
A Trace-Driven Analysis of the UNIX 4.2 BSD File System

John K. Ousterhout, Herve Da Costa, David Harrison,

John A. Kunze, Mike Kupfer, and James G. Thompson

Computer Science Division

Electrical Engineering and Computer Sciences

University of California
Berkeley, CA Q4720

Abstract

\Ve analyzed the UNIX 4.2 BSD file system by recording activity in trace files and

writing programs to analyze the traces. The trace analysis shows that the average file

system bandwidth needed per user is low (a few hundred bytes per second). Most of

the files accessed are short, are open a short time, and are accessed sequentially. Most

new information is deleted or overwritten within a few minutes of its creation. We

wrote a simulator that uses the traces to predict the performance of caches for disk

blocks. The moderate-sized caches used in UNIX reduce disk traffic by about 50%,

but larger Ca.('hes (seYCral megabytes) can achieve much greater reductions, eliminating

90S(or more of all disk traffic. 'With those large caches, large block size5 (16 kbytes

or more) re'3ult in the fewest disk accesses.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 1985 2. REPORT TYPE

3. DATES COVERED
 00-00-1985 to 00-00-1985

4. TITLE AND SUBTITLE
A Trace-Driven Analysis of the UNIX 4.2BSD File System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We analyzed the UNIX 4.2BSD file system by recording activity in trace files and writing programs to
analyze the traces. The trace analysis shows that the average file system bandwidth needed per user is low
(a few hundred bytes per second). Most of the files accessed are short, are open a short time, and are
accessed sequentially. Most new information is deleted or overwritten within a few minutes of its creation.
We wrote a simulator that uses the traces to predict the performance of caches for disk blocks. The
moderate-sized caches used in UNIX reduce disk traffic by about 50%, but larger caches (several
megabytes) can achieve much greater reductions, eliminating 90% or more of all disk traffic. With those
large caches, large block sizes (16 kbytes or more) result in the fewest disk accesses.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

31

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

1. Introduction

This paper describes a series of measurements made on the UNIX 4.2 BSD file

eystem (5,8]. Most of the work was done in a series of term projects for a graduate

cour~~e in operating systems. Our goal was to collect information that would be weful

in designing a shared file system for a network of personal workstations. We were

interested in such questions as:

• How many workstations can one network support!

• \\~at are typical file access patterns (and what protocols will support those

pat terns best)!

• How should disk block caches be organized and managed!

• Current memory prices make it practical to use very large caches fer disk b!xks

on file servers. How much of a performance advantage do such caches provide;

To answer these questions we instrumented the 4.2 BSD system to col!ect

information about file accesses and save the information in trace files. Section 3

describes how and what trace data was gathered. In order to reduce the size ci the

trace files and the impact of the tracing on the running system, we did not re•crd

individual read and write requests. From the information that we did collect we can

deduce the exact range of bytes accessed, although the access times are less pre~ise

than they would have been if we had logged reads and writes.

We wrote two kinds of programs to process the trace files; Table I summa:izes

the most important results. The first set or analysis programs gathered general data

about reference patterns. Section 4 discusses the~e results. Some of the condmi:ns

- 1-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

On average, about ~600 b~/second of file data are read or written

by each active system user.

About 70% of all file accesses are whole-file transfers, and about

50)(. of all bytes are transferred in whole-file transfers.

75~ of all files are open less than .5 second, and 90% are open

less than 10 seconds.

About 20-30% of all newly-written information is deleted within 30

seconds, and about 50% is deleted within 5 minutes.

A 4-~1byte cache of disk blocks eliminates between 65% and 90%

of all disk accesses (depending on the write policy).

For a 400-kbyte disk cache, a block size of 8 kbytes results in the

few~t number of disk accesses. For a 4-Mbyte cache, a 16-kbyte

blod size is optimal.

Table L Selec! ed results.

are: indiYidual users make only occasional (though bursty) use of the file system, and

they need •ery little bandwidth on average (only a few hundred bytes per second per

active user): files are usually open only a short time, and tend to be read or written

sequentially in their entirety; non-sequential access is rare; most of the files that are

accessed are short; and most new files have short lifetimes (only a few minutes).

The second set of analysis programs performed simulations of various disk block

caching strategies, using the trace data to drive the simulations. This analysis is

presented in Section 5. The main conclusions are that even moderate-sized disk block

caches such as those used in UNIX (a few hundred kilobytes) can reduce disk traffic by

about a factor of two. But much larger caches of several megabytes perform even

better, reducing disk traffic by more than 90%. \Vith large caches and the delayed-

write policy described in Section 5, many files will not be written to disk at all: they

will be deleted or overwritten while still in the cache. Large block sizes (8 or 16

kbytes) combined with large caches result in even greater reductions in disk 1/0.

- 2-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

Even for relatively small caches, large block sizes are effective in reducing disk 1/0.

2. Previous Work

There have been a number of previous projects to analyze file system usage, but

all of them were more limited in scope than the results reported here. Furthermore,

many of the measurements concerned older systems without good interactive facilities

or hierarchical directory structures, so the results are not necessarily comparable to

ours. For example, Smith bas studied the file access behavior of IBM mainfram~ in

order to predict the effects of automatic file migration [10]. The study w~ b~ on

files used by a particular interactive edit<>r, which were mostly program source fi.les.

