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Abstract 

Conventional programs have a single stream of execution. Distributed programs expand on 
this notion, having multiple streams of execution that interact with each other. This expansion 
increases the complexity of a program's behavior. Existing program monitors do not provide 
enough information to deal with all of the problems of a distributed computing environment. 
This paper is concerned with the development of a programming tool for Berkeley UNIX whose 
goal is to characterize the performance of distributed programs. 

The Distributed Programs Monitor (DPM) monitors specifically the interactions between the 
processes of a distributed program and provides routines to analyze the resulting data. DPM is a 
tool composed of independent subtools that work together to monitor a distributed program. 
This paper will present a overview of DPM including a bit of its history and a bit of its 
experimental use, but it deals primarily with the development of a control process for the monitor. 
The design and the implementation of this process is described. A major issue of the design 
addresses how to provide distributed process management in a nondistributed processing 
environment. 
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1. Introduction 

At; technology advances, computing power is becoming a more abundant resource. 
Multiprocessor systems and networks of computers are providing programmers with powerful 
computing environments. The potential of such environments encourages the notion of 
parallelism within a program. Concurrent execution, however, introduces obvious and subtle 
complexities into program behavior. · Conventional program debuggers and performance 
measurement tools do not provide enough information to deal with the added complexity. There 
is an apparent lack of instrumentation with the required capabilities. Therefore, tools are needed 
that specifically address the programming problems introduced by a distributed computing 
environment. The Distributed Programs Monitor for Berkeley UNIX is one such tool. 

The Distributed Programs Monitor (DPM} is a monitoring tool whose goal is to characterize 
the performance of distributed programs. Based on the observation that process interactions are 
just as important to a distributed program's execution as the functioning of the individual 
processes, it is the process interactions within a distributed computation that DPM monitors. 
DPM provides the user with the means for obtaining a trace of the process events that occur 
during the execution of a distributed computation. The events we monitor are those that signal 
process creation and process termination, describe the creation and destruction of communication 
paths, and relate to the sending and receiving of messages. 

In addition to providing a trace of process events, DPM includes analysis routines to 
interpret trace data. Although the analysis routines will only be mentioned briefly in this paper, 
they are an essential part of DPM. To date, analyses that have been made include the simple 
problem of summarizing message statistics. They also include the more complex problems of 
determining a measure of the amount of parallelism, or speed up, achieved in the program's 
execution, and determining the flow of control through a computation[Miller 84J. 

DPM does not depend on the existence of a global, network-wide clock to establish an 
ordering of events adequate for most analyses. However, it does not preclude the existence of 
such a clock, either. Berkeley UNIX provides a fairly accurate approximation of a network wide 
time[Gusella & Zatti 83J; thus, the independence of DPM from a global time is not dictated by 
necessity. If a global time is not assumed, however, certain analyses such as that of parallelism 
mentioned above may require some information that cannot be extracted from the trace. The 
availability of a global clock would have the effect of making such analyses simpler. 

Transparency is a key feature of DPM. DPM is explicitly not a distributed programs 
debugger, even though the information it provides may be very valuable in debugging. It is a 
passive monitor that observes a computation with no intent to modify its execution. 
Furthermore, programs do not have to be recompiled in order to be monitored. This transparency 
allows system processes as well as user processes to be monitored. 

Organizationally, DPM is tool composed of smaller tools. Meters, filter processes, and a 
control process are the individual pieces of the tool that cooperate during a monitoring session. 
Analyses are run on the trace after the computation has completed. 

In this paper, we are primarily concerned with the design and the implementation of 
Berkeley UNIX DPM's control process. The role of a control process is to serve as a liaison 
between the different entities that are active during the monitoring of a program. It interacts 
heavily with the user, the different parts of DPM, and the operating system. In order to establish 
a context for the discussion of control process design, we will first present an overview of DPM, 
introducing information that is relevant to the discussion of the control process. A more detailed 
description of the other parts of DPM, such as the meter and the analysis routines, are found 
in[Miller et al 84, Miller 84J. 

In the following section, we will present definitions and goals that underlie the design of 
DPM. We assume some familiarity with the 4.2BSD interprocess communication (IPC) facilities. 
For a complete description of Berkeley UNIX IPC see [Leffler 83, Sechrest 84J. Section 3 will 
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present a short history of the tool. An overview of DPM will be given in Section 4, after which 

we will proceed to a detailed discussion of a control process design. Section 6 will follow the 

design details with the implementation details. We will conclude the paper with a presentation of 

an experiment, an analysis of DPM's implementation, and a look at how the tool may evolve in 

the future. 

2. Foundations 

2.1. Model of Computation 

A program composed of multiple, interacting processes cannot be described by a traditional 

model of computation. Traditionally, a program involves a single stream of execution in which 

one program instruction is executed at a time. The model of a single-process program does not 

have to account for process interactions. Performance instruments for such programs provide 

metrics such as the number of page faults, context switches, and i/o operations. Such metrics do 

not provide all of the information we need to characterize a distributed computation. Interactions 

are a key to understanding a distributed program. To characterize a distributed computation, we 

have to characterize process interactions. Since traditional models do not have the notion of 

interactions, we must devise another, more general model of computation that does encompass 

this notion. 

We define a distributed program as a collection of processes that cooperate in a 

computation. This model is depicted in Figure 2.1. 
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Figure 2.1 Example of a Distributed Computation 

A process is an entity that computes and communicates. Processes have private address spaces 

and communicate with other processes via messages. A distributed computation executes on a 

network of processors, and its processes may be executing on the same or different processors. 

The type of the underlying network is unimportant as long as processes on different processors can 

communicate. 

With this definition, we can model a computation that contains multiple concurrent streams 

of execution interacting with each other. In this model, a process sees the operating system as 

another process. 
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2.2. Measurement Goals 

There are two objectives which we have maintained throughout the design and the 

implementation of DPM. These objectives are consiBtency and transparency. The first, 

consistency, is concerned with the class of events that we monitor. We believe the events DPM 

monitors should be consistent with how a user sees his or her program. When writing a program, 

a programmer uses various primitive functions. A user views the flow of control through a 

program as a sequence of these functions. Therefore, these primitive functions are the events 

DPM should trace for the user. 

The second goal, transparency, is an important feature of DPM. DPM is meant to be a 

performance tool. As a performance tool, it should do as little as possible to modify the program's 

behavior. A monitor is a passive tool, not an active one. Use of the monitor should not alter the 

order in which process events occur. In fact, it is precisely this sequence of events that we would 

like to trace. 

We also take transparency to mean that we should be able to monitor any program. 

Therefore, we should not require a program to be recompiled before it can be monitored. No 

subroutine calls to special run-time monitoring routines should have to be inserted into the 

program's source, and no special run-time libraries should have to be included. We want to 

provide a tool that is applied to a program, and does not have to be integrated into a program. 

3. Evolution or DPM 

DPM for Berkeley UNIX is a programming tool that has evolved and is still evolving. The 

original version of a distributed programs monitor based on the models and goals discussed in the 

previous sections was working as of September 1 983!Miller 84]. The tool was first developed for 

the DEMOS/MP operating system!Baskett et al 77,Powell 77,Powell & Miller 83]. For several 

reasons, DEMOS/MP provides a much cleaner model of a distributed world than Berkeley UNIX. 

