
1

2

3

3.1

3.2

3.3

3.4

3.5

4

4.1

A User-Process Oriented Performance Study of
Ethernet Networking Under Berkeley UNIX 4.2BSD

Introduction

Luis Felipe Cabrera
Edward Hunter

Mike Karels
David Mosher

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720, USA

INDEX

The User Process Viewpoint .. .

The Experimental Environment

Hardware Components Available for our Study

The Interprocessor Software .. .

The Sizes of Messages :

Determining the Repetition Count .. .

The Artificial Workload Used .. .

Measurements with Unloaded Hosts and Ethers

The Family of Software Experiments

4.2 The 3 and 10 megabit/second Ethers

4.3 Analysis of These Results

4.3.1 User Process Network Latency

4.3.2 Network Throughput

5 Measurements with Loaded Hosts and Unloaded Ether

5.1 Loaded Sender .. .

1

3

3

4

4

5

7

8

8

8
9

9

10

11

14

14

5.2 Loaded Receiver .. 17

5.3 Loaded Sender and Loaded Receiver .. 19

6 Measurements with Loaded Ether .. 19

7 Assessment of Protocol Implementation .. 19

7.1 TCP/IP ... 21

7.2 UDP /IP 24

8 Conclusions ... 26

9 Epilogue 27

10 Bibliography 27

11 Appendix A: Software Used in The Study 30

11.1 Software for Network Performance Assessment .. 30

11.2 Software for TCP /IP Assessment .. 34

11.3 Software for UDP /IP Assessment .. 34

12 Appendix B: Selected Raw Data ... 35

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1984 2. REPORT TYPE

3. DATES COVERED
 00-00-1984 to 00-00-1984

4. TITLE AND SUBTITLE
A User-Process Oriented Performance Study of Ethernet Networking
Under Berkeley UNIX 4.2BSD

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Berkeley UNIX 4.2BSD is an operating system which provides alternative ways for processes to
communicate with each other. User processes may choose, for example, intermachine communications
media, protocols, addressing families, and styles of communication. In particular, user processes may use
datagram or stream communication. In this paper we present a study of the impact that IPC mechanisms,
as currently implemented in Berkeley UNIX 4.2BSD in Ethernet based environments, have, from the user
process viewpoint, on the performance of distributed applications. This study not only assesses the impact
that different processors, network hardware interfaces, and Ethernets have on the communication across
machines between user processes, but also the effect of the loading of the various components which
participate in the interprocess communication mechanism. Thus, host and ether loads are also taken into
account in our study. Our measurements highlight the current ultimate bounds on performance which may
be achieved by user process applications communicating across machines, and serve as a guide in designing
performance critical applications. For this study, hosts and ethers have been loaded with a user defined
mix of tasks, i.e., an artificial workload. Moreover, we present a detailed timing analysis of the dynamic
behavior of the TCP/IP and the UDP/IP network communication protocols’ current implementation in
Berkeley UNIX 4.2BSD. This study sheds light on the tradeoffs encountered when software and hardware
perform the same actions on data, e.g., checksums, and when several buffering schemes coexist at different
levels in the system.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

39

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A User-Process Oriented Performance Study of
Ethernet Networking Under Berkeley UNIX t 4.2BSD

Luis Felipe Cabrera t
Edward Hunter

Mike Karels
David Mosher

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720, USA

Abstract

Berkeley UNIX 4.2BSD is an operating system which provides alternative ways for processes

to communicate with each other. User processes may choose, for example, intermachine commun

ications media, protocols, addressing families, and styles of communication. In particular, user

processes may use datagram or stream communication. In this paper we present a study of the

impact that IPC mechanisms, as currently implemented in Berkeley UNIX 4.2BSD in Ethernet

based environments, have, from the user process viewpoint, on the performance of distributed

applications.

This study not only assesses the impact that different processors, network hardware inter

faces, and Ethernets have on the communication across machines between user processes, but also

the effect of the loading of the various components which participate in the interprocess communi

cation mechanism. Thus, host and ether loads are also taken into account in our study. Our

measurements highlight the current ultimate bounds on performance which may be achieved by

user process applications communicating across machines, and serve as a guide in designing per

formance critical applications. For this study, hosts and ethers have been loaded with a user

defined mix or tasks, i.e., an artificial workload.

Moreover, we present a detailed timing analysis of the dynamic behavior of the TCP /IP and

the lJDP /IP network communication protocols' current implementation in Berkeley UNIX

4.2BSD. This study sheds light on the tradeoffs encountered when software and hardware perform

the same actions on data, e.g., checksums, and when several buffering schemes coexist at different

levels in the system.

Index Terms: Berkeley UNIX, benchmarking, interprocess communication, datagram, vir

tual circuit, TCP protocol, UDP protocol, IP protocol, Ethernet, artificial workload, dynamic pro

gram profile.

1. Introduction

Users of distributed computing environments are faced with the issue of their optimal utili

zation. The availability of extensive pools of resources for their cooperative action presents new

t UNIX is a. Trademark o(AT&T Bell Laboratories

t On leave from the Departamento de Ciencia de Ia. Computa.cion o(the Escuela de lngenieria or the Pontificia.

Universida.d Cat.Olica de Chile.

This work was sponsored by the Defense Adn.nced Research Projects Agency (DoD), monitored by the Naval Elec

tronics Systems Comma.nd under contract No. N0003~84-C-00811. The views a.nd conclusions contained in this document

are those o(the authors a.nd should not be interpreted as representing official policies, either expressed or implied, o(the

Defense Research Projects Agency oro(the US Goverment.

challenges Cor users of such facilities. Not only are users confronted with very powerful comput

ing environments, but the possibility o(parallelism may also lead them to revise their algorithms

to determine whether this environment can help them achieve their computational needs Caster, or

more reliably.

Berkeley UNIX 4.2BSD is an operating system which provides alternative ways Cor user

processes to communicate with each other [10-11, 19]. User processes may choose, for example,

intermachine communications media, protocols [15-17j, addressing families, and styles or commun

ication. In particular, user processes may use datagram or stream communication. In Berkeley

UNIX 4.2BSD two processes wishing to communicate need not have a common ancestor. In this

paper we present a study of the impact that IPC mechanisms present in Berkeley UNIX 4.2BSD

have, from the user process viewpoint, on distributed applications. We have studied the imple

mentations which existed during the summer of 1984 in Ethernet based environments [13-14].

(The system we measured already differed in many aspects with the released 4.2BSD Berkeley

UNIX.) Hereafter, we shall refer to this version or Berkeley UNIX 4.2BSD as the 'current' system.

Results presented show the type or performance a user might expect from the communication

mechanisms and medium when writing a distributed application.

In particular, one question investigated is the cost of sending data as datagrams on a local

area network. Previous reports [20-21] indicate that Ethernets appear to be very reliable. These

reports claim the actual loss of packets in the ether to be of one in two million, with current

hardware interfaces. Thus, if reliable stream communication is too expensive, it may be desirable

to base applications on datagrams, handling retransmissions of lost packets at the user level, to

achieve better average performance.

Another point to be considered is the effect that the reliability built into the TCP protocol

[17, 14] has on the user process perceived network latency and overall network performance.

What is the penalty of using TCP compared to the cost of UDP if the underlying network is quite

reliable? As some Ethernet interface hardware provide CRC checksums, should we use TCP in

such an environment and have user applications penalized by this redundancy? Ir the reliability of

the network is also high, then perhaps some other, lighter-weight protocol should be used; for

instance, a sequenced packet protocol [24J, or a protocol which does not require checksums when

data is only being sent locally.

As there have been some questions about whether or not TCP /IP should be used in a local

area network [14], our study will present, for Berkeley UNIX 4.2BSD, the actual costs incurred

when doing so. The negative 'instinctive' reaction expressed by some, that TCP presents an

unreasonable performance penalty for distributed computing in local area networks, may not be

significant when one takes into account other issues involved in generating a TCP transmission

from user space.

Lastly, for the range of network hardware available for this study we shall attempt to deter

mine the effect the speed of the underlying network has on the user process' view of network per

formance. There are studies which suggest that certain ranges of communications media speed

need not affect user applications, because of the limiting host processor speeds [9]. Thus, faster

networks may increase the global volume of data transferred, by allowing more machines to coex

ist on the network before saturation is reached, but not affect the individual user process' percep

tion of the network's performance.

The rest of this paper is subdivided as follows. In Section 2 we present the basic measure

ment assumptions. Section 3 has a complete discussion or the experimental environment used in

our study. Section 4 presents basic network results when both hosts and ether are unloaded, while

Section 5 reports on our measurements when there is load in the~ sending host and the receiving

host. In Section 6 we study the effect of ether load. Section 7 contains a detailed timing analysis

or the current TCP /IP and UDP /IP implementations. Finally, Section 8 consists of our conclu

sions.

3

2. The User Process Viewpoint

Local area network technology in the form of broadcast networks has long been with us. In

particular the Ethernet 1131, developed at Xerox P ARC in the mid-seventies, has come into

widespread use. Even though several studies have evaluated and modelled the performance of

Ethernets under various conditions 11, 5-8, 18, 20-211, measurements performed in most of those

studies have only determined the extreme limitations of this technology, and the degrees of perfor

mance degradation which can be expected at the lowest level, i.e., when analyzing communication

performance from the hardware interfaces viewpoint. Indeed, only 17, 21, 231 have measurements

of the performance a software system may expect. However, those measurements do not refer to

communications between user processes but between operating system ones. In I9J we find an

analysis which includes modelling the behavior of Ethernets under different parametric load condi

tions, in the context of file servers.

One aspect that has not been satisfactorily addressed in the literature is that of the perfor

mance the user of this type of local area network can expect. In this paper we focus our attention

on the performance perceived by user processes communicating across machine boundaries. We

call this the user process viewpoint of interprocess communication. It should be emphasized that

the measurements being made from user space include all overhead caused by the protocol imple

mentations and by the operating system.

When building a distributed application, a user can either use one of the system-supplied

interfaces or implement a specialized set of network functions that support his application. The

easier choice by far is using a system supplied interface. In Berkeley UNIX 4.2BSD, given the pro

tocols supported and the styles of communication available (datagrams and stream communica

tion), ad-hoc communications mechanisms seem to be necessary only for specialized tasks requir

ing very specific network services. We assert that these tasks do not normally fall in the user pro

cess category but really belong in one of the system processes. Thus, the evaluation of the system

provided interfaces to the user processes is of interest. With this information, the user can decide

bow best to implement his application, and whether the performance requirements of the applica

tion are likely to be satisfied. Understanding how our local area network implementations perform

makes it easier to design distributed applications. It also provides a better knowledge of what the

current limitations of these applications might be, and where the improvements may come from.

3. The Experimental Environment

This paper describes a series of tests, performed at UC Berkeley, designed to determine the

main performance properties of the existing Ethernet-based IPC mechanisms under Berkeley

UNIX 4.2BSD. Our tests cover a wide range of packet sizes, host configurations, and network

interfaces, within the context of the DARPA Internet protocols.

Berkeley UNIX 4.2BSD currently has only three protocols available for communication

across processors. These are: TCP, t.TDP, and IP. Each of them is described in a separate docu

ment j15-17J. TCP /IP and UDP /IP provide different kinds of services to the user processes.

Jointly, they provide a cross section of the minimum IPC services that should be expected to be

available on any machine providing network access. However IP, as currently implemented, can

not be accessed directly by user processes (but can by super-user processes). Thus, we shall not

deal explicitly with IP in this paper. It should be clear, however, that since UDP and TCP use IP,

the performance of its implementation affects user process applications.

