break). For any input, segments or the line that are connected to the pull-up are either

set to logic 1 or set to logic 0 by some pull-down device that is turned on by that

particular input. A segment of the line that is disconnected from the pull-up is set to

logic 0 b;y the first input that is supposed to set it to 0 and stays stuck-at-0 for a long

time thereafter. Hence no state is preserved on lines between inputs {clock phases). The

troublesome faults that can convert a 'eneral combinational circuits into a sequential

circuit cannot occur.

Based on the above discussion, a realistic fault model for PLAs must include

weak 0/1 faults as well as the possible effects of breaks in product term lines and output

lines. Specifically, the following faults must be considered:

(A) Weak 0 or weak 1 or both on one input line.

(B) A short between two adjacent input lines.

(C) Weak 0 or weak 1 or both on one product term line.

(D) A short between two adjacent product term lines.

(E) Weak 0 or weak 1 or both on one output line.

(Ff A shor;;, between two adjacent output lines.

(G) A short between an input line and a crossing product term line.

(H) A short between a product term line and a crossing output line.

(I) An e>:::-a crosspoint device in the AND array.

(J) An extra crosspoint device in the OR array.

(K) A break in a product term line.

(L) A break in an output line.

4.2. Background and Terminology

Since self-testing comparators are key elements in many computer systems with on­

line error detection, the design and implementation of self-testing comparators has been

an active research area for many years. This subsection discusses some of that work and

introduces the terminology and notation that will be used in the rest of this chapter.

It 1s assumed that two n-bit vectors, and

B - (b.-~rb~ ... ,60), are to be compared. In much of the literature tUJo-rail code

eht.cker• rather than comparator• are discussed. Given two n-bit vectors

X - (z._1,z.-21 ... , z0) and Y- (y._1,y.-¢. ... , y0) , the combined 2n bit vector

54

XY - (z._1, ..• I z 0,y._11 ••• I ro) is a two-rail code word if z1 - y'1 for all i such that

0 ~ i ~ n-1 (where r'1 means the complement of r1). AJl n-bit vector whose elements

are the complements of the elements of B will be denoted B • . Thus,

B • - (b'._1,b'•-2l ... ,6'0). A two-rail code checker whose input is the bit vector AB •

is, effectively, a comparator of vectors A and B . Assuming that all the input bits are

available in both complemented and uncomplemented form, there is no difference between

the design of comparators and two-rail code checkers. Hence, the terms "comparator"

and "tw~rail code checker" will be used interchangeably.

Pioneering work in the field of self-testing checkers was reported by Carter and

Schneider [Cart68J whose design of a self-testing two-rail code checker serves as a basis for

the comparator discussed in this paper. For the case n -= 2 , Carter and Schneider

presented a design of a circuit that checks whether the input is a two-rail code word and

that is also self-testing with respect to any single stuck-at fault [Cart68]. The circuit,

shown in Fig. 4.2 [Cart68J, has two output lines c1 and c0 where (c1,c0) = (0,1) or

(c1,c0) - (1,0) for code input, and (c1,c0)- (0,0) or (c1,c0)- (1,1) for noncode input.

cl co
Fia. ,.2: A Self-Testing Two-Rail Code Checker

Carter and Schneider's checker has the property that, with no faults, every line in

the circuit is 0 for at least one code input and 1 for at least one code input. If any line is

stuck-at-0 (s-a-0) or s-a-1, the code input for which the line is supposed to be at 1 or 0,

respectively, results in the output (0,0) or (1,1).

Wang and Avizienis [Wang79} extended Carter and Schneider's design to arbitrary

size input vectors. For each one of the 2• input code words there is a single unique

product term that is selected (set to 1) only by that code word. Each product term line

55

selects exactly one of the two output lines. Depending on the parity of the vector

A - (a"_1,a"_z, ... , a0) , half the code inputs select output c0 and the other half select

output c1•

The checker proposed by Wang and Avizienis can be described by sum-of-products

equations as follows: For any integer k , let lk denote the set of the k integers between

0 and k-1 , i.-e. I,- {0,1, ... ,k-2,k-1} . If Q is a set, let I Q I denote the

number or elements in Q .

co- E jl II a ..] I II b'i]
(Q I QCI,.ud I Ql ewt0} (i lieQ} {i I JEII.-Q)}

(1)

c1 - E jl II ail! II b·,Jl
{QIQC/,.udiQICIIIU} {ilieQ} (il.fEll.-Q)}

AB will be shown in Section 4.4, similar functionality can be achieved in NOR-NOR

form based on the Equation (2). An NMOS PLA which implements these equations for

the case n - 2 is shown in Fig. 4.1. It should be noted that there are a total of 2n

input bits to this circuit: all the "a" bits uncomplemented and all the "b" bits

complemented. Each "product term" contains exactly n literals.

c0 = NOR I NOR[{ai I iEQ} U {b'i I iE(/"-Q)}J]
(QI QCI,.ud I QICIIIU}

(2)

c1 - NOR I NOR[{ai I iEQ} U {b'i I jE(l"-Q)}l]
{Q I QCI,.ud I Ql ewoa}

4.3. Optimal Design of Selr-Teeting Comparators Using Two-Level Logic

Published work on self-testing checkers usually consists of a circuit design and a

proof that the circuit is self-testing. There has been no attempt to show that the

proposed desigm are optimal in any respect. This section discusses the design of self­

testing comparators which are optimal with respect to the number of output lines, the

number or input lines, and the number or product term lines.

Since the comparator must be self-testing with respect to stuck-at faults on the

output lines, it must have at least two output lines !Cart68]. The use of more than two

56

lines ha! been proposed[Son81); however, since limited communication bandwidth is a

severe problem in VLSI systems, it is preferable to minimize the bandwidth dedicated to

transmitting self-testing information. Hence only comparators with two output lines will

be considered.

There are two possible -ways to "code" the output from the comparator and still

allow self-testing of the output lines: (A) The code (correct) output is {0,1) or (1,0) and the

noncode (error indication) output is (0,0) or {1,1). (B) The code output is (0,0) or (1,1)

and the noncode output is {0,1) or (1,0). Option (A) is preferable since it allows the

comparator to be self-testing with respect to shorts between the output lines a! well as

any other fault that causes a unidirectional error. A unidirectional error means that, due

to a fault, some lines that are supposed to be at logic 0 are at logic 1 or some of the lines

that are 'supposed to be at logic 1 are at logic 0, 6ut not 6oth. It ha! been shown that the

faults that are most likely to occur in PLAs (fault types (I), {II), and (III) in Section 4.1),

can result only in a unidirectional error [Mak82). Therefore only comparators with the

option (A) encoding of the outputs will be considered.

The self-testing comparator design proposed by Wang and Avizienis requires 2"

product terms for comparing n-bit vectors. However, it is possible to implement a

comparator that ha! two outputs that are {0,1) or (1,0) for code inputs and (1,1) for

noncode inputs based on the equations:

~--1

c0-a '0+6'0+ E (a;b';+a '1bt} ,.
~-1

c1-=a0+b0+ E (a;b ';+a ';b;) ,_
This comparator is self-testing with respect to faults in the input lines and output lines

but requires only 4n product terms. Unfortunately, this comparator is not self-testing

wit-h respect to stuck faults on the product term lines. The question thus arises what is

the minimum number of product terms necessary for a comparator that is self-testing

with respect to a realistic fault model thai also takes into account faults affecting the

product term lines.

Although the design of a self-testing comparator presented by Wang and

Avizienis [Wang79) uses 2• product terms, one for each code input, this is never shown to

be a necessary property of self-testing comparators implemented with PLAs. In several

papers [Khak82, Wang79) it is claimed that it is "desirable" to use PLAs that are

nonconcurrent, i.e., where each code input selects only one product term. Wang and

5i

Avitienis propose a general approach to the design of self-testing PLAs that always results

in a nonconcw-rent circuit. They also give an example of a PLA where concw-rency leads

to a circuit which is not self-testing[Wang79}. However, nonconcw-rency is uot presented

as a n~ce.,.,ar11 property nor is there any mention of a problem with product terms that

are selected by more than one code input.

In the following we will show that the exponential growth in the number of product

term lines is indeed nec~a.ry for self-testing. For any two-level NOR-NOR

implementation, we also show that every code input must select exactly one product term

line and that no two different code inputs can select the same product term line. This is

necessary even if the only faults considered are single stuck-at faults on the input, output

and product lines. The proof that the same requirement also applies to two-level AND­

OR implementations is almost identical and will not be presented explicitly.

umma 1: Every product term must be selected (set to 1) by least one code word.

Proof: Assume that there is a product term that is not selected by any code word.

A stuck-at-0 fault on this product term line will not be detected during normal operation,

thus violating the self-testing requirement.

umma f: Every code word must select at least one product term.

Proof: I(there is some code word that does not select any product term, the

comparator output for that code word will be the noncode output (1,1), which incorrectly

signals an error.

umma 9: All the product terms selected by a single code word must be connected to

the same single output in the OR array.

Proof: If any of the product terms selected by a code word is connected to both

outputs in the OR array, then, for that code word, the output will be the noncode output

(0,0), which incorrectly signals an error. Similarly, the output will be (0,0) if the product

terms are not all connected to the same output line.

umma -4: No product term can be selected by more than one code word.

Proof: B11 eontradietion. Assume that P1 is a product term which is selected by

the two code inputs

.AA - (a._1, ••• 1 a0,a._11 ••• 1 a0) and BB - (b._1, .•• 1 bo,b.-1, ••• , bo) .

Since the two code words are different, there exists an integer k (0 ~ k ~ n-1) such

58

that a* "" b* . Pt is selected only if all the literals in the expression corresponding to Pi

are 0. Since Pt is selected by both code words, it must be independent of bit k from

the two functional modules. Hence P, is also selected by the code input

W\-V - (a._11 ••. 1 a·*~ ... 1 ao,a.-11 ... 1 a·*~ ... 1 a0) and by the none ode input

Q - (aa-v .. · 1 a·*~ · · . 1 ao,aa-11 · · . 1 a*, · .. 1 ao) ·

Since Q is a noncode input, the corresponding output produced by the comparator must

be noncode. When Pt is selected, it sets to 0 the one output line it is connected to.

Hence, Q must select another product term, Pi, connected to the other output line, so

that the noncode output {0,0) will be produced. By Lemma 1, Pi must also be selected

by at least one code word CC - (c_11 ••• I c*l ... I c0,c .. -11 ... I c*l ... 1 c0) •

Since in CC , bit 1 from both functional modules is the same, and in Q bit k from

one unit is the complement of bit k from the other unit, Pi must not include the literal

corresponding to bit k from at least one of the two functional modules. Hence, since Q

selects Pi, either AA or W\-V must also select Pi. Without loss of generality, assume

W\-V selects Pi . From the above, W\-V also selects P, . But in the OR array Pi is

connected to a different output line from P, . Hence, Lemma 3 above is "violated" and

the code word W\-V results in the noncode output {0,0). Thus the assumption that there

exists a product term that is selected by more than one code input must be incorrect.

Lemma 5: Every code word must select one, and only one, product term.

Proof: By Lemma 2, every code word must select at leaat one product term.

Assume that the code word AA -= (a._11 ••• 1 a0,a._11 ••• , a0) selects the two product
•

terms P, and Pi . By Lemma 4, no other code word except AA can select P; or Pi .

Hence, a stuck-at-0 fault on the P, or Pi lines can only be detected by the input AA .

By Lemma 3, both P, and Pi must be connected to the same output line in the OR

array. Hence, when the code word AA is applied, the output from the PLA will be the

same whether or not one of the product term lines Pt or Pi is stuck-at-0. Thus a

stuck-at-0 fault on one of the product term Jines Pt or Pi will not be detectable by any

code word, thus violating the self-testing requirement.

Theorem 1: A self-testing comparator of two n-bit vectors that has two output lines and

is implemented as a two level NOR-NOR PLA, must have ezodlfl 2" product terms.

Proof: By Lemma 1, every product term line is selected by at least one code word.

By Lemma 5, every code word s~lects one, and only one, product term line. Hence, the

59

number of product term lines is equal to the number of code word!. Since there are n

bits of output from each one of the two functional modules, there are 2" code words.

Therefore the num her of product term lines is exact/~ 2" .

Q.E.D.

In summary: any comparator of two n-bit vectors must have at least 2n input lines

(two lines for every pair of bits being compared), at least two output lines are necessary,

and, based on the proof presented in this section, exactly 2" product term lines are

necessary for any tw~level NOR-NOR implementation. Hence, the design based on

Equation (2), which was discussed in the previous section, is optimal. In the next three

sections a PLA implementation of a self-testing comparator based on this design is

analyzed in detail.

4.4. Fault-Free Operation of the Comparator

In the previous section it was shown that any self-testing comparator implemented as

a single tw~level NOR-NOR PLA must have 2• product terms. This section and the two

subsequent sections discuss a specific self-testing comparator, based on Equation (2) in

Section 4.2, which satisfies this necessary property.

Although a comparator based on Equation (2) has been discussed in the

literature [Wang79], there is no rigorous proof that it indeed functions as a comparator.

Such a prooi is presented in this section. To prove that, with no faults, the circuit

described by Equation (2) is a comparator, it is shown that if A -= B , the output is (0,1)

or (1,0). It is then shown that if A .,. B , the output is (0,0} or (1,1).

If A - B , there are exactly n ones and n zeros at the inputs. If U is a set of

integers U -= { i I a, - 0} , then for every integer j such that j E (I" -U) ,

a1 - b1 -= 1 . Thus, b•1 - 0, and the one product term that correspond! to Q == U in

Equation {2) is selected. Every other product term includes the literal a1 for some

jE(J.-U) or b·, for some iEU. Hence, all of the other product terms are set to 0.

ThJlS, only the one output line connected to the single selected product term is set to 0,

and the output is (0,1) or (1,0).

If A 'f' B , the two bit-vectors differ by at least one bit. Consider the product term

(3)

for some Q C I. . Assume that A and B differ in bit r, r E !,. , so ap == 1 and

60

b ·r - 1 in the input .AB . Ir r E Q , the product term is set to 0 since it contains the

literal ar . Ir r ~Q , the product term is set to 0 since it contains the literal b'r . Hence,

all of the product terms are set to 0 and the output is (1,1).

Since the two bi~vectors differ by at least one bit, if there does not exist any integer

r e r. such that ar - 1 and b'r - 1 , there must exist an integer , e r. such that

a.- 0 and b'• - 0 in the input .AB . If .AB doesn't select any product term, the

output is (1,1). Assume that the product term that corresponds to Q - Q1

(Equation (3)) is selected. Ir •EQ1 , consider the set Q2 -= Q 1-{"}. Since Q 2 C Q 1 ,

r.-Q2- r.-Ql+{,} ' and b'.- 0' the product term that corresponds to Q - Q2 will

also be selected. Ir '~Q 1 , consider the set Q3 - Q 1+{"} . Since a. -= 0 and

I.-Q3 C r .. -Q 1 , the product term that corresponds to Q -= Q3 will also be selected.

Thus, either the product terms corresponding to Q 1 and Q2 will be selected, or the

product terms corresponding to Q1 and Q1 will be selected. The number of elements in

Q1 is one greater than the number of elements in Q2 and is one less than the number of

elements in Q3 • Hence, either I Q2 1 and I Q3 I are even while I Q 1 I is odd, or

I Q2 1 and I Q3 I are odd while I Q1 1 is even. Thus, the product terms corresponding

to Q2 and Q3 are connected to the same output line, which is different from the output

line to which the product term corresponding to Q1 is connected. Therefore, product

terms collnectec t.O both output lines are always selected and the output is (0,0) .

•• 5. Identification and Elimination of Undetectable Faults

Given that the circuit described by Equation (2) functions as claimed when it is

fault-free, it remains to be shown that the circuit is self-testing with respect to any single

fault in the fault model described in Section 4.1. Specifically, it must be shown that for

any such fault there exists a code input that results in a noncode output (0,0) or (1,1) from

the comparator. In this section it is shown that there are a few faults in the fault model

with respect to which the circuit is not self-testing. These problematic faults are referred

to as undetectable faults. Layout guidelines that prevent these faults from occurring in

the actual circuit are discussed.

61

4.5.1. A Short Between Adjacent Product Term Linea

One of the possible faults is a short between two adjacent product term line~ that

forces both of the lines to logic 1 when they are supposed to be carrying different value~

(fault type (D)). If the two product term lines are connected to the same output line,

there is no code input that results in a noncode output. In fact, the circuit continue~ to

function correctly despite this fault. The reason for this is that if one of the product term

lines connected to an output line is selected, that output line is set to logic 0 regardless of

the value of any other product term connected to it. It is undesirable to allow this fault

to remain undetected since the situation may deteriorate in time and intermittently cause

weak 0 or weak 1 faults that will not be detected and will later combine with an

additional fault to caU!e more serioU! undetectable faults.

As indicated by Wang and Avizienis [Wang79J, the pos!ibility that this undetectable

fault will occur can be eliminated by ensuring that product term lines connected to the

same output line are not adjacent. Since the same number of product term lines are

connected to each output line, this guideline is easy to obey and incurs no penalty in

terms of the size or performance of the circuit. The guideline is satisfied by simply

alternating between product term lines connected to one output line and those connected

to the other line.

4.5.2. A Short Between a Product Term Line and an Output Line

Another potentially undetectable fault is a short between a product term line, P,. ,

and an output line, c,. , where there is no device at the crosspoint of the two lines. This

fault is undetectable if whenever the two lines are supposed to carry a different logic

value, they are both forced to logic 1.

The short between P1 and c,. is not detectable since the faulty circuit will behave

as follows: For the code input XX that is supposed to select P1 , Pi is supposed to be

at logic 1 and c,. at logic 1 (since the other output line, c,.·, is supposed to be at

logic 0). Hence there is no change in the output from the circuit. On the other hand, Pi
,

is supposed to be at logic 0 and c,. is supposed to be at logic 1 for every code input, l'Y ,

such that YY rf. XX and the number of c1 (i E I.) inputs that are at logic 0 in lY has

the •arne parity as the number of c1 inputs that are at logic 0 in XX . For these code

inputs, P1 is forced to logic 1 but this has no effect on c,.· which is supposed to be at

62

logic 0. For the remaining 2•-l code inputs, P1 is supposed to be at logic 0 and em ts

supposed to be at logic 0. Hence there is no change in the output from the circuit.

The short between P1 and c,. can be made detectable if it is possible to ensure

that when P; is at logic 0, it forces c,. to logic 0 as well. In NMOS, this can be done by

using large crosspoint devices in the AND array so that a single device can pull down two

load devices - the output line pull-up as well as the product term line pull-up. In

CMOS, this can be done by using large crosspoint devices in the AND array so that a

single device can discharge the precharged output line and product term line together

within the circuit's clock period. UnfortUilately, larger AND array crosspoint devices lead

to a larger PLA that is also slower due to larger capacitances.

It is possible that, due to a short between a product term line, P, , and an output

line, c,. , both lines always assume the value at which c,. is supposed to be (em

dominates). In this case, the short is undetectable regardless of whether or not there is a

device at the crosspoint of the two lines. This short is not detectable since the faulty

circuit behaves as follows: The output line c,. always forces P1 to the value that em is

supposed to be at. If there is a device at the crosspoint of P1 and c,. , there is no device

at the crosspoint or P, and the other output line, c,. .. Hence c,.. cannot be afTected by

Pi , so the output of the circuit cannot be afTected and is a code output despite the fault.

If there is DO device at the crosspoint or P; and the output line, c,. ' then when Cm

forces P; to logic 0, c,.· is supposed to be at logic 1 and a possible change in P, to

logic 0 cannot change the value or c,.. from logic 1. When c,. forces P; to logic 1, Cm·

is supposed to be at logic 0 so the change in P, from logic 0 to logic 1 cannot possibly

change the value of c.,.. from logic 0 to logic 1. Hence the output from the circuit

remains the code output despite the fault.

The short between P1 and c.,. can be made detectable if it is possible to ensure

that w ben P, is at logic 0, it forces c,. to logic 0 as well. As previously discussed, this

can be done by using large crosspoint devices in the AND array.

4.&.3. Shorta Reeultinc in Simultaneoua Weak 0 and Weak 1 Faulta

In this subsection we consider the possibility that, due to a short, two lines that are

supposed to carry complementary values are both forced to a value between logic 0 and

logic 1. The result is a weak 0 fault on one of the lines and a weak 1 fault on the other

63

line. Such shorts may be undetectable by any code input. To show that the circuit is not

self-testing with respect to such a short, it is sufficient to show that the fault is

undetectable under the worst possible combination of devices that misinterpret the values

on the lines.

1) A Short Between Adjacent Product Term Line1: ~ discussed lD

Subsection 4.5.1, adjacent product term lines should be connected to different output

lines. If a short between two product term lines, P, and Pi , forces both to a value

between logic 0 and logic 1 when they are supposed to be carrying different values, this

fault may be undetectable. For a code input XX , the short can affect the output only if

XX 1s supposed to select either P, or Pi . Without loss or generality, assume that

XX 1s supposed to select P, . All other product term lines (including Pj) are not

supposed to be selected by XX . However, a short between P, and Pi can cause the

OR array device connected to P, to misinterpret it as logic 0 and the device connected to

Pi to misinterpret it as .logic 1. Hence, despite the fault, only one product term line

(Pi) is interpreted as being selected and the output from the circuit is a code output.

Thus, this short is not detected by any code input.

