AFRL-RI-RS-TR-2014-269

AUTOMATIC REQUIREMENTS SPECIFICATION EXTRACTION
FROM NATURAL LANGUAGE (ARSENAL)

SRI' INTERNATIONAL
OCTOBER 2014
FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

B AIR FORCE MATERIEL COMMAND B UNITED STATES AIR FORCE B ROME, NY 13441

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88™ ABW, Wright-Patterson AFB Public Affairs Office and is

available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2014-269 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

IS1 IS/
STEVEN L. DRAGER MARK H. LINDERMAN
Work Unit Manager Technical Advisor, Computing

& Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE e 0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
OCT 2014 FINAL TECHNICAL REPORT SEP 2012 - MAR 2014
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
FA8750-12-C-0339
AUTOMATIC REQUIREMENTS SPECIFICATION EXTRACTION 5b. GRANT NUMBER
FROM NATURAL LANGUAGE (ARSENAL) N/A
5¢c. PROGRAM ELEMENT NUMBER
62303E
6. AUTHOR(S) 5d. PROJECT NUMBER
o HACM
Shalini Gho_sh, Ngtarajgn Shankar, Patrick Lincoln, Daniel Elenius, So TASK NUMBER
Wenchao Li, Wilfrid Steiener SL
5f. WORK UNIT NUMBER
NL
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
SRI International REPORT NUMBER
333 Ravenswood Avenue
Menlo Park, CA 94555
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Research Laboratory/RITA AFRL/RI
525 Brooks Road 11. SPONSOR/MONITOR’S REPORT NUMBER
Rome NY 13441-4505
AFRL-RI-RS-TR-2014-269

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2014-4836 Date Cleared: 21 October 2014

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Natural language (supplemented with diagrams and some mathematical notations) is convenient for succinct communication of
technical descriptions between the various stakeholders (e.g., customers, designers, implementers) involved in the design of software
systems. However, natural language descriptions can be informal, incomplete, imprecise and ambiguous, and cannot be processed
easily by design and analysis tools. Formal languages, on the other hand, formulate design requirements in a precise and
unambiguous mathematical notation, but are more difficult to master and use. We propose a methodology for connecting semi-formal
requirements with formal descriptions through an intermediate representation. We have implemented this methodology in a research
prototype called Automatic Requirements Specification Extraction from Natural Language (ARSENAL). The main novelty of ARSENAL
lies in its ability to generate a fully-specified complete formal model automatically from natural language requirements. ARSENAL
extracts relations from text using semantic parsing and progressively refines them over multiple stages to create a final composite
model. Currently, ARSENAL generates formal models in linear-time temporal logic (LTL), but the approach can be adapted for other
models, e.g., probabilistic relational models like Markov Logic Networks (MLN). The formal models of the requirements can be used to
check important design and system properties, e.g., consistency, satisfiability, realizability. ARSENAL has a modular and flexible
architecture that facilitates porting it from one domain to another. We evaluated ARSENAL on complex requirements from two real-
world case studies: the Time-Triggered Ethernet (TTEthernet) communication platform used in space, and FAA-Isolette infant
incubators used in NICU. We systematically evaluated various aspects of ARSENAL — the accuracy of the natural language
processing stage, the degree of automation, and robustness to noise.

15. SUBJECT TERMS

Requirements, natural language processing, temporal logic, model synthesis, formal verification

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF PAGES STEVEN L. DRAGER
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
U U U uu 44 (315) 330-2735

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

Table of Contents

List of Figures
List of Tables.
1 SUIMIMATY ..o
2 Introduction.o
3 Background
3.1 The SAL Modeling Languagettt e
3.2 Verification and Synthesis with LTL i

4 Methods, Assumptions, and Procedures i
5 Natural Language Processing e e
5.1 PreproCesSOro
5.2 Stanford Typed Dependency Parser.......... ... i
5.3 Semantic Processor
Metadata tagsot
TypeRUles . . .o

5.4 From Dependency Graph to Predicate Graph
5.5 From Predicate Graph to Logical Formulas

6 Formal Analysis
6.1 Formula Generation
6.2 Formal Analysis of Generated Formulas
6.3 SAL Model Generation.t
6.4 Verification and Synthesis with LTL e
LTL Synthesist e e e e

6.5 Realizability Analysis: Case Study on FAA-Isolette

7 Results and Discussion
7.1 NLP Stage: Evaluation e
Degree of Automation Metric

Degree of Perturbation Metric i

NLP Stage ACCUTACY . « « .« v ettt ettt et e e e e e e e e e e e e e e

Typed Levenshtein Distance i e
Max-weighted matching in bipartite graph.........
Evaluation on Test set

7.2 FM Stage: Evaluation
Verificationo
SyIEEsIS . o .o

8 Related Work . ..o
8.1 Summary of Related Work
8.2 Details of Related Worko
Requirements Engineering i

Natural Language Processing (NLP) o
Compliance checking and monitoring. it

9 COonCIUSIONS . . ot ottt ettt e e e e e e
10 Acknowledgments
Reeferences

ACTONY IS . ..

—-
s

O 00 =1 ~J UL U s i N = B

O W W W W W WDHh N DNDNDDDDNDNDDDDDNDDNDNDDNN = == = =
TR W WNOO OO0 UIUULUTLUTU R R WWWNOOOO Tt Wi O o o

w
oo

GlOSSaTY .. 39

List of Figures

1 Tradeoff between natural language and formal specifications [Bab07], inset showing the

design-iteration cycle of the ARSENAL methodology., 2
2 Example SAL Model.o 4
3 ARSENAL pipeline.ot e 6
4 NLP Stage of ARSENAL pipeline. oo et 7
5 STDP output for REQL. 8
6 Detailed algorithmic flow of IR generation. i 9
7 IR table for REQL. e 11
8 Dependencies generated using STDP. 11
9 Predicate graph after the application of type rules. 12
10 FM Stage of ARSENAL pipeline. et e 14
11 Translation rules for terms. 14
12 Translation rules for formulas. 15
13 LTL satisfiability and synthesis using ARSENAL output. i, 18
14 Specifications in RA T S Y 21
15 Specifications are not realizable as reported by RATSY. o i 21
16 Transition of Regulator_Mode based on Requirement 13 and 15. 22
17 Debugging unrealizable specifications in RATSY. 22
18 Bipartite graph and F-measure calculation corresponding to example formula and ARSENAL

OUL DU, o 25
19 Synchronization FSM in TTEthernet i e 26
20 SAL Model for REQ3. 27
21 Original FSM (a) and Modified FSM (b) for Regulator. i .. 28
22 Key accomplishments in ARSENAL. e 33

List of Tables

1 Key innovations in ARSENAL. 3
2 Formula Translation Rules 12
3 Rules for Gathering Type Evidence e 16
4 Isolette requirements in English 19
5 ARSENAL NLP pipeline aCCUTACY. . .« . ottt ettt e ettt e e e e e e ettt 23
6 Results of perturbation test on ARSENAL. e 24
7 NLP stage accuracy on test set. 26

ii

1 Summary

Natural language (supplemented with diagrams and some mathematical notations) is convenient for succinct
communication of technical descriptions between the various stakeholders (e.g., customers, designers, imple-
menters) involved in the design of software systems. However, natural language descriptions can be informal,
incomplete, imprecise and ambiguous, and cannot be processed easily by design and analysis tools. Formal
languages, on the other hand, formulate design requirements in a precise and unambiguous mathematical
notation, but are more difficult to master and use. We propose a methodology for connecting semi-formal
requirements with formal descriptions through an intermediate representation. We have implemented this
methodology in a research prototype called Automatic Requirements Specification Extraction from Natural
Language (ARSENAL). The main novelty of ARSENAL lies in its ability to generate a fully-specified com-
plete formal model automatically from natural language requirements. ARSENAL extracts relations from
text using semantic parsing and progressively refines them over multiple stages to create a final composite
model. Currently, ARSENAL generates formal models in linear-time temporal logic (LTL), but the approach
can be adapted for other models, e.g., probabilistic relational models like Markov Logic Networks (MLN).
The formal models of the requirements can be used to check important design and system properties, e.g.,
consistency, satisfiability, realizability. ARSENAL has a modular and flexible architecture that facilitates
porting it from one domain to another. We evaluated ARSENAL on complex requirements from two real-
world case studies: the Time-Triggered Ethernet (TTEthernet) communication platform used in space, and
FAA-Isolette infant incubators used in Neonatal Intensive Care Units (NICUs). We systematically evalu-
ated various aspects of ARSENAL — the accuracy of the natural language processing stage, the degree of
automation, and robustness to noise.

2 Introduction

Software systems operate in the real world, and often work in conjunction with complex physical systems.
Many different stakeholders participate in the design and operation of these systems. Requirements specify
important properties of (cyber-physical) software systems, e.g., conditions required to achieve an objective,
or desired invariants of the system. Requirements in formal languages are precise and complete — the formal
models for requirements are useful for checking consistency and verifying properties, but are cumbersome to
specify. As a result, stakeholders (e.g., customers, designers, engineers) often prefer writing requirements in
natural language (NL). The NL requirements can be written easily without burden of formal rigor, but can
be imprecise, incomplete, and ambiguous.

So, natural language descriptions and formal modeling languages each offer distinct advantages to the
system designer. The informality of natural language can kick-start discussion among stakeholders in early
design, but can lead to confusion, lack of automation, and errors. The rigor of formal languages can elim-
inate broad classes of ambiguity, enable consistency checking, and facilitate automatic test case generation
— However, mastery of formal notations requires a significant amount of training and mathematical sophis-
tication.

Another important issue to consider is the cost of errors — most of the costly errors often enter at
the requirements stage as a result of confusion among stakeholders [BP98]: “If a defect is found in the
requirements phase, it may cost $1 to fix. It is proffered that the same defect will cost $10 if found in design,
$100 during coding, $1000 during testing [bugl0].” In order to catch as many errors as possible during the
requirements phase, iterations between the stakeholders through clear communication in natural language
must be supported. Formal models and descriptions that can detect errors, incompleteness, ambiguity, and
inconsistency in the requirements should also be used. By bridging the gap between semi-formal requirements
and formal specifications, we can dramatically reduce the number of costly uncaught errors in requirements
and enable high levels of assurance for critical complex systems. Figure 1 summarizes the tradeoff between
natural language and formal requirements specifications.

./ Informal\

High Translation Qeqwemem Feedback
\ N>
|
\ Scenarmsh
\ Log\c Formu\as
O Natural Language \ Problems

(System shall, etc.) 5\1 —

- Composition —4/ Analysis

5 System +
] rnpemey
5 S
E
=) Structured Language
8 (UML diagrams & notations)
oy
©
w Pseudo Code
Formal Specification
(N
Low Precise High

Figure 1 Tradeoff between natural language and formal specifications [Bab07], inset showing the design-iteration
cycle of the ARSENAL methodology.

We aim to leverage the best of both natural and formal languages to aid the system designer in achieving
high assurance for critical systems. This primary objective of this Final Technical Report (FTR) is to answer
this question:

Can we build a requirements engineering framework that combines the strengths of semi-formal
natural language and precise formal notations?

To that effect, we present the ARSENAL methodology. ARSENAL uses state-of-the-art advances in natural
language processing (NLP) and formal methods (FM) to connect natural language descriptions with their
precise formal representations. ARSENAL provides a method for extracting relevant information from NL
requirements documents and creating formal models with that information — it is an exploratory and
experimental open-loop framework for extracting formal meaning from semi-formal text.

Let us consider the following sentence, which is part of the requirements specification for a regulator that
regulates the temperature in an isolette (an incubator for an infant that provides controlled temperature,
humidity, and oxygen):

REQ1: If the Status attribute of the Lower Desired Temperature or the Upper Desired Temperature equals
Invalid, the Regulator Interface Fuailure shall be set to True.

This requirements sentence is written with terminology that is particular to the domain, in a language that
facilitates comprehensible communication between the relevant stakeholders involved in different stages of
the isolette design. ARSENAL aims to convert such requirements automatically to formal models, providing
a natural language front-end to formal analysis that is robust and flexible across different forms of natural
language expressions in different domains, and customized to stylized usages within each domain.

The input of ARSENAL consists of requirements in natural language with specific technical content.
ARSENAL uses domain-specific semantic parsing to extract relations from text, and progressively refines
them over multiple stages to create formulas in first-order logic (FOL) or LTL. These are then used to create
a composite model in the FM stage, which can be used by formal verification tools like theorem provers
(e.g., Prototype Verification System (PVS) [ORR'96]) and model checking tools (e.g., SAL [BGL'00]) as
well as LTL synthesis tools (e.g. RATSY [BCG10]) for automated analysis of the formal specifications. The
results provide concrete empirical evidence that it is possible to bridge the gap between natural language
requirements and formal specifications, achieving a promising level of performance and domain independence.

The main challenges and key insights of ARSENAL are outlined in Table 1.

Table 1 Key innovations in ARSENAL.

l | Challenges | Key Insights
1|Bridge the gap between semi-formal |Create a rich/expressive intermediate
natural language requirements and |representation (IR), useful for
precise formal models. generating outputs in multiple formalisms.
2|Create a general-purpose architecture|Encapsulate domain-specific components
that can be ported to different in modules (e.g., NL preprocessor,
domains. output generators), keeping rest of
system domain-independent and reusable.
3|Incorporate semantics into formal Add semantics to the formal model via
model generation. rewrite rules and type inference
algorithms in the model generator stage.

The organization of the rest of the FTR is as follows: Section 3 gives some relevant background, Section 4
gives an overview of ARSENAL, while Sections 5 and 6 respectively describe the NLP and FM stages
in more detail. Section 7 discusses the results of our experiments with ARSENAL on the FAA-Isolette
and TTEthernet requirements documents, while Section 8 discusses the novelty of ARSENAL compared to
related research. Finally, Section 9 summarizes the contributions of this work and outlines possible future
directions of research.