OC the several approaches which can be taken to assess intermachine IPC performance, we

have chosen to instrument user code and execute specially written routines to stress different

aspects of the network communication mechanisms. Therefore, all measurements were performed

by user processes. Moreover, the routines written for this purpose were coded carefully so that we

could minimize additional overhead. We have included samples of our test software in Appendix

A.

3.1. Hardware Components Available for our Study

All our tests were pe!'formed usin~ equipment available in the Computer Science Division at
the University of California at Berkeley . The Computer Science Division has a collection of DEC
V AXes of various sizes and configurations, and a large number of SUN II workstations. Among
the hosts used for this study, the VAX ll/780s were connected to a single 3 megabit/second Eth
ernet, the 11/750s to a 10 megabit/second Ethernet, and the SUN lis also to a 10 megabit/second
Ethernet. In addition, some of the V AXes were connected to a 10 megabit/second Ethernet using
interface hardware from different manufacturers. Figure 1 illustrates that part or the network
configuration that was available for our experiments. This collection of machines provides a par
tial cross-section of the hardware on which Berkeley UNIX 4.2BSD can run.

The machines selected for our tests are listed in Table 1. (Those hosts which had interfaces
or different speeds appear twice.) The table shows both the physical memory size and network
interface available on each machine. These machines were selected because they presented the
widest variety of hardware configurations, and because we could control the system loads better.
In other words, these machines could be used stand-alone. In Sections 3.2 and 4.1 we describe the
software used for this study.

3.2. The Interproeessor Software

The software used for this study is divided into two groups: the one which measures the net
work throughput and latency, and the one which assesses the protocol implementations.

The network test software is based on two programs: a packet generation and a packet
rece1vmg program. The packet sending program transmits packets without expecting ack
nowledgement from the receiving program. It is used to determine the maximum speed at which
the network hardware interfaces can be driven, and to generate traffic as fast as possible in the

Figure 1: Partial Configuration of the Local Area Network

t We really thank the users of these facilities for their patience during our testing.

5

Host Name Machine Memory Size Interface Speed Interface
Type (megabytes) (megabytes/sec.) Brand

ucbarpa VAX-780 4 3 Xerox

ucbkim VAX-780 4 3 Xerox

ucbcalder VAX-750 2 3 Xerox

ucbcalder-10 VAX-750 2 10 3COM

ucbmatisse VAX-750 1 3 Xerox

uc bmatisse-1 0 VAX-750 1 10 DEUNA

ucbmars SUN II 2 10 3COM

ucburanus SUN II 2 10 3COM

Table 1: Installation Configurations

hope of obtaining back-to-back packets at the receiving interface. An 'end of transmission' packet

is sent at the end of a sending cycle. t
The packet receiving program acts as a sink server, i.e., it receives packets and drops them

by going back to a 'read' state after each reception. This program keeps track of the number of

packets received and of the time spent in doing so. It is also able to recognize an end of transmis

sion packet. The sink server is particularly important for UDP /IP (and IP) assessment, since it

provides a verification that the packets to be sent have actually left the sending host and have

been received. Since we do not have a network hardware monitor, we need a software tool for

this purpose.

Each of our testing programs was prepared in two versions, one for each of TCP /IP and

UDP /IP. The time required to send one packet of data was determined by sending a large

number of them, recording the hardware wall clock time for the total transmission, and obtaining

the average time per packet. The user process timing was obtained using the time command.

The software used in Section 7 for assessing the implementation of TCP /IP and UDP /IP is

based on profiling the kernel through the use of the commands kgmon and gprof, and on the use

of an instrumented version of the kernel. A test program which sends a fixed amount of data a

predetermined number of times was designed for each protocol. The kernel monitoring facility

was enabled during the execution of the test program, which were run in single-user mode to

avoid all possible interference. The profiles were determined later from the data collected by the

monitor.

3.3. The Slzes of Messages

The seven user data packet sizes used for the network tests were: 1, 112, 224, 512, 1024,

1460, and 2032 bytes. This range of packet sizes was chosen to be representative of the type of

traffic which might be present on a local area network [20-21J, and also to exercise the buffer

~anagement schemes provided by the protocol implementations. The smallest size, 1 byte, was

chosen to represent character-at-a-time user process transactions, and also to give an indication of

the minimum user process message transmission delay, which we call user process network

latency. The 112 byte size was chosen to represent individual lines of text, such as program list

ings or documentation, as might be output by some user program. It is also the case that 112

bytes is the maximum user data packet size that fits into one 128 byte 'mbuf' (in mbufs, 8 bytes

are used for link pointers, 4 bytes for the data offset, 2 bytes for the size, and 2 bytes for the

type). There are also 1 kilobyte mbufs. Mbufs are used inside the kernel for network software

memory management. They are an integral part of the network software which manages its own

* It should be noted, though, tha.t our 3 meg-a.bit/second Xerox network interf'a.ces insert a. dela.y, or the order or 1

millisecond, between the sending oC consecutive pa.ckets to the same host. Thus, to stress a. receiving interCa.ce, several

hosts need to be concurrently sending pa.ckets.

60

8

~
HIM..,._

'tit:$> • •

~..,.. ,.
·~·

I

1000 2000 3000 4000 6000 woo 7000 8000 g()(j()l()()()()

Repetition count

Figure 2: UDP /IP Datagramsfsecond versus Repetition Count

segment of the virtual memory. The 224 byte data size was chosen because it uses exactly two

128 bytes buffers. The 512 byte size corresponds to that of a common disk block which might be

shipped around in user or file server applications (even though the current system tries to make

this size invisible).

The 1024 byte size represents one logical page of data in Berkeley UNIX 4.2BSD; the net

working software has been optimized for this size. Data which is not page sized is normally stored

in chains of the smaller size buffers. Thus, a series of 'copy' instructions from user space into the

system's small mbufs are required. The one kilobyte buffers are passed by the network protocol

software to the network driver by simply augmenting a reference count, whereas the chains of the

smaller buffers must be assembled into one contiguous buffer before being given to the network

driver. Therefore, if the data is page sized, a copy operation can be avoided. In Section 7, the

effect that saving one of these copy operations has on network performance will become apparent.

The 1460 byte size is the maximum packet size supported by the Ethernet interface

hardware. (In fact, the maximum transmittable packet size is 1500 bytes, but 40 bytes are used

by the ethernet protocol for header information.) Message fragmentation begins at this point.

The 2032 byte size is the maximum buffer space allocated by the system to any one connection.

It should be noted that, as the network software automatically fragments two kilobyte packets,

the 2032 byte packet size also tests the effect of IP packet fragmentation on network perfor

mance.

It should be remarked that, for every message to be sent, the network software always

assigns a 128 byte mbuf for the 40 byte header that is required by the TCP /IP and UDP /IP pro

tocols. In the case of a 1024 byte user packet, all the additional bytes associated with it are

appended to the 40 byte header information in that 'companion' 128 byte mbuf. To preserve

data page alignment, the small mbuf is piggybacked onto the large one for transmission through

the network, using trailer protocols [17J to avoid assembly copying.

7

3.4. Determining the Repetition Count

Each network test consisted of sending a fixed size packet a predetermined number of times.

We call 'repetition count' the number of times each packet was sent. A repetition count of 4,000

was chosen for the networking tests. For the dynamic microanalysis of the protocol implementa

tion, however, a repetition count of 10,000 was chosen.

A large number of preliminary UDP /TP 'transmit only' sessions were performed to determine

the appropriate repetition count to be used. The objective was to find a repetition count which

would be large enough so as to give us confidence in the timing results, yet small enough so that

the tests could be performed in a reasonable amount of time. The preliminary tests were run

using the 10 megabit/second hardware, in which we had absolute control over all other ether

traffic. This eliminated the possibility of interference from other hosts while our tests were run

ning. A series of repetition counts for packets of different sizes were tried. Each test was run five

times. Thus, each point which appears in the figures of this section is the average of five sample

points. Moreover, to eliminate the possibility of unknown system interference, the benchmark

tests were also performed with the sending and receiving hosts interchanged. The results were

found to be identical. In the figures of this and the following sections, all graphs represent plots or

discrete points. The connecting lines interpolate linearly the results to highlight any trends which

might exist. The packet sizes chosen for the preliminary exploration were 1 byte, 1024 bytes, and

2032 bytes. The repetition counts tried were 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000,

5000, 6000, 7000, 8000, and 9000.

In [8J, where a version of Section 4 of this paper was presented, it was observed that for

UDP /TP, the total transmission time, TTT, as a function of the repetition count, RC, was charac

terized by
TTT = m*RC + n ,

where for 1 byte datagrams the slope 'm' was 33/6000, for 1024 byte datagrams it was 41/6000,

and for 2032 byte datagrams it was 64/6000. The larger the message, the larger the slope. Hav

ing observed this transmission stability for large repetition counts, what we needed to determine

1000 2000 3000 4000 0000 0000 7000 8000 000010000

Repetition count

Figure 3: Standard Deviation of the Sample of UDP fTP
Datagrams/second versus Repetition Count

8

was the minimum repetition count which would yield reliable measurements.

Figure 2 displays, for each of our three packet sizes, the number of UDP /fP datagrarns per
second sent as a function of the repetition count. We see that repetition counts of 4,000 and
larger produce very stable results. Figure 3 has, for each of our three packet sizes, plots or the
standard deviation of the samples used in Figure 2 as a function of packet size. It is clear from it
that repetition counts below 2,000 behave in a fairly erratic way. Repetition counts above 4,000
produce very stable results. Our choice of 4,000 as the repetition count carne as a compromise
between length of the experimental runs and precision of the results.

For protocol assessment, the approach was to run our test software stand-alone. Here, the
higher the repetition count, the larger the degree of accuracy we could obtain from our profiling
tools. To obtain values accurate to one-tenth of one millisecond, a repetition count of 10,000 was
necessary.

3.5. The Artlfl.elal Workload Used

Once we had selected a repetition count, host loading and network loading had to be
specified and generated. Loading of the hosts was accomplished through the use of a script which
has been utilized in several evaluation studies [2-4] by one of the authors. Experience has proven
it to be a balanced set of tasks. The script consists of a sequential series of commands which
exercise different aspects of the system. It includes a C compilation, the running of a cpu intensive
job, a text formatting job, a short editor session, the copying to the same disk of a 60,000 byte
file, and UNIX commands which request status information from the system, such as ps -alx and
who. The original script [3J was modified so that it would continually cycle through its tasks
without sleeping. In an otherwise idle host, we defined the unit of 'processor load' to be one copy
of this script executing. Thus, a load of four units is obtained by having four copies of the script
executing simultaneously (note that their start-up times were not staggered). To avoid file nam
ing conflicts, each of the copies of the script was run from within a separate directory.

The unit of load on the ether was determined after an analysis of the case when both the
hosts and the ether were idle. We used as unit of 'ether load' the traffic generated by the continu
ous sending into the ether of 1024 byte packets using TCP /fP (this unit of load is on the order of
750,000 bits/second). To carry out an experiment with an ether load of three, for example, we
needed a total of eight machines. Six hosts pairwise transmitting data between themselves, while
hosts seven and eight exchanged data between them as in the case of an unloaded ether .

.(. Measurements with Unloaded Hosts and Ethers

In this section we present the results of our study with unloaded hosts and ether. They were
performed using the computer systems described in Table 1, and they are summarized in Table 2.
Some of them appear in [8J .