The data were gathered as a series of daily samples so they do not include files 10hose

lifetimes were less than a day. In another study, Porcar analyzed dynamic trace data

for files in an IBM batch environment (7]. He considered only shared files, which

included le5s than 10% of all files accessed. Satyanarayanan analyzed file sizes and

lifetimes or: a PDP-10 system [9], but once again the study wa.s made statically by

scanning the contents of disk storage.

More recently, Smith used trace data from IBM mainframes to predict the

performance of disk caches [11]; his conclusions are similar to ours even though his

data was different (physical disk addresses, no information about transfer size5 or

reading venus writing). Two other recent studies contain UNIX measurements

comparable to ours: Lazowska et al. report on the disk 1/0 required per user [2]. and

Leffier et al. report on the effectiveness of Unix disk caches [3]. See later sectioD5 of

this paper for comparisons between their results and ours.

-3-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

3. Gathering the Data

The main difficulty in gathering file system trace information is the volume of

data generated. The systems we traced are heavily used and have a great deal of file

system activity. If we had attempted to record all file-system-related activity, an

enormous amount of data would have been produced. For example, the trac~ for

S;mith's cache study contained 1.5 gigabytes or more per day [11]. The work involved

in writing such a trace file would consume a substantial fraction of the CPU. It might

potentially have perturbed our results, and it certainly would have made us unpopular

with the systems' users. In addition, the volume of data would have been so great

that we could only have traced a few hours of activity before running out of disk

space for the traces.

For this study we wished to gather data oYer several days to prevent temporary

unusual activity from biasing the results. We also wanted to collect the traces

without affecting the system's responsiveness to its users. To do this, we had to

reduce the volume of data.

Our approach was to record file-system-related events at a logical level rather

than a physical level, and not to record individual read and write requests. Table II

shows the events that were logged and the information that was recorded for each

event. "Logical" level means that information was recorded about files, not about

physical disk blocks. There is no information in the traces about the locations of

blocks on disk or the timing of actual disk 1/0s. Once we decided to gather

information at a logical level, we could take advantage of the fact that file reading and

- 4-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

System Call Information Recorded

open and create time, open id, file id, user id, file size

close time, open id, position

seek (reposition within file) time, open id, previous position, new position

unlink (delete file) time, file id

truncate (shorten file) time, file id, new length

execve (load program) time, file id, user id, file size

Table n. The events recorded by the trace package. Time is accurate to

approximately 10 milliseconds. Open id is a unique identifier assigned to each opeD

call; it is used to avoid confusion between concurrent accesses to the same file. Fi!e

id is unique to each file and is used to correbte different operations on the same file.

Uur id identifies the account under which the operation was invoked. Po~ition is

the current access position in the file (i.e. the byte offset to/from which data will be

transferred next).

writing in l":\'IX are implicitly sequential (a special system call must be used to ch3.nge

the current position within the file). This means that read and write events need not

be logged t.o determine which data were accessed. We recorded the current access

~ition in the file when it was opened and closed, and also before and after each

repositioning operation. This information completely identifies the areas of file5 that

were read or written.

The drawback of the no-read-write approach is that it reduces the accura.:-y of

times in the system: the open, close, and reposition events provide bounds on when

bytes were actually transferred, but these may be loose bounds if open files are idle for

long perioru. In all of our analyses, we "billed" each transfer at the time of the next

close or reposition event for the file. \Vhen analyzing concurrent accesses to different

- 5-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

files, the order in which we processed the data transfers may not be the same as the

order in which reads and writes occurred.

We had two hypotheses about usage patterns that led us to adopt the no-read-

write approach in spite of its potential inaccuracy. First, we thought that most file

system activity would be sequential, so that the no-read-write approach would reduce

the volume of trace ~ata substantially. Our experiences bear out this hypothesis.

Second, we thought. that most files would only be open a short time, so that the open

and close events would provide tight bounds on the access times. This hypothes!s i5

also supported by the data.

Our trace analyses consider both user- and system-initiated file access, but they

examine only the actual bytes contained in files. Vve did not consider overhead 1/0

activity to interpret pathnames or to read and write file descriptors. \Ve also ignor?d

paging activity. Section 6 discusses how these other factors might impact our results.

Trace AS E3 C4

Duration (hours) 79.4 65.7 72.5

Number of trace recr)rds 1,017,464 921,526 733,403

Size of trace file (Mbytes) 26 23 18

Total data tran5ferred 1220 1198 1030
to/from files (~1bytes)

create events 38,142 (3.8%) 37,172 (4.1%) 29,4!32 (4.1 %)

open events 320,065 (31.9%) 280,579 (30.9%) 203,613 (28.2%)

close events 358,191 (35.7%) 317,763 (35.0%) 233,078 (3:2.3%)

seek events 185,709 (18.5%) 169,714 (18.7%) 189,245 (25.2%)

unlink events 37,780 (3.8%) 36,517 (4.0%) 28,373 (3.9%)

truncate events 1,485 (0.1%) 2,070 (0.2%) 1,115 (0.1 %)

execve 60,712 (6.1%) 64,732 (7.1%) 37,704 (5.2%)

Table m. Overall statistics for the three traces. The percentages are expressed as

fractions or all events in that trace.

