
Measuring and Improving the Performance of 4.2BSD

Sam Leffler

Computer Division
Lucasfilm, Ltd.
PO Box 2000

San Rafael, California 94912

Mike Karels
M. Kirk McKusick

Computer Systems Research Group
Computer Science Division

Department or Electrical Engineering and Computer Science

University or California, Berkeley
Berkeley, California 94720

ABSTRACT

The 4.2 Berkeley Software Distribution of UNIXt for the VAX* has several

problems that can severely affect the overall performance of the system. These

problems were identified with kernel profiling and system tracing during day to

day use. Once potential problem areas had been identified benchmark programs

were devised to highlight the bottlenecks. These benchmarks verified that the

problems existed and provided a metric against which to validate proposed solu

tions. This paper examines the performance problems encountered and describes

modifications that have been made to the system since the initial distribution.

Suggestions for further performance improvements are given.

t UNIX is a ~rademark of Bell Laboruories. * VAX, MASSBUS, UNIBUS, and DEC ue trademarb of Digital &~uipmen~ Corporation.

This work wu sponsored ill pan by the Defense Advanced Research Projects Agellcy (DoD), ARPA Order No.

4031, monitored by the Naval El~ronio Systems Command under cont-ract No. N00039-C-0235. The views

and conclusion& contained ill this document are those of the authors and should not be interpreted u represent

ing o!icial policies, either expressed or implied, of the Defense Reeearch Proj~e Agency or of the US Gover

ment.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1984 2. REPORT TYPE

3. DATES COVERED
 00-00-1984 to 00-00-1984

4. TITLE AND SUBTITLE
Measuring and Improving the Performance of 4.2BSD

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The 4.2 Berkeley Software Distribution of UNIX for the VAX has several problems that can severely affect
the overall performance of the system. These problems were identified with kernel profiling and system
tracing during day to day use. Once potential problem areas had been identified benchmark programs
were devised to highlight the bottlenecks. These benchmarks verified that the problems existed and
provided a metric against which to validate proposed solutions. This paper examines the performance
problems encountered and describes modifications that have been made to the system since the initial
distribution. Suggestions for further performance improvements are given.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

33

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

4.2BSD Performance - i -

TABLE OF CONTENTS

1. Introduction

z. Observation techniques
.1. System maintenance tools
.2. Kernel profiling
.3. Kernel tracing
.4. Benchmark programs

3. Results of our observations
.1. User programs
.1.1. Mail system
.1.2. Network servers
.2. System overhead
.2.1. Micro-operation benchmarks
.2.2. Path name translation
.2.3. Clock processing
.2.4. Terminal multiplexors
.2.5. Process table management
.2.6. File system buffer cache
.2.7. Network subsystem
.2.8. Virtual memory subsystem

4. System changes
.1. User programs
.1.1. Hashed data bases
.1.2. Buffering 1/0
.1.3. Mail system
.1.4. Network servers
.2. Kernel changes
.2.1. Name cacheing
.2.2. Auto-siloing terminal input
.2.4. Process table management

5. Future work

&. Conclusions

Acknowledgements

References

May 14, 1984

Contents

LefJler, et. al.

4.2BSD Performance - 1- Introduction

1. Introduction

The 4.2 Berkeley Software Distribution or UNIX for the VAX has added many new capabili

ties that were previously unavailable under UNIX. Many new data structures have been added to

the system to support these new capabilities. In addition, many or the existing data structures

and algorithms have been put to new uses or their old functions placed under increased demand.

The effect of these changes is that mechanisms that were well tuned under 4.1BSD no longer pro

vide adequate performance for 4.2BSD. This paper details the work that we have done since the

release or 4.2BSD to measure the performance or the system, detect the bottlenecks, and find solu

tions to remedy them. Most or our tuning has been in the context or the real timesharing systems

in our environment. Thus rather than using simulated workloads, we have sought to analyse our

tuning efforts under realistic conditions.

2. Observation techniques

There are many tools available for observing the performance or the system. Those that we

round most useful are described below.

2.1. System maintenance tools

Several standard maintenance programs are invaluable in observing the basic actions or the

system. The vmstat(1) program is designed to be an aid to monitoring systemwide activity.

Together with the ps (1) command (as in "ps av"), it can be used to investigate systemwide vir

tual memory activity. By running vmstat when the system is active you can judge the system

activity in several dimensions: job distribution, virtual memory load, paging and swapping

activity, disk and cpu utilization. Ideally, there should be few blocked (b) jobs, there should be

little paging or swapping activity, there should be available bandwidth on the disk devices (most

single arms peak out at 30-35 tps in practice), and the user cpu utilization (us) should be high

(above 60%).

Ir the system is busy, then the count or active jobs may be large, and several or these jobs

may often be blocked (b). Ir the virtual memory is active, then the paging demon will be running

(sr will be non-zero). It is healthy for the paging demon to free pages when the virtual memory

gets active; it is triggered by the amount or free memory dropping below a threshold and

increases its pace as free memory goes to zero.

Ir you run vmstat when the system is busy (a "vmstat 1" gives all the numbers computed by

the system), you can find imbalances by noting abnormal job distributions. Ir many processes are

blocked (b), then the disk subsystem is overloaded or imbalanced. Ir you have several non-dma

devices or open teletype lines that are "ringing", or user programs that are doing high-speed non

buffered input/output, then the system time may go high (60-70% or higher). It is often possible

to pin down the cause or high system time by looking to see if there is excessive context switching

(cs), interrupt activity (in) or system call activity (sy). Long term measurements on one of our

large machines indicate we average about 60 context switches and interrupts per second and

about 90 system calls per second.

Ir the system is heavily loaded, or if you have little memory for your load (1 megabyte is lit

tle in our environment), then the system may be forced to swap. This is likely to be accompanied

by a noticeable reduction in system performance and pregnant pauses when interactive jobs such

as editors swap out.

A second important program is iostat (1). Iostat iteratively reports the number or characters

read and written to terminals, and, for each disk, the number or transfers per second, kilobytes

transferred per second, and the milliseconds per average seek. It also gives the percentage of time

the system has spent in user mode, in user mode running low priority (niced) processes, in system

mode, and idling.

To compute this information, for each disk, seeks and data transfer completions and the

number or words transferred are counted; for terminals collectively, the number or input and out

put characters are counted. Also, every 100 ms, the state or each disk is examined and a tally is

May 14, 1984 Leffier, et. al.

4.2BSD Performance - 2- Observation techniques

made if the disk is active. From these numbers and the transfer rates of the devices it is possible

to determine average seek times for each device.

When filesystems are poorly placed on the available disks, figures reported by iostat can be

used to pinpoint bottlenecks. Under heavy system load, disk traffic should be spread out among

the drives with higher traffic expected to the devices where the root, swap, and /tmp filesystems

are located. When multiple disk drives are attached to the same controller, the system will

attempt to overlap seek operations with 1/0 transfers. When seeks are performed, iostat will

indicate non-zero average seek times. Most modern disk drives should exhibit an average seek

time or 25-35 ms.

Terminal traffic reported by iostat should be heavily output oriented unless terminal lines

are being used for data transfer by programs such as uucp. Input and output rates are very sys

tem specific. Screen editors such as vi and emacs tend to exhibit output/input ratios of anywhere

from 5/1 to 8/1. On one of our largest systems, 88 terminal lines plus 32 pseudo terminals, we

observed an average of 180 characters/second input and 450 characters/second output over 4 days

or operation.

z.z. Kernel proftllng

It is simple to build a 4.2BSD kernel that will automatically collect profiling information as

it operates simply by specifying the -p option to config (8) when configuring a kernel. The pro

gram counter sampling can be driven by the system clock, or by an alternate real time clock.

The latter is highly recommended as use of the system clock results in statistical anomalies in

accounting for the time spent in the kernel clock routine.

Once a profiling system has been booted statistic gathering is handled by kgmon (8). Kgmon

allows profiling to be started and stopped and the internal state of the profiling buffers to be

dumped. Kgmon can also be used to reset the state of the internal buffers to allow multiple

experiments to be run without rebooting the machine.

The profiling data is processed with gprof(I) to obtain information regarding the system's

operation. Profiled systems maintain histograms of the kernel program counter, the number of

invocations of each routine, and a dynamic call graph of the executing system. The postprocess

ing propagates the time spent in each routine along the arcs of the call graph. Gprof then gen

erates a listing for each routine in the kernel, sorted according to the time it uses including the

time of its call graph descendents. Below each routine entry is shown its (direct) call graph chil

dren, and how their times are propagated to this routine. A similar display above the routine

shows how this routine's time and the time or its descendents is propagated to its (direct) call

graph parents.

