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Scott Allen Ritchie 

Computer Science Division 

Electrical Engineering and Computer Sciences Department 

University of California, Berkeley 

Berkeley, CA 94720 

1. Introduction 

As early as the 1960's, computer systems were providing users with the 

abstraction known as virtual memory. First appearing in the Atlas computer 

[Foth61J, virtual memory eliminated the need for program overlays by 

automatically transferring data to and from "backing store". Programmers were 

given the illusion of a much larger address space and programs were now 

independent of the size of memory. The authors of MULTI CS called virtual 

memory "generalized addressing" [Dale68] and demonstrated that the use of 

separate address spaces could provide protection and sharing in a controlled 

fashion. 

Machines lacking virtual memory are considered to be severely limited. The 

migration from physical to virtual memory has taken place in computers at all 

levels. Of mainframes we saw the progression from IBM S/360 to S/370 [Case78J, 

in minicomputers from the DEC PDP-11 to V.A.X-11 [Stre78], and among 

workstations from the Xerox Alto to the Dorado [Pier83J. In each case, virtual 

memory was cited as one chief feature of the new architecture. .AJ3 computer 

architects consider the structure of future systems, they must face the issue of 

how to support virtual memory. 

Using multiple processors to obtain higher performance from single-user 

v.-orkstations is one area of recent research in computer architecture. This is one 

topic being explored by the SPUR (Symbolic Processing Using RISCs) project at 

Berkeley. Machines of this type are likely to be characterized by faster processors 

and more physical memory than was previously feasible. Large multiple virtual 

address space:; will be provided for protection and sharing among programs. 

Lastly, the multiprocessor nature of these systems dictates the need for the 

consistency of shared data, including address translation information. 

t The m:tteria.l present.ed here is based on reseuc:h spoD!IOred by the Defe~ AdVU~c:ed Reseuc:h Projed.s Agency 

under the SPUR (Symbolic Pro<:essin' Usin, RISes} project. 
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This paper examines some of the existing means of hardware support for the 

translation of virtual to physical addresses. These methods are then evaluated in 

light of the SPUR multiprocessor RISC project. The proposal for SPUR uses the 

existing caches as translation buffers, doing away with the need to build a 

separate device. It also solves the problem of data consistency for translation 

information. Trace-driven simulations show that the cost of a separate 

translation buffer cannot be justified. These results suggest that unless a large 

and complex TLB were built, this separate device would actually reduce 

performance. 

Although the motivation for this study arises from multiprocessors, ihe 

results are equally valid for uniprocessors. In addition, translation mechanisms 

are typically understood and evaluated for a single processor. Therefore a 

umprocessor model will be assumed unless the effects of multiprocessing are 

relevant. 

2. Brief Survey of Existing Translation Mechanisms 

To provide for virtual addressing, memory is divided into fixed-size blocks 

called pages that can then be relocated both in primary and disk storage. Virtua.l 

addresses used by programs must be translated, or mapped, into physicaJ 

addresses before memory may be accessed. Figure 2.1 shows that the high-order 

bits of the virtual address must be converted by some means, from the virtual 

page number, into the corresponding physical page number. Note that the offset 

Vtrtu&l Address offset 

Translation 

Physical Addres~ offset 

Figure 2.1: The General Translation Process 

By some combination of hardware and software lookup, the translation process 

converts the virtual page number into an address in physical memory. The offset 

o( a particular byte within a page remains unaltered. 
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bits describing the particular byte within the page are not altered. 

Translation normally consists of some form of table lookup using the virtual 

page number to index into a page table maintained by the operating system. An 

individual page table entry (PTE) contains the physical location of the page plus 

any associated status or protection bits. This lookup could be done entirely in 

software, but to improve performance, some form of hardware support is usually 

provided. The subsections below describe some typical methods. 

2.1. The Original Translation Seheme 

Atlas, the first virtual memory computer, employed a simple translation 

scheme. A register was associated with each of the 32 pages of core memory. 

Each register contained the virtual page number of the page stored in that 

physical page frame. When a reference to memory was made, the vutual page 

number was compared with each of these page registers in parallel. If there was a 

match, the word from the appropriate page was sent back to the processor; 

otherwise, the supervisor was invoked to bring the required page in from drum 

storage. Given the size of typical memories today, this fully-associative lookup 

would be prohibitively expensive. A modern memory may contain 256 megabytes 

of storage, and even with a 4 kilobyte page size the hardware would have to 

compare over 64,000 addresses in parallel. 

2.2. A Fully Resident Memory Map 

Perhaps the most intuitive means of hardware support is to keep a page table 

that maps all virtual pages to the corresponding physical page. Figure 2.2 shows 

how the page table for a single address space may be kept fully resident in a 

specially-dedicated "Mapping R.Alvf". The virtual p2.ge number addresses the 

entry in the RAM that contains the physical page number and flag bits for the 

page. 

This approach is used by the Xerox Dorado [Clar81} and is feasible because 

only one (256Mb) virtual address space is supported. However, with multiple 

large address spaces, the amount of high-speed RA..M required becomes 

impractical. Since the Dorado virtual page number is 18 bits, the map must have 

entries for the 256K lKb pages. Physical page numbers are 14 bits, so with the 

flags this requires 17 256K RAM chips: a little over 128K bytes. If the virtual 

address space were 32 bits, even with a larger 4K byte page, over a million 

mapping entries would be needed. \Vith more physical memory, the amount of 

the mapping RAM required can easily exceed the size of the Dorado's original 8 

mega. byte main memory. 

This approach is simple but wasteful. Address spaces are typically used 

sparsely: often only the first and last kilobyte. Furthermore, it is well known that 

programs tend to exhibit locality of reference [Denn72]. There is uo need to keep 
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VU'tual Address l virtual oue * off!!et I 

Mapping 
RAM 

4 Ill 

~ 
fi&gll 

Physical Address phvsical pa.ge #- I offset I 

Figure 2.2 : A Fully Resident Mapping 

With a single, small address space, it is feasible to keep all of the page mapping in 

special memory. One RAM access is then sufficient to perform translation. 

the entire mapping resident. 

Another limiting factor with this design lies in supporting multiple address 

spaces. \Vith only one space, entries in the map are changed infrequently. \Vith 

sevenl different address spaces, however, either copies of the mapping hardware 

must be provided for each space, or all the entries must be invalidated when 

context switches occur. Context switches typically happen on every interrupt, 

and these occur about 10 to 100 times a second. Invalidating and rewriting 

roughly one megabyte of RAM this frequently would create severe performance 

problems. 

2.3. Two-level Implementation or a Sparse Mapping 

In a machine with multiple address spaces, only one mapping is valid at a 

time. These multiple address spaces may be considered to be subspaces of one 

larger global address space. Figure 2.3 shows bow this is done by extending the 

virtual address with a a context register to identify the current subspace. Since 

switching occurs between a few active contexts and only a portion of the address 

space for each is used, a sparse mapping of this global address space will suffice. 