- 6-

Trace-Drinn Analysis of 4.2 BSD File System April 2S, 198S

We used three different traces for the results reported in this paper. Two of

them, "AS" and "E3", were recorded on V AX-ll/780s used primarily for program

development and document formatting. The third trace, "C4", was recorded on a

V AX-11/780 used primarily for computer-aided design of integrated circuits. Each of

these machines is a multi-user timesharing computer used by students and staff in a

university environment. The traces were all gathered during the busiest part or the

work week. For the AS and E3 traces, the Unix load factor was typically 5-10 during

the afternoon. For the C4 trace the load factor rarely exceeded 2 or 3. Table III gives

summary information about the traces. The About S0~6000 bytes or trace data per

minute were collected, on average. Although the worst-case rate was higher than this,

there was no noticeable degradation in the performance or the systems while the traces

were being gathered.

4. How the File System is Used

Our trace analysis was divided up into two parts. The first part contains

measurements of current UNIX file system usage. They are presented in this section

under three general categories: system activity {how mt:.ch the file system is U5ed),

access patterns (sequentiality, dynamic file sizes, and open times), and file lifetimes.

The second part of the analysis examines the effectiveness of disk block caches;

Section S presents those results.

- 7-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

18 0 6 12 18 0 6 12 18 0 6 12

~~------------~~--
----------~~------

Wednesday

75

50

25

Thursday

Time or Day

(a)

Friday

0;-------~~_.------~~----
-----r~~--~~

14:00 14:15 14:30

Time of Day (Wednesday)

(b)

14:45 15:00

Figure 1. Chronological plot of the total rate at which bytes were transferrE"d

to/from files in trace E3. In (a) the throughput was averaged over ten-minute

interval:5. In (b) the throughput was averaged over ten-second intervals to illustrate

the bu~tiness or the system.

4.1. System Activity

The first set of measurements concerns overall system activity in terms of users,

active fil~, and bytes transferred. Figure 1 shows how the 1/0 demands on the file

- 8-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

system varied over time during the E3 trace. The average file system throughput

during the day was about 5-10 kbytes per second, but Figure 1(b) shows that transfers

were bursty.

Table IV gives several other measures of system activity. The most intere5ting

figure for us is the throughput per active user. We consider a user to be active if he

or she has any file system activity in a ten-minute interval. Averaged over ten-minute

intervals, active users tend to transfer only a few hundred bytes of file data per

second. On the other hand, if only ten-second intervals are considered, active users

tend to han much higher transfer rates (a few kilobytes per second per user).

Furthermore, the short-term transfer rates tend to be very bursty: in some intervals

AS E3 C4

Average throughput (bytes/sec. 4200 5080 3940
over life of trace)

Total number of 137 331 169
different users

Greatest n um her of active users 29 44 20
in a 10 minute interval

Average num her of different users
11.7 (± 5.8) 18.7 (± 10.1) 7.4 (±4.1)

(oYer 10 minute intervals)

AYerage number of different users
2.5 (± 1.5) 3.3 (± 2.0) 1.7 (±1.1)

(over 10 set"ond interYals)

Average throughput per active user
370 (± 290) 280 (± 190) 570 (±760)

(bytes/sec. oYer 10 minute intervals)

Average throughput per active user
1490 (± 10000) 1380 (± 4100) 1790 (± 7400)

(bytes/sec. oYer 10 second intervals)

Table IV. Some measurements or system activity. The numbers in parentheses are

standard deviations. A user or file is active in an interval il there are any trace

events ror that user or file in the interval For example, the lower-right entry in the

table means that il a user was active in a 10-second interval, be/she requested 1790

bytes or 1/0 per second during that interval, on average.

- 9-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

the rate exceeded 100 kbytes/sec:Juser. In [2] Lazowska et aJ. reported about 4 kbytes

of 1/0 per second per active user. This is substantially higher than our figure, but

their measurement includes additonal overhead not present in our analysis, such as

paging 1/0.

The low average throughput per user suggests that a network-based file system

using a 10 Mbit/second network can support several hundred acti~e users without

saturating the network. For communities of this size it shouldn't be necessa."Y to

resort to multi-network systems with their more complex internetwork protocols.

A5 E3 C4

\\'hole-file read transfers 168,127 131,408 93,469

(C:O of all read-only accesses) (69%) (63%) (70%)

\\nole-file write transfers 78,542 67,340 60,363

(CO of all write-only accesses) (82%) (81%) (85%)

Data transferred in 664 592 547

whole-file transfers (Mbytes) (54%) (49%) (53%)

Sequential read-only accesses 221,136 189,734 122,557

(CO of all read-only accesses) (92%) (91%) (93%)

Sequential write-only accesses 92,954 79,847 76,425

(% of all write-only accesses) (97%) (96%) (98%)

Sequential read-write accesses 4215 5459 8163

(SO of all read-write accesses) (19%) (21%) (35%)

Data transferred 801 804 703

sequentially (Mbytes) (66%) {67%) (68%)

Table V. Data tends to be transferred sequentially. Whole-file transfers were those

where the file is read or written sequentially from beginning to end. Sequential

accesses include whole-file transfen plus those where there was an initial reposition

operation before any bytes were transferred. The only category where there was a

substantial amount or non-sequential access was files opened for read-write access.

