
"

,.

Autanated Discovery of Machine-Specific Code Inprovanents

By

Peter Bemard Kessler

B.S. (Yale university) 1973
M.S. (University of California) 1980

DISSERTATION

Submitted in partial satisfaction-of the requirements for the degree of

OOCTOR OF PHILOSOPHY

in

catputer Science

in the

GRADUATE DIVISION

OF Tiffi

UNIVERSITY OF CALIFORNIA, BERKELEY

Approved: ..•. ~~~ ..• N9.V: .. ~~1 1fYI../
Chairman Date

::::: :~1/; =::: :J.~~~;~

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1984 2. REPORT TYPE

3. DATES COVERED
 00-00-1984 to 00-00-1984

4. TITLE AND SUBTITLE
Automated Discovery of Machine-Specific Code Improvements

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Retargetable compilers generate code using machine-independent algorithms guided by the results of an
analysis of the target machine. The analysis may be performed either by the compiler writer or by a
compiler phase construction program. An implementation must be found for each operation of the source
language. Additional analysis may reveal special features of the target architecture that may be exploited
to generate efficient code. Such analysis is optional; it affects only the quality of the code produced. This
dissertation examines one method of automating the examination of a machine description to discover
machine-specific idioms for inefficient instruction sequences. Previous techniques discovered idioms by
composing instructions into sequences and searching for more efficient implementations of those
sequences. Analysis by composition takes time exponential in the length of the sequences examined.
Practical considerations limit such analysis to sequences composed of pairs of instructions. The thesis of
this dissertation is that an interesting class of idioms can be discovered by decomposing instructions into
inefficient sequences to be avoided during compilation. Decomposition is shown to take no more time than
composition in the worst case, and is shown to take less time on the average. Analysis by decomposition
naturally discovers idioms for sequences longer than pairs of instructions. Idioms on a target machine and
predicates for their applicability are discovered during compiler construction. Consequently, alternative
instruction sequences must be identified without knowledge of the particulars of individual programs, such
as instances of instruction sequences, operands, or data flow contexts. These program-dependent
properties can be exploited by recording the conditions under which one instruction sequence is equivalent
to another. Program-independent predicates on instruction equivalence are evaluated during compiler
construction, leaving only program-dependent predicates to be evaluated during compilation. The design
of an idiom discoverer is discussed and a prototype implementation is examined. One application of idioms
is demonstrated with a prototype retargetable transformer of assembler source code. This transformer can
be used to replace hand-written case analysis routines in a retargetable code generator. Other applications
of idioms are suggested.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

101

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Automated Discovery of Machine-Specific Code Improvements

Copyright @ 1984

by

Peter Bernard Kessler

If I had the arranging of things in this world they would be different, I can tell

you. I don't mean to say I would go round improving things right and left. I

think every improvement ought to be looked in the mouth first: to make sure it

isn't an improvement for the worse.
G. B. Edwards,
The Book of Ebenezer LePage,

Alfred A. Knopf, Inc., N.Y., N.Y., 198L

VAX is a trademark or Diptal Equipment Corporation.

1

Abstract

Retargetable compilers generate code using machine-independent algorithms guided

by the results of an analysis of the target machine. The analysis may be performed either

by the compiler writer or by a compiler phase construction program. An implementation

must be found for each operation of the source language.

Additional analysis may reveal special features of the target architecture that may be

exploited to generate efficient code. Such analysis is optional; it affects only the quality of

the code produced. This dissertation examines one method of automating the examination

of a machine description to discover machine-specific idiom6 for inefficient instruction

sequences.

Previous techniques discovered idioms by composing instructions into sequences and

searching for more efficient implementations of those sequences. Analysis by composition

takes time exponential in the length of the sequences examined. Practical considerations

limit such analysis to sequences composed of pairs of instructions. The thesis of this

dissertation is that an interesting class of idioms can be discovered by decomposing

instructions into inefficient sequences to be avoided during compilation. Decomposition is

shown to take no more time than composition in the worst case, and is shown to take less

time on the average. Analysis by decomposition naturally discovers idioms for sequences

longer than pairs of instructions ..

Idioms on a target machine and predicates for their applicability are discovered

during compiler construction. Consequently, alternative instruction sequences must be

identified without knowledge of the particulars of individual programs, such as instances

of instruction sequences, operands, or data flow contexts. These program-dependent

properties can be exploited by recording the conditions under which one instruction

sequence is equivalent to another. Program-independent predicates on instruction

equivalence are evaluated during compiler construction, leaving only program-dependent

predicates to be evaluated during compilation.

The design of an idiom discoverer is discussed and a prototype implementation is

examined. One application of idioms is demonstrated with a prototype retargetable

transformer of assembler source code. This transformer can be used to replace

hand-written case analysis routines in a retargetable code generator. Other applications

of idioms are suggested.

Abstract

Table or Contents

Table or Contents .. .

List or Figures

Acknowledgments

Chapter 1 Introduction

Analysis of a Target Machine .. .

Chapter 2 Work by Others

2.1 R. Steven Glanville .. .

2.2 Robert R. Henry

2.3 Mahadevan Ganapathi

2.4 Roderic G. G. Cattell

2.5 Jack Davidson and Christopher Fraser

2.6 Robert R. Kessler .. .

2.7 Robert Giegerich

Chapter 3 Motivation and Scope or Idiom Discovery

3.1 Limitations of Retargetable Compilers .. .

3.2 Binding Idioms

3.3 Set Idioms .. .

3.4 Composite Idioms .. .

3.5 Addressing Mode Idioms

3.6 Idioms Not Searched For (and Not Found)

3.6.1 Binary Image Idioms .. .

3.6.2 Program Flow Graph Idioms

3.6.3

3.6.4

3.6.4.1

Available Expression Idioms

Tree Substitution Idioms

Duals to Binding and Set Idioms

3.7 Idiom Discovery

3.7.1 Instruction Comparison .. .

i

IV

v

1

2

5

5

6

8

9

10

12

14

17

17

19

21

22

23

24

24

25

25

26

28

29

30

3.7.1.1 Composition versus Decomposition :...................................... 30

3.7.1.2 Forward versus Backward Comparison 33

3.7.2 Data Flow Context Information .. 35

Table or Contents

Chapter <& Machine Descriptions .. 37

4.1 Trees••.........••....•................•.•....•••.....••.....•.......•................. 37

4.2
4.3
4.4

4.4.1

4.5
4.6

4.7

4.8

4.9

Properties of Tree Operators

Type Descriptions••............•..............•........•.......

Processor State Variables•...................•..............•............

Limitations on Flow Analysis

Cost Information .. .

Addressing Modes .. .

Address Mode Classes .. .

Instruction Descriptions•.......•.............................

Experience with Machine Descriptions•..................................

38

40

40

41

42

42
43
44
47

Chapter 5 An Implementation of Idiom Discovery 49

5.1 Data Structures for Decomposition•.............•..................... 50

5.1.1 Operand Attributes ... 50

5.1.2 Data Flow Information Attributes .. 51

5.2 An Overview of Decomposition ... 52

5.3 Data Flow Analysis ...•............................... 53

5.4 Instruction Classification .. 55

5.5 Decomposition of a Subject Instruction .. 56

5.6 Tree Matching ...•............................ 61

5.6.1 Forest Matching•.......................•............................... 61

5.6.2

5.6.2.1

5.6.2.2

5.6.2.3

5.6.3

5.6.4

5.6.5

Operand Matching

Binding Constraint Discovery•...

Set Constraint Discovery,

Binding Subject Operands .. .,

Pruning•..............•.....................•................•.........................

Assignment Matching•..................•..........

Type Unification•..

62

63

63

64

65

66

67

5.6.6 Axioms of Tree Operators•............................. 68

5.7 Addressing Mode Side-Effect Idiom Discovery,........ 70

5.8 Artifacts of My Implementation•...................... 71

5.8.1 Trees versus Instruction Sequences•.................•......... 71

5.8.2 Allowing Side-Effects on Addressing Modes 'l'l

5.9 Experience with Idiom Discovery•.........•......•............................... 73

Chapter 6 An Implementation of Idiom Application :.......................... 75

6.1 Information Required for Idiom Application•....•.•.................... 76

a.2 An Implementation of an Idiom Applier•...•...................•..... 77

6.2.1 Pattern Matching and Replacement ... 78

Table of Contents

6.2.2

6.2.3

Identifying Patterns and Forming Replacements

Addressing Mode Side-Effect Idioms .. .

iii

79

80

6.3 Interactions of Idiom Application Phases ~............................. 81

6.4 Experience with Idiom Application ... 81

Chapter 7 Summary and Conclusions .. 83

Critique of the System 84

Future Research ... 85

Bibliography ... 87

Table of Contents

iv

List of Figures

Figure 4.1 Built-in Operators and Leaves•..............••....••............•.......... 39

Figure 4.2 Post-Increment Addressing Mode ... 44

Figure 4.3 Description of sub[bwl}3 .. 4a

Figure 5.1 Tree Describing incl•....•.......••....•.................................•••................... 57

Figure 5.2 Tree Describing addl3•..................•.................................... 58

Figure 5.3 Tree Describing tstl ... 59

List of Figures

v

Acknowledgments

This dissertation is dedicated to Monica, for keeping my life interesting the whole

time, and to my parents, for encouraging me to lead an interesting life.

Thanks to my advisor, Susan L. Graham, for her support and encouragement of this

research, and to my readers, Richard J. Fateman and Marc Davis, for their careful

readings and helpful criticisms on my dissertation. Thanks also to my colleagues,

especially Robert Henry and Eduardo Pelegri-Liopart for their enthusiastic discussions of

my work and compiler construction philosophy. Bill Joy showed me how to see what

could be, and Kirk McKusick helped make some of those visions work.

Financial support for this research was provided by the Department of Defense,

under contracts N00039-82-C-0235 and N00039-84-C-0098.

Acknowledgments

vi

1

CHAPTER 1

Introduction

A compiler is a translator between a source language written by a programmer and a

target language acted on by a machine. Compilation involves several steps: for example,

reading the input program, recognizing constructs of the programming language, choosing

an implementation or those constructs from the operation codes or the target machine,

preparing an executable image of the operations, and so forth. Compilers are often

organized into phases, each of which performs one step in the translation. The early

phases of compilation - lexical analysis, syntactic analysis, and semantic analysis - are

language-specific but often machine-independent. That is, these phases incorporate

knowledge of the source language, but do not refer to features of the target machine.

These early phases are sometimes referred to as the front-end of a compiler. The later

phases of compilation - resource allocation, instruction selection, and executable image

assembling - are machine-specific but language-independent. That is, these phases

incorporate knowledge about the target machine, but do not refer to features of the

source language. These later phases are sometimes referred to as the back-end of a

compiler. The partitioning of language-specific and machine-specific phases encourages a

more modular compiler design.

The design of language-specific compiler phases has benefited from advances in

formal language theory. Models and algorithms from formal language theory have

resulted in efficient and provably correct implementations of some front-end phases.

These implementations are in the form of language-independent algorithms guided by

tables for a particular source language. The construction of these tables has been

automated by tools that examine a description of the source language and produce tables

needed by the language-independent algorithms. A tool to automate the production of a

compiler phase is called a phase constructor.

Research on machine-specific compiler phases has not yet resulted in a uniform

model for those phases. Algorithms for the efficient and correct implementation of some

machine-specific phases have been developed, but others are still performed by ad hoc

routines. Much work has been done in this field due to the diversity of machine

architectures and the cost of developing quality compilers. One goal of research in this

field is the development of retargetable compiler phases, using machine-independent

Introduction Chapter 1

algorithms guided by machine-specific tables. These tables should be produced by phase

constructors that analyze a description of the target machine.

A retargetable code generator more easily exploits unrestricted instructions, e.g., an

addition instruction, than instructions to perform special cases of operations, e.g., an

"increment by one" instruction. The algorithms for code generation are machine

independent, though they are qualified by the results of the analysis of the target machine.

It may be difficult to specify to those algorithms the restrictions needed to use a particular

instruction. Alternatively, some instructions may be impossible to exploit because of

limitations of the code generation algorithms, e.g., instructions that cover, or span, several

statements of the sonrce language.

Limitations of a code generator with respect to a particular machine have

traditionally been handled by a compiler phase running after the code generation phase.

This phase examines generated code and transforms instruction sequences to employ

special case instructions of the target machine. Since the number of instructions being

examined at any one time is typically small, this phase is sometimes called "peephole

optimization" [McKeeman 65). I prefer to call these transformations "code

improvements".

This dissertation presents the design of a retargetable compiler phase to improve

generated code, and a novel method of phase construction to discover machine-specific

improvements from a description of the target architecture.

Analysis of a Target Machine .

A code generator selects instructions of the target machine to implement the

program being compiled. The quality of the generated code - the space instructions

occupy, the speed with which they execute, and their efficient use of architectural

resources - depends in part on information about the target machine incorporated into

the code generator. This information is the result of an analysis of the target machine. In

early compilers, the analysis of the target machine was performed by the compiler writer

and the results included directly in the code of the compiler [Backus et al. 57). Such a

compiler is adapted to a new machine by analyzing the new target machine and then

rewriting all the machine-specific compiler phases. Such rewriting is often as difficult as

writing the original code, and so hardly qualifies the compiler as retargetable. The first

retargetable compilers still depended on an analysis of the target architecture by the

compiler writer. However, the results of that analysis were encoded in tables used by code

generation algorithms applicable to a large class of machine architectures (Johnson 77).

Thus the code selection algorithms need only be written once. Recent proposals have

suggested automating the analysis of the target architecture to produce retargetable

Analysis of a Target Machine

3

compilers from a description of the target machine. Several of these proposals are

reviewed in Chapter 2.

Two kinds of target machine analysis are useful for code generation. First, an

implementation for each operator of the programming language must be found on the

target machine. This analysis is a necessary and sufficient condition to permit code

generation for every program. Second, the target architecture may include special

features - special cases of instructions or complex addressing modes - that can be

exploited to implement programs more efficiently. This second analysis is optional, as it

affects the quality of an implementation but not its correctness.

Much of the analysis of the target machine may be done when the compiler is

constructed, at phaBe generation time; rather than when the compiler runs, at phaBe

application time. A phase is generated once for each target machine, whereas the

generated phase is applied each time a program is translated for that target machine.

Thus analyses that might be prohibitively expensive at phase application time are

tolerable at phase generation time. There are details of individual programs that must be

analyzed during compilation, but identifying machine-specific characteristics before

compilation reduces the time spent on analysis during compilation. For example, a code

generation phase could be written that would be given the program to translate and

descriptions of the target machine instructions. This phase would discover, and

rediscover, that additions in the program could be implemented by an addition instruction

on the target machine (Cattell 78). The alternative is to provide tables that incorporate

the knowledge that the addition instruction is the instruction of choice for additions in the

program. The search for an implementation of additions can be done once at code

generator construction time, to save repeated searches at code generation time. Due to

the tedious and exacting nature of target machine analysis, it is best performed by

programs, rather than by human compiler writers.

Special purpose instructions are identified by comparisons with other instructions or

instruction sequences. The result of a comparison is a set of conditions under which a

special purpose instruction may replace other instructions. The conditions are of two

sorts: program-dependent and program-independent. Program-dependent conditions refer

to attributes of instructions, e.g., particular values of operands, that can not be evaluated

except with respect to a particular program. Program-independent conditions reference

only attributes of instructions fixed by the architecture, and can be evaluated at compiler

construction time. The goal of compiler construction time analysis is to evaluate all the

program-independent conditions for replacement, reducing the work required to complete

a replacement to only program-dependent conditions. Several classes of special case

instructions are distinguished, and techniques to identify members of those classes from a

Analysis of a Target Machine

machine description are disctwed 1n Chapter 3. These techniques are the prtmary

contribution of this dissertation.

The machine descriptions used in this research are presented in Chapter 4. The

major feature of these descriptiou is their completeness in describing the instructioll!l and

addressing modes of the target machine, especially the description of multiple effects of

instructions. Chapter 5 examines a prototype phase constructor for a retargetable code

improver. Comparison of instructions is via a technique called "backward decomposition"

that identifies all instruction sequences that can be replaced by special purpose

instructions of the target machine. The results of the machine analysis are used, for

example, by the code improver descri~d . in Chapter 6. The prototype code improver

transforms assembler source code, though other opportunities for applying

·transformations are proposed. Chapter 7 appraises the ideas presented in the dissertation,

and suggests future research in machine-specific phase construction.

AnalJsia of a Target Machine

5

CHAPTER 2

Work by Others

Recent research in retargetable compiler construction has experimented with several

different techniques for analyzing target machines. Below is a survey of recent work in

this area. The focus of these summaries is on how the analysis of the target machine is

carried out and how the results of that analysis are incorporated into the generated code

generators. The interested reader is referred to the original works for details about the

code generation techniques, per se.

This compendium omits systems in which the compiler writer analyzes the target

machine. Such systems range from the ones described in [Tanenbaum, van Staveren and

Stevenson 82) and [Lamb 81], where the compiler writer analyzes the target machine by

hand, to the system described in [Morgan and Rowe 82), where an interactive verifier aids

the compiler writer in assuring that two instruction sequences are equivalent.

The first five reviews describe code generation schemes that incorporate progressively

more machine-specific analysis into the code generator. The last two reviews describe

systems that apply machine-specific improvements to code from naive code generators.

This dissertation argues that a combination of these two approaches is better than either

one by itself.