It can be shown that there exists a noncode input that, due to the short between

product term lines, results in code output. Hence this short, that is not detectable by

code inputs, can mask noncode inputs. Thus, the PLA should be laid out in such a way

that either this short cannot occur, or if it does occur, both lines are guaranteed to be

forced to the same logic value instead or some value between logic 0 and logic 1.

We have already shown that the crosspoint devices in the AND array should be

made large enough so that they can pull down both the product term line and an output

line that it may be shorted to. Ir pull-ups or the same size are used for the product term

lines and the output lines, each crosspoint device in the AND array is also able to pull

down two product term lines. Hence, a short between two product term lines is

paranteed to force them both to logic 0 when they are supposed to be carrying

complementary values. It will be shown in Section 4.6 that this ensures that the short can

be detected by some code input.

2) A Short Bet.,een Adjacent Input Line1: A short. between adjacent input lines

may also be undetectable by any code input if, whenever the lines are supposed to be

carrying complementary values, both lines are forced to a value between logic 0 and

64

logic 1. Consider a short between two adjacent input lines a" and a1 (h rf= j). There

exists a code input XX - (z._11 .•. ,z0,z ·._1, ... ,z '0) for which a• is supposed to be at

logic 0 and a; is supposed to be at logic 1. Clearly z~~,- 0 and z1 - 1 so

, , 1 , , 0 , ')
Z a-11 · · · ,z A+l• ,z A-ll··· 1% J+l• ,% j-11 · · · 1% 0

Assume that the single product term line that is supposed to be selected by XX is P; .

Since :r• - 0 , there is a device CA., at the crosspoint of the input line a~~, and the

product term line P; . Assume that, due to the short, the common value of both a" and

a1 is forced to some value between logic 0 and logic 1 and that CAw misinterprets line

a• to be at logic 1. Hence product term line P; is not selected by code input XX . In

the fault-free circuit, the code input

• • 1 • • 1 • ')
z a-ll··· ,:r A+l• ,% A-ll· • • 1% J+h ,z i-1• · · • 1% 0

is supposed to select product term line P11 • Hence there is a device CAl< at the

crosspoint of input line a1 and product term line P, . Assume that, due to the short,

when the input is XX , CAJr misinterprets a1 to be a logic 0 although it is supposed to

be at logic 1. In addition, we assume that CAu and CAJr are the only Al'\D array

crosspoint devices that misinterpret the values or a. and Q.i (in particular CAM

interprets a• correct/~). Under these assumptions, all the input lines that are supposed

to be at logic 0 when the input is YY are interpreted as being at logic 0 by all the Al'\D

array crosspoint devices connected to P11 when the input is XX . Hence P11 is selected

by input XX while P; is not selected by XX . Since no other crosspoint devices are

effected py the short, no other product term line except P11 is selected by XX , and the

output is a code output. This short does not affect the output from the circuit for any

other code input since such input selects a product term other then P, or P, . Hence,

the short is not detectable by any code input.

In the fault-free circuit, the noncode input

• • 1 • • 1 • ')
Z -~~ • • · ,:r A+l• ,Z l-11 · · · ,z J+l• ,Z i-1• · • • ,z 0

does not select an~ product term and the output is noncod.e. However, due to the short

described above between 4 1 and a1 , W selects P11 and tpe result is a code output from

the circuit. Hence this short, that is not detectable by code inputs, masks a noncode

65

input.

It can be shown that if the adjacent input lines are a11 and b'i, a short between

these lines may also be undetectable by code inputs and can mask noncode inputs. Thus,

in order to ensure that the comparator is self-testing, it is necessary to prevent shorts

between input lines that can force both lines to a value between logic 0 and logic 1 from

occurring. This can be done by laying out the PLA so that the separation between input

lines is large enough that the probability or a short between them is negligible.

Alternatively, the circuits that drive the inputs of the PLA can be designed so that a

single pull-down device can overcome two pull-up devices so that a short between input

lines when they are supposed to be carrying different values will always results in both of

them being forced to logic 0. Unfortunately, these solutions lead to a larger PLA that is

also slower due to larger capacitances.

3) A Short Between an Input Line and a Product Term Line: Using arguments

similar to the above, it can be shown that if a short between an input line and a product

term line is allowed to force both or them to a value between logic 0 and logic 1, an

undetectable fault, that can mask noncode inputs, may result. Here again, one way to

prevent this situation is to guarantee that when the lines are supposed to be at

complementary values they are both always forced to logic 0. This can be done using

large pull-down devices in the circuits that drive the inputs of the PLA and using large

AND array crosspoint devices. A single AND array crosspoint device or a single pull­

down in an input driver must be able to overcome both the pull-up device or the input

driver and the pull-up device or the product term line.

4.5.4. Layout Guidelines for Eliminating Undetectable Faults

In the previous three subsections we identified several possible faults that are not

detectable by any code inputs. All of these faults are shorts between adjacent or crossing

lines. In particular, any short that results in both lines being forced to a value between

logic 0 and logic 1 when they are supposed to be carrying complementary values may lead

to an undetectable fault. The layout guidelines for preventing these faults from occurring

in the actual circuit are summarized below.

(1) Adjacent product term lines must be connected to OR array crosspoint devices that

control different output lines.

(2) The AND array crosspoint devices must be large enough so that a single device can

pull down two pull-ups - a product term line pull-up and an output line pull-up or

two product term line pull-ups.

(3) The circuits that drive the inputs of the PLA must be designed so that a single pull­

down device can overcome hvo pull-up devices.

(4) The separation between adjacent input lines and between adjacent product term

lines should be larger than the minimum separation required by the design rules.

This can help reduce the probability of a short between adjacent lines.

4.8. The Selt-Testin& Property ot the Comparator

In the previous section it was shown that the proposed comparator is not self-testing

with respect to some or the possible faults, unless certain guidelines about the layout or

the circuit and the size of some of its devices are followed. In this section we will show

that the circuit is self-testing with respect to all the other faults in the fault model. It is

assumed that some measures, such as those discussed in the previous section, are taken so

that the undetectable faults cannot occur. In particular, it is assumed that if there is a

short between two lines and the lines are supposed to be carrying complementary values,

the value of one of the lines is modified so that they both carry the logic value of the

other line.

4.8.1. A Weak 0 and/or Weak 1 Fault on a Sin&le Input Line

1} A Weak 0 Fault: Assume that the input line with a weak 0 fault is ale for some

k El •. By definition, there is at least one AND array crosspoint device, CA'" , connected

to ale that always misinterprets a logic 0 on a• as a logic 1. Hence, the device CAm is

always turned on. Thus, the product term line Pi that is connected to CA'" can never

be selected. Therefore the code input that is supposed to select P1 results in no product

term line being selected and the output is noncode (1,1). An identical argument can be

made regarding a weak 0 fault on a 11·1 (iei.) input line.

In the presence of a weak 0 fault on one of the input lines, for every crosspoint

device that misinterprets the input line to be a logic 1 when it is supposed to be a logic 0,

the code input that selects the corresponding product term line in the fault-free circuit

results in a (1,1) output. Thus the number of code inputs that detect this fault varies

between 1 and z•-l 1 depending on the number of affected crosspoint devices.

67

2) A Weak 1 Fault: Assume that the line with a weak 1 fault is a, for some k E In .

By definition, there is at least one AND a.rray crosspoint device, CAlri , connected to a,

that always misinterprets a logic 1 on a, as a logic 0. We denote the product term line

connected to that crosspoint device by Pi . In the fault-free circuit, P, is selected by

some code input XX - (z._11 ••• I : 0,z ·.-11 ••• I: ·o) . Since there is a device at the

crosspoint of a, and P, , the literal a, is in the product term that corresponds to P, .

Hence : 11 - 0 . Thus,

In the fault-free circuit, the code input

selects some other product term line Pi. Since CA., misinterprets a logic 1 on a, to be

a logic 0, code input YY selects P, . Since there is no device at the crosspoint of a, and

Pi , Pi is independent of a, . Thus YY also selects Pi despite the fault.

Since the number of a, (i E I.) inputs that are at logic 0 in XX has a different

parity from the number of ai inputs that are at logic 0 in YY, Pi and Pi are

connected to different output lines (see Equation (2) Section 4.2). Since in the faulty

circuit the code word YY selects both P1 and Pi , the output is (0,0). An identical

argument can be made regarding a weak 1 fault on a b •1 (j E I.) input line .

•• 8.2. A Short Between Two Adjacent Input Lines

As previously mentioned, we assume that appropriate layout guidelines are followed

so that a short between lines always forces both of the lines to the same logic value rather

then to a value between logic 0 and logic 1. Since the inputs to the comparator are the

outputs from one functional module and their complements from the duplicate module, no

two input lines are supposed to have the same value for all code inputs. If the two

adjacent.shorted lines are a, and b·, (0 < k ~ n-1), everv code input is transformed to

noncode input which, as previously shown, results in (0,0) or (1,1) output. AD.y other two

input lines are supposed to transfer different values for half of the code inputs. For these

code inputs, the short forces a change in value on one of the lines. Since we assume that

there are no other faults, this is equivalent to noncode input which, as previously shown,

results in (0,0) or (1,1) output.

68

4.8.3. A Weak 0 or Weak 1 Fault on a Single Product Term Line

Each product term line is connected to only one output line. Hence, a weak 0 fault

on a product term line is simply a stuck-at-1 fault and a weak 1 fault is a stuck-at-0 fault.

1) A Weak 1 (a-o-0} Fault: If one of the product terms is ,_a-0, for the code input

that is supposed to select that product term, all product terms are set to 0 and the output

is (1,1).

2) A Weak 0 (a-o-1) Fault: Assume that the product term line P, that corresponds

to set Q - Q 1 in Equation (3), is ,_a-1. Fo~· any code input that selects a product term

corresponding to some Q - Q 2 EI,., where the parity of I Q 1 I and I Q 2 1 are

different, product terms coDJlected to both output lines are selected, and the output is

(0,0). Thus half the code inputs will result in a (0,0) output due to the ,_a-1 fault on P, .

4.6.4. A Short Between Two Adjacent Product Term Linea

Since only one product term line is supposed to be selected by every code input, for

any pair of ad: acent product term lines, P, and Pi there is one code input that is

supposed to select. P, but not Pi and there is another code input that is supposed to

select P1 but not P, . We consider the three possible effects of the short when the lines

are supposed to carry complementary values:

(1) Both lines are always forced to logic 0: In this case, for the two code inputs that

correspond to the two product terms (i.e. that are supposed to select them), no product

term line will be set to 1 and the output will be (1,1).

(2) Both lines are always forced to logic 1: Since the two product term lines are

connected to different output lines, for the two code inputs that correspond to these

product term lines, the output will be (0,0).

(3) Both product term lines always assume the value of one of the lines: Assume that

the two lines are P, and Pi , and that P, always dominates. The code input YY , that

is supposed to select Pi, does not select it, since Pi is pulled to logic 0 by P, , which is

not selected by YY. Hence YY does not select any product term and the output is (1,1).

The code input XX , that selects P, also selects P1 which is pulled to logic 1 by Pi .

Since adjacent product term lines are connected to different output lines, XX results in

(0,0) output.

69

4.6.5. A Weak 0 or Weak 1 Fault on a Single Output Line

The output lines do not fan out within the comparator circuit. Thus, we need only

consider the value on the output line at the point of interface with the "outside world:'

Hence, a weak 0 fault on a product term line is equivalent to a stuck-at-1 fault and a

weak 1 fault is equivalent to a stuck-at-0 fault.

Based on Equation (2), any code input where the number of ai (i El,.) bits that are

at logic 0 is odd, is supposed to result in the output (c 1,c0} == (1,0} . Thus, in the faulty

circuit, if c0 is s-a-1, the output is (1,1), and if c1 is s-a-0, the output is (0,0). A similar

argument can be made for any code input where the number of ai bits that are at logic 0

is even and the output is supposed to be (c1,c0} == (0,1). Hence 2"-1 code inputs will

detect a s-a-1 on c0 and a s-a-0 on c1 w bile the other 2"-1 code inputs will detect a s­

a-O on c0 and a s-a-1 on c1 •

4.6.6. A Short Between Two Adjacent Output Lines

There are only two output lines that are supposed to carry different values for every

code input. Hence, a short will result in (0,0) or (1,1) output for every code input.

4.6.7. A Short Between an Input Line and a Crossing Product Term Line

Assume that the short is between input line a11 and product term line Pi . Let

XX denote the code input that selects Pi in the fault-free circuit. We must consider

the case where a11 is connected to a crosspoint device that is connected to Pi (CAiri

exists) as well as the case where CA,.,. does not exist.

If CA,.,. exists, every one of the 2"-1 code inputs for which a11 is supposed to be at

logic 1, is supposed to result in Pi at logic 0. The code input XX is the only code input

for which a11 is supposed to be at logic 0 while Pi is supposed to be at logic 1. For the

rest of the 2"-1-1 code inputs, both a11 and Pi are supposed to be at logic 0.

If CAlli does not exist, the product term corresponding to Pi includes the literal

6'11 • For the 2"-1 code inputs with 6'11 at logic 1, both a11 and Pi are supposed to be

at logic 0. For the code input XX , 6'11 is supposed to be at logic 0, and both a• and

P1 are .supposed to be at logic 1. For the rest of the 2"-1-1 code inputs, 6'11 is

supposed to be at logic 0, a11 is supposed to be at logic 1, and Pi is supposed to be at

logic 0. Thus, if CAlli does not exist, there is no code input for which a11 is supposed to

70

be at logic 0 and P, is supposed to be at logic 1.

As in the proof for a short between product term lines, we corusider the three possible

effects of the short when a* and P1 are supposed to carry complementary values:

(1) Both line! are forced to logic 0: Ir CA.,. exists, for the code input XX , Pi is

supposed to be the only selected product term line, while a• is supposed to be at logic 0.

We assume that, due to the short, P1 is forced to logic 0 by a1c . Hence, no product term

line is selected and the output is (1,1).

On the other hand, if CA.,. does not exist, the literal a• is not included in the

product term that corresponds to P, . Hence, the code input that selects P, in the

raul~free circuit is or the form:

Let YY be one or the 2•-1-1 code inputs such that YY 'I' XX and YY is also of the

form

In the raul~free circuit yy selects some product term line pi . Since there is DO device

at the crosspoint or Cljc and pi ' pi is independent or Cljc so the short between a. and

P, cannot affect Pi . Thu.s Pi is selected by YY de!pite the fault. In the faul~free

circuit, the code input

selects some product term P. . Since there is no device at the crosspoint of b •• and P. ,

P. is independent of b '• . For the code input YY , a* is supposed to be at logic 1 and

P, at logic 0. Due to the fault, P, forces a~c to logic 0. Therefore, YY selects P. as

well as Pi. Since the number or a, (i EI.) inputs that are at logic 0 in YY has a

different parity from the number of a1 inputs that are at logic 0 in ZZ , Pi and P.

are connected to different output lines (see Equation (2) Section 4.2). Hence, for the code

input YY the output is (0,0).

(2) Both lines are forced to logic 1: Let yy be one or the 2•-<l code inputs for

which a• is supposed to be at logic 1 and the number or a, inputs that are at logic 0 in

YY has a different parity from the number or a1 inputs that are at logic 0 in XX . Due

to the s~ort, when the input is YY, a• forces P1 (that is supposed to be at logic 0) to

logic 1. In addition, as in the faul~free circuit, YY selects another product term that

controls a different output line from P1 • Hence the output from the circuit is (0,0).

il

(3) Both lines are always forced to the value of a1e or they are always forced to

value or pi :

(a) Line a~e always dominates: The proof is identical to case (2) above.

(b) Line P.. always dominates: There are at least 2"-1-1 code inputs of the form

that do not select P; in the fault-free circuit. In the faulty circuit, if P.. always

"dominates;' YY selects two product term lines that are connected to different output

lines. One is the product term line selected by YY in the fault-free circuit and the other

is the product term line selected by

ZZ- (Ya-1• · · · ,Y•+1• 0 ,y,_1, · · · ,yo,y·"-v · · · ,y·lc+l> 1 ,y··-1, · · · ,y·o)

in the fault-free circuit. Hence, the output is (0,0) .

•• 8.8. A Short Between a Product Term Line and a Crossing Output Line

Assume that the short is between product term line P; and output line em , where

mE {0,1} . Let m • denote 0 when m is 1 and denote 1 when m is 0. Let XX denote

the code input that selects Pi in the fault-free circuit.

As in the proof for a short between product term lines, we consider the three possible

effects of the short when P; and em are supposed to carry complementary values:

(1) Both lines are forced to logic 0: In the fault-free circuit there are at least 2"-1-1

code inputs that do not select Pi and for which the output is (cm,Cm·) = (1,0) . For any

one of these inputs, due to the short, P; forces em to logic 0 and the output is (0,0).

(2) Both lines are forced to logic 1: If there is a device at the crosspoint of P; and

em (COim exists), in the fault-free circuit, for the code input XX that selects P .. , the

output is (cm,Cm·)- (0,1) . In the faulty circuit, due to the short, em is forced to logic 1.

Since none of the product term lines are affected, the output is (1,1). If CO;m does not

exist, then, as discussed in Subsection 4.5.2, the fault cannot be detected by any code

input.

(3) Both lines are always forced to the value of P; or they are always forced to

value of Cm:

(a) If the value of P, always "dominates;' the proof is identical to case (1) above.

(b) If the value of c,. always "dominates;• then, as discussed in Subsection 4.5.3, the fault

72

cannot be detected by any code input.

4.6.9. An Extra Crosspoint Device in the AND Array

In the fault-free circuit, every product term line, P; , is connected to n crosspoint

devices in the AND array. For every code input, n of the input lines are at logic 0 and

n are at logic 1. Ir, due to a fault, there are n + 1 crosspoint devices connected to P; ,

every code input turns on at least one of these devices and sets P; to logic 0. Thus, the

single code input that selects P; in the fault-free circuit does not select P; in the faulty

circuit. Hence, for that input, no product term line is selected, and the output is (1, 1).

4.6.10. An Extra Croeapoint Device in the OR Array

An extra crosspoint device in the OR array means that there is one product term

line, P; that is connected to both output lines. Hence, for the single code input that

selects P; , the output is (0,0).

4.6.11. A Break in a Product Term Line

Each product term line controls one OR array crosspoint device and is controlled by

n AND array pull-down devices and one pull-up (or precharge) device. All the pull-down

devices are connected to the "middle" of the line. The pull-up device and the OR array

crosspoint device are either connected on opposite ends of the product term line (as shown

in Fig. 4.1) or on the same end of the line.

Ir the product term line pull-up device and the OR array crosspoint device are on

opposite ends of the line, any break in the product term line prevents the segment of the

line connected to the OR array device from being pulled up. ~ a result, the product

term line is either floating or stuck-at-0. If the line is floating, its value is constant and

independent of the input. Hence, in any case, the product term line segment that controls

the output line is either stuck-at-0 or stuck-at-1. Earlier in this section it is shown that a

stuck-at fault on a product term line is detectable by some code input.

If the product term line pull-up device and the OR array crosspoint device are on the

same end of the line, a break in the product term line disconnects some of the AND array

crosspoint devices from the segment of the line connected to the OR array device. ~ a

result, the product term line is selected when it is not supposed to be selected. Let P;

denote the product term line that 1s selected by the code input

73

XX== (z,._11 .•• ,z~~., ... ,z0,z'.-v ... ,z·., ... ,z'0) in the fault-free circuit. A break in

P; disconnects some AND array crosspoint device, CA..- , from the segment of P, that

controls the OR array device. Since CA..- is controlled by input line a• , in the fault­

free circuit, P; can only be selected if alt. -= 0. Hence, zit. -= 0. In the fault-free circuit,

the code input YY- (z._11 .•. ,z·., ... ,z0,z'._1, .•• ,z~~., ... ,z'0) selects the product

term Pi where P; and Pi are connected to different output lines. Since the crosspoint

device CA..- is disconnected from Pi in the faulty circuit, P; is not affected by a11 and

the code input l'Y selects both P; and Pi . Hence, the output is a (0,0).

4.6.12. A Break in an Output Line

Each output line is controlled by 2"-1 OR array pull-down devices and one pull-up

(or precharge) device. All the pull-down devices are connected to the "middle" of the line.

The pull-up device and the output from the circuit are either on opposite ends of the

output line (as shown in Fig. 4.1) or on the same end of the line.

If the output line pull-up device and the circuit output are on opposite ends of the

line, any break in the output line prevents the segment of the line that serves as the

output from the circuit from being pulled up. As a result the output line is either floating

or stuck-at-0. If the line is floating, its value is constant and independent of the input.

Hence, in any case, the segment of the line that serves as the circuit output is either

stuck-at-0 or stuck-at-1. Earlier in this section it is shown that a stuck-at fault on an

output line is detectable by some code input.

If the output line pull-up device and the circuit output are on the same end of the

line, a break in the output line disconnects some of the OR array crosspoint devices from

the segment of the line that is the output from the circuit. As a result, the output line is

selected when it is not supposed to be selected. Let em denote the output line with a

break. Let CO;m denote an OR array crosspoint device that is disconnected from the

segment of em that serves as the circuit output. In the fault-free circuit, the product

term line P; , that controls COm. , is selected by the code input XX. In the faulty

circuit, due to the break, the crosspoint device COm. cannot afTect the output line em .

For the code input XX , Pi is the only selected product term. Hence COm. is the only

OR array crosspoint device that is turned on. Therefore neither output line is pulled

down and the circuit produces the noncode output (1,1).