- 10-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

4.2. File Access Patterns

In doing this study, we were particularly interested in measuring the

sequentiality of file access. It seems to be generally accepted that most file access is

sequential. For a network file system, this suggests a pipelined protocol between

clients and serYers, with extensive prefetching.

Table Y and Figure 2 summarize our measurements of sequentiality. Table V

shows that more than 90% of all files are processed sequentially, and that more than

tw~thirds of file ~ccesses are whole-file transfers. or those accesses that are not

whole-file transfers, most consist of a single reposition to a particular position in the

file, followed by a transfer of data to or from that position without any additional

repositioning.

Figure 2 measures the lengths of sequential runs in two ways. Figure 2a shows

that most sequential runs are short: rarely more than a few kbytes in length. This is

because mo~t files are short (see below); there simply isn't much data to transfer. On

the other hand, Figure 2b shows that long sequential runs account for much of the

data transferred: 30% or all b:.rtes are read or written in sequential runs or 20 kbytes

or more. If a file system uses large disk blocb (e.g. 4 kbytes), it appears that only a

very small number of files will benefit from additional file system mechanisms to

support sequential access, sur h as contiguotUJ block allocation and prefetching. On the

other hand, the benefit to those few files may be substantial enough to justify the

mechanisms.

- 11-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

100

80

PerceDt 60
or

Run.! 40 ""

20

0

0 2

100

80

Percent 60
or

Byt~ 40

20

0

0 25

---AS

--E3
···········C4

4 6

Kilobytes Transferred

(a)

8 10

...[,.....--;:--=-=
,--_--_-.r-----=- ······· ·········

........='--=- ···············

---AS

--E3

···········C4

50

Kilobytes Transferred

(b)

75 100

Figure 2. Cumulative distributions or the lengths or sequential runs (number of

bytes transferred before repositioning or closing the file). Figure (a) is weighted by

number or runs: about 70-75% or all sequential runs were less than 4000 bytes in

length. Jumps occur at 1024 bytes and 4096 bytes because user-level 1/0 routines

round tlp transfers to these sizes. Figure (b) is weighted by the number or bytes

transferred: about 30-40% or all bytes were transferred in runs longer than 25000

bytes.

Figure 3 shows the dynamic distribution of file accesses by siz.e at close. Most of

the files accessed are short. Short files are used extensively in Unix for direct<>ries,

command files, memos, circuit description decks, C definition files, etc. The figure also

shows that a few very large administrative files account for almost 20% of all file

- 12-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

accesses. These files are each around 1 Mbyte in size and are used for network tables,

a log of a11 logins, and other information. They are typically accessed by positioning

within the file and then reading or writing a small amount of data.

100

80

P~rc~nt 60
or

Files 40

20

0

100

Percent

or

BYtes

80

60

• 40
Tramferred

20

~ - - - - .. ::.;:: .• -::.::: .. ":"": .. '":": .. 7

·····--·-·,;.;··--·-.:.:·-..:.:··--·----·----;;·-~--------········-···

---AS

--E3
----------- C4

0 50 100 150 200

File Size (kbytes)

(a)

r----- -····----------·········· -------------··

----AS

--E3
··---------- C4

0~--------~----------~--------~---------,
0 50 100 150 200

File Size (ibytes)

{b)

Flgu~e 3. Dynamic distribution of file sizes, measured when files were closed.

Figure (a) is a cumulative distribution weighted by number or files. 80% ot all file

accesses were to files less than 10 kbytes long; most or the remaining 20% were to a

few very large administrative files. Figure (b) is also cumulative but is weighted by

number of bytes transferred (only about 30% or aU bytes were trans!erred to or from

files less than 10 kbytes long).

- 13-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

The 6Jt> sizes shown in Figure 3 are much shorter than those measured for ffiM

systems in f;J and [10]. This difference is probably due to the better support provided

in UNIX for short files, including hierarchical directories and block-based disk

aJJocation instead or track-based allocation. Satyanarayanan's file-size measurements

are roughly comparable to o~ (about 50% or all his files were less than 2500 byt.es),

even though his measurement was a static one and his system did not have

hierarchical directories [9).

Our last measurement of access patterll5 is displayed in Figure 4. It shows that

most files are open only a short time: programs tend to open files, read or write their

contents, then close the files again very quickly. This measurement is consistent with

our preYiol!5 observations: if most files are short, and most are accessed as whole-file

transfers, then it shouldn't take very long to complete most or the accesses. On the

other hand. there are a few files that stay open for long periods of time, such as

temporary files used by the text editor.

100

80
- --~-~-~-~-~-~-~-~--------------

~-~·~·~·~-~.~-~·~·=·· ...

Percent 60
or

--- A5

File5 40
--E3
············C4

20

0

0 f)4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0

O~n Time (seconds)

Figure 4. Distribution of times that files were open. This is a cumulative

distribution. For example, about 70-80% of all files were open less than .5 second.