The DEMOS/MP environment is more uniform in nature. The implementation of the monitor in 

this environment produced a relatively simple tool structure. From this simple structure, DPM 

for Berkeley UNIX has evolved. In porting the distributed programs monitor from DEMOS/MP 

to the "uglier", less uniform UNIX environment, the basic structure of the tool remained simple, 

but additional complexity had to be introduced. The design of a control process discussed in 

section 5 will provide evidence of this acicied complexity. 

3.1. DEMOS/MP 

DEMOS/MP is a communication-based operating system. The interprocess communication 

mechanisms are implemented at the lowest level of the system. Most of the systems functionality 

is provided by system processes executing outside of the system's kernel. DEMOS/MP processes 

do not share memory. They have only one way to interface to the outside world, that is, via 

messages. Processes use messages to interface to the operating system, to system resources such 

as the file server and the name server, and to other user processes. Since a single interface is used 

between all DEMOS/MP processes, a process is encapsulated by the communications paths, or 

links, that it possesses. All of its external activity is visible through its links. 

Another characteristic of DEMOS/MP that adds to the uniformity of its environment is that 

process and memory management are transparent across machine boundaries. We can manage a 

process located on a remote machine as easily as we manage a local process. The operating 

system processes for name service, process management, and file management provide an 

environment amenable to the implementation of a distributed computation. 

3.2. Berkeley UNIX 

The UNIX world looks quite different from that of DEMOS/MP. As with DEMOS/MP, 

UNIX processes do not share memory. In great contrast to DEMOS, UNIX is not a 

communication based operating system. The interprocess communication (IPC) mechanisms are 



not implemented at the lowest level of the system. UNIX IPC facilities were an afterthought and 

as such were built on top of UNIX as a separate abstraction having its own name space. Also in 

contrast to DEMOS/.MP, UNIX is a monolithic operating system; most of the system's 

functionality lies in the system's kernel. These functions are accessed via system calls, not via 

messages. Consequently, a process has different ways for talking to the external world. 

There are also multiple ways for the outside world to talk to a process. For example, the 

signal mechanism addresses a process via its process identifier, but the IPC mechanism addresses a 

process via its own abstraction, an IPC socket. The consequence of multiple external interfaces is 

that there is no simple way to encapsulate a process so that we can observe all of its external 

interactions. 

In further contrast, machine boundaries are not transparent in a UNIX system. Process and 

memory management mechanisms are not uniform across machines. The state spaces and 

identifiers of processes executing on a host cannot be directly addressed by the kernel of a remote 

host. Controlling processes across boundaries is therefore more complicated than controlling 

processes within a single machine. In addition, the current version of Berkeley UNIX (4.2BSD) 

has no distributed file system or distributed name server. 

One result is that the lack of network transparency is a primary obstacle in providing a 

simple control process design. 

4. Overview of Berkeley UNIX DPM 

The process structure and organization of our monitor resembles the organization of 

METRIC!McDaniel 75]. First of all, as in METRIC, the monitoring detection mechanism is put at 

a low-level. It is at the system level, not at the language level. Second, the collection and storage 

of event information are separated from the analyses. This organization, which predates METRIC 

by many years (see for examplejFerrari 78] ), allows for a great deal of flexibility. 

It differs from t-.ffiTRIC on the issue of transparency. METRIC requires the insertion of 

special subroutine calls to monitoring functions, or probes, to be inserted into a program's source. 

This is a mechanism we want to avoid. METRIC is also dependent on the type of the underlying 

network, assuming that all messages are broadcast and thus can be overheard by everyone. 

Based on our models and on our goals, the following structure was created, first for 

DEMOS/.MP and then for Berkeley UNIX. There are three stages involved: (1) event detection 

and event record generation, (2) data collection and storage, and (3) data analysis. Program 

monitoring stage includes the first two stages, event detection and data collection. There are three 

types of processes or mechanisms involved in program monitoring: the meters, the filter processes, 

and a control process. The organization of these parts is shown in Figure 4.1. 
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Figure 4.1 Organization of our Monitor 

The meters are responsible for detecting events and creating event records. They are 
mechanisms located in the kernel of each machine. The filter processes are user processes that 
collect the event records produced by the meters and store these records in a trace file. A filter 
may also perform data selection and data reduction operations. The control process keeps the 
whole organization working together. It provides the user interface to DPM and it is responsible 
for making all of the needed connections between the different parts of the tool. 

To date, the third stage of the measurement model, the analysis routines, do not participate 
in the monitoring session. Analyses are run on the trace following the collection of data. 
However, there is nothing in the design which restricts the analyses to be run only at this time. A 
filter process could pass data directly to an analysis routine, allowing for realtime monitoring. 
Such ideas are described in Section 8.3 on future research. 

4.1. The Meters 

The meter mechanism is located in the kernel. If a process produces an event which has been 
specified for monitoring, the meter will detect the occurrence of this event. An event message will 
be created with data extracted from system structures and sent over a communication path to a 
filter process for processing outside of the kernel. Each monitored process must be provided a 
communications path to a filter process. 

In order to implement the kernel metering facility, three fields were added to the process 
structure in the process table as depicted in Figure 4.2. 



6 

Process Structure 
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event flag~ 

mell~age queue 

Process Table 

Figure .t.% Augmented Proeeu Table Entry 

These three fields are (1) a pointer to a socket connected to a filter process, (2) a bit mask 

that indicates which events are to be monitored, and (3) a pointer to a list of buffered event 

records. When a sufficient number of records are buffered, a meter message containing the event 

records is sent to the filter process. This reduces the number of system generated messages 

caused by monitoring. The measurement strategy is defined be the values of these fields. The 

interface to the kernel meter is via the system call setmeter{). This interface is used by a control 

process when setting the measurement strategy for the user. A process is not monitored by 

default. Monitoring must explicitly be set for a process via a aetmeter{} call. If a monitored 

process forks, however, its child will inherit its measurement strategy. There are situations in 

which a server is used to create processes. Examples of such a class of servers are rexec(}, file 

servers, or name servers. In these cases, only if the server is being monitored will a process it 

creates be monitored. 

The events for which monitoring is currently available are: 

ACCEPT process accepts a connection 
CONNECT process initiates a connection 
SEND process sends a message 
RECEIVECALL process makes a call to receive a message 

RECEIVE process receives a message 
SOCKET process creates a socket 
DESTSOCKET process destroys a socket 
FORK process forks 
TERMINATION process is destroyed 

Each or these system calls is examined by the kernel meter. When a monitored process makes one 

or these calls, a meter message is generated and sent across the filter connection. The design of 

the meter does not limit the monitored events to those listed above. These were chosen because 

or our primary interest in characterizing performance based on process interactions via messages. 

The meter could be extended to include more events. For example, we might like to detect file 

activity (for processes that communicate via a file). In this case, interesting system calls such as 

open(}, read(}, write(}, and close() could be modeled as <send(},receive()> pairs. 
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The event records generated by the meter consist of a header and a record body. The 
header contains the machine number, the size of the message, the local clock time, the amount of 
CPU time the process has consumed, and the event type. The record body contains the process 
identifier, the value of the program counter, and the addresses of the source and/or destination 
sockets, depending on the event type. 

4.2. The Filter Processes 

The selection, reduction, and storage of trace data is the responsibility of a filter process. A 
filter is a process that executes in user space. It is the recipient of the measurement data that are 
generated by the meters. The user may only be interested in saving meter events which match 
certain criteria. For example, the user may only want to save event records of messages having a 
message length over a specified minimum, or event records of a process only when the CPU time 
used by that process is under a specified value. It is the filter that interprets the selection criteria 
and decides which event records are to be kept and which are to be discarded. 