A profiled system is about 5-10% larger in its text space because of the calls to count the

subroutine invocations. When the system executes, the profiling data is stored in a buffer that is

1.2 times the size of the text space. All the information is summarized in memory, it is not neces

sary to have a trace file being continuously dumped to disk. The overhead for running a profiled

system varies; under normal load we see anywhere from 5-25% of the system time spent in the

profiling code. Thus the system is noticeably slower than an unprofiled system, yet is not so bad

that it cannot be used in a production environment. This is important since it allows us to gather

data in a real environment rather than trying to devise synthetic work loads.

Z.3. Kernel traelng

The kernel can be configured to trace certain operations by specifying "options TRACE" in

the configuration file. This forces the inclusion of code which records the occurrence of events in

trace records in a circular buffer in kernel memory. Events may be enabled/disabled selectively

while the system is operating. Each trace record contains a time stamp (taken from the VAX

hardware time or day clock register), an event identifier, and additional information which is

interpreted according to the event type. Buffer cache operations, such as initiating a read, include

the disk drive, block number, and transfer size in the trace record. Virtual memory operations,

May 14, 1984 LeiDer, et. al.

4.2BSD Performance -3- Observation techniques

such as a pagein completing, include the virtual address and process id in the trace record. The

circular buffer is normally configured to hold 256 16-byte trace records.l

Several user programs were written to sample and interpret the tracing information. One

program runs in the background and periodically reads the circular buffer of trace records. The

trace information is compressed, in some instances interpreted to generate additional information,

and a summary is written to a file. In addition, the sampling program can also record informa

tion from other kernel data structures, such as those interpreted by the vmstat program. Data

written out to a file is further buffered to minimize 1/0 load.

Once a trace log has been created, programs which compress and interpret the data may be

run to generate graphs showing the data and/or relationships between traced events and system

load.

The trace package was used mainly to investigate the operation of the file system buffer

cache. The sampling program maintained a history of read-ahead blocks and used the trace infor

mation to calculate, for example, percentage of read-ahead blocks used.

2.4. Benchmark programs

Benchmark programs were used in two ways. First, a suite of programs was constructed to

calculate the cost of certain basic system operations. Operations such as system call overhead

and context switching time are critically important in evaluating the overall performance of a sys

tem. Due to the drastic changes in the system between 4.1BSD and 4.2BSD, it was important to

verify the overhead of these low level operations had not changed appreciably.

The second use of benchmarks was in exercising suspected bottlenecks. When we suspected

a specific problem with the system, a small benchmark program was written to repeatedly use the

facility. While these benchmarks are not useful as a general tool they can give quick feedback on

whether a hypothesized improvement is really having an effect. It is important to realize that the

only real assurance that a change has a beneficial effect is through long term measurements of

general timesharing. We have numerous examples where a benchmark program suggests vast

improvements while the change in the long term system performance is negligible, and conversely

examples in which the benchmark program run more slowly, but the long term system perfor

mance improves significantly.

3. Results of our observations

When 4.2 was first installed on several large timesharing systems the degradation in perfor

mance was significant. Informal measurements indicated 4.2 performed at about 80% of that of

4.1 (based on load averages observed under a normal timesharing load). Many of the initial prob

lems found were due to programs which were not part of 4.1. Using the techniques described in

the previous section and standard process profiling several problems were identified. Later work

concentrated on the operation of the kernel itself. In this section we discuss the problems

uncovered; in the next section we describe the changes made to the system.

3.1. User programs

3.1.1. Mall system

The mail system was one of the first culprits identified as a major contributor to the degra

dation in system performance. At Lucasfilm the mail system is very heavily used on one machine,

a V AX-11/780 with eight megabytes of memory.2 Message traffic is usually between users on the

same machine and ranges from person-to-person telephone messages to per-organization

1 The standard trace facilitie3 dinributed with -4.2 actually dilfer slightly from those described here. The

time stamp in the dinributed system is calculated from the kernel's time of day variable instead of the VAX

hardware register, and the bulfer cache trace points do not record the transfer size.
2 During part oT these observations the machine had only four megabytes of memory.

May 14, 1984 LeiDer, et. al.

4.2BSD Performance - 4- Results of our observations

distribution lists. After conversion to 4.2, it was immediately noticed that mail to distribution
lists of 20 or more people caused the system load to jump by anywhere from 3 to 6 points. The
number of processes spawned by the sendmail program and the messages sent from sendmail to
the system logging process, syslog, generated significant load both from their execution and their
interference with basic system operation. The number of context switches and disk transfers
often doubled while send mail operated; the system call rate jumped dramatically. System
accounting information consistently showed sendmail as the top cpu user on the system.

3.1.2. Network servers

The network services provided in 4.2 add new capabilities to the system, but are not
without cost. The system uses one daemon process to accept requests for each network service
provided. The presence of a number of such daemons increases the numbers of active processes
and files, and requires a larger configuration to support the same number of users. The overhead
of the routing and status updates can be appreciable, on the order of several percent of the cpu.
Remote logins and shells incur more overhead than their local equivalents. For example, a remote
login utilizes three processes and a pseudo-terminal handler in addition to the local hardware ter
minal handler. When using a screen editor, sending and echoing a single character involves four
processes on two machines. The additional processes, context switching, network traffic, and ter
minal handler overhead can roughly triple the load presented by one local terminal user.

3.2. System overhead

To measure the costs of various functions in the kernel, a profiling system was run for a 17
hour period on one of our general timesharing machines. While this is not as reproducible as a
synthetic workload, it certainly represents a realistic test. This test was run on several occasions
over a three month period. Despite the long period of time that elapsed between the test runs the
shape of the profiles, as measured by the number of times each system call entry point was called,
were remarkably similar.

These profiles turned up several bottlenecks that are discussed in the next section. Several
of these were new to 4.2BSD, but most were caused by an overloading of a mechanism that
worked acceptably well in previous BSD systems. The general conclusion from our measurements
was that the ratio of user to system time had increased from 45% system I 55% user in 4.1BSD
to 57% system I 43% user in 4.2BSD.

3.2.1. Micro-operation benchmarks

To compare certain basic system operations between 4.1BSD and 4. 2BSD a suite of bench
mark programs was constructed and run on a V AX-111750 with 4.5 megabytes of physical
memory and two disks on a MASSBUS controller. Tests were run with the machine operating in
single user mode under both 4.1 and 4.2. Paging was localized to the drive where the root file
system was located.

The benchmark programs were modeled after the Kashtan benchmarks, [Kashtan80J, with
identical sources compiled under each system. The programs and their intended purpose are
described briefly prior to the presentation of the results. The benchmark scripts were run twice
with the results shown as the average of the two runs. The source code for each program and the
shell scripts used during the benchmarks are included in Appendix A.

The set of tests shown in Table 1 was concerned with system operations other than paging.
The intent of most benchmarks is clear. The result of running signocsw is deducted from the csw
benchmark to calculate the context switch overhead. The exec tests use two different jobs to
gauge the cost of overlaying a larger program with a smaller one and vice versa. The "null job"
and "big job" differ solely in the size of their data segments, 1 kilobyte versus 256 kilobytes. In
both cases the text segment of the parent is larger than that of the child.3 All programs were

• 3 These tests should a.lso ha.ve mea.sured the cost of expa.nding the text segment; unfortuna.tely time did not

permit running a.dditiona.l tests.

Leffier, et. al.

4.2BSD Performance - 5- Results of our observations

compiled into the default load format which causes the text segment to be demand paged out of
the file system and shared between processes.