74

4.1. Implementation and Application Considerations

In the previous three sections it was shown that, using a single two-level NOR-:\OR

PLA, it is possible to implement a comparator that is self-testing with respect to any

single fault that is likely to occur in MOS VLSI circuits. This result is a necessary

prerequisite for the use of duplication and comparison as the basic scheme for

implementing error detection. However, two main problems remain to be discussed: First,

the size of the comparator, implemented as a single PLA, grows exponentially with the

number of bits in the two vectors to be compared. Second, it is necessary to ensure that

all the code inputs will appear as inputs to the comparator often enough so that a

complete self-test of the comparator will be performed before there is a chance for

multiple faults to occur in the system.

In Section 4.3 it was shown that a self-testing comparator implemented as a single

two-level NOR-NOR PLA, must have 2" product term lines. If the output from each

one of the duplicated functional modules is, say, 16 bits, this implementation is

impractical since it requires 2111 - 65536 product terms. Fortunately, efficient

implementations of a self-testing two-rail code checker (comparator) for large input

vectors can be achieved by using checkers for smaller input vectors as cells that are

connected together in a tree structure (Fig. 4.3)[Khak82, Wake78) .

•• 6i •• 6'. •• 6i •• 6i

Fia. 4.3: A Self-Testing Two-Rail Code Checker Tree

Each cell is a self-testing comparator for relatively small bit vectors (two to six bits

wide) which 1s implemented with a single two-level NOR-NOR PLA as outlined in

Section 4.2. A complete tree with h levels of cells, where each cell is an m-bit

comparator, can be used to compare m1 bits and contains (m1 -1)/(m-1) cells. Hence,

if the vectors to be compared are n bits wide, the number of levels in the tree is ~ogmn 1

75

while the total number of cells in the tree is at most (n-1)/(m-1). Thus the number of

cells as (approximately) linearly related to n . Hence, tree-structured cellular

implementations of self-testing comparators are practical for large input bit vectors.

In the cellular tree-structured implementation of the comparator, a noncode output

from any one of the cells presents a noncode input to the cells at the next level. This

forces the output from the entire tree to be noncode. Hence, the tree-structured

implementation presenes the self-testing property of the cells.

If duplication and comparison is used for error detection, the first fault that occurs

in the comparator must be detected before additional faults can occur in the comparator

or in the functional modules. Thus, a set of code words that achieves a complete self-test

of the comparator must appear as inputs to the comparator within a time interval that is

significantly smaller than the mean time between failures for the two functional modules

and the comparator together. Based on the results of sections 4.3 and 4.6, a complete

self-test of a comparator implemented as a single NOR-NOR PLA requires all 2" code

words to appear at the inputs. If n is large, this requirement may imply that the

complete self-test takes so much time that there is &n unacceptably high probability that

additional faults may occur in the comparator or functional modules before the self-test is

completed. Fortunately, for the tree-structured cellular implementation, the number of

code inputs required for a complete self-test is only 2m , where m is the size of the bit

vectors compared by each cell [Boss70, Khak82]. This efficient self-test is possible since,

assuming that only one of the cells may be faulty, zm properly selected code inputs test all

the cells in parallel. Thus, if the cells are 2-bit comparators, four code inputs are

sufficient for a complete self-test of the entire tree.

Even with the relatively small number of code inputs needed for a complete self-test,

it may still be difficult to satisfy the requirement that all code worcb appear as inputs to

the comparator with some specified frequency. This would be particularly problematic if

the duplicate functional modules were low-level passive circuits such as an ALU or an

instruction decoder within a processor. Hence, for such low-level modules duplication and

comparison is inappropriate. On the other hand, the technique is highly effective if the

modules are high-level, "intelligent" sub8ystems, such as the computation nodes in a

multicomputer system, which are interacting with similar high-level sub8ystems. In this

ease, a sub8ystem may periodically initiate action that causes it to generate all the

i6

necessary patterns at its interrace with other subsystems. The subsystem initiating the

selC-test or its comparator can in(orm the other subsystems that the next "message" is

simply a test and should not be interpreted as "real work:'

References

Boss70. D. C. Bossen, D. L. Ostapko, and A. M. Patel, "Optimum Test Patterns Cor

Parity Networu,'' AFIPS Proceedings 37 pp. 63-68 (1970).

Cart68. W. C. Carter and P. R. Schneider, "Design or Dynamically Checked

Computers," IFIPS Proceedings, Edinburgh, Scotland, pp. 8i8-883 (August

1968).

Cour81. B. Courtois, "Failure Mechanisms, Fault Hypotheses and Analytical Testing of

LSI-NMOS (HMOS) Circuits," pp. 341-350 in VLSI 81, ed. J. P. Gray,

Academic Press (1981).

Gali80. J. Galiay, Y. Crouzet, and M. Vergniault, "Physical Versus Logical Fault

Models MOS LSI Circuits: Impact on Their Testability," IEEE Transactions

on Computers C-29(6) pp. 527-531 (June 1980).

Khak82. J. Khakbaz and E. J. McClU!key, "Concurrent Error Detection and Testing for

Large PLA's," IEEE Journal of Solid-State Circuits SC-17(2) pp. 38~394

(April 1982).

Mak82. G. P. Mak, J. A. Abraham, and E. S. Davidson, "The Design or PLAs with

Concurrent Error Detection," 12th Fault-Tolerant Computing Svmposium,

Santa Monica, CA, pp. 303-310 (June 1982).

Osta79. D. L. Ostapko and S. J. Hong, "Fault Analysis and Test Generation Cor

Programmable Logic Arrays," IEEE Transactions on Computers C-28(9) pp.

617-627 (September 1979).

Son81. K. Son and D. K. Pradhan, "Completely SeiC-Checking Checkers in PLAs,"

1981 International Tut Conference, Philadelphia, P A, pp. 231-237 (October

1981).

Tami84. Y. Tamir and C. H. Sequin, "Design and Application of Selr-Testing

Comparators Implemented with MOS PLA.s," IEEE Transactions on

Computers C-33(6) pp·. 493-506 (June 1984).

ii

Wads78. R. L. Wadsack, "Fault Modeling and Logic Simulation of CMOS and MOS

Integrated Circuits," The Bell Suatem Technical Journal 67(5) pp. 1449-1474

(May-June 1978).

Wake78. J. F. Wakerly, Error Detecting Codea, Self-Checking Circuit8 and

Applicationa, Elsevier North-Holland (1978).

Wang79. S. L. Wang and A. Avizienis, "The Design of Totally Self Checking Circuits

Using Programmable Logic Arrays," 9th Fault-Tolerant Computing

Sumpoaium, Madison, WI, pp. 173-180 (June 1979).

78

Chapter Five

Error Recovery in Multicomputers

In Chapter 3 and Chapter 4 it was shown that a VLSI multicomputer can be

implemented u,ing self-checking nodes that ensure that there is a very high probability of

detecting any error cau,ed by node failure. ~ discussed in Chapter 3, errors cau,ed by

faults in the communication links can be detected using error-detecting codes. However,

detecting an error is only the fU'St step towards fault tolerance, i.e., the fU'St step of any

technique that allows the system to continue correct operation despite a hardware fault.

When a component fails, the part of the system state that is stored in that component

may become inaccessible to the rest of the system. Thu,, even if the fault-free

components of the system never accept the erroneou, output of failed components, it may

be impossible to restore a valid system state from which normal operation can be

resumed. The recovery of a valid system state following component failure is discu,sed in

this chapter.

Section 5.1 presents some of the basic concepts and techniques for error recovery.

Section 5.2 is a brief survey of the current state of the a.rt in error recovery techniques for

multiprocessors and multicomputers. Section 5.3 presents a new technique for error

recovery in multicomputers. This technique involves periodically saving the entire system

state and restoring a previou,ly saved state when an error is detected. The section

inc:ludes algorithms for checkpointing the entire system state, distributing diagnostic

information, and using the checkpointed state for error recovery. An informal "proof"

that the algorithms are correct is presented in Section 5.4. An estimate of the overhead

required by this scheme is given in Section 5.5. Section 5.6 discu,ses how the scheme can

be expanded to allow interactions with the "outside world;' deal more effectively with

transient faults, reduce the latency in detecting errors in communication links, and handle

the fai)~e of disks and the nodes that control them.

&.1. Buic Concepti and Techniqu•

Error recovery is the process of transforming an erroneou, system state, which may

lead to system failure, into a valid system state, that guarantees correct system operation

as long as all the system components continue to operate correctly. Most schemes for

79

performing error recovery can be classified as forward error recoverJI schemes or

6ock1Vord error recover11 schemes [Rand78). Fonrard error recovery techniques attempt to

modify an erroneous system state so that it becomes a valid state. Backward error

recovery ~hniques involve resetting (backing up) the system to a previous valid state

rather than trying to modify the current state.

Fonrard error recovery techniques are usually designed as an integral part or the

system they sene. By their very nature, they are only useful for recovering from

onticipoted errors, i.e., the designer anticipates that a particular erroneous state may

occur and provides a specific technique for transforming that state into a valid state.

Fonrard error recovery is often used in systems where there are strict real-time

coDStraints. For example, the main controller of an unmanned aircraft my operate by

continuously reading several sensors and sending commands to various actuators. Ir one

or the sensors fails and sends a reading that does not pass the occeptonce te.!t [Rand78],

the controller does not use this erroneous reading for computing the next set of commands

to the actuators. IDStead, the controller recovers from the error by replacing the

erroneous value with some "guess" or a reasonable value. that is unlikely to have any

disastrous consequences.

Ir the use or fault tolerance techniques in the system has to be taken into account by

the application programmer, the programming task becomes more complicated, time­

coDSuming, and error-prone. Hence, fault-tolerant systems in general and, particularly,

those that are intended for more-or-less ceneral-purpose use, attempt to "hide" their use

of fault tolerance techniques from the application programmer. Since forward error

recovery techniques are usually dependent on a particular application and can handle only

anticipated errors, such techniques will not be discussed any further in this thesis.

Backward error recovery techniques can cope with unanticipated errors. The state

or the system is periodically recorded. When an erroneous state is detected, it is

abandoned and the system is reset to this previously recorded error-free state, called a

reeover11 point or a checkpoint. The process or creating a recovery point is called

checkpointing.

The main advantage or backward error recovery techniques is their ability to handle

unanticipated errors. No matter what type or error occurs, as long as it can be detected,

some valid system state can be reiDStated. Hence, a backward error recovery scheme can

80

be totally independent or the application.

The main disadvantage or backward error recovery techniques is the overhead or

establishing and maintaining the recovery points. In a uniprocessor the recovery point

includes the contents or memory and other storage devices as well as the contents or all

the processor registers.

There are two basic approaches to maintaining the information necessary for

backward· error recovery: (1) Maintaining, at all times, multiple up-to-date copies or the

entire system state [Kast83]. (2) Maintaining information that allows the restoration or a

valid system state by redoing some computations that were already performed by the

system [Bari83, Borg83]. The rll'St approach allows nearly instantaneous error recovery

without any loss or work. The system is restored to its state that immediately preceded

the occurrence or the error. This scheme--requires the duplication or all system resources

just for error recovery, in addition to any redundancy used for error detection or system

reconfiguration.

The second approach above requires periodic saving or the entire system state.

\Vhen an error is detected, the system 1s restored to a previous state and the

computations that were performed since that state are redone. This scheme involves

overhead in both time and storage. The time overhead results from the periodical

creation or the recovery points as well as from the computation that has to be redone

when an error occurs. The storage overhead is the extra storage required to save the

recovery points. The frequency or generating recovery points is an important parameter

for minimizing the time overhead. Too much time may be spent generating recovery

points if the frequency is "too high:' Ir the frequency is "too low;' too much time will be

lost (on the average) redoing computations following an error.

The simplest way to generate a recovery point is to save the entire state or the

system, i.e., the contents or all registers, memory, and secondary storage. An alternative

technique is to usually save only the changu in the system state since the last recovery

point. Periodically, the entire state is saved since, at some point, the "history" or changes

can take up more space than the entire state and/ or generating the entire state from some

original state and a sequence or changes would take too much time.

In a uniprocessor system the recovery technique discussed in the previous paragraph

can be facilitated by a device called a recovcrv cache [Ande76, Lee78, Lee80, Rand75}. In

81

order to establish a recovery point, the contents of the CPU's registers are saved. The

contents of memory are not saved. During normal operation, whenever the processor

modifies the contents of a memory location, the old contents are saved in the recovery

cache. The state at the recovery point can be reestablished at a later time by restoring

the contents o(memory from the recovery cache and the contents of the register! (rom

where they were saved when the recovery point was established.

The recovery cache technique has been used for recovering from error! caused by

transient ·hardware faults in a microprocessor chip. Kubiak et al designed a VLSI

recovery cache chip, called Penelope, that is connected to the processor/memory bus o(a

microprocessor system [Kubi82]. Penelope maintaiu the previous content of modified

memory locatiou. \Vhenever Penelope's "save stack" becomes full, a new recovery point

is established by saving the contents of the processor's register! and reinitializing the

"save stack" to an "empty" state. Initial measurements of Penelope's performance with a

save stack of 256 bytes show that the performance penalty caused by Penelope, when

compared with an equivalent system with no provisiou for error recovery, is less than

10%.

A recovery point may be generated by periodically "freezing" the entire system and

saving this frozen state (or information necessary to generate this state). \\Then error

recovery occurs, the restored system state is a state that actually existed in the past. An

alternative is to store dirrerent parts of the system state independently. For example, in a

uniprocessor system that is executing several processes, the states of the dirrerent

processes may be checkpointed at dirrerent times. If there is any interaction between the

processes, when recovery occurs, care must be taken to euure that the recovery points to

which the different processes are restored are eon3t3tent with each other (i.e., that the

ordered set of the recovered external states of all the processes coutitute a valid system

state). However, since the processes do not run in lock-step, commUllicating at each step,

the state of one process, after executing t1 time units, may be couistent with the state o(

a second process that has executed anywhere between t1 and t• time units. Thus the

restored system state is not necessarily a state that actually existed in the past. Rather, it

is a state that could have existed in the past and will result in correct system output.

The error recovery techniques discl15Sed so far all require some special action

following error detection in order to recover a valid system state. Maaking

82

redundoncJI [Rand78] or error mo~king techniques involve always performing some action

that hides the effect.s of a certain class of errors. These actions are performed regardless

of whether or not an error has actually occurred. A canonical example of error masking is

Triple Modular Redundancy (TMR) (Plat80, Siew78, Wake76]. In this approach a system

consists of three identical subsystems and a majority voting circuit. The output of the

system is the majority vote of the output.! of the three subsystems which are executing

identical tasks. An error caused by the failure of one of the subsystems is masked since

the majority vote is the correct output of the two fault-free subsystems. A relatively high

overhead during normal operation is always associated with error-masking techniques.

However, when an error occurs, the system continues to operate normally and error

recovery occurs "automatically:'

5.2. Error Recovery Techniquee ror Multicomputen

A multicomputer system consists of several more-or-less independent components

(the nodes) that interact with each other asynchronously. This makes the coordination of

any joint task, including error recovery, difficult and prone to subtle "bugs:' Error

masking and backward error recovery techniques for multicomputers are discussed in this

section.

In the previous section, TMR with hardware voting circuits was mentioned as an

example of error masking. The same idea can be used in a multicomputer in which each

task is executed on three (or more) different nodes and the results are transmitted to

other nodes via independent communication paths. A node receiving the result.! can take

a bit-by-bit majority vote, thereby masking the erroneous output from one of the nodes or

the corruption of one of the outputs during transmission. This technique has been used in

the SIFT multiprocessor system that was designed to serve as the main controller of an

aerodynamically unstable airplane [Wens78]. The performance requirements from SIFT

are rather modest since it reads and controls mechanical devices that change relatively

slowly. Due to the nature of the application of SIFT, there must not be any sudden break

in it.s operation, a.e., error recovery cannot involve temporarily stopping normal

processang. This type of TMR error masking is particularly well suited to the

combination of modest performance requirements and strict constraint.! on the operation

of the system following an error.

There are many similarities between the error recovery technique described in the

83

previous paragraph and the error detection scheme based on system-controlled node-level

duplication and comparison discussed in Chapter 3. In Chapter 3 this error detection

scheme was shown to be unsuitable for a multicomputer used for general purpose

applications. For similar reasons, the error recovery scheme discussed in the previous

paragraph is also not suitable for such a system. S~ifically, the shortcomings or this

technique are: (1) it dedicates two thirds of the hardware for error recovery, (2) it

increases interprocessor communication delays, (3) it is not, by itself, sufficient for

locating faulty components, (4) it does not adequately handle erroneous routing or packets

by intermediate nodes on a communication path, and (5) it poses severe requirements on

the routing and task assignment algorithms used in the system.

Over the last five yean, a great deal of research has been devoted to the

development of algorithms that enable all the working nodes in a multicomputer to reach

a unanimous decision despite the failure of some nodes and links [Dole81, Peas80, Stro83].

Specifically, if one node broadcasts a packet, the problem is to ensure that all the other

working nodes agree on the content or that packet or agree that the sender is faulty since

the packets it sent to its immediate neighbors were not all equal. When these algorithms

are used, the faulty (even malicious) behavior of links and nodes are masked. Hence, these

are error-masking algorithms. In the literature they are called algorithms for reaching

Byzantine Agreement.

Algorithms for reaching Byzantine Agreement are extremely useful for the very

specialized task of ensuring that all the nodes in a system reach a consistent decision.

However, they are not useful for masking errors in transmission between pairs of nodes

unless every message in the system is broadcast. Hence, these algorithms are not directly

applicable to general-purpose computations performed on a multicomputer and will not be

discussed any further in this thesis.

As mentioned in the previous section, one technique for backward error recovery

involves maintaining, at all times, multiple up-~date copies of the entire system

state [John84, Kast83]. In a multicomputer, one way to maintain a copy or the system

state is for the state or each node (primary node) to be maintained on some other node

(backup node)[Bari83}. The primary node and the backup node contain the same code

and data, and execute this code at approximately the same time. Ir an error occurs as a

result of a transient fault in a node, the node may be reset and its state restored to what

84

it was immediately prior to the fault using the information in the backup node. Since an

error may be a result or a permanent fault, the backup node must be able to take over the

task or a failed primary node.

I:o a multicomputer the system state is the ordered set or the external states or all

the nodes. For the rest or the system, the external state or a node is defined by the set or

packets that it bas already received and the set or packets that it has already sent.

Keeping the backup node "completely u~~date" with the primary node requires that

the external states or these nodes be kept identical. This can be accomplished by sending

each packet to the destination node and the destination backup and notifying the sender's

backup that the packet has been sent. Since this entire operation must be performed

otomiealiJI (i.e. it must either be completed or aborted but never partially completed), a

two-phase-commit [Gray78] must be performed for eoeh packet (or message). The

disadvantages or this technique in terms or overhead and restriction or system operation

are obvious and similar to the problems with the the error detection scheme based on

system-controlled node-level duplication and comparison that was discussed in Chapter 3.

This technique is therefore not suitable for a multicomputer executing general-purpose

application,.,.

It. should be noted that the above backward error recovery technique is used in

several multiprocessor and multicomputer systems in which all interprocessor

communication is over a common bus or Ethernet [John84, Kast83]. Since all the "nodes"

can easily monitor all interprocessor communication, it is possible to implement an

efficient atomic (indivisible) operation that trammits a message to a primary node and its

backup [Borg83].

Since neither error masking nor backward error recovery with u~to-date backups

are well-suited for multicomputers used for general-purpose application,.,, backward error

recovery in which some computation,., have to be redone as part of the recovery process

appears to be the best technique for such systems. ~ mentioned in the previous section,

a recovery paint may be generated by periodically freezing and saving the entire system

state. The main disadvantage of this technique is that it requires normal computation

throughout the system to stop for the duration of the cbeckpointing process. An

alternative technique that appears more attractive is for the nodes to establish recovery

points independently and to attempt to restore a couistent system state from the

85

individual recovery points during error recovery ..

Establishing independent recovery points for the different nodes poses the problem

that restoring a previous state of one node may require that other nodes be backed up to

previous states. Jn the following situation, for example, restoring a previous state of a

node PA requires an illtf!racting node P8 to restore its stat4!: At time t 1 node P8 establishes

a recovery point. At sowe later time t2 > t1 node PA establishes a recovery point. At

time t 1 > t 2 PA sends a message to P8 • The message causes P8 to change its state (e.g.

modify a memory location) and send a message back to PA at time t4 > t 1. At time

t 6 > t 4 an error in P A ia detected and requires the state of P A to be restored to the state

saved at time t2• Since the state of PA ia restored, it will send to P8 a message identical

to the one sent at time t1• For the computation to proceed correctly, the message

returned to PA by P8 should be identical to the message returned at time t 4• Ir the state

of P8 is not restored, the message it returns may be different leading to failure of the

computation. Hence the state of P8 should be restore to its value before t 1. Since a

recovery point for P8 was last established at time t 11 the state or P8 must be restored to

its value then.

Ir, in the above example, PA and P8 also interacted between time t 1 and t 2, then,

restoring P8 to its state at time t 1 would, in turn, require that the state of PA be restored

to some recovery point established prior to t 1• In fact, it is possible that a single error in

one node may result in an uncontrolled domino effect [Rand75], requiring that all the

nodes in the system back up all the way to system initialization.

Wood [Wood81) has developed a scheme for keeping track of the recovery actions

that must occur in all the nodes in the system if a particular node is rolled back. Each

node is required to maintain several recovery points, starting from an initial state.