This is achieved by splitting the one RA.·~vl in the previous method into separate 

segment and page maps. The SUN Workstation employs this type of a 

mechanism [Bech82] and allows for at most 8 loaded contexts. 
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Figure 2.3 : Splitting Mapping RAM Into Two Levels 

A 'context' register allows for the distinction between several virtual address 

spaces. Two RAM accesses provide a sparse mapping of what is effectively one 

larger global address space. Software must determine what is most appropriate to 

load into RAM. 

This method requires far less RA...\f than if the entire space were kept 

resident. For example, the SUN 2.0 uses 2K bytes in the Segment RAM and 8K 

bytes in the Page RAM to translate the more frequently used portions of multiple 

address spaces that would require 25GK bytes in the previous method. The 

operating system loads as many of the page table entries for the currently active 

contexts (processes) as possible. Although many different contexts exist n.t any 

point in time, in practice only a few are highly active. \Vhen switching between 

these few active contexts, no invalidation of the map is necessary. Only when a 

new context becomes active, or an old con~ext gets remapped, must entries be 

rewritten. 

There are several dra,vbacks to this technique. This now rec;-uires two RAM 

accesses as compared to one in the previous method. Since the "page" field from 

the virtual address is ap!)ended to toe ~egment number to index into Page RAM, 

pages cannot be mapped individually. SUN uses a four bit field that forces 

mapping to be in conti:p1ous blocks of 16 pages. Finally, the operating system 
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must successfully predict what portions of address spaces will be the most active 

to get the best performance. 

2.4. Demand Caching of Page Table Entries : A TLB 

Perhaps the most familiar of hardware mechanisms is the Translation 

Lookaside Buffer (TLB)t. The DEC VAX family of computers [DEC 81] and IBM 

mainframes [S!v1IT82j use this mechanism. A TLB is a cache memory that 

automatically stores the page table entries most recently used in translation. This 

makes the best use of a small amount of memory without software needing to 

decide a priori what will be most useful. 

FigurE' 2.4 shows that the low-order bits of the virtcal page number are used 

to index into the cache. The remaining high-order bits are used as a tag to 

compare against the cache contents. The figure also shows the most-significant 

Virtual Ad dress b/J virtual ta,; I index I offset I 
l I l \ 

I 
I w system virt. ta.r; PTE 

half I 

I 
······················r······-··············· 

I 

user I 

half I 
I 

I 

l 
Compare tags 

select PTE 

Physical Address I phv~ical_.ll_;)1;e offset j 

Figure 2.4 : Translation Lookaside Buffer 

In a translation lookaside buffer, page table entries are cached a..'l they are used. A 

division betr.een process and system entries allows only the user-specific portion 

of the buffer to be flushed on context switch. The cost of this method includ~s 

not only the cache access time, but also the comparison of tags. 

tThis device is a.bo lmovm u & Directcry LookAside Ts.ble (DLAT) or simply & Tr=sia.tioo Duffer. 
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bit of the virtual address being appended to index into the translation buffer. rr 

this bit distinguishes between separate system and user regions of the address 

space, then the buffer is effectively divided into these two regions as well. The 

advantage to this is that on context switch, only the user-specific half of the buffer 

needs to be invalidated. The switch to a new user's virtual address space requires 

that the old mapping be purged, while the shared system space remains 

unchanged. The VAX-11/780 does precisely this [DEC 81]. 

The ELXSI 6400 has extended the notion of separate user and system 

divisions of the TLB by providing sixteen copies of the hardware. At any given 

time, one copy is designated to provide the current user mapping. The sv;·itch 

between user contexts can thus be performed with little invalidation by selecting 

the appropriate user copy. This is similar to the use of the context register in the 

SUN two-level mapping scheme. However, ELXSI requires that only one context :s 

used for the system and the remaining 15 are for user processes, while Sun ~llows 

the mix of any 8 processes. 

r..iore complicated methods of indexing into the translation buffer can yield 

higher hit rates. Often, selected bits from the virtual address are hashed to form 

the index. The ffiM and Amdahl TLBs both use hashing based on an Exclusive­

OR of address bits [Smit82]. 

Typical translation buffers have 128 to 512 page table entries. For simplicity, 

the buffer shown in Figure 2.4 has only one entry per row selected by the index: it 

TLB Number Set Page Memory 

Machine Size of Size Size Mapped 

(entries) Sets (entries) (bytes) (bytes) 

, V A...X-11/730 1!:!8 128 1 512 64K 

I v AX-11/780 128 64 2 512 64.K 

. V.AX-11/750 512 256 2 512 256K 

VAX 8600 512 512 1 512 255K 

IBM 370 3033 128 6{ 2 4K 51!.?K 

Amdahl 470V /6 256 128 2 4K 1024K 

Amdahl 4iOV /8 512 256 2 4K 2048K 

Table 2.1 : Commercial Translation Lookaside Buffer (TLB) Parameters 

The VAX TLBs are separated into two halves: one hair is (or process space, the 

other is for system space. The IBM and Amdahl TLBs lliie a hash function to 

index into the buffer. For the same number of entries the VAX TLBs map much 

less memory than IBM and Amdahl because of the smaller VAX page size (See 

Figure 4.1). 
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is said to be direct-mapped. More often, theses caches have two entries per row 

and are therefore called two-way set-associative. The index selects one row, and 

comparisons must be performed on both tags. Table 2.1 shows the parameters for 

several commercial translation buffers. 

3. Design of an In-Cache Translation Mechanism 

3.1. Overview of a ~1ultiprocessor Workstation 

The SPUR multiprocessor, shown in Figure 3.1, will consist of about ten 

processor-cache pairs on a common bus to shared memory. Two custom VLSI 

chips form the basis of each processor-cache pair. The first is a 32-bit Reduced 

PROCESSOR SNCX:>PtNG 

Q;J[ill] ~ l&D 

CACHE 

0 

0 

0 
B 

SHARED 

PROCESSOR 
u GLOBAL 

GQ[ill] 
SNOCf'fNG MEMORY 

~ l&D s 
CACHE 

PROCESSOR SNCX:>PtNG 

GQ[ill] ~ l&D 

CACHE 

Figure 3.1 : Block Diagram of the SPUR Multiprocessor 

Each processor is a RISC with an on-chip instruction buffer (IB). Large virtual 

caches provide high speed access to instructions and data, greatly reduce bus 

traffic, and maintain consistency by "snooping" on bus transactions. Shared 

memory and I/0 are accessed through a common system bus. 
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Instruction Set Computer (RISC) [Patt85], and the second is a cache controller 

and bus interface chip. Also associated with each pn.ir are a custom VLSI floating 

point co-processor and a collection of RAM and buffer chips (not shown). The 

shared global memory can be addressed up to 4 gigabytes. 