Test Description

syscall perform 100,000 getpid system calls
csw perform 10,000 context switches using signals
signocsw send 10,000 signals to yourself
pipeself4 send 10,000 4-byte messages to yourself
pipeself512 send 10,000 512-byte messages to yourself
pipediscard4 send 10,000 4-byte messages to child who discards
pipediscard512 send 10,000 512-byte messages to child who discards
pipeback4 exchange 10,000 4-byte messages with child
pipeback512 exchange 10,000 512-byte messages with child
fork sO fork-exit-wait 1,000 times
forks1k sbrk(1024), fault page, fork-exit-wait 1,000 times
forks100k sbrk(102400), fault pages, fork-exit-wait 1,000 times
vforksO vfork-exit-wait 1,000 times
vforks1k sbrk(1024), fault page, vfork-exit-wait 1,000 times
vforks100k sbrk(102400), fault pages, vfork-exit-wait 1,000 times
execsOnull fork-exec "null job"-exit-wait 1,000 times
execs1knull sbrk(1024), fault page, fork-exec "null job"-exit-wait 1,000 times
execs100knull sbrk(102400), fault pages, fork-exec "null job"-exit-wait 1,000 times

vexecsOnull vfork-exec "null job"-exit-wait 1,000 times
vexecs1knull sbrk(1024), fault page, vfork-exec "null job"-exit-wait 1,000 times
vexecs100knull sbrk(102400), fault pages, vfork-exec "null job"-exit-wait 1,000 times
execsObig fork-exec "big job"-exit-wait 1,000 times
execs1kbig sbrk(1024), fault page, fork-exec "big job"-exit-wait 1,000 times
execs100kbig sbrk(102400), fault pages, fork-exec "big job"-exit-wait 1,000 times
vexecsObig vfork-exec "big job"-exit-wait 1,000 times
vexecs1kbig sbrk(1024), fault pages, vfork-exec "big job"-exit-wait 1,000 times
vexecs100kbig sbrk(102400), fault pages, vfork-exec "big job"-exit-wait 1,000 times

Table 1. Benchmark programs.

The results of these tests are shown in Table 2. Ir the 4.1 results are scaled to reflect their
being run on a VAX-11/750, they correspond closely to those indicated in [Joy80!.4

In studying the times we find the basic system call and context switching overhead have not
changed significantly between 4.1 and 4.2. The signocsw results reflect the fact that the signal

interface has changed, resulting in an additional subroutine invocation for each call, not to men
tion additional complexity in the system's implementation.

The times for the use of pipes are significantly higher under 4.2 due to their implementation
on top of the interprocess communication facilities. Under 4.1 pipes were implemented without
the complexity of the socket data structures and with simpler code. Further, while not obviously
a factor here, 4.2 pipes have less system buffer space provided them than 4.1 pipes.

The exec tests shown in Table 2 were performed with 34 bytes of environment information
under 4.1 and 40 bytes under 4.2. To figure the cost of passing data through the environment,
the execsOnull and execs1knull tests were rerun with 1065 additional bytes of data. The results
are show in Table 3. These results indicate passing argument data is significantly higher than
under 4.1: 121 msfbyte versus 93 ms/byte. Even using this factor to adjust the basic overhead of
an exec system call, this facility is more costly under 4.2 than under 4.1.

4 We &8sume tha.t a. VAX-11/750 runs a.t 60% of the speed of a. V AX-11/780 (not cousidering lloa.ting point

opera.tions).

May 14, 1984 Leffier; et. al.

4.2BSD Performance - 6- Results of our observations

Real User System
Test

4.1 4.2 4.1 4.2 4.1 4.2

syscall 28.0 29.0 4.5 5.3 23.9 23.7
CSW 45.0 44.0 3.5 3.7 19.5 18.7

signocsw 16.5 22.0 1.9 2.3 14.6 20.3

pipeselC4 21.5 29.0 1.1 1.1 20.1 28.0

pipeselC512 47.5 59.0 1.2 1.2 46.1 58.3

pipediscard4 32.0 42.0 3.2 3.7 15.5 18.8

pipediscard512 61.0 76.0 3.1 2.1 29.7 36.4
pipeback4 57.0 75.0 2.9 3.2 25.1 34.2

pipeback512 110.0 138.0 3.1 3.4 52.2 65.7

fork sO 37.5 41.0 0.5 0.3 34.5 37.6

rorks1k 40.0 43.0 0.4 0.3 36.0 38.8

forks100k 217.5 223.0 0.7 0.6 214.3 218.4

vforksO 34.5 37.0 0.5 0.6 27.3 28.5

vforks1k 35.0 37.0 0.6 0.8 27.2 28.6

vforks100k 35.0 37.0 0.6 0.8 27.6 28.9

execsOnull 97.5 92.0 3.8 2.4 68.7 82.5
execs1knull 99.0 100.0 4.1 1.9 70.5 86.8

execs 1 OOkn ull 283.5 278.0 4.8 2.8 251.9 269.3
vexecsOnull 100.0 92.0 5.1 2.7 63.7 76.8

vexecs1knull 100.0 91.0 5.2 2.8 63.2 77.1

vexecs100knull 100.0 92.0 5.1 3.0 64.0 77.7

exec sO big 129.0 201.0 4.0 3.0 102.6 153.5
execs1kbig 130.0 202.0 3.7 3.0 104.7 155.5

execs100kbig 318.0 385.0 4.8 3.1 286.6 339.1

vexecsObig 128.0 200.0 4.6 3.5 98.5 149.6
vexecs1kbig 125.0 200.0 4.7 3.5 98.9 149.3

vexecs100kbig 126.0 200.0 4.2 3.4 99.5 151.0

Table 2. Benchmark results (all times in seconds).

Test
Real User System

4.1 4.2 4.1 4.2 4.1 4.2

execsOnull 197.0 229.0 4.1 2.6 167.8 212.3

execs1knull 199.0 230.0 4.2 2.6 170.4 214.9

Table 3. Benchmark results with "large" environment (all times in seconds).

3.2.2. Path name translation

The single most expensive function performed by the kernel is path name translation. This

has been true in almost every UNIX kernel [Mosher80]; we find that our general time sharing sys

tems do about 500,000 name translations per day.

Name translations became more expensive in 4.2BSD for several reasons. The single most

expensive addition was the symbolic link. Symbolic links have the effect or increasing the average

number of components in path names to be translated. As an insidious example, consider the sys

tem manager that decides to change /tmp to be a symbolic link to /usr/tmp. A name such as

/tmp/tmp1234 that previously required two component translations, now requires four component

translations plus the cost of reading the contents or the symbolic link.

The new directory format also changes the characteristics of name translation. The more

complex format requires more computation to determine where to place new entries in a direc

tory. Conversely the additional information allows the system to only look at active entries when

May 14, 1984 LeiDer, et. al.

4.2BSD Performance -7- Results of our observations

searching, hence searches of directories that had once grown large but currently have few active

entries are checked quickly. The new format also stores the length of each name so that costly

string comparisons are only done on names that are the same length as the name being sought.

The net effect of the changes is that the average time to translate a path name in 4.2BSD is

24.2 milliseconds, representing 40% of the time processing system calls, which is 19% of the total

cycles in the kernel, or 11% of all cycles executed on the machine. The times are shown in Table

4. We have no comparable times for namei under 4.1 though they are certain to be significantly

less.

part time %of kernel

self 14.3 ms/call 11.3%
child 9.9 ms/call 7.9%

total 24.2 ms/call 19.2%

Table 4. Call times for namei.

3.2.3. Clock processing

Nearly 25% of the time spent in the kernel is spent in the clock processing routines. These

routines are responsible for implementing timeouts, scheduling the processor, maintaining kernel

statistics, and tending various hardware operations such as draining the terminal input silos.

Only minimal work is done in the hardware clock interrupt routine (at high priority), the rest is

performed (at a lower priority) in a software interrupt handler scheduled by the hardware inter

rupt handler. In the worst case, with a clock rate of 100 Hz and with every hardware interrupt

scheduling a software interrupt, the processor must field 200 interrupts per second. The overhead

of simply trapping and returning is 3% of the machine cycles, figuring out that there is nothing to

do requires an additional 2%.

3.2.4. Terminal multiplexors

The terminal multiplexors supported by 4.2BSD have programmable receiver silos that may

be used in two ways. With the silo disabled, each character received causes an interrupt to the

processor. Enabling the receiver silo allows the silo to fill before generating an interrupt, allowing

multiple characters to be read for each interrupt. At low rates of input, received characters will

not be processed for some time unless the silo is emptied periodically. The 4.2BSD kernel uses

the input silos of each terminal multiplexor, and empties each silo on each clock interrupt. This

allows high input rates without the cost of per-character interrupts while assuring low latency.

However, as character input rates on most machines are.usually quite low (about 25 characters

per second), this can result in excessive overhead. At the current clock rate of 100 Hz, a machine

with 5 terminal multiplexors configured makes 500 calls to the receiver interrupt routines per

second. In addition, to achieve acceptable input latency for flow control, each clock interrupt

must schedule a software interrupt to run the silo draining routines. 5 This implies that the worst

case estimate for clock processing is, in fact, the basic overhead for clock processing.