3 Background

3.1 The SAL Modeling Language

In this FTR, we focus on transition systems modeled using the Symbolic Analysis Laboratory (SAL) lan-
guage [BGLT00]. At the core, SAL is a language for specifying transition systems in a compositional way.
A transition system is composed (synchronously or asynchronously) of modules, where each module consists
of a state type, an invariant definition on this state type, an initialization condition on the state type, and a
binary transition relation on the state type. The state type is defined by four pairwise disjoint sets of input,
output, local and global variables. Both input and global variables are observed variables of a module. Output,
global and local variables are controlled variables of a module. In this FTR, we additionally distinguish be-
tween which controlled variables are state variables and which are logical variables (variables which do not
directly define the state space).

The semantics of a SAL transition system is given by a Kripke structure. A Kripke structure over a set
of atomic propositions AP is a tuple (@, Qo, R, L), where @ is the set of states, Qo C @ is the set of initial
states, R C Q x @ is the transition relation, and L : Q — 247 is a labeling function that assigns each state
to a set of AP that is true in that state. Kripke structure is a kind of nondeterministic automaton that is
widely used in model checking [CGP99].

An example of a SAL program is given in Figure 2. This model represents a transition system whose

sal_example : CONTEXT =
BEGIN
Typel : TYPE = [# high : BOOLEAN, low : BOOLEAN #];
main : MODULE =
BEGIN
INPUT add: BOOLEAN
LOCAL count: INTEGER
OUTPUT out Typel
DEFINITION
out.high = count > 100;
out.low = count < 50;
INITIALIZATION
count = O;
TRANSITION
[add = TRUE --> count’ = count + 1
1
ELSE --> count’ = count]
END;
THEOREM main |- G (NOT(out.high = TRUE));
END

Figure 2 Example SAL Model.

state space is defined by the local variable “count”. Whenever input “add” is true, “count” is incremented
by 1 (the apostrophe on “count” indicates it is the next state of “count”), otherwise, its value remains
unchanged. This model also has a single output “out” having a record type. If “count” is greater than 100,
the “high” field is set to true, and if “count” is less than 50, the “low” field is set to true. In this example,
“main” is the name of a module. For simplicity, we consider only self-contained modules in this FTR. “Typel

7 is a type expression that creates “Typel” as a record type. In Section 5, we will describe how the type
information is automatically inferred by ARSENAL. The other relevant SAL language constructs for defining
a transition system are “DEFINITION”, “INITIALIZATTION” and “TRANSITION”. The “DEFINITION”
section describes constraints over the wires of a module. The “INITTALIZATION” section gives the initial
conditions of the controlled variables. Finally, the “TRANSITION” section constrains the possible next states
for the state variables. In this example, the update of “count” is given by the guarded command with the
guard “add = TRUE” and the command “count’ = count + 1”7, where the apostrophe indicating it is referring
to the next state of “count”. We refer the readers to [BGLT00] for a detailed description of the language. In
general, SAL models are expressive enough to capture the transition semantics of a wide variety of source

languages. One key contribution of ARSENAL is an automatic way of translating from the NL description
of a transition system and its requirements directly to a SAL model and theorems.

3.2 Verification and Synthesis with LTL

In addition to specifying a transition system, a sentence in NL may be describing a high-level requirement
that the system has to satisfy. Often times, a requirement can be precisely captured using temporal logic.
In this FTR we use LTL [MP92], whose semantics can be interpreted over Kripke structures. For example,
in Figure 2, the SAL theorem states that globally (for any computation), “high” is never true. We consider
two problems that leverages LTL to reason about potential inconsistencies in a NL documentation, namely,
verification and synthesis.

For verification, we use model checking to analyze if a SAL model satisfies its LTL specification. In
general, the application of model-checking tools involves a nontrivial step of creating a mathematical model
M of the system and translating the desired properties into a formal specification . ARSENAL’s NLP stage
automates this process of creating M and 1 with minimal user guidance. Given a model M as a (labeled)
transition system and a specification ¢ in LTL, both produced in the NLP stage of ARSENAL, we check if
M = 1, that is, if the model satisfies the specification. When the model does not satisfy the specification, a
negative answer, often in the form of a counterexample, is presented to the user as an certificate of how the
system fails the specification. In this FTR, we use SAL’s bounded model checking [CBRZ01] capability as
the main workhorse for finding such inconsistencies.

ARSENAL also provides the flexibility of generating only specifications from the natural language re-
quirement. Consistency in this case means if the specification is satisfiable, that is, whether a model exists
for the specification. This problem is known as LTL satisfiability checking and it can be reduced to model
checking [RVO07]. Given a LTL formula , it is satisfiable precisely when an universal model M* does not
satisfy —). Similarly, a counterexample that points to the inconsistency is produced when 9 is not satisfiable.

Given a LTL specification, it may also be possible to directly synthesize an implementation that satisfies
the specification. Satisfiability may seem as a sufficient condition for a design specification to be implemented.
However, it is known that a stronger condition, known as realizability, precisely defines when a specification
can be realized. We use a technique called LTL synthesis to reason about whether such a target implementa-
tion is realizable given the generated specification. Realizability, the decision problem of determining whether
such an implementation exists, can be used to further inspect the requirement document for inconsisten-
cies, with ARSENAL facilitating the connection between NL requirement and logical specification. If the
specification is realizable, then a Moore machine can be extracted as an implementation that satisfies the
specification. Thus, the benefit of LTL synthesis is a correct-by-construction process that can automatically
generate an implementation from its specification. In general, LTL synthesis has high computational com-
plexity [Kup12]. However, it has been shown that a subclass of LTL, known as Generalized Reactivity (1)
(GR(1)), is more amenable to synthesis [PP06] and is also expressive enough for specifying complex indus-
trial designs [BGJ107]. The details of the LTL satisfiability and synthesis approaches we took are discussed
in Section 6.

4 Methods, Assumptions, and Procedures

In this section, we give an overview of the flow (shown in Figure 3) using the example requirement sentence
REQL1 from the FAA-Isolette corpus, introduced in Section 2.

Given requirements written in natural language, ARSENAL first processes them using a NLP stage. The
NLP stage has a preprocessor that does some domain-independent processing (e.g., identifying arithmetic
formulas) as well as domain-specific processing (e.g., identifying domain-specific nominal phrases corre-
sponding to an entity). In REQ1, the preprocessor identifies terms like Lower Desired Temperature, Upper
Desired Temperature and Regulator Interface Failure as phrases with special meanings in the FAA-Isolette

! Universal means M contains all possible traces over the set of atomic propositions.

Requirements,
WordNet, Domain-
specific ontology,

Domain-specific
supporting
specifications

TypeRules
ARSENAL
Natural
‘ User. PN Language Formal I FDrmaII
. interaction Processing —> Methods Analysis
Stage Stage

Figure 3 ARSENAL pipeline.

domain, and converts each of these phrases to a single term (corresponding to an entity in this domain).
This results in the following preprocessed requirements sentence:

If the Status_attribute of the Lower_Desired_Temperature or the Upper_Desired_Temperature equals Invalid,
the Regulator_Interface_Failure shall be set to True.

The output of the preprocessor is analyzed by a semantic processor that first does shallow semantic parsing
of the preprocessed requirements text using the Stanford Type Dependency Parser (STDP) [dMMMO6].
STDP outputs typed dependencies such as: nsubj(equals, Status_attribute).

Each typed dependency indicates a semantic relation between parsed terms, e.g., the typed dependency
above indicates that Status_attribute is a subject of the verb equals. The next stage of the semantic

processor converts these typed dependencies to entries in a symbol table in an intermediate representation
(IR) of the form:

Upper Desired _Temperature-9: Upper Desired Temperature | entity | unique | or:
[Lower Desired Temperature-6]

The IR table maps each symbol to its metadata and to its relationships with other symbols. In the
example above, the IR table entry for Upper Desired_Temperature shows that it is an entity, it is unique,
and is connected to another entity Lower Desired Temperature via the relation or. A detailed description
of the IR table is given in Section 5.

The next part of the ARSENAL pipeline is the FM stage, which converts the IR table to a formal model
(in the current ARSENAL prototype, we generate a SAL model). ARSENAL effectively converts multiple
NL requirements sentences, which describe a system module, into a unified SAL model. Using this model,
we can potentially generate a proof or counter-example for certain system properties of interest.

Note that ARSENAL is a general purpose methodology. We can plug in different modules to various
parts of the workflow, e.g., any state-of-the-art typed dependency parser in the NLP stage or formal analysis
tool in the FM stage. In this instance of the ARSENAL pipeline, we use STDP and SAL in the NLP stage
and FM stage respectively (as described in the following sections), but other tools can also be plugged into
these stages.

5 Natural Language Processing

The NLP stage takes requirements in natural language as input and generates the IR table as output. The
different components of the NLP stage (shown in Figure 4) are described in detail in this section.

f

User <::> PREPROCESSOR
interaction

\ / Domain-
specific stage

Domain-
Reguirements independent
document stage

Dormain-
independent
Type Rules
SEMANTIC

WordNet Typed
Dependency

Domain-specific
Ontology

NLP INPUTS NLP IR Generator
STAGE

Legend

System inputs/outputs
[Intermediate
A Off-the-shelf tools Representation

Tools being built (IR)

Figure4 NLP Stage of ARSENAL pipeline.

5.1 Preprocessor

The first part of the NLP stage is a preprocessor. It seeks to extract better (more meaningful) parses
to aid the Stanford parser using both domain-specific and domain-independent transformations on the
requirements sentence. An example domain-specific preprocessing task is identifying entity phrases like
“Lower Desired Temperature” and converting them to the term Lower Desired Temperature. Domain-
independent preprocessing tasks include identifying and transforming arithmetic expressions, so that
NLP parsers like the Stanford parser can handle them better. For example, the preprocessor replaces the

arithmetic expression “[x + 5]” by ARITH x PLUS_5. The parser then treats this as a single term, instead
of trying to parse the five symbols in the arithmetic expression. The preprocessor also encodes complex
phrases like “is greater than or equal to” into simpler terms like dominates. In later processing (e.g., in
the Formal Methods stage), ARSENAL decodes the original arithmetic expressions from the corresponding
encoded strings. Apart from detecting n-grams and converting them to phrases (based on the input
glossary), and doing arithmetic processing, the pre-processor also inserts missing punctuation (e.g., commas
at phrase boundaries) and does other text transforms — these help the downstream parser get better results.

5.2 Stanford Typed Dependency Parser

The next part of the NLP stage is the application of the STDP to the preprocessed sentence. The syntactic
parser in STDP parses the requirements text to get unique entities called mentions, while the dependency
parser detects grammatical relations between the mentions. The final output is a set of typed dependency
(TD) triples between extracted terms, which encode the grammatical relationship between mentions ex-
tracted from a sentence. For the example requirement REQ1, the full set of TDs generated by STDP are
shown in Figure 5. The Stanford typed dependencies representation provides a simple description of the
grammatical relationships in a sentence, which can be understood easily and used effectively to extract
textual relations without requiring deep linguistic expertise [AMMMO6].

mark (equals-10, If-1)

det (Status_attribute-3, the-2)

nsubj(equals-10, Status_attribute-3)

det (Lower_Desired_Temperature-6, the-5)

prep_of (Status_attribute-3, Lower_Desired_Temperature-6)
det (Upper_Desired_Temperature-9, the-8)

prep_of (Status_attribute-3, Upper_Desired_Temperature-9)
conj_or(Lower_Desired_Temperature-6, Upper_Desired_Temperature-9)
advcl(set-17, equals-10)

dobj(equals-10, Invalid-11)

det (Regulator_Interface_Failure-14, the-13)
nsubjpass(set-17, Regulator_Interface_Failure-14)
aux(set-17, shall-15)

auxpass (set-17, be-16)

root (ROOT-0, set-17)

prep_to(set-17, True-19)

Figure 5 STDP output for REQI.

Note that the suffix of each mention is a number indicating the word position of the mention in the
sentence, e.g., equals-10 refers to the mention equals at position 10 in the sentence. The position index
helps to uniquely identify the mention if it has multiple occurrences in the sentence. The TDs output by
STDP are triples of the form:

<relation name> (<governor term>, <dependent term>)

Each triple indicates a relation of type “relation name” between the governor and dependent terms. For
example, let us consider the TD:

prep-of (Status_attribute-3, Lower Desired Temperature-6)

It indicates that the mention Status_attribute is related to Lower_ Desired Temperature via a
prepositional connective of type “of”.

We will denote governer terms by ?g and dependent terms by 7d.

5.3 Semantic Processor

The semantic processor starts with the STDP output and creates a mention table, by selecting each mention
in STDP output and creating a hash from each mention to all TDs it is involved in. Subsequently, it uses
the mention table to create the IR table, using Metadata tags and TypeRules. The overall algorithm for
generating the IR is outlined in Figure 6.

Input: Requirements text, WordNet, Domain-specific ontology, TypeRules,
Pre-processing rules.
Output: Intermediate Representation (IR) table.

1. Run the requirement text through Stanford Dependency Parser:
This produces a graph of Typed Dependencies (TDs), and part of speech
(POS) tags for all the words in the sentence.

2. Create a Mention Table: Select each Mentionld in Stanford Parser output
and creating a hash from Mentionld to all typed dependencies (TDs) it is
involved in.

3. Initialize IR: Empty at beginning.

4. Populate the IR: Iterate over Mentionlds in the Mention Table in sequence.
For each Mentionld:

(a) Get the POS tag for the MentionId.

(b) Set word to the stem of the word (from the WordNet stemmer) and add
an IR entry for the word.

(¢) If word is a math expression encoded by the math preprocessor, set its
IR type to arithmetic.

(d) Else if word is marked as a unique entity in the ontology, set its IR type
to entity and its quantifier to unique.

(e) Else if word is marked as predicate in the ontology, set its IR type to
pred.

(f) Else if word is a number, set its IR type to num.

(g) Else if word has a noun POS tag, set its IR type to entity. In addition,
if the word is not found in WordNet, set its quantifier to unique (as it
is presumably a proper name).

(h) Else if word has a verb POS tag, set its type to event.

5. Execute the type rules by doing a DFS traversal of the TD graph:
For each Mentionld in the Mention Table, for each TD associated with Men-
tionld in the Mention Table, for each type rule TR:

(a) Match the type rule with the TD, producing TD.

(b) If step 5(a) was successful, i.e., the the left-hand-side of TR matches
TD, execute the right-hand-side of TD.

Figure 6 Detailed algorithmic flow of IR generation.