2.1. R. Steven Glanville

Steven Glanville describes a code generator based on tree pattern matching using

tables produced from a description of the target machine [Glanville 77] [Glanville and

Graham 78]. The key ideas are the reduction of the tree matching problem to the string

matching problem through the use of LR parsing and the automated production of LR

parsers by parser constructors.

The code generator accepts a preorder linearization of program expression trees and

uses an SLR(l) parser to match patterns in the tree corresponding to instructions on the

target machine. The parser is produced automatically from a grammar describing how

the primitive operations of the program tree are implemented on the target machine. The

terminals of the machine description grammar are the primitive operators and leaves of

the program trees. The right hand side of each production is a preorder linearization of a

R. Steven Glanville Section 2.1

8

tree describing the computation or a target machine illlltruction. The left hand side or

each production represents the result (if any) of that illlltruction. For example, an add

illlltruction might be used to implement a primitive addition operator, as described by:

dest ::= '+' srcl src2
"add src2,srel,dest"

The LR parse;r COD.Structed from the machine description grammar determines a

derivation of an input program tree and emits the corresponding illlltructions.

Much of the analysis of a target architecture is performed by the grammar writer.

The grammar writer chooses implementations for each of the primitive operators from the

program tree. More than one way to implement each primitive operator may be specified

in the machine description grammar. If several implementations for an operator exist, the

grammar is ambiguous. The only automatic analysis of the target machine is the

production of parser tables from the grammar at compiler construction time. The

generated parser tables incorporate static heuristics to choose between alternative

derivations (i.e., code sequences). For example, longer rules, and therefore more complex

instructions, are preferred over shorter rules and simpler instructions. The parsers used

for code generation are SLR(l) parsers. The limited lookahead available makes it possible

for these code generators to "block" (that is, be unable to parse valid input) if the

machine description includes instructions whose use is restricted and the alternatives can

not be distinguished with the context available via the lookahead.

Glanville's code generators operate on one source statement at a time, and so can

miss opportunities to use complex instructions on the target machine. Glanville

incorporates a restricted set of semantic tests into the parser to allow the code generator

to identify semantically restricted instructions. These semantic tests could be replaced by

a transformation system such as the one described by this dissertation.

Glanville's code generators produce translations from program trees to instructions

that are provably correct with respect to the description grammar. The use of LR parsing

guarantees that the generated code generator will run in time proportional to the size of

the input program.

2o2. Robert R. Henry

Robert Henry addresses many of the problems with Graham-Gianville code

generators [Henry 84]. Machine description grammars are factored into separate

productions representing addressing modes and productions representing instructiollll.

This factoring allows real, moderately complicated, target machines to be described by

reasonably sized grammars. In addition, Henry adds algorithms to the parser generator to

alleviate blocking in the produced code generator. The grammar writer may therefore

Section 2.2 Robert R. Henry

7

describe some special purpose instructions, in addition to general purpose instructions,

without fear of introducing blocks into the constructed code generator. Henry adheres

strictly to the syntax-driven parsing model for code generation. Within this framework,

he advocates "syntax instead of semantics" to exploit special properties of the target

machine. For example, an instruction whose description requires a specific constant is

modeled by adding that constant as a new terminal sym hoi in the grammar. The

restricted instructions can then be described syntactically using this symbol. The cost of

adding this symbol is that the lexical analyzer of the input program primitives must

distinguish the constant, and that the parser tables for the produced code generator are

larger than without the new symbol. Similarly, an instruction with multiple results, e.g.,

a computation and the setting of condition codes, would be modeled by adding a new

non-terminal to represent both effects. Again, the cost is in larger parser tables to be

examined during code generation. Both of these techniques must be used judiciously to

keep the size of the parser tables reasonable. The generated code generators use only

SLR(1) parsing to recognize instruction tree patterns, and so are provably correct and run

in time proportional to the size of the program trees.

Certain restrictions on instructions can not be modeled with purely syntactic

productions. Chief among these restrictions is the inability to specify the required

relationships between operands of an instruction. For example, a 2-operand addition

instruction computes the sum of its operands and stores the result in one of those

operands. The correspondence between one of the addends and the sum can not be

modeled with pure syntactic productions without enumerating all possible operand

correspondences, an unreasonably large enumeration.

To alleviate the restrictions of the purely syntactic pattern matcher, the production

Graham-Gianville-Henry code generators include hand-written routines to exploit certain

semantically restricted instructions of the target architecture. For example, these routines

identify opportunities to use 2-operand instructions in place of 3-operand instructions

selected by the code generator. The replacement of these hand-written routines was a

starting point of my research. A conclusion of my research is that all of the

improvements performed by these routines can be discovered automatically by examining

a suitable description of the target machine (see Chapter 3). In addition, if a retargetable

code transformation phase is added to the compiler, the descriptions of many special

purpose instructions can be removed from the machine description grammar. The

removal of these special cases implies less analysis of the target machine is required of the

grammar writer, the reduced grammar requires less parser construction time, and smaller

parser tables are used during code generation.

Robert R. Henry Section 2.2

8

The code generator used in my research is a Graham-Glanville-Henry code generator.

I will note where that choice of code generator affects discussions in this dissertation.

2.3. Mahadev&D Ganapathi

Mahadevan Ganapathi9 [Ganl\pathi 80], tries to formalize the semantic restrictions on

tree pattern matching via par:tiug by using attribute grammars [Knuth 68). In

Ganapathi's machine descriptions, semantic information may be ottri6uted to syntactic

symbols. The right hand side of a production may include predicates on the attributes to

control reductions, and functions of the attributes to synthesize new attribute values. For

example, the choice between a 2-operand or a 3-operand addition instruction discussed

above would be represented by the pair or productions:

reg.dut ::=- ':=' reg.dut '+' reg . .,rcS reg.3rc1

lrEqual(de.,t, 3rt S)
Emit("add2", 3rce, dut)

reg.de3t ::=- 6
;-' reg.dut '+~ reg.srcS reg.3rc1

Emit("add3", 3rc1, uc2, dest)

where attributes are shown in italics, "lfEqual" is an attribute predicate that tests if two

sets of attributes are equal, and "Emit" is an attribute function that prints instructions.

The ability to control reductions based on attributes containing program-dependent data

is an advantage in exploiting instructions with semantic restrictions. GanapathPs system

can only synthesize, rather than inherit, attributes of the left hand side of productions, so

semantic information only passes up the derivation tree. That is, no context information

is inherited by the production to influence code selection.

Ganapathi's attributed grammars describe how to implement the primitive

operations of the input program tree, including predicates that must be tested to use

semantically restricted instructions. The machine describer analyzes the target machine

to determine the attributes, and predicates on those attributes, that must be tested to use

certain instructions. The description writer then augments the grammar to synthesize the

attributes, and writes the predicates to test them. Each rule restricted by attribute

predicates must be accompanied by an unrestricted rule for the same tree. Without these

unrestricted rules the parser will block on input trees that fail to satisfy the semantic

predicates. A machine description is developed by first writing unrestricted (i.e.,

syntactic) rules to use general instructions, and subsequently adding restricted rules to use

special purpose instructions. Essentially, the description writer supplies both the code to

be produced for each reduction and a set of optimizations to be performed as code is

produced. Ganapathi's published examples demonstrate the omission of well-known

assembler source code optimizations, as well as the unevenness of application of

optimizations.

Section 2.3 Mahadev&n Ganapathi

9

The added descriptive power of Ganapathi's approach is paid for by added time

needed to evaluate attribute predicates at code generation time. Since there are no

restrictions on attribute predicates or functions, Ganapathi can not claim that his

attribute directed parsing code generators run in time proportional to the size of the input

program. In practice, this is not a problem, since the predicates and functions only

formalize semantic checks and computations that would otherwise be performed in

semantic routines. Correctness of translation is also an issue, since the hand-written

attribute predicates influence the pattern matching of the code generator.

As in the previously described code generators, Ganapathi's code generators operate

m a single pass over the input tree. To allow some improvements across instruction

boundaries, Ganapathi describes a buffering mechanism for generated code. This buffering

allows multiple passes over the code after code generation to perform additional

transformations, but can not be considered part of the attributed parsing code generation

technique.

My research shows that most of the improvements in generated code made possible

by attributed parsing can be discovered automatically in a machine description, and

applied uniformly by table-driven code transformation. I chose to implement my

prototype transformer as a separate compiler pass. An area of future research would be

the incorporation of automatically discovered code improvements into an attributed

parsing code generator.

2.4. Roderic G. G. Cattell

Rick Cattell describes the first code generator constructor that performs case

analysis of the target machine at code generator construction time (Cattell 78]. The code

generator constructor is in the form of a description driven code generator. This code

generator takes as input a description of the target machine and a program tree, and

produces a code sequence to implement the program tree on the target machine. The

program tree and code sequence are recorded in a table. This table of mappings from

trees to instructions is used to retarget a table-driven code generator.

The separation of code generator construction from code generation has the

advantage that the code generator constructor can be arbitrarily thorough in searching for

code sequences to implement tree patterns. Cattell describes a heuristic tree matching

strategy for identifying code sequences for trees using decomposition and axioms. A

collection of sample program trees are given to the tree matcher. The best code sequence

for each sample program tree is recorded as the code to generate for that tree. The

sample program trees used to construct the tables include trees for all the primitive tree

operations, including transfers between all members of the storage hierarchy, and

Roderic G. G. Cattell Section 2.4

10

conversions between all data types. Thus Cattell's code generators will be able to find

instruction sequences for all trees (i.e., they will not block on any trees). In addition,

·Cattell records the trees describing each individual instruction on the target machine for

use during code generation. Thus Cattell's code generators should be able to use any

special purpose instructions available on the target machine.

Unfortunately, Cattell's table-driven code generation algorithm does not run in tiine

proportional to the size of the tree being translated. The inclusion of trees for all the

instructions delays much of the analysis of alternative matches until code generation. In

addition, Cattell's code generators are not used in the one-pass style of previously

described code generators. The multi-pass PQCC compilers, for which Cattell's work was

intended, perform extensive flow analysis and register allocation that affects code

generation and the quality of generated code (Leverett et al. 79). These factors make it

difficult to evaluate the extent to which PQCC compilers would benefit from the

techniques discussed in this dissertation.

2.5. Jack Davidson and Christopher Fraser

Christopher Fraser [Fraser 79) and Jack Davidson (Davidson 81) have designed a

retargetable code gene~ator that analyzes the target machine at code generation time.

Their system, PO, performs machine-specific transformations on the intermediate form of

the program before instruction selection (Davidson and Fraser 80).

The front-end of a Davidson-Fraser compiler translates a program into instructions

for an abstract machine. These abstract instructions are then translated to register

transfers (Bell and Newell 71). The register transfer form of the program is manipulated,

and finally target machine instructions are generated.

The translation of abstract instructions to register transfers is accomplished by

macro expansion, with a new set of macros for each target machine. The register

transfers incorporate implementation strategies (e.g., computations in registers or on a

stack) appropriate for the target machine. The instructions of the target machine are

described by register transfers. Register transfer expressions for addressing modes are

factored out of the instruction descriptions. The macro expansion of abstract instructions

to register transfers and the subsequent transformation or that form maintains the

assertion that the register transfers can be mapped, many to one, to target machine

instructions by syntactic matching. The abstract instructions implement an intersection

of operations available on a wide class of target machine•, so the assertion is not difficult

to satisfy for the output of macro expansion. Since the abstract instructions are so

primitive, mapping to target instructiollll without machine-specific transformations

produces inefficient code. Therefore the register transfers representing a program are

Section 2.5 Jack Davidson and Christopher Fraser

11

combined in an attempt to match more complex target machine instructions.

The first step in the transformation of a program gathers data flow information from

the register transfers. Links are established from uses of values to the expressions defining

those values. This data flow information is used to perform several machine-independent

transformations to eliminate redundant transfers and reuse available expressions.

A second pass performs machine-specific transformations. For each register transfer

m the program representation, PO follows the use--to-definition links and substitutes

defining expressions in place of the uses of values. It the composite register transfer

describes an instruction on the target machine, that register transfer is substituted for the

original register transfers in the representation of the program. If the composite register

transfer is not a legal instruction, and there remain additional uses of variables for which

defining expressions may be substituted, PO attempts a second substitution. It this

additional substitution results in a register transfer that matches an instruction

description, the three register transfers are replaced by the composite register transfer.

PO never considers combining the effects of more than three register transfers. Davidson

argues that substitution translates the load-operate-store model of the abstract stack

machine to instructions operating on multiple operands. When no more substitutions can

be made into a register transfer, the next sequential register transfer in the program

representation is examined. When no more substitutions can be made in the program, the

instructions represented by the register transfers are emitted.

The register transfers that are the input to PO represent individual operations of

larger expression trees. The structure of these trees is implicit in the definition and use of

temporary variables. PO discovers the structure of the expression tree by establishing

use-to-definition links. PO then assembles the individual operations into explicit trees

matching instructions by collapsing links between definitions and uses. Each substitution

may eliminate the need for the variable defined by the substituted tree. (Since common

subexpressions have been identified, substitution may only decrease a use count.) PO

works from the first register transfer forward, assembling instruction trees bottom-up.

When PO is finished, the structure of the expression tree is explicit between operations

combined into instructions, and implicit between instructions in the definition and use of

remaining temporary variables. In contrast, the parsing code generators are given the

operations and structure of the expression tree explicitly. The parser recognizes subtrees

representing instructions with a top-down pass over the expression tree. Instruction trees

are then linked by the introduction of compiler temporary variables.

Since the substitution and matching in PO are done lexically, special cases (e.g., the

constant 1) are easily specified. A disadvantage of lexical substitution and matching is

that the substituted portions of a register transfer are matched each time they are

Jack Davidson and Christopher Fraser Section 2.5

12

substituted. Since substitution is performed only for addressing modes, which are

typically small, this repeated matching should not be a problem in practice. The

matching in PO is not strictly lexical, since conventions exist for specifying

correspondences between one addressing mode and another. (It appears that it is not

possible to specify a necessary correspondence be~ween components of an addressing mode:

eogo, that two base registers are equivalent, though the offsets from the base registers

differ.) The Davidson-Fraser machine descriptions also include escapes for letting the

description writer provide predicates and functions to direct matching. ~ with the

predicates and functions used in Ganapathi's attribute directed parsers, these es~apes

detract from the claim of automatically discovered transformations.

The system described above is a retargetable code generator, not a code generator

constructor. No analysis of the target machine instructions takes place at compiler

construction time. The transformations are all discovered at code generation time.

Furtherp those transformations are rediscovered each time they are applicable in the

program being transformed. Davidson and Fraser suggest saving the transformations and

building a table-driven transformer (Davidson and Fraser 84). The code generator would

be run on a set of programs and the transformations discovered in those programs would

become the tables for a separate compile-time transformer.

2.8. Robert R. Kessler

Robert Kessler1 has implemented the first table constructor for retargetable code

improvers (Kessler 8l)[Kessler 84]. A description of the target machine is examined at

compiler construction time, and tables are produced for a compile-time code improver.

The front-end of Robert Kessler's compiler produces instructions for an abstract

machine. Macro expansion translates these abstract instructions to target machine

instructions. Since the abstract instructions are primitive, the code generated by macro

expansion is often an inefficient implementation of the program on the target machine.

Machine--specific improvements are implemented by a simple pattern matching and

replacement technique. Robert Kessler's code improver transforms assembler source; that

is, code improvements are made after code generation and resource allocation. All the

analysis of when a pattern can be replaced is performed at compiler construction time.

Machine descriptions represent instructions as forests of computation trees.

Addressing modes are factored and described separately. Restrictions on addressing

modes of instruction operands are represented by addressing mode sets for each operand.

1 Robert Kessler ill DO' a relatin or the author or this dia!ertation.

Section 2.8 Robert R. Kessler

13

The code improver applies several machine-independent transformations exploiting

program-dependent data flow information. The data flow information is gathered by

machine-independent algorithms using tables produced from the machine description. The

patterns and replacements are discovered by composing all possible pairs of instructions

and searching for a single instruction that performs the composed computations.

If the first instruction of a pair of instructions can define a value used by the second

instruction of the pair, the defining expression is substituted in place of the use of the

value in the description. The target machine description is then searched for an

instruction whose description matches this composed computation. Description matching

is aided by algebraic manipulations of the description trees. Composition along

definition-to-use chains is similar to the substitution done by Davidson and Fraser. The

key difference is that Davidson and Fraser do the substitution and search at code

generation time, where Robert Kessler's system does composition and searching at

compiler construction time.

If the first instruction is independent of the second instruction, the descriptions of

the instructions are concatenated, and the target machine description is searched for an

instruction that performs the multiple effect represented. In contrast, Davidson and

Fraser do not have to check for concatenations of effects, since their instructions are

selected after transformation. Note that neither composition nor concatenation causes a

search for one-to-one instruction replacements. Such replacements are unnecessary in

Robert Kessler's system because code is generated by hand-written macro expansions of

abstract machine instructions. Thus some analysis of the target machine is left to the

compiler writer. The analysis by the compiler writer presumably includes all single

instruction transformations, such as using an increment instruction for additions of one,

since there is no automated analysis of single instructions.

Analyzing the target architecture at compiler construction time permits more time to

be devoted to the analysis than would be acceptable if the analysis were performed at

code generation time. Thus Robert Kessl~r can afford to describe complete machines.