.(.I. The Family of Software Experiments

Two major groups of tests were performed corresponding to the two protocols: TCP /fP, and
UDP /fP. Each test involved sending messages to another host using one of the protocols avail
able. Each individual test was performed five times, and the results analyzed to insure that the
underlying load conditions had not changed. The measurements were then averaged for display.
Because of the unsocial hours at which the testing was performed, the test software was the only
software running except for various system daemons. The system daemons woke up occasionally
to perform system management functions, but this extra load was considered insignificant. In any
case, it represents the expected load when a server is idle on a Berkeley UNIX 4.2BSD system run
ning a single application, like a file server. The command la was executed between consecutive
runs to verify that the system activity did not change drastically during any of the test runs.

In addition, the netstat UNIX command was used at the beginning and end of each run to
determine whether collisions or network hardware interface errors were ever a distorting factor in

g

Test Test Host-> Host

Type

1 Send Calder-10 Matisse-10
2 Send Matisse-10 Calder-10
3 Send Calder Matisse
4 Send Matisse Calder
5 Send Arpa Kim
6 Send Kim Arpa
7 Send Mars Uranus
8 Send Uranus Mars
g Send Arpa Calder

10 Send Calder Arpa
11 Send Calder-10 Calder-10
12 Send Calder Calder

Table 2: Test Configuration

any of the results. However, as other hosts were also connected to the ether being used, and

because of the existence of gateways connected to these ethers, we had no effective control on the

actual ether traffic. Lack or a dedicated network monitor prevented us from monitoring ether

traffic during the runs. Because of the carrier sense nature or Ethernet networking, transmission

delays due to the medium used clearly affect our measurements. These delays are not reported by

netstat. Some or the variance observed in our measurements may be explained by the busy ether.

4.2. The 3 and 10 megabit/second Ethers

In Figures 4 through 7 we show our results for the case in which both the hosts and the eth

ers were not loaded. Those measurements obtained using a 10 megabit/second ether appear joined

with a solid line, while those for a 3 megabit/second ether appear with a dashed line. The two

labels on the curves represent the type of the sending and or the receiving host, respectively.

As seen from their specifications [15, 17], the UDP and TCP communication protocols differ

essentially in that UDP does not guarantee reliable delivery, sequencing, duplication, or flow con

trol. However, UDP does preserve datagram boundaries. TCP keeps a copy or each message in

transit until a positive acknowledgement is received. TCP retransmits after a 'timeout' period if

it has not received an acknowledgement. Only after a predetermined number or retransmissions

have failed (10 in the Berkeley UNIX 4.2BSD implementation) does TCP return an error message

to the user-level application which had requested the transmission.

The internal buffering strategies of these protocols differ. TCP tries to maximize packet size

per send between hosts, whereas UDP cannot. Both UDP and TCP, however, do checksums at

the sending end of the communication. Our implementation or UDP does not verify checksums at

the receiving end or the communication, while TCP does so. Both or these protocols are con

sidered 'heavy weight', because or the amount or robustness they possess, even though UDP is a

lot less robust than TCP.

4.3. Analysis of These Results

This analysis is broken into two subsections. The first deals with network latency. The

second, with the overall network performance achieved, in terms of throughput and elapsed

transmission time per message size.

1600000

1250000

1000000
B
I
t
I

700000

600000

250000

0
0

10

TCP Bits/Sec by Packet Size

------r··-·r··--T----·r··--·-r··-·--r··-·r·-----~
. '
' ' ' . .
' ' . .

.....•. ~ .. ----- ~------- ~------ "7 ------- ~-------!------- ~---.- ---:
0 I I I o I I I

0 o I o I o I o
0 o o I o I I I

o o I 0 I o I I

o o I I I o I I

I o o o o I I 0

o o I I I I I

0 0 ' • • • '

o 0 o I I I I . . '
o o I o o f I . ' ' -------·---------------·--------------------·-················- ' ' ' . ' . . .
o I o I o I 0

' . . ' . .
I o o o I 0

I 0 o o I I
• • • • 0

' • 0 • • '

-----··t·······j··-----j-------+------+-----·j··-----:-------:

-------1·-·····j_·----;,-L-i-~--~; -~----Jvk.7J7oo
' . ' . .
! : y ! ! : suN II-SUN II

;--'/---i---·---j---···+···-+·---·+····--1-------j
~ *f : : l : : l :

' ' ' ' ' ' ' ' .

2M 612 1es 1024 1280 tSM mn 2048
Packet ibe

Figure 4: Bits/Second vs. Packet size. TCP protocol.
__ 10 megabit/second ether; 3 megabit/second ether;

4.3.1. User Process Network Latency

The user process network latency is defined as the minimum cost to complete a I byte net

work transmission. Thus, latency is represented by the minimum time required to successfully

1600000

1250000

1000000
B
I
t
•

100000

UDP Bits/Sec by Packet Size
--·-···:·······:·······:·······:·······:···-"*·:······ :·······:

. : . : :/ ~ : :
' : ' : " : : .). ' '

--·····j-----··i···----+-----)~-/~-~--~-i--·-···i"-~-i
: : : f : ~ VAX 7~700
: : : I 1: · : '- :

! ! . II ! . ! !-,_ .
-···---<··------:--------r,i----r-------<-------1·-------:----,-:

{I ; 1 V~7~700

,), ... :.------·-------~--- .L !

i StJT-.1 n-sj;N u
. ' . . ' . . . ' . -........ --- -~ ---.- --·- ·- ---- -. ---· 600000
' ' ' ' '
' ' ' ' '
' ' ' ' ' ' . ' ' ' ' ' ' '

o I ' I
' o I o I o 0

-~-------r-------r··-----r·------1-------r·----- 1·-------i 250000 ·---

' ' ' '

0 2M 512 7e8 1CY.!4 1280 16M 1702 2048
Packet size

Figure 5: Bits/Second vs. Packet size. UDP /TP protocol.
__ 10 megabit/second ether; 3 megabit/second ether;

11

send a single byte of data. In the case of our TCP runs, we include the cost of setting up only one

connection per transmission session, as opposed to establishing an individual virtual circuit per

message. The results show that, Cor the VAX 11/750, the latency Cor TCP /IP is approximately

5.5 milliseconds and for UDP /IP is 6.1 milliseconds (see the values Cor 'load 0' of Table 3 in Sec

tion 5.1, and Tables 1 and 2 of Appendix B). The results Cor the SUN II's indicate a latency of

approximately 4.0 milliseconds for TCP /IP and 4.5 milliseconds Cor UDP /IP (see Tables 3 and 4

of Appendix B). A word of caution is in order here. We should keep in mind that, as TCP has

fiow control mechanisms, slow processing at the receiving end of a connection may cause buffering

of transmission requests at the sending end. This is almost certainly the case with 1 byte user

messages. Thus, the 'send only' experiments do not faithfully represent the minimum cost of a

round trip of a few user bytes. The exact cost would be the one of establishing the connection,

sending the bytes, receiving the acknowledgement, and closing the connection. Table 4 in Section

5.1 presents such measurements.

The results collected so far would seem to indicate that the network efficiency Cor our imple

mentation of TCP /IP is greater than that for our implementation of UDP /IP. This is deceptive,

however' due to the window-based fiow control management which favors internal buffering or

bytes by TCP when the receiving host restricts input fiow. Because of this, for packet sizes less

than 128 bytes, TCP /IP appears to be faster than UDP /IP. (This can be seen in Tables 1 and 2

or Appendix B by examining the seconds/transmission column. In each case TCP /IP gradually

loses to UDP /IP, even though the first two kilobytes or data transmitted in each session probably

take longer than the rest or the transmission due to buffering in the sending end or the connection.

The crossover point appears to be around 128 bytes.)

On a VAX 11/750 this latency appears to fall between 5.5 and 6.5 milliseconds, depending

on which hardware interface and which protocol are being used. For example, the 10

megabit/second interface on Matisse (see Tables 1 and 2 of Appendix B) appears to be about a

millisecond slower than the one on Calder (see Tables 2 and 5 of Appendix B). Unfortunately,

there is no way in our experiments to trace the difference in performance to either the hardware

or the device driver.

Other studies, most notably [5, 25], have performed tests to assess the network's latency. In

each case the values assigned to network latency have been smaller than the values we have

measured. Even though those measurements were performed in system space, whereas ours were

in user space, our network latencies still seem high. Unfortunately, our software measurement

tools do not point to a specific protocol layer or hardware interface as a possible bottleneck. It is

a problem area for future study determining what activities are contributing most to the latency.

Section 7 does shed light, though, on the kernel costs which are incurred by the current protocol

implementations.

4:.3.2. Network Throughput

An unexpected observation was that, for UDP /IP, the 3 megabit/second hardware appears

to be faster than the 10 megabit/second hardware (see Tables 2 and 6 of Appendix B). The meas

ured times of user to users transmissions for the 3 megabit/second interfaces are consistently

lower than those for any of the 10 megabit/second interfaces. In fact, the maximum throughput

(slightly less than one and a half megabit/second) was obtained using the 3 megabit/second

hardware (see Figure 5). The maximum throughput observed for the 10 megabit/second Ether

nets was on the order of 800,000 bits/second (see Figure 8). There appears to be no good expla

nation for this but that of interface hardware design. However, for TCP /IP (see Tables 1 and 7 of

Appendix B) both interfaces appear to have very similar speeds. This may be caused by the pro

cessors becoming the bottleneck when processing the TCP /IP packets. We have yet to verify this

hypothesis, but Figure 8 is consistent with it.

The user-perceived throughput of the network does not increase linearly with packet size.

This is obvious in the UDP /IP results, where throughput continues to climb until the largest

o.ow

0.046

0.040

0.036

0.030

s
e 0.02l>
c

0.020

0.016

omo

0.006

0.000
0

12

TCP SecfMsg by Packet Size
·······:········r······r······;······r····--r·······:--······:
-------~-------~-------~-------~-----·-~-------~--------~-------:

: : : : : : v~78().7so
: : : : : : . .

. ······~· ······t ······-~·-·····;······ ·j··· ····t····· -7· .. '/• ·i
: : : : : : !/
: : : : : : : /"'

:·::r::I::::r:~t~~~-~1~4'"""

:::::::r:::::r::::::r::::::r:::··; ___ ::::~::::::r:::::::

2611 512 708 1024 1280 15M 17112 2048
Packet size

Figure 6: Seconds/Message vs. Packet size. TCP protocol.

_ 10 megabit/second ether; 3 megabit/second ether;

possible packet is sent. At this point it falls off, as shown in Figures 5 and 8. One explanation of

this phenomenon is the start of IP fragmentation beyond the 1460 byte packet size. The cost of

fragmentation outweighs any performance gained by using larger buffers within the system. In

fact, packet fragmentation has a very negative performance impact.

In comparing the results for TCP /IP and UDP /IP (see Figures 4 and 5), it is interesting to

note that the difference in speed between the implementation of both protocols becomes more pro-

nounced in the region around 1460 byte packets. There is a definite dip in the throughput for

TCP /IP at this point, as can be seen in Figure 4, for both types (3 megabits/second and 10

megabits/second) of network interfaces. This divergence between them can be explained by the

time the implementation of TCP requires to copy each data packet from an internal retransmis

sion queue. The UDP /IP protocol does not have to pay this penalty, because it does not guaran

tee reliable delivery or packets. Its throughput continues to climb until internetwork fragmenta

tion becomes a factor. Our implementation of TCP, on the other hand, must copy the same data

three times: the first from user space to system space, the second from the transmission queue to

the network interface, and the third in the network driver to make it contiguous. As more data

per packet is transmitted, an increase in throughput is expected, as shown for the sizes below 1024

bytes. At the 1024 byte mark, two of the copy operations are eliminated by incrementing the

reference counts on the page frames, causing a large positive jump in the throughput. Tables 5

and 6 of Section 7 show this in detail. Above 1024 bytes, all data is copied at the network driver

level. This offsets the advantages gained by the virtual page swap done for 1024 bytes, and,

again, as larger packets are sent, the throughput increases.