Metadata tags Different types of metadata tags annotate the entries in the IR table:

1. TermType: Whether term is of the type entity, event, numeric, or predicate.
2. NegatedOrNot: Whether term is logically negated.
3. QuantifierType: Unique, all, exists.

4. Relations/Attributes: Temporal or normal.
5. Lists: Corresponds to the connectives and, or, implied-by.

These tags are used to associate semantics with the entries in the IR table. The metatag annotations
are similar to role annotations in automatic semantic role labeling [GJ01]. In this stage, ARSENAL uses
WordNet [Mil95] to identify word stems, and to find out whether a term is a known noun — if the term is
a noun but not found in WordNet, it is marked as unique since it is most likely a proper noun. ARSENAL
can also use special domain-specific ontologies or glossaries in this stage to annotate the IR entries with a
richer set of metadata tags that can be used in downstream processing.

TypeRules TypeRules are domain-independent semantic rules used by the semantic processor to create
the IR table. For example, nsubjpass(V, N) in the STDP output indicates that the noun phrase N is
the syntactic subject of a passive clause with the root verb V . The TypeRule corresponding to the TD
nsubjpass(V, N) indicates that N is a who/what argument of relation V in the output formula. TypeRules
have the form:

TD(ARG1,ARG2) : ACTION(ARG3,ARG4)
For example:

prep-upon(?g,?d) : implies(?d,?g)

Matching of Typed Dependencies with TypeRules: Matching this rule with the TD: prep_upon(entering-17,
set-4) produces a match with ?g = entering-17, ?d = set-4. The action to execute is then:
implies(set-4, entering-17).

There are a number of different types of actions, each with its own semantics. The implies(?7x,7y)
action adds an entry impliedBy:?7x to the IR entry for 7y.

ARSENAL has different kinds of TypeRules, e.g., for handling implications, conjunctions/disjunctions,
universal /existential quantifiers, temporal attributes/relations, relation arguments, and events.?

Rules with complex patterns: Some TypeRules are complex and have multiple TDs that match on the left-
hand side. For example:

advcl(?g,?d) & mark(?d,if) : implies(?d,7?g)
Here, the current TD being matched must match the first part of the rule, advcl(?g,?d), but any other TD
from the parsed sentence can be used to match the rest of the rule, i.e., mark(?d,if). Note that “if” here
is not a variable: it denotes that a mention of the word if must appear in that position in a TD to produce
a match.

TypeRules can also contain an additional condition on the left-hand side. For example:

nsubj(?g,?d) & event(?7g) : rel(agent,?g,?d)
Here, we have an additional check that whatever mention matches ?g is marked as an event in the IR
(in step 4 of the algorithm in Figure 6) — rel(agent, ?g,?d) adds a relation agent=7d to the IR entry for 7g.

A plug-and-play architecture like ARSENAL has certain flexibilities that enables it to give better per-
formance by increasing accuracy of requirements processing. For example, if the shallow semantic NL parser
generates multiple candidate parses of the requirements, ARSENAL can use semantic rules to select the best
parse. ARSENAL can also correct inconsistencies between different NLP modules if they give conflicting
results.

Figure 7 shows the full IR table corresponding to REQ1.

5.4 From Dependency Graph to Predicate Graph

One key challenge we face in ARSENAL is the mapping from natural language sentences to LTL formulas
in a way that the semantics (according to LTL) are correctly preserved. Specifically, the output of STDP

2 A detailed list of TypeRules is available at: http://www.csl.sri.com/~shalini/arsenal/ .

10

http://www.csl.sri.com/~shalini/arsenal/

Status_attribute-3 : Status_attribute | entity | unique
| of=Upper_Desired_Temperature-9
Lower_Desired_Temperature-6 : Lower_Desired_Temperature | entity | unique
Upper_Desired_Temperature-9 : Upper_Desired_Temperature | entity | unique
| or: [Lower_Desired_Temperature-6]

equals-10 : equal | predicate | arg2=Invalid-11,
argl=Status_attribute-3

Invalid-11 : Invalid | entity

Regulator_Interface_Failure-14 : Regulator_Interface _Failure | entity | unique

be-16 : be | event

set-17 : set | event | to=True-19, object=

Regulator_Interface_Failure-14
| impliedBy: [equals-10]
True-19 : True | bool

Figure 7 IR table for REQ1.

is a set of grammatical relations which lacks logical meaning. To this end, we have developed a semantic

processor that takes the output from STDP and systematically applies the type rules to the mentions

and dependencies to associate meanings to them, where each type rule specifies a mapping from a set of

dependencies (grammatical relations between mentions) to a set of predicates with built-in “semantics.”
Consider the following sentence:

If the Regulator_Mode equals INIT, the Heat_Control shall be set to Off. (1)

The result of applying STDP to this sentence is a directed graph that shows the dependencies, as shown
in Figure 8.

set-11

/ W‘

shall-9 auxpass Oft-13
nsubjpass be-10
Heat Control-8 equals-4
- nsubj
det / mark \
dobj Regulator Mode-3

the-7 det

If-1 INIT-5 the-2

Figure 8 Dependencies generated using STDP.

Applying the set of type rules to the dependency graph generates a predicate graph, as shown in Figure 9.
In this predicate graph, similar to the type dependency graph, the edges represent binary predicates (with

11

set-11

ARG ARG?2

ImpliedBy
Oft-13

Heat Control-8

equals-4

ARG2 wf

Regulator Mode-3

INIT-5

Figure 9 Predicate graph after the application of type rules.

predefined meanings). The unary predicate unique is indicated by boxes with blue borders. Additionally,
mentions containing indicative words such as “equal” and “set” (shown in red) are associated with predefined
predicates equal and set. For example, the predicate set means that its first argument (ARG1) is a variable
being set to a value which is its second argument (ARG2).

5.5 From Predicate Graph to Logical Formulas

This semantic information is further interpreted based on the target language and additional information
about the model.? For example, to generate an LTL formula from this predicate graph, we can employ the
following set of translation rules in Table 2.

Table 2 Formula Translation Rules

l Predicate [Expression Translation ‘
unique(X) trt(e(X)) : e(X)
set(X) N ARGI(X,Y) N ARG2(X, Z) |tr™(e(X)) : tr*(e(Y)) = tr*(e(2))
equal(X) N ARG1(X,Y) N ARG2(X, Z)| tr™(e(X)) : tr*(e(Y)) = tr*(e(2))

impliedBy(X, Y) trl(e(X)) : tr™(e(Y)) = tr™(e(X))

We use e(X) to denote the expression associated with mention X, which we will repeatedly rewrite during
the translation process. If mention X is associated with a unique term, i.e. unique(X), its expression is simply
the English word in the mention, e.g., e(Heat_Control-8) = Heat_Control. Given a graph representing the
predicates over the mentions, we recursively apply the translation rules starting from the root (set-11 in this
case). The superscripts m and [indicate the types of the translation rule for simple arithmetic expression
and logical expression respectively. When multiple rules are applicable to the same mention, they are applied
in the order of tr! followed by ™ and then tr*. The resulting LTL formula after applying the translation
rules is shown below.

3 For example, in a transition system, the variable being set may or may not be a state variable. Hence, additional
information may be needed to properly determine the timing of the assignment associated with the predicate set.

12

G ((Regulator_-Mode = INIT) — (Heat_Control = Off)) (2)

Every requirement is considered as a global requirement except when certain indicative words such as
“initialize” are present in the sentence. Hence, we have the G operator in front quantifying it for all
computations.

6 Formal Analysis

Formal methods have proven effective at providing assurance and finding bugs in a multitude of domains
such as electronic designs, software development, and protocol standardization. The lingua franca of formal
methods is logic, which provides an unambiguous semantics for the (formal) language describing a design,
and the means to reason with it. However, most people who experience or interact with computers today are
“end-users” — they are not necessarily trained in formal methods, and their way of describing their usage to
others is through natural language. In many cases, even domain experts, such as circuit designers, resort to
natural language as the main medium for communicating their model of a design to consumers of the model
(e.g., other designers, implementers and verification engineers), as evidenced by the large proportion of design
documents still written in natural language today. Hence, the ability to do formal analysis through a NL
interface can bring greater accessibility to the engineering discipline at the requirements stage, by liberating
end-users from the burden of learning formal logic. In addition, ARSENAL helps even formal method experts
with the ability to create a first formal model quickly and automatically from NL descriptions. We next
discuss the different parts of the FM stage (shown in Figure 10).

6.1 Formula Generation

There are multiple output adapters in ARSENAL, which convert the IR table (with the semantic metadata
annotations) to different output forms. The current ARSENAL implementation includes FOL and LTL
adapters, which convert the IR table to FOL and LTL formulas respectively. In this FTR, we discuss the
SAL model adapter, which converts the IR table to a SAL model. The SAL model represents a transition
system whose semantics is given by a Kripke structure, which is a kind of nondeterministic automaton widely
used in model checking [CGP99].

ARSENAL uses translation rules to generate the SAL formulas from the IR table. The translation rules
of the SAL adapter are shown in Figures 11 and 12.

The translation from IR to a formula is given by the function Tf which is defined inductively starting
from the root entry, e.g., Tf (e(set-17)). Note that e is a function that expands a mention to the IR table
entry for that mention. The formula rules in Tf invoke translation rules for terms, Tt1l and Ttr, for terms
on the left-hand side (LHS) and right-hand side (RHS) of the formula respectively. The translation rules for
terms are shown in Figure 11. The main difference between the LHS and RHS term rules is the NMOD rule
— this rule generates variables on the LHS but constants on the RHS.*

Once the output formula is created from the IR table, we check if the formula includes all the mentions
and relations in the IR table. ARSENAL first creates a graph from the IR table, in which each node is
a mention entry in the IR table and each (directed) edge indicates if a mention is related to another via
relations. It then runs Depth First Search (DFS) on this graph, starting at the root node of the IR table,
“coloring” each node as visited as soon as DFS visits that node. When DF'S terminates, it checks to see which
nodes have not been colored. These nodes are disconnected from the root node and will not be processed by
the translation algorithm (and hence not be part of the output formula). ARSENAL shows the uncolored
nodes (i.e., uncovered mentions) to the end-user. This approach is very useful for debugging, since it helps
to keep track of provenance and coverage of IR mentions in the output formula.

4 The output trace of applying the translation rules on the IR table is shown in http://www.csl.sri.com/~shalini/
arsenal/.

13

http://www.csl.sri.com/~shalini/arsenal/
http://www.csl.sri.com/~shalini/arsenal/

Intermediate Legend
Representation
Systemn inputs/outputs

I

Form

R)

A Off-the-shelf tools

Toaols being built

al Model
—

Generator

User
interaction

N~

Formal model

(e.g.,

SAL model)

Domain-specific

@ < i supporting
specifications

Formal Methods

FM

FM
INPUTS

STAGE

Formal Analysis (e.g.,
consistency checks,
counter example)

Figure 10 FM Stage of ARSENAL pipeline.

Rule H IR Entry Translated Terms (Ttl/Ttr)
VALUE value | of=X X (a variable)
) a LHS: Ttl(e(Y)).X
DOT X | entity | of=Y RHS: Ttr(e(Y)).X
NUM X | num X (a number)
BOOL X | boolean X (a boolean)
ARITH X | arithmetic X (an arithmetic expression)
. LHS: M;_..._M,_X (a variable)
NMOD || X | entity [[My, ..., My RHS: M;_..._M,_X (a constant)

Figure 11 Translation rules for terms.

14

[Rule] IR Entry ‘ Translated Formula (Tf) |

NEG X | neg —(Ti(X))

G X | Talways G (Tf(X))

F X | Teventually F (Tf(X))

NEV X | Tnever —(F (Tf(X)))
UNT X | Tuntil=Y TH(X) U Tf(e(Y))
AND X | and:[Y3,...,Y,] TH(X) Aiq Ti(e(Y:))

OR X | or:Yy,....Y,] THX) Vi, Tfe(Y?))
IMP X | impliedBy: Y THe(Y)) = THX)

EQ equals | ... | args=(X,Y) Ttl(e(X)) = Ttr(e(Y))
EXC exceed | ... | args=(X,Y) Ttl(e(X)) > Ttr(e(Y))
DOM dominate | args=(X,Y) Ttl(e(X)) > Ttr(e(Y))
ATOM X (only) A boolean formula generated from X
SET set | ... | obj=X, to=Y Ttl(e(X)) = Ttr(e(Y))
SET1 set | ... | obj=X Ttl(e(X)) =1
CLR clear | ... | obj=X Ttl(e(X)) =0
INIT || initialize | ... | obj=X, to=Y" Ttl(e(X)) = Ttr(e(Y))
SEND send | obj=X out_channel = Ttr(e(X))
TRAN transmit | obj=X out_channel = Ttr(e(X))
REC receive | obj=X in_channel = Ttr(e(X))

IN be | ... | agent=X, in=Y Ttl(e(X)) = Ttr(e(Y))

Figure 12 Translation rules for formulas.

6.2 Formal Analysis of Generated Formulas

We do the formal analysis of the generated formulas using Biichi Automata. A Biichi automaton extends a
finite automaton to infinite inputs. It is an w-automaton A = (Q, X, §, ¢0, F') that consists of the following
components:

— (Q is a finite set, whose elements are called the states of A.

— X is a finite set called the alphabet of A.

— 6:Q x X — (@ is a function, called the transition function of A.

— ¢0 is an element of Q, called the initial state.

— F C @ is the acceptance condition. A accepts exactly those runs in which at least one of the infinitely
often occurring states is in F.

Biichi automata is used in model checking, as an automata-theoretic version of a formula in LTL. If
the Buchi Automata generated from a set of formulas is degenerate, the formulas are inconsistent. Given
a set of LTL formulas generated by the Formula Generator, we first check if the Biichi Automata created
from corresponding propositionalized formulas is degenerate — if so, we report the inconsistency in the
requirements to the user. If not, we proceed to creating the SAL model, as described next.

6.3 SAL Model Generation

SAL can be used to prove theorems, encoding properties about the requirements, using bounded model-
checking. If SAL finds a counter-example, we know the property does not hold. If SAL does not find a
counter-example at a known depth of model-checking, we try to see if the LTL formulas are realizable.