Filter processes do not exist by default in the measurement tool. The user must tell the 
control process to create a filter process. Many filter processes may exist simultaneously. Usually, 
there will be a filter process created per computation. A standard filter is provided by DPM. 
However, under only a few basic constraints, custom filters can be easily written. 

4.3. The Control Process 

The task of organizing the parts of the measurement system and providing a control 
interface to the user is performed by a control process. 

-----·-. 
~-------------

/ 

8 I 

_,_---

machine boundaries 

--------1> indication or control 

Figure 4.3 Role of Control Process 

A control process provides the mechanisms for establishing the communication paths between all 
of the components of the measurement system. A control process is a command interpreter. It 
provides the user with a concise menu of commands to use in the measurement and control of one 
or more distributed computations. A control process, upon receiving a command, interprets the 
command and performs the requested function. Executing this request may require interacting 
with the other components of the measurement system and establishing communication paths 
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between the various components. 

Control processes are user processes that exist on a per monitoring session basis. One user's 

control process is independent from another user's control process. A given user could have 

multiple control processes, just like he or she could have multiple shells. In the normal case each 

user will have one control process and may use it to monitor one or more computations. 

5. Design of a Control Process 

DPM is a collection of cooperating entities: meters, filter processes, control processes. The 

meters exist independently from the other parts of DPM. The meters are part of the system 

kernel and therefore are mechanisms that are available even if no instantiation of DPM exists. 

Filter processes, on the other hand, are created by the user. Once created, a filter process also 

exists independently from the rest of DPM. In addition to meters and filter processes, we have a 

computation or computations which are to be monitored. These computations know nothing 

about meters or filter processes. 

Unless we devise some way to tell meters which processes to monitor and where to send the 

event records, we cannot use our tools to monitor a computation. Establishing the necessary 

communication paths between meters and monitored processes and filter processes is the 

responsibility of the control process. The control process creates the communication paths 

according to the specifications of the user. The programmer makes such specifications through an 

interface provided by the control process. 

5.1. Functionality 

Before discussing the issues that arise concerning how the control process will do what it is 

supposed to do (the mechanisms), we will first outline what functions we would like the control 

process to support. 

Approaching this problem from the perspective of a potential user, we must be able to 

create a process as part of a computation. We would like a process to be created without starting 

execution. This is necessary to give us sufficient time to specify the desired measurement strategy 

and to provide some control over the time that various processes start executing. 

Next, we must be able to specify and change the monitoring strategy for a computation. As 

well as setting this strategy for processes we have created, we would like to be able to monitor a 

process or computation that already exists (we have termed this action acquiring a process). This 

would give us the ability to monitor processes such as system servers. System server processes are 

always running (hence, they don't have to be created) and may be interesting to characterize. 

When we acquire an existing process for monitoring, no part of its environment or status should 

be changed other than the setting of the monitoring fields of its process table entry. The privilege 

of acquiring a process should only be given to us if we have the proper authority (e.g., only if we 

are root we should be allowed to monitor a system process). 

In addition to needing a way to set the monitoring strategy, we must have a way to create a 

filter process for data collection. A standard filter process should be available if we do not need a 

special filter process. However, there should also be a way for more advanced users to experiment 

with different filter processes. 

We would like to have basic process control, as in stopping and starting processes. We 

should be notified about process terminations and should receive the standard output produced by 

the processes we create. Finally, we must be able to retrieve the trace of process events that 

results from a monitoring session for use in subsequent analyses. 

5.2. Evolution of Design Issues 
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5.2.1. Process Control 

Process control is an issue of central importance to the design of a control process. Process 
control is required to create a process and to have it monitored, as well as to provide some control 
over a process's execution. Since no restrictions are placed on the processor locations of processes, 
DPM's control process must be able to manage processes on machines different from the one it 
runs on. 

When our world is limited to a single machine, the level of process control we need is easily 
accomplished through existing system functions and utilities. To create a process, a standard 
UNIX system provides the fork(} and exec() functions. To subsequently start, stop, and terminate 
the execution of a process, UNIX signals are used. Through the UNIX signal() system call, 
changes in a process's state (such as normal process termination) can be detected, and control can 
temporarily be given to signal handling routine for signal processing. The problem of process 
control has a readily available solution for a single machine environment running under Berkeley 
UNIX. 

UNIX is not a distributed system, however, and the multiple machine world looks quite 
different. The process management facilities of a system are not aware of processes executing on 
a remote machine, and hence they have no authority over remotely executing processes. The 
identifiers of a process only have meaning for the operating system under which it is executing, 
making direct control of a process on a remote machine impossible. Since process control has to 
be initiated by a local process, the only alternative is to provide a mechanism for indirect control. 

We need the ability to create processes without starting them, to set the monitoring 
strategy for processes, to signal processes to start, stop, and terminate, to detect process 
terminations, and to handle the standard 1/0 of a process. The system server Rexec{) presents an 
example of a service that is used to create processes remotely. Since this is only a trivial subset of 
the services we must provide with the control process, rexec() was not used. 

One design alternative is to use a mechanism resembling a remote procedure call. !Nelson 
81] The implementation we would use would create a process on the remote machine for the 
purpose of servicing the call. When the call completes, a result is returned, and the process is 
destroyed. The advantage of this implementation is that a server exists only when it is needed. 
No system space is wasted to store the process state of an idle server. 

We could use a remote procedure call as follows. When remote process management is 
needed, the control process could call a procedure on the remote machine that provides the 
functionality we need. This procedure, depending on the parameters, could create a process, 
create a filter process, set the metering flags for a process, stop a process, start a process, or 
remove a process. When creating a process, this procedure could make the needed modifications 
to the process's environment. 

Although a remote procedure call is a powerful mechanism, providing us with the local 
processes we need in order to initiate process control, it does not provide us with a complete 
solution. Since process control is initiated by a local process, changes in process state have to be 
sensed by a local process. These changes in process state will occur at any time. In order to 
detect them, a process must exist for this purpose. A remote procedure call, as we have described 
it, does not provide a local process between requests, and therefore, we cannot use it. 

To provide the process management facilities we need, we establish a server process on 
every host that supports the monitor. The addition of these servers is shown in Figure 5.1. These 
servers are daemons. They are processes executing independently from any terminal and any 
user, and whose services are always available. These servers are used by any control process to 
extend control into the realm of another system. A control process is a per user process; the 
servers are per system processes. With the assistance of the servers, the process management 
facilities available on the remote host can be used. These control servers have been called 
meterdaemons. The sole purpose of a meterdaemon is to serve control processes. A 
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Figure 5.1 Role of Control Servers 

meterdaemon is a slave of all control processes, spending most of its time waiting for requests. 

When it receives a request, it executes the appropriate functions and returns a reply to the 

requesting control process. A control process is not always the initiator of communications. 

When the termination of a process is signaled, the meterdaemon (not the control process) is the 

process which can detect the change in execution state. Therefore, the meterdaemon has to be 

able to initiate an interaction with the control process so that the control process can inform the 

user about the execution state of the processes in a computation. 

A meterdaemon maintains information about the requests it receives. When it creates or 

acquires a process, it saves the process identifier and the location of the control process that issued 

the request. By keeping this information, the meterdaemon can handle requests from multiple 

control processes. Each request to the meterdaemon is independent from every other request. 