Figures 6 and 7 display the hardware wall clock time of transmitting messages of different

sizes. This data is clearly related to the throughput data, given our fixed repetition count. We

may see, for example, that it takes on the order of 0.012 seconds to transmit a 1 kilobyte message

using TCP /IP, and between 0.007 and 0.009 seconds to do it through UDP /IP, depending on the

sending and receiving hosts. As these measurements were obtained when there was no load on the

ether or on the systems, these timings need to be considered lower bounds for the wall clock time.

One should note that, for both TCP /IP and UDP /IP, the wall clock time for transmitting a 1

0.060

0.04:;

0.040

0.036

o.ow

s
e 0.020
c

0.020

0.016

0.010

0.006

0.000
0

13

UDP Sec/Msg by Packet Size

······r······:·······:······-r·····r······;·······:·······:

rr:r:rr:r:· 1

TIIIIJ;r;:,.
····················· .. :···············:·······:······ :··v, 1ro.160

·······:·······r·······r······r······:····· r~··;·c··:rr 1~160

·····-r~ .. j/ .e i -~--~+~ .. ;·r;:··:·;;··.-·:·······1
----·r·------t-------1·-------r-------r-------r-----·-1

• • • • 0 •

0 o 0 o 0 I

' ' . ' '
2M 612 7~ 1024 1280 1.538 17112 2048

Pacl:et size

Figure 7: Seconds/Message vs. Packet size. UDP /fP protocol.
__ 10 megabit/second ether; 3 megabit/second ether;

1200000

1000000

800000
B
I
t
I

eooooo

400000

..... YAJ{ Bit•(Seor: J~~t Size

~ ~ ;,- ~ ~'
·······j·······~······~··· .. i·~·······j .. ·····j·····~·······j

~ ~ ~I~ ~ ~ ~' ~
: : ~I : : : : ~UDP

..••••. : ~••. '.,J. ; : ..•...• : ••••..• ~ •.•••••. :

! ! f: ! : . ! :
: : I : . :

............... J ... L.l. : UDP . :I :
':! ,

/:
TCP

200000 ...

0 2M 612 7~ 1024 1280 1.538 1792 2048
Pacl:et s!Je

Figure 8: Bits/Second vs. Packet size.
10 megabit/second ether; 3 megabit/second ether;

kilobyte message is only twice as much as that of transmitting a 128 byte message. Transmitting
a 512 byte message is as costly as transmitting a 1 kilobyte message. Tables 5, 6, 7, and 8 or Sec
tion 7 explain this phenomenon in terms or the internal copying that the implementations or the
protocols do in their buffer management. Messages which are smaller than 1 kilobyte get copied
into multiple 128 byte mbufs. Indeed, given this buffer management scheme, transmitting a 1023

message takes about 60% more time than transmitting a 1024 byte message.

Figure 8 presents the result of performing tests 1 and 3 of Table 2 for TCP fTP and UDP fTP.
We may appreciate a substantially different behavior by the two network protocols. While
TCP fTP's throughput shows rather small changes, we see that UDP /TP's throughput does vary
substantially. Most remarkable is the fact that the higher throughput, for both protocols, is
achieved through the slower ether. This means that the 10 megabit/second network hardware
interfaces we have are slower than the 3 megabit/second ones. The minimal throughput variation
for TCP /TP could be explained in terms of processor saturation. It is clear that, because of the
retransmission processing, TCP fTP is more cpu demanding than UDP /TP. Figure 8 proves that
distributed applications designers need, unfortunately, to be aware of the specific hardware
characteristics of the networking subsystem of the installations where the applications will run,
especially if their applications are time-critical ones.

5. Measurements with Loaded Hosts and Unloaded Ether

The results of this section have been obtained from measurements done on only two
configurations of sending and receiving hosts: SUN II to SUN II, and VAX 11/750 to VAX 11/750.
As described in Section 3.5, the artificial workload used consisted of running multiple copies of a
script in an otherwise idle machine, while generating and receiving network traffic.

Sections 5.1 and 5.2 show that the impact the cpu load has on network throughput is of
such a magnitude, that the amount of information for the user process level that may be obtained
from those studies where only the unloaded case is presented is very small.

5.1. Loaded Sender

Figures 9 through 12 present our results for the case where the 'sender' host was loaded, and
where both the receiver host and the ether were unloaded. SUN results are presented with dashed
lines while VAX results are presented with a solid line. Those measurements corresponding to pro
cessor load 0 were already displayed in Section 4.2.

700000

600000
B
I
t
I

376000

TCP Bits/Sec LOAD 0-4 ----·-·r····---1·------1·--·-··r··--·-·:··-----·:···---··r····---1
. . . ' ' . . .

o o I ' -- -----·---·--- ·---- --- ~ • • 0 • . ' . '
0 o o I
' • 0 •

' • • 0
o o 0 I
• • 0 •
• • 0 • . . .

0 260 612 708 1024 1280 1630 1792 2048
Pa.cket llize

Figure 9: Bits/Second vs. Packet size. TCP fTP.
...... VAX 11/750; _ SUN II;

1200000

1000000

700000

B
I
t

15

UDP Bits/Sec LOAD 0-4
-----··r··-----:··-----:-···--;:-~--~--~-·T·-·-·r··---1

: : : I : : '- : : . . . ' ' . '
: : : I : : 'i. :

-------~-------i-------j·-t····l-------+-------i-------i··'-:··-l
: : ~I ! : ~ : \)LO

: }, - : : : :
' ' . ' ' : t: : : : ' '

-------:-·-----:---·1·-:--- ---:-····---:-------·:---
: I : : :
' ' ' :I ,

0 2U 612 788 1024 1280 163C 1N2 2048
Pl.cket size

Figure 10: Bits/Second vs. Packet size. UDP /IP .
...... VAX 11/750; _ SUN II;

Figures 9 and 10 show the substantial effect that load has on throughput Cor both kinds or

hardware configurations, and for both protocols. (Notice that, Cor clarity, the vertical scales do

not coincide in Figures 9 and 10.) Network throughput for both protocols, as perceived by a user

level application, is almost halved for each successive level or our artificial load in the range 0-2.

This ratio is observed Cor both architectures: SUNs and V AXes. Given the multiple-user orienta

tion of V AXes, it seems clear that user applications running on non-dedicated machines will per

ceive fairly low levels of network throughput. It is somewhat reassuring to see, though, that the

VAX architecture appears to handle slightly better than the SUN architecture the degradation at

higher levels of load. For packet sizes above 1024 bytes, TCP on the VAX handles itself some

what better than in the SUN (see Figure 9).

Processor SUN II VAX 11/750
Load TCP/IP UDP/IP TCP /IP UDP /IP

load 0 4.0 4.5 5.5 6.1
load 1 7.9 9.2 8.-6 8.0
load 2 13.9 18.0 14.6 14.0
load 3 20.1 21.5 22.8 21.0
load 4 25.0 30.5 29.3 27.6

Table 3: Network Latencies in Milliseconds for Loaded
Sender and Undloaded Receiver.

It is also interesting to see, Cor TCP/IP and UDP/IP, the 'flattening' or the throughput

curves for higher values or load. While one can see seven-fold increases in throughput for different

packet sizes at low levels or load, for loads 3 and 4 these ratios are much lower. In fact, at high

loads, user processes will perceive, for TCP/IP and UDP/IP, an almost constant throughput rate

across message sizes: the user process cost for sending 112 bytes or 2048 bytes will be almost

16

Size VAX 11/750 TCP/IP
load 0 I load 1 I load 2 I load 3 I load 4

1 byte 18.5 1 21.5 1 21.o 1 28.5 1 50.2

Table 4: Round Trip Time in Milliseconds Between two VAX 11/750

Cor 1 byte under TCP /IP. Loaded Sender and Unloaded Receiver.

0.20

0.18 :u
0.111

0.14

0.12

s
e 0.10
e

0.08

0.011

0.04

0.02

o.oo+-__,,....-;.-..;..-.p.......,r--;.--.---t
0 2lie li12 7118 1024 1280 1li311 1792 2048

~et•be

Figure 11: Seconds/Message vs. Packet size. TCP /IP .

...... VAX 11/750; _ SUN II;

equal, and the advantages of sending 1024 byte messages will not be much.

Figures 11 and 12 present the time, in seconds per message, that it takes to transmit a

packet of the specified size in each of the protocols. In obvious accordance with throughput

decrease, packet transmission times also increase substantially with the load. From Figure 11 we

see that, for TCP /IP, a rather 'linear' behavior of the transmission times can be observed

throughout all values or load. or course there is the 'dip' at 1024 bytes, which, as was explained

in Section 4.3.2, corresponds to a savings in copying between the protocol and the network inter

faces. For UDP /IP, on the other hand, it is seen how, from a rather 'linear' behavior of the

transmission time for load 0, we go towards a more 'exponential' behavior for higher loads. The

SUN measurements indicate that Cor UDP /IP SUNs degrade more substantially than V AXes.

No protocol seems to be substantially better off than the other one in terms or reduced

throughput degradation with load. However, Figures 9 and 10 show that, in the SUN's case, the

throughput advantage that UDP /IP had over TCP /IP at load 0 practically vanishes Cor all other

levels or load. On SUN's not processing in dedicated mode, user space applications would see no

difference between protocols.

Table 3 displays the data for user process network latency under loaded sender. Just as the

throughput was affected, latency also increased substantially. In spite of TCP /IP internal

buffering, we see more than a six-fold increase in the SUNs and a five-fold increase in the VAX.

17

0.20
UDP Sec/Msg LOAD 0-4

-----··:-··--·-·:··-·-·r··--T·--··r··--T·--··r··---1
0.18

o.ltl

0.14
:~ J: • :r:~:r:J:I l

• • • • • • 0 0

0.12

; 0.10
c

0.08

·······j·······t·······:·······:········:········:·· ···:······ lLS

.::::::t:::::::i:::::::l:::::::t: ::::· -:·:::::: _[-- ::::: L :·~:~ t;
: : . . /: . .

0.011
. . . .

~~--~ -- --.--- .. -·- --- -----
' ' ' . ' '
' '

0.04

0.02

0 2M lll2 7118 1024 1280 15311 17Q2 2048
Packet size

Figure 12: Seconds/Message vs. Packet size. UDP fTP .
...... VAX 11/750; _ SUN II;

The implementation or UDP /TP had a very similar degradation behavior. Table 4 displays stand

alone measurements over a 3 megabit/second Ethernet or the round trip or 1 byte using TCP /TP
between two VAX 11/750 (each measurement is the average or three sample points). The sending

host was loaded as before, while the receiver (and loop-back) host was idle. The ether was other

wise idle. These measurements are indicative or the time a user process would require to receive a

short reply to a short request. They complement the results or Table 3.

5.Z. Loaded Reeelver

For this subsection we only have VAX 11/750 based results. In Figures 13 through 16 we

present them Cor the case where the 'receiver' host was loaded, and both the sender and the (3

megabit/second) ether were unloaded. Those measurements corresponding to processor load 0

were already displayed in Section 4.2.

For TCP fTP, as was the case before, we see the severe impact or the load on throughput and

message transmission times. Ir the protocol interfaces need to drop a packet at the receiving end,

because the host had no time to service it before new data arrived, the sending host will

retransmit the message. Thus, all messages sent are received. By comparing Figures 13 and 9,

one can appreciate that the effect or the load on TCP /TP's throughput is slightly less in the case

or a loaded receiving host, than it is on the sending host. This can be explained by pointing out

that sending and receiving are not symmetrical TCP operations. TCP does fewer operations with

the data at the receiving end, e.g., it does not have to queue messages for retransmissions. Com

paring Figures 15 and 11 we may appreciate the differences in transmission times.