We continue to use REQ1 to illustrate how ARSENAL produces a SAL model from the generated formulas
in the previous step. At its core, SAL is a language for specifying transition systems in a compositional way.
A transition system is composed (synchronously or asynchronously) of modules, where each module consists
of a state type, an invariant definition on this state type, an initialization condition on the state type, and
a binary transition relation on the state type. The state type is defined by four pairwise disjoint types of
variables: input, output, local and global — input and global variables are observed variables of a module,
while output, global and local variables are controlled variables of a module. Note that the SAL model-
checkers use LTL, a modal temporal logic with modalities referring to time, as their underlying assertion

15

language. This is an appropriate language for formally expressing requirements, since many requirements
have temporal operators (e.g., eventually, always).

In order to unambiguously define a transition system, we need to additionally distinguish controlled
variables that are state variables from wires (variables that do not directly define the state space). We need
to know the type of any variable. Since we consider only self-contained modules in SAL, a variable can then
belong to one of the following five categories: input, state only, state and output, output only, and wire. By
differentiating state variables from wires, we can unambiguously map them to the corresponding section in
SAL, namely DEFINITION or TRANSITION. We use the former to describe constraints over wires, and the
latter to describe evolutions of state variables. For example, if the Regulator_Interface Failure variable
in REQ1 was a state variable, then the SAL model generator would have produced the following transition
instead.

TRANSITION
Upper_Desired_Temperature.Status_attribute = Invalid
OR Lower_Desired_Temperature.Status_attribute =
Invalid --> Regulator_Interface_Failure’ = TRUE

The SAL model would hence be different, even though generated from the same sentence. Currently, AR-
SENAL requires the user to provide this additional semantic information only after the NLP stage, thus
keeping it separate from the model-independent part of the pipeline.

Table 3 Rules for Gathering Type Evidence

Expression Inference
XxY, xme{<,><, >} X and Y are numbers
X = a number X is a number
X = a named value C' || X has enum type containing C'
X=Y X and Y have same type

During the model generation stage, ARSENAL gathers type evidences for each variable across all sen-
tences and performs type inference by organizing them into equivalence classes. Further, in case of a type
conflict, a warning is produced to indicate inconsistency in the NL sentences, thus helping the user to re-
fine their requirements documentation at an early stage. Table 3 summarizes the rules ARSENAL currently
implements for gathering type evidence.

6.4 Verification and Synthesis with LTL

In addition to specifying a transition system, sentences in NL may describe high-level requirements that
the system must satisfy. Often times, this requirement can be precisely captured using temporal logic. In
this FTR, we use LTL [MP92], whose semantics can be interpreted over Kripke structures. We consider
two problems that leverage LTL to reason about potential inconsistencies in a NL documentation, namely
verification and synthesis. For verification, we use model checking to analyze whether a SAL model satisfies its
LTL specification. In general, the application of model-checking tools involves a nontrivial step of creating
a mathematical model of the system and translating the desired properties into a formal specification.
ARSENAL automates this process with minimal user guidance. Given a model M as a (labeled) transition
system and a specification ¢ in LTL, both produced in the NLP stage of ARSENAL, we check if M = .
When the model does not satisfy the specification, a negative answer (often in the form of a counterexample)
is presented to the user as a certificate of how the system fails the specification. In this FTR, we use SAL’s
bounded model checking [CBRZ01] capability as the main workhorse for finding such inconsistencies.
ARSENAL also provides the flexibility to generate only specifications from the natural language require-
ments. Consistency means the specification is satisfiable, that is, whether a model exists for the specification.
This problem is known as LTL satisfiability checking and it can be reduced to model checking [RV07]. Given

16

an LTL formula %, it is satisfiable precisely when a universal model M?® does not satisfy —). A counterex-
ample that points to the inconsistency is produced when) is not satisfiable.

Given an LTL specification, it may also be possible to directly synthesize an implementation that satisfies
the specification. Realizability, the decision problem of determining whether such an implementation exists,
can be used to further inspect the requirements document for inconsistencies. If the specification is realizable,
then a Moore machine can be extracted as an implementation that satisfies the specification. Thus, the benefit
of LTL synthesis is a correct-by-construction process that can automatically generate an implementation
from its specification. In general, LTL synthesis has high computational complexity [Kupl2]. However, it
has been shown that a subclass of LTL, known as Generalized Reactivity (1) [GR(1)], is more amenable to
synthesis [PP06] and is also expressive enough for specifying complex industrial designs [BGJT07].

Formal specification can precisely capture the desired properties of a design. However, it is common for
formal specifications to be incomplete. Assumptions or constraints about the environment are particularly
hard to capture. In this section, we describe a technique to generate candidate environment assumptions as
suggestive solutions to make an unrealizable specification realizable. This is motivated by the fact that, in
many scenarios, simply producing an unrealizable answer is not very useful for an user. Playing a two-player
game according to the counterstrategy can be useful [BCG110], but it requires considerable effort and time,
not to mention the expertise in formal method that an user is assumed to have. To overcome this problem,
we propose finding potentially missing assumptions about the environment, and then recommending them
to the user as NL sentences in an interactive way. Throughout the process, the user remains oblivious to the
underlying formal analysis performed, and can just reason with the NL feedback directly.

Given a LTL specification ¢ that is satisfiable but not realizable, the assumption mining problem is to
find 1, such that ¥, — 9 is realizable. Our algorithm for computing 1, follows the counterstrategy-guided
approach in [BCG'10], which has shown to be able to generate useful and intuitive environment assump-
tions for digital circuits and robotic controllers. The algorithm is based on [LDS11], and is summarized below.

Counterstrategy-guided synthesis of environment assumptions. Given the unrealizable specification
1, the method first computes a counterstrategy. The counterstrategy summarizes the next moves of the
environment in response to the current output of the system, which will force a violation of the specification.
The method then uses a template-based mining approach to find a specification ¢ that is satisfied by the
counterstrategy. —¢ is added as a new conjunct to ¥, and ¥, A — ¥, is checked for realizability again. By
asserting the negation of ¢ as an assumption to the original specification, the method effectively eliminates
the moves by the environment that adhere to the counterstrategy. The process iterates until the resulting
specification becomes realizable. At any step of the iteration, the user is asked to verify the correctness of
the mined assumption. We present them as NL sentences, which we generate by mapping the boolean and
temporal operators to English connectives.

In the rest of the section, we give details of the realizability analysis of LTL specifications, and demonstrate
some of the benefits of these techniques when they are incorporated into ARSENAL and applied to different
corpora. We envision ARSENAL to be applicable in a multitude of formal analysis settings. Figure 13
illustrates one such scenario, where ARSENAL generates LTL specifications from natural language.

LTL Synthesis Given a LTL specification ¢, LTL synthesis is the process of automatically finding an
implementation that satisfies ¢. Realizability is the question of asking if such implementation exists. In our
tool flow, if the specification is not realizable, there is a suite of techniques we can employ to explain the
problem of unrealizability, thereby helping the designers to debug their design at the requirement stage.
Synthesis for full LTL can be prohibitive expensive (2EXPTIME-Complete). However, there exists efficient
algorithms for handling a subclass of LTL, known as Generalized Reactivity (1). We describe the syntax
of GR(1) below. In general, the algorithm works on specifications (assumptions and requirements) that are
given as deterministic Biichi Word Automata as well. Given input/output partitions of the Boolean variables
into I U O, GR(1) specification takes the form ¢. — ¢, where each ¢; is a conjunction of the following:

5 Universal means M contains all possible traces over the set of atomic propositions.

17

Available Tools:
Satisfiability: LTL2BA,

O ¢ is not satisfiable: the spec. is
inconsistent, thus contains
problem.

0 ¢ is not satisfiable: the spec. is
valid, thus is not useful.

Q If @ is satisfiable, find bad initial
states ¢ such that ¢ A @ is not

No satisfiable.

SPOT, SMV, SAL, etc.
Realizability: Lily,
RATSY, LTLMop, etc. Satisfiability
of @ and ¢

NLP item: 1/0
partitioning of
variables
Complexity:
Efficient for
GR(1)-alTL
subclass Yes

Realizability Debug > Find the minimal set of
of @ Analysis inconsistent specs.

o Find the minimal set of unrealizable specs.

o Identify over-constrained output variables.

o Extract counterstrategyto explain
unrealizability.

o Find assumption a such that (a — ¢) is
realizable.

Implementation Debug
Generation Analysis

Figure 13 LTL satisfiability and synthesis using ARSENAL output.

— Initial states: «;, which is a Boolean formula that characterizes the initial states of the environ-
ment /system.

— Transitions: (3;, which is a formula of the form /\j G f; where each f; is a Boolean combination of
variables from I U O and expressions of the form X v where v € I if i = e, and v € I U O otherwise.

— Fairness: ~;, which is a formula of the form A ;GF f;, where each f; is a Boolean formula.

From the NLP perspective, we need additional knowledge on how the variables are partitioned as inputs
or outputs. Currently, this part is done by manual annotations of the variables. We evaluate the usefulness
of LTL synthesis on actual English requirements, extracted from the Appendix A of a FAA requirement
document. We detail our analysis below.

6.5 Realizability Analysis: Case Study on FA A-Isolette

In this section we describe a study on requirements from an Isolette design, focusing on realizability. An
Isolette is an incubator for infants that provides controlled temperature, humidity and oxygen. Our example is
an Isolette Thermostat that regulates the air temperature inside an Isolette such that it is maintained within
a desired range. The Thermostat is composed of two interacting modules — the “Regulate Temperature”
module and the “Monitor Temperature” module. We focus on the “Regulate Temperature” module, which
receives input from the “Operator Interface” and the “Monitor Temperature” module, and produces output
to the “Heat Source”. The requirements are taken from Appendix A of the “Requirement Engineering
Management Handbook” released by the Federal Aviation Administration, which was intended to serve as
an example of the “best practices” advocated in this handbook [LM09a]. The English sentences describing
the requirements, as well as their sources in the document, are tabularized in Table 4.

Additionally, we require the user to provide additional type information for each variable. For this FAA-
Isolette example, we assume the following type information is given.

— Input:
Upper_Desired_Temperature_Status
Lower_Desired_Temperature_Status
Regulator_Init_Timeout
Current_Temperature

18

Table 4 Isolette requirements in English

‘Requirement in English

‘ Source

If the Regulator Mode equals INIT, the Output Regulator Status shall be set
to Init.

REQ-MRI-1

If the Regulator Mode equals NORMAL, the Output Regulator Status shall
be set to On.

REQ-MRI-2

If the Regulator Mode equals FAILED, the Output Regulator Status shall be
set to Failed.

REQ-MRL3

If the Status attribute of the Lower Desired Temperature or the Upper Desired
Temperature equals Invalid, the Regulator Interface Failure shall be set to
True.

REQ-MRI-6

If the Status attribute of the Lower Desired Temperature and the Upper De-
sired Temperature equals Valid, the Regulator Interface Failure shall be set to
False.

REQ-MRL-7

If the Regulator Mode equals INIT, the Heat Control shall be set to Off.

REQ-MHS-1

If the Regulator Mode equals NORMAL, and the Current Temperature is less
than the Lower Desired Temperature, the Heat Control shall be set to Control
On.

REQ-MHS-2

If the Regulator Mode equals NORMAL, and the Current Temperature is
greater than the Upper Desired Temperature, the Heat Control shall be set to
Control Off.

REQ-MHS-3

If the Regulator Mode equals FAILED, the Heat Control shall be set to Control
Off.

REQ-MHS-5

10

If the Regulator Interface Failure is set to False, and the Regulator Internal
Failure is set to False, and the Status attribute of the Current Temperature is
set to Valid, the Regulator Status shall be set to True.

Table A-10

11

If the Regulator Interface Failure is set to True or the Regulator Internal
Failure is set to True or the Status attribute of the Current Temperature is
not set to Valid, the Regulator Status shall be set to False.

Table A-10

12

The Regulator Mode shall be initialized to INIT.

Req MRM 1

13

If the Regulator Mode equals INIT and the Regulator Status equals True, the
Regulator Mode shall be set to NORMAL.

Req MRM 2

14

If the Regulator Mode is set to NORMAL and the Regulator Status is set to
False, the Regulator Mode shall be set to FAILED.

Req MRM 3

15

If the Regulator Mode is set to INIT and the Regulator Init Timeout is set to
True, the Regulator Mode shall be set to FAILED.

Req MRM 4

19

Lower_Desired_Temperature
Upper_Desired_Temperature

Regulator_Internal Failure
Current_Temperature_Status
Regulator_Interface_Failure

Regulator_Status

— State and output: Regulator_Mode

— Pure output: Output_Regulator_Status, Heat_Control

Using this information, we are now ready to generate LTL [GR(1)] formulas. The generated LTL formulas
corresponding to the English sentences are listed below. In addition, we automatically determine which terms
correspond to variables and which terms correspond to values (based on predicate such as set) and gather
domain information (variables assumed to have enumerative type) across the sentences for all the variables.