The RISC processor is a tagged architecture with an instruction set tailored 

to execute LISP. It has a cycle time of about 150 nanoseconds. In the tradition 

of RISC, the Execution Unit contains a large register file, and control of the 32-bit 

datapath is handled by a four-stage pipeline [Kate83]. It is the task of the 

Instruction Unit to prefetch and buffer instructions in an effort to deliver one per 

cycle to the processor. 

The caches in the system not only provide much faster access time than main 

memory, but also significantly reduce the total bus cycles needed for execution 

[Good83]. \Vithout the caches, contention for the bus would limit the effective 

processors to just a few. Our studies have led us to specify each cache to be 128 

kilobytes, direct-mapped, with transfers between memory and the cache handled 

in four-word (32 byte) blocks [Katz85a]. 

In any system with multiple caches, the problem of cache consistency arises. 

When a processor changes a block in its cache, other processors must not be 

allowed to read a "stale" copy residing in their own cache. To prevent this 

inconsistency, when cache writes occur copies of the same block in the other 

caches must either be updated or invalidated. 

The caches in the SPUR system use a distributed ownership protocol to 

maintain consistency of ::hared data [Katz85b]. A block of memory may be 

contained in multiple caches for reading, but only one cache may "own" it for 

writing. Initially, all blocks are owned by memory. When a processor writes to a 

block not owned by its cache, the block's current owner relinquishes ownership 

and places the block on the bus. Any other caches with copies of that entry must 

invdidate it. To do this, the cache controller not only heeds processor requests, 

but is dual-ported to monitor bus requests: it "snoops" on the bus. By using a 

write-back policy, instead of write-through, bus traffic is even further reduced by 

only updating memory when a modified block must be flushed from the cache. 

To provide minimal memory access time, SPUR uses virtual address caches: 

the caches are referenced directly by the processor with virtual addresses. 

Because of this, address translation is only required after a cache miss when a 

transaction to memory must be initiated. Ii the cache was addressed with 

physical addresses, the translation would have to occur on every processor 

reference. To retain reasonable effective memory access times, the translation 

mechanism would have to be extremely fast. Since cache misses only account for 

a small percentage of the total references, often around one or two percent, 

translation in SPUR does not have to be this fast to still yield high performance. 

One appealing possibility is to design a system with virtual addresses on the 

bus. Translation would occur only when absolutely needed: at the memory. In an 
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effort to mm1m1ze prototype design time, we decided not to modify the bus or 

memory devices, and this possibility was ruled out. The SPUR multiprocessor 

therefore performs translations at each processor, but only if the cache misses. 

See Appendix A for a more complete discussion of the considerations in locating 

address translation. 

Two complications arise because of the decision to use virtual address caches, 

The first is the danger of synonyms: two virtual addresses that refer to the same 

physical location. If this were allowed, it would be possible for two or more entries 

to appear in the cache for the same location in memory. This \vould complicate 

the task of maintaining cache consistency. In SPUR, synonyms are prohibited by 

the operating system. 

The second problem is the need for reverse translation: mapping a. physical 

address back to virtual address. This is often done as a solution to the synonyr.-1 

problem, but arises in SPUR because of the need ior the cache to snoop on the 

bus. Since the Lus must transmit physical locations to memory, and the cache is 

referenced by virtual addresses, a reverse translation would have to be done. 

SPUR eliminates the need for reverse translations by transmitting both physical 

and virtual addresses over the bus. Caches snoop on the virtual address, and 

memory uses the physical address. 

Active Segment Registers 

11 sta.clc I I YlrtU a.J p &ge # I c~set J Virtual Address 
10 b~a.o I 

01 code 

00 svstem 

l 't 

j segment# 1 virtua.l pa.gt> # offset _ _j Global Virtual Address 

Figure 3.2 : Formation of a Global Virtual Address 

The SPUR virtual memory allows for multiple large address spaces by providing 

one large giobal virtual adciress space. Each process's virtual address space is 

divided into four segments: stack, heap, code, and system. The global virtual 

address is formed in the cache by appending the segment number from one of the 

four active segment registers corresponding to these divisions. 
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The SPlJR virtual memory model supports multiple address spaces by 

l'>xtending the processor's virtual address to a larger global virtual address. This 

global space is divided into 256 !-gigabyte segments, each mapped independently. 

As figure 3.2 shows, the top two bits of the processor virtual address are used to 

select one of four segments that are desi€,rnated active. Thus, a process's virtual 

space is composed of four gigabytes divided into stack, heap, code, and system 

space. Processes share segments on an "aU-or-nothing" basis: if any portion of a 

segment is shared by two processes, the whole segment must be shared. 

Each segment is divided into 256K 4K byte pages. This implies that to map 

the entire global address space, over 04 million page table entries would have to 

Global Virtual Address 

Acti~·~··s~~-~~t····l ~L I V!Jra&l ~ n~ I 
Register 

Root 
Page Table 
(ocn-t~) 

0 

0 
0 

0 
0 

0 

Page Tables 

0 

I 0 
0 

0 

0 
0 

0 

0 

0 

0 

Pages 
(4K byte~) 

Desired Data Byte 

Figure 3.3 : Two-Level Page Tables for the Active Segment 

Associated with the number of the active segment is the base address of the root 

page table for that segment. The high-order eight bits of the virtual page number 

index into the root page table to find the base of the appropriate page table. The 

kw-order ten bits of the virtual page number select the page table entry for the 

desired page. The offset field then specifies the byte within the page. See Figure 

3.5 for an explanation of how these addresses are formed in the cache controller. 
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be kept. Since each PTE is one word, this would require 256 megabytes of 

memory. By adopting a two-level page table structure, the page tables may to be 

written out to disk. Each of the "meta" page table entries, or root PTEs, maps 

one page of PTEs, for a total mapping 4 megabytes. Thus, these Root Page 

Tables require only 256K bytes to map the entire global address space, and are 

kept resident in memory. Figure 3.3 shows the two-level mapping structure for 

one segment. 

3.2. The In-Cache Translation Process 

Since translation is to be done at each processor, the same issue of data 

consistency that plagued multiple caches arises here as well. A translation buffer is 

really nothing more than a cache for page table entries, and snooping caches are 

designed to solve these consistency problems. \Vhy not just use the existin!; ca~hes 

to provide the translation? Aside from saving physical storage, there is now a 

second reason for the two-level structure that places the page tables in the virtual 

address space: PTEs must have virtual addresses in order to be cacheable. It has 

already been determined that the caches must be large to keep bus contention to 

an acceptable level, so it appears unlikely that the number of entries required for 

translation will cause much pollution. For example, the 128K byte cache holds 

4,096 blocks. If only 32 of these happened to contain PTEs, this would be enough 

to map one megabyte of memory. 

In SPUR the task of address translation is entirely the responsibility of the 

cache-controller chip. This device is a custom VLSI circuit and already requires a 

complex control for snooping and other operations like the writeback of dirty 

blocks and selective invalidation. The addition of control for address translation 

therefore represents only a small additional complication. 