Each instruction is composed or concatenated with each other instruction. Thus n 2

patterns are matched against the instruction descriptions. It is obvious that composition

and concatenation can be applied to triples of instructions. It is not obvious that the time

required to analyze triples would be acceptable even at compiler construction time.

Intuitively, Robert Kessler's system (and Davidson and Fraser's system) construct

inefficient code sequences as patterns and then try to find more efficient replacements on

the target architecture. In contrast, the system described in this dissertation starts with

efficient sequences and determines what inefficient code sequences the efficient code can

replace.

Robert R. Kessler Section 2.6

2.7. Robert Giegerich

The place of honor in these reviews must go to Robert Giegerich. A formal

framework is presented, in [Giegerich 83], in which to analyze complete descriptions of a

target machine. The analysis distinguishes three sets of properties: properties of the

target machine, properties of particular programs, and properties or particular program

execution states. This framework is used to describe how one could automate the

production of a machine-specific improver of assembler source code. Much of the analysis

proposed has a wider application to the automated construction of compiler components

than just transforming the assembler source code representation of programs. Other

representations of programs can be analyzed for machine-specific transformations using

Giegerichis approach.

Much of Robert Giegerich's concern is with the automatic generation of data flow

analyses [Allen and Cocke 76). Giegerich's machine descriptions are based on a

characterization of the storage hierarchy of the target machine. Addressing mode

descriptions depict how elements of the storage hierarchy can be referenced. Instruction

semantics are given in terms of their effect on the state of the storage.

The description of the storage hierarchy allows Giegerich to derive predicates to test

if two operands overlap, i.e., reference the same storage location. The predicates are

derived at compiler construction time, to be evaluated at code generation time. In the

case of statically addressed storage (e.g., registers, global variables), the overlap predicates

are accurate at code generation time. In the case of dynamically addressed storage (e.g.,

indirection through pointers, displacements from base registers), the overlap predicates

must be conservative. The predicates make clear the distinction between program

dependencies and execution state dependencies.

Giegerich's analysis of the target machine derives functions to gather data flow

context information at code generation time. Data flow context is divided into a "left

context" and a "right context". The left context consists of sets of addressing modes that

reference the same value. These equivalences can be used to transform an operand to a

cheaper reference to a value. The right context is a set of storage locations whose values

are not used. This information can be used to remove extraneous computations from a

program. Both contexts can be maintained by machine-independent data flow analysis

algorithms, given the predicates on storage and instruction semantics Giegerich derives

from machine descriptions. Giegerich also derives predicates to indicate when

transformations of a program affect data flow information gathered for that program.

Such predicates reduce the amount of data 8.ow analysis required when transforming a

program.

Section 2.7 Robert Giegerich

15

All of Robert Giegerich's work on data flow dependence and data flow analysis can

be exploited to improve a program in any representation. In particular, much of his

research seems applicable to code motion and register allocation.

Giegerich applies his analysis of target machines to automating the construction of

machine-specific code improvers. He proposes deriving predicates, at compiler

construction time, to indicate when one instruction may be replaced by another, cheaper,

instruction. These predicates start from machine-independent axioms and are qualified by

the improver generator with specifics about the target machine, e.g., instructions,

addressing modes, left contexts, and ·right contexts required to perform safe

transformations. The predicates on the instructions and addressing modes can be

evaluated at compiler construction time. The restrictions o(left and right context must

be delayed for evaluation at code generation time. Thus Giegerich's transformer

constructor separates machine dependencies from program dependencies, leaving only the

program dependencies for evaluation during code generation. Robert Giegerich's proposal

is an improvement over Robert Kessler's system in that it incorporates data flow context

predicates into the transformations discovered at compiler construction time.

My research is based on Robert Giegerich's framework. Giegerich does not describe

how instructions and addressing modes are compared at compiler construction time.

Much of this dissertation is concerned with the details of instruction compar1son.

Further, Giegerich discusses only the comparison of one instruction to another.

Therefore, his constructed transformer will only replace single instructions. My research

extends this comparison and transformation to sequences of instructions. Giegerich's

framework derives transformations predicated on both left and right context. My

implementation uses only right context predicates. I argue that the transformations based

on left context, e.g., common subexpression elimination and redundant code elimination,

are better done before code selection than by transformations or assembler code (see

Section 3.6.3).

Robert Giegerich Section 2.7

us

17

CHAPTER 3

Motivation and Scope of Idiom Discovery

This dissertation proposes the automation of a portion of retargetable compiler

construction. First this research must be motivated within the framework of a

retargetable compiler, and second it must be shown how this proposal automates the

construction of a portion of such a compiler. This chapter outlines the scope of the

problem of automated discovery of machine-specific code improvements and a solution to

that problem.

3.1. Limitations of Retargetable Compilers

In a retargetable compiler the lexical, syntactic, and semantic analyses phases are

performed by language-dependent but machine-independent routines, while the code

generation phases are performed by language-independent but machine-dependent

routines. The language-dependent and machine-dependent phases communicate via a set

of largely language-independent and machine-independent primitive operations. The

compiler is "retargeted" by changing the code generation routines to those for a new

target machine.

Recent retargetable code generation techniques have concentrated on machine

independent code generation algorithms driven by tables. Retargeting is automated "by

providing table constructors driven by a description of the target machine. In this

scheme, the compiler writer describes how to implement the primitive operations on the

target machine and a "code generator generator" produces tables from that description.

The more comprehensive the description, the better the code generator produced, possibly

at the expense of larger tables and slower code generation.

Limitations of code generation techniques, both hand-written and automatically

generated, often make it difficult or impossible to exploit all the facilities of a target

architecture. For example, a code generator may operate on a single source statement at

a time, making it impossible to use instructions with several effects: e.g., an addition

instruction that also tests its result against zero. It may be difficult or impossible to

represent certain special cases under which specific instructions may be used: e.g., that a

restricted addition instruction can only add constants in the range [-8, ... ,+7]. It has been

Limitations of Retargetable Compilers Section 3.1

ur

traditional to alleviate these limitations with a "peephole optimization" phase that

transforms generated instruction sequences to equivalent, but cheaper, instructions. It has

also been traditional to neglect certain case analyses during code generation, knowing that

they will be handled by such transformations. The separation of machine-specific

. transformations from code generation leads to a more modular retargetable compiler

design. Many of the U.!les originally proposed for such peephole optimizations have been ·

shown to be better handled by other phases of the compiler: e.g., constant folding,

common subexpression elimination, register allocation, etc. There continue to be

opportunities for machine-specific improvements of the output of most code generators.

Many of these improvements can be found by examining a description of the target

machine. I propose automating this examination to discover machine-specific

improvements. These improvements can be recorded for U.!le by a table driven code

transformer.

Each target machine is analyzed once, producing tables that are used to transform

code generated for any program. The analysis of the target machine is performed

independent of the code produced for any particular program. The output of the analysis

is pairs of equivalent instruction sequences and constraints needed to assure equivalence.

These pairs are used to retarget a machine-independent program transformer.

Constraints on instruction pairs identify program dependencies that mU.!It be verified

during compilation. Restrictions may be placed on operands of instructions, and also on

the data flow context in which the instruction sequences appear. Each particular program

is examined for sequences and satisfaction of constraints from the pairs. The elements of

a pair need not have equivalent costs. Replacing the more expensive sequence with the

cheaper sequence will reduce the cost of the transformed code. The cheaper of the

sequences is an idiom for the more expensive sequence, by analogy with the idioms used

by native speakers of natural languages. The analysis of the target machine I call idiom

discoverv. The transformation of generated code I call idiom application.

The main advantages of automated idiom discovery are its completeness and its

correctness. No instances of the improvements available on the target machine will be

missed by the automated analysis. Furthermore the transformations recorded, especially

the preconditions for their application, will be correct with respect to the machine

description (if the idiom discoverer is correct). A secondary advantage of automated

idiom discovery is that the same categories of improvements will be discovered on each

target machine. This consistency allows comparable quality retargetable compilers to be

constructed.

The main advantage of table-driven idiom application over more ad hoc techniques is

that the improvements are applied uniformly. No opportunity to apply a transformation

Section 3.1 Limitations of Retargetable Compilers

19

will be missed. The idiom applier examines assembler source code. As such the idiom

applier is not limited to improving the output of a single code generator, but can

transform code from any source, compiler or human. A disadvantage of this freedom is

that the idiom applier cannot use annotations (for example, data flow information) that

might be available from some compilers but not others. Assembler source code

transformation was chosen because it separates idiom application from any particular code

generator for the target machine.

The improvements for which the idiom discoverer searches exploit special cases on

the target machine.· These special cases include, for example, the restricted addition

instruction above, that only adds constants in the range [-8, ... ,+7]; or an addressing mode

that references an operand, but also has a "side-effect" of incrementing a register. In

general, architectures that include special case instructions also include unrestricted

instructions. The unrestricted cases for the above examples might be a general addition

instruction, or an addressing mode that references the operand without the side-effect. A

person retargeting the code generator is concerned with the general cases: the code

generator must generate correct code. If time is available, and the code generator

specification permits, some case analysis might be done by the description writer and

special cases added to the description by hand. The case analysis involved is tedious and

prone to error. For example, the description writer may specify that addition of one can

be implemented by the restricted addition instruction, but may forget that subtraction of

one can be implemented by the same instruction. It also may be that the code generator

description language is not powerful enough to specify predicates needed to select an

instruction. For instance, the '1' in the previous examples has to be distinguished as a

constant and distinguished from other constants. Another common predicate is that two

(or more) operands of a general instruction must refer to the same location before that

instruction can be replaced with a special purpose instruction with fewer operands.

Finally, even with the most complete machine description, limitations on the code

generation strategy may introduce opportunities for improvement: e.g., generating code

for one source statement at a time. The idioms searched for in my prototype idiom

discoverer are described in detail below.

3.2. Binding Idioms

A binding idiom IS a special purpose instruction that replaces a more general

instruction when several of the operands of the general instruction are the same. For

example, on the VAX-11, the 2-operand long integer addition instruction

Binding Idioms Section 3.2

20

addl2 src,dest ; deat :- deet + ere

is m~ually a binding idiom for the 3-operand long integer addition instruction

addl3 srcl,src2,dest ; deet :-are!+ erd

when the second source operand is the same as the destination1• A careful reader will

have noticed the "usually" in the previous sentence. A counterexample is when the

reference to the second source operand and the destination are the same syntactically, but

have side-effects that change the operand they reference. The presence or absence of

addressing modes with side-effects on the target machine is (obviously) machine

dependent. Whether a particular instance of an addl3 operand has side-effects depends

on the program being translated. But the disallowing of side-effects when binding

operands is machine and program independent, and is one of the rules incorporated in the

idiom discoverer.

The definition of binding idioms above states that the operands being bound mm~t be

the same. The same in what sense! Comparison of operands examines several program

dependent attributes of those operands. One can define the program dependent attributes

of an operand as consisting of an offset, a base register, and an index register, and cover a

large class of interesting machines. Certainly, also, the addressing mode (e.g., register

direct, indexed-displacement-deferred, de.) is an attribute of the operand that must be

compared. A case can similarly be made for considering the type of an operand as one of

its attributes [Bell and Newell 11]. Most machines specify the type of the operands in the

instruction, and so the types of operands are inherited from the instruction descriptioll.!.

Alternatively, an architecture might specify the type of an operand as part of the operand

descriptor, independent of the instruction in which that operand appears. Still more

dynamic would be a type tagged architecture, where the type of the operand is part of the

data for the operand. This is another example of the difference between target machine

dependence (i.e., a function of the instruction set}, program dependence (i.e., a function of

1 Throughout this document, I will U!e a consistent notation Cor assembler instructions. Operation codes

will be shown in boldtaee, with operands in roman, and comments in italie. In general, source and

destination operands read rrom left to right. Ir an operation has a destination, that operand will be the

rightmost oper&nd. Destination operands will be usually named 'dest' or occasionally just 'dst'. Any source

operands will appear on the left. Operations may han multiple source operands. Source operands will usually

be named 'src', or where there is more than one, 'srcl', 'src2', ete. Occasionally, the destination operand is also

a source for the operation. Instruction sequences will appear as

add srcl,src2,dest ,· dett :- trcl + trd

eompue dest,O ,o if {detC - 0 •••

JW. label ; .•. < 0} then goto label

or, where confusion would not result rrom abbreTiation, u •..td; eompue; J._ •. Transformations or one

instruction 3equence to another will be shown in two columns, u ror the example aboTe,

..td.IJ src,dest • ..tdll srcl,src2,dest

Section 3.2 Binding Idioms

21

the assembler source being translated), and data dependence (i.e., a function of the state
of the program during execution). Since operand types can be a function of the
instruction set, I include them as operand attributes. Operands are considered "the same"
when these attributes (addressing mode, type, offset, base register and index register) are
equivalent.

Binding idioms are difficult to identify during code generation because their correct
application depends not on the operations of the instructions or operands (the main
concern of the code generator) but on the correspondence between attributes of the
operands. For example, in a Graham-Gianville-Henry (e.g., syntax directed) code
generator, correspondence between operands cannot be checked because the operand
attributes are not available in the syntax of the primitive operations (see Section 2.2). If
Ganapathi's attributed parsing were used to get around this limitation (see Section 2.3),
the case analysis would be done by the description writer and the attribute predicates
would be written by hand.

3.3. Set Idioms

A set idiom is a special purpose instruction that replaces a more general instruction
when one of the operands of the more general instruction has attributes whose values are
members of a particular set. For example, the MC68000 addq instruction ("quick"

constant addition) is2 a set idiom for the addi instruction (unrestricted constant addition)
when the addend is in the set {1, ... ,8}. The usual cases of set idioms are immediate
constant addressing modes in which the operand represents a value from a set of constants
(e.g., 1, or {1, ... ,8}). However, immediate constants are only one source of set idioms.
Another example is the VAX-11 push! instruction (push a long integer onto the stack),
which is a set idiom for the movl instruction (move a long integer) when the destination
of the movl specifies predecrement addressing mode using the stack pointer as the base
register. That is:

push) src +* movl sre,-(sp)

IS a set idiom on the set of addressing mode attributes that reference the stack pointer
with the appropriate pre-decrement. The addressing mode of the destination operand of
the movl is constrained to a single addressing mode, with the base register constrained to
a single value. As an example of a set of values that are not a contiguous range of values,
the V AX-11 has an addressing mode that can represent any one of a set of predefined
floating point constant values.

2 almost always

Set Idioms Section 3.3

22

Distinguishing set idioms in a retargetable code generator is expensive in terms of the

description writer's time, the code generator generator's time, and the size of the tables

used at code generation time. First9 the description writer must identify attributes (e.g.,

values of constants) to be distinguished as new primitives. Second, the code generation

description must be written to use the new primitives to recognize idiomatic instructions.

The larger description takes longer to process and increases the size of the code generation

tables. The new distinguished attributes increase the number of primitives recognized by

·the code generator. The larger tables may take longer to access during code generation.

Sometimes binding and set restrictions must be combined to recognize an idiom. For

example, the VAX-11 long integer increment instruction, inc:l, is an idiom for the 3-operand

long integer addition instruction, addl3:

incl dest • addl3 l,dest,dest

when one of the sources is the same as the destination and the other source 1s an

immediate (or literal) constant 1.

3... Composite Idioms

A compoBite idiom is an instruction that performs the actions of a sequence of

instructions. For example, the VAX-U's "subtract one and branch if greater than zero"

instruction, sobgtr, is an idiom for separate instructions for subtracting, for comparing

against zero, and for branching (among other sequences). It may be necessary to check

binding and set restrictions to recognize the idiom, for example to see that:

sobgtr counter,label ; counter :==counter - 1

is an idiom for:

decl
cmpl
jgtr

counter
counter,O
label

; Sf (counter > 0) then goto label

; counter := counter - 1

; if (counter - 0 ...

; ... > 0} then goto label

Composite idioms are characterized by having multiple effects. Every instruction

that sets condition codes as a "side-effect" is a candidate composite idiom for a sequence

consisting of the instruction followed by a test instruction to (redundantly) set the

condition codes. Unless the code generator can track these multiple effects it will be

difficult to exploit composite instructions on the target machine. Note that the separate

effects may result from separate statements in the source, so a code generator that

operates on one statement at a time may miss opportunities to use composite instructions.

Some composite instructions are difficult to incorporate into a table-driven code generator

because of the buffering they require. For example the sobgtr instruction shown above is

Section 3.-' Composite Idioms

23

an idiom for "decl; cmpl; jgtr" only when the comparison IS against zero. Ir the

comparison were against anything else, the code generator must generate code for the

subtraction. The buffering can be simulated· at code generator construction time to avoid

dynamic back up at code generation time [Henry 84].

I do not include in composite instructions any instructions with control flow internal

to the instruction (e.g., conditional execution, or loops). More extensive analysis is

required to use such "complex" instructions (See [Morgan and Rowe 82]).

3.5. Addressing Mode Idioms

The idioms above are discovered by analyzing the computations performed by the

instructions of the target machine. On many target machines, addressing modes provide

alternative implementations for operations of instructions. Examination of the addressing

modes for a target machine may reveal opportunities to relocate operations from

instructions into addressing modes.

On machines with complex addressing modes, e.g., automatic scaling of the contents

of an index register, or addition of an offset to a base register, a complex instruction

sequence using simple addressing modes may be equivalent to a simpler instruction

sequence using more complex addressing modes. The computations of the two sequences

must be equivalent, but the choice of how to implement the computation might make a

difference in the cost of the two sequences. For example, on the VAX-II, both sequences

below store the sum of 4 and the contents of 'rO' into 'dest':

addl3 4,rO,dest moval 4(rO),dest .