Maintaining the multiple recovery points as well as all the information necessary to ensure

consistent recovery poses significant overhead both in time and storage. Furthermore,

there is always the possibility that the entire system will have to be rolled back to its

initialization due to the domino effect. In order to increase the efficiency of the recovery

scheme, either some restrictions have tO be placed on the actions of the nodes or the nodes

must no longer checkpoint their state completely independently but rather must somehow

coordinate when and how to create checkpoints.

Barigazzi and Strigini [Bari83] propose an error recovery scheme for multicomputers

86

that does net reqwre storing multiple recovery point!. Like most other scheme~, the

states or individual processes are checkpointed and recovered rather than the complete

state or nodes. The scheme involves periodic saving or the state or each process by storing

it both on the nnde where it is executing and on another backup node. All interacting

processes are ched(pointed together, so that their checkpointed states are guaranteed to

be consistent with each other. Thus, the domino effect is avoided.

The recovery scheme described in (Bari83] is well suited for applications that must

satisfy strict real-time constraint!. However, it results in significant performance

degradation. For each process, a complete backup is maintained both on the node

executing the process as weH as on another node. Thus, a large percentage or the memory

cannot be ued by active processes. The resulting increase in paging activity also reduce~

performance by increasing the average memory access time and the load on the

communication links.

Another difficulty with the recovery scheme described in [Bari83] is that it requires

the "send" and "receive" operations to be atomic. In order to accomplish this, the use or

a two-phase commit protocol [Gray78] is proposed. Such a protocol requires explicit

acknowledgement for each message and implies that af'ter a "send" operation, the sending

process is not able to continue executing until an acknowledgement is received. Thi~

restriction on process "behavior" and the associated increase in message traffic lead! to

reduced performance relative to an identical system where no error recovery is

implemented.

The idea or simultaneously checkpointing the state or all processes belonging to the

same "task" [Jone79J can be taken a step further: simultaneous checkpointing or the

complete state of all the user and system processes on the system, i.e., simultaneous

checkpointing the complete state or all the nodes in the system. Creating and saving such

a global checkpoint is expensive since it requires moving large blocks or data through the

system and then storing them "reliably:' However, if the time between checkpoints is

sufficiently large compared with the time it takes to establish a new checkpoint, the net

system overhead Cor error recovery is relatively small. In a large multicomputer the

expected time to establish a new checkpoint is on the order of one minute (see

Section 5.5). Thus, keeping the overhead low requires that a new checkpoint be

establi~hed only once or twice an hour. It is clear that the los~ o(as much as an hour or

87

p~essing when an error is detected is tolerable only for non-interactive applications.

The rest of this chapter presents an error recovery acheme that is based on

periodically checkpointing the entire syste!ll state. The global checkpoints are stored on

disk so that all of local memory can be used for active processes. It is shown that if global

checkpoints are used for error recovery, it is possible to avoid any restriction on the

behavior of processes and to eliminate the need for message acknowledgement.

Furthermore, there is no need to use up valuable communication bandwidth by encoding

the messages in some error-detecting code (see Subsection 5.3.2).

5.3. Implementin& Error Recover7 U1in1 Global Checkpoints

The basic idea is for some designated node to periodically initiate and coordinate the

creation of a new global checkpoint. When any node detects an error, it initiates the

distribution or diagnostic information throughout the system. All the nodes are then set

to a consistent system state using the last global checkpoint. Finally, normal operation is

resumed.

In the following six subsections we describe in detail the creation and storing of a

global checkpoint and its use for recovery. In Subsection 5.3.1 we present some basic

assumptions that are made about the system. In Subsection 5.3.2 we differentiate

between normal packets that are used for the application tasks and fail-aafe packets that

are used to coordinate the creation of checkpoints and the recovery from errors.

Subsection 5.3.3 contains a brief description of the eight types of fail-safe packets used by

the system. At each point in time, a node may be engaged in normal computation,

creation of a checkpoint, or recovery from an error. A description of the possible modes

or logical atatea of a node is presented in Subsection 5.3.4. Subsection 5.3.5 describes how

a consistent global checkpoint is established and stored on disk. Finally, in

Subsection 5.3.6, we show how the global checkpoints can be used to recover from errors.

5.3.1. AaumptiODI

We will begin by introducing several simplifying assumptions that will be used in the

algorithms for establishing global cheekpoints and for using those checkpoints for error

recovery. We will later discuss how some of these assumptions can be relaxed.

We assume a closed system that consists of nodes, links, and disks (or some other

form of mass storage). All "input" is stored on disk before operation begins. All

88

"output" is stored on disk when the job ends (Fig. 5.1).

Fig. 5.1: A Multicomputer

~ previously mentioned, the nodes are self-checking and are guaranteed to signal an
error to their neighbors immediately when they send incorrect output [Tami83]. ~ a first
step, any node that generates an error signal is assumed to be permanently faulty and no
attempt is made to continue to use it.

Hardware faults either cause a node to generate an error signal or cause an error in
transmission. It is assumed that a fault can occur at any time, including during the
creation of a checkpoint. However, if a second fault occurs during recovery from a
previous fault, the system stops execution and does not attempt recovery. This and other
situations-where the system must stop due to an unrecoverable state will henceforth be
called a cro6h. It should be noted that, even if a crash occurs, the system still does not
generate incorrect results. Furthermore, since recovery takes only a few minutes and the
system has an MTBF of tens of hours, the probability of a fault occurring during recovery
is very small.

Since the disks are extensively used for paging, checkpointing, and I/0, the average
number or "hops" from each node to the nearest disk should be made small. Hence, disks
are connected to several nodes throughout the system. ~ a first step, we allow an error
in disk I/0 or a fault in a node that controls a disk (henceforth called a di6k node) to
cause a crash. Each disk node uses an error-detecting code for all data written on the

89

disk. When the node reads from the disk, any error ca115ed by a faulty disk or a fault on

the path between the node and the disk is detected by using the code. Ir an error is

detected, the disk node signals a crash.

The structure of the system is relativ~ly stable - it changes only due to hardware

faults. Since all the nodes in the system are informed or each fault, every node is able to

maintain tables that refiect the structure or the operational part or the system. This

includes information about which nodes and links are operational and which nodes are

disk nodes.

Each node has a unique identifier and there is a total ordering or these identifiers

(U5ed to establish successorship for the designated node that initiates periodic

checkpointing). All the nodes in the system know the identifiers or all the other nodes.

For simplicity, we assume that the identifiers or an n node system are the integers 1

through n.

In order to send a message, a process assembles the message in memory and executes

a system call. The kernel may divide the message into packda which are the unit of

information actually transmitted. Packets may arrive at their destination out or order (if

they arrive at all). We assume that it is the responsibility of the kernel of the receiving

node to put the packets in order before they are made available to the receiving process.

The interconnection topology or the system is or crucial importance for achieving

fault tolerance. A large body of research on the tradeoffs between various topologies is

available [Witt81, Prad82] and will not be discussed in this paper. One parameter that is

especially important for fault tolerance is the connectivit11 or the network. The

node/edge connectivity is the minimum number of nodes/edges whose failure partitions

the network so that there is at least one pair of working nodes that can no longer

communicate. We assume that the connectivity of our system is sufficiently large that

there is a very low probability or partitioning. Hence, it is acceptable if partitioning

causes a crash.

Ir a node or a link fails, routing or packets through the network has to be modified

to use alternate paths. This process o·r reconfiguration requires updating routing tables

throughout the network. We assume that one or the well-known reconfiguration

procedures [Taji77, Bozy82] is used in conjunction with our recovery scheme but do not

discuss this problem any further in this paper.

90

6.3.2. Normal Packet. ud Fail-Safe Packet.

A3 previously mentioned, one or the main advantages or our error detection and

error recovery schemes is that it does not require the substantial delays in normal inter­

processor communication that are a necessary part or most other such schemes. In

particular, during normal operation (i.e nQt. in the process or creating a checkpoint or

recovering from an error), no redundant bits for error detection are transmitted with the

messages or packets, no acknowledgement or messages or packets are transmitted by their

recipients, and neither processes nor processors have to wait for acknowledgement or

messages or packets.

Since errors can occur in transmission, there must be some provision (or detecting

errors in messages. However, since the probability or an error in transmission is low, it is

wasteful to check the validity or each message or packet independently. Instead, in each

node each port has two special purpose registers for error detection. One or these

registers contains the CRC (Cyclic Redundancy Check) check bits (or all the packets that

have been sent (rom the port. The other register contains the CRC check bits or all the

packets received. Initially these special purpose registers are initialized to some known

value. By making these registers linear feedback shift registers (LFSRs) the contents or

the register can be updated in parallel with the actual transmission or each packet [Elki82].

In order to check the validity or all the packets transmitted through a particular

link, each node sends to its neighbor the contents or the LFSR used (or outgoing packets.

The neighbor can then compare the value it receives with the value in its LFSR for

incoming packets and signal an error if it finds a mismatch. The normal procedure used

to recover (rom a node failure is then initiated.

The validity or all packet transmissions must be checked immediately prior to the

creation or a checkpoint. Ir this is not done, the state or a node corrupted by an

erroneous message may be checkpointed and later used (or recovery. The procedure for

creating a checkpoint must therefore include checking all the linb before committing to

the new checkpoint.

The above procedure as not appropriate (or the packets used to coordinate the

creation or checkpoints and Cor error recovery. In this case the information in the packet

must be verified before it is used. Hence, (or these packets, an error detecting code such

as CRC is used and redundant bits must be transmitted with the packet. Thus, there are

two types of packets in the system: the normal packets that do not include any

information for error deteetion and special control packets that are used only for

transmitting information between kerneb and that inelude a suff'ieient number or

red.undant bits to recognize any likely error in transmission. These special packets are

called foil-•ofe packets since they are either error-free or the error is easily detectable by

the receiving node.

~ discussed in Subsection 5.6.3, it is possible to speed up the deteetion of errors

caused by faulty links if some redundant bits are transmitted with each normal packet.

However, even if this is done, the normal packets ean still be handled more efficiently

than the fail-safe pa.ckds. In particular, the latency associated with (orwarding a normal

packet through a node can be significantly reduced if the node can begin forwarding the

packet before all of it has arrived (Sequ83]. This is not possible for a fail-safe packet since

a node receiving such a packet must verify that it is correct before forwarding it. A node

receiving a normal packet may begin forwarding it immediately and initiate error recovery

i(, alter the complete packet is received, it is found to be invalid.

The first bit or each packet is used to distinguish between a normal packet (0) and a

(ail-safe packet (1). Ir the bit is 0, the packet is usually accepted and processed or

forwarded regardless of whether it is correct or not. The LFSR for incoming packets is

updated as the packet is received. I(the node is in the middle of making a checkpoint or

recovering from an error, it may expect to receive only fail-safe packets. In this case, if

the first bit or the packet is 0, the node signals an error. If the first bit of the packet is 1,

the packet is not accepted until it is cheeked. If an error in the packet is found, the node

signals an error. The two LFSRs in each port are not modified by incoming or outgoing

fail-sare packets.

It should be noted that the above scheme works in the ease where a fault on the link

modifies \he first bit or the packet. If the original· packet is a normal packet, the fault

causes it to become a (ail-safe packet. The receiving node cheeks the packet, assuming it

is coded using some error-detecting code, and finds an error. Jr the original packet is a

(ail-safe packet, the rault causes it to become a normal packet. The LFSR for incoming

packets in the receiver node is modified. The error is detected when the two nodes

compare the value or the sender's LFSR (or outgoing packets with the value of the

receiver's LFSR for incoming packets.

02

6.3.3. T:yp~ of Fail-Safe Packeta

Any two nodes i and j are neigh6or~ if, and only if, there is a link between them.

For every node j that is a neighbor or node i, CKVV ,j) is the correct CRC check

vector of all the normal packets sent by i to j since the last checkpoint was made. At

any point in time CKV1(i ,j) is the value of CKV(i ,j) generated and stored in the output

LFSR in node i. CKVj(i ,j) is the value or CKV(i ,j) generated and stored in the input

LFSR in node j.

There are eight types or Cail-saf'e packets:

chukp(CKV)

Used to initiate the creation or a new checkpoint. When sent by some node i to its

neighbor node j it contains CKVi(i ,j).

1tate(de1t ,node,1eq,•i ze)

Used to transmit the state or node node to node delt. The state is traDSmitted in

fiXed length packets. The 1ize field contains the number of these packets required to

transmit the entire state. Each packet includes a sequence number 1eq. These

packets are used to transmit the state or a node to a disk node during checkpointing

and to transmit the state or a node from a disk node during recovery.

1aved{coord,node)

Used by a disk node to inform the checkpointing coordinator coord that the disk

node is prepared to commit to a new state (or node node.

Used to signal the end of a checkpointing "session" or the end of a recovery session.

fault (twe ,location ,1ource)

Used to broadcast the (act that a fault has occurred and to initiate recovery. The

field tvpe contains the type of fault detected: node, link, or unknown. The faulty

node or link is indicated by location. The node that detected the error and initiates

the distribution of diagnostic information is indicated by IOUrce.

recover{ver~ion)

Used- to let the disk nodes know which version of the node states stored on their

disks they should recover. Ver8ion may be 0 or 1.

93

rutortd{coord,node}

Used by the node node to inform the current checkpointing coordinator that node has

received its complete state (as part of the recovery process) and is ready to resume

normal operation.

ero1h{twe ,loeation,,ouret)

Used to broadcast the fact that an umecoverable situation has been encountered.

The arguments are the same as those for the fault packet.

6.3.4. The Losieal Statee of a Node

At any point in time, a node in the system may be engaged in normal operation,

ch~kpointing, distribution of diagnostic information, or error recovery. The node's

respo115e to various packet types depends on its current activity. Hence, we can define

several logieal-•tatu (henceforth 1-•tatu)t that are simply labels for the current activity

o(the node:

normal

This 1s the 1-state of the node during normal operation. Normal packets are

accepted and processed. The fail-safe packets checkp and re.,ume may be received. A

checkp packet causes an 1-state transition to checkp-begin. A re.,ume packet 1s

ignored.

cheekp-begin

This is the 1-state of the node after it has received the first checkp packet from one of

its neighbors but before it receives a checkp packet from all of its other neighbors.

The checkpointing coordinator enters this 1-state when it initiates checkpointing.

Normal packets may be received only from neighbors that have not yet sent a checkp

packet. Normal packets from other neighbors cause a transition to the error 1-state.

The arrival of valid checkp packets from all the neighbors causes an 1-state transition

to checkpointing.

eheekpointing

This is the 1-atate of the node af'ter it has received checkp packets from all its

neighbors but before it completes sending its state to a disk node. No normal packet

t Tbe 1-state or a node is not to be confused witb tbe node's "state" tbat is tbe contents

or tbe node's memory tbat defines tbe state or all tbe proeeues and packets currently on

tbe aode.

94

shollld ~ r~eived while in this 1-state. If a normal packet is received, it causes a

transition to the error 1-state. The fail-saf'e packets 1tate and 1aved may be received.

'When the node completes sending its entire state to a disk node, it changes its)-state

to eheckpointed.

checkpointed

error

This is the 1-state or the node af'ter it has completed sending its state to one or the

disk node! but before it receive! the ruume packet. Ir a normal packet is received

by the node while in this 1-state, it causes a transition to the error 1-state. The fail­

saf'e packets ruume, 1tate, and 1aved may be received. A ruume packet causes an

1-state transition to normal.

This is the 1-state or the node af'ter it has detected (or has been informed of) an error

but before it is ready to accept its recovered state. The node enter! this 1-state when

it receives a mismatch signal from a neighbor, receives an invalid fail-saf'e packet,

receive! a normal packet when only fail-saf'e packets are expected, or receive! a fault

packet. In addition, a transition to the error 1-state may be caused by a valid fail­

safe packet whose contents indicate some error condition (see next subsection).

Normal packets are ignored if sent by neighbor! that have not yet sent a fault

packet. Other normal packets cause a transition to the cra1hed 1-state. The fail-safe

packets eheckp, 1aved, ruume, 1tate, and rutored are ignored if sent by neighbors

that have not yet sent a fault packet. The fault packet is ignored if the location it

refer! to is the same as the location of the fault that caused the transition to the

error 1-state. Any other fault packet causes a transition to the cra1hed 1-state. The

fail-saf'e packet recover causes a transition the the recovering)-state.

r~coverang

This is the 1-state or the node af'ter it has received the recover packet but before it is

ready to resume normal operation with its recovered state. Ir a normal packet is

received, it causes a transition to the cra1hed 1-state. The fail-saf'e packet recover is

ignored. The fail-safe packets 1ta.te and rutored are processed (see Subsection 5.4.6).

The arrival or the node's complete state via 1tate packets causes a transition to the

recovered 1-state.

95

recovered

This is the 1-state of the node after it has received its complete recovered state hut

before it actually resumes normal operation. If a normal packet is received, it cau~e~

a traD.!ition to the cra~hed 1-state. The fail-safe packets •tate and rutored are

processed (see Subsection 5.3.6). IJI recover packets are ignored. The ruume packet

cause! a transition to the normal 1-state.

crtuhed.

This is the 1-state of the node after an unrecoverable error has been detected.

Each node also includes the "state variable" ver1ion that determines what is the mo~t

recent valid version of the node's state that is stored on disk. This variable may have the

values 0, 1, or unknotvn. When the system is initialized, the value or ver~ion in all the

nodes is set to 0.

&.3.6. Creating a Global Checkpoint

Initially, a designated node, typically node 1, is assigned the task or serving as the

coordinator for establishing global checkpoints. If the coordinator fails, all the other

nodes in the system are notified and the next node, according to the total ordering

between the nodes, takes over the task of being checkpointing coordinator.

Every node includes a "timer" that can interrupt the node periodically.

Checkpointing is initiated by the checkpointing coordinator when it is interrupted by its

timer [Bari83] and it is in the normal 1-state. Checkpointing is also initiated when a task

is complete so that the system can commit to the output stored on disk.

It should be noted that faulty operation of the timer is detected just like faulty

operation or any other part or a node. ~ previously discussed, the self-checking node i~

implemented using duplication and comparison [Tami83]. Each duplicate module includes

its own independent timer. Even if a fault disables one of the timers, the other timer still

operates and causes the module it is part of to "behave" differently from the module with

the faulty timer. & a result, the two modules produce different outputs, and an error

signal is generated by the comparator that coD.!tantly monitors those outputs.

(I) The Action• of the Checkpointing Coordinator

When the checkpointing coordinator, say node i, initiates checkpointing, it does the

following:

(1] Node i stops all work on application processes and stops trammitting normal

packets. The node's 1-state is changed to checkp-begin.

(2] Node i send! to every neighbor node j the fail-•afe packet checkp (CKV1(i ,j))

(3) Node i waits for checkp packets from all its neighbors.

(4]

(5)

Ir a normal packet arrives, it is included with the rest of the node state that

mu.st be checkpointed.

Ir a checkp(CKV,t(j,i) packet arrives from neighbor j then: If

CKV,t(j,i) rJ' CKVi(i,i), i changes its 1-state to error and send! the packet

fault(link,(i,j),i) to all its neighbors.

Ir no checkp packet arrives from a neighbor j within some fixed time limit, i

changes its !-state to error and sends the packet fault (unknown ,j,i) to all its

neighbors.

Node i changes 1-state to checkpointing and send! its complete state to the disk node

assigned to it.

Node i changes !-state to checkpointed and waits for fail-safe packets or the type •
.!aved(i ,j) (or all nodes j in the system that are known to be wor.lcing.

If for one of the nodes, say node j, no such packet arrives within some fixed

period or time, i changes its)-state to error and sends the packet

fault(unknown,O,i) to all its neighbors.

(6] After all the expected 6aved packets arrive, node i complements its ver,ion variable,

changes 1-state to normal, and send! the packet renme to all its neighbors.

(7] Node i resumes normal operation.

(II) The Action1 of a Checkpointing Participant

Every node j, that receives the packet checkp(CKVi(i,j)) (rom its neighbor i while in

its normal 1-state, does the following:

(1] Node j stops all work on application processes and stops trammitting normal

packets. The node's 1-state is changed to checkp-begin.

(2] Ir CKVi(i ,j) rJ' CKV,t(i ,j), node j changes its 1-state to error and send! the packet

fault (link,(i ,j),j) to all its neighbors.

(3) For every neighbor node k (including k - i), node j sends to node k the fail-aafe

packet checkp(CKV,t(j,k)).

97

[4] Node j waits for checlrp packets from all its neighbors except i.

If a normal packet arrives, it is included with the rest or the node state that

must be checkpointed.

Ir a checlrp(CKV11 (k ,j) packet arr1ves from neighbor k then: If

CKV11 (k ,j) " CKV ,t(k ,j) , j changes its I-state to error and sends the packet

I cnlt (link,(k ,j),j) to all its neigh burs.

Ir no checlrp packet arrives from some neighbor k (k -,' i) within some fixed

period or time, j changes its 1-state to error and sends to all its neighbors the

packet fault (unknown ,k ,j).

[5] Node j changes its 1-state to chec/rpointing, and begins to send its state to the disk

node assigned to it using ~tate packets. The complete node state except for one l~t

~tate packet is sent.

[6] Node j changes its 1-state to chec/rpointed, sets its old-ver~ion variable to ver8ion,

sets its ver6ion variable to unknown, and sends the last packet containing its state to

the disk node assigned to it.

[7] Node j waits for a re6ume packet from one or its neighbors.