. G ((Regulator-Mode = INIT) — (Output-Regulator_Status = Init))

. G ((Regulator-Mode = NORMAL) — (Output_Regulator_Status = On))

. G ((Regulator_Mode = FAILED) — (Output_Regulator_Status = Failed))

. G ((UpperDesired,Temperature,Status = Invalid V Lower_Desired_Temperature_

Status = Invalid) — (Regulator_Interface_Failure = true))

5 G ((Upper,Desired,Temperature,Status = Valid A Lower_Desired_Temperature_Status
= Valid) — (Regulator_Interface_Failure = false))

6. G ((Regulator_Mode = INIT) — (Heat_Control = Control_Off))

7. G ((Regulator,Mode = NORMAL A Current_Temperature < Lower_Desired_Temperature = true) —
(Heat_Control = Control_On))

8. G ((Regulator,Mode = NORMAL A Current_Temperature > Upper_Desired_Temperature = true) —
(Heat_Control = Control_Off))

9. G ((Regulator_-Mode = FAILED) — (Heat_Control = Control_Off))

= w N =

10. G ((Regulatorlnterface,Failure = false A Regulator_Internal Failure = false A
Current_Temperature_Status = Valid) — (Regulator_Status = true))
11. G ((Regulator,Interface,Failure = true \Y Regulator_Internal Failure = true \Y

—(Current_Temperature_Status = Valid)) — (Regulator_Status = false))
12. Regulator_Mode = INIT
13. G ((Regulator-Mode = INIT A Regulator_Status = true) = X (Regulator_Mode = NORMAL))
14. G ((Regulator-Mode = NORMAL A Regulator_Status = false) — X (Regulator_Mode
= FAILED))
15. G ((Regulator-Mode = INIT A Regulator_Init_Timeout = true) — X (Regulator_Mode
— FATLED))

We are interested in the question of whether there exists a Finite State Machine (FSM) implementation
that can satisfy all the specifications/theorems for all inputs. Specifically, we use RATSY [BCG™10] to check
realizability of the specifications. Since RATSY only supports Boolean variables, we propositionalize the spec-
ifications. For example, Regulator_Mode has an enumerated type with values {INIT, NORMAL, FAILED}. In
RATSY, we use two bits Regulator_Mode_bit0 and Regulator_Mode_bit1l to encode this variable. In general,
LTL synthesis also requires an input/output partition on the set of signals. In this case, we make all wires
and controls (explicit) output as well. Figure 14 shows a snapshot of the specifications written in RATSY.

Given that ARSENAL was able to produce a SAL model from the same set of specifications earlier,
one would expect that there should exist a FSM that can implement these specifications. However, RATSY
reports that the specifications are not realizable, as shown in Figure 15.

Recall that realizability concerns with the question of whether the specifications can be implemented.
The reason that these specifications are not realizable while ARSENAL could still generate a SAL model
from them was because the SAL model was nondeterministic. Specifically, when Regulator_Status is TRUE

20

RATSY - isolette > CORE—N— . D . N = ST

File Edit View Help

= g & o
& 8 | - = Realizability O
New Open Save ' Traces Assurance _Simulation |& Synthesis Game
signals & + (7 © Requirements +286
Name [1ype _[Kind]| & [Name [Kind |Automaton |property
0 INT G ((Regulator_Mode_bit0=0 & Regulator_Mode_bit1=0) -> (Output_Req
Regulator_Modle_bito booleans 1: NORMAL G ((Regulator_Mode_bito=1 & Regulator_ Mo > (Output_Req
S G ((Regulator_Mode_bit0=0 & Regulator_Mode_bit1=1) -> (Output_Req
Output_Regulator_Status.bito (FEEDS feSumen G ((Upper_Desired Temperature_Status = 0 | Lower_Desired_Temperat
2: Failed G ((Upper_Desired_Temperature_Status = 1 & Lower_Desired_Tempera
Regulator_Mode_bitl boolean 5 G (Regulator_Mode_bit0 = 0 & Regulator_Mode_bit1 = 0) -> Heat_Con|
Output_Regulator_Status_bitl boolean s Regulator_Mode_bit0 = 0 & Regulator_Mode_bit1 = 0
Upper_Desired_Temperature_Status boolean O Invalid G (Regulator Status = 1.& Regulator_Mode. bit0 = 0 & Regulator Mod
1: Valid G ((Regulator_Status = 0 & Regulator_Mode_bit0 = 1 & Regulator_Mod
Lower_Desired_Temperature_Status boolean E G (Regulator_Init_Timeout = 1 & Regulator_Mode,_bit = 0 & Regulatol
Regulator_Interface_failure boolean s G ((Regulator_Mode_bit0 = 0 & Regulator_Mode_bit1 = 1) -> Heat_Con|
] booleans %O G (Regulator_ Mode bito = 1 & Regulator Mode.bit1 = 0 & Current Ter]
- G ((Regulator_Mode_bit0 = 1 & Regulator_Mode_bitl = 0 & Current_Ter
Regulator_Init_Timeout _ booleanE G (Regulator_Mode_bit0=0 & Regulator_Mode_bit1=1) -> (F(Regulatd
CurrentylemperatireLowerkytantDesired] hooleanE] G (Regulator_Status = ((Regulator_Interface_Failure=1 | Regulator_Int
Current_Temperature_Higher_Than_Desired boolean G (F (dummy=1))
Regulator Status booleans) G N(Current_Temperature_Lower_Than_Desired=1 & Current_Temperaty
cilabo intrmal Exilisio hoolaan £ . = =
ey forced reordering:
Name Notes
Realizability _ Reorder BDD after

| ’y"f??!ﬁeck Realizability O Consistency.
|+ Checking outcomes

S .

Figure 14 Specifications in RATSY.

wist -sere NG TR TG o e T T T i

File Edit View Help

= g Q, PN
b s & B . & Realizability .
New Open Save | Traces Assurance _Simulation & Synthesis _Game
Sisplfata & 4+ ¥ § Requiremeits +238
Name Notes |
Realizability

Realizability number 1 J ' Check Realizability Consistency.

Selected requirements were found not_realizable

Requirements were: req0, reql, req2, req3, reqd, regs, state_init, state_tranl, state_tran2, state_tran3, re [Synthesize |

Synthesis mode: COFACTOR -
Output Language: BUF -

Reorder BDD after

reading configuration

Kill strategy when no
longer needed and
reorder BDD

‘Transfer output functions to new BDD manager

Reorder method for g =
forced reordering: >t cOnverge
Encoding of jx state vars

@ Binary O One-Hot:

Reorder BDD after

synthesis

7 Checking outcomes

Figure 15 Specifications are not realizable as reported by RATSY.

and Regulator_Init_Timeout is TRUE at the same time, the requirements do not specify which mode to
transition to, as illustrated in Figure 16.

RATSY also provides a feature for debugging unrealizable specifications, by having the user playing
against the counterstrategy (winning strategy for the environment), as shown in Figure 17.

Counterstrategy is presented as a game between the user and the tool. The tool sets the inputs and the
user sets the outputs. The game is played by the tool first setting inputs according to the counterstrategy,
and then the user trying to satisfy all the requirements by setting the outputs (which is impossible). In this
process, the user can understand the cause of unrealizability.

A common cause of unrealizability is an under-constrained environment. We have incorporated the
counterstrategy-guided assumption mining approach developed by Li et al. in [LDS11]. This technique uses a
template generalization approach to find candidate assumptions that can rule out the counterstrategy of an
unrealizable specification, thereby guiding the specification towards realizability. In this case, the following
assumption is mined and it makes the conflict go away such that the specification is realizable.

¢ := G —(Regulator_Status = true A Regulator_Init_Timeout = true) (3)

21

Regulator_Status
=True

Regulator Init Timeout
=True

. e o BN o camoaen TIPS - T o e . G -~ DX

[NE=T I |

. aQ o
& Realizability -
New Open Save | Traces

Assurance _Simulation & Synthesis | Game

signals & 4+ 7 @ Requirements +28 &

Name [Type_|Kind @ |Name |Kind|Automaton |Property

G ((Regulator_Mode_bit0=1 & Regulator_Mode_bit1=0) -> (Output_Reg|
G ((Regulator_Mode_bit0=0 & Regulator_Mode_bit1=1) -> (Output_Reg|
G ((Upper_Desired_Temperature_Status = 0 | Lower_Desired_Temperatu

o
Regulator_Mode_bito booleans 1: NORMAL
2

0: Init

Automata
Game

+
@

Inputs
Upper_Desired_Temperature_Status

2
i)

Lower_Desired_Temperature_Status -
Regulator_Init_Timeout —
Current_Temperature_Lower_Than_Desired -
Current_Temperature_Higher_Than_Desired

Regulator_Internal_failure

Current_Temperature_Status

Outputs [step1
Regulator_Mode_bit0

Output_Regulator_Status_bito
Regulator_Mode_bitl
Output_Regulator_ Status_bit1
Regulator_Interface_Failure
Heat_Control

Start | Stop | NextStep| Clear | Prev.Step| Done | Export | Show Subviews| Hide Subviews |
Options for unrealizable specs: 51l CIik @ Minimize @ Compute Graph

el a0 el e e X | A CHESERTII

Figure 17 Debugging unrealizable specifications in RATSY.

This assumption can be presented to the user as a recommendation. If the user rejects this assumption,
another assumption (or set of assumptions) will be produced until either the specification is realizable or all
the recommendations are rejected by the user.

Since now the specification is realizable, RATSY can synthesize a design that implements the spe-
cification. The corresponding Verilog file can be found at http://www.csl.sri.com/users/shalini/
arsenal/faa-isolette.v.

In addition to the kind of analysis presented above, we are considering the following directions for future
work. In general, there is a need to challenge positive answers in verification and synthesis as well. We list
them below and plan to explore them more in future work.

— All verification properties passed: still need to check wvacuity, e.g. a property is vacuously true, and
coverage, e.g. mutation-based coverage for model checking.

— The properties are realizable: how do I know the generated implementation is correct (complete)? Maybe
we can run a separate test suite to verify the synthesized design?

— Incremental LTL synthesis is still an open problem: if properties are modified/added, one has to redo
synthesis.

7 Results and Discussion

In this section, we present results on analyzing the FAA-Isolette corpus [LMO09b] and a portion of the
TTEthernet requirements document [SD10] to demonstrate ARSENAL’s ability in handling complex NL
sentences and different corpora. To better understand the degree of automation and robustness ARSENAL
can achieve, we separately evaluate different stages of the ARSENAL pipeline.

22

http://www.csl.sri.com/users/shalini/arsenal/faa-isolette.v
http://www.csl.sri.com/users/shalini/arsenal/faa-isolette.v

7.1 NLP Stage: Evaluation

Degree of Automation Metric In this section, we report automation results of ARSENAL on both the
FAA-Tsolette (FAA) and the TTEthernet (TTE) corpora. Specifically, we evaluate the accuracy of ARSE-
NAL’s NLP pipeline on translating each NL sentence into the corresponding logical formula automatically,
without any manual correction. This metric measures the degree to which ARSENAL runs in an automated
mode.

The results are summarized in Table 5. When evaluating accuracy, the correct outputs were given a score
of 1.0, wrong outputs were given a score of 0.0, while partially correct results were given partial credit of
0.5. A translation was deemed partially correct if there was one error and incorrect if there was more than
one error in the resulting formula.

Table 5 ARSENAL NLP pipeline accuracy.

Corpus|| Total|Correct |Partial| Wrong|Degree of
Automation

TTE |36 |24 8 4 78%

FAA |42 39 2 1 95%

Note that when ARSENAL fails to give the correct output automatically from the NLP stage while
processing requirements, we correct the error manually so that the input to the FM stage is correct.
The following sentence is one of the sentences in FAA for which ARSENAL partially captures the logical
semantics.

REQ2: If the Regulator Mode equals NORMAL, the Temp attribute of the Display Temperature shall be set
to Temp attribute of the Current Temperature rounded to the nearest integer.
The logical formula output by ARSENAL is:

(Regulator_Mode = NORMAL => Display_Temperature.Temp_attribute =
Current_Temperature.Temp_attribute)

The reason ARSENAL only handles the first half of the sentence correctly is that the phrase “rounded
to the nearest integer” implies there is a function that can take a real/floating-point number as input and
produce its nearest integer as output. Currently, ARSENAL does not have support for arbitrary functions —
in the future, we plan to incorporate more domain-specific knowledge and have built-in support for frequently
occurring functions.

Degree of Perturbation Metric We define an evaluation criteria for measuring the robustness of AR-
SENAL, i.e., if perturbations/modifications are made to a requirements sentence using certain rewrite rules,
whether ARSENAL can still generate the right output formula. For the given dataset (e.g., FAA or TTE),
we do perturbations to the requirements in that dataset using a transformational grammar, having oper-
ators that transform the text. The transformations in this grammar are based on allowable terminals in
SAL, e.g., we can replace “always” by “eventually”, “or” by “and”, “is” by “is not”, etc. By applying these
transformation operators to the FAA dataset, we can generate a “perturbed” dataset. This is similar in
principle to generating test cases by fuzz testing [GLMO8]. Note that transforming “or” to “and” can be a
significant perturbation for ARSENAL if a sentence has a combination of “and” and “or” terms, since the
transformation can change the nesting structure of clauses in the output formula.

Table 6 shows the results of our experiments on the FAA and TTE datasets. Note that total number of
requirements was 42 in FAA and 36 in TTE. Out of the 36 requirements in TTE, the “And — Or” rewrite rule
affected 16 requirements. We ran two types of “And — Or” transformations — in the first case, we modified
only the first occurrence of “And” in the requirements sentences, while in the second case we modified

23

Table 6 Results of perturbation test on ARSENAL.

Perturbation TTEthernet domain (TTE) || FAA-Isolette domain (FAA)
Type Total [Perturbed|Accuracy|| Total |Perturbed|Accuracy
sentences| sentences sentences| sentences
First (And—Or) 36 16 81% 42 N/A N/A
All (And—Or) 36 16 87% 42 13 92%
All (Is—Is not) 36 17 100% 42 13 92%
If A then BB if A 36 N/A N/A 42 40 65%

all occurrences of “And” in the sentences. When ARSENAL was run on these transformed requirements,
thirteen of them gave output formulas that were correct w.r.t. the modified requirements sentence for the
“First (And — Or)” rewrite rule, while fourteen of them gave output formulas that were correct for the
“All (And — Or)” rewrite rule, giving an accuracy of 13/16 ~ 81% and 14/16 ~ 87% respectively. Similar
numbers were calculated for other rules on FAA and TTE. For FAA, only 2 sentences had more than one
AND in them — so we did not run the “First (And—Or)” transformation on FAA, since the results for that
would have been quite close to the “All (And—Or)” rule.

We subsequently tried more complex rewrite rules, e.g., of the form “If A then B—B if A”. For the “If
A then B—B if A” rule, ARSENAL’s lower accuracy of 65% on the FAA domain was mainly caused by
incorrect parse output from STDP on the perturbed sentences. For TTE, none of the 36 sentences had the
“If A then B” structure.

NLP Stage Accuracy Our goal here is evaluating the accuracy of the NLP stage of ARSENAL. We take
the approach of estimating how many sub-formulas are inserted, deleted or modified by ARSENAL in the
NLP stage, while generating the output formula for a requirements sentence.