As shown before in Figure 3.2, the cache is referenced with the global virtual 

address formed by concatenating the selected active segment number to the 

virtual address supplied by the processor. Figure 3.4 shows the the four c&Ses of 

operations that may be done to complete a memory reference. 

In the most frequent case, the cache hits (A), and data is delivered in only 

one cycle. In preparation for a miss, a concatenate-and-extract circuit in the 

cache controller forms the virtual address of the page table entry during the 

reference. If translation is required, the cache controller uses this address and 

attempts to read the page table entry in the following cycle. Figure 3.5 shows 

how this address, and others in the translation process are formed. 

Case B corresponds to a miss in the cache, and a hit in the "TLB". This 

requires one additional cache reference for the PTE, and one memory transfer to 

fetch the desired data block. If the PTE is not cached (C), the third cache 

reference is for the root PTE, from which the address of the PTE in memory may 

be formed. After the PTE is fetched from memory, it is loaded into the cache for 

use in future translations. In the worst case (D), all three cache references fail, 

and the root PTE must also be fetched from memory and cached. These root page 
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Figure 3.4 : Steps in the Translation Procedure 

Four cases are possible depending on -whether the cache contains the data, page 

table entry, and root PTE. A: The cache hit~, and no translation is required. B: 

The first cache reference misses, but the cache contains the page table entry (a 

TLB hit). C: The second cache reference misses, but the cache contains the root 

PTE. D: The cache misses on all three attempts, and the root page table entry 

must be fetched from memory. 

tables can always be found at physical locations associated with each of the four 

active segment numbers. 

More than three memory operations may occur if a write-back of a cache 

block occurs. \Vhen a block from memory replaces a block in the cache that has 

oeen modified, this dirty block must be written back to memory. To perform the 

write without recursively needing another translation, the physical tag for each 

block is kept in cache tag-memory. 

On examining any page table entry, the desired page may be shown to be 

invalid, indicating that the page is not in memory but resides on disk. In this 

event, a trap to the page fault handler is taken. The remaining bits of the PTE 

are used as an index into a table managed by the operating system that contains 

the disk addresses of the pages in secondary storage. 

In most systems, reference and dirty bits for each page are kept in the PTE 

to handle the replacement and write-back of pages in memory. The SPUR system 

does not support true reference bits, but instead an approximation we refer to as 

the miss bit. A true reference bit would require bringing the corresponding page 

table entry into the cache for every reference to the cache. Instead, the miss bit 
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Figure 3.5 : Formation of Virtual and Physical Addresses in Translation 

This figur'-' shows how addresses are formed for the worst case scenario in the 

preceding figure. Up to three virtual addresses are formed to reference th~ cache 

for the reque~ted data, page table entry, and root page table elitry, respectiYely. 

At most, all three corresponding physical addresses must be formed and a 

separate bus-memory transaction is performed to fetch each block. The dashed 

lines divide the same four cases that were presented in Figure 3.4. The active 

segment number and page table base registers are contained in the cache 

controller. 

is set only when a reference to a cache block misses. In this event, the PTE must 

be brought into the cache anyway to carry out the address translation. The 

operating system can periodically reset these bits at intervals observed to provide 
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the best performance. The algorithm used for replacing pages in memory is 

therefore a;, approximation to a true "Least Recently Used" policy. In a similar 

attempt to limit the amount of writing to PTEs, the dirty bit is set not on every 

write to a block, but only ;vhen a cache requests write-ownership. A cache cannot 

write to a block until it has requested write-ovmership, therefore every initial 

write by a cache will ensure that the dirty bit is set. Again, one chief advantage 

to this method of translation is that all information in the page table entries is 

kept consistent across the multiple processors. 

4. Simulation of In-Cache Translation 

4..1. Methodology 

To evaluate the performance of the SPUR in-cache translation mechanism 

and other translation buffers, the Dineroii cache simulator [Hill84] wn.s used. This 

simulator is address-trace driven and reports miss rates and bus traffic for 

specified ra.cbe parameters. \Vitb modifications for the caching of page table 

entries, these simulations provided information about the cost of in-cache 

translation, and how it compares to using a separate translation buffer. 

Addreaa Tracea Used 

Trace Description 
Memory Referenced 
(Mbytes) (pages) 

LISZT Franz LISP self-compilation I 0.6Mb 145 

VAXIMA 
I Algebraic expert system 

(a derivative of .MACSY:MA) 
1.7Mb 414 

CSZOK 
Two V AXIMA streams interleaved every 

2.5Mb GC9 
~OK references (Multi-user context switch rate) 

CSIOOK 
Two V AXI~.fA streams interleaved every 

I 2.5Mb 609 

I 
lOOK references (Single-user context switch rate) 

MVS Multiple calls to the MVS Operating system 3.iMb I 893 
I 

Table 4.1 : Address Traces Used 

These five traces were used in the analysis of the SPUR in-cache translation 

scherr:!!. Tl..e first four were ger:.erated on a VA.'{ run!!ing UNIX. The last tr~e 

w~ recorded on an Amdahl 470 running the MVS operati11g system. The amount 

of virtual memory referenced is shown by the number of 4K byte pages th:lt were 

touched. 
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Table 4.1 shows the five address traces used to drive the simulations and the 

amount of virtual memorv that each references. The first four were gathered on a 

VAX running UNIX with an address and instruction tracer [Henr84]. LISZT is 

the Franz LISP compiler compiling itself. V AXIMA is an algebraic manipulator 

written in LISP performing a series of integrations, matrix operations, and solving 

differential equations. CS20K and CSlOOK are traces composed of two separate 

sections of the V AXIMA trace and designed to simulate context switching. They 

are identical except for the switching interval, which is 20,000 and 100,000 

references, respectively. MVS is a series of calls to this operating system and was 

traced on an .Amdahl 470 [Smit85]. This last trace references a much larger range 

of virtual memory. 

Although the VAX instruction set is different from that of a RISC 

architecture, the only RISC traces available were of smail program compilations 

that exhibited optimistic cache performance. The results of a study of the VAX 

TLB by Clark and Emer [Clar85] show miss rates higher than those produced by 

the RISC ~ompilation trace, but were not ~ bigh as those of the VAXIM.A. trace 

(See Appendix B). SPUR is designed to be a symbolic machine, and V AXIMA is 

written is LISP, so this trace is more typical of program-<~ that will be run. The 

behavior of V AXIMA is therefore a conservative estimate of TL.B performance. 

Measurements of timesharing systems like the VAX [Emer~-:.~1 show context 

switches occurring about every 6500 instructions. This corresponds to roughly 

every 20,000 references including both instructions and data. There is less 

experience with single-user machines, but their interrupt rates should be 

dominated by the pace of one person interacting with the workstation. This 

would suggest context switch rates of about 10 to 100 a second. With a cycle 

time approaching 100 nanoseconds, the 100 interrupts per second would result in 

switching every 100,000 references. 

The traces CS20K and CSlOOK were used to simulate context switching. 