[8] 'When node j receives a rt8u.mt packet from its neighbor i, it sets its vtr6ion variable

to 1 - old-ver8ion, changes its 1-state to normal, and ~nels a rt6ume packet to all of

its other neighbors.

[9] Node j resumes normal operation.

{III) The Action~ of a Di~k Node

A disk node may be a checkpointing coordinator or a checkpointing participant. In

either case, it executes most or the protocols (I) or (II) as a regular node. However, a disk

node also performs two additional tasks: (1) It stores node states so that they can be

recovered in case or an error. (2) It handles input/output.

During a checkpointing session, a disk node acupts 6tate packets and stores them on

its disk. Once the complete state or some node j is received and stored on disk, the disk

node sends a 6aved(coord,j) packet to the checkpointing coordinator. Once a rt.!u.me

packet is received, the disk node commits to the most recently saved versions or the node

states. The version or these node states is the current value or the ver1ion variable or the

disk node.

In order to roll back the entire system to a previous state, it mu.st be possible to roll

98

back the state o(the disks as well as the state of the nodes. Hence, all files that are
opened with write or read/write permission are duplicated by the disk node and 1/0
operations are performed on the duplicates until the disk node commits to the next
checkpoint. Newly created files exist only as "duplicates" until the disk node commits to
the next checkpoint. When the disk node commits to a new checkpoint, all the new and
duplicate files are incorporated with the committed state. .fo'iles that remain open with
write or read/write permission must, once again, be duplicated since all operations until
the nezt checkpoint must not affect the files that are part of the current checkpoint.

6.3.8. Fault Handlins

When a node detects an error, it informs its neighbors of the error. This diagnostic
information is then distributed throughout the system. Since an error may be detected in
the middle of creating a new checkpoint, some of the disk nodes may have access to
subsets of two different system states: the state currently being checkpointed or the
previous state. The rll'St node that is informed of the error and which has the information
needed to determine which version o(the state should be used, distributes this
information throughout the system. Once the disk nodes find out which version of the
system state they should use, they begin sending the state to all the nodes in the system.
When all the nodes receive their state, they inform the checkpointing coordinator, which
subsequently initiates the resumption of normal operation. Since all working nodes in the
system are informed of the cause of the error, these nodes are able to avoid using the
failed node or link so that it cannot be the source o(any additional errors.

The rest of this subsection is devoted to a detailed description of the actioD!! of the
nodes when an error is detected.

(!) The Action.! of a Regular Node

\\'hen a node is in any I-state except error or_ crtuhed, it mar change to the error

1-state at any time, as described in Subsection 5.3.4. When a node i enters the error

1-state, it does the following:

[1] Node i stops all work on application processes and deletes all normal and fail-safe
packets that are waiting for transmission. If the fault is in one o(the node's
neighbors or in a link to a neighbor, all communication with that neighbor is
terminated.

(2] Packets that arrive at the node are handled as follows: All normal packets and all

fail-safe packets, except fault and cra&h, are ignored. Fault packets are ignored if

their location field indicates that they were generated as a result of the same fault

th3t cau~ node j to enter the error 1-state.

(3] Nt.:dc j 1end.s fault packets to all its neighbors.

(4] If the ver&ion variable in node j is uot set to unknown, node j sends a

recover(ver&ion) packet to all its ueighbors.

If ver&ion is set to unknown, node j waits for a recover packet from one of its

neighbo"!. When the rtcover packet arrives, node j sets its ver&ion to the value in

that packet aud lM:'~~ 11. recover(ver&ion) packet to all its neighbors.

If the error is a result of a fault in the checkpointing coordinator, all the working

nodes in the system may have their ver&ion variable set to unknown. Hence, if

node j is a neighbor of the checkpointing coordinator whose ver&ion is set to

•nbown, and if the fault packets indicate that the checkpointing coordinator ha.s

failed, node j waits for a recover packet only up to some preset time limit and then

sets its ver1ion to old-venion and sends a recover(ver1ion) packet to all its neighbors.

(5] Node j changes 1-state to recovering and waits for its complete state to arrive from

one or the disk nodes.

(6] Node j sends a rutored packet to the (possibly new) checkpointing coordinator,

changes 1-state to recovered, and waits for a ruume packet from one of its neighbors.

(7] If node j is the checkpointing coordinator, when it receives rutored packets from all

the nodes which are known to be working (including jtself), it sends ruume packets

to all its neighbors and changes 1-state to normal.

If node j is not the checkpointing coordinator, when a ruume packet arrives from

one of its neighbors, it sends a ruume packet to all its neighbors and changes 1-state

to normal.

(8) Node j resumes normal operation.

{II) The Attion• of a Did Node

At. previously mentioned, if an error is detected in a disk node, a era1h is initiated

(in Subsection 5.6.4 we discuss modifications to the system that enable it to recover from

failed disk nodes). However, a disk node can participate, or even initiate, the recovery

process when the source of the error is some other node.

100

During recovery, every disk node j sends the checkpointed state to those nodes

whose state is stored on the disk controlled ·by j. The node states are sent usmg

sequences of ~tate packets. Sending the checkpointed state to the nodes can begin only

when it is detc~·!.Oined which version of the state should be used. Hence, the disk node

begins sendiug tL.e checkpointed states only after it has gone through step [4] or the

recovery proi-ocol described above. The value of vereion for the state that is sent by the

disk node is the value or the vereion variable or the disk node following step [4] above.

The disk nodes must ensure that the "files" on the disks are restored to a state that

is consistent with the state or the nodes. If the value or the vereion variable in some disk

node is ~ unkno.,n (i.e., it is set to 0 or 1) when it rll'St enters the error 1-state, the

system is rolled back to the checkpoint to which the disk node has already committed.

All updates to the disk that were performed alter the last checkpoint must be undone.

Hence, the disk node removes all the duplicate files and creates new duplicates from the

"master copy" for all the files that are marked in the master copy as open with write or

read/write permission.

If the di!k node is in the middle of a checkpointing session, its vereion variable may

be set to unknown. If recovery requires rolling back to the previous checkpoint rather

than to the one being established, the value of verBion changes to old-vereion when the

1-state changes to recovering. In this case the disk node is required to perform the same

actions as when the value of vereion is initially set to a value other than unknown.

If recovery requires "rolling back" to the checkpoint that is currently being

established, the value or vereion is unkno1Vn when the disk node rll'St enters the error

1-state but changes to 1-old-ver~ion when the !-state changes to recovering. In thi! case

the disk node must commit to all updates that were done to the disk since the last

checkpoint. Hence, the disk node commits to the node states that were just received and

updates all files for which there are temporary duplicates with the content! or the

duplicates. For files that have been closed since the last checkpoint, the duplicates are

removed. For files that are still active, the .duplicates remain and continue to be used by

the disk node.

A disk node may fail or receive an error packet in the middle of committing to a new

checkpoint. For the time being, we assume that any error in the operation of the disk

node causes a crash. If the disk node receives an error packet in the middle or

lOi

committing to a new checkpoint, it forwards the packet to all its neighbors but does not

proceed with any recovery actions until it completes the process of committing to the new

checkpoint.

&.•. Correctnea Araumenta

Since a complete proof of the correctness of the protocols presented in this chapter

requires a lengthy case analysis, we limit our discl15Sion here to showing that, despite

hardware faults, the system will never produce ("commit to") incorrect results. It is

shown that errors that might lead to incorrect results are always detected. Furthermore,

when recovery occurs, the state to which the system is rolled back is valid. This requires

showing that disk nodes only commit to valid checkpoints and that during recovery all

the working nodes are rolled back to the same con&iltent checkpoint.

As previously mentioned, the last action of the system, before committing to the

output of a task, is to establish a new checkpoint. Thus, in order to show that the output

is correct it is sufficient to show that a checkpointing session can terminate successfully

only if the states of all the nodes are correct and there are no errors in transmitting

output from the various nodes to the disks. In Subsection 5.4.1 it is shown that the states

of the individual nodes are correct. In Subsection 5.4.2 it is shown that the states of all

the nodes that are saved as part of a single system checkpoint are consistent with each

other.

6 ••. 1. The Correc:tnea of Individual Node States

The correct operation of a particular pair of neighboring nodes and the link

connecting them is verified when both enter the checkpointing 1-state. Errors that are a

result of faults in either node are always detected immediately when they occur. The two

aeighbor nodes can both enter the checkpointing 1-state only after they have exchanged

checkp packets. These checkp packets follow any normal packets transmitted between the

two nodes. If the checkp packets do not cause one or both of the nodes to enter the error

1-state (i.e., the CRC check bits match), then there have been no errors in the

transmission of normal packets between the -nodes since the last checkpoint. Thus, if both

nodes enter the checkpointing 1-state, the only way for one of the nodes to have received

an incorrect normal packet from the neighbor is if the latter was correctly forwarding an

incorrect packet from some other node. It is shown in the next paragraph that this

102

situation 1s also detected during the checkpointing process. Before checkpointing is

complete, all the nodes in the system must go through the checkpointing 1-state. Thus.

all the normal packets received by any one or the nodes since the last checkpoint must

have been correctly forwarded.

It is still possible for the internal state of a node to be erroneous. This erroneous

internal state can only be a result or incorrect processing or correct packets. Since the

nodes are self-testing, an erroneous internal state is detected when the state is sent to the

disk node. For example, if duplication and comparison is used to implement the self­

testing nodes (see Chapter 3), the internal state is generated and stored independently on

two identical functional units. 'When the state is sent to the disk node, the two versions

are automatically compared and if they are not identical, the neighbor receives an error

signal. Thus, if all the nodes complete sending their state (i.e., enter the checkpointt.d

1-state), all those states must be valid. It remains to be shown that the states of the nodes

that are sent to disk nodes during a particular checkpointing session are consistent with

each other and are stored and retrieved correctly.

The state of each node is sent to a disk node using fail-safe 1tate packets. After each

"hop" these packets are checked and any error that resulted from a fault in the link is

detected. Since the nodes are self-checking, any error in forwarding the 1tatt. packets is

detected immediately. The node detecting the error is always the next node on the path

to the disk node. Hence, if there is any error in transmitting the state packets from their

source nodes to the disk nodes, some or the packets will not arrive at their destination. Ir

a 1tate packet from some node i does not reach its destination, the corresponding disk

node does not send the 1aved packet for node i to the checkpointing coordinator and the

checkpointing session is never completed. Hence, a checkpointing session can be

completed only if the states or all the nodes arrive at the disk nodes intact.

Since the disk nodes are self-checking, errors in the operation of these nodes is

detected immediately by neighbors and causes a crash. h previously mentioned, the disk

nodes use an error-detecting code when storing any information on disk. If there are any

errors in transmitting the information to the disk itself or in storing the information, the

error is detected when the information is retrieved. Thus, during recovery, the disk nodes

either retrieve the node states correctly or detect an error and initiate a crash.

During recovery, the node states are sent from the disk nodes to their destination

103

nodes uslDg •tate packets. AD.y errors ID the traDSmission of the •tate packets are

detected immediately aDd cause a crash. Each node can determine when it receives its

entire state using the 1eq aDd •ize fields in the •tate packets. Normal operation is

resumed only after all the nodes have sent a rutored packet to the checkpointing

coordinator. Thus, normal operation can be resumed only if the entire checkpointed state

ia retrieved correctly.

5.4.2. The Conaiatency of Node States in a Sin&le Checkpoint

The state of a node changes as a result of local computation, traDSmission of a

normal packet, or reception of a normal packet. The saved states of two neighbor nodes

are coDSistent if no normal packets are traDSmitted between the nodes after the state of

one of the nodes has been saved but before the state of the other node is saved [Bari83].

When a node enters the eheckp-hegin 1-state, it stops local computation and traDSmission

of normal packets. A node enters the eheckpointing !-state only after all its neighbors

have entered the ehukp-hegin 1-state. Hence, after the node has entered the

eheckpointing 1-state, no more normal packets are exchanged with on~ of its neighbors

until normal operation is resumed. As the checkpointing session progresses, each one of

the neighbors enters the eheckpointing 1-state aDd sends its own state to a disk node.

Therefore, the saved state of each node is coDSistent with the saved states of all its

neighbors. Thus, if a checkpointing session is not interrupted by ILI1 error, it is guaranteed

that all the node states that are part of that checkpoint are coDSistent with each other.

The system must be able to recover from ILI1 error that is detected in the middle of a

checkpointing session. Under these circumstances, some of the disk nodes may receive the

re•ume packet aDd commit to the new checkpoint while other disk nodes are still

committed to the previous checkpoint. As a result, the two groups of disk nodes may

cause working nodes to "recover" with incoDSistent states. The veuion variable stored

with each node is introduced in order to solve this problem. During a checkpointing

session, before ILDY node i completes sending its entire state to a disk node, it (node i) can

determine independently of ILDY other node that ILDY recovery must involve rolling back to

the previou• checkpoint rather than the one being saved. Once i completes sending its

state, it can not longer determine whether recovery should involve rolling back to the

previous checkpoint or to the one stored during the current checkpointing session;

therefore, node i sets is ver1ion variable to unknown. After the check pointing coordinator

104

ha.s received 1aved packets for all the nodes in the system, it is guaranteed that all the

disk nodes together have a complete and con.sistent new checkpoint. The ruume packet

sent by the checkpointing coordinator informs all the other nodes that the new checkpoint

is valid. If an error is det.a:terl, the checkpointing coordinator always "knows" whether

the system should ~ rolled back to the previo~ checkpoint or to the one being

established. Ir the chedpointing coordinator is in the middle of a checkpointing session

and ha.s already received toved packets for all the nodes in the system, the checkpoint

being established in the cw-rent checkpointing session m~t be used. Otherwise, only the

previo~ ch~kpoint is guaranteed to be correct and the checkpoint that is in the process

or being established m~t be discarded. Every node in the system either "knows" to what

checkpoint the system should be rolled back, or "knows" that it is not able to make that

determination. It is not possible for two nodes to have complementary values in their

ver1ion variables. Since the disk nodes begin sending the checkpointed state only when

their ver1ion variable is ~ unkno1Vn, the system is rolled back to a con.sistent state.

M previo~ly mentioned, when the system commits to a new checkpoint, it also

commits to the output generated since the la.st checkpoint. Disk output in the system is

sent from the vario~ nodes to the disk nodes during normal operation ~ing normal

packets. A checkpointing session can terminate successfully only if no errors occw-red as a

result of faults in nodes or linb. Th~, if the checkpointing session completes, it is

guaranteed that all the output received by disk nodes since the la.st checkpoint is correct.

The disk nodes use error-detecting codes that guarantee that any error in storing the

output on the disk will be detected when the information is retrieved. Thus, when the

system commits to output on its disks, that output is either correct or, if it is incorrect,

the error can be detected based on the error-detecting code used to store the information.

5.5. E1timate of the Overhead for Fault Tolerance

Accurate estimates of the overhead of making the mu.hicomputer fault tolerant using

the scheme proposed in this chapter require detailed simulation or the system, including

the queues at the communication ports, the time it takes to move data. in memory, etc.

Such information can only be obtained for a particular application after a detailed design

of the system is complete. In order to provide a rough estimate of the expected overhead

associated with the proposed error recovery scheme, we make several assumption.s about

the system based on the stated application· environment and on cw-rent and near-future

105

teehnology:

(1) The system includes one thousand nodes, each consisting of a high-performance (for

example, 5 MIPS [Barr83]) processor. The processor state is, on the average, 256

thousand bytes. It should be noted that the state does not include code-space.

(2) The topology of the system is dense, i.e., the diameter is proportional to the

logarithm of the number of nodes. Specifically, we assume a diameter of 15.

(3) Ten of the nodes in the !ystem are disk nodes, each handling checkpointing and

recovery or the state or 100 nodes.

(4) The communication links are assumed to have a bandwidth of

1.5 X 108 bvtu / 1econd [Barr83, INM084).

(5) Every fail-saf'e packet that is not a 1tate packet is 16 bytes long, including redundant

bytes for error deteetion.

(6) Each 1tate packet is 1000 bytes long and 260 such packets are required to transmit

the entire state or a node.

(7) Each node can be simultaneously receiving a packet, processing a previously received

packet, and sending a previously processed packet [Barr83, INM083).

(8) The bandwidth of the interface between the disk node and the disk drives it controls

is much higher than the bandwidth of the communication linb, and the node can

transfer data to the disk drive simultaneously with all its other activities.

In order to initiate a checkpointing session, the checkp packets must propagate from

the checkpointing coordinator to all the other nodes in the system. The 16 byte checkp

packet goes through a link in 11 p1ee8. The processing required at each node to forward

the packet is relatively simple. For a 5 MIPS processor with an architecture that is

appropriate for a multicomputer (e.g., the INMOS TransputerPNM084]), 50 p1ec1 is a

pessimistic estimate of the delay introduced by this processing. Since the diameter of the

systems is 15, all the nodes in the system can enter the checkpointing 1-state within one

milliseconds after the checkpointing session is initiated.

The state of each node is transmitted to a disk node using 260 •tate packets. Each

10QO.byte •tate packet can be transmitted through a single link in 670 plee8. Hence,

every disk node begins receiving 1tate packets within one or two milliseconds after all the

nodes enter the eheckpointing 1-state. A regular node receiving a 1tate packet, can

certainly verify it and forward it to the appropriate output port within the 670 ~uc1 it

106

takes to trall!mit the packet over a link. Hence, even if a disk node can only receive ~tate

packets through one or its ports, these packets can utilize the full bandwidth or the link.

Since the bandwidth of the interface between the disk node and the disk drive has a much

higher bandwidth than the communication link, the disk node can store the state packets

u fast as they arrive. Thus, all 26,000 1tate packets containing the state of 100 nodes can

be received by a disk node in approximately 18 seconds.

Sending 1aved packets from the disk nodes to the checkpointing coordinator is a

similar process to distributing ch.eckp packets from the checkpointing coordinator to the

rest of the system. Hence, this process is expected to take approximately one milliseconds

(see above). Similarly, distributing the resume packet from the checkpointing coordinator

to the rest of the system is also expected to take approximately one milliseconds. Thus,

the entire checkpointing session can be expected to take less than 1Q seconds to complete.

If " checkpoint is created twice an hour, the overhead involved in maintaining the

checkpoint is, approximately 1.1 percent.

The process of recovery is very similar to the process of creating a checkpoint

26,000 1tate packets are trall!mitted from the disk nodes to all the other nodes in the

system. Hence, recovery can also be expected to take approximately 20 seconds. 'When

an error is detected, the system is rolled back and any computation done since the last

checkpoint is lost. Since a new checkpoint is created every 30 minutes, on the average,

15 minutes of computation are lost every time the system is rolled back. If the MTBF of

the system is 10 hours, the total overhead for fault tolerance during those 10 hours

includes 6.6 minutes for creating checkpoints, 0.4 minutes for error recovery, and

15 minutes of lost computation. The total of 22 minutes amounts to an overhead of

3.7 percent.

&.8. Relaxin& Some of the Auumption1

In this section we outline how some of the restrictive assumption! made in

Subsection 5.3.1 can be relaxed. In particular, it is no longer assumed that the system

must be "closed!' Some communication with the "outside world" is allowed. Since

trall!ient hardware faults are at least an order of magnitude more likely to occur than

permanent faults (Cast82], it is wasteful to logically remove a node or a link after it suffers

from a fault. A more efficient way or dealing with trall!ient faults is proposed. Finally,

107

modifications to the system that allow recovery from faults in disk nodes are discussed.

5.8.1. Input/Output from the Syatem

The basic problem in allowing communication with the outside world is that it may

be impossible to roll back the effects of such communication: if a page is printed, it cannot

be erased; if a file is read and then deleted, it may [lOt be possible to restore its contents;

if input is obtained from a terminal, it is not acceptable to ask the user to retype all his

commands after the system recovers from an error. The problem is especially difficult

with our scheme thl\t allows the system to continue operating incorrectly for a relatively

long time (up to the time between successive checkpoints) after an error has occurred.

The multicomputer consists of nodes, links, and disk drives. We will call any other

system (computer) or device that interacts with the multicomputer, a "peripheral:' Some

peripherals, such as another computer system, may be able to commit to checkpoints and

roll back to those checkpoints upon demand. We call such "devices" intelligent

peripheral~. Most peripherals, such as printers or tape drives, cannot set checkpoints and

roll back to them. We call these latter devices aimple peripheral~.

Due to similarities between the actions performed by a node that controls a disk that

is part of the system and a node that interacts directly with the outside world, it is

convenient to refer to nodes that interact directly with the outside world as diak nodes.

Information transfer from a disk node to a peripheral is output while information transfer

in the opposite direction is input.

5.8.1.1. Intelligent Peripher~la

Wit"h intelligent peripherals, input/output may occur virtually at any time. As part

of each checkpointing session, when the disk nodes commit to the new checkpoint, each

disk node connected to a peripheral "commands" the peripheral to commit to any data it

received from the disk node or transmitted to the disk node since the last checkpoint. If

the peripheral signals an error, the disk node initiates a crash.

If an error is detected in the multicomputer and a recovery session is initiated, the

peripherals are instructed to roll back to a previous checkpoint or possibly, if the error is

detected in the middle of a checkj,ointing session, to commit to a new checkpoint. The

disk node connected to each peripheral is able to inform -the peripheral which of these

actions to take as soon as it determines the correct value for its ver~ion variable (see

108

Subsection 5.3.6).

If a peripheral accepts or transmits erroneous data without detecting the error, it is

possible that the multiconaputer system will generate incorrect results. The probability of

such incorrect result:! is red'!<:~ by using error detecting codes for all data transfers

between disk nodes and puip!JC:rl\ls.