3.2.5. Process table management

In 4.2 there are numerous places in the kernel where a linear search of the process table is

performed:

• in exit to locate and wakeup a process's parent;

• in wait when searching for ZOMBIE and STOPPED processes;

6 It is not possible to check the input silos at the time of the actual clock interrupt without modifying the

terminal line disciplines, a.s the input queues may not be in a consistent state.

May 14, 1984 Leffier, et. al.

4.2BSD Performance -8- Results of our observations

• in fork when allocating a new process table slot and counting the number of processes already
created by a user;

• in newproc, to verify that a process id assigned to a new process is not currently in use;

• in kill and gsignal to locate all processes to which a signal should be delivered;

• in schedcpu when adjusting the process priorities every second; and

• in ached when locating a process to swap out and/or swap in.

These linear searches can incur significant overhead. The rule for calculating the size or the pro
cess table is:

nproc = 20 + 8 * maxusers

which means a 48 user system will have a 404 slot process table. With the addition of network
services in 4.2, as many as a dozen server processes may be maintained simply to await incoming
requests. These servers are normally created at boot time which causes them to be allocated slots
near the beginning of the process table. This means that process table searches under 4.2 are
likely to take significantly longer than under 4.1. System profiling indicates that as much as 20%
of the time spent in the kernel on a loaded system (a V AX-11/780) can be spent in schedcpu and,
on average, ~10% of the kernel time is spent in schedcpu. The other searches of the proc table
are similarly affected. This indicates the system can no longer tolerate using linear searches of the
process table.

3.2.8. Flle system buffer cache

The trace facilities described in section 2.3 were used to gather statistics on the performance
of the buffer cache. We were interested in measuring the effectiveness of the cache and the read
ahead policies. With the file system block size in 4.2 four to eight times that of a 4.1 file system,
we were concerned that large amounts of read-ahead might be performed without being used.
Also, we were interested in seeing if the rules used to size the buffer cache at boot time were
severely affecting the overall cache operation.

The tracing package was run over a three hour period during a peak mid-afternoon period
on a VAX 11/780 with four megabytes of physical memory. This resulted in a buffer cache con
taining 400 kilobytes or memory spread among 50 to 200 buffers (the actual number or buffers
depends on the size mix of disk blocks being read at any given time). The pertinent configuration
information is shown in Table 5.

Controller Drive Device File System

DEC MASSBUS DEC RP06 hpOd /usr
hpOb swap

Emulex SC780 Fujitsu Eagle hp1a /usr /spool/news
hp1b swap
hp1e /usr/src
hpld /uO (users)

Fujitsu Eagle hp2a /tmp
hp2b swap
hp2d /u1 (users)

Fujitsu Eagle hp3a j -

Table 5. Active file systems during buffer cache tests.

During the test period the load average ranged from 2 to 13 with an average of 5. The sys
tem had no idle time, 43% user time, and 57% system time. The system averaged 90 interrupts
per second (excluding the system clock interrupts), 220 system calls per second, and 50 context
switches per second (40 voluntary, 10 involuntary).

May 14, 1984 LeiDer, et. al.

4.2BSD Performance - g- Results or our observations

The active virtual memory (the sum or the address space sizes or all jobs that have run in
the previous twenty seconds) over the period ranged from 2 to 6 megabytes with an average of 3.5
megabytes. There was no swapping, though the page daemon was inspecting about 25 pages per
second.

On average 250 requests to read disk blocks were initiated per second. These include read
requests for file blocks made by user programs as well as requests initiated by the system. System
reads include requests for indexing information to determine where a file's next data block resides,
file system layout maps to allocate new data blocks, and requests for directory contents needed to
do path name translations.

On average, an 85% cache hit rate was observed for read requests. Thus only 37 disk reads
were initiated per second. In addition, 5 read-ahead requests were made each second filling ahout
20% of the buffer pool. Despite the policies to rapidly reuse read-ahead buffers that remain
unclaimed, more than 90% of the read-ahead buffers were used.

These measurements indicated that the buffer cache was working effectively. Independent
tests have also indicated that the size of the buffer cache may be reduced significantly on
memory-poor system without severe effects; we have not, as yet, tested this conjecture !Shan
non83J.

3.2.7. Network subsystem

The overhead associated with the network facilities found in 4.2 is often difficult to gauge
without profiling the system. This is because most input processing is performed in modules
scheduled with software interrupts. As a result, the system time spent performing protocol pro
cessing is rarely attributed to the processes which actually receive the data. Since the protocols
supported by 4.2 can involve significant overhead this was a serious concern. Results from a
profiled kernel indicate an average of 5% of the system time is spent performing network input
and timer processing in our environment (a 3Mb/s Ethernet with most traffic using TCP). This
figure can vary significantly depending on the network hardware used, the average message size,
and whether packet reassembly is required at the network layer. On one machine we profiled
over a 17 hour period (our gateway to the ARPANET) 206,000 input messages accounted for
2.4% or the system time, while another 0.6% or the system time was spent performing protocol
timer processing. This machine was configured with an ACC LH/DH IMP interface and a DMA
3Mb/s Ethernet controller.

The performance of TCP over slower long-haul networks was degraded substantially by two
problems. The first problem was a bug that prevented round-trip timing measurements from
being made, thus increasing retransmissions unnecessarily. The second was a problem with the
maximum segment size chosen by TCP, which was well-tuned for Ethernet, but which was poorly
chosen for the ARPANET, where it causes packet fragmentation. (The maximum segment size
was actually negotiated upwards to a value which resulted in excessive fragmentation.)

3.2.8. VIrtual memory subsystem

We ran a set of tests intended to exercise the virtual memory system under both 4.1 and
4.2. The tests are described in Table 6. The test programs dynamically allocated a 7.3 Megabyte
array (using sbrk (2)) then referenced pages in the array either: sequentially, in a purely random
fashion, or such that the distance between successive pages accessed was randomly selected from a
Gaussian distribution. In the last case, successive runs were made with increasing standard devia
tions.

The results in Table 7 show how the additional memory requirements of 4.2 can generate
more work (or the paging system. Under 4.1, the system used 0.5 of the 4.5 megabytes of physi
cal memory on the test machine; under 4.2 it used nearly 1 megabyte or physical memory .6 This

0 The 4.1 system used for teeting Wil.ll a.ctna.lly a. 4.1a. eystem configured with networking fa.cilitiee a.nd code
to support remote file a.ccees. The 4.2 eyetem a.bo included the remote file a.ccess code. Since both systeDI.I!
would be la.rger tha.n eimila.rly configured "va.nilla." 4.1 or 4.2 system, we consider out conclusions to still be

May 14, 1984 Leffier, et. al.

4.2BSD Performance - 10- Results of our observations

Test Description

seqpage sequentially touch pages, 10 iterations
seqpage-v as above, but first make vadvise (2) call
rand page touch random page 30,000 times
randpage-v as above, but first make vadvise call
gausspage.1 30,000 Gaussian accesses, standard deviation of 1

gausspage.lO as above, standard deviation of 10

gausspage.30 as above, standard deviation or 30
gausspage.40 as above, standard deviation or 40
gausspage.50 as above, standard deviation or 50

gausspage.60 as above, standard deviation or 60
gausspage.80 as above, standard deviation of 80
gausspage. inC as above, standard deviation or 10,000

Table 6. Paging benchmark programs.

resulted in more page faults and, hence, more system time. To establish a common ground on

which to compare the paging routines of each system, we check instead the average page fault

service times for those test runs which had a statistically significant number of random page

faults. These figures, shown in Table 8, indicate no significant difference between the two systems

in the area of page fault servicing. We currently have no explanation for the results of the

sequential paging tests.

Real User System Page Faults
Test

4.1 4.2 4.1 4.2 4.2 4.1 4.1 4.2

seqpage 959 1126 16.7 12.8 197.0 213.0 17132 17113

seqpage-v 579 812 3.8 5.3 216.0 237.7 8394 8351

rand page 571 569 6.7 7.6 64.0 77.2 8085 9776

randpage-v 572 562 6.1 7.3 62.2 77.5 8126 9852

gausspage.1 25 24 23.6 23.8 0.8 0.8 8 8

gausspage.10 26 26 22.7 23.0 3.2 3.6 2 2

gausspage.30 34 33 25.0 24.8 8.6 8.9 2 2

gauss page. 40 42 81 23.9 25.0 11.5 13.6 3 260

gausspage.50 113 175 24.2 26.2 19.6 26.3 784 1851

gausspage.60 191 234 27.6 26.7 27.4 36.0 2067 3177

gausspage.80 312 329 28.0 27.9 41.5 52.0 3933 5105

gausspage.inf 619 621 82.9 85.6 68.3 81.5 8046 9650

Table 7. Paging benchmark results (all times in seconds).