They interleave two different Vaxima traces at intervals of 20,000 and 100,000 

references, respectively. Rather than flush the cache on context switch, the two 

reference streams are in separate address spaces. The SPUR caches will not need 

to be flushed on context switch. Although blocks from different contexts can 

displace each other in the cache, the use of segment numbers will ensure different 

virtual addresses and will therefore not cause false hits. On a multiprocessor 

designed for one user, the number of separate processes active on one processor is 

likely to be small. Hence, only the two streams are interleaved. 

The instruction and address tracer used on the VAX is capable of measuring 

user processes oniy. There is therefore nothing to show system performance, and 

the MVS trace was acquired for this purpose. This particular section of the trace 

shows extremely poor locality and as Table 4.1 shows, references a much larger 

range of virtual memory than the other traces. There is a high frequency of :MVS 

memory references whose addresses agree in the low-order bits, causing them to 

index to the same entries in a cache. MVS therefore shows unusually high rate of 
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cache collisions: cases where one reference "bumps out" an older block being 

stored. Over 12.5% or all references are to just the first 32 byte block. Collisions 

here account for 15.3% of all misses when simula.ting a direct-mapped cache. 

:tvnrs then, provides a solid upper bound on miss rates, and accentuates the 

characteristics of the cache when varying parameters (see Appendix C). 

All five traces contain one million references. Although this represents under 

one second of execution, this length was necessary given the available resources. 

Several longer traces of five million references were run and miss rates did not 

differ to within one-hundredth or a percent. 

4.2. Performance of In-Cache Translation 

There are two opposing views or the SP"lJR cache/translation buffer: a cache 

being corrupted by page table entries, or a translation buffer being polluted by 

instructions and data. Table 4.2 shows the result: an increase in cache miss rate 

because both functions are being performed in the cache. This total additional 

miss rate i" computed by dividing the misses added when PTEs are cached by the 

total number of references made to the cache by the processor. 

There is an important distinction to be made: processor references to the 

cache are for instructions and data, while the cache refers to itself for page table 

Increase ln Cache Mlas Rate 

Trace 
:\iiss Rate (%) Miss Rate (%) Additional Cache Misses 

Pure Cache w[Translation Total (Collisions) (PTE Misses) 

LISZT 0.584 0.609 0.02.5( 4.3%) (0.009) (0.016) 

V;\...'\lMA 1.855 1.885 0.030(1.6%) (0.004) (0.026) 

CS100K 2.214 2.260 0.046(2.1%) (0.005) (0.041) 

CS20K 2.445 2.494 0.049(2.0%) (O.OOi) (0.042) 

MVS 8.i40 12.122 3.382(38. 7%) (0.994) (2.388) 

Table 4.2 : Additional Cache Misses Due To In-Cache Translation 

This table shows the increase in cache misses when translation is performed in­

cache. For ~xample, the miss rate for V AXIMA is 1.855% when PTEs are not 

cached for translation. The additional 0.03% is composed of two elements: extra 

misses when the processor references instruction and data blocks that have 

collided with PTEs (0.009%), and the misses whc:: the cache references itself for a 

page table entry (0.015%). 
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entries in the translation process. The last two columns of Table 4.2 separate the 

total additional miss rate according to this distinction. In the column labelled 

"Collisions", the processor is experiencing additional misses on instructions and 

data because normal cache contents are bei:ug displaced by PTEs. This is strictly 

a cost of performing translation in the cache. The "PTE Misses" column, on the 

other hand, reflects the additional misses incurred only when the cache is being 

referenced for the translation process. This is the measure of the performance of 

the translation mechanism: the "TLB" miss rate for SPUR. This measure 

includes not only the misses on page table references, but root page tables as well. 

}..s we shall see, there are few root page table references. 

Table 4.3 displays the percent of memory references handled by each of the 

four cases shown in Figure 3.4. Between go and gg% of the time, the cache hits, 

and reference is handled in one cycle (A). The SPUR in-cache translation takes 

ov~r on a miss, and in the next cycle references itself with the virtual address of 

the page table entry. From 0.5% to 7% of all references are cache hits on these 

references {B). The desired instruction or data can then be fetched from m~mory 

in one bus transaction. 

For all the traces except ~1VS, only 2 or 3 references out of 10,000 miss in 

the "TLB" and thus go to memory for the page table entry (C). Only about 2 in 

100,000 references take a "double-miss," and require memory fetch of the root 

page table entry as well (D). These second level lookups represent only 3.3% of 

PTE misses on average. This agrees with what Clark and Emer report to be 3.1 

to 4.8% [Clar85) and supports the use of a two level page table scheme. 

Types of Memory Accesses 

Percentage of Total References 
Average 

Trace Cache Hits PTE Hits RPTE Hits RPTE Misses Access 

A (1$) B (:!$.1M) C (3$.::!M) D (3$,3!\l) Time (cycles) 

LISZT 99.4065 0.5775 0.0158 0.0002 ' 1.085 

VAXIMA 98.1408 1.8345 0.0231 0.0016 1.264 

CSlOOK 97.7806 2.1805 0.0373 0.0015 1.316 

CS20K 97.5478 2.4115 0.0390 0.0017 1.349 

MVS 90.26-55 7.3540 2.3732 0.0073 2.597 

Table 4.3 : Breakdown of Memory References 

This table shows the percentage of total references to memory that fall into the 

four categories first shown in Figure 3.4. The average number of cycles per 

reference is gtven for each trace. A "$" represents a cache reference 1 cycle, and 

an "M" indicates a memory transaction requiring 13 cycles. 
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4.3. Comparison to a Separate TLB 

Table 4.4 shows how the SPUR in-cache translation compares to the 

commercial translation buffers tha.t were presented in Table 2.1. The SPUR 

method of translation displays consistently lower miss rates for all but one case 

(LISZT on the 470V /8). The more poorly-behaved the trace, the better the in­

cache method does when compared to the commercial buffers. By allowing a 

large, variable number of entries tu be dedicated to translation, the SPUR scheme 

substantially outperforms even the large, set-associative buffers that use hashing. 

A good deal of the high performance displayed by the SPUR system could be 

because the translation is only being done on cache miss. All the commercial 

systems shown in the table translate on every reference. The following more 

direct comparison accounts for the presence of the large virtual cache. 

Table 4.5 shows the performance of using a separate translation buffer placed 

after the SPUR cache. These figures were generated by simulating the 

performance of the 128K byte, direct-mapped cache for each trace, and recording 

only those addresses that missed. These were then used as the input to each of 

the simulated translation buffers. 