6.8.1.2. Simple Peripheral•

M mentioned earlier, only disk nodes interact directly with peripherals. Regular

nodes can interact with any peripheral indirectly by sending input/output requests to the

appropriate disk node. These requests are sent to the disk node using normal packets.

Some of these packets may be erroneous due to faults in links that are only detected

during checkpointing. Since operations on "simple peripherals" cannot be undone, the

disk node does not execute any of the 1/0 requests until they are verified to be correct by

a checkpointing session. Instead, 1/0 requests are accumulated in temporary files on disk

drives controlled by the disk node. If the system is rolled back to a previous checkpoint,

all these 1/0 requests are discarded.

When the disk node commits to the new checkpoint, it also places the accumulated

1/0 requests in a queue of verified peripheral operations to be executed. Since data

transfers to/from the peripheral cannot be repeated, this queue is not part of the node

state that may be rolled back during recovery. After the checkpointing session is

completed, the disk node performs the peripheral operations in the queue and keeps track

or all data transfers to/from the peripheral so that they are not repeated if the system is

rolled back.

When executing input operations, the disk node rll'St stores the data received from

the peripherals in temporary files on disk and later forwards the data to the nodes that

had initi"ted the input requests. If an error is detected and the system is rolled back, any

packets transferring data from the disk node to other nodes are lost. These packets can

be considered "salely on their way" only alter the next checkpointing session. Hence, the

disk node must keep the temporary files until the next checkpointing session so that it is

able to resend any packets containing data from the peripherals if the system is rolled

back. It should be noted that, immediatdr alter they are created, the temporary files

containing data from the peripherals are treated as though they are part of the previous

109

checkpoint. These temporvy files are logically "removed" when the data i! !ent from the

disk node. However, since they are part or the previous checkpoint, they are only

physically removed during the nezt checkpointing session.

The disk node m•tst !-.ecp track of input requests that have been verified as correct

(by a previous checkpoi.c.ti.tg :~~ioa) but are not yet completed since the data has not yet

been sent to the node that request~d it. At the same time (during checkpointing) when all

1/0 requests are placed in the queue or peripheral operations to be executed, the input

requests alone are also placed on another queue or "input requests that are not yet

completed!' This queue is handled in the same way as the temporary files mentioned

above -it becomes part or the previoul checkpoint and all modifications (updates) to it

are committed only during the next checkpointing session.

The above scheme does not allow interactive access to the multicomputer. However,

it does allow it to accept new tasks during every checkpointing session and to produce

partial outputs as the task progresses. Hence, the multicomputer is no longer required to

be a "closed system!' It is possible to allow regular data transfers with a a host system

that interacts with the users directly, "prepares" jobs for the multicomputer, and handles

the output from those jobs.

5.8.2. Handling Erron Cau.ed by Tranaieni Faulia

Most of the errors in computer systems are a result or transient faults [Cast82]. Such

errors can corrupt the state or the system so that rolling back to the last checkpoint is

necessary. However, the hardware itself is not permanently affected and should be used

again once a valid system state is established.

Since a link does not contain any state, no special actions are required in order to

continue to use it alter recovering from an error caused by a transient fault on that link.

On the other hand, the computation nodes do contain state that may be corrupted by a

fault thereby preventing it from cooperating with the rest or the system in establishing a

"sane state!' Thus, a node that fails due to a transient fault should be ruet to some valid

initial st•te that allows it to communicate with other nodes in the system. Once the node

is in this initial state, it can obtain information about the condition or the system (for

example, which nodes or links are faulty) and accept its checkpointed state so that it can

resume normal operation.

110

If the self-checking nodes are implemented usmg duplication and

comparison [Tami83], the "no-match" signal from the comparator can be used to reset the

node to a "sane" state following a transient fault. This reset causes the node to begin

executing resident c~.;dc tbi'\t is stored in ROM. It should be noted that neighbor nodes

must not _be given the .sut!.urity to reset a failed state since that would allow a failed node

to reset its fault-free neighbors.

Given the ability to reset ·a failed node, recovery from an error caused by a transient

fault is simpler than recovery from an error caused by a permanent fault - there is no

need to reroute packets around failed nodes or links and it is not necessary to migrate

processes that were assigned to the failed node to other nodes. However, permanent faults

must be distinguished from traD!ient faults in order to prevent repeated errors caused by

a single permanent fault from disrupting the operation of the system. When an error is

detected, the node or link that caused the error is identified by the location field in the

fault packets. Each node in the system can keep a record, in its own memory, of the

causes of the last few errors. If the same node or link is the source of several consecutive

errors, that node or link is considered permanently faulty by all the other nodes in the

system, which make no further attempts to use it.

5.8.3. Futer Detection of Errore Cau1ed by Faulty Links

'With the fault tolerance scheme described so far, errors caused by faulty links are

only detected during the next checkpointing session. Thus, alter a faulty link causes an

error, the system continues processing the erroneous information until the next

checkpointing session. All this processing is useless since, upon detecting the error, the

system is rolled back to the last checkpoint. In addition, the delay in detecting errors

caused by faulty linb can lead to system crashes. If two linb are affected by faults

during normal operation, the two independent faults may be detected simultaneously

during the same checkpointing session and result in a system crash.

In order to detect errors caused by faulty linb as soon as possible, every packet

must include redundant check bits that are checked alter every transfer over a link (see

Subsection 5.3.2). When a node detects an error it can initiate a recovery session using

fault packets (see Subsection 5.3.6). The additional overhead required by this scheme

includes the communication bandwidth used to transmit the redundant bits, possible

additional delay in relaying the packet at each intermediate node on its path, and

111

additional hardware and/or software {firmware) at each node for performing the validity

checks on each packet.

It should be noted that the above scheme does not detect lost packets and therefore

does not eliminate the need for checking the links during the checkpointing session, as

described in Subsections 5.3.2 and 5.3.5. Faster detection of lost packets requires much

more complicated protocols. After a node sends {or forwards) a packet to a neighbor, it

waits for an aeknowledgement.· If no acknowledgement is received within a set time, the

sender "times out" and initiates recovery. Wtth the system discussed in this chapter,

losing a packet while it is tr&IL!mitted from one node to its neighbor, is a very unlikely

failure mode. Hence, the additional overhead required for fast detection of lost packets is

not justified.

Another possible scheme for detecting errors caused by faulty links is to verify the

validity of messages only at their final destination rather then at each intermediate node.

Instead of including cheek bits with each packet, the system may use only one set of check

bits for each message (that may be sent using several packet!). The check bit are

generated by the source of the message and cheeked only by the destination. This scheme

involves less overhead than verifying individual packets. However, the delay in detecting

errors is greater and there are more possible errors that can only be detected during a

checkpointing session.

6.8.-'. Fault. in Di•kl and Diak Nod•

Wtth the fault tolerance scheme described so far, the system cannot recover from

errors caused by faults in disks or disk nodes. The basic problem in recovering from such

errors is that data may be corrupted or no longer accessible. If the only access to parts of

a checkpointed state or to data required by the task is through a single disk node, there is

no way to recover from a permanent fault in this node. Similarly, if parts of the

cheekpointed state or other data is stored on only one disk, the system cannot recover

from a failure of the disk or or the disk controller.

The solution to the above problem requires storing multiple copies of critical data

and providing multiple paths to the data. In several commercial systems (Borg83, Katt82]

this is being done by using multiple dual-ported disk drives and dual-ported disk

controllers. The two ports of each disk drive are connected to two independent disk

112

controllers and the two ports of each disk controller are connected to two independent

nodes. Each critical file is stored on two disk drives. With this scheme, critical data

remains accessible despite ;.he failure of one of the disk nodes, one of the disk controllers.

or one of the disk drives.

The hardware described in the prev1ous paragraph is well suited to the fault

tolerance schemes of most commercial systems. These schemes involve the use of "process

pairs;' a "primary" and a "backup;' located on different nodes with the "backup" ready

to take over the execution of the process if the "primary" fails. In accordance with this

scheme, the process pair that interacts with the disk controller is located on the two nodes

connected to the ports or the controller.

The hardware described above can be used with the multicomputer. However, unlike

the fault tolerance schemes used in commercial systems, the scheme presented in this

chapter does not involve maintaining a process pairs. There are two possible ways of

using the pair of disk nodes connected to dual-ported controllers: (1) ~ long as both disk

nodes are operational, only one of the nodes performs the input/output tasks of a disk

node w bile the second node operates as a normal node but is kept ready to take over

input/output operations in case the first node fails. (2) Both nodes perform input/output

operations and one of them begins performing all these operations if the other one fails.

In this chapter we will only discuss the r~rst, simpler, alternative.

For each pair of nodes connected to the same disk controller, we call the node that

performs input/output operations "an active disk" node and the other node "a paBBiv~

disk node:' The other nodes on the system initially use the active disk node but they also

"know" the identity of the corresponding passive disk node and begin using it if the active

disk node fails.

Each output operation is performed on both disk drives. Data is written with

redundant bits for error detection. After the data is written, it is immediately read by

the active disk node and verified as correct based on the error-detecting code. If an error

is detected on both disk drives, the node (~rst retries the operation using the same disk

controller and disk drive. If the retry fails, the disk node switches to the other disk

controller. If the disk node detects the failure of both disk drives or both disk controllers,

it must initiate a cro•h.

The failure of an active disk node is detected by its neighbors just like the failure of

113

any other node. The r~t of the system is informed or the failure or the node by the fault

packets. The passive disk node connected to the same disk controller takes ownership of

the disk controllers and begins serving as the disk node [Katz.82]. All the nodes in the

system are informed that 1\n al'tive disk node has failed and update their internal tables to

indicate that the corr~spuodir.g passive disk node is now the active disk node. If an active

disk node fails and the other node in the disk node pair is known to be faulty, a crash is

initiated.

Recovery from the failure of a disk node is similar to the recovery from the failure of

any other node - the system rolls back to the previous checkpoint and resumes operation

without the failed node. If an active disk node fails, the corresponding passive disk node

must take over the tasks of the failed node, thereby becoming an active disk node, and

every other node in the system must begin sending all input/output requests to the new

active disk node. In order to be able to take over the tasks or an active disk node, the

passive disk node must have some information on how data is stored on the disk. In

particular the passive disk node must be able to acc~s a prearranged location on the disk

that contains pointers to the last committed checkpoint including node states and disk

files.

If an active disk node fails, its passive "partner" must be able to obtain the correct

version of the checkpointed state stored on the disks controlled by the two nodes even if

the failure is detected in the middle of a checkpointing session. If the failure is detected

before the checkpointing coordinator receiv~ 1oved packets for all the nodes in the

system, recovery involv~ roll back to the previous checkpoint rather than to the

checkpoint currently being saved. In this case the previous active disk node ha.s not yet

begun committing to a new checkpoint and the new active disk node can access the

previous checkpoint in the same way as when the error is detected during normal

operation.

If the failure of an active disk node is detected after the checkpointing coordinator

has received 1oved packets for all the nodes in the system, recovery requir~ "roll back''

to the netV checkpoint that has just been saved. At this stage the previous active disk

node may have completed committing to the new checkpoint, may be in the middle of

committing to the new checkpoint, or may have not yet started committing to a new

checkpoint. In order to be consistent with the r~t of the system, the new active disk

114

node mlll!t be able to access the new checkpoint (see Subsection 5.3.6) in all three cases.

The key to solving the above problem is that the actioD! performed by the disk node

in order to commit to a new checkpoint are rttr11able. If the passive disk. node "knows"

of a prearranged location OD di!!k. that contaiD! pointers to the new checkpoint, it can

restart the task. of committin, to the new checkpoint from scratch since all that is

required is copying pointers from the new checkpoint area to the committed checkpoint

area. After a disk. node completes committing to a new checkpoint, it stores the value of

ver~ion that corresponds to the new committed checkpoint in a known place on the disk.

During recovery, the disk node can compare the value of ver ~ion of the committed

checkpoint with the value of ver~ion that corresponds to the checkpoint it is supposed to

restore. If the two values differ, the disk node first commits to the new checkpoint and

then proceeds with the rest of the recovery session as Ul!ual.

References

Ande76. T. Anderson and R. Kerr, "Recovery Blocks in Action," fnd International

Conference on Software Engineering, San Francisco, CA, pp. 447-457

(October 1976).

Bari83. G. Barigani and L. Strigini, "Application-TraD!parent Setting of Recovery

Points," 19th Fault-Tolerant Computing S11mpo~ium, Milano, Italy, pp. 48-55

(June 1983).

Barr83. I. Barron, P. Cavill, D. May, and P. Wilson, "TraD!puter Does 5 or More MIPS

Even When Not Used in Parallel," Electronic~, pp. 109-llS (November 1983).

Borg83. A. Borg, J. Baumbach, and S. Glazer, "A Message System Supporting Fault

Tolerance," Proe. 9th StJmp. on Operating S11~tem~ Prineiplu, Bretton

Woods, NH, pp. go..gg (October 1983).

Bozy82. M. Bozyigit and Y. Pak.er, "A Topology Reconfiguration Mechanism for

Distributed Computer Systems," The Computer Journal 25(1) pp. 87-92

(February 1982).

Cast82. X. Castillo, S. R. McConnel, and D. P. Siewiorek, "Derivation and Calibration

of a Transient Error Reliability Model," IEEE Tran•aetion~ on Computer~

C-31(7) pp. 858-671 (July 1982).

115

Dole81. D. Dolev, "Unanimity in an Unknown and Unreliable Environment," 22nd

Annual Svmpo1ium on Foundation' of Computer Science, Na.shville, TN, pp.

159-168 (October 1981).

Elki82. S. A. Elkind, "Reliability and Availability Techniques," pp. 6~181 in The

Theorv and Practice of Reliable SJ11tem Deaign, ed. D. P. Siewiorek and R. S.

Swan, Digital Press (1982).

Gray78. J. N. Gray, "Notes on Data Ba.se Operating Systems," pp. 39~481 in

Operating SJ11tem1: An Advanced Courae, ed. G. Goos and J. Hartmanis,

Springer-Verlag, Berlin (1978). Lecture Notes in Computer Science 60.

INM083. INMOS, IMS T-42.1 Tran1puter, Advance Information. November 1983.

INM084. INMOS, IMS T-42-4 Tran1puter Reference Manual, November 1984.

John84. D. Johnson, "The Intel 432: A VLSI Architecture for Fault-Tolerant Computer

Systems," Computer 17(8) pp. 4~48 (August 1984).

Jone79. A. K. Jones, R. J. Chansler, I. Durham , K. Schwans, and S. R. Vegdahl,

"StarOS: A Multiprocessor Operating System for Support of Task Forces,"

Prot:. 7th SJ1mp. on Operating Sv1tem8 Prinr:iple1, Pacific Grove, pp. 117-127

(December 1979).

Ka.st83. P. S. Ka.stner, "A Fault-Tolerant Transaction Processing Environment,"

Databa1e Engineering 6(2) pp. 2~28 (June 1983).

Katz.82. J. A. Katzman, "The Tandem 16: A Fault-Tolerant Computing System," pp.

47~480 in Computer Structure~: Principle' and Ezample8, ed. D. P.

Siewiorek, C. G. Bell, and A. Newell, McGraw-Hill (1982).

Kubi82. C. Kubiak, J. P. Alldre, B. Grandjean, D. Mathieu, and J. Rolland, "Penelope:

Lee78.

Lee80.

A Recovery Mechanism for Trall!ient Hardware Failures and Software Errors,"

Jeth Fault-Tolerant Computing SJ1mpo1ium, Santa Monica, CA, pp. 127-133

(June 1982).

P. A. Lee, "A Recoll!ideration of the Recovery Block Scheme," The Computer

Journal 21(4) pp. ~310 (November 1978).

P. A. Lee and K. Heron, "A Recovery Cache for the PDP-11," IEEE

Tran1action1 on Computer~ C-29(6) pp. 546-549 (June 1980).

115

Peas80. M. Pease, R. Shostak, and L. Lamport, "Reaching Agreement in the Presence

of Faults," Journal of the ACM 27(2) pp. 228-234 (April 1080).

Plat80. D. G. Platteter, "Transparent Protection of Untestable LSI Microprocessors,"

10th Fault-Tolerant Computing Svmpo8ium, Kyoto, Japan, pp. 345-347

(October 1080).

Prad82. D .. K. Pradhan and S. M. Reddy, "A Fault-Tolerant Communication

Architecture for Distributed Systems," IEEE Tran8actions on Computers

C-31(0) pp. 863-870 (September 1082).

Randi5. B. Randell, "System Structure for Software Fault Tolerance," IEEE

Tran8action8 on Software Engineering SE-1(2) pp. 220-232 (June 1975).

Randi8. B. Randell, P. A. Lee, and P. C. Treleaven, "Reliability Issues in Computing

System Design," Computing SurveJ18 10(2) pp. 123-165 (June 1078).

Se'qu83. C. H. Se'quin and R. M. Fujimoto, "X-Tree andY-Components," pp. 290-326 in

VLSI Architecture, ed. B. Randell and P.C. Treleaven, Prentice Hall,

Englewood Cliffs, NJ (1983).

Siewi8. D. P. Siewiorek, V. Kini, H. Mashburn, S. McConnel, and M. Tsao, "A Case

Study of C.mmp, Cm •, and C.vmp: Part I - Experiences with Fault Tolerance

in Multiprocessor Systems," Proceedings IEEE 88(10) pp. 1178-1199 (October

1978).

Stro83.

Taji77.

H. R. Strong and D. Dolev, "Byz.antine Agreement," COAJPCQ]\;, San

Francisco, CA, pp. 77-81 (March 1983).

W. D. Tajibnapis, "A Correctness Proof of a Topology Information

Maintenance Protocol for a Distributed Computer Network,"

Communication8 of the ACM 20(7) pp. 477-485 (July 1977).

Tami83. - Y. Tamir and C. H. Sequin, "Self-Checking VLSI Building Blocks for Fault-

Tolerant Multicomputen~," International Conference on Computer Design,

Port Chester, NY, pp. 561-564 (November 1983).

Wake76. J. F. Wakerly, "Microcomputer Reliability Improvement Using Triple-Modular

Redundancy," Proceedings of the IEEE 84(6) pp. 889-895 (June 1076).

Wens78. J. H. Wensley, L. Lamport, J. Golberg, M. W. Green, K. N. Levitt, P. M.

Melliar-Smith, R. E. Shostak, and C. B. Weinstock, "SIFT: The Design and

lli

Analysis or a Fault-Tolerant Computer (or Aircraft Control," Proceedings

IEEE 88(10) pp. 124~1255 (October 1978).

\Vitt81. L. D. \Vittie, "Communication Structures (or Large Networks of

Microcomputers," IEEE Tranaactiona on Computera C-30(4) pp. 264-273

(April 1981).

Wood81. W. G. Wood, "A Decentrali:r.ed Recovery Control Protocol," 11th Fau 1t­

Tolerant Computin; SJ1mpoaium, Portland, Main, pp. 159-164 (June 1981).

Chapter Six

Implementation Considerations

118

The previous five chapters presented the basic principles of an approach to

implementing fault toterance in a VLSI multicomputer and discussed the advantages and

disadvantages of this approach when compared with alternative approaches. However, the

material presented is, by no means, a complete detailed design of a high-performance

fault-tolerant multicomputer. Such a design must take into account the mix of

applications for which the system is intended, the required performance and reliability,

the properties of the particular implementation technology, the environment in which the

system is expected to operate, and the acceptable range of system cost. A discussion of

some of the issues and implementation tradeoffs that must be considered is presented in

this chapter.

The key to the fault tolerance technique presented in the previous chapters is the use

of self-checking nodes implemented with duplication and comparison. As discussed in

Chapter 3, one of the potential weaknesses of duplication and comparison is that if the

two functional modules fail simultaneously in exactly the- same way, the failure is not

detected and incorrect results are accepted as correct by the rest of the system.

Techniques for reducing the probability of such common mode failure8 are presented in

Section 6.1. This section includes a discussion of the possible causes of common mode

failures and some basic definitions. It is shown that it is not possible to entirely

eliminated common mode failures. Instead, there are some practical implementation

techniques for reducing the probability or these failure in the context or commonly used

NMOS and CMOS circuits.

The technique presented in Section 6.1 is an important implementation detail that

can increase the efiectiveness or the self checking nodes. Many other design choices and

implementation details must be considered. A brief overview of some of these issues is

presented in Section 6.2.

119

8.1. Reducins Common Mode Failure. in Duplicate Modules

We have discussed the use of duplication and comparison to implement self-checking

nodes. This teehnique is obviously also applicable to the implementation of any other

•elf-checking functional module (henceforth, SCFAf). Hence, for generality, SCFM will

be used iD!t~tod of "self-checking node" throughout this section. A general SCFM is

shown in Fig. 6.1.

modul~ modul~

T /

\. ./
\•mpuaLo/

I
~ •

output error i.Dput

Fis. 8.1: A Self-Checking Functional Module (SCFM)

Modules that perform identical function! may fail simultaneously in exactly the same

way and produce identical incorrect results. Such common mode failure8 (henceforth,

CMFs) may be caused by environmental factors such as power supply Ouctua.tions, pulses

of eleetromagnetic fields, or bursts of cosmic radiation, that can affect both modules at

the same time, triggering similar design weaknesses and causing simultaneous identical

failures of both modules. Simultaneous module failures may also be caused by faults that

occur at different times in parts or the modules that sufTer from identical design

weaknesses and are infrequently exercised.