To this effect, we designed a novel metric. We first considered a corpus of requirements sentences that
have been annotated with the expected output formula, which we call the ground-truth corpus. We used the
following algorithm to compute this metric:

1. Given each requirements sentence in this ground-truth corpus, generate all sub-formulas G of the ground-
truth formula and all sub-formulas A of the formula generated by ARSENAL.

2. For each sub-formula in A, find the best-matching sub-formulas in G using a new algorithm: Maz-weighted
matching in bipartite graphs. The match score between formulas is calculated using a variant of string
edit distance that we designed, suitably modified for formulas, called Typed Levenshtein distance.

3. Calculate precision/recall/F-measure using the similarity scores between matched pairs of sub-formulas.

Typed Levenshtein Distance This is a modified version of the Levenshtein string edit distance, where a
higher-level token-based edit distance calls an underlying character-based edit distance. The computation of
that score is outlined below:

d[il [j] =
if seql[i] == seq2[j]
then d[i+1] [j+1]
else min(
IC + d[i+1]1[j]1,
DC + d[i]l[j+1],
c(seqll[i], seq2[jl) + d[i+1]1[j+11)

Here, d is the distance, IC is insertion cost, DC is the deletion cost, and seql and seq2 are the two
sequences. We first turn the formula into a sequence of tokens, with 3 types of tokens:

1. LogicalSymbol Token(e.g., “and”, “or”, “exists”): ¢(A,B)=1if A | = B.

24

2. String Token (e.g., argument name): c¢(A,B)=LevenshteinStringEditDistance(A,B).
3. Variable Token (e.g., function name): ¢(A,B)=0, since function names can change.

Max-weighted matching in bipartite graph We next form a bipartite graph, where the sub-formulas of
G and A are the nodes, and the edge connecting each node in G to each node in A is the Typed Levenshtein
distance between those 2 formulas.

Max-Weight Biparte Matching is NP-Hard — so, we relax the 1:1 matching constraint in max-weight
bipartite matching to get an efficient algorithm. Once we get the matching, we use that to compute the
precision, recall and F-measure of the matching.

Figure 18 shows the bipartite graph for an example pair of formulas after matching, where the nodes
correspond to the sub-formulas and the edges correspond to the Typed Levenshtein distance between the
best matched sub-formulas. The figure also shows the F-measure calculation for this graph.

ARSENAL output: Ground Truth:
p(a,b) & q(c) => r(d) p(aa,b) & q(e) => r(d) & s(v)
* Sub-formulas as nodes: 083 » Sub-formulas as nodes:
1. pla, b) &qlc) 1. p(aa, b)&qgle)
2. pfa,b) 05 2 p(aa, b)
3. qlc) 8> > 3. dle)
4 r(d) 1.0 4. r(d) &s(v)
T, 5. 1)
6 s(v)

F-measure calculation
* Max-Weight Bipartite Matching is NP-Hard

* Precision=(5/6+1/2+1/2+1) /4=0.708 « We relax the 1:1 matching constraint, to get
* Recall=(5/6+1/2+1/2+1)/6=0.472 an efficient algorithm

* F-measure = 2/(1/0.708 + 1/0.472) = 0.567

Figure 18 Bipartite graph and F-measure calculation corresponding to example formula and ARSENAL output.

Evaluation on Test set We evaluate the F-measure on test sets, which was comprised of other sections in
the TTEthernet Requirements document, parts of the TTEthernet standards document, and Eurail require-
ments document. Table 7 shows the results — overall, on 83 requirements, the NLP stage had an F-measure
of 0.62.

7.2 FM Stage: Evaluation

Verification In this section, we demonstrate the effectiveness of the FM stage of the ARSENAL pipeline
in creating a full formal model from NL requirements, through the FAA-Isolette example (described earlier
in the detailed case study) as well as another real-world example, which has requirements taken from the
actual industrial requirements document used by TTTech for their standardized TTEthernet architecture.

Both the SAL model and theorems are automatically generated by ARSENAL from their NL de-
scriptions. In this section, we demonstrate the usefulness of incorporating verification technologies in the
ARSENAL pipeline to identify problems in NL documents.

25

Table 7 NLP stage accuracy on test set.

l Section [NumRequirements F-measure
TTE 3 12 0.59
TTE 7.1 12 0.63
TTE 8.2 7 0.66
TTE 9.1 13 0.67
TTE 9.3 10 0.64
TTE Switch 12 0.65
TTE Standards 6 0.57
Eurail 11 0.54

[Total | 83 | 062 |

TTEthernet. In the TTEthernet corpus, we consider the NL requirements that describe the synchronization
state machine in TTEthernet. Figure 19 shows the diagram of this state machine (conditions for transitions
are not shown). The machine starts at the ES_INTEGRATE state, and the ES_SYNC_ABS state indicates that
the end-system has synchronized with other systems in the cluster.

Figure 19 Synchronization FSM in TTEthernet

This corpus contains 36 sentences.® ARSENAL can handle complex requirements sentences, generating
the correct formula automatically. An example, describing part of the behavior in the ES_UNSYNC state, is
shown below.

REQ3: When an end system is in ES_.UNSYNC state and receives a coldstart frame, it shall (a) transit to
ES_FLOOD state, (b) set local_timer to es_cs_offset, (c) set local_clock to 0, (d) set local_integration_cycle to

5 The requirements corpora for the FAA-Isolette and TTEthernet domains, and the corresponding SAL models
generated by ARSENAL, are available at: http://www.csl.sri.com/~shalini/arsenal/.

26

http://www.csl.sri.com/~shalini/arsenal/

0, and (e) set local_-membership_comp to 0.

Note that this sentence has a more complicated structure than REQ1 and includes five itemized actions.
From the overall SAL model generated automatically, the part corresponding to REQ3 is shown in Figure 20.
Observe that ARSENAL was able to infer that the end-system has an enumerated type (Type0) which
contains named values ES_UNSYNC_state and ES_FLOOD_state. It was also able to set correctly the type of
local_integration_cycle and local membership_comp to INTEGER. In this example, the user asserted
that all the five LOCAL variables are state variables. Hence, the actions over these variables were considered
as state updates and mapped to the TRANSITION section. The formula generated by the SAL adapter
corresponding to REQ3 is therefore placed in this section of the SAL model.

tte_example : CONTEXT =
BEGIN
Typel : TYPE = {coldstart_frame};
TypeO : TYPE = {ES_UNSYNC_state, ES_FLOOD_state};
Type2 : TYPE = {es_cs_offset};
main : MODULE =
BEGIN
LOCAL local_integration_cycle : INTEGER
LOCAL local_membership_comp : INTEGER
LOCAL local_clock : INTEGER
LOCAL end_system : TypeO
LOCAL local_timer : Type2
INPUT in_channel : Typel
TRANSITION
[(end_system = ES_UNSYNC_state AND
in_channel = coldstart_frame) -->
end_system’ = ES_FLOOD_state;
local_timer’ = es_cs_offset;
local_clock’ = 0;
local_integration_cycle’ = 0;
local_membership_comp’ = 0]
END;
END

Figure 20 SAL Model for REQ3.

A formal method expert was asked to review the model and found it was compatible with (and in fact,
included more information than) a similar model that he handcrafted in [SD10]. We then asked one of the
original creators of the TTEthernet documentation to provide a high-level specification that should be
verified for this model. The sentence in English is given below, followed by the corresponding LTL theorem
in SAL syntax generated by ARSENAL.

REQA4: If the end system is in ES_FLOOD state, it shall eventually not be in ES_FLOOD state.

THEOREM main |- G((end_system = ES_FLOOD_state =>
F(NOT(end_system = ES_FLOOD_state))));

We applied bounded model checking, a model checking technique that checks if the model satisfies the
requirement within a bounded number of transitions, and found a counterexample. This counterexample
reveals that if the environment keeps sending a coldstart_frame to this module, then local_timer, which
maintains a count to timeout in the ES_FLOOD_state, will keep resetting to 0 and thus preventing any
transition out of the ES_FLOOD_state to occur. This helped us identify the missing assumption (absent in
the original documentation) that was needed for system verification. In fact, modular verification is one
of the most difficult tasks in verification since it requires the precise specifications of the constraints on
the environment. These constraints are often implicit and undocumented. In this case, the interaction of
multiple end-systems should ensure that any end-system will not receive a coldstart_frame infinitely often

27

before it can exit the ES_FLOOD_state.

FAA-Tsolette. Figure 21 (a) shows one of the finite state machines corresponding to the regulator function in
the FAA document. In addition to NL requirements specified in this document, NL sentences were manually
written for each transition in the FSMs (including the one shown here). An example sentence is shown below.

REQS5: If the Regulator Mode equals INIT and the Regulator Status equals True, the Regulator Mode shall
be set to NORMAL.

Regulator_Status = True Regulator_Status = True

R.egulatoLImL R.egulatoLImL RS
Timeout = True Timeout = True

Regulator_Status = False

Regulator_Status = False

Figure 21 Original FSM (a) and Modified FSM (b) for Regulator.

This experiment seeks to evaluate if ARSENAL can faithfully generate the transition system correspond-
ing to the description (including the FSM) in the design document. Similar to the analysis performed for the
TTEthernet example, verification was used to validate the generated FAA model. The corresponding SAL
theorem generated by ARSENAL is shown below.

THEOREM main |- G((Regulator_Mode = FAILED =>
NOT (F(Regulator_Mode = NORMAL))));

This theorem states that if the FSM is in the FAILED state, then it cannot go back to the NORMAL
state (F in the theorem means eventually). Applying model checking, we verified that the generated SAL
model satisfied the theorem. In general, for systems with a large state space like the TTEthernet example,
it would be difficult to prove such theorems by manual inspection alone.

To demonstrate the applicability of ARSENAL in identifying inconsistencies in NL requirements, we
added a sentence corresponding to the transition from the FAILED state to the INIT state, as shown
in Figure 21 (b). For the modified model, ARSENAL quickly produced a counterexample that showed
a path from the FAILED state to the NORMAL state, thus violating the aforementioned theorem. This
demonstrates that the SAL model generated automatically by ARSENAL behaves as expected. By integrating
an NLP pipeline with formal analysis engines, ARSENAL can bring significant benefits to the requirements
engineering community by detecting problems in NL requirements.

Synthesis We further applied the LTL realizability and synthesis analysis to the FAA-Isolette corpus. In
this scenario, each sentence in the corpus is interpreted by ARSENAL as an end-to-end requirement on the
target implementation. Hence, any non-input variable is considered as an output. Additionally, in order to
work with the GR(1) synthesis tool RATSY, all the variables are converted to the bit-level.

Application of LTL [GR(1)] synthesis to these formulas produced an unrealizable result; no Moore machine
existed to satisfy the formulas. At this point, the user can either interact with the tool (RATSY) to debug

28

the specification or directly examine candidate assumptions generated by ARSENAL. The latter is more
user-friendly since it assumes no knowledge of formal methods and other tools on the part of the user, and
enables a user to directly refine the existing NL requirements. For the FAA-Isolette example, ARSENAL
produces the following candidate assumption to make the specification realizable.

G !(Regulator_Status=1 & Regulator_Init_Timeout=1);

To better understand why this assumption is necessary for ARSENAL to generate a SAL model from the set
of sentences, observe that in Figure 21, the INIT state has two outgoing transitions, one to the NORMAL
state and the other to the FAILED state. When both Regulator_Status and Regulator_Init_Timeout are
true , the state machine can nondeterministically choose to go to either of the states. Such behavior is not
desirable in an actual implementation, which is supposed to be deterministic. Hence, the original specification
is not realizable.

In this example, if the NL sentences describing the transitions were written differently, in a way that
Regulator_Status=1 and Regulator_Init_Timeout=1 were mutually exclusive, then the specification would
be realizable and an implementation could also be generated automatically in Verilog. In general, the notion
of unrealizabilty captures a much wider class of bugs than nondeterminism, and assumption mining helps to
generate candidate fixes and facilitates interaction, especially with end-users.

8 Related Work

We first give an overview of the research related to ARSENAL.

8.1 Summary of Related Work

There is a rich and diverse body of research related to requirements engineering. The main advantages of
ARSENAL over prior work are a less restrictive NL front-end, a more powerful FM analysis framework, and
a stronger interaction between the NL and FM stages.

Kress-Gazit et al. [KGFPO0§], Smith et al. [SACO02] and Shimizu et al. [Shi02] propose grammars for
representing requirements in controlled natural language. The natural language interfaces suggested in these
papers are restrictive — ARSENAL can extract information automatically from a wider range of natural
language styles.

Zowghi et al. [ZGMO1], Gervasi et al. [GZ05], Scott et al. [SCKO04], Xiao et al. [XPTX12], and Ding
et al. [DJP11] process constrained natural language text using NLP tools (e.g., CFG, Cico) and perform
different types of checks (e.g., consistency, access control) on the requirements. Compared to these methods,
ARSENAL uses more state-of-the-art NLP techniques that can be made domain-specific using resources like
the domain-specific ontology, customized regex-based template matching in pre-processing, etc. ARSENAL
also uses more advanced model checking tools (e.g., SAL), which can represent theorems and invariants in a
much more expressive logic (e.g., LTL).

Behavior-Driven Development (BDD) is a way to give natural language specifications for the software
testing phase. Drechsler et al. [DDG'12], Soeken et al. [SWD12|, and Harris [Har12] show different ways
of translating high-level natural language requirements to tests in the BDD framework, which can then be
used by BDD tools like Cucumber [cuc] or RSpec [rsp]. ARSENAL is more general than these approaches —
instead of considering requirements specifications at the test phase, it considers NL requirement specifications
that can be specified and verified in the design phase.

Ormandjieva et al. [OKHO07], QUARS [FFGLO01], and Goguen [Gog96] focus on assessing the quality
of requirements documents — they do not create formal models from the requirements for downstream
formal analysis (e.g., consistency checks) like ARSENAL. Malin et al. [Mal09], Boyd [Boy99], and Nikora
et al. [NB09] do linguistic modeling and information extraction from requirements documents, but do not
handle consistency checks or downstream formal methods analysis (e.g., using SAL) like ARSENAL. At-
tempto Controlled English (ACE) [SF96], RECORD [Bor96] and T-RED [BS96] are user-oriented tools for
requirements collection, reuse, and documentation. These are interactive tools requiring inputs from domain
experts, and are not as automated as ARSENAL.