As UDP /TP does not guarantee reliable delivery of messages, one does not expect load on

the receiving host to affect the user process perceived sending throughput. This is absolutely

confirmed by Figure 14. However, the amount of packet loss is nonnegligible. User level applica

tions using UDP /TP should plan to keep some accounting or the messages sent, if they care, to

offset the effect that a loaded receiver has on the network traffic. Figure 15 displays the

seconds/message in this case.

18

TCP Bits/Sec by Packet Size LOAD 0-4
700000 ----··r······:·······r··----~---···r······:-·······:··-····:

i i I i \ i i i i
; ; I ; \ ; ; : ;

1100000 ----··j··-····j··--···j··i·-··j····r·j··-····j·······j··-····j

i i it i \ i i i i
i i). i i i i i

600000 ------r····-r··-iy---·7,-·-·-F·-··r······r-···-1

400000
B
I
t

3ol'looo

: : I i I : \ : \ l ! .

------i--····+.! l.t;.. .. .< ~--~--~--~--~ Ul
. .I }, . <, . .
: f: J! _f, [\. j...-~Ll

-··-··i··;·'-·tL ... i .. /..j·~-]~~--:··l·-~--~~
(/././' ·-· ..

: j~~~~Ittj~Ej~
: : : :

0 2lie 612 7118 1024 1280 16:1!1 1792 2048
Pa.c:k:et iUe

Figure 13: Bits/Second vs. Packet size. TCP /IP. VAX 11/750.
Unloaded Sender and Loaded Receiver.

UDP Bits/Sec by Packet Size LOAD 0-4
2000000 ·······i···--··:·--····i·······:···--··: ----··:· ·····:·······:

1600000

B
I
t

1000000

0

--- ... -~ -- ~ :.- .. -.. ~-- .. -.. ~-- .. -- -~ -------~--- : . :; ~ ~~ :
I; : ; '-o : .

. : . I : : : "'i ;LO

· --······----:·-----;,..··r····r·····r······r'--,L~
: , :

> . : : : : :u
....... l l l l : l. l i

,x . l ; II J
0 2lie 612 7!18 1024 1280 16:1!1 1792 2048

Pa.c:k:et sl.ze

Figure 14: Bits/Second vs. Packet size. UDP /IP. VAX 11/750.
Unloaded Sender and Loaded Receiver.

19

TCP Sec/Msg by Packet Size LOAD 0-4
0~ ·······:·······r·······r·······:·······:·······:········:········:

~: :'] ·i:/] r]
O.l2 ~-----·1·------;----·-·r·------r·------I-------1-------r-------i

~ o.1o L. L l... l l L. L.._....~u
e : : : : l l _, (l

0.08 ·······:·······:---····r·····:·······t···;·r-···-r··:;-~ La

o.oe ·······i·······]·······y·······r····;·(-~·(·-~·t··;;·~ L2
! ! ! !/ !-' i-- :.._ -<iLl

0.0
4 ······r···;r=··=:~·-:(··:·;;·~-~--:·r·;;·l LO

•/ _,., ·- -f"' / •/ . . .
0.0

2 -~-·itj·~--~~--~-:-:=··=-~--~-r-------r----·r--··--i ,- : : : ; : : :
o.oo+--r--+--r--...,___,,__....., _ _,_--i

0 2M 612 7118 1024 1280 16311 1792 2048
Pa.cket size

Figure 15: Seconds/Message vs. Packet size. TCP /IP. VAX 11/750.
Unloaded Sender and Loaded Receiver.

5.3. Loaded Sender and Loaded Receiver

Measurements with both sender and receiver hosts loaded were not very different from those

with only one o(the hosts loaded. Figure 16 displays measurements obtained in an otherwise

empty ether with the sending and receiving hosts' loads represented in the labels by LO or Ll. A

pair Lx-Ly means that the sending host had load x while the receiving host had load y. We may

appreciate that the presence of a load on both hosts did not produce differences of more than 20%

with respect to the cases where only one of the hosts was loaded. With the sole exception of the

1460 byte size, the Ll-L1 case had the lowest throughput.

~. Measurements wlth Loaded Ether

To generate the desired ether load, we used TCP /IP transmissions between pairs of other

wise idle SUNs. Load three was achieved by having three pairs of SUNs communicating, while

two other SUNs established the communication to be measured. Figure 16 displays our results for

the cases with ether load 0 and ether load 3. The traffic generated by each unit or ether load was

on the order or 0.75 megabit/second; thus an ether load or three guarantees a 2.2 megabit/second

traffic. This is 22% or the medium's capacity. The Ethernet used for these measurements has

more than 30 SUNs on it, but, because of the late hours when our runs were made, the rest or the

traffic was very light.

For this level or ether load, the throughput degradation was on the order of 40%. Lack of a

hardware monitor makes us speculate that not only the carrier sense mechanism prevented

transmissions (at least 22% of them in the average), but also there were collisions which further

degraded throughput. It is interesting to note that at this level of ether load we can observe

almost no network discrimination for different packet sizes. The only possible exception could be

the 512 byte size.

1. Assessment of Protocol Implementation

In this section we study the implementations of TCP /IP and UDP /IP in detail. The pri

mary goal of this study is to understand the specific costs of using TCP /IP and UDP /IP as

B
i

'

20

TCP Bits/Sec by Packet Size

···········-,········•••••,•••··········r··•••••••·••• '

:Ll-LD

. . .
~. -.------. -~---- .. -.... -·t ... -.... ---. i

.

o+-----~----r---~~--~
0

Figure 16: TCP /IP Transmissions Between two VAX 11/750.
3 megabit/second Ethernet.

TCP Bits/Sec by Packet Size Ether Load 3

B
I
t

702044

802044 ~ . -... -.. --- ~

S02044 -........ ~ --- ~

ether unloa.cjed
402044

· ether load 3:

. -- -- -..... -.. ~-- -- ... -- ... --
' :

102044 -...... -. ~-. -- ... -... ---.-. ~-.- ... -- ;
both bostl with Joa.4 0

~44+-------.-------~------1
1 1001 ~1 3001

Pacl:et size

Figure 17: TCP /IP Transmissions Between SUN II.
10 megabit/second Ethernet Unloaded and with Ether Load 3.

currently implemented. Secondarily, this study may point out unexpected performance penalties,

or inappropriate software 'optimizations'.

To study the implementations of TCP /IP and UDP /IP, we have employed user level

processes to exercise the kernel, and the UNIX commands kgmon and gprof to provide an execu

tion profile for the kernel. Two similar test programs have been designed, one for each protocol,

which send a specified number of messages of a specified length to a predetermined host exactly

10,000 times. In each run, from the profiled kernel we obtained the execution history of sending a

message with the specified amount of data. The kernel profiling facilities were enabled only dur

ing the actual running of each test program. The test programs were run in single user mode to

avoid interferences as much as possible. The test programs have been included in Appendix A.

These tests were run between two VAX 11/750's over a 3 megabit/second ether (see Table

2). One processor was used to profile the kernel while the test program ran; the other processor

just sinked the data from the test programs. The test programs sent a set of six different

amounts of data per message: 1, 112, 113, 1023, 1024, and 1025 bytes. These amounts were

chosen to illustrate boundary conditions or the network data buffer management system.

It must be remarked, however, that lacking a hardware monitor to measure message size

distribution, and not having instrumented the kernel so as to have an appropriate distribution of

packet sizes sent per host, we do not have, at this point, an absolute way of judging the

effectiveness, for the user process applications, of the current protocol implementations. What we

do have, however, is an excellent breakdown of kernel time spent while sending messages of the

chosen sizes, and a detailed knowledge of what would happen if, say, a user space application

would sent messages of any given size.

The repetition count of 10,000 was chosen to achieve measurement accuracy of one tenth of

one millisecond per message. A greater level of accuracy could be achieved with a larger repeti

tion count, but the testing time for performing such accurate experiments has not been available.

The raw data from these profiles appears in the following subsections. The values represent

the number of seconds spent in each routine during the 10,000 transmissions. Because these

values were obtained from a single run for each message size, they are mostly intended to show

the relative ordering of the routines with respect to time utilization, and to show gross changes in

the magnitude of time utilization of each routine. Obtaining absolute timings would require

further data stability analysis. In Tables 5 and 6 we have highlighted in boldface those routines

_which exhibit larger timing variations as a function or the amount or data to be processed.

For both protocols, the buffer. scheme used in the implementation appears to have an

overshadowing effect on performance. Since UDP /IP sends data atomically, and only limits a

packet's maximum size, this protocol is not sensitive to varying data sizes. The drastic increases

in overhead in the routines shown in bold appear to be due to the data buffer management scheme

chosen. On the other hand, TCP /IP, with its windows and data streaming, is sensitive to the

amount of data presented. Thus, in addition to the increased overhead seen in the routines which

deal with data within the buffer management system, the actual protocol overhead appears to

increase noticeably because or the varying amounts or data presented.

7.1. TCP /IP

Table 5 presents the time spent in a selected group of routines that are called to process a

message with a specific amount of data. These values were obtained directly from the gprof out

put.

The calling hierarchy for sending data via TCP /IP starts with a system call, syscall, to a

generic write operation. write calls the generic data transfer routine rwuio, which transfers no

data. In turn, rwuio calls the specific routine which can perform the necessary operation for the

type of object, in this case SOOJ'W. SOOJ'W calls the appropriate internal routine that implements

the original request to 'send data', sosend. sosend is responsible for copying the data from the

user space via uiomove, which calls Copyin to do the actual copying. sosend first determines the

amount of buffer space available for this specific socket, and then copies the minimum of the

buffer space available or the amount of data to be sent, whichever is smaller, into internal buffers.

These buffers are then passed to the appropriate protocol, in this case tcp_usrreq, which switches

immediately to tcp_output, the output sequencer for the TCP protocol. At this level (tcp_output),

the specific amount of data is copied from the TCP output queue by m_copy. These data buffers

TCP /IP Routines Packet Size
and System Calls 1 112 113 1023 1024 1025

syscall 2.91 2.79 2.76 3.02 3.01 3.12

write 0.72 0.81 0.81 0.78 0.84 0.90

rwuio 1.57 1.67 1.82 1.77 1.84 2.23

SOOJW 0.92 0.83 0.85 0.82 0.77 0.84

sosend 3.89 4.78 8.24 15.53 5.53 18.52

uiomove 0.99 1.02 1.77 9.23 1.38 8.85

Copyln 0.45 1.17 1.88 10.98 8.88 11.19

lplntr 0.19 0.93 0.94 8.31 4.88 5.11

tcp_usrreq 2.20 2.20 1.93 2.00 2.03 2.24

tcpjnput 0.08 1.32 1.87 11.14 10.88 10.97

tcp_output 8.28 8.18 8.34 8.50 7.14 11.23

sbappend 1.85 1.83 2.11 8.33 1.11 8.02

ip_output 2.78 3.07 3.14 3.36 3.35 5.63

tcp_cksum 2.23 3.13 3.85 18.18 10.52 18.72

ln_cksum 1.89 1.72 1.57 3.89 2.88 4.41

m_copy 2.77 3.88 5.22 18.24 2.38 29.73

enoutput 2.74 3.38 3.45 3.09 4.15 5.08

ens tart 2.87 2.53 2.81 2.17 2.78 4.53

lf'_wubaput 3.83 4.00 5.30 14.23 4.70 18.58

inJnaor 2.44 2.21 2.23 2.76 2.72 3.43

Table 5: Partial Decomposition of TCP /IP Time in Seconds

for 10,000 Transmissions Between to Dedicated VAX 11/750.