- 14-

Trace-Driv-en Analysis of 4.2 BSD File System April 25, 1~85

100

80

Percent 60
or

Fil~ 40

20

0

0

100

80

Percent

or 60

Bytes
40

Created

20

0

0

.............. ·

100

----AS

--E3
-------·--·· C4

r··.;:··.:.;··.:.:··.:.:··~-r:!.··----·-"':":-.":'7--":':'-.-:-: .• -:: .• ":':.::: •. ~ •. ":": .-:- ::-:: .. -:

---AS

--E3
------------ C4

200 300 400 500 600

Lifetime (seconds)

100 200 300 400 soo 600

Seconds

Figure 5. Cumubtive distributions of file lifetimes. Figure (a) is weighted b~

number of files (about 80% of all new files bad lifetimes less than 200 second~\

Figure (b) is weighted by the size of the file (about 40% or all bytes written to ne~

files ha-d lifetimes less than 200 seconds). The large jumps at 180 seconds are due t.c

network monitoring programs: a separate status file for each host on the network ~

updated every three minutes .

.-.3. File Lifetim~

Both Satyanarayan and Smith have published measurements of file lifetim~ (the

intervals between when files are written and they are overwritten or deleted) [9,1(In

both case5 the measurements were made by sampling the "last-modified" and ··last-

examined·· times of files on a disk, so they describe only long-term behavior (a few

- 15-

Trace-Driven Analy~i~ or 4.2 BSD File System April 25, 1985

days or months). We used our trace data to study file Jiretimes over much shorter

intervals.

Figure 5 shows the results, which are surprising in two respects. First of all,

most file lifetimes are very short: 80% or all new files are deleted or overwritten within

about 3 minutes or creation. The second unusual characteristic or the data is the large

concentration or lifetimes around 3 minutes. 40-50% or all new files have lifetimes

between 179 and 181 seconds. This concentration is due primarily to network status

daemons that update information files every three minutes. One file is used for each

of about 20 hosts on the net.

Figure 5 includes only data written to new files: files that did not exist before or

that were truncated to zero length after being opened. Although this includes most or

the data written (refer back to Table V), it does not include information written to

the middle or end of a existing file. Section 5 contai113 another lifetime measure.=ent

that is more inclusive but reaches about the same conclusion.

6. Block Cache Simulations

In co~idering various design alternatives for a network filing system, one cf the

most inter~ting possible areas or change is the cache of disk blocb. The U!\IX file

!!lystem keeps in memory a cache or recently-used disk blocb. This cache is

maintained in a least-recently-used fashion and results in a substantial reduction in

the number of disk operations. 4.2 BSD systems typically use about 10% of main

memory (200-400 kbytes) for the disk cache.

- 16-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

For a network filing system with dedicated file servers it seems reasonable to use

almost all of the servers' memories for disk caches; this could result in caches of four

megabytes or more with today's memory technology, and perhaps 32 or 64 megabyte!

in a few years. The cost of such a cache is modest in comparison to the cost or disk

storage. In order to understand the effects of larger caches on the performance of a

file system, we wrote a program to simulate the behavior of various kinds of caches,

using the trace data to drive the simulatiom. For all of the measurements below the

three traces produced indistinguishable results; only the results from the AS trace are

reported.

In each of the simulatiom, the disk cache consisted of a number of fixed-size

blocks used to hold portiom of files. \Ve used a least-recently-used algorithm for

cache replacement. All of the results of this section are based on blocks, not bytes.

\\nen the trace indicated that a range of bytes in a file was read or written, the range

was first djvided up into one or more block accesses. For each block access. the

simulator checked to see if the block was in the cache. If so, it was used from the

cache. If not, then the block was added to the cache, replacing the block that had not

been accessed for the longest time.

In evaluating the different caches, our principal metric was the number of rusk

accesses required. The fewer disk accesses, the better. Disk accesses occurred in two

ways in the simulations. First, a disk access was necessary each time a block was

referenced that wasn't in the cache, unless the block was about to be overwritten in

its entirety. Second, disk accesses were necessary to write modified blocks back from

the cache to disk. \Ve experimented with several different write policies, which are

- 17-

Trace-Driven Analysis or 4.2 BSD File System April 25, 1985

discussed ~low.

For some or the results we measured the miss ratio instead of the number or

disk accesses. We define the miss ratio as the ratio of disk 1/0 operations to block

accesses. In computing block accesses, we assumed that programs made requests in

units of th~ cache block size, rather than as several smaller requests. In practice,

though, many programs make smaller requests than these, which result in lower miss

ratios than we have reported (there will be many more block accesses but about the

same number or disk 1/0s).

The simulations varied in three respects: cache size, write policy, and block size.

Figure 6 shows the effect or varying the cache size and write policy with a block size or

4096 bytes (the most common size in 4.2 BSD UNIX systems). We tried four different

write policies in the simulations. One possible write policy is writ~-through: each

time a block is modified in the cache, a disk access is used to write the block through

to disk. \\-rite-through is an attractive policy because it ensures that the disk ah•ays

100

80

Mis~ 60
Ratio

(percent) 40

20

0

0 1 2
Cache Size (Mbytes)

3 4

Writf'-Through
30 s~ Flush
5 Min Flush
Delayed Write

Figure 8. Cache miss ratios as a function of cache size and write policy, using the

AS trace with a cache block size of 4096 bytes.