Information about the higher level structure of computations is irrelevant to the meterdaemon. 

The control process is responsible for maintaining this information. 

As a list of requirements, our meterdaemon must: 

• be available to accept requests from multiple control processes. 

• provide the necessary functionality: process creation, process acquisition, filter creation, 

monitoring specifications, process control. 

• maintain information about the processes that it creates or acquires for monitoring. 

• be able to detect changes in the execution state of the processes it creates. 

• be able to initiate an interaction with a control process. 

The communications path between a control process (or controller) and a meterdaemon 

must be reliable. The lack of reliable datagram protocol in the current version of Berkeley UNIX 

forces us into using a stream connection for the controller/daemon communications. The 
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datagram protocol that is available is reliable if the processes communicating are executing on the 

same host, but it becomes unreliable when we cross machine boundaries. A disadvantage of 

stream protocols is that each stream connection uses a descriptor in the per process descriptor 

table. Since the size of this table is limited (the current size is 20 descriptors, three of which are 

used for stdin, stdout, and stderr), each stream connection between a control process and a 

meterdaemon would use a descriptor in each processes descriptor table. If the control process 

established a stream connection to each meterdaemon at the start of a monitoring session, the 

number of available descriptors would be quickly depleted. This is a limitation in flexibility that 

we would like to avoid. 

The way in which we solved the reliability problem was to establish a temporary stream 

connection between a controller and a meterdaemon for each interaction. An interaction may be 

a request-reply pair from a control process to a meterdaemon or a one-way interaction from a 

meterdaemon to a control process. At the start of each interaction, a stream connection must be 

created. When the interaction has completed, the stream is destroyed. Although this increases the 

response time for each interaction, the frequency of these interactions in low enough that the cost 

in performance is not a significant deterrent. 

5.2.2. Process 1/0 

Another issue involved in providing a complete control environment for the execution of a 

process is the redirection or a process's standard I/0 across machine boundaries. This redirection 

should be done for any process the meterdaemon creates. For a process that is acquired for 

monitoring purposes, no changes are made to the handling of the process's I/0. This process 

continues executing in its existing environment even though it is now being monitored. This 

monitoring is transparent to the executing process. The user is not allowed to modify an acquired 

process's execution state or any aspect of its execution environment other than the monitoring 

strategy. 

An example of redirecting process I/0 is found in the implementation of the function rexec(}. 

Rexec() is used to create a stream connection to a remotely executing command. The standard 

input and output of the command are redirected to this stream, allowing the user to communicate 

with the remote command. We use a similar strategy for our processes. 

We have the ability to make a connection to a meterdaemon running on each machine. To 

complete the path from the process to the user, we must provide a facility for making a 

connection between the process being monitored and the meterdaemon. Given this facility, the 

standard output of the process is redirected to the meterdaemon, the meterdaemon forwards the 

message to the appropriate control process, and the control process displays the message to the 

user. The reverse path is traversed when sending standard input from the user to the process. 

To implement this strategy, each meterdaemon creates an IPC socket. This socket is used 

as part of the bridge for forwarding I/0 between the user and the process. It creates an 

additional IPC socket for each of its child processes. This socket is the child's end of the bridge. 

The child process, before executing the exec(), changes its standard input, standard output, and 

standard error file descriptors to the descriptor of the socket provided by the meterdaemon. 

Consequently, when the new process reads from or writes to standard 1/0, it actually is reading 

from and writing to the meterdaemon. 

Since the meterdaemon and the metered processes are executing on the same machine, 

datagrams can be used reliably for interprocess communication. 

5.2.3. File Location 

In order to create a process, the executable file must be accessible to the operating system 

on the machine where the process is being created. If we want a process to execute on a remote 

machine, but the file is local, either a remote file system must exist or we must copy the file to the 

remote machine. The lack of such a file system in 4.2BSD at this time forced us to implement the 



latter alternative. The rep utility was used to copy the files. This utility is accessed through a call 

to the system() function. 

6.2.4:. Internetwork Communication 

The control process is responsible for making the required connections during a metering 

session. One example of a connection the control process must provide is the connection between 

a filter and a process that will be monitored. When a filter process is created, it opens an IPC 

socket and binds a name to the socket. This is the socket to which the meter messages will be 

sent. The control process must save the name of a filter's socket, and must give this name to the 

process which is to be monitored. Therefore, the name of an IPC socket will be exchanged 

between processes. These processes may be executing on different machines, and even on different 

networks. 

A socket name is composed of a host address and a port number. A given host may be a 

member of two or more networks, and thus two or more different addresses may be used to access 

it by the other hosts in these networks. The implication of this inconsistency is that a socket 

name should not be exchanged between processes if this name will be used to make an IPC 

connection. Therefore, when communicating an address, the literal name of the host and the 

number of the port are exchanged. The receiving process then constructs the socket name using 

its own host address for the specified machine. 

5.2.6. Protection 

Protection in the measurement system is implemented according to the policy used in 

4.2BSD. When using the measurement tool, a user is granted no special privileges; he or she has 

only those access rights dictated by his or her account. Access to any files involved in the 

creation of processes or in the storing of data are checked against th~ privileges associated with 

that account. An outside process, such as a system daemon, can only be metered by a user that 

has the appropriate access rights to such a process. To create a process on a machine, a user 

must have an account on that machine. This implies that, in order to meter a computation, a 

user must have an account on every machine involved in that computation. 

6.2.6. Naming of Services 

A meterdaemon and a control process are independent processes which must communicate 

with each other. A meterdaemon represents a service which is always available. A control 

process represents a client of the service. To use the service, the control process must establish a 

communication path to a meterdaemon. In order to do this, the control process has to know 

where (to which socket address) to send requests. This is the socket that was set up by the 

meterdaemon when it was created. Ideally, we would like to register the address of this socket 

with a name server, so that processes requiring the meterdaemon's service could locate the 

meterdaemon by asking the name server. 

Berkeley UNIX does not yet provide a general, dynamic name server of this type. Limited 

name service is provided in the form of a static data base of services. This data base contains a 

list of services and the corresponding ports at which the services are located. The information in 

the data base is obtained through the system calls getserverbyname(} and getservent(}. The 

information about the meterdaernon service has been added to this data base. 

6. Implementation of a Control Process 

In the previous section meterdaemons were introduced. Figure 6.1 shows the structure of 

the monitor as it was augmented for Berkeley UNIX. 



13 

monitored processes control process 

filter process 

0 o· 
0 
0 

0 
0': 

0 
0 

I ikJ 
I : 

~--:------------~ meterdaemon 

. . . . -------·-········-----------·--

communication paths 

Figure 6.1 Augmented DPM Process Structure 

Our "control process" is actually a per session control process, which we have called the 
controller, in conjunction with a team of meterdaemons. In this section, the implementation of 
the controller, the meterdaemons, and their communications protocol is described. 

6.1. The Controller 

6.1.1. Responsibilities 

The controller is the front end to DPM. It is a command interpreter. The commands that 
are available are listed in Appendix A. During a user's session with DPM, the controller manages 
the state of the current computations and maintains a list of the currently available filter 
processes. A computation, or job, is created by assigning it a name, and then adding processes to 
it. Once the job name is assigned, the measurement strategy for the job can be specified. The 
controller keeps account of all of the processes created or acquired, and the name of the job to 
which they belong. The state of a job consists of a list of processes that are part of that 
computation, the address of the job's filter, and a list of the event flags that are set for the 
processes in the job. 