!Highlighted in boldface are those calls with larger timing changes.]

23

UDP /TP Routines Packet Size
and System Calls 1 112 113 1023 1024 1025

syscall 3.48 3.02 3.40 3.29 2.76 3.67

send to 0.84 0.94 0.91 0.83 0.99 0.85

sockargs 0.80 0.93 0.87 0.81 0.77 0.84

getsock 0.79 0.62 0.46 0.63 0.64 0.71

sendit 2.92 2.84 2.94 2.85 2.69 2.46

m.Jreem 2.59 2.35 2.98 3.20 4.43 2.28
use race 0.56 0.55 0.55 0.60 0.63 1.03

so send 5.07 5.75 8.88 19.25 5.58 7.38
ulomove 1.20 1.48 2.05 10.88 1.34 2.52
Copyln 1.14 2.02 2.37 14.58 8.45 8.47
udp_usrreq 1.83 1.90 1.52 2.00 1.56 1.91

in.J>c bconnect 2.24 2.45 2.13 2.56 2.65 2.17

in.J>cblookup 0.95 1.13 0.81 1.28 0.96 1.03

in....netof 2.67 2.42 3.16 3.27 3.13 3.33

ifjfonnetof 0.46 0.46 0.53 0.64 0.73 0.62

in.J>cbdisconnect 0.52 0.64 0.53 0.55 0.55 0.46

udp_output 2.61 2.45 2.28 3.66 3.07 2.78

m_get 1.98 1.48 1.88 1.93 3.54 2.08
ip_output 4.12 3.89 3.53 4.26 4.01 4.14
udp_cksum 2.23 3.37 2.40 12.82 8.79 8.28
in_cksum 4.19 4.54 4.43 3.44 3.56 4.01
injnaor 2.25 2.41 2.43 2.44 2.40 2.27
ipintr 4.42 3.71 3.96 2.69 4.34 4.36

enrint 3.07 3.51 4.44 3.37 3.90 4.14
enoutput 3.36 3.12 3.04 3.46 3.87 2.80

ens tart 3.16 2.88 2.50 2.66 2.02 2.67

lf_wubaput 4.02 4.31 5.08 14.98 4.01 10.54
getr 0.39 0.36 0.41 0.27 0.48 0.44

Table 6: Partial Decomposition of UDP /TP Time in Seconds
Cor Sending 10,000 Datagrams Between to Dedicated VAX. 11/750.

[Highlighted in boldface are those calls with larger timing changes.J

are placed on the data queue for the TCP connection. Based on the protocol and its windowing

techniques, an amount of data to be sent is selected and then passed to the TP level, ip_output.

Data and header are checksummed in tcp_cksum, and later the additional TP header information

is checksummed in in_cksum. Finally, the message is queued and possibly sent to the specific net

work interface for transmission. In this study, the network interface is represented by the two

functions en_output and en_start. Before such a transmission can happen, the buffered data must

be copied into a single contiguous memory space; this is done in if_wubaput.

From the row entries in Table 5, we can see that, of the 20 different routines listed for

TCP fTP, 11 present processing costs which vary significantly with the amount of data sent. The

processing time of the other 9 routines remains practically constant. The four calls which show a

larger variation in the vicinity or the 1024 bytes region are sosend, uiomove, m_copy, and

if _wubaput. All are associated with the buffer management strategy. The five calls which have a

larger impact in the processing or messages are tcp_output, sosend, if_wubaput, tcp_cksum, and

m_copy. Clearly, the greatest impact comes from those routines which do copying of data within

the interfaces. In the 1024 case, checksumming and servicing acknowledgements and window

updates through tcp_input are the two most expensive tasks.

24

As mentioned in Section 1, there are network hardware interfaces which provide checksum

ming facilities. As can be observed from the entries for in_cksum and tcp_cksum, the time spent

in it is substantial. This, in fact, is true for both protocols (see Tables 5 and 6). It is clear, then,

that redundant checksumming in a system has definite performance penalties.

7.2. UDP/IP

From the user process viewpoint, sending data through UDP /TP results from system calls

equivalent to sendto. sendto requires the destination address on each call; sockargs and getsock

produce the socket control block associated with this operation. With this information, sendit is

called, which in turn calls sosend as TCP JTP does. Again sosend calls uiomove, which calls

Copyin to actually copy the user data into kernel buffers. These buffers are given to udp_usrreq

which calls udp_output after a pseudo connection is established via in~cbconnect with its associ

ated routines, in~cblookup, in_netof, and if_ifonnetof. As with TCP, udp_output represents the

output processing of the UDP protocol. At this level the header is created. The header and the

data are then passed to ip_output as in TCP jTP. ip_output checksums the header in in_cksum

and passes the message to the appropriate network interface, in this case en_output. Again, the

mbufs must be copied into a single contiguous memory space before transmission; this is done in

if_wubaput.

From the row entries in Table 6, we can see that of the 28 different routines listed for

UDP JTP, only 7 present processing costs which vary significantly with the amount or data sent.

The processing time of the other 21 routines remains practically constant. One exception to this

is mJreem, which exhibits its largest processing time for datagrams or size 1024 bytes. The two

calls which show a larger variation in the vicinity or the 1024 bytes region are uiomove, as before

TCP JTP Routines Packet Size
and System Calls 1 112 113 1023 1024 1025

syscall 10,882 10,884 10,882 10,884 10,882 10,882

write 10,002 10,002 10,002 10,002 10,002 10,002

rwuio 10,009 10,010 10,009 10,010 10,009 10,009

SOOJW 10,000 10,000 10,000 10,000 10,000 10,000

sosend 10,000 10,000 10,000 10,000 10,000 10,000

ulomove 10,014 10,015 20,014 100,015 10,014 97,158

lplntr 356 1,532 1,686 10,035 10,238 10,012
tcp_usrreq 10,011 10,020 10,021 10,119 10,022 10,046
tcpjnput 323 1,472 1,M5 10,095 10,243 10,012
tcp_output 10,010 10,017 10,015 10,104 10,008 10,015
sbappend 10,000 10,000 10,000 10,088 10,000 10,000

lp_output 10,016 10,049 10,032 10,182 10,024 20,081
tcp_cksum 10,333 11,497 11,671 20,234 20,256 30,037
ln_cksum 10,384 11,628 11,730 20,494 20,356 30,369

m_copy 10,007 10,022 10,024 10,136 10,010 20,022

enoutput 10,016 10,049 10,032 10,182 10,024 20,081

enstart 10,024 10,059 10,037 10,188 10,057 20,141

lf_wubaput 10,016 10,049 10,032 10,182 10,024 20,056
injnaof 30,075 30,190 30,131 30,644 30,136 60,361

Table 7: Number or Calls per Function for 10,000 TCP /TP Transmissions.
!Highlighted in boldface are those calls with large variatz"ons.J

[Highlighted in italics are those calls with identical counts.J

25

UDP /fP Routines Packet Size
and System Calls 1 112 113 1023 1024 1025

syscall 10,886 10,888 10,886 10,888 10,886 10,886
sendto 10,000 10,000 10,000 10,000 10,000 10,000
sockargs 10,000 10,000 10,000 10,000 10,000 10,000
get sock 10,000 10,000 10,000 10,000 10,000 10,000
send it 10,000 10,000 10,000 10,000 10,000 10,000
m.Jreem 19,003 19,408 19,204 19,331 29,194 19,848
sosend 10,000 10,000 10,000 10,000 10,000 10,000
ulomove 10,015 10,018 20,015 100,018 10,015 20,015
udp_usrreq 10,002 10,002 10,002 10,002 10,002 10,002
in_pcbconnect 10,000 10,000 10,000 10,000 10,000 10,000
in_pcblookup 10,052 10,055 10,049 10,089 10,069 10,073
inJletof 40,057 40,051 40,075 40,108 40,075 40,111
if_ifonnetof 10,000 10,000 10,000 10,000 10,000 10,000
in_pcbdisconnect 10,000 10,000 10,000 10,000 10,000 10,000
udp_output 10,000 10,000 10,000 10,000 10,000 10,000
m_get 20,023 20,021 20,030 20,040 30,029 20,041
ip_output 10,019 10,017 10,025 10,036 10,025 10,057
udp_cksum 10,000 10,000 10,000 10,000 10,000 10,000
in_cksum 29,021 28,820 28,458 28,710 29,818 29,770
injnaof 30,108 30,105 30,122 30,196 30,143 30,183
ipintr 8,996 9,403 9,211 9,347 9,888 9,850
enrint 8,255 8,503 8,298 8,369 8,117 8,136
enoutput 10,019- 10,017 10,025 10,036 10,025 10,037
ens tart 10,037 10,039 10,037 10,056 10,028 10,044
if_wubaput 10,019 10,017 10,025 10,036 10,025 10,037
get! 10,840 10,840 10,840 10,840 10,840 10,840

Table 8: Number of Calls per Function for 10,000 UDP /fP Datagrams.
[Highlighted in boldface are those calls with large variations.J

!Highlighted in italics are those calls with identical counts.J

with TCP /fP, and if _wubaput. The first is associated with the buffer management strategy, and
the latter with passing the data to be transmitted to the hardware interface in one contiguous
piece. The five calls which have a larger impact in the processing of datagrams in UDP /fP are
udp_cksum, sosend, if_wubaput, uiomove, and Copyin. For UDP /fP, checksumming is, across

most datagrams sizes, the single most expensive operation performed. As mentioned in Section
7.1, redundancy of this operation should be avoided. (TCP cannot avoid it.) For larger datagrams
sizes, the greatest impact comes from those routines which do copying of data across the inter

faces. sosend, as was also the case in TCP /fP, is an important factor in the time spent processing

messages.

Table 6 also shows that for UDP /fP the processing costs are somewhat more evenly distri
buted across many routines than for TCP /fP. This suggests that speeding up UDP /fP will require
streamlining many routines. In UDP /fP there appear not to be many significant gains to be
obtained from any one optimization.

Another way to look at these profiling results is to consider the number of times each rou
tine was called in the processing of the 10,000 transmissions. Table 7 presents, for TCP /fP, such
a decomposition, while Table 8 has it for UDP /fP. The most surprising behavior observed was for

28

uiomove in TCP fiP, where for the 1025 packet size, the count, instead or dropping to something
in the order of 20,000, remains very high. This is so because of the 'stream' communication
nature of TCP. As there are no record boundaries, the use of 'odd' send sizes causes both frag
mentation and joining or segments. Ir there was more than 1 kilobyte or data to be transmitted
but less than 1 kilobyte or buffer remaining for the socket, sosend would send the remaining
amount using small mbufs. This is exactly what happened in the 1025 byte case as witnessed by
uiomove which is called once for each mbuf used. It is interesting to note that the UDP /IP imple
mentation is more immune than the TCP /IP implementation to packet size changes, with respect
to the number or times individual routines are called. This is mostly due to the fact that UDP
preserves record boundaries and thus may allocate mbufs with better knowledge. In the UDP /IP
implementation, however, mJreem and m_get exhibit a peak or activity for the 1024 byte case
which contrasts with all other sizes. This is due to the handling or trailer protocol packets.