- 18-

Trace-Driv-en Analysis of 4.2 BSD File System April 25, 1985

Cache Size Write-Through 30 sec Flllilh 5 min Flllilh Delayed \\"rite

390 kbytes (UNIX) 57.6% 49.2% 45.0% 43.1~

1 Mbyte 45.1% 36.6% 30.1% 25.0)(

2 Mbytes 39.7% 31.2% 24.3% 17.7~

4 Mbytes 36.5% 28.0% 21.2% 13.5:C

8 Mbytes 34.7% 26.2% 19.3% 11.2~

16 Mbyte5 33.5% 25.0% 18.1% 9.6)(

Table VI. A tabular representation of the data from Figure 6 (miss ratio as a

function or cache size and write policy for the AS trace).

contai!U! an up-to-date copy of each block. Unfortunately, it has the ..-orst

performance of all the write policies since it requires one disk access for every write to

a block. In our traces, about one third of all block accesses were writes, so the miss

ratio was never lower than about 30%.

The caches were most effective with the policy we call delaJied-write (this po!icy

is sometime-5 referred to as "copy-back" or "write-back"). The delayed-write policy

waits to writ.e a block to disk until the block is about to be ejected from the c~he.

This resulte-d in dramatically better performance for large caches. \Vith a cache siLe

of several megabytes, miss ratios as low as 10% occurred. The improvement occurred

because about 75% of the newly-written blocks were overwritten or their files ..-ere

deleted before the blocks were ejected from the cache; these blocks were neYer written

to disk at all.

Unfortunately, a delayed-write policy may not be practical becallile some blocks

could reside in the cache a long time before they are written to disk (see Figure 7).

System cra.5bes could cause large amounts of information to be lost. We tried two

write polici~ that were intermediate between write-through and delayed-write. \Ve

- 19-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

300

250

200

Blocks 150
(xlOOO)

100

50

0

0

~

'

_..- • - - - - - - - - - - - - - - - -· - - • 400 tb ..
I

I ·•····•······························+·····························•··············•!~
•.. _____ ---·-·· 4 "'{b

_.-·-·--·-·-·---· 8 Mb
.------·-· 16Mb

....--~

5 10 15 20 25 30 Total

Time (minutes)

Figure 7. Cache lifetimes from the AS trace using 40~byte blocks and a delayed­

write policy with different cache sizes. A block's cache lifetime is measured from

when it enters the cache until it is ejected from the cache or the block is deleted

from its file. The plot is a cumulative distribution: for example, with a cache size or
1 Mbyte about 150,000 blocks remained in the cache less than 6 minutes. The

column labelled "Total" shows the total number or blocks deleted or ejected from

the cache. For small cache sizes, most blocks are ejected y;ithin a few minutes to

make room for other blocks; with larger cache sizes, blocks tend to remain until

deleted. For the large caches, about 20% or all blocks had lifetimes greater than 30

minutes.

call these fiu8h-back policies. \Vith a flush-back policy the cache is scanned at regular

intervals and any blocb that have been modified since the last scan are written to

disk. If the flush interval becomes very small then flush-back is equivalent to -write-

through; if the flush interval becomes very large then flush-back is equivalent to

delayed-write.

Figure 6 sho'\'rs two different flush-back intervals: 30 seconds and 5 minutes. For

large caches, a 30-second flush-back policy reduces the nu:rr.ber of writes by about 25%

and a 5-minute flush-back policy reduces the number of writes by about 50%. This

means that about 25% of newly-written blocks are overwritten or deleted within 30

seconds and about 50% are overwritten or deleted within 5 minutes. These data

- 20-

Trace-Driveil. Analysis of 4.2 BSD File System April 25, 1Q85

provide another measurement of the lifetime of information in files, and are nry

eimilar to the re~mlts of Figure 5.

Typical 4.2 BSD systems run with disk block caches containing about 1~200

blocks of different sizes, with a total cache size of about 400 kbytes. The svnc system

call is typically invoked every 30 seconds to flush the cache. According to our

simulations, this combination of cache site and write policy should reduce disk

accesses by about a factor of two. However, Leffier et al. report a ceasured cache

miss ratio of only about 15% [3}. There are two explanations for the discrepancy.

First, there are several programs that make 1/0 requests in small units instead o! the

cache block ~ize; this inflates the number of logical 1/0s and reduces the miss ratio.

Second, the measurements in [3] include block accesses for additional information th~t

we did not consider, such as file descriptors (see Section 6). The overhead accesses

may haYe greater locality than the accesses to file data.

Our fin::.l cache measurement evaluates the effectiveness of different block si::es.

The original UNIX system used 512-byte blocks, but the block size h~ grown since

then to 102-1 in AT&T's System V [1], and 4096 in most 4.2 BSD systems. f.igcre 8

and Table YII show the results of varying the block size and cache site. For a 4-

Mbyte cache, a block size of 16 kbytes reduces disk accesses by about 25% over a 4-

kbyte block site and by a factor of 3 over 1-kbyte blocks. Even for a cache size or 400

kbytes, an 8-kbyte block size results in about 10% fewer disk 1/0s than a 4-l:byte

block site and 60% fewer 1/0s th:m a 1-kbyte block site. For smaller caches, larger

block sites are less beneficial since they result in fewer blocks in the cache and hence

more frequent re-use of those blocb. As the block site gets larger, much of the cache

- 2 •.•

Trace-Driv-en Analysis of 4.2 BSD File System April 25, 1985

------------------400 KB Cache

12 16 20 24 28 32

Block Size (K)

Flgure 8. Disk traffic as a function or block size and cache size, for the AS trace

using the delayed-write policy. Large block sizes work well for small caches, but

they work even better for large caches. For very large block sizes, the curves turn

up because the cache has too few blocks to function effectively as a cache.