With advances in VLSI technology it will soon be possible to implement an entire

SCFM (such as a self-cheeking node in a multicomputer), including the two functional

modules and the comparator, on the same chip. In addition to providing error detection

during normal operation, the aelf-cheeking capability of the chip may also be used to

simplify the testing or the chip throughout its life: from wafer probe testing that is part of

the manufacturing process through the acceptance tests by users and diagnostic testing for

repair and preventive maintenance of the system containing the chip. The simplification

of testing is achieved by eliminating the need to store the correct responses to long test

sequences and compare them with the actual respoD!es of the chip during testing. Testing

120

can proceed at the normal system clock rate and only the outputs of the comparator need

to be monitored.

Unfortunately, if the two modules are fabricated on the same chip, the probability of

CMFs during normal operation is greater than if they are on separate chips. This

increased probability of CMFs is due to the tighter electrical and physical coupling

between the two modules and to similar weaknesses in the two modules that may be

caused by fabrication fiaws speeific to the wafer containing the chip. Furthermore, CMFs

may be a significant problem if the self-checking capability of the chip is also be used to

simplify its testing, espeeially fabrication testing. In chips that have never been tested,

(i.e., have not yet gone through wafer probe testing), as a result of fabrication defects,

CMFs may be relatively common, espeeially if the modules are physical duplicates. Hence,

if wafer probe testing relies on the self-checking capability of the chip, different physical

implementations or the two modules must be used.

The simplest way to implement modules that perform identical functions is to use

identical physical duplicates. For such modules the meaning of the term "common mode

failures" appears obvious. However, if the two modules perform identical functions but

are physically different, there is no direct correspondence between physical faults in the

two modules, and the meaning of the term is unclear. Hence, there is a need for a

definition of CMFs that is applicable to modules that are physically different.

In the rest of this section, F will denote the set of all •ingle fault•, where a single

fault is a fault caused by a single physical defect. In discussing the failure of the two

modules in a SCFM, a "double faults" (! 1,/ 2) occurs when / 1 E F affects one of the

modules while / 2 E F affects the other module.

The two modules are denoted by A and B. When both modules are fault-free, both

1'J'e implementations of some function Z. The implementation of Z by module A is

denoted by z For every input I, Z..t{l)- Z8 (I)- Z(I). When the module A is affected

by-a fault f e F, it performs the function Z!. The two modules may produce identical

incorrect results due to unrelated faults that just happen to affect the outputs in the same

way. In this situation, / 1 affects A, / 2 affeets B (! 1,/ 2 E F), and there is an input I sue h

that z!•(l)- Z~'(l) even though z!~I)-,' Z(I). Hence, there is a non-zero probability

that a supposedly self-checking SCFM will fail to fiag erroneous output. Thus, the SCFM

is not foult-•ecure [Wake78) with respect to certain 11double faults" that affect both

121

modules even if the modul~ are not physica.l duplicates.

In the wont ease, the new function!, z~· and Z~', performed by the faulty modules

are identical, and the fault is never detected since for everv input I, Z~'(I)- Z~V). In

this ease, the SCFM is not even •elf-teating [Wake78] with r~pect to the "double fault''

(! 1,/ :z).

While it is clearly impossible to ell!ure that the SCFM will be fault-secure with

respect to every double fault (/ 1,/ 2) E FxF, one might hope that appropriate

implementation of the modules can ell!ure that the two module function!, as modified by

the faults (/ 1,/ 2), are not identical, so that the fault is detectable. If this is done, the

SCFM is partiallv •elf-ehecking [Wake78] with respect to a.ll double faults(! 1,/ 2) E FxF.

We thus make the following definition!:

Def. 6.1: The two modules in a SCFM are said to be affected by common mode failures,

if and only if, there exists at least one input vector for which both modules produce

incorrect outputs, and for every input, the outputs from the two modules are identical.

Def. 6.2: Two modules are said to have independent failure mode• with respect to a

fault set F, if and only if, for every double fault(! 1,/ 2) E FxF, such that I 1 affects one of

the modules and 12 affects the other, there exists at least one input that results in

different outputs from the two modules.

In the definition above, F does not include faults on the input and output lines of the

modules since it is clearly impossible for the two modules to have independent failure

modes with respect to such faults. The technique for handling such faults for the self­

checking node in a multicomputer has been discll!Sed in Chapter 3.

8.1.1. lmplementins Modulea with Independent Failure Modes

For a particular function it is sometimes possible to find two different

implementation! with independent failure modes. for example, coll!ider the

combinationa.l logic function defined by the truth table in Fig. 6.2. Fig. 6.3 contain! two

possible implementation! of this function. It can be shown that these two

implementation! have independent failure modes with respect to the single stuck-at fault

model.

Unfortunately, it is usua.lly very difficult or impossible to find implementation! with

independent failure modes for even simple combinational function! and under the

a
b
c
d

cd
ab ()() 01 11 10

()() 1 1 1 1

01 1 0 1 0

11 1 1 1 1

10 1 0 1 0

Fig. 8.2: A Combinational Logic Function

a--t.~~4"'
b ---1 "'"-C.......,
c ___j.,U4p----J.____,I

d

Fig. 8.3: lmplementatioll5 of the Function Defined by Fig. 6.2

122

assumptioll5 of a simplistic fault model, such as the single stuck-at model. As an

experiment, the implementatioll5 of several simple combinational functio115 were

coll5idered. Except for the function described by the truth table in Fig. 6.2,

implementatioll5 with independent failure modes with respect to single stuck faults could

not be discovered. It is likely that such implementatioll5 do not exist for most

combinational functioll5.

As noted in Chapter 3, one of the benefits of using duplication and comparison for

self-checking subsystems is that relatively little extra design effort is required in order to

implement the self-checking property. Even if it is possible to design very simple modules

that have independent failure modes with respect to single stuck faults, it is unlikely to be

practical and economically feasible for complex functional modules (such as

microprocessors), especially if we take into account the more realistic fault model

described in Chapter 2.

Assuming that there lS no practical way of implementing modules that have

independent failure modes with respect to all double faults, we concentrate our efforts on

reducing the probability of those double faults that are more likely to occur than random

double faults. The technology and circuits used to implement the modules in an SCFM

123

determine which double faults are more likely to occur and whether they are detectable.

Hence, a particular implementation technology and "representative" example circuits are

considered rather than attempting to apply uniform analysis to all possible circuits. In

particular, only NMOS and CMOS VLSI implementations are coD!idered. As a

"representative" circilit iif': coD!ider the Berkeley RISC microprocessor [Patt82] for which

there is an NMOS VLSI implementation (Sher84] as well as a nearly complete CMOS

layout [Taka83].

Many mont~ (or years) are devoted to the design or VLSI chips in order to achieve

maximum functionality, performance, and reliability with the given technology. In most

cases it is unacceptable to double the design time and development cost of a VLSI chip

simply to achieve more reliable error detection by reducing the probability of CMFs.

Completely independent implementation! of the two modules in the SCFM are therefore

not practical. The use of duplicate physical modules in the SCFM is the lowest cost

alternative. However, given the time and resources spent on designing a VLSI chip, it is

worthwhile to spend a few additional weeb on the implementation of both modules in

order to minimiu eome or the performance and yield costs or using duplication and

comparison. A practical approach to implementing modules with independent failure

modes involves spending most or the effort designing and optimizing one module and then

"designing" the second module by modifying the (ll'St one. In the following section! we

discuss how this overall approach can be applied for representative circuits in the RISC

microprocessor.

8.1.2. Dual Implementation•

For every combinational Boolean function l(z)- l(z 1,z2, • • · ,zn) there is a

corresponding dual function 1 such that f(Z)- J(£) for every z. In the circuits c1 and

c, that implement the runc:tioD! 1 and g, respectively, voltage levels represent the logic

values. Ir the circuits are implemented using po•itive-/ogic, the "high" voltage level

represents a logic: 1 and the "low" level represents a logic: 0. Because or the above

relatioD!hip between the function! I and g, C1 is a negative-logic implementation of the

function I and c, is a negative-logic implementation or the function g. The circuits c,

and C1 are said to be dual implementation• or the function I, and c1 and C1 are said to

be dual circuit•.

Dual implementation! of arbitrarily complex sequential logic: circuits are also

124

possible. If the inputs to the negative-logic implementation are complements of the inputs

to the positive-logic implementation, the corresponding outputs from the two

implementations are complements of each other.

Sedmak and Liebergot [Sedm80] have suggested that the probability of CMFs in a

SCFM can be reduced by using dual modules rather than pairs of identical modules. The

inputs to the SCFM are passed unmodified to the positive-logic module (henceforth called

the p-module), and are complemented for the negative-logic module (n-module). If the

two modules are operating correctly, their outputs are complements of each other and can

be "compared" using a two-rail code checker [Cart68] (Fig. 6.4).

J>'module n-module

output error input

Fis. 8.4: An SCFM Based on Dual Implementations

There are several advantages to the use of the above scheme over the use of two

modules that are physical duplicates: (1) Ir the modules are VLSI chips and the same

masks are used in fabricating both modules, circuit design faults and faults in the masks

result in identical incorrect results. W.th the dual implementations, different masks must

be used since the circuits are different (Sedm80]. (2) Some pattern sensitive faults, such as

those caused by electromagnetic coupling between lines or marginal design of the circuit

timing, may be more likely to cause errors during voltage tramitions in one direction.

W.th dual circuits, the voltage transitions on corresponding lines in the two modules are

in opposite directions; this reduces the probability of identical pattern sensitive faults

occurring in the two modules simultaneously. (3) If the two modules are physical

duplicates, all lines in both modules change value in the same direction at the same time.

~ a result there may be "spikes" in the power supply lines to the SCFM which can

triuer intermittent faults. W.th dual circuits the problem is alleviated since values in the

two modules change in opposite directions.

125

If SSI technology is used, dual logic implementation is relatively straightforward -

the positive-logic module can be designed first and then converted into a functionally

equivalent negative-logic module by a simple one-to-one replacement of gates and rlip-rlops

with their negative-logic equivalents. Both modules have the same structure and the logic

values on corres[Jonciio~ li.1es of the two modules arr: identical. However, since a logic 1

(logic 0) in the n-moduk is represented by the sarue voltage as a logic 0 (logic 1) in the

p-module, the voltages on corresponding wires of the two modules -are complements of

each other. Following De Morgan's theorem, and "labeling" gates with their positive-logic

functionality, for every OR (AND) gate in one of the modules there is a corresponding

AND (OR) gate in the other. Similarly, for every positive-edge-triggered riip-riop there is

a negative-edge-triggered fiip-riop, and vice versa [Sedm80]. In this environment the

structure of the module and the performance of the corresponding "building blocks" is

identical (or very similar), so the extra design time for the negative-logic module is small

and there is no performance penalty.

If VLSI technology is used, dual implementation! is more problematic since it is not

possible to convert an existing positive-logic chip to negative-logic by a simple replacement

of standard building blocks. Even the conversion of NOR gates and NAND gates to

negative-logic (i.e., replacing NOR with NAND and vice versa) may be quite difficult due

to two main factors: (1) The different gates have different topologies so the layout of the

entire chip may have to be modified in order to accommodate the new gates. (2) The

fan-in capability of different gates may be different - for example, in NMOS, it is

possible to implement a NOR gate with a large number of inputs while a NAND gate with

more than three or four inputs is not practical. Furthermore, the circuit is not simply a

collection of standard Iogie gates and may contain traD!mission gates, precharged buses,

register files, Pl.&, decoders, dynamic Iogie subeireuits, etc. In a given technology,

converting some of these types of circuits to negative-logic may require significantly more

area and/or result in lower performance.

In the rest of this subsection we will evaluate the dual implementation! approach to

reducing CMFs by coD!idering the conversion of positive-logic VLSI modules to negative­

logic. This conversion does not necessarily involve converting the entire module at the

lowest level (i.e., individual FETs) to negative-logic. It may be preferable to design the

n-module so that some of the subeircuits in the p-module have direct negative-logic

126

equivalents in the n-module while other subcircuits are used unmodified in the n-module.

The only critical requirement is that the n-module "behave" as the negative-logic

equivalent or the p-module at the interface between the n-module and the rest or the

SCFM. We will discuss the possible choices of subcircuits to be converted and the

consequences of these choices in terms of design effort and the types of <;MFs that can

thus be eliminated.

8.1.2.1. NMOS Implementation

Standard NMOS circuits are fundamentally asymmetrical. The available devices are

enhancement mode FETs (EFETs) and depletion mode FETs (DFETs). The EFETs are

turned on by the "high" gate voltage and turned off by the "low" gate voltage. The

DFETs are always "on" but have a higher conductivity when their gate voltage is high.

There is no device that can perform the dual function of the EFET, i.e., be turned on by

a low gate voltage and off by a high gate voltage. There are important consequences to

this asymmetry:

(1) One Qf the useful building blocks of NMOS circuits is the transmission gate that can

be implemented using only one EFET without power or ground connections (Fig. 6.5-A).

The dual implementation of this function requires three FETs as well as a power and

ground connection since the control signal must be inverted (Fig. 6.5-B).

Control

~
~

A. Positive Logic B. Negative Logic

Fis. 8.6: An NMOS Transmission Gate

(2) Static logic gates use passive pull-up devices (DFETs). These gates are able to drive

capacitive loads from high to low much faster than from low to high.

(3) A3 mentioned earlier, positive-logic static NOR gates with a large number of inputs

can be implemented. However, a correspondingly simple and fast NAND gate cannot be

implemented since the delay of an NMOS ratioed logic NAND circuit increases in direct

proportion to the number of inputs (Mead80).

(4) Precharged buses &re often Used in VLSI chips as a space-efficient method of allowing

12i

a large number or data sources to write to the bus. Since EFETs are the only devices that

can be completely turned orr, both the pull-up and the pull-downs must be EFETs. Since

EFETs make better pull-downs than pull-ups, it is much more efficient to precharge the

buses to high and drive data on the bus with pull-downs than the other way around.

The above consi.rr,i•·t~ on NMOS circvits prevent the simple conversion of many of

the common subcircuits in an NMOS VLSI chip to ne~ative-lo~ic. One of the difficulties

is that many of the control lines in such a chip are connected to pass transistors that are

selectively turned on depending on the dock phase and the operation performed: buses are

precharged and discharged through EFETs selected by control lines, the inputs to the

ALU are selected with a multiplexer implemented with pass transistors, data is "loaded"

to latches through pass transistors, etc. Due to the large number or these pass transistors,

it is not feasible to replace them with their negative-logic equivalents that require much

more area and power (Fig. 6.5). Given that it is impossible to convert the entire chip,

including all control circuitry, to negative-logic, we will consider selective conversion of

some subcircuits and study the errects of this conversion on the sensitivity of the system

to CMFs.

In terms of design errort, the most efficient way to implement the n-module is to use

the original p-module and complement all its inputs and all its outputs. Unfortunately,

this approach has DO benefits in term or reducing the probability or CMFs and results in a

performance penalty due to the delays of the inverters.

In order to reduce the probability of CMFs, mor~ dirrerences in the implementations

of the two modules must be introduced. The next "step up" in this direction is to

implement an n-module in which all data is stored and transferred in negative-logic but

positive-logic subcircuits from the p-module are used for data processing and for control.

The input data to the n-module is already in negative-logic (Fig. 6.4) and is transferred

through internal buses and stored in internal registers without modification. The registers

and buses require no circuit modification in order to store and transfer negative-logic

data. Since the data on internal buses is negative-logic w bile the data processing

subcircuits are desiped for positive-logic inputs, the inputs and outputs of subcircuits

such as the ALU must be complemented at their interface with the rest of the chip.

This approach avoides the problems with control circuits described earlier: buses,

multiplexers, and latches are not modified and the transmission gate EFETs or pull-down

128

EFETs they contain are controlled by signals with the same polarity in both modules.

Since the instructions, as well as the data, are complemented before the n-module, some

modifications to the various decoders are necessary. Fortunately, decoders often require

that each input will be available in both complemented and uncomplemented form. In the

NMOS RISC chip) l.l.h:: opcode decoder, the register file decoder, the shift amount

decoder, and the "jii:Hi~··ondition-eode" decoder, all already use inverters in order to

cenerate the eomplewented form of their inputs. Due to the regular structure of the

decoders, modifying them for the n-module is a trivial task: the connections made to the

complemented and uneomplemented versions of each input are interchanged.

In RISC, the main "data processing" subcircuits are the ALU, the shifter, and the

program counter incrementer. As previously indicated, it is possible to use the p-module

implementation or these subcircuits in the n-module if they are preceded and followed by

inverters. In order to make room for the additional inverters, major parts of the circuit

must be moved. \Vith appropriate design tools, making such a modification is not

difficult. However, these inverters require additional area and increase the power

consumption. Furthermore, the identical data processing circuits in both modules may be

a source of CMFs which originate from both hardware defects and design weaknesses.

Converting the ALU to negative-logic is suprisingly simple. Both the sum and the

carry circuits of a full adder are their own self-duals [Take80]. Thus, no modification is

required for that part of the circuit. In addition to the arithmetic sum, the RISC ALU

also generates the logical AND, OR, and XOR (exclusive OR) of its inputs. The actual

output of the ALU is determined by a 4-to-1 multiplexer. By interchanging two of the

control lines to that multiplexer, the postive-logie OR can be selected by the AND

instruction and the postive-logic AND can be selected by the OR instruction. The only

function that requires modification is the XOR. For this particular ease, the simplest

solution is to connect an inverter to the output of the postive-logie XOR function. Since

the performance of the ALU is determined by the worst-ease addition time, the delay of

the extra inverter in the XOR circuit does not affect system peformanee.

One of the necessary modifications to the shifter is the conversion of the shift

amount decoder to accept negative-logic inputs. As discussed earlier, this modification is

very simple. The only other problem is with logical shifts that shift in logic O's to replace

bits that are shifted out. In the n-module the "high" voltage level must be shifted in

129

instead of the "low" voltage as in the p-module. This change can be done with a small

modification to the control circuitry that drives the shifter.

There is no simple modification to the program counter incrementer. However, the

basic cell of this circuit is so small that a complete negative-logic replacement can be

developed very quickly.

There are numerous ways in which the circuit modifications described •hove can help

reduce CMFs. For example: (1) Shorts between data lines carrying complementary values

usually result in both lines at the low voltage. Thus, both Jines in the p-module change to

logic 0 while the corresponding lines in the n-module that are similarly shorted change to

logic 1. {2) Buses that fail to precharge in both modules will be interpreted as all z.eroes

in the p-module and all ones in the n-module. (3) If timing is not properly designed and

there is insufficient time to drive the bus from one of its sources, different lines on the bus

will be affected (the ones that must be discharged), and the failure will be detected.

(4) The worst case delay for the ALU is determined by the carry propagation. If the ALl"

is modified as described above, the worst-case propagation for the two modules occurs for

different inputs since the sum and carry circuits are identical while the ALU inputs in the

p-module are always complements of the ALU inputs in the n-module. Hence, ALl1

failure, due to careless design of the timing or a particular fabrication run that yields

especially slow devices, is unlikely to occur in both modules simultaneously.

Sine~ most of the control circuits used in the n-module are identical to those used in

the p-module, one might assume that there are many CMFs possible due to identical

defects in those circuits in the two modules. This situation can be improved if the various

decoders in the chip are modified as described in Subsection 6.1.3. Furthermore, many

identical defects in the control circuitry lead to different effects on the data in the two

modules. For example, if several bus sources (pull-downs) are selected at the same time

(e.g., due to a fault in the opcode decoder), the resulting value on the bus will be the AND

function of all the sources in the p-module and the OR of all the sources in the n-module.

8.1.2.2. CMOS Implementation

The p-channel FETs (PFETs), available in CMOS circuits, are turned on by the

"low" voltage and turned off completely by the "high" voltage thereby providing the dual

function of the n-channel FETs (NFETs). ~ a result, at fll'St glance, it appears that with

130

CMOS technology it is relatively simple to convert the positive-logic module to negatiYe­

logic. Specifically, it cax:. be shown that a positive-logic, ratioless CMOS circuit can be

converted to a negative-logic circuit by replacing all NFETs with PFETs, replacing all

PFETs with NFETs, connecting all VDD lines to ground, and connecting all ground lines

to VDD (Fig. 6.6).

A. Positive Logic B. Negative Logic

Fig. 8.8: A CMOS NOR Gate

Unfortunately, due to the different mobilities of the majority carriers in NFETs and

PFETs, these devices are not completely symmetrical. The W /L ratio of a PFET has to

be approximately twice the W /L ratio of an NFET in order to achieve similar drive

capability. Thus, in order to optimiz.e performance when similar high-low and low-high

propagation times are required, the PFETs used must be approximately twice the si:z.e of

the corresponding NFETs. Since the gate capacitance is proportional to the si:z.e of the

device, the delay caused by the PFETs due to their gate capacitance is larger than the

delay caused by NFETs with equal drive capability.

Due 1.o the advantages of NFETs, even in the CMOS RISC layout many more

NFETs than PFETs are used. For example, NFETs are used in the shifter, which is

basically an array or pass transistors. In the register file, the word lines, that select the

register whose value drives the bus, do so by turning on a column of NFET pass

transistors. In both these cases, PFET pass transistors and buses that are "precharged"

low could be used. However, a design based on PFETs would be significantly larger

and/or slower, as discussed above. Due to similar reasoning, NFETs are also used in the

pull-down arrays or PLA5 and decoders, while large PFETs are used for precharging lines

131

to the VDD· Even with static: ptes used for random logic:, the PFET pull-ups are

approximately twice the size of the corresponding NFET pull-dowll!.