Summary of Commercial TLB Performance 

Machine 
Miss Rate (Percent) 

LISZT V,\...XHvLA.. CSIOOK CS20K :MVS 

VAX-11/730 3.588 4.070 4.332 4.444 13.109 

VAX-11/750 1.782 :2.306 ::!.344 2.460 11.226 

VAX 8600 0.539 1.249 1.545 1.710 10.27i 

V AX-11/780 0.324 0.519 0.675 0.856 8.913 

IBM 370 3033 0.097 0.305 0.450 0.550 6.401 

Amdahl 470V /5 0.023 0.112 0.174 0.223 5.137 

I Amdahl 470V /8 0.015 0.047 0.086 0:101 3.336 

SPlTR In-Cache 0.016 0.025 0.041 0.042 2.388 

Table 4.4 : Commercial TLB Performance 

Simulations of the VAX TLBs are for one half only. Recall that one half is 

zvailable to user programs while the othe: half is reserved for sysl-e!Il ~pace 

translations. The IBM and Amdahl performance were simulated using a hashed 

index b~ed on an Exclusive OR of the address bits. By allowing a large, variable 

number of entries to be dedicated to translation, the SPUR in-cache method 

displays consistently lower miss rates than all of these bufie:s except for LISZT 

(in bold font). The figures for SPUR are from Table 4.2. 
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Separate TLB Performance SPUR In-Cache 
-

Trace Miss Rate(%) Miss Average 

Direct-Mapped 8-way Set-Associative Rate Number 

1:!8 256 512 1024 128 256 512 I 1024 (%) of PTEs 

LISZT 0.072 0.023 c.003 0.003 0.049 0.003 0.003 0.0031 0.016 98 
I 

VAXH-L>\ 0.395 0.232 0.162 0.010 0.258 0.126 0.033 0.010 , 0.026 294 I 
ICS100K 0.492 0.303 0.229 0.044 0.2\J7 0.144 0.065 0.027 0.041 457 

'MVS 5.570 4.673 3.988 3.059 4.776 4.315 3.620 2.535 2.388 920 

- ~ 

Table 4.5 : Performance of Separate TLB After Cache Miss 

This table shows separate TLBs which are placed after the SPUR virtual cache. 

Bold font indicates better performance than the in-cache method. These cases 

require over twice the number of entries used by the SPUR translation since the 

separate TLBs are of fi.:'Ccd size. 

To get miss rates as low as those shown in Table 4.2, a separate TLB would 

require over 256 entries for LISZT, 512 entries for V AXIMA, and over 102·1 

entries for the context switching traces and :MVS. Even if the buffer were built to 

be 8-way set-associative, to do as well would require over 128, 512, and 1024 

en tries, respectively. 

The last. column in Table 4.5 shows the aver a.ge r.umber of PTEs contained 

in the SPUR cache using in-cache translation. Since the separate TLBs are of 

fixed size, they require over twice the entries to do as well. The direct-mapped 

TLBs would need over three times as many entries. Although instructions and 

data can displace page table entries in the in-cache scheme, having a large 

variable number of entries appears to overshadow this. 

Table 4.6 shows the commercial translation buffers examined beiore in Table 

4.4, but this time translating only when the SPUR cache misses. The "Cache 

Miss" columns have identical entries because the SPUR 128KB cache was 

simulated in each case. The cycles required for the average reference were 

ca:ula.ted as in Table 4.3. The relative cost when compared with the cycles 

required for SPUR is displayed in the last column for both V AXTh1A and }vfVS. 

The SPUR in-cache translation had lower TLB miss rates than all the buffers 

except for the Amdahl 470 V /8 when running .MVS. The V /6 and V /8 both do 

better than SPUR when taking into account the total machine cycles required. 

This is because of the high occurrence of PTE misses we observed in Table 4.2 for 

~IVS. Note that in Table 4.4 these separate translation buffers showed a steady 
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' 
Commercial TLB Performance with SPUR VIrtual Cache 

VAXIMA ?\fVS 

Cache TLB Avg. Rel. Cache TLB Avg. Rei. 

Separate TLB Miss Miss Time Cost Miss Miss Time Cost 

(%) (%) (cycles) (/SPUR) (%) (%) (cycles) (/SPUR) 

G4 PTEs, 1-way 
1.855 0.368 1.311 1.038 8.740 6.579 3.i45 1.166 

(V AX-11/730) 

64 PTEs, 2-way 1.855 0.308 1.303 1.032 8.740 5.805 3.036 1.126 
(V AX-11/750) 

256 PTEs, 1-way 
1.855 0.13() 1.278 1.012 8.740 4.408 2.841 1.053 

(VAX 8600) 

256 PTEs, 2-way 
1.855 0.088 1.272 1.007 I 8.740 4.222 2.815 1.043 

(V AX-11/780) I 
128 PTEs, 2-wa.y 

1.855 0.158 1.281 1.014 8.740 4.064 2.792 1.035 
(IBM 370 3033) 

I 256 PTEs, 2-way 
(Amdahl 470V /6) 

1.855 0.081 1.271 1.006 8.740 3.179 :.aag o.ogo 

512 PTEs, 2-way 
1.855 0.046 1.266 1.002 8.740 l.g.u %.4GS O.t!25 

(Amdahl 470Vj8) 

SPl7R In-Cache 1.859 0.016 1.263 1.000 9.734 2.387 2.697 1.000 

Table 4.6 : Performance of Commercial TLBs After Cache Miss 

These are the same commercial translation buffers a11 in Table 4.4. Here, 

however, they are placed after the SPUR virtual cache to show performance when 

translating only on cache misses. TLB miss rate and cycles required were lower 

for the SPUR in-cache translation method for all except the largest TLBs with 

MVS (shown in bolc..l). A.s before, only half the entries for the V A..X buffers were 

simulated and the IBM and Amdahl TLBs use a hashed index. 

decrease in miss rate from the VAX 11/780 to the Amdahl 470 V /8. The same is 

not true for their performance after a virtual cache. Here, the 256 entry VAX 

buffers do as well or better than the two directly below them that use hashing. 

This suggests that hashing is less important for translation after a cache. The 

number of entries in the device is clearly the dominating factor. 

5. Conclusions 

In SPUR, the desire for single-cycle cache access dictates that caches be 

virtually addressed. \Vithout modifications to the bus and memory, options for 

performing address translation at main memory are ruled out. This means 

translation must occur after the cache and before the bus. For the large virtual 
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address space and physical memory of the workstation, a translation buffer 

provides the most effective use of a "small" amount of mapping memory and a 

two-level page table scheme reduces the size of the full map in physical memory. 

Placing the page tables in the virtual address space allows the page table entries 

to be cached. 

In-cache translation solves the problem of data consistency between multiple 

translation devices by using the cache's snooping protocol, thus avoiding 

additional hardware at the cost of complicating the cache-controller. Since the 

SPUR multiprocessor allows shared data to be cached, the cache controllers must 

already be complex enough to support a cache-consistency protocol. 

Translation buffers have been separate devices for purely historical reasons. 

Traditionally, translation bas occurred before (or in parallel with) referencing the 

cache. \Vith a virtual cache, there is no reason that the existing hardware cannot 

be used for both purposes. Since a small number of cache entries are needed to 

hold page table entries, the cache perforiP..s address translations with minimal 

effect on the normal performance. 