29

8.2 Details of Related Work

We next discuss details of related research in two major areas relevant to our work — requirements engineering
and natural language processing — and highlight the comparative advantage of ARSENAL.

Requirements Engineering We begin with a comparison of ARSENAL to two approaches in requirements
document analysis.

PROPEL: In PROPEL [SACOQ02], the authors note that properties used in formal verification map to
one of several property pattern templates. These pattern templates are shown to the user in an interactive
framework as choosing among these options should help the specifier consider the relevant alternatives and
subtleties associated with the intended behavior.

The authors represent these pattern templates using two different notations: an extended Finite State
Automaton (FSA) representation and a Disciplined Natural Language (DNL) representation. The DNL
representation provides a short list of alternative phrases that highlight the options, as well as synonyms
for each option to support customization. This representation should appeal to those specifiers who prefer
a natural language description, and do not want to handle the full rigor of formal property specifications.
The extended FSA representation provides a graphical view that can be used to derive a specific FSA
representation.

This work differs with our approach in a few important ways:

1. The authors do not extract property templates automatically from given natural language specifications.
Instead, they provide a tool that facilitates the user in writing specifications, and gives tips to modify the
specification to make it less ambiguous. ARSENAL can extract information automatically from given
natural language specifications, and does not have to rely solely on the user to modify specifications like
PROPEL does.

2. ARSENAL handles more general input sources, e.g., specs from tables, flow charts.

3. ARSENAL also has a mechanism for checking consistency across multiple specifications, which is a
generalization of PROPEL.

CARL: Zowghi et al. [ZGMO01] address the issue of finding inconsistencies in requirement documents.
They represent requirements as constrained natural language text and convert these specifications into
formulas in propositional logic using an NLP parser, Cico. Then they use a reasoning system, CARET, to
analyze the inconsistency in specifications, where requirements are modeled as default theories. The authors
demonstrate the effectiveness of their approach using data from the London Ambulance System (LAS), which
uses a computer-aided dispatch system. They evaluate this case study in detail and find inconsistencies in
particular requirements specifications in LAS.

Some of the key advantages of ARSENAL over CARL are:

1. CARL uses a simple NLP tool called Cico, which parses the text to get entities and relations that are
used to get the formulas directly. ARSENAL uses more state-of-the-art NLP techniques, which can be
made domain-specific using resources like the glossary, customized regex-based template matching, and
SO on.

2. The consistency engine CARET uses classical logic and non-monotonic reasoning. The underlying logic
used by the formal methods approaches in CARL is default theory, which uses deterministic propositional
formulas. In comparison, ARSENAL uses more advanced model checking tools (e.g., SAL).

Other Research

Some other notable related research activities in requirements engineering are discussed next, each of
which has technology related to some parts of the ARSENAL pipeline.

30

. Gervasi et al. [GZ05] explore the integration of natural language parsing techniques with default reasoning
to overcome the difficulty of training system designers directly using logic. They also propose a method for
automatically discovering inconsistencies in the requirements from multiple sources, using both theorem-
proving and model-checking techniques. The effectiveness of their approach and tool is illustrated on an
example domain involving conflicting requirements. Scott et al. [SCKO04] have proposed a context-free
grammar to facilitate the parsing of requirement text, e.g., finding temporal clauses, condition clauses,
relative clauses. The grammar is used to drive an interactive tool that takes the specification input by
a user and standardizes it to the predefined format specified by the grammar, prompting the user to
accept the re-formatting. The structured requirements can then be used by case-based reasoning systems
for comparison and consistency checks.

While the above systems had goals similar to those of ARSENAL, the latter uses more advanced and
state-of-the-art NLP, machine learning and formal methods tools and can therefore handle more complex
(potentially ambiguous) specifications of different types (from multiple sources).

. Ormandjieva et al. [OKHO07] propose a quality model for evaluating requirements text, and a text clas-
sification system to automate the quality assessment process. The text classifier was trained on features
that were extracted automatically from the text (output of a Part-of-Speech tagger and a parser), with
human judgment as ground truth. The classifier was able to actually flag ambiguous and unambigu-
ous texts at the surface level of understanding. They ran a large study using human raters. Inter-rater
agreement levels showed that the quality assessment task is difficult for humans, but there is reasonable
agreement on the chosen quality indicators, both at the level of surface understanding and at the level of
conceptual understanding. The study also demonstrated that automatic detection of ambiguities in re-
quirements documentation has good performance, comparable to human judgment. Other relevant work
in this area is QUARS by Firing et al. [FFGLO1], a tool for automatic quality evaluation for natural
language requirement. Goguen [Gog96] also discusses the trade-offs between formal representation and
informal specifications in requirements documents.

The above papers focus only on assessing the quality of requirements documents or predicting the
judgment of a human user about the quality of the requirements. In contrast, ARSENAL is much
broader in scope.

. The Automated Tool and Method for System Safety Analysis project [Mal09] used a Semantic Text
Analysis Tool to extract key information from Failure Models and Effects Analysis (FMEA) and hazard
reports. The primary sources of extractions are FMEA documents, which contain system descriptions,
problem descriptions, and statements about connections and dependencies. Model generation software
in the Hazard Identification Tool integrates this information into visualizations of system architecture
models. The intent is to make it easier to review hazard paths and find redundant and missing links
within and between types of analysis. Boyd [Boy99] describes a controlled natural language that can be
used to specify software development models.

The above papers do linguistic modeling and information extraction from requirements documents, but
do not handle consistency checks or downstream formal methods analysis like ARSENAL.

. Crow et al. [CV96] use formal methods tools (PVS, Murphy) for case studies on the flight-software
subsystem in the NASA shuttle program, using formal specification techniques or using state exploration
approaches. The key technical results of the paper are a clear demonstration of the utility of formal
methods, not as a replacement but as a complement to the conventional Shuttle requirements analysis
process. The application of formal methods to the particular projects considered in this paper — JS,
3E/O, and GPS — each uncovered anomalies ranging from minor to substantive, most of which were
undetected by existing requirements analysis processes. The main insight from the paper is that formal
methods techniques are most effective when they are judiciously tailored to the application.

This work does not have an end-to-end system involving information extraction, consistency checking
and formal verification like ARSENAL — it focuses only on the formal methods part.

. Another domain-specific language is ACE [SF96], a subset of English with a restricted grammar and
a domain-specific vocabulary, which allows domain specialists to interactively formulate requirements
specifications in domain concepts. RECORD [Bor96] and T-RED [BS96] are user-oriented tools for
requirements collection, reuse, and documentation.

31

These are interactive tools requiring inputs from domain experts and are not fully automated like AR-
SENAL.

6. Shimizu et al. [Shi02] discuss how formal specification can be written from natural language requirements,
for commonly used interface protocols, and how test inputs and the checking properties can be generated
automatically from the formal specification.

However, unlike ARSENAL, the above work does not involve automatic extraction of formal specifications
from natural language.

Natural Language Processing (NLP) Here we discuss related work corresponding to the NLP part of
the ARSENAL pipeline, which does information extraction from semi-structured text. This problem has been
studied in different domains, e.g., clinical text [{BCK*11], legal documents [SNM10], web tables [CP10]. For
example, the authors in [SNM10] have an approach where only relevant text segments (e.g., corresponding
to litigation claims) are extracted from a full legal document, and then relevant entities (e.g., patents, laws)
are extracted from those text segments. In ARSENAL we extract both entities and relations using NLP
tools, and additionally connect their output to Formal Methods tools to facilitate more detailed downstream
analysis.

Within the NLP portion of the ARSENAL pipeline, another core component is the extraction of text
spans to fill the slots in the template structure. The following related work also use the general idea of
breaking documents into text spans for further processing:

— Teufel et al. [TM02] present an approach to summarizing scientific articles that is based on the idea of
restoring the discourse context of extracted material by adding the rhetorical status to each sentence in a
document. The innovation of their approach is that it defines principles for content selection specifically
for scientific articles, and that it combines sentence extraction with robust discourse analysis. The output
of their system is a list of extracted sentences along with their rhetorical status (one of seven rhetorical
categories). The output of the proposed extraction and classification system can be viewed as a single-
document summary. In addition, it provides starting material for the generation of task-oriented and
user-tailored summaries designed to give users an overview of a scientific field. The authors present
several experiments measuring the agreement of human judges with the system output, on the rhetorical
annotations.

— Heilman et al. [HS10] present an algorithm for extracting simplified declarative sentences from syn-
tactically complex sentences. They motivate their extraction approach by issues that are relevant for
automatic question generation. The authors extract simplified sentences from complex linguistic struc-
tures in documents, e.g., appositives, subordinate clauses. They use the extracted simple directives to
automatically generate questions based on the input text. Their system successfully simplifies sentences
and transforms them into questions. They evaluate the approach using experiments and show that it is
more suitable for extraction of factual question generation than a standard text compression baseline,
which takes as input a possibly long and complex sentence and produces as output a single shortened
version to convey the main piece of information in the input.

— Barker et al. [BCCT04] present a question-answering system that was developed as part of the HALO
project, and discuss the results of its evaluation. The system was developed using a combination of
several knowledge representation and reasoning technologies, in particular semantically well-defined frame
systems, automatic classification methods, reusable ontologies, and a methodology for knowledge base
construction. The system was able to encode the knowledge from 70 pages of a college-level chemistry
textbook into a declarative knowledge base, and successfully answer questions comparable to questions on
an Advanced Placement exam with high accuracy. In addition, the authors extended existing explanation
generation methods, allowing the system to produce high-quality English explanations of its reasoning.
The resulting system, in addition to having high accuracy, gave explanations that are comparable in
quality to human judgments on tests.

In ARSENAL, since we have a controlled vocabulary for the domain and the underlying text is semi-
structured, we propose to use a regular expression (regex)-based text span extraction technique — we take

32

this simple but flexible approach, so that the regex matching rules can be updated effectively, and learned
from data if necessary.

Compliance checking and monitoring There are other compliance checking and monitoring tools in
the privacy and security domains. The HIPAA Compliance Checker [BDMNOG6] is a formal translation of
HIPAA into Prolog — the current implementation checks compliance with HIPAA rules, doing goal-driven
evaluation of privacy policies and developing automated support for privacy policy compliance and audit.
Basin et al. [BKM10] monitor complex security properties using a runtime approach using metric first-order
temporal logic, and experimentally evaluate the performance of the resulting monitors. These approaches
do not generate the logic formulas directly from the natural language specifications, which is the task that
ARSENAL focuses on.

9 Conclusions

The key accomplishments of ARSENAL are outlined in Figure 22.

1. Creating an NLP workflow for generating the IR:
a) ARSENAL does semantic parsing using the combination of a type dependency parser, metatags and type rules,
b) Resolves co-references and ambiguities in complex requirements sentences,
¢) Handles both domain-independent (e.g, for arithmetic expressions) and domain-specific pre-processing.
2. Creating a FM workflow to generate a complete SAL model from the IR:
a) ARSENAL has multiple output generators, to generate the appropriate output (e.g., FOL formula, SAL model) for a domain.
b) For SAL model generation from IR, ARSENAL
(i) Has principles to determine which formula should go to which part of the SAL model automatically.
(ii) Automatically determines the SAL types, when the user only provides the input type categories.
(iil) Guides the user to come up with the right formulation of the FM theorem, in natural language.
(iv) Provides a debugging environment to the FM expert, helping to discover missing assumptions in the text.
¢) ARSENAL generates counter-examples, constructs proofs of properties, and uses realizability to check inconsistency of requirements.
3. Connecting the NLP and FM stages to create an end-to-end pipeline for both FAA-Isolette and TTEthernet domains:
a) ARSENAL was developed on the FAA domain and later ported to the more complex TTEthernet domain,
b) Has a modular design that helped isolate the parts that needed to be changed (e.g., pre-processor) without modifying the core parts,
¢) Has many algorithms (e.g., type rules) that are quite robust to porting to a new domain.
4. Designing novel evaluation metrics to assess the performance of ARSENAL (detailed numbers in Section 5.1):
a) ARSENAL is automated to a large degree (as measured by the degree of automation metric),
b) Is robust to requirements perturbation (as measured by the degree of perturbation metric),
¢) Has good accuracy in the NLP stage in generating the output formula on test datasets (as measured by a novel accuracy metric).
5. Saving significant development cycles of the end-user:
a) ARSENAL creates a first-cut formal model automatically from voluminous requirements, manually creating which requires a significant effort,
b) Needs the user input to be provided only once per application domain,
¢) Allows user training efforts in formal modeling to be minimized.

Figure 22 Key accomplishments in ARSENAL.

Some of the benefits of ARSENAL include: (1) resolution of semantic ambiguities and co-references in
requirements, (2) consistency /redundancy checking and validation of requirements, (3) example generation
for test cases, (4) putative theorem exploration, (5) traceability to connect implementations to requirements
they implement, (6) feedback on requirements quality and hints for improvement to the end user, facilitating
iterative requirements refinement. Overall, ARSENAL facilitates communication between stakeholders (e.g.,
formal methods modelers, requirements engineers), which is important for critical systems like avionics, and
helps to refine imprecise requirements.

In the future, we would place primary emphasis on making the ARSENAL framework more robust. We
want to test ARSENAL on multiple other domains and datasets, and design more evaluation metrics like
the ones discussed in this paper (e.g., automation and perturbation metrics) to evaluate the performance of
the ARSENAL pipeline as we improve it. We would also like to create benchmark datasets for evaluating
different aspects of ARSENAL. Apart from SAL models, we have also experimented with other logical model

33

outputs, e.g., first-order logic. We plan to continue generating other logical models, which could be suitable
for other types of formal analysis. We would also like to explore the creation of richer system models, by
composing models generated from separate requirements corpora. The plug-and-play ARSENAL architecture
will also facilitate trying out NL parsers other than STDP in the future.

The current ARSENAL system also has a statistics generator, which generates statistics about the dis-
tribution of entities, typed dependencies, etc. in a requirements corpus. We use the generator to identify
important type rules (e.g., from dominant TDs) and important preprocessing rules (e.g., from dominant
entities) for ARSENAL. We would like to use these statistics and apply machine learning to automatically
customize different parts of ARSENAL (e.g., type rules, translation rules) for a given domain and require-
ments corpus.