8. Conclusions

For users who want to implement distributed applications based on Berkeley UNIX 4.2BSD
computing environments interconnected through Ethernets, the system currently provides two
basic transmission protocols for interprocess communication: TCP and UDP. Both, in turn, are
based on IP for actual data transmissions. They are part or the DARPA Internet family of proto
cols. This paper has presented results which show the network performance a user process may
expect from the network when implementing distributed applications. Even though there are
currently other protocol families at different stages or implementation which will coexist with the
above protocols in the kernel of Berkeley UNIX, this paper has only addressed performance issues
relating to TCP /IP and UDP /IP. ·

We have first determined that, for achieving an adequate degree or confidence in our net
working measurements, a repetition count or 4,000 was necessary. When assessing the protocol
implementations, however, we needed a repetition count of 10,000 to achieve an accuracy to the
one tenth or one millisecond, even though these measurements were obtained executing in stand
alone mode. Network throughput and latency were obtained by sending messages between hosts
by user space processes. We also added artificial loads to the sending and receiving hosts, and to
the ether, respectively, to assess the effect or a load on throughput and packet transmission times.
For protocol implementation evaluation, we had to use a version or the kernel compiled for
profiling.

Given the variety or hardware at our disposal, we have been able to exercise many alterna
tive communication paths, in different tests, throughout the months in which this study was per
formed. Two unexpected results related to hardware differences were that the 10 megabit/second
interface on Matisse appears to be about a millisecond slower than the one on Calder (see Tables
1 and 2, and Tables 2 and 5 or Appendix B), and that the 3 megabit/second hardware appears to
be faster than the 10 megabit/second hardware (see Tables 2 and 6 or Appendix B). Software
overhead may also play a role here, in that the device on Calder is more complicated than the one
on Matisse. However, for TCP /IP (see Tables 1 and 7 or Appendix B), both interfaces appear to
have the same speed. This may be caused by the processors becoming saturated processing the
TCP /IP packets.

We have defined user process network latency to be the minimum time required to send a
single byte or data. When the ether, and both the sending and receiving hosts had no other user
activities in them but our tests (what we call host load zero), our results show that, for the VAX
11/750, the latency Cor TCP /IP is approximately 5.5 milliseconds, and Cor UDP /IP is 6.1 mil
liseconds (see Table 3, and Tables 1 and 2 or Appendix B). For the SUN Il's, we observed a
latency or approximately 4.0 milliseconds Cor TCP fTP, and 4.5 milliseconds Cor UDP /IP (see
Tables 3 and 4 or Appendix B). However, the round trip of a 1 byte TCP /IP transmission took
18.5 milliseconds between two unloaded VAX 11/750 (see Table 4).

27

Through the use of an artificial workload, we have seen the severe effect which the load has

on the user processes' perception of network throughput. In the case of a loaded sender, not only

network latency increases between five to six-fold (see Table 3), from a processor load of zero to a

maximum processor load or four, but also network throughput is reduced, at load four, to less

than 20% of what it is at load zero (see Figure 9). At high levels of load, our measurements indi

cate that, across all message sizes, user process applications will approximately see a constant net

work throughput, which will be on the order of 250,000 bits per second. This is so because

throughput curves seem to 'flatten' 'at high levels of load (see 'Figures 9 and 10). Analogous

results were observed for TCP /IP in the case where the receiver host was loaded and both the

sender host and the ether were unloaded (see Figure 13). On the other hand UDP, from the send

ing user process level, was immune to the presence of a load at the receiving end, see Figure 14.

We estimate that packet losses, in this case, are non-negligible.

The maximum network throughput observed corresponded to the case where an otherwise

idle VAX. 11/780 sent packets to an otherwise idle VAX. 11/750. For UDP /IP, we saw rates

which, for 1460 byte packets, approximated 1,500,000 bits per second. TCP /IP and UDP /IP
exhibited different throughput behavior as a function of packet size. While TCP /IP showed a 'dip'

immediately above packet sizes of 1024 bytes (see Figures 4 and 5), UDP /IP did so only above

1460 byte packets, where internetwork fragmentation begins. The TCP /IP cost of copying mes

sages from the transmission queue to the retransmission queue appears as a main cause of the

TCP dip mentioned above.

When transmissions were made with an ether load of three, and both sending and receiving

hosts were kept with host load zero, we could observe a degradation of 40% in throughput. This

was uniform across packet sizes, so, at least at this level or ether load where at least 22% or the

transport capacity was used, there was no medium discrimination against any packet size.

A detailed protocol implementation analysis has been presented for TCP /IP and UDP /IP.
For TCP /IP, those routines which do the copying of data appear to make preponderant contribu

tions to the total elapsed time (see Table 5). For UDP /IP, the single most expensive operation is

the computation of the checksums (see Table 6). Network buffer management is also a factor, but

lack of facilities to determine the size distributions of packets sent per host does not allow us to

fully assess the quality of the buffer management policies and mechanisms at this time.

9. Epilogue

Since this study was conducted several changes have been made to the implementations of

TCP /IP and UDP /IP, as well as to the buffer management policies and default buffer sizes. These

changes will be present in future BSD releases. We highlight some.

The buffer size at the socket level is now a settable parameter. When increased to 8 kilo

bytes we observed an improved throughput for UDP /IP in the order of 20%. In TCP, a facility

for buffering outstanding small packets to be sent has been added. This minimizes, in the case of

receiver busy, the number of transmissions between it and any sender. 808end has been changed

so as to align 1 kilobyte packets whenever possible. From the receiver end of transmissions, and

having in mind that the processing of acknowledgements consumes a substantial amount of pro

cessor resources, a scheme for delayed acknowledgements has been incorporated. This scheme

works best with larger socket buffer size. Routing has been enhanced to cache the last computed

route; if two consecutive packets go to the same destination the route for the second need not be

computed. This should improve throughput for large data transfers. However, a complete assess

ment or these changes has yet to be made.

10. Blbllography

[1] Almes, G. T., and Lazowska, E. D., "The Behavior of Ethernet-like Computer Communica

tions Networks", Proceedings of the 7th Symposium on Operating System Principles, 1979,

pp. 66-81.

28

[2] Cabrera, L. F., "A Performance Analysis Study of UNIX," Proceedings of the Computer Per

formance Evaluation Usc:s Group 16th Meeting, CPEUG 80, NBS Special Publication 500-

65, Orlando, Florida, October 1980, pp. 233-243. ~

[3] Cabrera, L. F., "Benchmarking UNIX: A Comparative Study," in Experimental Computer

Performance Evaluation (D. Ferrari and M. Spadoni eds.) North-Holland, Amsterdam, Neth

erlands, 1981, pp 205-215.

[4] Cabrera, L. F., and Rodriguez-Galant, G., Predicting Performance in UNIX Systems From

Portable Workload Estimators Based on the Terminal Probe Method, Report No. UCB/CSD

84/194, University of California, Berkeley, August 1984.

[5] Cheriton, D., and Zwaenepoel, W., "The Distributed V Kernel and its Performance for Disk

less Workstations", Proceedings of the 9th SOSP, November 1983.

[6] Gonsalves, T. M., "Packet-Voice Communication on an Ethernet Local Computer Network:

an Experimental Study", Proceedings of the SIGCOMM 1983 Symposium on Communica

tion Architectures and Protocols, Austin, Texas, March 1983, pp. 178-185.

[7] Hagmann, R. B., "Performance Analysis of Several Backend Database Architectures", Ph.D.

Thesis, Report No. UCB/CSD 83/124, University of California, Berkeley, August 1983.

[8] Hunter, E., "A Performance Study of the Ethernet Under Berkeley UNIX 4.2BSD", Proceed

ings of CMG XV, San Francisco, California, December 1984, pp. 373-382.

[9] Lazowska, E. D., et. al., "File Access Performance of Diskless Workstations", Technical

Report 84-06-01, June 1984, Department of Computer Science, University of Washington.

[10] Leffler, S. J., and Fabry, R., "A 4.2BSD Interprocess Communication Primer", Report No.

UCB/CSD 83/145, University of California, Berkeley, July 1983.

[11] Leffler, S. J., et. al., "4.2BSD Networking Implementation Notes," Report No. UCB/CSD

83/146, University of California, Berkeley, July 1983.

[12] Luderer, G. W. R., et. al., "A Distributed UNIX System Based on a Virtual Circuit Theory",

Proceedings of the Eighth Symposium on Operating Systems Principles, Asilomar Confer

ence Grounds, Pacific Grove, California, December 1981, pp. 160-168.

[13] Metcalfe, R. M., and Boggs, D. R., "Ethernet: Distributed Packet Switching for Local Com

puter Networks", CACM, Volume 19, Number 7, July 1976, pp. 395-404.

[14] Padlipsky, M., "TCP-ON-A-LAN", RFC 872, USC Information Sciences Institute, Sep

tember 1982.

[15] Postel, J., "User Datagram Protocol", RFC 768, USC Information Sciences Institute, August

1980.

[16] Postel, J., "Internet Protocol- DARPA Internet Program Protocol Specification", RFC 791,

USC Information Sciences Institute, September 1981.

[17] Postel, J., "Transmission Control Protocol", RFC 793, USC Information Sciences Institute,

September 1981.

[18] Rajaraman, M. K., "Performance Measures for a Local Network", ACM Sigmetrics Perfor

mance Evaluation Review, Volume 12, Number 2, Spring-Summer 1984, pp. 34-37.

[19] Sechrest, S., "Tutorial Examples of lnterprocess Communication in Berkeley UNIX 4.2BSD",

Report No. UCB/CSD 84/191, University of California, Berkeley, June 1984.

[20] Shoch, J. F., and Hupp, J. A., "Performance of an Ethernet Local Network- A Preliminary

Report", Proceedings of Spring COMPCON 80, San Francisco, February 1980.

[21] Shoch, J. F., and Hupp, J. A., "Measured Performance or an Ethernet Local Network",

CACM, Volume 23, Number 12, December 1980, pp. 711-721.

20

[22] Swinehart, D., McDaniel, G., and Boggs, D., "WFS: A Simple Shared File System for a Dis

tributed Environment." Proceedings of the 7th SOSP, Operating Systems Review, Vol. 13,

No.5, pp. 9-17.

[23] Terry, D., and Andler, S., "Experience With Measuring Performance of Local Network Com

munications", IBM San Jose Research Laboratory Research Report RJ 3743 (43119),

December 1983, pp. 1-6.

[24] Xerox Corporation, "Level Two: Sequenced Packet Protocol", Xerox XNS Protocol Hand

book, May 1981.

[25] Walker, B., "The LOCUS Distributed Operating System", Proceedings of the 9th SOSP,

November 1983.