Test
Page Faults PFST

4.1 4.2 4.1 4.2

rand page 8085 9776 791 789
randpage-v 8126 9852 765 786
gausspage .in(8046 9650 848 844

Table 8. Page fault service times (all times in microseconds).

valid.

May 14, 1984 Lemer, et. al.

4.2BSD Performance - 11- System Changes

4. System Changes

This section outlines the changes made to the system since the 4.2 distribution. The

changes reported here were made in response to the problems described in section 3.

4.1. User programs

Several changes were made in the C library which affected many user programs.

4.1.1. Hashed data bases

A new version or the dbm (3X) library was created which supported multiple open data base

files per process. This was then used to rewrite the access routines for the password and host data

bases. These changes had most significant impact on the performance of the mail system, partic

ularly in a large user and/or host environment (e.g. the ARPANET).

4.1.2. Buffering 1/0

The new filesystem with its larger block sizes allows better performance, but it is possible to

degrade system performance by performing numerous small transfers rather than using

appropriately-sized buffers. The standard 1/0 library automatically determines the optimal buffer

size for each file. Some C library routines and commonly-used programs use low-level 1/0 or

their own buffering, however. One such problem was found in the ttyslot library function, which

read from the ttys file one character at a time. This was changed so that reads were buffered.

Two other problems were found in the loader and the assembler, both of which used their own

buffering schemes. One kilobyte buffers, as opposed to buffers equal in size to the the filesystem

block size were discovered. Both have been changed to choose their buffer sizes appropriately for

the underlying filesystem.

The standard error output has traditionally been unbuffered in order to prevent delay in

presenting the output to the user, and to prevent it from being lost if buffers are not flushed. The

inordinate expense of sending single-byte packets through the network led us to impose a

buffering scheme on the standard error stream. Within a single call to fprintf, all output is

buffered temporarily. Before the call returns, all output is flushed and the stream is again marked

unbuffered. As before, the normal block or line buffering mechanisms can be used instead of the

default behavior.

It is possible for programs with good intentions to unintentionally defeat the standard 1/0

library's choice of 1/0 buffer size by using the setbuf call to assign an output buffer. Due to por

tability requirements, the default buffer size provided by setbuf is 1024 bytes; this can lead, once

again, to added overhead. One such program with this problem was cat; there are undoubtedly

other standard system utilities with similar problems as the system has changed much since they

were originally written.

4.1.3. Mall system

The problems indicated in section 3.1.1 prompted significant work on the entire mail sys

tem. The first problem identified was a bug in the syslog program. The mail delivery program,

sendmaillogs all mail transactions through this process with the 4.2 interprocess communication

facilities. Syslog then records the information in a log file. Unfortunately, syslog was performing

a sync operation after_ each message it received, whether it was logged to a file or not. This

wreaked havoc on the e·ffectiveness of the buffer cache and explained, to a large extent, why send

ing mail to large distribution lists generated such a heavy load on the system (one syslog message

was generated for each message recipient causing almost a continuous sequence of sync opera

tions).

The hashed data base files were installed in all mail programs, resulting in a order of magni

tude speedup on large distribution lists. The code in /bin/ mail which notifies the comsat program

when mail has been delivered to a user was changed to cache host table lookups, resulting in a

similar speedup on large distribution lists. Next, the file locking facilities provided in 4.2,

May 14, 1984 LeiDer, et. al.

4.2BSD Performance - 12- System Changes

flock (2), were used in place of the old locking mechanism. This yielded another 10% cut in the
basic overhead of delivering mail. Finally sendmail was compiled without debugging code, reduc
ing the overhead by another 5%.

The resultant system, while much faster than that originally distributed with 4.2, was still
too costly to run at Lucasfilm. This forced the sendmail program to be replaced with a simpler
delivery system, sm, which is 2-3 times faster than the revamped sendmail [Ostby84J. The speed
is gained through:

• smaller code (the work performed by sendmail is distributed among many programs),

• no configuration file (everything is compiled in),

• simpler address parsing,

• buffering small mail messages in memory rather than rereading a temporary file7,

• performing local mail delivery directly, and

• performing fewer forks.

In addition sm logs only critical errors.

4.1.4. Network servers

The overhead generated by having one server process always present listening for each ser
vice caused a redesign of the basic mechanism by which a server program is created. Rather than
having many servers started at boot time, a single server, inetd was substituted. This process
reads a simple configuration file which specifies the services the system is willing to support and
listens for service requests on each service's Internet port. When a client requests service the
appropriate server is created and passed a service connection as its standard input. Servers whi~h
require the identity of their client may use the getpeername system call; likewise getsockname

may be used to find out a server's local address without consulting data base files. This scheme is
very attractive for several reasons:

• it eliminates as many as a dozen processes, easing system overhead and allowing the file and
text tables to be made smaller,

• servers need not contain the code required to handle connection queueing, simplifying the pro
grams, and

• installing and/or replacing servers becomes simpler.

With an increased numbers of networks, both local and external to Berkeley, we found that
the overhead of the routing process was becoming inordinately high. Several changes were made
in the routing daemon to reduce this load. Routes to external networks are no longer exchanged
by routers on the internal machines, only a route to a default gateway. This reduces the amount
or network traffic and the time required to process routing messages. In addition, the routing dae
mon was profiled and functions responsible for large amounts of time were optimized. The major
changes were a faster hashing scheme, and inline expansions or the ubiquitous byte-swapping
functions.

Under certain circumstances, when output was blocked, attempts by the remote login pro
cess to send output to the user were rejected by the system, although a prior select call had indi
cated that data could be sent. This resulted in continuous attempts to write the data until the
remote user restarted output. This problem was initially avoided in the remote login handler, and
the original problem in the kernel has since been corrected.

7 This ca.n renlt in me:5sa.gea being !oat if the system cruhes while the message is buffered in memory. In

suring this doe! not hppen is possible with the proper •endmail configuration, but is costly since it require!

several disk writes per me:5sa.ge.

May 14, 1984 Leffier, et. al.

4.2BSD Performance - 13- System Changes

4.2. Kernel changes

Several changes were made to speed up the bottlenecks discovered in the kernel.

4.2.1. Name eaehelng

The system measurements collected indicated the pathname translation routine, namei, was
clearly worth optimizing. An inspection of namei shows that it consists of two nested loops. The
outer loop is traversed once per pathname component. The inner loop performs a linear search
through a directory looking for a particular pathname component.

Our first idea was to use the fact that many programs step through a directory performing
an operation on each entry in turn. This caused us to modify namei to cache the directory offset
or the last pathname component looked up by a process. The cached offset is then used as the
point at which a search in the same directory begins. Changing directories invalidates the cache,
as does modifying the directory. For programs which step sequentially through a directory with
N files, search time decreases from O(N?) to O(N).

The cost of the cache is about 20 lines of code (about 0.2 kilobytes) and 16 bytes per pro
cess, with the cached data stored in a process's user vector.

As a quick benchmark to verify the effectiveness of the cache we ran "Is -1" on a directory
containing 600 files. Before the per-process cache this command used 22.3 seconds of system
time. After adding the cache the program used the same amount of user time, but the system
time dropped to 3.3 seconds.

This change prompted our rerunning a profiled system on a machine containing the new
namei. The results indicated the time in namei dropped by only 2.6 msfcall and still accounted
for 36% of the system call time, 18% of the kernel, or about 10% of all the machine cycles. This
amounted to a drop in system time from 57% to about 55%. The results are shown in Table 9.

part time %or kernel

self 11.0 ms/call 9.2%
child 10.6 ms/call 8.9%

total 21.6 ms/call 18.1%

Table 9. Call times for namei with per-process cache.

The relatively small performance improvement was caused by a low cache hit ratio.
Although the cache was 00% effective when hit, it was only usable on about 25% of the names
being translated. An additional reason for the small improvement was that although the amount
or time spent in namei itself decreased substantially, more time was spent in the routines that it
called since each directory had to be accessed twice; once to search from the middle to the end,
and once to search from the beginning to the middle.