Each process also has a state. The state of each process includes its process identifier, the 
name of the host on which it is executing, and its current state of execution. The process states 
maintained be the controller are new, running, stopped, killed, and acquired. 

The processes making up a computation are tracked by the controller as they progress 
through these different stages of their lives. The state diagram representing a process's life cycle 
is shown in Figure 6.2. When a process has been newly created, it is in the new state. This state 
indicates that the execution environment has been set up, but the process is suspended prior to 
the execution of the first instruction. From the new state, a process can enter the running state 
by starting it, in which case the process begins execution. A process can also move from the new 
state to the stopped state, in which case it remains suspended, this transition occurring when the 
user stops the job. A process can switch between the running and the stopped states until the 
time it completes. When a process completes, it is moved from the running state to the killed 

state. It will remain in this state until the user removes the job. The killed state may also be 
entered from the stopped state. This occurs if the user decides to remove the job before it has 
completed execution. A process cannot be restarted once it has been killed. A process cannot 
move directly to the killed state from the new state. This restriction is enforced as a 
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precautionary measure, ensuring that the user does not accidentally remove a computation that is 

in progress. If a previously existing process such as a system server is metered, it is moved 

directly to the acquired state. This is the only state such a process can be in. An acquired process 

cannot be stopped or killed, it can only be metered. The acquired status ensures this limitation of 

control. 

As a command interpreter, the controller is always waiting for requests from the user. When 

a user request is received, the controller validates the command and the parameters. If the 

request can be handled locally (e.g., HELP, NEWJOB), the controller can satisfy the request 

without the assistance of a meterdaemon. If it is a request such as ADDPROCESS (process 

creation), the controller must use a meterdaemon. It initiates and establishes a communication 

path to the meterdaemon on the appropriate host, creates a request message indicating process 

creation, sends the request to the meterdaemon, and blocks waiting for the meterdaemon's reply. 

Upon receiving the reply, the communication path is closed and the controller takes actions based 

on the status of the reply. This activity may involve updating process and job records, and 

notifying the user. 

The controller must also read messages coming from meterdaemons. These messages contain 

information about the current state of processes. Such information must be forwarded to the user 

and used to update the information about the status of the processes kept by the controller. 

6.1.2. Communications 

In order to participate in the necessary interaction with the user and with the 

meterdaemons, the controller must establish endpoints of communication. Requests from the user 

will be expected to arrive on the standard input or the controller, which is the terminal unless a 

file or control commands is being sourced (see Appendix A). To accept messages from 

meterdaemons, a special communications socket must be established. 

The controller prompts the user and then uses the ulect(} system call to block on a multi

way receive. In parallel, it waits for terminal input (for user requests) and for connection requests 

on the special socket. When one of these endpoints has something in its queue, the controller will 

unblock and can proceed to receive the message. 
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6.1.3. Data Structures 

To represent the jobs and processes in the system, the data structures required are job 

records and process records. These records are use to store the state described in section 6.1.1, 

and their structures are pictured in Figure 6.3. 

Job Record Process Record 

~ 

Name Name 

Number Identifier 

Filter Address Host 

Event Flags Status 

Process Table Next Process 

Next Job 

Figure &.3 Job and Proceaa Recorda 

Information about filter processes is maintained using the job and process records. W"ben a user 

uses DPM in a monitoring session, he or she enters a different command environment supported 

by the controller. When the controller initializes, it creates a job structure with the name filter to 

maintain information about filter processes. The process table pointer of this job record will point 

to the list of filter processes currently available for that user. To encompass the information 

needed for a filter process, a field was added to the process record. This augmented process record 
is shown in Figure 6.4. 

The port field is used to store the port number. For all processes other than filter processes, 

the port number will be zero. For filters, it will be nonzero, and will be the number of the port 

used for the filter's end of a communication path. 

Process Record 

Name 

Identifier 

Host 

Port 

Status 

Next Process 

Figure 6.4 Process Record 
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The controller maintains the state of computations in a linked list structure of job and 

process records. An example of this state is shown in Figure 6.5. In this example, there are three 

jobs: the filter job and two computations. There are two filter processes, the default filter and 

one created by the user, foo. The computation SOirl' has two processes and the second 

computation, DAEMON, has only one process. 

There are two other data structures that are part of the controller. A command table and a 

flag table. They are created when the controller is created. These tables are used by the 

command interpreter to internally translate and validate DPM commands and event flags. 

6.1.4. Modules 

The modules that implement the controller are written in the MODEL programming 

language !Morris 80]. MODEL is a strongly typed, high level language developed at Los Alamos 

Scientific Laboratory in 1973. It has PASCAL as its foundation. Pascal was extended to support 

the development of large application software and systems programming. MODEL allows for 

interfacing to existing libraries and subroutine packages, such !\5 various C libraries. A 

characteristic feature of MODEL is its support of abstract data types. 

The following are the main modules used to implement the controller: 

- -> 

I--

Job Records 

FILTER \ 
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SORT 

______ J 
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Process Records 
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Figure G.5 Current State ot Computations 
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• control 

• controlsubrs 

• interfacesubrs 

• controlscan 

• controlstructs 

Control is the main program. It contains part of the initialization of the command 
interpreter and the main loop. Initialization includes the creation of the command table and the 
flag table, creation of communication ports, jobtable initialization, filter job initialization, and 
creation of a default filter process. The main loop cycles through the three stages of command 
acceptance, command validation, and command switch. 

The controlsubrs module contains the command procedures which are given control after the 
command switch. They take care of parameter validation and see to the execution of the specific 
functions. 

The interfacesubrs implement the interface to the meterdaemons. They are called from the 
controlsubrs. They use the communication protocol for meterdaemon interactions. They 
establish the communications paths to the meterdaemon, package up a request message, receive 
the reply message, and then give control back to the calling controlsubr. Any necessary file 
transfers (system calls to rep{)) are executed at this level. 

The reading and parsing of command lines received from the user is done through the 
controlscan routines. The module controlstructs contains all of the procedures that are used to 
manipulate the linked list structure of job and process records. 

6.2. Meterdaemon 

6.2.1. Responsibilities 

A meterdaemon is a server whose clients are controllers. As a server, it must accept 
requests for services such as process creation, setting of a process's monitoring strategy, and 
signaling a process to start, to stop, or to terminate. For the processes it creates, the 
meterdaemon is responsible for handling their standard output, and for detecting changes in their 
execution state. 

6.2.2. Communications 

Client requests and process output are handled via a select() on the sockets where the 
meterdaemon may receive messages. A stream socket is used to listen for connection requests 
from a client controller. A datagram socket is used to receive the redirected standard output of 
the meterdaemon 's children. 

Changes in a process's execution state are detected via the signal(} system call. When it 
creates a process, a meterdaemon uses signal(} to enable the CHILDSIG signal so that an 
interrupt will be generated when a child of the meterdaemon changes state. This interrupt will 
force a transfer of control to a special signal handling routine. This is an asynchronous change in 
control. The signal handler is then responsible for determining which process caused the interrupt. 
If the interrupt was due to a process's termination, a termination report is created and sent to the 
controller that was responsible for the process's creation. 

6.2.3. Data Structures 

In order to report process terminations and redirect process output, the meterdaemon must 
maintain information about the processes it creates. It must know which controller requested 
each process's creation and the address of that controller's communication socket so that it can 
establish a connection to that controller. The meterdaemon must also know the address of the 
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datagram socket its child is using for its standard output. To do this, the meterdaemon keeps a 

linked list of process entries (a process log) that contains one entry per process. The process 

record maintained by a meterdaemon is pictured in Figure 6.6. 