No 400 Kbyte 2 Mbyte 4 Mbyte 8 Mbyte

Cache Cache Cache Cache Cache

1-l.:byte blocks 1',432,179 562,492 280,056 227,299 194,724

~-kbyte blocks 925,934 365,806 165,312 129,654 110,369

4-lbyte blocks 623,573 268,864 110,182 84,164 69,651

8-kbyte blocks 527,634 259,941 90,539 65,302 51,635

15-kbyte blocks 481,052 280,068 103,223 63,330 47,626

3~-kbyte blocks 461,976 307,002 156,523 82,350 51,883

Table VU. A tabular representation of the data from Figure 8 (disk I/O's as a

function or cache size and block size). The first column gives the total number

or block accesses for each block size.

space ench. up being wasted (short files only occupy the first portion of their bloch).

Altho~gh large blocks are attractive for a cache, they may result in wasted space

on disk due to internal fragmentation. However, a scheme like the one in 4.2 BSD,

which uses multiple block sizes on disk to avoid wasted space for small files, would

work well in conjunction with a fixed-block-size cache.

- 22-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1085

6. Validity of the Approach

There are four potential problems with our trace-based analysis, all having to do

with missing or incomplete information in the traces. The first potential problem,

which was mentioned in Section 3, is the no-read-write approach. In addition, the

traces provided only partial information about file accesses used to page-in programs,

and they provided no information about disk accesses for directory lookups or file

descriptors. These issues are discussed in the following subsections.

6.1. No Reads and Writes

The no-read-write approach means that the traces contain imprecise information

about when bytes were transferred to and from files. For all of our analyses we billed

each data transfer at the time of the file's next close or reposition event following the

transfer. \\"e measured the potential inaccuracy by examining the intervals between

successive trace events for the same open file. The intervals provide bounds on when

data transfers actually occurred. 75% of the intervals were less than .5 second, OOCC

were less than 10 seconds, and 99% were less than 30 seconds. Our measurements

were averaged over periods much longer than most inter-event intervals. For

example, ten seconds was the smallest interval used in Section 4. In the cache

simulations, the cache lifetimes of blocks were typically several minutes or more, so

once again the time imprecision should not have biased the results.

- 23-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

6.2. Paging Activity

Paging activity in UNIX consists of reading in a program file from the file system

when a process begins execution, and swapping pages of the process between main

memory and backing store while the process executes. The backing store is handled

with a totally different mechanism than the file system, so none or our measurements

concern it. ~oth [2] and [6] report that 1/0 to and from the backing store is

infrequent in comparison to 1/0 to and from files.

When a program is run in 4.2 BSD UNIX, only the first block of the program file

is read immediately; the other blocks are paged in from the file when they are first

referenced. Our trace data logged the erecve operation but not the individual page-

ins, so it was difficult to determine what effect the page-in activity might have on the

file system performance. All of the measurements reported until now have excluded

pagmg accesses.

Table VIII shows that the amount of file system activity would be more than

doubled if e•·ery executed file were read in its entirety from disk. To get some idea of

the effects of paging actiYity on cache performance, we re-ran the cache simulations

A5 E3 C4

File 1/0 (Mh:rtes} 1,220 1,196 1,030

File 1/0 (4k-byte blocks) 450,480 392,913 516,845

Exec 1/0 (Mbytes) 1,879 2,382 1,231

Exec 1/0 (4k-byte blocks) 494,554 618,978 323,458

Table vm. IC every executed file must be read from disk in its entirety, the page­

in acth·ity will account for more 1/0 activity than regular file 1/0. The "Exec 1/0"

lines make this assumption. In practice, however, sharing and demand paging will

reduce these figures.

- 24-

Trace-Driven Analysis of 4.2 BSD File System April 25, H~85

100

80

40 - - - - Page-in simulated

--- Page-in ignored

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size (MB)

Figure g. Miss ratios (4096-byte blocks, delayed write, trace AS) with paging

behavior approximated by forcing a whole-file read or each program that is executed.

The dashed line includes executed files, while the solid line does not.

and forced a whole-file read to each program at the time of its eucve. Figure 9 shows

the results. At large cache sizes the performance is slightly better (in terms of miss

ratio) with the paging activity. At intermediate cache sizes the performance is

somewhat worse with the simulated paging activity, due to a larger working set of

disk information.

However, the above analysis is questionable due to UNIX's handling of program

files. First, l":',HX provides for shared code segments: if there i~ already one copy of a

program in use then the system will re-use that copy for a new instance of the

program and will not have to access disk. In a sense, all of main memory acts a.s a

cache for programs. Second, program files may also contain large amounts of

debugging symbol information, which will never be read. The debugging information

can be many times larger than the code and data portions of the file. Third, program

- 25-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1085

files are paged in on demand, so pages that are not referenced will not be read. These

factors all suggest that the effects of paging will be less than indicated above; more

work is needed to verify this.