Most missed names were caused by path name components other than the last. Thus
Robert Elz introduced a cache of most recent name translations8. This had the effect of short cir
cuiting the outer loop of namei. For each path name component, namei first looks in its cache of
recent translations for the needed name. IC it exists, the directory search can be completely elim
inated. IC the name is not recognized, then the per-process cache may still be useful in reducing
the directory search time. The two cacheing schemes complement each other well.

The cost of the name cache is about 200 lines of code (about 1.2 kilobytes) and 44 bytes per
cache entry. Depending on the size of the system, about 200 to 1000 entries will normally be
configured, using 10-44 kilobytes of physical memory. The name cache is resident in memory at
all times.

8 The cache is keyed on a name and the inode and device number of the directory that contains it. Associat
ed with each entry is a pointer to the corresponding entry in the inode table.

May 14, 1984 Leffier, et. al.

4.2BSD Performance - 14- System Changes

After adding the system wide name cache we reran "Is -1" on the same directory. The user

time remained the same, however the system time rose slightly to 3. 7 seconds. This was not

surprising as namei now had to maintain the cache, but was never able to make any use or it.

Another profiled system was created and measurements were collected over a 17 hour

period. These measurements indicated a 6 msfcall decrease in namei, with namei accounting for

only 31% or the system call time, 16% or the time in the kernel, or about 7% of all the machine

cycles. System time dropped from 55% to about 49%. The results are shown in Table 10.

part time %or kernel

self 9.5 msfcall 9.6%
child 6.1 msfcall 6.1%

total 15.6 ms/call 15.7%

Table 10. Call times for namei with both caches.

Statistics on the performance of both caches indicate the large performance improvement is

caused by the high hit ratio. On the profiled system a 60% hit rate was observed in the system

wide cache. This, coupled with the 25% hit rate in the per-process offset cache yielded an

effective cache hit rate of 85%. While the system wide cache reduces both the amount of time in

the routines that namei calls as well as namei itself (since fewer directories need to be accessed or

searched), it is interesting to note that the actual percentage or system time spent in namei itself

increases even though the actual time per call decreases. This is because less total time is being

spent in the kernel, hence a smaller absolute time becomes a larger total percentage.

4.2.2. Auto-sllolng termlnallnput

We observed a low rate of terminal input on most of our systems, which motivated us to

re-enable interrupts on a per-character basis. This would allow us to save the high overhead

incurred by the system in draining the input silos or the terminal multiplexors at each clock inter

rupt. Unfortunately, this change would result in huge interrupt loads during periods or heavy

input from networks, high-speed devices or malfunctioning terminal connections. We therefore

changed the terminal multiplexor handlers to dynamically choose between the use or the silo and

the use of per-character interrupts. At low input rates the handler processes characters on an

interrupt basis, avoiding the overhead or checking each interface on each clock interrupt. During

periods or sustained input, the handler enables the silo and starts a timer to drain input. This

timer runs less frequently than the clock interrupts, and is used only when there is a substantial

amount or input. The transition from using silos to an interrupt per character is damped to

minimize the number of transitions with bursty traffic (such as in network communication). Input

characters serve to flush the silo, preventing long latency. By switching between these two modes

or operation dynamically, the overhead or checking the silos is incurred only when necessary.

In addition to the savings in the terminal handlers, the clock interrupt routine is no longer

required to schedule a software interrupt after each hardware interrupt for the purpose or draining

the silos. The software-interrupt level portion of the clock routine is only needed when timers

expire or the current user process is collecting an execution profile. Accordingly, the number or

interrupts attributable to clock processing is substantially reduced.

4.2.3. Process table management

As noted in section 3.2.5, the linear searches or the process table can result in significant

overhead. Consequently, we incorporated changes made by Robert Elz to eliminate all linear

searches or the process table. Three separate linked lists are maintained for all: active (allocated)

process table entries, inactive (unallocated) process table entries, and for processes in zombie

state. These lists eliminate the most expensive process table searches performed by the system.

In addition, pointers in the process structure which maintain related processes in a tree structure

and which previously had been maintained but not used, were finally used to eliminate the linear

May 14, 1984 Leffier, et. al.

4.2BSD Performance - 15- System Changes

searches for parent and sibling processes. These changes were incorporated too late for us to
accurately measure the reduction in system overhead.

5. Future work

Many areas for further work still exist. There is still a need to reduce the overhead intro
duced by the revised system call interfaces for pipes and signals, and for existing facilities such n.s

exec. The system wide name cache does not currently support the inclusion of "." and " .. ";
adding this capability may significantly increase the hit rate. The 100 Hz clock rate needs to be
more carefully examined. The initial motivation for this change, to increase the precision of all
timing facilities, must be weighed against the basic clock processing overhead. Tom Ferrin has
experimented with cutting the clock rate in half with some success [Ferrin84]; it is unclear
whether this will result in a significant gain given the changes already made to the clock handling
code. Finally, several anomalous test results need to be understood and the late changes to the

handling of the process table need to be evaluated.

&. Conclualona

4.2BSD, while functionally superior to 4.1BSD, lacked much of the performance tuning
required of a good system. We found that the distributed system spent 10-20% more time in the
kernel than 4.1. This added overhead combined with problems with several user programs
severely limited the overall performance of the system in a general timesharing environment.

Changes made to the system since the 4.2 distribution have eliminated most of the added
system overhead by replacing old algorithms and/or introducing additional cacheing schemes. The
combined caches added to the name translation process reduce the average cost of translating a
pathname to an inode by 35%. These changes reduee the percentage of time spent running in the
system by nearly 9%.

The use of silo input on terminal ports only when necessary has allowed the system to avoid
a large amount of software interrupt processing. Observations indicate the system is forced to
field about 25% fewer interrupts than before.

The kernel changes, combined with many bug fixes, make the system much more responsive
in a general timesharing environment. The system now appears capable of supporting loads at
least as large as supported under 4.1 while providing all the new interprocess communication, net
working, and file system facilities.

Aeknowledgements
We would like to thank Robert Elz for sharing his ideas and his code for cacheing system

wide names and searching the process table. We also acknowledge George Goble who dropped
many of our changes into his production system and reported back fixes to the disasters that they
caused. Eben Ostby did the work on the mail system. The buffer cache read-ahead trace pack
age was based on a program written by Jim Lawson. Ralph Campbell implemented several of the
C library changes. The original version of the Internet daemon was written by Bill Joy. In addi
tion, we would like to thank the many other people that contributed ideas, information, and work
while the system was undergoing change.

Referenees

[Ferrin84]

[Joy80]

[Kashtan80]

Ferrin, Tom, private communication, January 1984.

Joy, William, "Comments on the performance of UNIX on the VAX",
Computer System Research Group, U.C. Berkeley. April 1980.

Kashtan, David L., "UNIX and VMS, Some Performance Comparisons",
SRI International. February 1980.

May 14, 1984 Leffier, et. a!.

4.2BSD Performance

!Mosher80J

!Ostby84J

!Ritchie7 4J

!Shannon83J

- 16- References

Mosher, David, "UNIX Performance, an Introspection", Presented at the

Boulder, Colorado Usenix Conference, January 1980. Copies of the paper

are available from Computer System Research Group, U.C. Berkeley.

Ostby, Eben, "SM: A Small Mailer", Lucasfilm TM. April 25, 1984.

Ritchie, D. M. and Thompson, K., "The UNIX Time-Sharing System",

CACM 17, 7. July 1974. pp 365-375

Shannon, W., private communication, July 1983

May 14, 1984 Lerner, et. al.

4.2BSD Performance - 17 - Appendix A - Benchmark sources

Appendix A - Benchmark sources
The programs shown here run under 4.2 with only routines from the standard libraries.

When run under 4.1 they were augmented with a getpagesize routine and a copy of the

random function from the C library. The vforks and vexecs programs are constructed

from the forks and execs programs, respectively, by substituting calls to fork with calls

to vfork.

syscall

I* * System call overhead benchmark.

*I
main(argc, argv)

char -*argv[J;
{

register lnt ncalls;

It (argc < 2) {
print((" usage: %s #syscalls\n", argv[OJ);
exit(1);

}

}
ncalls - atoi(argv [1]);
whlle (ncalls- > 0)

(void) getpid();

csw

I* * Context switching benchmark.