Process Record 

pid 

control host 

control port 

i/o port 

next process 

Figure &.& Proeeaa Log Record 

Filter processes are included in the list of processes maintained by the meterdaemons. 

6.2.4. Modules 

The meterdaemon is written in the C programming language since the meterdaemon is a 

system server in the UNIX environment, and since the meterdaemon must interact heavily with 

the UNIX IPC. IPC uses many complex data structures that would be difficult to redefine in 

another language. 

The main modules used to implement the meterdaemon are: 

• meterdaemon 

• daemonsubrs 

• sighandler 

• processlog 

The meterdaemon module sets up the meterdaemon connections so that the meterdaemon 

listens on the predefined port (obtained from the services database via the getBervent() system call 

for the meter service) and the meterdaemon main loop containing the function switch. 

Daemon8ubr8 contains the function routines which take control upon the function switch. 

This is where the actual work requested by the user (e.g., process creation) is done. 

The t~ighandler module is the routine which receives control upon an interrupt generated by 

a change in a child process's state. IC necessary, the sighandler initiates a connection to a 

controller and sends a message. 

Procet~Blog contains all of the routines used to manipulate the linked list of process records. 

6.3. Client/Server Interface 

In this section we describe the message protocol used for the interactions between a 

controller and a meterdaemon. AB stated in section 5.2.1, stream connections are used for each 

interaction. This is to provide us with a reliable path for communications. The connections are 

established as they are needed. Each interaction begins by setting up a communication path 

(connect() and accept(}), and completes by closing the path. 

The client's request resembles a procedure call: a Bend{) followed by a blocking receive() . 

The server resembles a procedure being called: a blocking receive{) followed by a nonblocking 



send(} of a reply to the client controller. This is a synchronous, two-way exchange of messages. 

An example of the format of these requests and replies is shown in Figure 6.7. 

type body 

I~ 11: create I'BqUM tllename 

pa.ra.meter count 
' 

pa.ra.meter Jilt 

tiJter port 

lllter host 

IDI!ter llaco 

control port 

control host 

&. ) form&t of a I'BqUM from a eontroller to a meterda.em>n 

I~ js: create reptv I :. 
b.) form&t of a reply from a meterdaem:>n to a eontroller 

Figure ft.7 Example Formats of a Controller/Meterdaemon Message 

This format includes the message length, the message type and the message body. The length field 
is needed so that, if two messages are waiting in the same queue, the message boundary can be 
detected. The type field identifies the purpose of the message. This may either be the type of 
request issued by the user or the type of reply returned by the meterdaemon. The remainder of 
the message, the body, is variable format, and its interpretation depends on the message type. All 
of the infor~ation that is required for the execution of the operation (in the case of a request) or 
for reporting the operation's result (in the case of a reply) is contained in the message body. 

7. Experiment 

7 .1. Environment 

Experiments with DPM were run on the Berkeley network, which includes several DEC VAX 
computers (VAX 11/780's and VAX ll/750's) connected by a 3 megabit Ethernet!Metcalfe & 
Boggs 76]. Each machine runs Berkeley UNIX 4.2BSD. The basic system supports process 
management, interprocess communication, memory management, and file management. Each 
machine has varying amounts of memory and peripherals. 

One of the problems of the development environment in which we tested DPM is the lack of 
an adequate workload. To date, distributed programs are scarce creatures. In this section, we 
will present a brief overview of a distributed computation we were able to analyze. This is a 
parallel algorithm for solving the classic Traveling Salesman Problem (TSP) !Christofides 79]. 
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7 .2. A Study of The Traveling Salesman 

7 .2.1. Overview of the Problem and the Algorithm 

Briefly stated, TSP is the problem of finding the Hamiltonian circuit of minimum cost in a 

complete graph G = (V, E), where V are the vertices and E are the edges of the graph. Each 

edge in E is associated with a cost. Its name, the Traveling Salesman Problem, comes from the 

following problem context. Ir each vertex in V represents a city, and the cost of each edge 

represents the cost incurred if one travels between the two cities adjacent to the corresponding 

edge, the objective of the TSP is equivalent to that of a salesman who wants to find a tour of 

minimum cost such that he will visit each city exactly once. 

Finding a solution to the Traveling Salesman Problem is a computationally intensive task. 

Yet, it is also a problem that can easily be decomposed into concurrently executing parts. The 

TSP solution we tested is similar to that of !Mohan 82J. The implementation was done by Nick 

Lai and is described in detail in jLai & Miller 84J. The basic idea behind the algorithm is to divide 

the set of possible paths into a smaller set of paths and choose from this smaller set the path that 

appears to be part of the optimal path. If our choice is wrong, we backtrack and try again. For a 

given set of paths, the choice of the optimal path is independent of the choice for another set of 

paths. Therefore, we can have a number of processes concurrently computing the optimal choices 

for various sets of paths. 

Organizationally, the computation involves a central control process and a variable number 

of server processes p, where p 5,N. The control process is the coordinator. It divides the 

computation up into pieces and gives a piece to each server. The main data structure of the 

implementation is an N X N cost matrix that is distributed to each server. A piece of the 

problem is represented by a subset of the cost matrix (or a subset of paths). The control process 

sends messages to its servers to tell them what piece of the matrix to work on. When they have 

finished their current assignment, the servers will send a message to the control process. The 

computation continues until the path of minimal cost is found. 

7 .2.2. Overview of the Analyses 

The analyses of the TSP solution were performed by Bart Miller and Nick Lai and are 

discussed in detail in!Lai & Miller 84J. Their goal was to evaluate how well the computation 

performs at various levels of concurrency. The sizes of the problems analyzed were those 

corresponding to 8, 12, 16, and 20 vertices. For each solution the levels of concurrency analyzed 

were 4, 8, 12, and 16 server processes. The events monitored were message sends and message 

receives. 

The analysis performed for each execution was the analysis that indicates the amount of 

parallelism, or speed up. !Miller 84J Briefly, what this analysis provides is an index P that 

expresses the amount of parallel execution that our computation achieved. P is computed as: 

T 
P=--

tmo.x 

Here T is the sum of process times for all of the processes in the computation, or total time, and 

tmo.x is the maximum value, taken over all of the processes in the computation, of the maximum 

possible execution time for a process. The maximum execution time for each process is 

determined from a directed graph constructed from the computation's trace. The way to 

interpret the value of P is as follows. Suppose we divide a computation into 5 pieces. The 

maximum value of P we could hope to achieve is 5. This would mean that we succeeded in 

dividing our computation into five equal and independent, or perfectly synchronized, pieces. A P 

of 1 would tell us that our distributed program did no better than a program that executes 

sequentially; in other words, that we gained no parallelism. If P is less than 1, we did poorly, as 

sequential execution would have been more efficient. This situation occurs if our communication 

costs outweight our gains from parallel execution. 
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The analysis of parallelism has parameters. These include the number of processes to assign 
to each machine, and an estimate of the network delay or communication cost. Luckily, from a 
given trace, we can obtain values of P for different assignments of processes to processors and for 
various values of network delay simply by changing the values of these parameters and rerunning 
the analysis. For example, P can be determined assuming that each process in the computation 
bas its own processor (no contention) and that the network communications delay is zero 
(instantaneous communication). This analysis would give us the theoretical maximum for the 
amount of parallelism achievable by the program. For a more realistic value of P, we could 
specify two processes per processor and a positive value for network delay. The analysis routine 
will then take into account the delays due to processor sharing and to communications. 