The increase in cache miss rate due to in-cache translation has two 

components: references by the processor that miss because of added collisions due 

to PTEs, and references to PTEs by the cache that miss. Of these, the occurrence 

of PTE misses is much larger than the amount of instructions and data being 

displaced. \Vhen this PTE miss rate is compared against existing TLBs, it 

outperforms even large, set-associative buffers using hashed indexing. If a 

separate translation buffer were used, it would need to be over twice the size of 

the number of entries required on average by the in-cache method. Even if it 

were made highly associative, this would still demand 512 or more entries to do as 

well. A larger, variable number of entries outweighs the cost of additional cache 

misses incurred. See Appendix C for the effect of a different cache organizations 

on the SPUR in-cache method of translation. 

Studying this form of translation was the result of the particular 

requirements of the SPUR multiprocessor. These results hold for uniprocessors as 

well. Perhaps a significant effect of this work will be in the area of low-cost 

computers. In the past, personal computers have rarely had cache memory 

because of the cost-performance trade off. \Vith the decline in memory costs, 

more small systems will begin to feature larger caches. VLSI now makes it possible 

to build a circuit with controller and cache tags on-chip. In effect, adding the 

control for address translation yields a TLB for free. 
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Appendix A 

Issues in the Location of Address Translation 

In deciding bow to support virtual memory, the issue arises of precisely where 

the use of virtual addresses ends and physical addresses begin. Figure A.l 

identifies five potential locations for address translation in the SPUR 

multiprocessor: 

( 1) Before the Instruction Buffer (IB) 

{2) Between the Instruction Buffer and the cache 

(3) In parallel with the cache 

( 4} Between the cache and the system bus 

(.5) Between the system bus and memory 

Placing the translation before the Instruction Buffer (ffi) (option (1)) has 

significant disadvantages. Address translation is required for every reference, 

reducing the advantage of having the instruction memory on-chip. The IB is likely 

to be small enough so that the low-order bits of the virtual address can be used to 

directly access the buffer. Recall that the low-order bits represent the byte within 

a page and therefore are not effected by translation. Since physical addresses are 

not needed at this point, we cannot justify dedicating processor chip area to 

translation hardware. 

\1rtt111 AddrMI 

PR 0-..-'"'ESSOR. SNOOPtNG B SHARED 

c;JG~ L!ID u Gl.OEW. 

U: CACHE s ME\K:JRY 

CD ® @ @ ® 
Figure A.l : Potential Locations for Address Translation 

The potential locations for address translation are shown: (1) before the 

instruction buffer {IB), (2) between the processor and the cache, (3) in parallel 

with the cache, ( 4) between the cache and the bus, and ( 5) between the bus and 

memory. Note that for simplicity only one of multiple processor-cache pairs is 

shown. 
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Alternatively, the translation can be done between the IB and the cache 

(option (2)). This is the approach taken in the VAX machines [DEC 81], and 

allows the IB to be accessed without translation. However, data references and IB 

misses still incur the overhead of translation. Both this and the preceding option 

require doing the translation in series with the cache access. To keep the time for 

a cache reference to a minimum, we reject both alternatives. 

Rather than doing the translation in series with a cache access, the third 

alternative is to do it in parallel (option (3)). Such a scheme reduces the cost of a 

cache reference, potentially to a single R.Al\.1 cycle, s~nce it is now not the sum, 

but the maximum, of translation and cache access times. The cache tag memory 

and the translation buffer are accessed with the virtual address in parallel. The 

resulting tag and physical page number are then compared to determine if the 

cache has a hit. This is the approach taken on many of the .JBM 370 mainframes 

[Smit82]. 

Since the cache is now referenced from the processor with virtual addresses, 

two complications are introduced: synonyms and the need for reverse translation~. 

Synonyms arise when more than one virtual address refers to the same physical 

address. This complicates cache consistency because there is no longer a 

straightforward mapping between virtual and physical addresses. For example, it 

is possible to have multiple copies of the same memory block stored in a cache 

with different virtual addresses. Reverse translation occurs when a physical 

address on the bus must be translated back into a virtual address. This is often 

done as a solution to the synonym problem, but arises in SPUR because of the 

need for the C"ache to snoop on the bus. Since the bus must transmit physical 

locations to memory, and the cache is referenced by virtual addresses, a reverse 

translation would hnve to be performed. Special mechanisms are required to do 

this mapping, such as reverse translation buffers or a fully-associative organization 

for the cache tags. 

It should be noted that if the size of the cache is small enough, only bits from 

the "byte-on-page" field are needed to identify a set. Since this field does not 

change during translation, there is no need for reverse translation. Increasing the 

?.ssociativity of the cache has the effect of reducing the number of sets for th~ 

same amount of cache. This explains why it might be advantageous to build 

caches \vith set-associativity 0f 16 or more even though studies have shown that 

8-way set-associativity well approximates full associativity [Smit78]. 

Even if the cache must be addressed \Vith bits from the page-number field, 

reverse transhtion could still be avoided by requiring that physical page numbers 

match their corresponding virtual page numbers in enough bits. For example, if 

only one additional bit beyond the byte-on-page field were required to address the 

cache~ we could arbitrarily require that even numbered virtual pages be pbced 

only in even numbered physical page frames, and similarly odd pages could only 

be mapped to odd page frames. In general, a virtual page v.:ould be restricted to 

reside in a particular eet cf physical p~ge frames. Figure A.2 shows a more 



realistic example of this set-associative page placement. The cache may now be 

referenced from either the virtual or physical "side" with no need for a reverse 

mapping. However, if programs reference only certain sets heavily, unnecessary 

paging may occur even though there may be available frames in other sets. 

Virtual Address 11 

I I 

lG 

0 

64Kbyte Cache 
0 

0 

0 

Physical Address <»co& 

s.oo Soo 1 
A 

11 0 

0 0 0 

Sool5 

Page Frames in a 4Mbyte Memory 

Figure A.2 : Set-Associative Page Placement in Main Memory 

If virtual and physical addresses are constrained to match on enough of the low­

order bits, it becomes possible to map either address into the same cache 

locations. Howeyer, this restricts a physical page frame to hold only virtual pages 

whose :.:ddresses coincide on these low order bits. For example, a 64K byte (16 

address bits) direct-mapped cache requires that the low order 16 bits oi the 

physical and virtual address match. Assuming a 4MB main memory (22 address 

bits) with 4K byte pages, virtual pages can be placed into one of 16 sets (selected 

by address< 15:12>) of 64 physical pages (selected by address<21:16> ). This 

means that there are only 64 possible page frames for each virtual page, rather 

than 1024 (the total number of physical page frames). 



The need for reverse translations can be avoided more simply by placing both 

virtual and physical addresses on the bus. The caches are addressed from the 

system bus side by virtual addresses; physical addresses are used to access mai'l 

memory. This requires either a wider address bus or time multiplexing the 

addresses. 