* Force system to context switch f!*nsigs
* times by forking and exchanging signals.
* To calculate system overhead for a context
* switch, the signocsw program must he run
* with nsigs. Overhead is then estimated by
* tl = time csw <n>
* t!! = time signocsw < n>
* overhead = tl - !! * t!!;

*I
#Include <signal.h>

lnt sigsub();
lnt otherpid;
lnt nsigs;

main(argc, argv)
char -*argv[J;

{
lnt pid;

It (argc < 2) {
printf("usage: %s nsignals\n", argv[O]);
exit(1);

}
nsigs - atoi(argv[1]);

May 14, 1984

mazn

mazn

Lerner, et. al.

4.2BSD Performance - 18 - Appendix A - Benchmark sources

}

sigsub()
{

}

slgnocsw

I*

signal(SIGALRM, sigsub);
otherpid = getpid();
pid = fork();
lf (pid != 0) {

}
for (;;)

otherpid = pid;
kill(otherpid, SIGALRM);

sigpause(0);

signal(SIGALRM, sigsub);
kill(otherpid, SIGALRM);
lf (-nsigs <= 0)

exit(O);

* Signal without context switch benchmark.

*I
#include <signal.h>

tnt pid;
tnt nsigs;
tnt sigsub();

main(argc, argv)
char ~rgviJ;

{
register lnt i;

lf (argc < 2) {
printr("usage: %s nsignals\n", argv[O]);
exit(1);

}

sigsub()
{

}

}
nsigs - atoi(argv[1]);
signal(SIGALRM, sigsub);
pid = getpid();
for (i = 0; i < nsigs; i++)

kill(pid, SIGALRM);

signal(SIGALRM, sigsub);

May 14, 1984

sigsub

mazn

sigsub

Lerner, et. al.

4.2BSD Performance - 19 - Appendix A - Benchmark sources

plpeaelt

I*
* /PC benchmark,
* write to self using pipes.

*I

main(argc, argv)

{

}

ehar ~rgv[J;

ehar buf[512];
tnt fd[2], msgsize;
register tnt i, iter;

If (argc < 3) {

}

printr("usage: %s iterations message-size\n", argv[O]);
exit(1);

argc-, argv++;
iter = atoi(~rgv);
argc-, argv++;
msgsize = atoi(~rgv);
If (msgsize > slseof (buf) II msgsize <= 0) {

printC("%s: Bad message size.\n", ~rgv);

exit(2);
}
If (pipe(fd) < 0) {

perror(" pipe");
exit(3);

}
for (i - 0; i < iter; i++) {

write(fd[1], buf, msgsize);
read(fd[O], buf, msgsize);

}

plpedlseard

I* * /PC benchmark/,
* write and discard using pipes.

*I

main(argc, argv)

{
ehar ~rgv[J;

ehar bu£[512];
tnt fd[2J, msgsize;
register lnt i, iter;

It (argc < 3) {
printf("usage: %s iterations message-size\n", argv[O]);
exit(1);

}
argc-, argv++;
iter = atoi(~rgv);

May 14, 1984

mazn

mazn

Lerner, et. al.

4.2BSD Performance - 20 - Appendix A - Benchmark sources

}

argc-, argv++;
msgsize = atoi(*argv);
ll (msgsize > slzeof (buf) II msgsize <= 0) {

printf("%s: Bad message size. \n", ~rgv);
exit(2);

}
ll (pipe(fd) < 0) {

perror("pipe");
exit(3);

}
ll (fork() == 0)

else

for (i = 0; i < iter; i++)
read(fd[O], buf, msgsize);

for (i - 0; i < iter; i++)
write(fd[l], buf, msgsize);

plpebaek

I* * fPC benchmark,
* read and reply using pipes.

* * Process forks and exchanges messages
* over a pipe in a request-response fashion.

*I
main(argc, argv)

{
char ~rgv!J;

char bufi512J;
tnt fd[2], fd2[2J, msgsize; ·
register tnt i, iter;

ll (argc < 3) {
printf("usage: %s iterations message-size\n", argv[O]);
exit(1);

}
argc-, argv++;
iter = atoi(*argv);
argc-, argv++;
msgsize = atoi(*argv);
If (msgsize > sbeof (buf) II msgsize <= 0) {

printf("%s: Bad message size.\n", ~rgv);

exit(2);
}
ll (pipe(fd) < 0) {

perror("pipe");
exit(3);

}
ll (pipe(fd2) < 0) {

perror(" pipe");
exit(3);

}

May 14, 1984

mazn

Lerner, et. al.

4.2BSD Performance - 21 - Appendix A - Benchmark sources

}

It (fork() == 0)

else

for (i - 0; i < iter; i++) {
read(Cd!OJ, bur, msgsize);
write(fd2l1J, bur, msgsize);

}

for (i - 0; i < iter; i++) {
write(Cdl1], bur, msgsize);
read(fd2IOJ, bur, msgsize);

}

forks

I* * Benchmark program to calculate fork+wait

* overhead (approximately}. Process
* forks and exits while parent waits.
* The time to run this program is used
* in calculating exec overhead.

*I
main(argc, argv)

{
char ~rgviJ;

register tnt o(orks, i;

char ~p;

lot pid, child, status, brksize;

lf (argc < 2) {

}

printf("usage: %s number-of-forks sbrk-size\n", argv!OJ);

exit(1);

n(orks - atoi(argvl1]);
lf (nforks < 0) {

}

printf("%s: bad number o(forks\n", argvi1J);
exit(2);

brksize = atoi(argvi2J);
lf (brksize < 0) {

}

printr("%s: bad size to sbrk\n", argvi2J);
exit(3);

cp - (char *)sbrk(brksize);
lf ((lnt)cp == -1) {

perror(" sbrk");
exit(4);

}
for (i - 0; i < brksize; += 1024)

cpliJ = i;
whUe (nforks- > 0) {

child = fork();
It (child == -1) {

perror(" fork");
exit(-1);

mazn

May 14, 1984 Lerner, et. al.

4.2BSD Performance - 22 - Appendix A - Benchmark sources

}
exit(O);

}

}
If (child == 0)

_exit(-1);
while ((pid = wait(&status)) != -1 && pid != child)

exec:~

I* * Benchmark program to calculate exec
* overhead (approximately). Process
* forks and execs "nulr test program.
* The time to run the fork program should
* then be deducted from this one to
* estimate the overhead for the exec.

*I

main(argc, argv)

{
char *'argvl];

register lnt nexecs, i;
char -litp, ~brk();

lnt pid, child, status, brksize;

If (argc < 3) {

}

printf("usage: %s number-of-execs sbrk--size job-name\n",

argv[OJ);
exit(1);

nexecs - atoi(argv[1]);
If (nexecs < 0) {

}

printf("%s:. bad number of execs\n", argv[1J);
exit(2);

brksize = atoi(argv[2J);
If (brksize < 0) {

}

printf("%s: bad size to sbrk\n", argv[2]);
exit(3);

cp - sbrk(brksize);
If ((lnt)cp == -1) {

perror(" sbrk");
exit(4);

}
for (i = 0; i < brksize; += 1024)

cp[iJ = i;
whlle (nexecs- > 0) {

child = fork();
If (child == -1) {

perror("fork");
exit(-1);

}

mazn

May 14, 1984 Lerner, et. al.

4.2BSD Performance - 23 - Appendix A - Benchmark sources

it (child == 0) {

}

execv (argv [31, argv);
perror(" execv");
_ exit(-1);

whlle ((pid = wait(&status)) != -1 && pid != child)

}

nul)job

I*

}
exit(O);

* Benchmark "null job" program.

*I

main(argc, argv)

{

}

blgJob

I*

char *argv[];

exit(O);

* Benchmark "null big job" program.

*I
I* 250 here is intended to approximate vi's tezt+data size *I
char space[l024 * 250] = "force into data segment";

main(argc, argv)
char *argv[];

{

exit(O);
}

May 14, 1984

mazn

mazn

Leffler, et. al.

4.2BSD Performance - 24 - Appendix A - Benchmark sources

aeqpage

I* * Sequential page access benchmark.