7 .2.3. Results 

The resulting values of P for vanous problem sizes and levels of concurrency are 
summarized in Figure 7.l.t 

Matrix Size 
#or 4 8 12 16 20 

Processes 
max 1.4 2.1 2.4 2.5 2.6 

4 1/machine 0.3 0.8 1.3 1.6 1.9 
2/machine 0.3 0.7 1.0 1.2 1.3 
max 2.7 3.6 3.8 3.9 

8 1/machine 1.1 2.0 2.6 3.0 
2/machine 1.0 1.6 1.9 2.1 
max 3.7 4.1 4.5 

12 1/machine 2.2 3.0 3.6 
2/machine 1.8 2.3 2.7 
max 4.4 5.0 

16 1/machine 3.2 4.1 
2/machine 2.5 3.1 

Flgure 7.1 Values of P for the TSP Problem 
By changing the parameters for the analyses, three different values of P were computed for each 
run of the TSP program. These are: (1) the theoretical maximum value, assuming no CPU 
contention and communication costs equal to zero, (2) the value for one server process on each 
machine (N machines), still assuming no CPU contention but accounting for communication 
delay, and (3) the value for two server processes on each machine (N /2 machines). These results 
are summarized in graphical form in Figures 7.2, 7.3, and 7.4. 

t Figures 7.1 through 7.4 a.re t&ken from (Miller 84), Cha.pter 5, pa.ges 83-85. 
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We would first like to mention an interesting debugging result. Although DPM is explicitly 
not meant to be a debugger, debugging information is contained in the trace that DPM produces. 
For the initial runs, the TSP program had some subtle bugs. First, the program was creating only 
one server process even when it was intended to create many. This problem was immediately 
evident from the trace produced when program was monitored. When we fixed this bug, the next 
trace revealed a second bug. This time we discovered that even though the correct number of 
servers were being created, only one was being loaded by the control process. The remainder of 
the servers were always idle. With these bugs fixed, the performance analyses could proceed. 

From the above graphs, we can infer the following about the behavior of our program. 
From Figure 7.2 we can deduce that, given no contention for CPUs and zero communications 
costs, for a given problem size, we always gain parallelism by increasing the number of server 
processes. For a problem of size 16, with 4 servers a P of 2.4 was obtained. Increasing the 
number of servers to 16, we observe and increase in P of 2 units, making it 4.4. This larger value 
of P indicates success in speeding up the program. It does not, however, include consideration of 
the cost of the additional servers. 

We also deduce from Figure 7.2 that, as the size of our problem increases, we benefit more 
from distributing our program. Looking at the P curve with the number of servers kept constant 
at 4, we observe a value of P of only 1.3 for a problem of size 4, but of 2.6 for a problem of size 
20. 

Moving to Figure 7.3 where we have introduced communication costs, we see that we do not 
always increase the performance of a program by distributing it. In fact, with 4 server processes, 
we actually do worse than sequential execution for small problems. The reason for this is that, in 
a small problem, there is not enough computation to be done to make distributing the 
computation convenient, and communication delays dominate the time the servers spend 
computing. As the problems become larger, the amount of CPU time needed by the servers 
becomes larger with respect to the amount of time lost due to communication delays. Hence, the 
performance gained through parallelism warrants program distribution. 

When we also consider CPU contention, as in Figure 7.4, the amount of parallelism achieved 
decreases further. This is the behavior we would expect in practice, since a process no longer has 
immediate access to a processor. 



The above data represents analyses run on the initial implementation of the algorithm. 

From interpreting this data, insight into the programs behavior helped to find areas where the 

program could be optimized. These algorithm optimizations and their analyses are described in 

jLai & Miller 84]. 

8. Conclusions 

8.1. Analysis or the Monitor,s Implementation 

How useful is DPM! The experiment of the previous section, in addition to others 

performed by Miller jMiller 84], has shown that DPM is a useful tool. It has been productive as a 

performance measurement instrument and even as a primitive debugger. 

Another important question is: how well did we do with respect to attaining our goals of 

consistency and transparency! A proof that consistency was achieved is the situation that 

occurred in the TSP experiment. Recall that simply by looking at the trace, certain program bugs 

became evident. If the trace contained data that was not consistent with the user's view of a 

computation, bugs would not be as apparent. A user would first have to decipher how the trace 

messages related to the primitive functions that he had coded. Transparency of the mechanism 

was also achieved. By putting the event detection mechanism in the kernel, a program does not 

have to be recompiled in order to be monitored. Any process can be monitored, even one that 

already exists. Of course, perfect performance transparency was not achieved. Every time 

someone makes a system call that may have to be monitored, it must be checked for monitoring, 

even if no monitoring is being done. This introduces an extra subroutine call and bit check into 

the execution of these system calls. Furthermore, we pay a price in terms of space. First, we pay 

for the three extra fields that were added to the process table entry, and second for additional 

code in the kernel. One should realize that, no matter how the monitoring is implemented, some 

price will have to be paid for the privilege of monitoring. · 

8.2. More on Evolution 

Research and development on Berkeley UNIX continues. Efforts towards a remote file 

system are in progress. The eventual realization of this facility will simplify the task of the 

control process. With a remote file system, the need to copy files to their intended locations will 

disappear. A remote file will be accessible in the same way as a local one. 

Moving closer toward a distributed system and moving further into the future, we can 

imagine distributed process control in Berkeley UNIX. If this should happen, the structure of the 

control process could be greatly simplified. The need for meterdaemons would disappear. All 

process management could be handled be a single process. 

In addition to continuing work on the Berkeley UNIX DPM, the idea for a third 

implementation of the monitor design has been conceived. This implementation is for the 

Charlotte operating system jFinkel 84]. Charlotte is a distributed operating system developed at 

the University of Wisconsin in Madison. It was designed for Crystal, a loosely coupled 

multicomputer networkjDeWitt 84]. Charlotte was developed with the goal to provide an 

environment in which computationally intensive distributed programs could be solved. It was 

intended to be a test bed for the design and implementation of multi-process applications and 

distributed algorithms. 

Charlotte provides another new and interesting environment for DPM. 

8.3. Future Research 

The past history and the current status of the Berkeley UNIX monitor are summarized in 

the following table: 
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DEMOS/MP implementation completed September 1983 

Kernel changes to 4.2BSD working Aprill984 

Control process working May 1984 

Debugging, refixing ongoing 

Analysis routines (parallelism, communication statistics, control flow) May 1984 

New analysis techniques and automation or analysis procedures ongoing 

As or May 1984, the Berkeley UNIX DPM was being used for the TSP study. Polishing and 
improving DPM continues. User experience is important for such improvements but is something 
we have a shortage of. When more user experience is gained, suggestions for a better user 
interface will be used to polish the tool. An obvious improvement is the automation of the 
measurement-to-analysis step. Instead or having to retrieve the program trace and subsequently 
run analyses, a user should be able to have numbers and graphs displayed by issuing a simple 
command. 

More interesting and promising is the potential for new and different uses of DPM. Real 
time monitoring is one idea. The analysis could be performed and presented to a user as the 
computation proceeds, thus presenting a dynamic view of a computation. Reaching further, we 
could have the information from real time analysis fed back into the system. Such information 
might be used as an input to the system's scheduler to help with scheduling decisions, or as an 
input to the process manager to help implement load balancing policies. 