The sequence on the left performs the addition explicitly with an addition instruction, the

sequence on the right folds the addition into an addressing mode that references the

address of an offset from a base register. If one implementation of a computation is

cheaper than alternative equivalent implementations, the cheapest sequence should be

used in place of the more expensive alternatives.

On machines with addressing modes with side-effects, explicit arithmetic instructions

can occasionally be subsumed into side-effects. Again, this transformation relocates a

computation from an instruction to an addressing mode changed to effect the

computation. For example, on the VAX-II, the sequences

subl2
movl

4,sp
src,(sp)

Addressing Mode Idioms

movl src,-(sp)

Section 3.5

both push 'src' onto a downward growing stack.1 In the left hand sequence the decrement

of the stack pointer is explicit, where in the right hand sequence the decrement is the

side-effect or the reference to the stack pointer.

3.8. Idioms Not Searched For (and Not Found)

This section presents four classes of idioms for which my prototype idiom discoverer

does not search. These idioms require knowledge beyond that available to my idiom

applier, and thus cannot be specified by my idiom discoverer. More research is needed to

determine the appropriate retargetable compiler phase in which to perform each of these

transformations.

3.8.1. Binary Image Idioms

The idiom applier transforms assembler source code. ~ such there are idioms on

the target machine the idiom applier does not or can not perform. These idioms depend

on the binary image of the program, which is not available before assembly. An example

is the transformation or operands to use the instruction stream as a source or constants

for operands. For instance, the transformation:

op 6,6(r) .,. op (pc),6(r)

replaces one copy of an inline constant with a reference to another copy of the constant in

the instruction, using the program counter, 'pc~, as a pointer [Wulf et al. 75). This

technique can be extended to search the binary image of the program for the desired

value. In general, if a constant is found that can be referenced in fewer bytes than the

size of the constant, e.g., by a short offset from the program counter, this transformation

saves space. The constants need not be visible in the assembler source, as they could

include the binary encodings of the instructions as possible sources of data. It is my

untested conjecture that such transformations are applicable only rarely.

Another class of binary image transformations not attempted by my idiom applier

involve span dependent instructions. These transformations can be handled with existing

algorithms in the assembler [Szymanski 78).

An idiom applier cannot transform self-modifying code, since transformations based

on program-dependent conditions are evaluated during compilation.

I This idiom is incorrect if'sre' \lael the stack pointer to re(erenee its operand. See Section 5.7.

Section 3.6.1 Binary Image Idioms

25

3.6.2. Program Flow Graph Idioms

The idiom applier examines assembler source one basic block [Backus et al. 57) at a

time. It is therefore unable to recognize several idioms that occur at the boundaries

between basic blocks. Branch chaining transforms a branch to a branch to transfer

directly to the final destination, thus saving a branch at execution time. Since branches

end basic blocks, the idiom applier never sees the relationship of one branch to another

and thus misses this opportunity. I conjecture that branches to branches are often visible

in earlier representations of the program. Where that is the case, the transformation

should be performed in the earlier representation.

Other idioms between basic blocks are not visible u~til code generation is complete.

Cross-jumping [Wulf et al. 75} merges two code sequences leading to a common point to

save space (possibly at the expense of an extra jump during execution). Cross-jumping

involves searching the program text for a copy of an instruction, as a previous

transformation searched for a copy of a datum. The condition for performing cross

jumping is syntactic and machine independent except for the identification of jumps and

labels. Transformations involving branches and their destinations do not fit the simple

attributed pattern match and replacement scheme used by my idiom applier.

3.6.3. Available Expression Idioms

Binding and set idioms are predicated on specific values or correspondences of

operand attributes in the program being transformed. The predicates for these idioms can

be relaxed to check for equivalence, rather than strict equality of attribute values. For

example, strict set idiom discovery will identify an "increment by one" instruction as an

idiom for an unrestricted addition instruction when one of the source operands of the

addition is a constant 1. The predicate on the source operand can be relaxed to specify

that the operand must have the value 1 at execution time, rather than requiring that the

operand be a constant in the program source code. Such relaxation requires that available

expressions [Cocke and Schwartz 70) can be identified at idiom application time

[Giegerich 83). The cost of such relaxed predicates is the cost of computing available

expressions and the increased cost of identifying instances of the more general patterns in

the program during transformation. More elaborate data flow analysis in the idiom

discoverer may uncover more opportunities to apply idioms predicated on available

expressions. My prototype idiom applier does not gather available expression data flow

information, so my prototype idiom discoverer specifies predicates on operand attributes

as equalities rather than equivalences. Note that reusing an available expression reduces

the use of the operand that is replaced, possibly freeing resources.

Available Expression Idioms Section 3.6.3

28

Another form of available expressaon idiom is demonstrated by the source

statements:

if (x < y) then goto lessthan

else if (x == y) then goto equa.lto

else if (x > y) then goto greaterthan

A straightforward code generator for a target machine with condition codes might

generate:

compare
jless
compare
jequal
compare
jgreater

x,y
less than
x,y
equal to
x,y
greaterthan

; if {:r- 11 .•.
; """ < 0} then goto leaathan

; if {:r- 11 .•.
; ... == 0} then goto equalto

; if {:r- 11 ..•
; ... > 0} then goto greaterthan

not recognizing that the condition code settings of the first compare instruction are

common subexpressions redundantly computed by the other compare instructions. The

prototype idiom applier does not look for transformations based on available expressions.

The claim could be made that the condition code settings are not visible until code is

generated. Alternatively, the use of condition codes could be exposed as a machine

dependency before resource allocation, allowing condition code settings to be optimized by

the resource manager in the code generator.

3.8.4. Tree Substitution Idioms

Another class of idioms deliberately not searched for in my idiom discoverer involves

tree substitution. A naive code generator may generate instructions to move operands to

temporary locations, operate on those temporaries, and then store the result. By

substituting the original operands in place of the temporaries (assuming their addressing

modes are acceptable) instructions to load the temporaries may be eliminated. This

transformation is another form of available expression. Similarly, if the operation can be

targeted at the true destination or the computation rather than a compiler temporary, the

instruction to store the temporary may be saved. This transformation is called target

path diacover11 [Leverett 79]. Both these optimizations require the identification or

compiler temporaries.

Copy propagation substitutes the source of a move instruction in place of the use of

the destination of the move instruction. Target path discovery substitutes the

destination of a move instruction in place of the definition of the source of the move

instruction. Both these transformations are special cases (for move instructions) of

embedding the computation of one instruction into another instruction. Consider three

Section 3.8.4 Tree Substitution Idioms

27

instructions "foo src,dest", "bar src,dest", and "foobar src,dest" in which foo and bar

perform distinct operations and foobar performs the composition of those operations.

The transformation from:

foo src,temp ; temp := foo{src)

bar temp,dest ; dut :== bar(temp)

into:

foobar src,dest ; dest := bar(foo(src))

could be performed if one knew that 'temp' were a compiler temporary and that its use in

the bar instruction was its only use (which annotation would have to be provided by the

code generator or resource manager). Copy propagation and target path discovery can be

modeled (and are so modeled in the idiom discoverer in (Kessler 84), and the idiom applier

in [Davidson and Fraser 80]) by substituting the computation tree for the foo instruction

in place of the source operand of the bar instruction and searching for an instruction that

performs this combined computation. Extending this idea, one must analyze sequences in

which each operation is performed by a separate instruction. Thus,

foobar src,dest ; dest :- bar{!oo{src))

might be implemented by:

foo
bar

src,temp
temp,dest

or, to expose the implicit assignments, as:

move
foo
bar
move

src,templ
templ,temp2
temp2,temp3
temp3,dest

; temp:= foo{src)
; dest := bar{temp)

; temp1 := src
; tempe:== foo{temp1)
; tempS :== bar{tempf)
; dest := tempS

This fragmentation of the instructions reduces the program to register transfers.

Recognition of more complex instruction patterns (and address modes, which can also be

composed of several operations) from these register transfers is exactly code generation.

Our Graham-Glanville-Henry code generator is an excellent pattern matcher, therefore

this kind of decomposition and regeneration of code is not part of the prototype idiom

recognizer. In contrast, Davidson and Fraser have a very naive code generator that

produces register transfers. These register transfers are then combined via peephole

optimization into addressing modes and instructions (see Section 2.5).

Another problem with tree substitution transformations is the allocation and

deallocation of compiler temporaries. If an idiom uses different resources than the code it

replaces, then the idiom applier should request those resources from, or return them to,

the resource manager [McKusick 84]. If an idiom uses fewer registers than the code it

Tree Substitution Idioms Section 3.6.4

28

replaces, the idiom recognizer does not have the data flow information necessary to reuse
"

~

those registers and, in the pathological case, to remove any stores generated to use those

registers. Machine-specific improvements are often applied after code generation and

register allocation. The notable exception is Davidson and Fraser's PO, which selects

instructions before register allocation. There are many opportunities during compilation

for both machine-specific and machine-independent transformations of a program before

resource allocation. An area of future research is the automated generation of such

transformations. None of the idioms discovered by my prototype idiom discoverer frees

any compiler temporaries. Any idiom that would free temporaries should be applied in

time for the resource manager to take advantage of the transformation.

Recall the transformation "fooi bar" • "foobar" above. The instructions are

related by a compiler temporary variable. Therefore, at some stage of the translation, the

foo and bar operations were "adjacent" and the compiler decided to implement them

with separate instructions defining and using the compiler temporary. A Graham

Gianville-Henry code generator would not miss this chance to use the foobar instruction

to implement adjacent Coo and bar operations, so this restriction on the prototype idiom

discoverer has not been a problem in practice. A glaring counterexample, however, is the

use of an exchange instruction when the code generator emits three move instructions

to perform the exchange (presumably because the exchange operation was not explicitly

identified, machine dependently, in the input to the code generator). Thus one might

want to recognize that:

move
move
move

x,temp
y,x
temp,y

• exchange x,y

is an idiom on machines with an exchange instruction. I believe that since 'temp' is a

compiler temporary, the intent of the transfers is apparent in the input to the code

generator, and should be recognized as an exchange operation when code is generated.

3.6.4.1. Duals to Binding and Set Idioms

Tree substitution can also be used to discover the dual idioms to binding and set

idioms. With binding and set idioms, my idiom discoverer constructs predicates on the

program that must hold in order to replace a general instruction with a special purpose

iuatruction. Tree substitution can be used to construct idioms in which the special case

instruction should be replaced by the more general instruction. Consider the binding

idiom:

Duala to Binding and Set Idioms

29

op3 srcl ,src2,dest .,. op2 srcl,dest

The predicate here is "src2 == dest", which will be sat!sfied if the op2 instruction IS

preceded by an assignment of 'src2' to 'dest', thus:

op3 srcl ,src2 ,dest .,. move
op2

src2,dest
srcl,dest

Whereas the original "op2" was preferable to "op3" because it required one fewer

operand reference, "op3" is now preferable to "move; op2" for the same reason. This

example may not seem like tree substitution, but consider how this idiom might be

discovered. That is, where binding idiom discovery would have extracted the predicate

"src2 = dest", tree substitution could ensure the predicate by substituting the assignment

of 'src2 1 to 'dest'.

There are several reasons why tree substitution is not performed in the prototype

idiom discoverer. Chief among these reasons is that the Graham-Glanville-Henry code

generator does not produce the load-operate-store sequences whose improvement is the

main purpose of tree substitution idioms. Another observation is that substitution of

assignments is a potentially unsafe transformation, since it relies on (or may change) the

order of evaluation of operands. Even the apparently safe transformation of:

op3 srcl ,src2,dest .,. move
op2

src2,dest
srcl,dest

is incorrect if 'srcl' and 'dest' refer to the same storage location. Since my idiom applier

does not have the data flow information to preclude this aliasing, my idiom discoverer

may not specify a transformation predicated on such a restriction. Since the Graham

Glanville-Henry code generator can not verify the constraints for binding idioms, that

code generator would never generate the op2 in the sequence, preferring to use the more

general op3. Therefore the only reason to generate the move instruction is if the

assignment is explicit in the input to the code generator. Available expression elimination,

a machine-independent tree transformation implementing a subset of tree substitutions,

could remove the assignment, in that case. Machine-independent transformations are to

be preferred to (even automatically generated) machine-dependent transformations. Tree

substitution idioms are better performed by a tree transformation phase than by the

limited pattern matcher in an idiom applier.

3.7. Idiom Discovery

The previous section described the idioms discovered by my prototype; this section

discusses the techniques used to discover idioms from the target machine description.

Several alternative methods of searching for idioms are examined. This section describes

Idiom Discovery Section 3.7

30

an idiom discoverer, not an idiom discoverer generator. The idioms discovered on a target
. ~

machine are those for which I have designed the idiom discoverer to search. On a

radically different architecture with radically different idioms, I would not expect the

prototype idiom discoverer to discover many idioms. My research separates idiom

recognition into description driven idiom discovery and table driven idiom application.

The separation of an idiom discoverer into architecture driven met3-'idiom discovery and

table driven idiom discovery is beyond the scope of this dissertation. The idiom

discoverer does not compete with assembler source programmers, who W!e axioms outside

those available to the idiom discoverer to employ obscure instructions in devioW! ways.

On the other hand, the idiom discoverer is consistent about the idioms discovered from

one target machine to the next, and the idiom applier is more consistent about applying

. those idioms than most assembler source programmers.

3.7.1. Instruction Comparison

The main activity of idiom discovery is the matching of one sequence of instructions,

called the 8Ubject, against another sequence of instructions, called the pattern, to see if

they perform the same computation. If the two sequences match, the subject is an idiom

for the pattern. 4 The most basic decision in designing the idiom discoverer is how to

construct the sequences of instructions to compare.

3.'1.1.1. Composition versu• Decomposition

Previous optimizer generator systems [Davidson 81] [Kessler 81) have W!ed brute

force compo8ition to construct sequences of instructions. Using composition, a pair of

instructions are combined to form the pattern, which is matched against a succession of

subjects (which in those systems are single instructions). The matching identifies any

possible subjects that perform the computation represented by the pair of instructions in

the pattern. The cheapest subject is selected as the replacement for the pattern, and the

pattern and replacement are entered into a table for the idiom applier. After a pattern

has been matched (successfully or otherwise) against all subjects, another pair of

instructions is composed to form a new pattern that is then compared against each

subject. Intuitively, composition generates sequences of code (the patterns) and then

searches the target machine for a subject that performs that composite computation. For

example, a decrement instruction and a conditional branch might be composed into a

pattern and compared successfully to a subject consisting of an "subtract one and branch

if less than zero" instruction.

4 The idiom may not be an improTement, but that can be determined rrom cost inrormation.

Section 3.7 .1.1 Composition versus Decomposition

31

For n instructions, there are n 2 pairs of instructions that must be composed and

matched against each subject. (Ir one also wishes to consider single instruction patterns,

then there are an additional n patterns to be matched, w hieh does not change the

complexity of the composition process.) It is obvious how to extend this algorithm to

consider patterns composed of triples of instructions. For a target machine with a

moderate number of instructions it is probably impractical to consider composing triples.

Instead of composing patterns as the inner loop of idiom discovery, my idiom

discoverer decompo8es the subject. The subject sequence is compared against a single

instruction as the pattern. The comparison either mismatches, partially matches, or

completely matches. If the match is complete, an idiom has been identified in which the

subject can replace the pattern. If the pattern mismatches it is discarded. A partial

match is defined as one in w hieh the pattern matches a contiguous portion of the subject,

but part of the subject sequence remains unmatched. For example, a pattern consisting of

a decrement instruction partially matches a subject "subtract one and branch if less than

zero" instruction, leaving only the conditional branch unmatched. In this ease, the

pattern is extended by an additional instruction, and the comparison against the

unmatched portion of the subject continues. In the example above, an appropriate

conditional branch instruction can be used to complete the partial match of the decrement

instruction above. Since I am only interested in partial matches that can be extended to

complete matches, and I am not interested in permutations in the order of matching

portions of the subject, I restrict partial matching to the beginning or end of the pattern

sequence. The choice of from which end to start is discussed in Section 3.7.1.2.

Intuitively, decomposition breaks down the subject into a sequence of instructions. The

length of a (partial) match is the number of instructions that form the (partially)

matching pattern.

Only the successful partial matches of length 1 are extended into patterns with pairs
' '

of instructions. This algorithm has a natural extension to (and beyond) patterns with

triples or instructions, since partially matching pairs can be extended to triples in the

attempt to completely match the subject. Decomposition derives all patterns that

perform the same computation as the subject. Each pattern that is more costly than the

subject is entered into the table for the transformer, with the subject as its replacement.

To contrast decomposition to composition, I will contrast the number of instruction

comparisons needed to discover idioms of a given subject. Let n be the number of

instructions on a target machine. Composition always uses n 2 comparisons, but only

discovers matches of exactly length 2. Let Pl, l > 0 be the number of partial matches to

the subject of length l. By definition, p0, the number of partial matches of length 0, is 1,

since any subject is partially matched by the empty instruction sequence.

Composition versus Decomposition Section 3.7 .1.1

32

·-1
Lemma 1: There are n X E Pr comparisons required to find all complete matches of length

r-o

k, and all partial matches of up to length k.

The proof is by induction on k.

Baaia: k == 1. Each of the n instructions is matched against the subject, requiring n

comparisons. Any complete matches are of length 1, and n comparisons were used to

discover them. In addition, p1 partial matches of length 1 have been identified. So the

basis of the induction is established.