*I
#lnelude <sys fvadvise.h>

char *Yalloc();

main(argc, argv)

{

again:

usage:

char -llargv[];

register i, niter;
register ehar .Jtpf, ~astpage;

lnt npages = 4000, pages1ze, vfiag - 0;
char .Jtpages, *name;

name = argv[OI;
argc-, argv++;

If (argc < 1) {

}

printf("usage: %s [-v I [-p #pages I niter\n", name);
exit(1);

If (strcmp(-llargv, "-p") 0) {

}

argc-, argv++;
lf (argc < 1)

goto usage;
npages = atoi(-llargv);
If (npages <= 0) {

}

printf("%s: Bad page count. \n", -llargv);
exit(2);

argc-, argv++;
goto again;

If (strcmp(-~~argv, "-v") 0) {

}

argc-, argv++;
vfiag++;
goto again;

niter - atoi(-llargv);
pagesize = getpagesize();
pages = valloc(npages * pagesize);
If (pages == (char *)0) {

}

printf("Can't allocate %d pages (%2.1f megabytes).\n",
npages, (npages * pagesize) / (1024. • 1024.));

exit(3);

lastpage = pages + (npages * pagesize);
If (vfiag)

vadvise(V A_ SEQL);
for (i = 0; i < niter; i++)

for (pf = pages; pf < lastpage; pf += pagesize)

mazn

May 14, 1984 Lerner, et. al.

4.2BSD Performance - 25 - Appendix A - Benchmark sources

}

rand page

I*

"Pf - 1;

* Random page access benchmark.

*I
#lnelude <sys fvadvise.h>

char *Valloc();
lnt rand();

main(argc, argv)

{

again:

usage:

char ~rgv[J;

register lnt npages = 4096, pagesize, pn, i, niter;
tnt vfiag = 0, debug = 0;
char '*J>ages, *Dame;

name = argviOI;
argc-, argv++;

If (argc < 1) {

mazn

printf("usage: %s I -d I I -v I I -p #pages I niter\n", name);
exit(1);

}
If (strcmp(*argv, "-p")

argc-, argv++;
If (argc < 1)

0) {

goto usage;
npages = atoi(*argv);
If (npages <= 0) {

printf("%s: Bad page count.\n", *argv);
exit(2);

}

}
argc-, argv++;
goto again;

If (strcmp(*argv, "-v")

}

argc-, argv++;
vflag++;
goto again;

If (strcmp(*argv, "-d")

}

argc-, argv++;
debug++;
goto again;

niter - atoi(*argv);
pagesize = getpagesize();

0) {

0) {

pages = valloc(npages * pagesize);
If (pages ==,(char *)0) {

printf("Can 't allocate %d pages (%2.1f megabytes).\n",

May 14, 1984 Lerner, et. al.

4.2BSD Performance - 26 - Appendix A - Benchmark sources

}

}
lt (vfiag)

npages, (npages " pagesize) I (1024. :t 1024.));

exit(3);

vadvise(V A_ ANOM);
for (i = 0; i < niter; i++) {

}

pn = random() % npages;
lt (debug)

printr("touch page %d\n", pn);

pageslpagesize " pnj = 1;

gaus•page

I*
" Random page access with
" a gaussian distribution.

" " Allocate a large (zero fill on demand} address
" space and fault the pages in a random gaussian

" order.

*I
ftoat sqrt(), log(), rnd(), cos(), gauss();
ehar :tvalloc();
lnt rand();

main(argc, argv)

{

again:

usage:

ehar -*argviJ;

register lnt pn, i, niter, delta;
register ehar :tpages;
ftoat sd = 10.0;
lnt npages = 4096, pagesize, debug - 0;

ehar ~arne;

name = argviOJ;
argc-, argv++;

If (argc < 1) {

printf(
"usage: %s I -<1 I I -p #pages I I -s standard-deviation J iterations\n", name);

exit(1);
}
lt (strcmp(-*argv, "-s") 0) {

argc-, argv++;
lt (argc < 1)

goto usage;
sscanf(-*argv, "%f", &sd);

lt (sd <= 0) {

}

printf("%s: Bad standard deviation.\n", -*argv);

exit(2);

mazn

May 14, 1984 Lerner, et. al.

4.2BSD Performance - 27 - Appendix A - Benchmark sources

}

float

}

argc-, argv++;
goto again;

It (strcmp(*argv, "-p") 0) {

}

argc-, argv++;
lf (argc < 1)

goto usage;
npages = atoi(*argv);
If (npages <= 0) {

}

printf("%s: Bad page count.\n", *argv);
exit(2);

argc-, argv++;
goto again;

lt (strcmp(*argv, "--d") 0) {

}

argc-, argv++;
debug++;
goto again;

niter - atoi(*argv);
pagesize = getpagesize();
pages = valloc(npages*J>agesize);
lf (pages == (char *)0) {

}
pn - 0;

printf("Can't allocate %d pages (%2.1f megabytes).\n",
npages, (npages~agesize) / (1024. * 1024.));

exit(3);

for (i - 0; i < niter; i++) {
delta = gauss(sd, 0.0);

}

while (pn + delta < 0 II pn + delta > npages)
delta = gauss(sd, 0.0);

pn += delta;
lf (debug)

printf("touch page %d\n", pn);
else

pages!pn * pagesize] = 1;

gauss(sd, mean) gauss

{

}

float
rnd()

float sd, mean;

register float qa, qb;

qa = sqrt(log(rnd()) * -2.0);
qb = 3.14159 * rnd();
return (qa * cos(qb) * sd + mean);

May 14, 1984

rnd

Lerner, et. al.

4.2BSD Performance - 28 -

{
datle lnt seed = 1;
atatle lnt biggest = Ox7fffrrrf;

return ((noat)rand(seed) / (noat)biggest);
}

run (shell serlpt)

#! /bin fcsh -fx
Script to run benchmark programs.

* date
make clean; time make
time syscall 100000
time seqpage -p 7500 10
time seqpage -v -p 7 500 10
time randpage -p 7500 30000
time randpage -v -p 7500 30000
time gausspage -p 7500 -s 1 30000
time gausspage -p 7500 -s 10 30000
time gausspage -p 7500 -s 30 30000
time gausspage -p 7500 -s 40 30000
time gausspage -p 7500 -s 50 30000
time gausspage -p 7500 -s 60 30000
time gausspage -p 7500 -s 80 30000
time gausspage -p 7500 -s 10000 30000
time csw 10000
time signocsw 10000
time pipeseir 10000 512

'time pipeseir 10000 4
time udgself 10000 512

· time udgseiC 10000 4
time pipediscard 10000 512
time pipediscard 10000 4
time udgdiscard 10000 512
time udgdiscard 10000 4
time pipeback 10000 512
time pipeback 10000 4
time udgback 10000 512
time udgback 10000 4
size forks
time forks 1000 0
time forks 1000 1024
time forks 1000 102400
size vforks
time vforks 1000 0
time vforks 1000 1024
time vforks 1000 102400
countenv
size nulljob
time execs 1000 0 nulljob
time execs 1000 10·24 nulljob
time execs 1000 102400 nulljob
time vexecs 1000 0 nulljob

May 14, 1984

Appendix A - Benchmark sources

Lerner, et. al.

4.2BSD Performance

time vexecs 1000 1024 nulljob
time vexecs 1000 102400 nulljob
size bigjob
time execs 1000 0 bigjob
time execs 1000 1024 bigjob
time execs 1000 102400 bigjob
time vexecs 1000 0 bigjob
time vexecs 1000 1024 bigjob
time vexecs 1000 102400 bigjob
fill environment with - 1024 bytes

- 29 - Appendix A - Benchmark sources

setenv a 012345678901234567890123456789012345678901234567890123456780123456789
setenv b 012345678901234567890123456789012345678901234567890123456780123456789
setenv c 012345678901234567890123456789012345678901234567890123456780123456789
setenv d 012345678901234567890123456789012345678901234567890123456780123456789
setenv e 012345678901234567890123456789012345678901234567890123456780123456789
setenv r 012345678901234567890123456789012345678901234567890123456780123456789
setenv g 012345678901234567890123456789012345678901234567890123456780123456789
setenv h 012345678901234567890123456789012345678901234567890123456780123456789
setenv i 012345678901234567890123456789012345678901234567890123456780123456789
setenv j 012345678901234567890123456789012345678901234567890123456780123456789
setenv k 012345678901234567890123456789012345678901234567890123456780123456789
setenv I 012345678901234567890123456789012345678901234567890123456780123456789
setenv m 012345678901234567890123456789012345678901234567890123456780123456789
setenv n 012345678901234567890123456789012345678901234567890123456780123456789
setenv o 012345678901234567890123456789012345678901234567890123456780123456789
countenv
time execs 1000 0 nulljob
time execs 1000 1024 nulljob
time execs 1000 102400 nulljob
time execs 1000 0 bigjob
time execs 1000 1024 bigjob
time execs 1000 102400 bigjob

May 14, 1984 Lerner, et. al.