So far we have only considered requirements in natural language text. In the future, we would also like
to parse flow-charts, diagrams and unstructured tables in requirements, as well as handle events, intervals,
and other complex NL constructs. We would also like to generalize the ARSENAL pipeline beyond formal
analysis to generate probabilistic models, in domains where probabilistic analysis is useful (e.g., for failure
analysis using probabilistic models [GSDL13]).

10 Acknowledgments

Special thanks to Kathleen Fisher, Bruno Dutertre, Sam Owre, John Rushby, Ashish Tiwari, and Brendan
Hall for all their help and guidance regarding this work. This material is based upon work supported by
the United States (US) Air Force and the Defense Advanced Research Projects Agency (DARPA) under
Contract Numbers FA8750-12-C-0339 and FA8750-12-C-0284. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the authors and do not necessarily reflect the views
of the US Air Force and DARPA.

34

References

Bab07.

BCCT04.

BCG™10.

BDMNO6.

BGJ107.

BGL100.

BKM10.

Bor96.
Boy99.
BPO98.
BS96.
bugl0.
CBRZ01.
CGP99.
CP10.
cuc.
CV96.
dBCK™11.

DDG™12.

DJP11.

dMMMO6.

FFGLOL.

J. Babcock. Good requirements are more than just accurate. Practical Analyst: Practical Insight for
Business Analysts and Project Professionals, December 2007.

K. Barker, V. Chaudhri, S.Y. Chaw, P.E. Clark, J. Fan, D. Israel, S. Mishra, B. Porter, P. Romero,
D. Tecuci, and P. Yeh. A question answering system for AP chemistry: Assessing KR technologies. In
Proceedings of International Conference on Knowledge Representation and Reasoning, 2004.

Roderick Bloem, Alessandro Cimatti, Karin Greimel, Georg Hofferek, Robert Konighofer, Marco Roveri,
Viktor Schuppan, and Richard Seeber. Ratsy: A new requirements analysis tool with synthesis. In
Tayssir Touili, Byron Cook, and Paul Jackson, editors, Computer Aided Verification, volume 6174 of
Lecture Notes in Computer Science, pages 425-429. Springer Berlin Heidelberg, 2010.

Adam Barth, Anupam Datta, John C. Mitchell, and Helen Nissenbaum. Privacy and contextual integrity:
Framework and applications. In Proceedings of the 2006 IEEE Symposium on Security and Privacy, pages
184-198, 2006.

R. Bloem, S. Galler, B. Jobstmann, N. Piterman, Amir Pnueli, and M. Weiglhofer. Automatic hardware
synthesis from specifications: A case study. In Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1-6, 2007.

Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César Mu noz, Sam Owre, Harald Ruef}, John Rushby,
Vlad Rusu, Hassen Saidi, N. Shankar, Eli Singerman, and Ashish Tiwari. An overview of SAL. In
C. Michael Holloway, editor, LE'M 2000: Fifth NASA Langley Formal Methods Workshop, pages 187-196,
Hampton, VA, jun 2000. NASA Langley Research Center.

David Basin, Felix Klaedtke, and Samuel Miiller. Monitoring security policies with metric first-order
temporal logic. In Proceedings of the 15th ACM Symposium on Access control models and technologies,
pages 23-34, 2010.

J. Borstler. User-centered requirements engineering in record - an overview. In Proceedings of Nordic
Workshop on Programming Environment Research (NWPER), 1996.

N. Boyd. Using natural language in software development. Journal of Object Oriented Programming,
11(9), 1999.

Barry W. Boehm and Philip N. Papaccio. Understanding and controlling software costs. IEEE Transac-
tions on Software Engineering, 14(10):1462-1477, October 1998.

Tomas Boman and Katarina Sigerud. Requirements elicitation and documentation using T-red. Master’s
thesis, Univeversity of Umea, 1996.

Software defects - do late bugs really cost more? Slashdot Article (http://tinyurl.com/8vew93k), March
2010.

Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking using satisfi-
ability solving. Form. Methods Syst. Des., 19(1):7-34, July 2001.

Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model checking. MIT Press, Cambridge,
MA, USA, 1999.

Eric Crestan and Patrick Pantel. Web-scale knowledge extraction from semi-structured tables. In Pro-
ceedings of International Conference on World Wide Web (WWW), 2010.

Cucumber. http://cukes.info.

Judith Crow and Ben L. Di Vit. Formalizing space shuttle software requirements. In ACM SIGSOFT
Workshop on Formal Methods in Software Practice, 1996.

Berry de Bruijn, Colin Cherry, Svetlana Kiritchenko, Joel D. Martin, and Xiaodan Zhu. Machine-learned
solutions for three stages of clinical information extraction: The state of the art at i2b2 2010. JAMIA,
2011.

Rolf Drechsler, Melanie Diepenbeck, Daniel Grofle, Ulrich Kiihne, Hoang M. Le, Julia Seiter, Mathias
Soeken, and Robert Wille. Completeness-driven development. In International Conference on Graph
Transformation, 2012.

Z. Ding, M. Jiang, and J. Palsberg. From textual use cases to service component models. In Proceedings
of 8rd International Workshop on Principles of Engineering Service-Oriented Systems, pages 8-14, 2011.
Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. Generating typed depen-
dency parses from phrase structure parses. In In Proc. Intl. Conf. on language resources and evaluation
(LREC), pages 449-454, 2006.

F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. An automatic quality evaluation for natural language
requirements. In Proceedings of International Workshop on RE: Foundation for Software Quality, 2001.

35

GJo1.
GLMOS.
Gog96.

GSDL13.

GZ05.
Har12.

HS10.

KGFPO0S.

Kup12.

LDS11.
LMO09a.
LMO09b.
Mal09.
Mil95.
MP92.
NBO09.

OKHO7.

ORR™96.

PPO6.

rsp.
RVO07.

SACO02.

SCKO04.

SD10.

SF96.

Shi02.

SNM10.

Daniel Gildea and Daniel Jurafsky. Automatic labeling of semantic roles. Computational Linguistics,
28:245-288, 2001.

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated whitebox fuzz testing. In
Proceedings of the Network and Distributed System Security Symposium (NDSS), 2008.

Joseph A. Goguen. Formality and informality in requirements engineering. In Proceedings of International
Conference on Requirements Engineering, 1996.

Shalini Ghosh, Wilfried Steiner, Grit Denker, and Patrick Lincoln. Probabilistic modeling of failure
dependencies using Markov logic networks. In Proceedings of the 19th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC), 2013.

Vincenzo Gervasi and Didar Zowghi. Reasoning about inconsistencies in natural language requirements.
ACM Trans. Softw. Eng. Methodol., 14, July 2005.

Tan G. Harris. Extracting design information from natural language specifications. In Proceedings of the
49th Annual Design Automation Conference, pages 1256-1257, 2012.

Michael Heilman and Noah A. Smith. Extracting simplified statements for factual question generation.
In Proceedings of AIED Workshop on Question Generation, 2010.

Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Translating structured English to robot
controllers. Advanced Robotics, pages 1343-1359, 2008.

Orna Kupferman. Recent challenges and ideas in temporal synthesis. In SOFSEM 2012: Theory and
Practice of Computer Science, volume 7147 of Lecture Notes in Computer Science, pages 88—98. Springer
Berlin Heidelberg, 2012.

Wenchao Li, L. Dworkin, and S.A. Seshia. Mining assumptions for synthesis. In 9th IEEE/ACM Inter-
national Conference on Formal Methods and Models for Codesign (MEMOCODE), pages 43-50, 2011.
David L. Lempia and Steven P. Miller. Requirements engineering management handbook. Final Report
DOT/FAA/AR-08/32, Federal Aviation Administration, June 2009.

David L. Lempia and Steven P. Miller. Requirements engineering management handbook. Final Report
DOT/FAA/AR-08/32, Federal Aviation Administration, June 2009.

Jane T. Malin. Automated tool and method for system safety analysis: 2009 progress report. Technical
Report NASA/TM-2010-214800, NASA, 20009.

George A. Miller. Wordnet: A lexical database for English. Communications of the ACM, 38:39-41, 1995.
Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems. 1992.

A.P. Nikora and G. Balcom. Automated identification of LTL patterns in natural language requirements.
In 20th International Symposium on Software Reliability Engineering (ISSRE), 20009.

Olga Ormandjieva, Leila Kosseim, and Ishrar Hussain. Toward a text classification system for the quality
assessment of software requirements written in natural language. In Furopean Conference on Software
Quality Assurance, 2007.

S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: combining specification, proof
checking, and model checking. In Rajeev Alur and Thomas A. Henzinger, editors, Computer-Aided Ver-
ification, CAV ’96, number 1102 in Lecture Notes in Computer Science, pages 411-414, New Brunswick,
NJ, July/August 1996. Springer-Verlag.

Nir Piterman and Amir Pnueli. Synthesis of reactive(1) designs. In In Proc. Verification, Model Checking,
and Abstract Interpretation (VMCAI), pages 364-380, 2006.

Rspec. http://en.wikipedia.org/wiki/RSpec.

Kristin. Rozier and Moshe. Vardi. LTL satisfiability checking. In Model Checking Software, volume 4595
of Lecture Notes in Computer Science, pages 149—-167. Springer Berlin Heidelberg, 2007.

Rachel L. Smith, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil. PROPEL: An approach
supporting property elucidation. In 24th International Conference on Software Engineering, 2002.
William Scott, Stephen Cook, and Joseph Kasser. Development and application of context-free grammar
for requirements. In System Engineering Test and Evaluation Conference (SETE), 2004.

W. Steiner and B. Dutertre. SMT-based formal verification of a TTEthernet synchronization function.
In FMICS, 2010.

Rolf Schwitter and Norbert E. Fuchs. Attempto controlled English (ACE) a seemingly informal bridgehead
in formal territory. In JICSLP, 1996.

Kanna Shimizu. Writing, Verifying, and Exploiting Formal Specifications for Hardware Designs. PhD
thesis, Department of Electrical Engineering, Stanford University, August 2002.

Mihai Surdeanu, Ramesh Nallapati, and Christopher Manning. Legal claim identification: Information
extraction with hierarchically labeled data. In Semantic Processing of Legal Texts Workshop, 2010.

36

SWD12.

TMO2.

XPTX12.

ZGMOL1.

Mathias Soeken, Robert Wille, and Rolf Drechsler. Assisted behavior driven development using natu-
ral language processing. In Objects, Models, Components, Patterns, volume 7304 of Lecture Notes in
Computer Science, pages 269-287. 2012.

S. Teufel and M. Moens. Summarizing scientic articles: Experiments with relevance and rhetorical status.
Computational Linguistics, 28(4), 2002.

Xusheng Xiao, Amit M. Paradkar, Suresh Thummalapenta, and Tao Xie. Automated extraction of
security policies from natural-language software documents. In SIGSOFT FSE, page 12, 2012.

Didar Zowghi, Vincenzo Gervasi, and Andrew McRae. Using default reasoning to discover inconsistencies
in natural language requirements. In Asia-Pacific Software Engineering Conference (APSEC), 2001.

37

Acronyms

ACE Attempto Controlled English.
ARSENAL Automatic Requirements Specification Extraction from Natural Language.

BDD Behavior-Driven Development.

DFS Depth-First Search.
DNL Disciplined Natural Language.

FAA Federal Aviation Administration.

FM Formal Methods.

FMEA Failure Models and Effects Analysis.
FOL First-Order Logic.

FSA Finite State Automaton.

FSM Finite State Machine.

FTR Final Technical Report.

GR(1) Generalized Reactivity (1).
IR Intermediate Representation.

LAS London Ambulance System.
LHS left-hand side.
LTL Linear Temporal Logic.

MLN Markov Logic Network.

NICU neonatal intensive care unit.
NL Natural Language.
NLP Natural Language Processing.

PVS Prototype Verification System.

RATSY Requirements Analysis Tool with Synthesis.
RHS right-hand side.

SAL Symbolic Analysis Laboratory.
STDP Stanford Type Dependency Parser.

TD typed dependency.
TTEthernet Time-Triggered Ethernet.

38

Glossary

Biichi automata is a type of w-automata for infinite words.
isolette is an incubator for infants that provides controlled temperature humidity and an oxygen supply.
model checking refers to the problem of checking whether a model of a system meets a given specification.

RATSY is a requirement analysis tool developed by the Embedded System Unit of FBK and the Institute
for Applied Information Processing and Communications of Graz University of Technology. It has the
capability to synthesize reactive systems form their temporal specifications.

SAL is a language for specifying concurrent systems in a compositional way, with the support of state-
of-the-art model checkers. It is developed at the Computer Science Laboratory of SRI International in
Menlo Park, California, in collaboration with Stanford and UC Berkeley.

39

	SRI ARSENAL FA8750-12-C-0339 Final Tech Report P21509 9-12-14.pdf
	SRI International
	arsenal-finalreport from Daniel final version.pdf
	List of Figures
	List of Tables
	Summary
	Introduction
	Background
	The SAL Modeling Language
	Verification and Synthesis with LTL

	Methods, Assumptions, and Procedures
	Natural Language Processing
	Preprocessor
	Stanford Typed Dependency Parser
	Semantic Processor
	Metadata tags
	TypeRules

	From Dependency Graph to Predicate Graph
	From Predicate Graph to Logical Formulas

	Formal Analysis
	Formula Generation
	Formal Analysis of Generated Formulas
	SAL Model Generation
	Verification and Synthesis with LTL
	LTL Synthesis

	Realizability Analysis: Case Study on FAA-Isolette

	Results and Discussion
	NLP Stage: Evaluation
	Degree of Automation Metric
	Degree of Perturbation Metric
	NLP Stage Accuracy
	Typed Levenshtein Distance
	Max-weighted matching in bipartite graph
	Evaluation on Test set

	FM Stage: Evaluation
	Verification
	Synthesis

	Related Work
	Summary of Related Work
	Details of Related Work
	Requirements Engineering
	Natural Language Processing (NLP)
	Compliance checking and monitoring

	Conclusions
	Acknowledgments
	References

	Acronyms
	Glossary