In the preceding three options, the translation must be done on every cache 

reference. For high performance, this requires that the translation mechanism be 

fast. A good deal of hardware and design effort must be spent Lo keep the 

mapping time down to one RAM access. 

The fourth alternative translates only on a cache miss (option (4)). This is 

attractive since misses constitute a small percentage of all references. Thus, a 

slower mechanism built with less hardware can achieve the same effective access 

time as the previous, more costly mechanisms. The need for reverse translations 

is still present and requires the same mechanisms z..s discussed for option (3). 

The Xerox Dragon [McCr84], a VLSI-based multiprocessor system with a 

similar architecture as that described here, does its address translations only if a 

cache misses. Reverse translation is handled by storing both physical and virtual 

page numbers for each block in the tag memory, and by providing a fully 

associative lookup from the system bus side. Even on a miss, a translation is not 

necessarily required: if the referenced word is on the same virtual page as some 

other word already in the cache, translation is avoided by using the physical page 

number stored with that word's block. This is an elegant solution, but requires a 

fully associative lookup and roughly twice the memory for cache tags. Both of 

these costs severely limit the amount of cache that can be provided on a single 

VLSI chip. 

The final option is to do the address translation in the main memory system 

(option (5)); the system bus would then use only virtual addresses. This has the 

advantage of centralizing the mapping hardware. The contention for this 

hardware would be no worse than that of main memory itself. There are, 

however, several disadvantages. First, the bus must be wider than a strictly 

physical bus to accommodate the larger virtual address. Second, latency to 

memory must increase to allow for translation. For protocols in 'vhich the bus is 

"held," the bus will be busy for a longer period of time per reference. Since the 

bus is a critical resource in a tightly coupled multiprocessor, this is likely to have 

a serious effect on performance. It might be possible to design the translation 

mechanism to work largely in parallel with the memory RAM access. However, we 

lose the advantage of being able to do it in the "leisurely" fashion discussed in 

option (3). By translating at the memory, reverse translations are not needed, but 

synonyms could still present a problem. To simplify the cache consistency 

protocol, writable synonyms would have to be disallowed. This approach also 

requires the design of custom me:nory and I/0 controllers. 

For high performance in the SPUR multiprocessor, we chose to provide a 

vi;tual cache, and to do translation only on misses. This rules out the first three 
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options. Prototyping constraints prevented the redesign of memory and 1/0 

eliminating the last option. Translation is therefore performed at each processor 

after the cache. Both physical and virtual addresses are placed on the bus to 

eliminate the need for reverse translation, and synonyms are disallowed by 

requiring that two address spaces sharing common data use the same virtual 

addresses for that region. 
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Appendix B 

The Effect of Page Size on the VAX TLB Miss Rate 

Simulations of the V AX-11/780 translation buffer show that performance 

would be significantly improved by increasing the page size from 512 to 4K bytes. 

The results of my simulations and those of Clark and Emer [Clar85} are shown in 

Figure B.l. The figures shown by Clark and Emer closely coincide with the 

values produced when using the traces RISC.RCO~vLPUZZLE, SPICE, and 

V AX.RCOM.PUZZLE. The curve for the V AX.RCOM.PUZZLE trace shows that 
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Figure B.l : Effect of Page Size on the V .AX TLB Miss Rate 

Thi!l graph shows the advantage of larger page size in translation. Misses in the 

VAX translation buffer would drop from about 2.5 in 100 instructions down to 0.5 

ir: 100 ii the page site were increased from 512 to 4K bytes. The V AXIMA and 

MVS traces are used in the study of the SPUR in-cache translation, and show 

much higher miss rates. 



misses in the V ~X translation buffer would drop from about 2.5 in 100 

instructions down to 0.5 in 100 if the page size were increased from 512 to 4K 

bytes. 

These simulatious were performed with one half of the VAX translation 

buffer. The curve for MVS was generated without flushing to approximate system 

half performance. The other curves are the result of flushing the process half 

every 20,000 references. 

The VAXIMA and MVS traces are used in the study of the SPUR in-cache 

translation, and show much higher miss rates. These results further strengthen 

the assumption that the V AXIMA trace produces high enough miss rates to serve 

as a conservative measure of translation buffer performance. 



Appendix C 

Sensitivity of In-Cache Translation to Cache Parameters 

In the following studies, the parameters of the SPlJR cache were used as the 

nominal values: 128K byte unified cache, direct-mapped, 32 byte block size, with 

a 4K byte page. Cache size, associativity, block size, and page size were then 

varied to examine the effect on the SPUR in-cache translation method. In the 

following graphs, the increase in percentage miss rate is plotted on a log scale on 

the vertical axis. This metric reflects both the collisions due to the presence of 

PTEs in the cache, and also the misses on the PTEs themselves. 

Figure C.l shows that even sizes that are small relative to the 128Kb SPUR 

cache, the translation performs well when compared with commercial translation 

buffers. For example, LISZT in a 16Kb cache incurs an increase in miss rate from 

2.7% as a normal cache, to 3.2% with in-cache translation: an additional 0.5% 

misses. This increase in miss rate roughly halves when these smalier sizes are 
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Figure C.l : Increase in Miss Rate over Variations in Cache Size 
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increased by a factor of two. The "knee" of the curve at 128K bytes is typical of 

observations that led to building the cache at this size. 

In Figure C.2, both LISZT and :MVS show considerable sensitivity to 

associativity. The two context-switching traces, CSlOOK and CS20K display what 

appears at first to be odd behavior. At 2-way set-associativity, they do better 

than direct-mapped, but as the cache approaches full associativity, it begins to 

cost more to do translation in-cache. This is due to the rate at which one 

reference stream collides with entries left over from the other stream's previous 

run. In set-as ;ociative caches, all entries are not replaced until every entry in 

each set has been indexed to. However, in a fully-:1ssociati·:e cache, all n entries 

will be replaced as soon as n new blocks have been brought in. The graph argues 

strongly for increasing the associativity to two-way. However, by building the 

cache as direct-mapped, circuit area that would have been used ror multiplexing 

hardware was traded for more tag storage. 
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Figure C.3 displays m:.1ch less sensitivity to variation than the preceding 

graphs. For .MVS, the additional misses increase as the block size increases. On 

closer inspection, this is most dependent on the occurrence of PTE misses. The 

cases of PTEs colliding with instructions and data reach a slight minimum at 32 

byte blocks. For the other four traces, both of these values steadily decline as 

block size mcreases. This suggests that 1tfVS references adjacent pages less 

frequently. 
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Figure C.4 : Increase in Miss Rate over Variations in Page Size 

Figure C.4 also shows less sensitivity to variation than cache size or 

associativity. In general, as the page size increases, the translation is more 

effective. This is almost entirely accounted for by the number of PTE misses 

declining. The number of collisions of PTEs with instructions and data also 

drops, but to much less of an extent. For some reason, a page size of 2K bytes 

causes a higher rate of these collisions in the Vaxima trace. 
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