·-1
Induction Step: assume n X E p,, comparisons are required to find all complete and

l-o

partial matches of up to length /c. Each of the n instructions is matched against the p11

partial matches of length /c. Any complete matches or partial matches are of length k+l.
i-1

n Xp11 comparisons are needed to discover these matches, in addition to the n X E p11
t-o

comparisons to find the P• partial matches. The total number of comparisons used to find

all the complete and partial matches of up to length k is

11-1 •

n Xp~a+n X EP~a=n X EPr
r-o r-o

which extends the induction. 0
m-1

Therefore, if the longest match needed to decompose a subject is of length m, n X E Pr
r-o

comparisons are used to decompose that subject.

Lemma 2: Pl <n1.

The proof is by induction on l.

Baaia: 1=0. Po is 1 by definition, and n° is 1, so the basis of the induction is established.

Induction Step: assume Pr < n1• There are n instructions to extend each of the Pr partial

matches of length I. These extensions generate at most n Xpr partial matches of length

l + 1. Since Pr < n 1 by the induction hypothesis,

which extends the induction.

P1+1 <n Xpr

<nxn1

<nl+t

0

The above two lemmas prove the following theorem.

Sectioa 3.7 .1.1 CompoaitioD venus DecompositioD

33

Theorem: To discover patterns that are pairs of instructions, decomposition performs n 2

comparisons in the worst case. For patterns that are extended to triples, the number of

comparisons is n 3 in the worst case, and so on.

The degree of the polynomial for the number of comparisons is a function of the

complexity of the subject instruction sequence. This is as it should be: more complex

subjects require more examination. The ability to extend patterns' beyond pairs of

instructions is a significant improvement over the brute force composition methods. In

the best case, exactly one instruction extends each partial match, and the number of

comparisons needed to decompose a subject to a complete match of length k is n X k.

The worst case number of comparisons is extremely unlikely: every instruction would

have to partially match at each extension. In practice, few instructions successfully

extend the match, since architectures provide only a few implementations for each

operation. If the subject sequence is limited to single instructions, as it is in my

prototype, the maximum length of the complete matches is also small in practice, since

instructions are not very complex. In addition, the extended pattern need not be

compared against the full subject, since it is known that the majority of the pattern

already matches. Rather, only the unmatched portion of the subject need be compared

against the proposed extension to the pattern. In this way the common parts of extended

patterns are compared only once.

It has been suggested that idioms discovered early in a target machine analysis could

be used to reduce the number of comparisons needed to find later idioms. For example,

once equivalent instruction sequences have been found for a subject, any patterns that are

successfully extended by that subject are also successfully extended by the instruction

sequences equivalent to that subject. Obviously, an ordering problem is imposed on which

idioms to discover first to speed up subsequent idiom discovery. Such an ordering cannot

be imposed a priori. One argument against implementing a caching scheme is that idiom

discovery, even for a complex machine, does not take an unreasonable amount of time (see

Section 5.9). Also, it is not clear that the space required to cache the idioms, and the time

required to look them up during matching and to unify their restrictions with the

restrictions imposed on a partial match are worth the time that might be saved by

caching. Caching is not useful when analyzing small subsets (e.g., single subjects) of a

target machine.

3.7 .1.2. Forward versus Backward Comparison

The direction in which pattern instruction sequences are extended is another choice

in the design of the idiom discoverer. Pattern sequences may be extended at the end, and

compared to the beginning of the subject sequence; or, they may be extended at the

Forward versus Backward Comparison Section 3.7 .1.2

34

beginning, and compared to the end of the subject sequence. Appending extensions and

comparing "forward" is more natural: such extension is how code generation proceeds.

Prepending extensions and comparing "backward" has several advantages for idiom

discovery.

To see bow the two extension techniques work in idiom discovery, consider a

machine with three instructions: op_ee, that performs some computation and also sets the

condition codes; op_noee, that performs the same computation but does not set the

condition codes; and a test instruction, that sets condition codes. With op_ee as the

subject instruction, forward decomposition matches the pattern instruction op_noee and

discovers a partial match. The unmatched remainder of the subject is the setting of the

condition codes. The forward technique extends the end of the pattern with a test

instruction, which completes the match. Thus the composite idiom:

op_ec src,dst • op_noee
test

src,dst
dst

as discovered. (A critical reader may argue that "op_noee; test" only sets condition

codes based on the value of the result, where "op_cc" may set condition codes based on

exceptions, e.g., overflows or carries, during the computation. The idiom is conditional on

the values of such extra condition codes being extraneous, that is, dead. See Section 3.7.2.)

The backward decomposition technique begins with the test instruction as the

pattern and matches the test against the end of the subject op_cc instruction,

discovering a partial match. The unmatched remainder of the subject is the main

computation. The backward technique extends the beginning of the pattern with an

op_noce instruction to arrive at the complete match. The same idiom is discovered by

both techniques.

Consider, however, the idiom discussed earlier:

sobgtr counter,label -. deel
cmpl
jgtr

counter
counter,O
label

The decl instruction sets the condition codes to the values used by the jgtr instruction.

These condition code values are redundantly computed by the empl instruction. A

forward idiom discoverer will begin by matching the pattern deel instruction against the

subject sobgtr instruction. The remaining unmatched subject will be just the conditional

jump instruction. The empl instruction will not be considered by the forward algorithm

as an extension to the pattern sequence. The backward strategy begins by matching the

conditional branch instruction against the subject. The remaining unmatched subject is

the setting of the conditions codes for the branch and the increment of the counter. The

Section 3.7.1.2 Forward versus Backward Comparison

35

backward idiom discoverer will prepend a cmpl instruction to the pattern to extend the

sequence. Finally, the decl instruction is prepended, completing the match and

discovering the idiom. (An alternative extension to the cmpl is just a decl, which

extension will also be tried, leading to the discovery of a different idiom, "sobgtr" <=*

"decl; jgtr" .) The point of the backward technique is that the subject is decomposed

into, among others, pattern sequences with as many useful instructions as possible. In this

way the pattern sequence mimics the breaks between statements that may cause the code

generator to produce separate instructions. An implementation of backward

decomposition is described in Chapter 5.

Backward decomposition is similar to the bottom-up pass of a dynamic programming

code generation algorithm [Ripken 77](Aho and Johnson 76]. However, where dynamic

programming is concerned with choosing an optimal decomposition of a sequence, the

idiom discoverer is interested in all possible decompositions of the subject sequence.

3.7.2. Data Flow Context Information

The effect of an instruction varies depending on the data flow context in which the

instruction appears. That is, if an instruction defines a value for a variable, but the

instruction appears in a context in which that value is unused, then that effect of the

instruction can be ignored. The data flow context can be used in two ways during idiom

discovery. Computations may be ignored if it is known during idiom discovery that the

values of those computations are never used. Alternatively, idioms may be predicated on

the condition that certain values are dead. Data flow analysis identifie~ "live" variables,

whose values are used in subsequent computations, and "faint" variables (Robert

Giegerich's strengthening of "dead" variables), whose values are not used, or are used only

to compute values for other faint variables. Data flow context information is kept as an

attribute of the partial match.

Live and dead variable analysis is commonly performed via a backwards pass [Allen

and Cocke 76). Prepending instructions and matching backwards during idiom discovery

allows live and dead variable information to be maintained for partially matching

patterns. Data flow information can be updated as assignments are encountered during

matching. The idiom discoverer maintains live and dead variable information based on

the instruction descriptions, without the program de~endent details of the operands. For

this reason data flow predicates refer only to processor state locations, whose definitions

and uses are visible in the instruction descriptions.

Recall the idiom "sobgtr" for "decl; cmpl; jgtr". The jgtr instruction uses

several condition codes, so the values of those condition codes become live. The cmpl

instruction sets those condition codes, so their values become dead. Since the values of

Data Flow Context Information Section 3.7 .2

38

the condition codes are dead by the time the deel is prepended to the pattern, the

condition code settings of the deel may be ignored during matching. This data flow

context information may be necessary for extending matches.

Data flow context information effectively changes instruction descriptions by ignoring

assignments to variables whose values are dead. Consider the "deel" instruction as it is

prepended to "cmpl; jgtr" in the attempt to decompose the "sobgtrw subject. The

"decl" instruction itself is a sequence of a decrement and assignment to its operand, and

the assignments to the condition codes reflecting the outcome of the decrement. .A15 the

values of the condition codes are dead when the "decl" is prepended to the "cmpl; jgtr"

pattern, the assignments to the condition codes can be removed before matching proceeds.
. ~

Without this pruning of dead assignments the "decl" would fail to match the remainder

of the "sobgtr". An alternative method of comparing assignments is to iterate through

all possible subsets of a forest of assignments. Even for modest sized forests such iteration

causes an unacceptable increase in the time required for matching. Maintaining data O.ow

context information and pruning effectively generates the maximal subset of each

instruction that extends the match.

Alternatively, consider an attempted match of assignments that fails because of a

mismatch in the source expressions of the assignments, though the destinations of the

assignments match. If the value of the destination can be declared dead, the source

expressions can be ignored, and the match will succeed. Since data ftow context

information is one of the attributes of the partial matches, it can be manipulated by the

idiom discoverer to record this condition on the match (see Section 5.6.4). The resulting

idiom is conditional on the data flow of the program being transformed. The idiom

applier must verify this data ftow context condition before it can apply the idiom.

The idiom applier gathers data flow for a particular program with a backwards pass

as idioms are applied (see Section 6.1). The idiom applier needs to maintain live and dead

variable information only for the variables that can be specified in predicates of idioms.

The idiom applier gathers data ftow information for a program using summary data ft.ow

information for instructions. This summary data ftow information lists those processor

state variables used before being defined, those defined before being used, and those killed

by each instruction. The summary data ftow information is developed during the analysis

of the target machine at idiom discovery time. .

Section 3. 7.2 Data Flow Context Information

37

CHAPTER 4

Machine Descriptions

The machine description used by the idiom discoverer is designed to be easily

constructed by the description writer, while providing the information necessary to

identify idioms in the target machine. The interesting part of a machine description is a

characterization of every instruction and addressing mode of the target machine. In

addition, the description includes cost information about instructions and addressing

modes, data types defined by the target architecture, and state variables maintained by

the target processor.

The machine description ts factored in several ways to reduce the stze of the

description and the tedium of constructing a complete description of the target machine.

The following sections explain the components of a description, how a description is

factored, and how the components are related.

4:.1. Trees

The effects of instructions and addressing modes are described by trees. An

alternative would be a procedural description, like ISP [Bell and Newell 71). Procedural

descriptions are not used because the main activity of idiom discovery is comparing

instructions. Comparing procedural descriptions might require that one solve the

"program equivalence" problem, which is undecidable in general. In contrast, trees can be

compared by a simple tree walk in time proportional to the number of nodes in the trees.

Trees lend themselves to substitution, e.g., replacing a reference to an operand with the

tree describing an addressing mode, and to pruning, e.g., of dead branches.

The form of the trees used in machine descriptions is a parenthesized pre-order

traversal of the trees. The trees must be linearized in the machine description, and pre

order traversal is a convenient linearization for both the description writer and the idiom

discoverer. The use of parentheses avoids having to specify the arity of the operators of

the trees. Tree operators may be made up as needed by the description writer to

represent operations of the target machine. Made-up operators have meaning only to the

description writer, except that they are assumed to represent some function of their

subtree arguments. These operators may take any number of arguments, and may be

Trees Section 4:.1

38

polymorphic: taking arguments and yielding results of arbitrary type.

All of the built-in polymorphic operators represent operations on homogeneous

arguments yielding results of the same type as the arguments. A convention I have

adopted is that polymorphic ·operators take the type of their operation as a first

· argumento This convention must be adopted by other description writers when using the

built-in operators in my system. Alternative notations include type-crossing the operators

(cf. [Henry 84]}, that is, creating a new operator for each type qualification of an operator;

or using the type as a unary operator qualifying a subtree (cf. [Crawford 821). The type

crossing alternative is rejected because it becomes difficult to separate the type qualifier

from the operator. When gathering data ftow information, for example, one needs to

identify assignment operators. Having a different assignment operator for each type

complicates this identification. Similarly, type-crossing makes it harder to compare

attributes of the types of operations without also considering the operations. Using a type

as a unary operator separates the type from the operator, but inconveniently. Subtrees

become rooted by their type qualification, rather than the "real" operator, making

identification of the "real" operators more complex, e.g., for axiomatic transformations.

The convention of specifying a type qualifier as an operand to an operator keeps the type

separate from the operator, yet makes the type conveniently part of the tree rooted at the

operator. Since polymorphic operators that are type qualified must always have the type

qualification, the arity or these operators is uniformly changed.

The prototype idiom discoverer is implemented in LISP, so it is convenient to write

machine descriptions as LISP a-ezpreaaiona. Much of the "syntactic sugar" in the

machine descriptions is based on LISP. LISP notation is particularly convenient for

describing trees and lists. Additionally, LISP provides an environment that facilitates

writing and maintaining the descriptionso Part of the LISP environment is macro

expansion, allowing macros, possibly defined by the description writer, to simplify the

construction or the machine description.

4.2. Properties of Tree Operators

The syntactic descriptions of instructions are unlikely to be sufficient for discovering

idioms, since it is unlikely that a target machine will have two instructions with

syntactically identical descriptions. Therefore, certain tree operators have semantic

properties that are known to the idiom discoverer. For example, there is an operator to

represent assignment (-) to permit data O.ow analysis. A complete list of the built-in

operators and leaves appears in Figure 4.1. The semantics of built-in operators cannot be

changed easily by the description writer.

Section 4.2 Properties of Tree Operators

Built-in Operators

(- type src dest)
(operand name)
(parallel tree ...)
(sequential tree ...)
(cond (tree tree) ...)
(jump label)
(constant type value)
(constant-list type value element element ...)

(constant-range type value lower upper)

(type-sise type)

Built-in leaves

type
offset
basereg
indexreg
unique

Interpretation

assignment ofsrc to dest.

all attributes of name.
unordered forest of trees.

ordered forest of tree8.
alternative treu.
transfer of control to label.

a con8tant.
a constant in { element,element, ... }

a con8tant in flower, ... ,upper}

size attribute of twe.

factored tflpe.
offset of an addressing mode.

39

base register of an addressing mode.

index register of an addressing mode.

unmatchable tree.

Figure 4.1. Built-in Operators and Leaves.

Most instructions compute more than a single result: e.g., computing, say, an

addition and setting condition codes based on the result of that addition. Several effects

of an instruction might be considered "side-effects", but there is no such distinction in the

machine descriptions. Multiple effects of an instruction are modeled by forests of trees.

Often the trees of a forest must be ordered by data flow constraints: e.g., in the previous

example, the addition must be performed before the condition codes can be set. The

ordering of trees of a forest is represented explicitly in instruction descriptions. There is

an operator, sequential, to indicate sequential computation of subtrees. Not all trees

need to be strictly ordered, a partial ordering is sufficient. For example, assignments to

several condition codes need not be ordered. An operator, parallel, can be used to root

subtrees that can be examined in any order. Parallel subtrees form an equivalence class in

the ordering of trees. An unordered forest may not be decomposed into a sequence of

trees, since to do so would impose an ordering on the members of the equivalence class.

Finally, a forest of trees may represent alternatives. A forest may be collected as subtrees

of a cond operator in pairs representing guarding predicates and guarded computations.

Properties of Tree Operators Section -i.2

Operators made up by the description writer have no semantics imposed on them by

the idiom discoverer. These operators are matched syntactically. To allow for axioms on

these operators in the implementation or the idiom discoverer, the description writer may

provide a function for each operator, to be called each time the operator is being matched.

The function maps a single tree to a list of trees, each of which will be matched in place of

the original. For example, the function for a commutative operator may return a list of

the original tree and a copy of the original with the subtrees commuted. This mechanism

is the only semantic esc: ape for operators made up by the description writer.

· f.3. Type Descriptions

Type descriptions se"e two purposes. The first purpose is to provide a list of all

type symbols so they can be distinguished during matching. The second purpose is to

provide a set of fixed attributes for each type. Type symbols have two attributes: one to

map a type to a set of equivalent types, and the other to specify the size of the type (a

unitless measure). Logical types may be depicted in addition to the hardware types

available on the target machine. For example, it is convenient to specify a type,

tvpe-addreu, for qualifying addressing mode arithmetic:. Type type-address could then be

defined as equivalent to the hardware type for long integers, tJipe-long, so that an

operation on addresses would be recognized as equivalent to the same operation on long

integers.

Types appear in instructions and addressing mode descriptions as qualifiers on

operations. Refer~nces to the size of a type may also appear in description trees. The

built-in operator type-size is polymorphic:, taking a type as its only argument.

For example, the description for the type of an address is given by:

(define-type type-address
(make-type
name "address" ; for diagnoatica.

siZe 4 ; aize of the fJipe.

equivalents '(type-long))) ; liat of equivalent fJipea.

where the first two lines define the symbol fJipe-addreu as a type, and each of the

remaining lines gives an attribute or the type.

· 4:.f. Processor State Variables

Changes to the processor state are an important part of instruction execution. (In

fact, for test instructions that set condition codes, changes to the processor state are the

only effect of execution.) These changes must be prese"ed during idiom application, and

must be compared during idiom discovery. These changes are represented in the

Section f.f Processor State Variables

4:1

description trees as assignments to distinguished processor state variables, e.g., condition

codes, general registers, etc. The program counter is not considered part of the processor

state. Though the program counter is affected by instruction execution and operand

evaluation, the program counter is not a part of the description writer's virtual machine:

e.g., it is not affected explicitly in instruction descriptions.