6.3. No Descriptor Blocks

\Ve measured only the logical.behavior of the file system, based on transfers of

bytes to and from areas or files. Thus the measurements do not include disk acthity

for reading and writing file descriptors (i-node8 and indirect blocks in U~IX

terminology). In UNIX, one file de~riptor access may have to be made for each open

and each close. In the worst case, this could more than double the number of block

accesses (this can be inferred from Tables III and Vll). An i-node cache is kept in

main memor:y to reduce the number or disk accesses required for them; we do not

have any measurements or its effectiveness.

Indirect blocks are used to hold the disk maps for large files; they are not needed

for files less than 40 kbytes long. Figure 3 shows that only about 20% of all files

accessed are longer than 40 kbytes. Only extremely large files need more than a single

indirect block, and for sequential file access the indirect block(s) are ·• .. ery likely to

remain in the cache. Thus, indirect blocks are unlikely to have a large impact on any

or our measurements.

6.4. No Directory Lookups

\Vhen a file is looked up in UNIX, the file system reads the blocks or directories

along the pat:!:J. to the file. In genercl, this involves one file descriptor block and one

- 26-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

directory file block for each name along the path, with a minimum or two bloch for

each file looked up. However, 4.2 BSD now contains a directory cache to hold

recently-used directory entries. Lemer et al. report that the directory cache achieves

an 85% hit ratio [3]. Nonetheless, directory lookups appear to account for a

substantial fraction or all file system activity.

7. Summary

In many ways, our results confirm operating system folklore and other file system

studies. For example, we were not suprised that most file accesses are to short files,

nor were we surprised that most accesses are sequential. Smith's study for disk caches

agrees with our conclusion that multi-megabyte caches are effective (11], even though

his study was based on physical disk blocks rather than logical file accesses.

However, a few or the results were surprising to us. First, the average

throughput per user was lower than we had expected and suggests that industrial and

university organizations or the size or a department or laboratory can be supported on

a single net work without using internetwork protocols for file access. Second,

although the adYantages of large block siz.es have been known for some time, we were

surprised at just how advantageous they are. The 1024-byte blocks used in ATA:T's

System V result in many more disk accesses than the 4096-byte blocks used in 4.2

BSD, and 8-l:byte or 16-kbyte block sizes look even better.

~ block sizes become larger and disk-block caches become more and more

effective, "o•erhead" accesses (to directories and file des~riptors) play a larger role in

determining overall file system performance. It appears from our data that more than

- 27-

Trace-Dril'"en Analysis of 4.2 BSD File System April 25, 1985

half of all disk block references could be overhead accesses. Program page-ins also

appear to account for a significant amount of file traffic. More work is needed in both

of these areas to understand their importance and to evaluate mechanisms for dealing

with them.

8. Acknowledgements

We ovoe special thanks to Bob Henry, Mike Karels, Brad Krebs, and Richard

Newton for allowing us to gather the trace data on their machines and for assisting us

in installing an instrumented version of the kernel. The kernel modifications were

based on a Master's project by Tibor Lukac (4]. Luis Cabrera and Alan Jay Smith

provided helpful comments on an early draft of the paper. This work was supported

in part by the Defense Advanced Research Projects Agency under Contract No.

N00039-85-R-0269.

9. References

[1] Feder' J. "The Evolution or UNIX System Performance. II Bell Laboratories

Tuhnical Journal, Vol. 63, No.8, October 1984, pp. 1791-1814.

[2] Lazowska, E. D. et al. File Access Per forma nee of Diskless lVorkstations.

Technical Report 84-06-01, Department of Computer S~ience, University cf

Washington, June 1984.

[3) Leffler, S., Karels, M., and McKusick, M.K. Afeasuring and Improving the

Performance of ..1.£ BSD. Technical Report UCB/CSD 84/218, Department of

EECS, University of California, Berkeley, December 1984.

[4) Lukac, T. "A UNIX File System Logical 1/0 Trace Package." M.S. Report, U.C.

Berkeley, 1984.

(5] McKU!!ick, M.K., Joy, W.N., Leffler, S.J., and Fabry, R.S. "A Fast File System

for U!\IX." AC.M Transactions on Computer Sf/stems, Vol. 2, No. 3, August

1984, pp. 181-197.

- 28-

Trace-Driven Analysis of 4.2 BSD File System April 25, 1985

{6] Nelson, M.N. and Duffy, J.A. Feo8i6ility of Network Paging ond a Poge Server

Duign. Term project, CS 262, Department of EECS, University of California,

Berkeley, May 1984.

[7} Porcar, J.M. File Migrotion in Di8tri6uted Computer Svstems. Ph.D.

Dissertation, University of California, Berkeley, July 1982.

(8} Ritchie, D.M. and Thompson, K. "The UNIX Time-Sharing System."

Communications of the ACM, Vol. 17, No.7, July 1974, pp. 365-375.

[9] Satyanarayanan, M. "A Study of File Sizes and Functional Lifetimes." Proc 8th

Svmposium on Operating Systems Principles, 1981, pp. 9fr108.

[10] Smith, A.J. "Analysis of Long Term File Reference Patterns for Application to

File Migration Algorithms." IEEE Tronsactions on Software Engineering. Vol.

SE-7, !\o. 4, July, 1981, pp. 403-417.

[11] Smith, A.J. "Disk Cache - Miss Ratio Analysis and Design Considerations."

ACA! Transactions on Computer Svstems, to appear, 1985.

- 29-