30

11. Appendix A: Software Used In The Study

Test Software Used in This Study

11.1. Software for Network Performance Assessment

I• (O(I)Crt~tt.e 1.11

lineludt <sys/p~ru. h)
lineludt <sys/dir. h)
lineludt <•tdio.h>
lineludt <sys/soektt.h)
lineludt "in.h"
lineludt <sys/tiat.h)
lineludt <netdb.h)
lineludt <trrno.h)

I• soat useful definition• •/
ldtfint TRUE 1
ldtfint FALSE 0

ldtf1nt X_QK 1

I• P~r~atttrl for test •I
ldttint DOIIAII M _INE.T
ldtfint DOIIAINNAIE "M _INE.T"

40Q6 ldtfint IIAXIESSAGESIZE
long tiat 0;
int trrno;

•~in (~rge, ~rgy)

ebr •ugy[];
int uge;
{

struet host tnt •hp.
•gethostbyn~••

struet socbddr_in n~••:

struct sock~dr _in enue;
struct sochddr _in en~••l:

int p&rentsock;
int etllock;
char rUDJlUI [20] ;
chu doneasg;

/Td/osaosis/syateaa/ktr/lib/sees/s.Crt~te.e) •I

();

ch~r asgbuff[IIAXIESSAGESIZE];
int repcount,

aus~p;ui:n,

srepcount;
int n~atltn,

en~••hn;

int rt~d•~•k.

writtauk,
u:ctpa~sk;

int lo1t,
got,
nnt:

int found;
int n;
struct tiatT~l tiaeout;
long st~rttiat,

endtiat,
tti .. ;

int i;
long byteent,

bitcnt;

long bync,
binc;

float delay;
int anc;

struct{
int repcount;
long ttiae;
long byuc;
long biuc;
int auc;
float delay;

}childa.ta;
FILE • logfill;

bysec = 0;
binc = 0;
delay = 0.0;
auc = 0;
lost = 0;
doneasg = 6;
cnaaelen = sizeot (cnaae);
if (a.rgc I= 6) {

31

fprintf (stderr, •usage: I• froa-host to-host repcount asgsizeO,

arr[O]);
exit (-1);

}

repco•1nt = a.toi (a.rgT[3]);
••••agesize = atoi (arr[4]);
sprintf (run..nue, 1 tsl-d", aungnize);
bytecnt = aessa.gesize • repcount;
bitcnt = bytecnt • 8;
srepcount = repcount;
fprintf (stderr,

•troa HOST: Is to HOST: Is REPCOUIT: ld, IESSAGESIZE: ldO,

argT[l], argT[2], repcount, aessagesize);
if ((repcount <= 0) II

(repcount) 1000000) II
(aessagesize <= 0) II
(aessa.gesize) 40ga)) {

fprintf (stderr, "ba.d pa.ra, rep count aust be> 0, < 10000000);

fprintf (stderr, • a.nd asgsize aust be > 1, <= 40g8Q):
exit (-1);

}

if (MULL== (logfile = fopen (•tsend.log•, •a•))) {
perror ("fopen•);
exit (-1);

}

if ((ctlsock = socket (DOIAIK, SOCX~TREAI, 0)) < 0) {

}

fprintf (stderr, •error (ld) aa.king kernel socketpair.O, errno);
exit (-1);

I• bind it so •• can get aessa.ge• •I
hp = getho1tbynaae (arr[l]);
bcopy (hp -) h.addr, & (naae .lin_addr. 1 _a.ddr) , hp -> hj.ength);

na.ae. sin_fuily : AF .INET;
naae. 1in_port : 0;
if (bind (ctlsock, tnaae, 1izeof (na.ae))) {

perror ("binding•);
close (ctlsock);
exit (-1);

}

I• bind it so we can get aessages •I
hp = gethostbynaae (arr[2]);
bcopy (hp -> h_addr, &(cnaae.lin_addr.s_addr), hp -) hJ,ength);

3Z

cnaa•. sin.Jaaily • IIF _INET;
cnu•. lin .,port. = 20!1!1;
if (0 I= connect. (ct.laock, &cnaae, aizeof (cnaae))) {

perror ("connect.•);
clon (ct.bock) ;
exit. (-1);

}

U ((pannt.aock "' aocket. (DOIAII, SOCI.$TREAII, 0)) < 0) {

}

tprint.f (at.4err, •error (14) aakin& kernel 1ocketpair.O, errno);
exit (-1);

I• bind it. •o •• can c•t ••••as•• •I
hp .. c•thoatbyuaae (ar(T[l));
bcopy (hp -> h_addr. &(naae. ain_addr. a_addr). hp -> h.J.ensth);
naae.lin.Jaaily = IIF JIET;
naae. lin .,port = 0;
if (bind (parent.aock, lnaae, aizeof (naae))) {

perror ("bindins•);
cloae (parentaock);
exit (-1);

}

hp = c•thoatbyuaae (ar(T[2));
bcopy (hp -> h_addr, &(cnaae. ain_addr. a_addr), hp -> h.J,ensth);
cnaae.lin.Jaaily = IIF_IIET;
cnaae .lin .,port = 207!1;
if (0 I• connect (paTentaock. &cnaae, aizeof (cnaae))) {

perror (•connect•);
clo•• (parent.aock);
edt (-1);

}

I• clear out buffer •/
for (1 s 0; i < ••••aceeize; i++) {

••cbuU (1) = 1;
}

at.arttiae = t.iae (0);
tprintf (atderr, •parent atartinc at I•"· ctiae (&atarttiae));
while (1) {

rY = aend (parentaock, asgbuff, ••••aceaize, 0);
it (n < 0) {

fprintf (atderr. •parent exitins. aend code 14, errno ld loat 14 ••nt. ld sot ld", rY, errno, loat, aent
ahut.down (parentaock, 2);
exit. (n);

}

repcout-;
unt-;
if (repcout. <• 0) {

endtiae • tiae (0);
aagbuff[O) = 10;
rY = lend (parent.aock, aagbuff, 1, 0);

t.t.iae = endtiae - at.arttiae;
rY = l~n4(ctllock, &doneaag. 1,0);
llup(1);
rY • recT(ctl•ock, &childat.a, (lizeot childata), 0);
1hutdown (parent•ock, 2);
ahutdown (ctlaock. 2);
if (t.t.ia• I• 0) {

}

by1ec • byt.ecnt I ttiae;
biaec • bitcnt. I ttiae;
delay • (float.) tt.ia• I (float) arepcout;
aaec • arepcout I t.tiae;

tprintf (1tderr, •parent exiting. tiae = ldOhroughput:lld byt.••/aec lld bit.•/••c It sec/a•g Sd aag/••cO
bi1ec, delay, •••c);

tprint.t (logtile, "110• 110• 1101 Sd Sd Sd Sld lld ld It •

}
}

}

33

TUDJl&a•, argY[l], argY[2], ttiae, repcount, ••••agt•ize,
by•ec, bi1ec, •••c. delay);

fprintf (logfile, "lld lld lld ld If ldO, childata.ttiae,
childat~.bfiiC, childata.biltc, childat&.altc, childata.delay,
childat&.re~c~unt);

fcl011 (logfilt);
exit (0);

34

Protocol Performance Assessment

11.2. Software for TCP /IP Assessment

tinclude <sya/typea.h>
tinclude <netdb.h>
tinclude <sys/socket.h>
tinclude <netinet/in.h>

1truct 1ock~dr _in addreu;
char sendbuf[1026];;

•ain(ar&c,argy)
char •argy[];
{

}

int i;
struct ho1tent •phoatent;
int du;
int lin;

du = socket(AF_INET,SOCX...STREAII.O);
if (du < 0)

perror(••ocket•),exit(-1);
phostent z &•tho•tbyna.e(argy[1]);
~dreu.lin,..fa.ily a AF_INET;
~dresa.•in_~dr.a_~dr = •(int •)pho•tent->h_addr;
~drus .linJiort = 4321;
if (connect(des,t~dress,sizeof(address)))

perror(•connect•), exit(-1);
size = atoi(argy[2]);
tor (1=0; 1<10000; 1++)

write(del,lendbuf,aize);

11.3. Software for UDP /IP Assessment

tinclude <sys/types.h>
tinclude <netdb.h>
tinclude <sys/socket.h>
tinclude <netinet/in.h>

atruct aock~dr _in addrua;

uin(argc, argy)
char •arv[];
{

}

int 1, 1;
char buf [1025];
1truct ho1tent •phostent;
int lin;
extern errno;

it((• = aocklt(AF_IIET,SOCX...DGRAII,O)) == -1) perror(••ocket•)
pho1tent = &•thostbyna.e(argy[l]);
~dru• .lin...fuily = AF _I lET;
~dre••·•inJ'ddr.IJ'ddr = •(int •)pho•tent->h_addr;
~dreu. BinJiort = ntoh• (1234);
1ize = atoi(argy[2]);
printf("Testing byte size of ldO,aize);
tor(i = 0; 1 < 10000; 1++)

••ndto(l,but,size,O,t~dr•••.sizeof(~drtsl));

if (errno) perror(•udp: •);

35

12. Appendix B: Selected Raw Data

Tables With Raw Data Used For The Figures in Section 4

calder-10 -> matisse-10

Bytes/ Total Transmissions/ Bits/ Seconds/
Message Time Second Second Transmission

1 11 181 1454 0.0055
16 11 172 22108 0.0058
64 13 153 78769 0.0065

128 15 128 131413 0.0078

256 19 104 213422 0.0096
512 27 72 299072 0.0137

1024 29 68 565234 0.0145

1460 67 29 347722 0.0336
2032 78 24 413917 0.0393

Table 1: TCP /IP sending VAX 11/750 10 megabit/second Ethernet

calder-10 -> matisse-10

Bytes/ Total Datagramsf Bits/ Seconds/
Message Time Second Second Datagram

1 12 163 1312 0.0061
16 12 158 20348 0.0063
64 13 153 78956 0.0065

128 14 140 144334 0.0071
256 16 121 249976 0.0082
512 21 93 383002 0.0107

1024 23 84 700949 0.0117

1460 30 66 779012 0.0150
2032 51 38 635038 0.0256

Table 2: UDP /IP sending VAX 11/750 10 megabit/second Ethernet

uranus-> mars

Bytes/ Total Transmissions/ Bits/ Seconds/
Message Time Second Second Transmission

1 8 250 2000 0.0040
16 8 250 32000 0.0040

64 9 222 113777 0.0045
128 11 178 183078 0.0056
256 14 136 280868 0.0073
512 21 94 387566 0.0106

1024 23 83 689077 0.0119
1460 60 32 390033 0.0300
2032 70 27 463331 0.0351

Table 3: TCP /IP sending SUN II 10 megabit/second Ethernet

36

uranus-> mars

Bytes/ Total Datagrams/ Bits/ Seconds/
Message Time Second Second Datagram

1 9 222 1777 0.0045
16 9 217 27875 0.0046
64 9 217 111501 0.0046

128 10 188 193628 0.0053
256 12 158 325578 0.0063
512 16 125 512000 0.0080

1024 17 115 953055 0.0086
1460 24 83 973333 0.0120
2032 42 46 770494 0.0211

Table 4: UDP /IP sending SUN II 10 megabit/second Ethernet

matisse-10 -> calder-10

Bytes/ Total Datagrams/ Bits/ Seconds
Message Time Second Second Datagram

1 13 146 1177 0.0068
16 14 142 18285 0.0070
64 14 140 72166 0.0071

128 15 126 129907 0.0079
256 17 117 240941 0.0085

512 20 97 397897 0.0103
1024 19 104 853692 0.0096
1460 24 82 965546 0.0121
2032 41 47 781647 0.0208

Table 5: UDP /IP sending VAX 11/750 10 megabit/second Ethernet

calder-> matisse

Bytes/ Total Datagrams/ Bits/ Seconds/
Message Time Second Second Datagram

1 11 181 1459 0.0055
16 11 183 23487 0.0055
64 11 181 93090 0.0055

128 12 160 165414 0.0062
256 13 146 301573 0.0068
512 16 118 487905 0.0084

1024 15 128 1051306 0.0078
1460 20 96 1123504 0.0104
2032 38 52 855578 0.0190

Table 6: UDP /IP sending VAX 11/750 3 megabit/second Ethernet

37

calder -> matisse

Bytes/ Total Transmissions/ Bits/ Seconds/
Message Time Second Second Transmission

1 10 192 1541 0.0052
16 11 183 23487 0.0055
64 12 163 84020 0.0061

128 15 129 133119 0.0077
256 19 105 216502 0.0095
512 25 77 320514 0.0128

1024 26 75 621984 0.0132
1460 64 30 365510 0.0320
2032 76 25 426765 0.0381

Table 7: TCP /IP sending VAX 11/750 3 megabit/second Ethernet