Processor state variables appear as leaves in the trees describing instructions and

addressing modes. The idiom discoverer matches them syntactically; in this respect they

are fairly uninteresting. Data flow information is maintained for the processor state

variables, both during idiom discovery and idiom application. Thus these variables are by

definition interesting, as they complicate matching and transformation (see Section 5.6.3,

Section 5.3, and Section 6.1). Data flow analysis assumes that processor state variables

are unique names by which the processor state is changed. If processor state variables

have aliases, some technique like that described by Robert Giegerich {Giegerich 83] would

be needed to gather data flow information at idiom discovery time.

4.4:.1. Limitations on Flow Analysis

There are two limiting factors on data flow analysis. First, many of the operators in

the description trees have no associated semantics. Thus operations in the destination

subtree of an assignment have unknown effects. For example, the destination tree may

represent indirection through an address, which does not assign to the address itself.

Definition points of variable contents can only be noted when the variable is the

immediate destination of an assignment. Any other references must be treated as uses of

the variable. Better data flow analysis would require the description writer to distinguish

trees (as opposed to leaves) to be tracked. Such specification is not unreasonable, but it

has not proved necessary. Second, some processor state variables may be referred to in

particular programs by being specified as operands of instructions. Thus summary

information describing the effect of instructions on these variables may be gathered by the

idiom discoverer, but that information must be qualified by the idiom applier when a

particular program is transformed. For example, the contents of a register may be

changed explicitly in an instruction description, or implicitly by specifying the register as

an operand of an instruction.

To alleviate the restrictions on data flow analysis during idiom discovery, processor

state variables are separated into two groups: those variables that can appear in

addressing modes of instruction operands, and those variables that can only appear

explicitly in instruction descriptions. It may help to think that the latter processor state

variables are addressable as instruction operands, while the former processor state

variables are unaddressable, explicit, locations. For example, condition codes that may be

Limitations on Flow Analysis Section 4:.4:.1

set or tested only explicitly in instructions would be locations, whereas general registers

might be addresses of processor state variables.

The VAX-11 description contains the following processor state variables:

{define-proc~or-state-locations '(c:c-n c:c-z cc-v cc-c))

(define-proceSSQr-st.ate-oaddresses '{rO rl r2 r3 r4 rS r6 r7 r8 r9 rlO rll ap fp sp pc))

declaring the condition codes as locations and the general registers as addresses.

4.5. Cost Information

Both the instruction descriptions and addressing mode descriptions specify costs

associated with their use. Space costs, in units of the instruction stream, and time costs,

in processor time, may be given. In the prototype idiom applier, costs for a collection of

addressing modes and instructions are assumed to be additive. It would be better to have

the description writer provide functions to sum and compare costs. For example, the cost

of an instruction may be a function of the addressing modes of its arguments. Such

functions could manipulate structured costs, if necessary.

4.8. Addressing Modes

Addressing mode descriptions factor the trees for operands from the description of

the instructions. Without this separation, each instruction would have to be described

with each possible addressing tree for each of its operands. This repetition is tedious and

impractical for machines with many addressing modes and multiple operand instructions.

Addressing mode factoring allows the common part of an instruction to be specified once,

with operands as parameters, and conversely allows the operand descriptors for addressing

modes common to several instructions to be described once.

Operand references in instructions may refer to the effective address of the operand

or may refer to the contents of the operand. Usually the contents of the operand is the

contents of the effective address. This is not always the case, and an addressing mode

need not allow both references. For example, on the VAX-11, register-direct addressing

mode does not have an effective address. Trees describing each reference supported by an

addressing mode are included in the description of the addressing mode.

Addressing mode descriptions are parameterized by an offset, a base register, and an

index register. References to these parameters may appear as leaves in the trees

describing the addressing mode. The actual values for the parameters of an addressing

mode are attributes of operands. In general, these actual parameters are not known

during idiom discovery. Binding these parameters to a set of values, or binding the

parameters of one operand to the parameters of another operand is one source of idioms

Section 4.8
Addressing Modes

on the target machine. Address mode descriptions are also parameterized by types.

References to the type of an operand can qualify the operations in trees describing the

addressing mode. References to attributes of the type of an operand (e.g., the size of the ,

type) may also appear as operations in description trees.

Address mode descriptions include cost information. Time costs are specified both

for accessing the effective address of the dperand and for accessing the contents of the

operand. Space costs for both accesses are assumed to be the same, and 'are given by a

single specification. The cost functions are parameterized by type, since, for example, a

reference to a byte operand may cost less than a reference to a long operand. The cost

functions are not parameterized by the values of other operand attributes. If, for

example, byte offsets are cheaper than long offsets, separate addressing mode descriptions

are used.

An assumption implicit in address mode factoring is that references to operands in

instruction descriptions are free of side-effects. Many target machines have addressing

modes with side-effects, but these effects occur during operand evaluation, not instruction

execution. If an addressing mode has side-effects during evaluation, these effects also

appear in the description. Side-effects are classified as pre-effects if they occur before the

reference to the operand, or as post-effects if they occur after the reference to the

operand.

For example, autoincrement addressing mode on the VAX-11 is described as shown in

Figure 4.2, except that the space and time costs have been omitted for brevity. In this

example, the pre-effect tree is empty, the post-effect tree portrays the increment to the

base register parameterized by the type of the operand. The "classes" field is described

below.

4:.7. Address Mode Classes

Address modes are not referenced directly by operands of instructions. Usually an

operand is not limited to a single addressing mode. Some notation is needed for sets of

addressing modes. Orthogonal architectures define a reasonably small number of distinct

sets of address modes: e.g., readable modes, including constants and registers, and writable

modes, including registers but not constants. To follow this regularity, the machine

description provides address mode classes. Each required set of addressing modes defines

a new address mode class. A reference to an operand is interpreted as a reference to all

the addressing mode trees of the addressing mode class of the operand. The members of

the addressing mode class are not enumerated explicitly; each addressing mode declares

the classes to which it belongs, and the classes are constructed from those declarations.

Address Mode Classes Section 4:.7

(define-mode post inc-mode
(make-mode
;
name
I

classes

' types

. ,
pre-effect

' address-tree

j

contents-tree

' post-effect

/or debugging.
"postinc-mode"
mode classe,- to which addreuing mole 6elong3.

'(mode-class--r mode-class-ftoat-r

mode-class-w mode-class-m

mode-class-a mode-class-fr

mode-class-fw mode-class-fm)

tflpu that addru3ing mode can aeceu.

'(type-byte type-word type-long type-quad type-octa

type-moat type-gfloat type-dftoat type-hftoat)

there i3 no pre-effect .

(empty-tree)
effective addre33 i3 the content3 of the 6a3e register.

(new-tree
'(contents type-address basereg))

operand i3 the contenb of the effective addreu.

(new-tree
'(contents type

(contents type-address basereg)))

po3t effect tree: 6asereg := 6asereg + tf1Pe-size(tupe)

(new-tree
'(- type-address

(+ type-address
(contents type-address basereg)

(constant type-address (type-size type)))

(contents type-address basereg)))))

Figure 4.2. Post-Increment Addressing Mode.

4.8. Instruction Descriptions

Instruction descriptions record information about the instructions of the target

machine. The interesting part of each description is the tree giving the actions performed

by the instruction. The usual instruction tree is a sequence of operations on the operands

and asaignments to processor state variables. This sequencing is the source of the idiom

discoverer's decomposition into simpler instructions. In addition, the operands to the

instruction are described and cost information noted.

Each operand is specified by a formal name, a type, an access kind, and an address

mode class. Formal names are used to represent the operand in the tree for the

Section 4.8 Instruction Descriptions

45

instruction. (The type, access kind, and address mode class of the operands are inherited,

on the machines examined, from the instruction. On a different architecture, these

attributes might be properties of the operands themselves, and thus more dynamic than

the static attributes described here.) For each operand it is specified whether the

instruction accesses the effective address or the contents of the operand. This attribute is

used to scled the appropriate reference tree from the address mode descriptions. The

type of the operand is used to q~alify the operations in the, address mode trees.

All instructions in the target machine are enumerated. Each instruction need not be

described in great detail, or may be described as performing a unique operation, e.g., for

particularly complex instructions. However, at least the effect of the instruction on the

processor state variables must be described, to permit data flow information to be

gathered across an instance of the instruction.

Address mode factoring exploits the regularity of instruction sets with respect to

addressing modes for operands. A similar regularity exists with respect to the types of

operands. One might find "move" instructions, for example, for each of the data types on

the target machine. The trees describing those instructions are all identical except for the

type qualifiers of the operations. Similar consistency can be seen among descriptions for

arithmetic operations. Therefore instruction descriptions parameterized by type are

significantly less tedious to construct, maintain, and examine than when the types are

instantiated in the descriptions. Type factoring significantly cuts down on the size of the

instruction descriptions. It has the unfortunate effect that the description writer is no

longer describing the instructions of the target machine (e.g., subb2, subb3, subw2,

subw3, and so on) but type parameterized instruction families. (e.g., sub[bwl]2,

sub[bwl]3). The cost for instructions is also parameterized by the type of the

instruction. I did not explore factoring instruction descriptions by operator, e.g., to take

advantage of the structural similarity between addition instructions and subtraction

instructionso

For example, the description of the VAX-ll's sub[bw1)3 instruction family (three

operand byte-, word-, and long-integer subtraction) is shown in Figure 4.3. Three

instructions are described, named subb3, subw3, and subl3. The type and costs for

each instruction are represented in the corresponding positions of the the appropriate

fields of the description. The operand field describes three operands, with formal names,

types (here, parametric), accesses, and addressing mode classes. Finally, the description

tree depicts an ordered forest containing the subtraction and the setting of the condition

codes.

The subtraction shown is the subtraction of the first operand from the second

operand, and the assignment of that result to the third operand. Note that most of the

Instruction Descriptions Section 4.8

(define-instruction i-sub3_bwl

(make--idesc

' name
types
space
time

' operands

description
'(sequential

namu, tupea and costs, factored bu tupe

'("subb3" "subw3" "subl3")

'(type-byte type-word type-long)

'(1 1 1)

'(1 1 1)

operand descriptions

'(,(make-op-attr
name 'arg1
type 'type
access 'access-contents

mode-class 'mode-class-r)

,{make-op-attr
name 'arg2
type 'type.
access 'access-contents

mode-class 'mode-class-r)

,(make-op-attr
name 'arg3
type ~type

access 'access-contents

mode-class 'mode-class-w))
; tree ducribing the computation

(-type ; arg9 :== argf- arg1

(-type (operand arg2) (operand argl))

(operand arg3))

(parallel
(- type-boolean ; ec-n :== arg9 < 0

(Iss type (operand arg3) (constant type 0))

ce-n)
(- type-boolean ; ec-z := arg9 == 0

(eql type (operand arg3) (constant type 0))

cc-z)
(-type-boolean

(overflow type (operand arg3))

ccov)
(- type--boolean

(carry type (operand arg3))

eeoc)))))

; cc-v :=- over flow{arg9)

; cc-e :=- carru{arg9}

Figure 4.3 Description of sub[bwl]3.

Section -'·8 Instruction Descriptions

47

operations in the description tree are qualified by the type parameter to the instruction

family. The idiom discoverer attaches no meaning to the subtraction operator (-). The

condition code settings are described by an unordered forest of assignments to processor

state locations. These assignments will be noted during data flow analysis. As with the

subtraction operator, the source expressions for these assignments have no meaning to the

idiom discoverer. Thus these expression trees can be described in more or less detail, as

needed. The role of the description writer is to describe identical operations identically,

so that those operations can be matched by the idiom discoverer.

4.9. Experience with Machine Descriptions

Only two machines have been described for analysis by the idiom discoverer. The

machine descriptions are large, in part because they are descriptions of every instruction

and addressing mode of the target machine to some level of detail. The VAX-11 description

is 6800 lines long. That describes 323 instructions, type-factored into 238 instruction

descri_ptions, and all 22 addressing modes. Macros could have been used to reduce the size

of the description by factoring common elements (e.g., condition code settings), but as the

VAX-11 was the first machine described I preferred clarity over size. The MC68000

description was written in just over 2 days, by someone who had never studied the

manual [Motorola 82] closely. The MC68000 description is 5600 lines long. This description

makes use of macros for condition code settings, which reduces the number of lines

somewhat. The MC68000 description includes 275 instructions, type-factored into 192

instruction descriptions. More instruction descriptions were needed than one would

assume from the formal descriptions in the user's manual, since many special cases are

noted only in the English language descriptions. Rather than the 12 addressing modes

described in the MC68000 manual, there are 28 addressing modes described, again due to

special cases noted only in the prose descriptions.

Experience with Machine Descriptions Section 4.9

48

49

CHAPTER 6

An Implementation of Idiom Diseovery

Idioms are discovered by backward decomposition. The algorithm described in this

section deco~p~ses an instruction sequence called the Bubject into a sequence of

instructions called the pattern such that the pattern coverB, that is, performs the same

computation as, the subject. The terminology is borrowed from pattern matching

[Hoffmann and O'Donnell 82], which idiom discovery resembles. The covering is confirmed

by comparing the trees depicting the computation of instructions from the target machine

description. Rather than being satisfied by a single covering, the algorithm finds all

reasonable instruction sequences on the target machine that cover the subject sequence. It

is unlikely that two instruction descriptions will match without some restrictions, since

target architectures rarely include two instructions to perform the same computation, and

even if such instructions exist, the correspondence of operands would have to be noted.

The goal of instruction decomposition is not so much to discover equivalences between

instruction sequences as it is to discover constraints that make instruction sequences

equivalent. After the idiom diBcoverer identifies a cover of one sequence by another, the

idiom applier may replace an instance of the pattern by a suitably constrained

instantiation of the subject and be assured that the computations performed are

equivalent. This separation of idiom discovery from idiom application is a key idea of this

dissertation.

The prototype idiom discoverer identifies three kinds of idioms during decomposition:

binding idioms, set idioms, and composite idioms. Since a combination of these idiomatic

properties is usually required to find a cover, it should not be surprising that they are

identified by this one strategy. Binding idiom discovery is the identification of the

correspondence between two (or more) operands or the pattern and an operand or the

subject. Set idiom discovery is the identification of the correspondence between an

operand of the pattern and a set o(values from the subject. Composite idiom discovery is

the identification or the correspondence between the partial order or computations in the

pattern and the partial order of computations in the subject. If the correspondences are

made, and the resulting constraints admit a solution, then the pattern covers the subject

and an idiom has been identified.

An Implementation of Idiom Discovery Chapter 5

50

First I describe the data structures used to perform idiom discovery, followed by a

description of the covering routines, and finally a description of the tree matching routines

with all the special cases of matching. Before the algorithm shown here can be called,

summary information for all instructions and addressing modes is gathered and unique

instructions and t.est instructions are identified.

6.1. Data Structures for Decomposition

The major data structure used to characterize a cover is a pair of instruction

sequences (the subject and the pattern), and a set of constraints under which the pattern

covers the·subject. The constraints are represented as bindings on the parameters t,o the

instructions: the operands and the data flow context1• The bindings may be specific, e.g.,

that the base register of a particular operand must be the stack pointer; or more general,

e.g., that the offset of an operand must be in the set {1" .. ,8}; or the binding may be only

a correspondence, e.g., that an operand of a pattern instruction have the same addressing

mode, offset, base register, and index register as an operand of the subject. It is

convenient to separate the constraints into constraints on the subject and constraints on

the pattern and attribute them to the subject and to the pattern rather than to the

subject and pattern pair. This separation permits routines to be written that manipulate

instruction sequences regardless of whether or where they are paired in a subject-pattern

cover. During the decomposition process, both of the instruction sequences are modeled

by the trees representing their computations from the target machine instruction

descriptions. Thus attributed instruction sequences (or just attributed instructions)

may be referred to almost interchangeably with attributed trees. Also during

decomposition, subjects and patterns are paired before it is known whether they represent

(even with constraints) equivalent computations. These tentative pairs are called

matches. These pairs are the input to the matching function, which returns only pairs

where the pattern (at least partially) covers the subject. Only those matches returned

from the matching functions actually represent partial matches. Only those matches

extended to complete matches represent equivalent computations.

5.1.1. Operand Attributes

Instructions are obviously parameterized by their operands. Operands may have

fixed attributes that they inherit from the instruction: their type, access, and address

mode class. Additional attributes of an operand can limit its addressing mode and

constrain or bind the offset, base register, and index register of the operand. These last

1 han artiCact of my implementation, typea are abo parameters of instructions, see Section S.8.S.

Section 5.1.1 Operand Attributes

51

three operand attributes may be specific or they may represent bindings to attributes of

other operands. The addressing mode of an operand can be bound to any subset of the

addressing modes in its address mode class. Binding to attributes of other operands need

not bind to the corresponding attribute: e.g., the base register of one operand may be

bound to the index register of another operand. It is also convenient ~ have an operand

attribute to indicate that the addressing mode, offset, base register, and index register

attributes must correspond to those attributes of another operand.