Another promising area is the area of distributed debugging. Process interactions must be 
accounted for by a debugger for distributed programs. A monitor such as DPM could be used in 
conjunction with conventional debuggers, the latter for debugging the individual processes and the 
former for debugging the process interactions. Last but not least, there is always a need for new 
analyses. 

In summary, DPM appears to be a usdul and powerful tool with a promising future. 
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Appendix A: User's Manual 

This appendix describes the details of the user's commands to the control program. The 
commands are: help, filter, newjob, addproeess, acquire, setfiaga, startjob, stopjob, 
removejob, removeproeess, jobs, getlog, souree, sink, and die. In the command 
descriptions to follow, all parameters wiU be surrounded by the symbols 1 <' and 1 > '. Optional 
parameters will be enclosed by T and T. Command parameters must be literals formed from the 
digits 0 through 9, the upper and lower case letters, and the characters 1

/' and '.'. Delimiting 
characters are blanks, tabs, new lines, and carriage returns. An example of a session with the 

controller is presented in Section 4.4. 

help 
This command is a source of information. It displays the menu of the control commands 
with a brief statement of their function. The required and optional parameters to the 
command are indicated. At the end of the menu, the available metering flags are listed. 

filter [ < filtername > [<machine> [ < filterfile > [<descriptions> [<templates>]])]) 

Ir parameters have been specified, a filter process will be created from the program in 
"filterfile" and will be given the name "filtername" for identification within the control 
program. The filterfile must be an existing, executable file. If no filterfile has been specified, 
the default file "filter" is used. Ir no machine has been specified (only the filtername has 
been specified on the command line) then the default is to create the filter locally. A 
standard filter requires two additional files: the trace descriptions file and the templates 
selection rules. If these files are not specified on the command line, standard filenames 
("templates" and "descriptions") are used. Read access is required to these files. 

If no parameters have been specified for the filter command, information about existing filter 
processes is displayed. The information is a list of the available filters indicating their 
process identifiers, their names, and the machines on which they are executing. 

new job <Jobname > [ < filtername > 1 
This command is used to create and initialize a job. The job is given the name "jobname". 
The user can optionally specify a filter for the job by including the name of an existing filter 
process. If no filter is indicated, the control program uses the default filter process. A job 
cannot be created if a filter has not been created. This implies that prior to the execution of 
newjob, a filter command must have been executed. 

No restriction is placed on the number of jobs or on the number of filters the user can 
create. Many computations could be executing simultaneously, having traces collected by 
different filters. 

addprocess <jobname> <machine> <proeessfile> (<parml parm2 ••• > 1 
Addprocess, or add, is used to create a process as part of a job. The process is added to 
the job "jobname" and is created on the host "machine", by executing the file "processfile" 

with the parameters "parml, parm2, ... ". A process does not begin executing at this time, 
and its process state is new. The process is connected to jobname's filter and inherits the 
flags of job "jobname". A process can be added to any job at any time, even after processes 
in the job have started execution. 

acquire <Jobname> <machine> <process Identifier> 

The acquire command provides the user with the ability to meter a process that is already 
executing. In this case, the process identifier must be known and specified as "process 
identifier". To meter this process, the user must have the appropriate access rights. 
"Jobname" indicates the job to which the acquired process will be assigned. This 
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assignment determines the filter to which the event traces will be directed. "Machine" is the 

host on which the process is executing. 

The motivation for this command is that situations may arise in which a process such as a 

system server is an important component of a computation. Thus, it should be metered 

along with the other processes involved in the computation. Even more simply, a user may 

be interested only in monitoring a system server to better understand its behavior. 

setflaga <jobname> <flagl flag2 ···> 

This command is used to set, or reset, the metering flags on a job. Setflaga is the user's 

interface to the 4.2BSD UNIX system call Betmeter(} described in section 4.1. The event 

flags are: 

fork 
Bend 
recei vecall 
receive 
Bocket 
accept 
connect 

process creation 
sending a message 
ready to receive a message 
receipt of a message 
creation of a communication socket 
request for a connection (readyness to accept) 

establishment of a connection 

The effect of setflags is to record the flag set "fiagl fiag2 ... " with "jobname" and then set 

the flags for each process which is part of jobname. Flags can be set at any point in the 

execution of a job. A process does not have to be stopped in order to set its flags. 

Flags are set by listing the desired flags on the command line. They can be reset by 

indicating a '-' in front of the flag to be reset. For instance, "-send" will turn off the 

metering of the Bend event for the job indicated. A shorthand notation can be used. The 

flag 'all' will set all of the metering flags, and '-all' will reset all of the flags. 

If two setflaga commands are executed, the set of active flags is the union of the two 

groups of flags. A setftags command does not implicitly negate the previous flag settings; 

all resetting must be explicit. 

jobs [ <jobnamel jobname% ••• >] 

Jobs provides the user with information about the state of a computation. It does not 

change the state of the system in any way. If no parameters are specified, a list of the 

current jobs is displayed. This list indicates the number, the name, and the filter for each 

job. 

If a list of jobnames is specified, then, for each job in the list, information about the job's 

processes will be displayed. For each process, such information includes the process 

identifier, the current control state, the process name, the machine on which the process is 

executing, and the meter flags that are set. 

startjob <jobname> 

This command initiates the execution of a job. "Jobname" specifies the job to be started. 

All processes in the new or stopped state are signaled to begin or resume execution. 

Processes that are running, killed, or acquired cannot be started. The user is informed as to 

the status of each process. 

stopjob <Jobname > 

This command is used to halt the execution of a job. "Jobname" specifies the job to he 

stopped. All processes in the specified job that are in the new or running state are signaled 

to halt execution. Processes that are killed or acquired are ignored. 

removejob <Jobname> 
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This command is used to remove the record of a job from the controller. Jobname specifies 

the job to be removed. A job can only be removed if all of its processes are in one of the 

states killed, stopped, or acquired. If any of the processes are still running or new, the job 

will not be removed. When an acquired process is removed, the control program insures 

that the filter connection of that process is taken down so that the process will not continue 

to be metered after its job has been removed, but the process continues to execute. 

getlog <filtername> <destination filename> 

The log file for the filter process identified by "filtername" is retrieved. When retrieved, the 

log file is copied to the file "destination filename". 

source <filename> 

This command (and the sink command) allows the user to run scripts of control commands. 

Source instructs the control program to read command lines from the command script 

"filename" instead of from the terminal. Any of the control commands may be specified in 

this script file. Source commands may be nested within scripts to a maximum depth of 

sixteen. When the entire script has been processed, input is again expected from the 

terminal. 

sink (<filename>] 

die 

Sink provides a way for the output of commands to be written to a file instead of to the 

terminal. Thus, the output of a sourced script can be redirected to the file "filename" by 

having a "sink <filename>" command as the first line of the script. When the script is 

completed, the output file should be changed back to the terminal by including a sink 

command without parameters as the last command in the script; output is directed back to 

the terminal when a destination filename is not specified. 

This command terminates the control program. Upon exit, all executing filter processes are 

removed. Aliases of this command are exit, bye, and control D ( ·n ). If there are still 

active processes (new, stopped, running, or acquired), the user is warned, and the controller 

does not exit. If the user immediately repeats the dle command in this situation, the 

controller will assume the user is aware of the situation and exits with the processes active. 