In order to maintain similar performance and module area, the p-module cannot be

converted to an n-module by the simple procedure outlined earlier. The difficulties in

achieving an efficient conversion are often similar to the difficulties eRc:ountered for

NMOS circuits. Thus, similar aolutioll! and c:oll!ideratioll! apply. On the other hand, the

availability of PFETs can, at times, simplify the conversion. For example, in RISC, a

large 32-input NOR pte is used to generate the Z Oag, which is set when the result of an

operation is r.ero. This pte is dynamic:, with a single pull-up and a column or NFET

pull-dowll! connected to a latch holding the·result of the operation. In NMOS there is no

simple way to convert this zero-detect circuit to neptive-logic:: a column or 32 inverters

must be used to invert the output of the latch and drive the pull-dowll! of the large NOR.

With CMOS, a large negative-logic: NOR gate can be implemented using a single NFET

pull-down and a column of PFET pull-ups connected to the output of the latch. Ir the

performance of the circuit is critical, the PFETs will have to be larger than the

corresponding NFET pull-dowll! in the p-module. However, the PFETs do not increase

the power c:oll!umption, and the extra area of the larger PFETs is much smaller than the

area required by a column of inverters.

8.1.3. Other Implementation Teehniqua for Reducing CMF•

A.5 indicated in Subsection 6.1.2, not all the subc:irc:uits in a VLSI chip are amenable

to dual implementations. In those cases where dual implementatioll! lead to unacceptable

costs in terms of area and performance, other techniques for reducing CMFs are needed.

The general "rule of thumb" is that the probability of CMFs can be reduced by increasing

the "differences" between the modules. These differences may be introduced not only in

the low-level circuits but also in the high-level module structure and in the fabrication

process.

Modules that are likely to fail in different ways may be developed from the same

specific:atioll! by two independent teams or, in the not too distant future, by two different

"silicon compilers:' [A viz82) The main problem with this approach is, or course, increased

design cost, which makes it impractical for most applic:atioll!.

If the two modules are not on the same chip, chips fabricated by different companies

132

may be v.se<f. Platteter [Plat80] utiliz.ed this idea in constructing a raul~ tolerant processor

from three functionally identical microprocessors manufactured by different companies.

Obviously, this can be done only with modules that are "popular" chips for which there

are "second sources:'

Even when it is not possible to convert a subcircuit to negative logic, it may still be

possible to modify its structure without changing its function. We have previoW~Iy

discussed the modification or decoders for use with negative logic inputs. Another simple

modification to the decoder is to change the order or output lines in the layout so that

shorts between adjacent lines will affect logically different lines in the two modules.

Similar restructuring can also be done in a PLA where the order of both the product term

lines and the output lines may be changed.

If the register file decoder is restructured as suggested above, this also implies a

"restructuring" of the register file itself. Different registers are next to each other and

different registers are at the periphery or the register file where they may interact with

other subcircuits and cause a module failure.

8.2. An Overview of Detign and Implementation Tradeoff•

The complexity of a faul~tolerant VLSI multicomputer system implies that the

designer of such a system is faced with a very large number of design choices. At the

highest level, choices include the topology or interconnections between the nodes and the

principles or the fault tolerance scheme to be used. Lower level choices include the design

of the nodes and communication links. Implementation details such as power distribution,

clock signal distribution, packaging, and cooling may be as important as the higher level

design choices in determining the system's performance and reliability.

As mentioned earlier, design and implementation decisions must take into account

the properties or the particular implementation technology, the environment in which the

system will operate, and the characteristics of the intended applications. The effects or

these factors on le"feral key design and implementation issues in faul~tolerant VLSI

multicomputers are discussed in this section.

133

8.2.1. Fault Tolerance at the Component Level

In the previo~ chapters we have disc~sed system-level fault tolerance techniques

that can increase the reliability or a multicomputer system. An alternative approach to

increasing the reliability or a multicomputer is to ~e fault tolerance techniques at the

component level to increase the reliability of individual components. The choice of "how

much" fault tolerance should be implemented at the component level and how much at

the system level is or critical importance.

The system-level fault tolerance technique disc~ed in the previo~ chapters is only

effective if the reliability or the individual nodes is high. If nodes fail "too often;' the

sysiem will spend all of its time recovering from faults and never do useful work. Thus,

some fault tolerance techniques (such as TMR) m~t be ~ed at the node level to increase

the reliability of the individual nodes. Simifarly, if the communication links are subjected

to "too much" noise, local techniques m~t be used to increase the reliability of the

communication. For example, it is possible to use error correcting codes that allow the

correct information to be recovered from a packet that has been "damaged" by noise.

The disadvantage of fault tolerance at the component level is that the required

redundancy (overhead) is significantly higher than with. system-level fault tolerance. If

the components in the system do not "cooperate;' they cannot share spare resources and

use them to recover from faults. Instead, each component m~t contain spare resources

to be ~ed for recovery. If faults are rare, most of these spare resources are not needed,

so the component-level scheme is inefficient. For example, assume that within the

"mission time" of some multicomputer system, consisting of one thousand nodes, only one

processor module in only one node is likely to fail. If fault tolerance is implemented at the

component level, TMR can be used in each node. Th~, approximately two thirds of the

system hardware is "wasted" for fault tolerance. On the other hand, if fault tolerance is

·implemented with the system-level scheme described in the previo~ chapters, duplication

and comparison is used in each node for error detection and the system m~t contain one

spare node that will be able to take over the tasks of the failed node. With this system­

level scheme, only about half the hardware is dedicated to fault tolerance.

Given the inherent inefficiency of component-level fault tolerance schemes (no

sharing of spare resources), they should only be used when necessary. The use of such

schemes is necessary if the components are not sufficiently reliable or the particular

134

application has spedal requirements, such as instantaneous recovery (see Chapter 5), that

cannot be met by a system-level scheme. Furthermore, even if some component-level

fault-tolerance scheme is necessary, it is, in general, inefficient to attempt to achieve the

reliability requirements or the system by relying 1oleiJ1 on such scheme. Instead, the

component-level scb~m·! sltould be used only to increase reliability or the components to

the point that it is pa~iLle to implement a system lev.el scheme/while meeting the other

requirements or the system.

8.2.2. The Interconnection Topology

The interconnection topology or the system is a major factor in determining both its

performance and its reliability. Ideally, the system would be completely connected so that

there would be a communication link between every pair or nodes. This would minimize

communication delays and maximize reliability since the ability or any two nodes to

communicate would not be dependent on the correct operation of any other nodes.

Unfortunately, it is not feasible to implement a large fully connected system due to the

number of linb required as well as the number or communication ports in each node. For

example, a fully connected system with 100 nodes requires 4950 linb and each node must

have 99 communication ports.

The number of communication linb per node is of critical importance in determining

the interconnection topology. In order to minimize the complexity or the nodes as well as

the difficulties or interconnecting the nodes (packaging), the number or ports per nodes

should be small. Since the nodes are implemented with a small number of VLSI chips, the

technological)imitations on the number of pins per chip also limit the number of ports.

The limitation on the power that can be dissipated on a chip implies a limit on the total

bandwidth for transmitting information from the chip. Thus, even if the pin limitation is

ignored, there is a tradeorr between a small number of high-bandwidth ports and a large

number or low-bandwidth ports. Given this tradeorr, simulation studies have shown that

the best performance can be achieved with between three and five ports per node [Fuji83,

Sequ83].

In order to maximize performance and reliability, the diameter or the interconnection

topology must be minimized while the connectivity must be maximized. A small diameter

leads to low communication delays while large connectivity implies that a large number or

nodes or linb may fail before the system is partitioned into two disconnected networks.

135

It is also desirable for the topology to require that all the nodes have the aame number of

ports so. that only one type or node has to be designed and implemented. Another

desirable feature or the topology is the ability to use simple "algorithmic" routing rather

than rely on table-driven routing that requires extensive hardware and software

support [Prad82].

There are many riirr~rent classes d t.::a: •!v~e!'l that achieve near-optimal diameter

and connectivity under the above coutrainte. Rather than di!lcuss them all, we will

mention one example. Pradhan [Prad83] has developed a class or topologies with the

following characteristics: (1) the number or ports per node is r, (2) the number of nodes in

the system is (r -1)m with m > 3, (3) the diameter of t~e system is 2 X m -1, (4) the

connectivity or the system is r-1. A3 an example, a system with 1024 nodes, each with 5

communication ports, has a diameter or g and a connectivity or 4. Wtth these topologies

.. simple algorithmic routing is possible not only when all the nodes are operational, but also

af'ter some or the nodes have failed.

8.2.3. Syetem TimiD& and Communication

The physical size or a multicomputer system with hundreds or thousands of nodes

and the high clock-rate at which it operates preclude the implementation of the system as

one synchronous unit with a single clock. Not only will it be impossible to distribute the

clock without significant clock skews, but the failure or this single clock may result in the

failure or the entire system. Higher reliability can be achieved using a large number of

independent clocks rather than one clock. In particular, each node or collection of a small

number or nodes can operate with their own crystal-controlled clock. Thus, the nodes

operate asynchronously.

Since the nodes are asynchronous, there is a non-zero probability or errors in packet

traumission due to •vnchronization failurea even if there is no noise on the link [Seit80].

However, the INMOS Corporation claims that in their implementation or the Transputer

they have achieved a rate or synchronization failures or 0.1 per billion part hours through

the use or appropriate circuitry and communication protocols [INM084]. Since this failure

rate is at least three orders or magnitude lower than the failure rate or VLSI chips, it is

not expected to be a significant factor in choosing a fault tolerance scheme.

136

8.2.4. Power Di.tribution

The distribution of J.">Wer and ground throughout the system is a difficult problem,

even if the issue of reliability is ignored. Power and ground must be routed to eYery

board in the system, to e?ery chip within each board, and to every gate within each chip.

The noi!le on the~ lin~ 'uust be minimized ~or{ care must be take to ensure that the

correct voltage levels are available thro•.~ghuut the system.

Unfortunately, just like every other part of the system, power suppli~ and power

lin~ can fail at all levels of the system. The complete failure of the power delivery system

is often easy to detect but difficult to tolerate. If the system has only one power supply

and that power supply shorts, the entire system will stop operating. With such a

catastrophic failure there is no danger of accepting incorrect results as correct. However,

recovery is impossible. To combat the problem of catastrophic power supply failures,

most faul~tolerant systems employ multiple power supplies [Katz82]. Using special

circuitry on each board to "mix" the outputs or multiple power supplies, it is possible to

ensure that the board will continue to operate despite the failure of one of the

supplies [Katz82].

A technique similar to the above may be possible at the chip level. Specifically,

power lines from multiple supplies may be routed to each chip and "mixed" internally.

The disadvantag~ or this scheme are the resulting increased complexity or the boards, the

chip area devoted to this "mixing" (which will have to be very large due to the current

levels involved), and the extra pins on each chip devoted to multiple supplies. Thus, in

most systems this scheme is impractical.

Ir the system is to tolerate the failure of multiple nod~ due to problems with the

power supply, special care must be taken in the construction of the system so that the

failure or a set or nodes that depend on a particular supply "route" will not partition the

system. This must also be taken into account in allocating processes to nodes and in the

error recovery and reconf'iguration schemes.

Failures or the power supply lin~ may also have less catastrophic effects that are

more difficult to detect but easier to tolerate than the effects discussed above. For

example, d~pite a break in the power supply line to a particular module inside the chip

(such as the shifter in a microprocessor chip), the chip may continue to perform many of

its tasks correctly yet occasionally produce incorrect outputs.

137

In general, any ertor detection scheme must be able to detect the effects of faults in

the power supplies aud ~heir interconnections at all level of the system. The error

detection scheme disc113!ed and Chapter 3, Chapter 4, and Section 6.1 fares quite well in

this respect: (1) 'fhe L" .. ~P1~i.3 from the comparator (tw~rail code checker) are supposed to

be 01 or 10. If the ti·;,.,~r to either the entire node or just to the comparator is

disconnected, the uutput. will be 00 and the error will be detected immediately by a

neighbor. (2) Since dual implementation is used for the two functional modules within

each node, if power is disconnected to both modules (or the same submodules within each

module) their outputs are identical (zero volts) rather than complementary, and the

comparator detects the error. (3) Since duplication and comparison is used, there is no

need to analyze in detail all the possible effects or breab and shorts in the power supply

lines internal to the chip containing the functional modules-error detection is guaranteed

even if the power-supply-line fault has the effect of multiple faults on logic lines and

catl!es some arbitrary submodule within the module to produce incorrect results.

References

Aviz82. A. Avizienis, "Design Diversity - The Challenge of the Eighties," 1!!th Fault­

Tolerant Computing Svmpo&ium, Santa Monica, CA, pp. 44-45 (June 1982).

Cart68. W. C. Carter and P. R. Schneider, "Design of Dynamically Checked

Computers," IFIPS Proeeeding8, Edinburgh, Scotland, pp. 878-883 (August

1968).

Fuji83. R. M. Fujimoto, "VLSI Communication Components for Multicomputer

Networb," CS Division Report No. UCB/CSD 83/136, University of

California, Berkeley, CA (1983).

INM084. INMOS, IMS T-42.1 Tran.!puter Reference Manual, November 1984.

Katz82. J. A. Katzman, "The Tandem 16: A Fault-Tolerant Computing System," pp.

47~480 in Computer Strueturu: Prineiple8 and Ezample8, ed. D. P.

Siewiorek, C. G. Bell, and A. Newell, McGraw-Hill (1982).

Mead80. C. Mead and L. Conway, Introduction to VLSI SJ18tem6, Addison-Wesley

(1980).

Patt82. D. A. Patterson and C. H. Sequin, "A VLSI RISC," Computer 15(9) pp. 8-21

138

(September 1982).

Plat80. D. G. Platteter, "Transparent Protection of Untestable LSI Microprocessors,"

10th Fault-Tolerant Computing Svmpo8ium, Kyoto, Japan, pp. 345-347

(October 1980).

Prad82. D. K. Pradhan and S. M. Reddy, "A Fault-Tolerant Communication

Architecture for Distributed Systems," IEEE Tran8adion8 on Computer8

C-31(9) pp. 863-870 (September 1982).

Prad83. D. K. Pradhan, "Fault-Tolerant Architectures for Multiprocessors and VLSI

Systems," 19th Fault-Tolerant Computing Svmpo8ium, Milano, Italy, pp.

436-441 (June 1983).

Sedm80. R. M. Sedmak and H. L. Liebergot, "Fault Tolerance of a General Purpose

Computer Implemented by Very Large Scale Integration," IEEE Tran8action8

on Computer8 C-29(6) pp. 492-500 (June 1980).

Seit80. C. L. Seitz, "System Timing," pp. 218-262 in Introduction to VLSI S1J8tem8,

ed. C. Mead and L. Conway, Addison-Wesley (1980).

Sequ83. C. H. Sequin and R. M. Fujimoto, "X-Tree andY-Components," pp. 299-326 in

VLSI Architecture, ed. B. Randell and P.C. Treleaven, Prentice Hall,

Englewood Cliffs, NJ (1983}.

Sher84. R. W. Sherburne, M. G. H. Katevenis, D. A. Patterson, and C. H. Se'quin, "A

32-Bit NMOS Microprocessor with a Large Register File," IEEE Journal of

Solid-State Circuit8 SC-19(5) pp. 682-689 (October 1984).

Taka83. M. Takada, "Two-Phase CMOS RISC Design," Unpublished Report, CS

Division, University of California, Berkeley, CA (October 1983).

Take80. K. Takeda and Y. Tohma, "Logic Design of Fault-Tolerant Arithmetic Units

Based on the Data Complementation Strategy," 10th Fault-Tolerant

Computing Svmpo8ium, Kyoto, Japan, pp. 348-350 (October 1980).

Tami84. Y. Tamir and C. H. Sequin, "Reducing Common Mode Failures in Duplicate

Modules," International Conference on Computer De8ign, Port Chester,

NY, pp. 302-307 (October 1984).

Wake78. J. F. Wakerly, Error Detecting Codu, Self-Checking Circuit8 and

Application8, Elsevier North-Holland (1978).

Chapter Seven

Summary and Conclusions

139

The current technology used for implementing high-end computing systems is fast

approaching fundamental physical constraints, such as the speed of light, that limit the

speed at which computations can proceed. The performance requirements of future high­

end computers will only be met by systems that facilitate the exploitation of the

parallelism inherent in the algorithms that they execute. One such system is a

multicomputer composed of a large number of independent computers (computation

node!) interconnected by high-speed dedicated li:nb. With a multicomputer high

performance is achieved by dividing each task into a large number of subta.sks that are

executed simultaneoely on different nodes.

Due to recent advances in VLSI technology, two impoctant types of chips are, or will

soon be, commercially available: (1) general-purpose processors whose performance exceeds

that of current mini-computers, and {2) sophisticated communication processors that can

efficiently support high-bandwidth communication in point-to-point networks. With these

chips, the implementation or a multicomputer consisting or hundreds or thoeand!! of

VLSI computation nodes is technically and economically feasible.

Some of the important applications of high-end computers, such as large circuit

simulation, weather forecasting, and aeronautical design, require continuoU!I correct

operation of the system for many hours {or even days). Due to the rate of failure of VLSI

chips, this requirement cannot be met in a system that operates correctly only if all of its

chips are fault free. The reliability requirements of a multicomputer can only be achieved

,rith fault tolerance techniques that prevent component failure from leading to system

failure. Compared to other architectures, a multicomputer is particularly well-suited to

fault tolerance techniques since it does not contain any single component (such a.s a

eommon memory or bus) whose performance is critical to the operation of the system.

The effective implementation of highly reliable systems requires the use of a

combination of hardware and software techniques, carefully tailored to the characteristics

of the implement~tion technology and the intended applications. In this dissertation we

have investigated the use of fault tolerance techniques to increase the reliability of VLSI

140

multicomputers. Many aspects or the design and implementation or the system were

COD!idered: its basic architecture, details regarding the VLSI layout or key circuits, and

high-level protocols that can use this hardware etrectively to achieve high reliability with

only a small penalty in performance. The techniques presented were developed in the

context or the entire system, taking into account all or the above-mentioned aspects or the

proposed general approach to implementing fault tolerance in the multicomputer.

A fault-tolerant system must be able to identify erroneous information produced by

faulty hardware. The detection of an error implies that the state or the system has been

corrupted. In order to recover from an error and resume correct operation a valid system

state must be restored. The proposed general approach to implementing fault tolerance in

a multicomputer involves a combination or hardware that performs error detection and

system-level protocols that handle error recovery and fault treatment.

It is shown that a very high probability or error detection can be achieved with self­

checking nodes that are implemented using duplication and comparison. This approach

aeems wasteful since it more than doubles the required hardware. However, this cost is

justified by the resulting low design complexity, high fault coverage, and ability to handle

trall!ient faults etrectively.

With duplication and comparison, all errors caused by hardware faults are detected

as long as two requirements are met: (1) the comparator is fault-free and (2) the two

modules never produce identical incorrect outputs. A comparator failure may mask a

mismatch between the outputs or the two functional modules so that the rest or the

system may accept erroneous outputs fro~ the node as correct. It is imperative that

faults in the comparator be detected soon after they occur so that the system can be

informed that the node has lost its self-checking capability. This requirement is fulfilled

by using a 1el/-tuting comparator that signals its own faults during normal operation.

Based on a new fault model for PLAs, it was shown that with both NMOS and CMOS

technologies a PLA can be used to implement such a comparator.

Unfortunately, it is not possible to guarantee that the two modules that perform

identical functioll! do not fail simultaneously in exactly the same way and produce

identical incorrect results. Such common mode failure' may occur as a result or

environmental factors, common design weaknesses, as well as unrelated faults that just

happen to cause the same incorrect results to be produced. Practical technique were

141

developed for implementing pain of VLSI modules that perform identical functions but

are less susceptible to common mode failures than pairs of identical circuits. Based on

examples of NMOS and CMOS circuits, it was shown that the likelyhood of common mode

failures can be reduced, at a relatively low cost, using a combination of techniques

carefully tailored to the functional and physical characteristics or the different types of

circuits in a typical VLSI chip.

An error recovery scheme for use in a multicomputer executing non-interactive

applications has been presented. The scheme is based on periodically checkpointing of the

entire system state and rolling back to the last checkpoint when an error is detected.

Since the nodes in a multicomputer operate asynchronously, special protocols are required

to ensure that the saved states of all of the nodes in the system are consistent with each

other. The proposed scheme involves rll'St "freezing" the entire system in a consistent

state and then saving the frozen state of each node individually. No restrictions are

placed on the actions of the application tasks, and the communication protocols used

during normal computation are simpler than those required by most other schemes. The

scheme includes efficient handling or transient faults, input/output operations, and disk

failures. For a "typical" multicomputer system with one thousand nodes, the

performance degradation due to periodic checkpointing is expected to be a few percent.

Although this dissertation does not provide a complete detailed design or a high­

performance fault-tolerant multicomputer, it does include a discussion or some practical

design and implementation tradeoffs. A particular system must be tailored to the details

or the intended applications, the operating environment, and the implementation

technology. Based on this dissertation, a multicomputer implementation that follows the

seneral techniques presented and uses the proposed self-checking nodes and error recovery

sch~me can provide a seneral-purpose, high-performance computing environment in which

the fault tolerance features are completely transparent to the user.