The attributes for each operand are grouped together in a table of all the operands

of an instruction. As instructions are assembled into instruction sequences, additional

operand attributes are added to the table. As entries are added to the table, unique

names are constructed and uniformly substituted for each reference to the operand in the

instruction description tree. This mechanism allows the same formal names to be used in

several instruction description trees, and allows the same instruction to be represented

more than once in an instruction sequence2•

5.1.2. Data Flow Information Attributes

The effect of an instruction may be different in different data flow contexts. These

differences can be exploited when searching for decompositions. For example, if some

locations set by an instruction are dead, those assignments need not be performed and the

remaining computations may be coverable, where the original (entire) instruction was not

coverable. Thus instruction sequences are parameterized by live and dead variable

information. To make these parameters explicit, attributed instruction sequences include

representations of data flow context information. Since data flow information is only

tracked for the relatively small number of processor state variables (as defined in the

target. machine description), live and dead variables can be conveniently stored as small

sets.

In order to propagate the data flow context and gather summary data flow

information, three additional sets of variables are maintained as attributes of instruction

sequences. One set records variables used before being defined in the computation of an

instruction or sequence. A second set records variables defined before being used. The

third set records variables killed by the execution of the instruction.

The inherited data flow context attributes (live and dead variable sets) are

independent of the actions of instructions and may be constrained to obtain a match. The

12 This might be confusing during debugging or machine descriptions, but it is less confusing than not

renaming operands. I could have saved the original names in the table, but I didn't. The formal/index names

are irrelevant to anything except indexing the operand attribute table.

Data Flow Information Attributes Section 5.1.2

52

other data ftow attributes are functions of the computation tree in the inherited context,

and c:an not be constrained by the process or decomposing instructions.

5.2. An Overview or Decomposition

When matching one attributed instruction against another, five results are possible,

as shown in Section 3.7.1.1. Recall that instruction description trees c:an represent several

computations partially ordered by data ftow dependencies: say, an arithmetic: operation

and the setting of condition codes; or an increment, a test, and a conditional jump. Thus

instruction description trees are actually partially ordered forests or computation trees.

The most likely outcome is that the instructions will not match each other. Another

possibility is that the instructions match completely, possibly by requiring some

constraints on either or both of the instructions" (That is, the instructions as originally

presented need not match: a restriction of the attributes of the instructions or a rewriting

of the description trees may be required to have the instructiona match completely.) For

iDStructions c:oDSisting a single computation tree, those two choices are the only

~ibilities. A third (and by symmetry, a fourth) possible outcome exists when matching

forests of trees. One iDStruction may match some but not all of the trees in the forest of
. ~

the other instruction. The fifth case has some of the trees of one forest matching some of

the trees of the other forest, with the trees of neither forest completely matched. These

five cases are examined in more detail below.

One tree may fail to match another because the syntax of the trees mismatches. A

syntactic mismatch would occur, for example, from trying to match a tree rooted with one

operator agaiDSt a tree rooted with some other operator, barring axioms to traDSform the

syntax of one tree to correspond to the other tree. During syntactic matching, certain

operators in the tree trigger examination or attributes from the attributed trees.

Attribute comparison may narrow the coDStraints on either tree to achieve constraints

that can be satisfied by both trees. If the constraints do not admit any solution (e.g., the

·domain of some attribute becomes empty), the trees fail to match. The matching

·criterion is applied· recursively to subtrees. An example of a semantic: restriction

mismatch would occur if two trees were matched representing operands, one restricted to

some addressing mode and the other restricted to exc:lude that addressing mode.

Complete matching is possible when comparing single trees or forests of trees.

Complete matches occur when one tree, or each of the trees in a forest of trees,

syntactically matches another tree, or the corresponding trees in another forest, and the

semantic binding of attributes can be satisfied. Complete matching is the absence of

mismatching. Since the trees or a forest are partially ordered by data ftow dependencies,

the trees or a forest must be compared in an order permissible under that ordering. A

Section 5.2 An Overview or Decomposition

53

complete match implies that the partial orders on two forests are equivalent.

Partial matching can occur only when the subject is a forest of trees. In a partial

match, all of the pattern covers part of the subject, but some of the subject remains

uncovered. As for complete matches, trees from the pattern are compared against the

subject in an order permissible by the partial ordering. Since I am only concerned with

partial matcheCJ at one end of the partial ordering, the remaining unmatched trees of the

subject are a contiguous "tail" of the partial ordering: itself a partial ordering of trees.

This is the basis from which a partial match may be extended to a complete match.

Equivalence classes in the partial ordering may not be decomposed, since to do so would

impose an ordering on the members of the equivalence class,

The symmetric case to partial matching, in which the subject is completely covered

by the pattern, but some of the pattern remains unused in that cover, is considered a

mismatch. Subjects are not extended to be covered by the pattern. Only patterns are

extended to cover subjects. The extension of subjects to discover an equivalence with

single instruction patterns is redundant, since every single instruction will be examined as

a subject for decomposition.

The fifth case for matching, in which some (but not all) trees of the subject forest are

matched by some (but not all) trees of a pattern forest, is considered a mismatch.

Because there is a partial ordering imposed on the forests, each least tree of the ordering

on the subject must be matched by a least tree from the ordering on the pattern, and so

on through the partial ordering of trees. If at any point a least tree from the ordering on

the pattern does not match a least tree from the ordering on the subject, that pattern tree

can not be matched against any greater trees in the subject ordering since that would

violate the partial ordering. Because of the completeness with which the patterns are

chosen and extended, extensions of the subject to cover unmatched pattern trees need not

be considered by the idiom discoverer.

5.3. Data Flow Analysis

Several steps in idiom discovery depend on the data flow context following an

instruction or tree. The data flow gathering routines are passed a tree attributed with

information summarizing the data flow context following the tree. These routines traverse

the tree qualifying the data flow information inherited from the following context. Data

flow for subtrees is gathered as needed by calling the data flow routines recursively.

Inherited context information is recorded in two sets: one listing variables that are live

(that is, whose values are used) in the following context and one listing variables that are

dead (that is, whose values are not used) in that context. As trees and instructions are

examined and added to the following context (e.g., in an instruction sequence, or the

Data Flow Analysis Section 5.3

54

decomposition of a forest of trees} the inherited context information is qualified by two

sets: one listing variables that are used before being defined in the trees added to the

following context, and one listing variables defined before being used in those additional

trees. Inherited data flow information is not changed by data flow gathering.

Qualifications are recorded only for variables in the inherited context< Data. flow

information is augmented in a backward pass over the trees of a forest. The backward

direction of this pass is a function of the information required and is not related to the

backward direction of the decomposition algorithm.

Keeping data Bow context as inherited information and qualifications to the inherited

information complicates certain data Bow predicates, but allows other predicates to be

written. For example, a variable is live if the value of the variable is used before being

defined or if the value of the variable is live and not defined before being used. If only

live and dead variable sets are kept, and modified by the data Bow gathering routines, the

live variable predicate is a simple membership test, but it is not possible to distinguish

variables that are live because of inherited constraints and variables that are live because

of a use in the current instruction sequence.

The qualifications on the inherited data Bow context are discovered in a single pass

over the nodes of a tree. As a member of the live or dead variable sets is seen as the

destination of an assignment operator, that variable is removed from the set of variables

that are used before being defined (if the variable was in that set) and added to the set of

variables that are defined before being used. All other references to variables are uses, so

these references remove the variable from the set of variables that are defined before

being used, and add the variable to the set of variables that are used before being defined.

Assignments and sequentially ordered forests of trees are the only special cases during

data flow analysis. Since data ftow gathering examines every tree node, this analysis is

·linear in time to the size of the tree.

In addition to the two qualification sets gathered, the data Bow routines also reeord

all variables from the inherited context that are killed (that is, defined) by a computation.

The set of killed variables accumulates variables as they are seen as the destinations of

assignments. Data Bow information is gathered once for each instruction description tree,

and the qualification sets and the killed set are recorded as summary data Bow

information for the instruction.

Summary information should be gathered for addressing modes, too, but the

prototype idiom discoverer does not gather this information. The assumption here is that

everything either used or modified by an addressing mode will be a parameter to that

addressing mode. A counterexample would be an addressing mode that refers to and

affects (without parameters), say, the stack pointer.

Section 5.3 Data Flow Analysis

56

6.-i. Instruction Classification

Before the idiom discovery algorithm is run, the instructions of the target machine

are classified. The idiom discoverer uses the identification of instructions that compute

unique functions and instructions that only set processor state locations (those locations

liable to be declared dead during assignment matching). In addition, the idiom applier

uses a list of the instructions that terminate basic blocks, so instructions that transfer

program control are also distinguished. The classification of instruction is recorded by a

set of flags attributed to each instruction description.

Unique instruction identification is accomplished by building an index from operators

to those instructions whose description trees contain those operators. Any operator found

in the description of only one instruction distinguishes that instruction as computing a

unique function. Unique instruction classification visits each node of each instruction

description tree once, and so takes time proportional to the number of nodes in the target

machine instruction description 'trees. Constructing the index requires a table lookup for

each operator, which can be performed in time proportional to log2" for o distinct

operators in the best case. Therefore unique instruction identification takes time

proportional to n X 8 X log2" for n instructions whose average description trees contain 8

nodes representing o distinct operators.

Test instruction classification identifies all instructions whose only effects are the

setting of processor state locations, e.g., condition codes (hence the name "test"

instructions). The tree describing each target machine instruction is pruned (see Section

5.6.3) in a data flow context in which all processor state locations are dead. Pruning

removes assignments to dead locations. Ir those effects are the only effects of the

instruction, the empty tree is returned by the pruning routines and .the instruction is

flagged as a "test" instruction. This distinction is used during decomposition to check

that assignment matching has not declared dead all the effects of an instruction. This

identification could also be used in the idiom applier to check for dead test instructions:

that is, test instructions in contexts where all the effects of the instruction are dead. Since

the Graham-Glanville-Henry code generators do not emit dead test instructions, checking

for dead tests in the idiom applier has not been important. Pruning takes time

proportional to the number of operators in the tree being pruned, so test instruction

identification takes time proportional to the number of operators in the target machine

instruction description trees.

The idiom applier operates on one basic block at a time. Therefore it must be able

to distinguish the ends (or beginnings) of basic blocks. For this purpose, the idiom

discoverer identifies instructions of the target machine that transfer control, thus ending

any basic block in which the instruction appears. Jump instruction identification

Instruction Classification Section 6.-i

58

examines each instruction description tree for the distinguished operator jump, and so

runs in time proportional to the size of the target machine instruction description trees.

Jump instruction identification has no effect on idiom discovery.

5.5. Decomposition of a Subject Instruction

This section presents the top level of the algorithm to discover idioms for an

instruction. The algorithm given here finds decompositions for each of the instructions on

the target machine. That is, the prototype idiom discoverer considers only single

instructions as subjects.

Matches will be shown in two columns, with the subject on the left and the pattern

on the right, related by the operator "~" to indicate a match that has not been verified.

~ a running example, the VAX-ll's "incl" (increment by one) instruction will be the

subject decomposed into the instruction sequence "addl3; tstl" (3-operand addition,

followed by a test against zero). The tree describing the incl instruction is shown in

Figure 5.1. The tree for the addl3 instruction is shown in Figure'5.2, and the tree for the

tstl instruction is in Figure 5.3. This match will be shown as:

incl inc-dest .,. addl3
tstl

add-src 1 ,add-src2,add-dest

tst-src

Where restrictions on operands are not immediately apparent from the match, they will

be given in the text. For example, the above match will require the restrictions "'add-src1

a 1" and "incodest = add-src2 = add-dest = tst-src"

The outermost loop of the decomposition algorithm is given a list of instructions and

data flow context in which to find decompositions for each of those instructions.

Instructions are decomposed by consulting the machine descripti?ns. Each instruction in

. turn is passed with the data flow context to an instruction covering routine that returns
I

. a list of covers. These covers are then recorded for the use of the idiom applier. For

example, when the "incl" instruction is covered, the results include the "addl3; tstl"

cover. Supplying a list of instructions, rather than iterating through all the instructions

on the target machine makes it easy to run subsets of the full machine. Analyzing subsets

is extremely useful for debugging machine descriptions (or the idiom discoverer), where an

interesting case may come up only when decomposing a particular instruction. Since the

decompositions of one instruction do not affect the decompositions of another instruction,

the idiom discovery for a target machine may be run as several smaller jobs, e.g., when

the machine cycles are available, rather than requiring that an entire machine description

be analyzed all at one time.

Section 5.6 Decomposition of a Subject Instruction

(sequential
(- type-long

(+ type-long
(constant type-long 1)
(operand incl-dest))

(operand incl-dest))
(parallel
(- type-boolean

(Iss type-long
(operand incl-dest)
(constant type-long 0))

cc-n)
(- type-boolean

(eql type-long
(operand incl-dest)
(constant type-long 0))

cc-z)
(- type-boolean

(overflow type-long
(operand incl-dest))

cc-v)
(- type-boolean

(carry type-long
(operand incl-dest))

cc-c)))

Figure 5.1. Tree Describing incl.

Decomposition of a Subject Instruction

57

Section 5.5

58

(sequential
(- type-long

(+ t~-long
(operand add-src 1)
(operand addosrc2))

(operand add-dest))

(parallel
(- type-boolean

(Iss type-long
(operand add-dest)
(constant type-long 0))

cc-n)
(- type-boolean

(eql typealong
(operand add-dest)
(constant type-long 0))

cc-z)
(- type-boolean

(overftow type-long
(operand add-dest))

CCmV)

(- type-boolean
(carry type-long

(operand add-dest))

cc-c)))

Figure 5.2. Tree Describing addl3.

Section 5.5 Decomposition of a Subject Instruction

(parallel
(- type-boolean

{Iss type-long
(operand tst-src)
(constant type-long 0))

cc-n)
(- type-boolean

(eql type-long
(operand tst-src)
(constant type-long 0))

cc-z)
(- type-boolean

(constant type-boolean 0)
cc-v)

(- type-boolean
(constant type-boolean 0)

cc-c))

Figure 5.3. Tree Describing tstl.

59

If the instruction is a unique instruction, no decomposition will succeed and so the

empty list of covers is returned. This check avoids attempting matches of the instruction

against each of the other instructions on the target machine, some of which may partially

match and will need to be extended. For a machine with n instructions, of which u

perform unique operations, this saves at least n Xu attempted matches at a cost of

identifying the unique instructions. Identifying unique instructions takes time

proportional to the size of the descriptions of the n instructions.

If the instruction is not unique, the tree describing its computation is made into an

attributed tree with operand attributes inherited from the instruction description and the

data fiow context information that was passed in to the instruction covering routine. The

attributed tree for the subject is pruned (see Section 5.6.3) to remove parts of the tree

that are dead in the inherited data fiow context. If no computations remain after

pruning, the instruction performs no useful computations in this data fiow context and so

the search for decompositions of this instruction is abandoned and the instruction covering

routine returns the empty list of covers. The instruction could be deleted by the idiom

applier if found in this data fiow context. However, this information is not recorded, since

our code generator only generates instructions whose results are used. That is, the idiom

applier does not remove dead code.

Decomposition of & Subject Instruction Section 5.5

60

If some computations remain after pruning, they must be decomposed into a pattern

instruction sequence. The attributed tree is packaged as the subject of a match with the

empty instruction sequence as the current partial pattern. The pattern sequence has no

operand attributes, but inherits the same data flow context information as the subject.

This match is handed to a match covering routine. In the example of covering an "incl"

instruction, the subject of the match will be the entire tree describing the incl instruction

(see Figure 5.1), since, as is usual, the inherited context has all the processor state

variables live.

The match covering routine performs the actual decomposition of the subject. The

match covering routine is always given a partial match that it extends by prepending

single instructions. These extensions to the partial match are verified by calling the tree

matching routine.

The tree matching routine is given an extended partial match and returns a list of

altered copies or that match. The tree matching routine deletes the matching portions of

the subject and pattern trees, leaving mismatching trees in place for alternative strategies

to handle. Tree matching thus computes the "tree difference" between the subject and

pattern. Tree matching also notes and records restrictions on attributes necessary to

achieve a match.

Tree matching indicates that an instruction tree extends a partial match by

returning a match with an empty pattern tree. The remaining subject is passed to a

recursive invocation of the match covering routine. When a recursive call of the match

covering routine is called with a partial match whose subject tree is empty, a complete

match has been identified and the recursion unwinds.

In the example, the top level match covering routine is given the partial match of

incl against the empty pattern sequence. This partial match is extended by each

instruction on the target machine, including the tstl instruction. This extension (among

others) is successful, so a recursive call to the match covering routine is made with the

remaining uncovered subject, which is just the assignment of the addition from the incl

description. The recursive call extends the match with each instruction of the target

machine, including the addl3 instruction. This extension (among others) is also

successful, so a third call is made to the match covering routine. This last call is passed a

partial match whose subject tree is empty, so it simply returns. ~the recursion unwinds,

the instructions chosen as the extension at each level is recorded in the pattern of the

match.

The only instructions not chosen as possible extensions are those instructions marked

as unique instructions by instruction classification (see Section 5.4). Another special case

is that the top level match covering routine does not extend the ...empty pattern with the

Section 5.5 Decomposition of a Subject Instruction

61

subject instruction. This check avoids discovering the identity transformation as an idiom

for each instruction.

An instruction may extend a partial match under several different sets of constraints

(e.g., due to axioms, bindings of attributes, etc.). The tree matching routine therefore

returns to the match covering routine a list of partial matches, each of whose attributes

records a different set of constraints. The match covering routine iterates over the

members of this list making recursive calls for extensions. For example, when extending

the running example with an addl3 instruction, if the commutative axiom for addition

has been described, two sets of operand bindings are discovered (see Section 5.6.2). Thus

two complete matches are discovered from a single partial match. Note that the common

tail of these two idioms, the tstl instruction, is matched only once.

5.6. Tree Matching

The covering routine described above chooses decompositions and records successful

covers for the idiom applier. The tree matching routines described here discover binding,

set, and data flow constraints and record them in the attributes of matches.

The bulk of tree matching is syntactic. However, all the built-in semantics of the

instruction description trees must be enforced during tree matching. Especially important

during tree matching are the triggers of attribute comparisons and adherence to the

partial ordering of trees within forests.

5.6.1. Forest Matching

Two built-in tree operators (sequential and parallel) represent the partial ordering

on trees in a forest. Their semantics influence the order in which their subtrees are

compared.

Matching one sequence, a.e., a forest rooted with a sequential operator, against

another may (if successful) return attributed trees with shortened sequences. Matching a

sequence against a tree may shorten the sequence by one subtree. In both cases, resulting

sequences of unit length are altered to delete the sequential operator, leaving just the

component tree. Sequential matching takes time proportional to the length of the shorter

sequence being matched.

Sequential matches implement the backward policy for matching forests. Sequences

are matched from their "tails" toward their "heads": from lesser members of the partial

ordering towards the greater members.

In the example, the first tree match ts between the tree describing the incl

instruction and the tree describing the tstl instruction:

Forest Matching Section 5.6.1

62

(sequential
(-type-long

(+ type-long
(conatant type-long 1)

(operand inc-dest))

(operand inc-dest))

(parallel
(- type-boolean

...))

(Iss type-long
(operand inc-dest)
(conatant type-long 0))

cc-n)

,:L. (parallel
(- type-boolean

...)

(Iss type-long
(operand tst-src)
(conatant type-long 0))

cc-n)

Since the pattern tree can be conatrained to match the last subtree of the subject tree, the

subject tree is reduced to the assignment of the addition, and the pattern tree is

completely deleted.

Parallel operators root trees whose subtrees form an equivalence class in the partial

ordering. As such the subtrees may be matched against the subtrees of a corresponding

parallel tree in any order. Each subtree of an equivalence class must be completely

matched; there is no chance to return a "smaller" equivalence d~, since to do so would

violate the equivalency of the cl~. All possible permutations of the subtrees of a

parallel node are tried in the effort to match all the subtrees of a corresponding parallel

tree. Therefore, parallel matching may be forced to conaider n! possible permutations for

equivalence classes of size n. Permutations are generated only as needed. If any subtree

fails to match in every position of the permutation, the parallel match is abandoned, so

often not all permutations are generated and tested. If the machine description writer

uses some canonical ordering among the subtrees of parallel operators, the matching of

parallel trees can be verified in time proportional to the number of subtrees.

5.6.2. Operand Matching

Both binding and set idioms are discovered when matching operands. There are

three opportunities to match operands: one ease in which both subject and pattern trees

are operand references, the case in which the subject tree refers to an operand and the

pattern is not an operand reference, and the symmetric case in which the pattern is an

operand reference and the subject is not an operand reference. These cases are examined

in detail below.

Section 5.6.2
Operand Matching

63

5.6.2.1. Binding Constraint Discover:y

The matching of a subject operand reference against a pattern operand reference is

the key step in binding idiom discovery. The two operands match if they can be

constrained to have the same addressing mode, offset, base register, and index register.

There is an attribute of each operand to record a list of other operands to which the

operand is bound in this manner. The addressing modes of the two operands are

restricted to the intersection of their separate addressing mode sets. If this intersection is

empty, the operands can not be bound, and so the operand match is abandoned. In

addition to sharing at least one addressing mode, the operand must perform the same

access (i.e., effective address or contents) in order to be bindable. Further, the types of

the operands must be the same (or equivalent). If the operands are bindable, the name of

the subject operand is added to the "bound-to" list of the pattern operand, and the name

of the pattern operand is added to the "bound-to" list of the subject operand. The

operand reference trees are deleted to indicate that they match, and the match returns

successfully. The transitive closure of the "bound-to" lists are used by the idiom applier

to verify the correspondence between operands of the pattern and to construct the subject

operands.

Operand binding comes up several times when decomposing

tstl". For example, the match of:

"incl" with "addl3;

(- type-long
(Iss type-long

(operand inc-dest)
(constant type-long 0))

cc-n)

eventually matches:

(operand inc-dest)

(- type-long
(Iss type-long

(operand tst-src)
(constant type-long 0))

cc-n)

(operand tst-src)

that derives the correspondence between 'inc-dest' and 'tst-src'. Other binding constraints

in the example are "inc-dest = add-src2" and "inc-dest = add-dest".

5.6.2.2. Set Constraint Discover:y

The match of a subject tree against a pattern operand reference is the key step in set

idiom discovery. Since addressing mode descriptions are factored from instruction

descriptions, the operand reference stands for the trees of all the addressing modes of the

operand. Each of these trees in turn must be compared against the subject tree to see

which addressing modes, if any, the subject tree covers. The addressing mode descriptions

are parameterized by the access and type of the operand. These parameters are fixed by

Set Constraint Discover:y Section 5.6.2.2

84

attributes of the operand. Addressing mode descriptions are also parameterized by an

offset, a base register, and an index register, that are not fixed attributes of the operand.

The addressing mode trees for each addressing mode of the pattern operand are

instantiated with references to the free attributes of the operand. Each of these trees is

paired against the subject tree in a match in which the pattern operand has been

restricted to the addres."'i.ug mode represented by the instantiated tree" These matches are

passed to the tree matcher, and any complete matches are returned as successful operand

matches.

M references to parameters of the pattern operand appear during the recursive calls

to the tree matcher, they will attempt to bind the attributes of the pattern operand.

Those bindings, if successrul, will be reftected in the matches returned to the operand

matcher (and upward) as constraints on the match.

An example of set constraints occurs when matching the addition 1n the incl

description with the addition in the addl3 description. The match is:

' (- type-long ~ (- type-long

(+ type-long (+ type-long

(operand inc-dest) (operand add-src2)

(constant type-long 1)) (operand add-srcl))

(operand incedest)) (operand add-dest))

that eventually matches:

(constant type-long 1) (operand add-src 1)

The addressing modes for 'add-srcl' include "immediate-constant" mode, which references

the value of the offset of the addressing mode. The addressing modes of 'add-src1' will be

restricted to immediate-constant mode, and the trees matched are:

' (constant type-long ~ (constant type-long

1) (offset add-src1))

that eventually leads to the match:

1 (offset add-src 1)

that binds the offset or 'add-src1' to the value 1.

5.8.2.3. Binding Subject Operands

The third case is symmetric to the previous case: matching a subject operand

reference to a pattern tree. The same strategy could be employed: iterating through the

addressing modes trees of the subject and matching them against the pattern. This is not

ordinarily done in the idiom discoverer. Expansion of a subject operand can be attempted

in an effort to fold the operation or pattern instructions into the addressing mode

Section 5.8.2.3 Binding Subject Operands

65

arithmetic of subject operands. For example, consider trying to constrain an addl3

instruction so that instruction covers a move-effective-address instruction, moval, using

an "offset from base register" addressing mode. The match between:

' moval mova-src,mova-dst ~ addl3 add-srcl,add-src2,add-dest

matches the trees:

(- type-address
(operand mova--src)
(operand mova-dest)

' ~ (- type-long
(+type-long

(operand add-src2)
(operand add-src 1))

(operand add-dest))

Since one of the addressing modes of 'mova-src' includes "offset from base register"

address mode, the substitution of addressing mode trees for 'mova-src' will match:

' (+ type-address ~ (+ type-long

(off.set mova-src) (operand add-src2)

(basereg mova-src)) (operand add-srel))

that will match:

(offset mova-src) (operand add-src2)

and

(basereg mova-src) (operand add-src 1)

These last two matches will succeed if 'add-src2' can be bound to an addressing mode

representing the offset of 'mova-src' (as immediate-constant mode from the previous

example) and 'add-srcl' can be bound to an addressing mode representing the base

register of 'mova-src' (as register-direct mode does). The cover will represent the folding

of the addition into the addressing mode of the 'mova-src' operand. The Graham

Glanville-Henry code generator leaves almost no opportunities to apply such idioms, so it

has not been important to detect such idioms. In the prototype idiom discoverer the

search for special cases of subject operands is optional.

5.6.3. Pruning

Pruning is used to discard irrelevant (i.e., dead) portions of a tree before matching.

The pruning routine is passed a tree attributed with data flow context information, and it

returns that attributed tree with the tree altered to remove computations whose values

are not used in that context. For example, when the addl3 instruction is tried as an

extension during the decomposition of incl, the values of the condition codes are all dead,

and so the tree returned from the pruning routine is just the assignment of the addition.

The pruning routine needs exact, rather than summary, data flow information, e.g., about

variables used in subtrees. In practice, the pruning routine calls the data flow analysis

Pruning Section 5.6.3

68

routine (see Section 5.3) as needed, and returns a pruned tree with the correct data flow

attributes.

The pruning routine is called for each subject and for each pattern extension

considered during matching. In addition, this routine is called once for each instruction

on the target ma.rhiue during "test" instruction classification. Pruning examines each

node of a tree ouce, aud so runs in time proportional to the number of nodes in the tree.

6.6.j. Assignment Matching

Data O.ow attributes of a match can be manipulated to achieve covers. The key idea

is that changes to data flow context can specify conditions under which mismatching trees

are irrelevant and need not prevent matching. Data flow attribute manipulation is like

pruning during tree matching. Data flow attributes are changed by the tree matching

. routine that matches assignments.

In the easy case, the assignment matching routine discovers that all the subtrees of

the assignment (type, source, and destination) match, and just returns the resulting list of

matches without altering the data flow attributes. Ordinarily, if any of the subtrees

mismatches, the assignment match is abandoned. The prototype idiom discoverer

manipulates data flow attributes in the special case when the destination and types of the

assignments match but the source expression trees do not match. If the destination were

dead, the sources of the assignment {and the assignment itself) would be immaterial to the

computation being performed. By contrast, if the destination had been marked as dead

before matching, the assignment would have been pruned and the assignment match

would never be considered, much less fail. Clearly the destination is not dead if tree

matching gets as far as matching the assignment. If the data flow context can mark the

destination dead, the assignment matcher can ignore the mismatch of the sources.

For example, in the matching of inel against tstl, two of the condition code

assignments mismatch in their source expression trees. One of these is the match:

' (- type-boolean *:J (- type-boolean

(carry type-long (constant type-boolean 0)

(operand inc-dest)) cc-c)

ee-c)

Here the mismatch of the sources causes the destination 'cc-c' to be declared dead by the

tree matcher. Similarly, 'cc-v' is declared dead. Thus the idiom "incl" ~ "addl3; tstl"

is conditional on 'cc-v' and 'cc-c' being dead. This condition must be checked by the

idiom applier before applying the idiom.

Section 6.6.j Aaeignment Matching

67

Not every destination can be declared dead. In particular, a destination can not be

declared dead if the destination is used later in the instruction sequence. This is one

reason for maintaining the set of variables used before being defined. The data flow

analysis performed by my prototype is severely limited, which limits the destinations that

can be declared dead. The list of variables that might be declared dead, is conveniently

the set of live variables maintained in the data flow attributes. The assignment matcher

can declare dead any destination noted as live and not used before being defined later in

the sequences. The declaration is recorded by the assignment matcher by removing the

variable from the live variable list and adding the variable to the dead variable list. The

assignment matcher returns the altered match indicating success.

One drawback to this technique is that the destinations and types must match for

the assignment matcher to handle the mismatch of the sources. For example, individual

assignments that do not match can not be selectively removed from enclosing trees (say,

from sequences) to allow the enclosing trees to match. Dynamic programming could be

used here to solve the "string editing" [Wagner and Fischer 7 4) problem for the enclosing

trees, but that approach is not used in the prototype idiom discoverer. Instead, the

description writer inserts identity assignments where these assignments are needed.

Consider two instructions: op_cc, which performs some operation and sets condition

codes; and op_nocc, which performs the same operation but does not set the condition

codes. Clearly if the condition codes are dead, one instruction is an idiom for the other.

The description of op_Jlocc would have to contain the identity assignment of the

condition codes for the idiom to be discovered. This has not been a problem in practice,

because common condition code settings are described only once, as macros, and then

expanded wherever they are needed.

5.6.5. Type Unification

The target machine descriptions may be type-factored into instruction families,

representing, for example, byte-, word-, and long-addition. This is a convenient facility

for the description writer. Type factoring is also convenient for the idiom discoverer,

since the time complexity of the target machine analysis is polynomial in the number of

descriptions examined. Therefore it is useful to maintain the type-factoring during

analysis, rather than macro-expanding the type-factored instruction families supplied by

the description writer. Type factoring was removed from the running example for clarity.

In practice, the matching described above discovers three idioms (for byte-, word-, and

long operations), since the VAX-ll's instruction set is type-orthogonal for the instructions

examined.

Type Unification Section 5.6.5

68

Just as instruction descriptions portray a type-factored family of target machine

instructions, attributed matches portray type-factored families of matches. Type

factoring does not persist into the idiom applier. To improve the speed and simplicity of

the idiom applier, factored types are distributed through covers as the tables for the idiom

applier are producE:<~.

Maintaining type-factoring in the idiom discoverer means that type attributes are

not simple type names, but rather sets of type names representing the domain of the type

parameter. References to type parameters may appear in the trees, as may explicit types,

yielding four cases of matching types. Matching one specific type against another is

almost syntactic: the types match if they are the same types, or if one type is on the list

of types equivalent to the other type in the descriptions of the types. Matching a specific

type against a reference to a type parameter restricts the domain of the type parameter to

the types equivalent to the specific type. If that domain becomes empty, the match fails.

The interesting case is the matching of one type parameter against another. The type

attributes must be bound to indicate that they must have the same value and their

domains must be restricted to the intersection of their previous domains. Both these

constraints are stored in a type attribute by storing the domain of the cross-product of

the subject and pattern type domains. The cross-product domain is stored in the type

attribute of both trees, for symmetry. To restrict the pattern domain to a particular

type, the type match routine restricts the cross-product to those pairs whose pattern

element is equal to (or equivalent to) that particular type. Similarly restricting a subject

type restricts the cross-product to those pairs whose subject element is equivalent to the

particular type. The binding of a subject type to a pattern type is accomplished by

restricting the cross-product domain to pairs in which the subject element is equal to (or

equivalent to) the pattern element.

Since the type domains are needed for each of the members of an instruction

sequence, the cross product is actually the cross product of type domain sequences. Since

type domains tend to be small (since target machines are only type orthogonal for small

sets of types), the cross product is not unmanageably large. Type-factoring was added to

the prototype late, and this was a convenient representation for the constraints on types.

If I bad to implement type-factoring again, I would keep the bindings and domains of

types as separate attributes.

5.6.6. Axioms of Tree Operators

The target machine description consists of trees in a single static form. The

distinguishing operators of these trees have meaning only to the description writer. The

idiom discoverer imposes no semantics on these operators. Often, however, these

Section 5.6.6 Axioms of Tree Operators

69

operators have algebraic properties (e.g., commutativity) that could be exploited to

achieve covers. Properties of these operators are part of the target machine description,

and as such they are the responsibility of the description writer. Clearly the idiom

discoverer must provide a mechanism for specifying properties or operators.

The prototype idiom discoverer allows the description writer to· designate a very

limited form of tree transformation. The description writer can indicate, for any

operator, an operator that is equivalent when the subtrees of the original operator are

reversed. For example, the reverse operator for '+' (representing addition) is '+', the

reverse operator for '<'(less than) is'>' (greater than), de. This mechanism is sufficient

to indicate commutativity, a useful tree axiom for achieving matches. When a pattern

tree rooted with a reversible operator is matched, the idiom discoverer also constructs the

reversed tree and attempts to match that tree.

This method of specifying axioms is unsatisfactory. The main failing of this method

Is that the idiom discoverer provides a very limited tree transformation system that

cannot be extended by the description writer. That is, this method is both a mechanism

(tree transformation) and a policy (only reversing operators). What is needed is a

separation of the mechanism from the policy. A better mechanism for letting the

description writer specify axioms is for the idiom discoverer to call tree transformation

routines written by the description writer. A tree transformation routine could be

associated with any operator. A tree transformation routine would be passed the pattern

tree each time the designated operator was being matched and would return a list of trees,

each of which would be matched in place of the original tree. Axiomatic transformation

or description trees thus becomes part of the target machine description and part or the

responsibility of the description writer. For example, the description writer could include

machine-specific axioms, such as changing additions of negative quantities to subtractions,

etc. The idiom discoverer could include a library of simple tree transformations that the

description writer could use or augment. A change to this style of axiomatic

transformation is planned for the near future or the idiom discoverer.

Allowing the description writer to specify axioms is a clean solution to the tree

transformation problem, particularly from the point of view of the idiom discoverer. This

solution is not without its drawbacks, however. If the tree transformations are expensive

to compute, or generate many candidate trees to be matched, the time required for

analyzing a target machine may be adversely affected. I assume such direct feedback will

be a sufficient constraint on overzealous description writers. For example, the idiom

discoverer is probably not the place to search for identity transformations on operators

(additions of zero, etc.). Instead, identity operations should be removed by machine

independent transformations before code is generated.

Axioms of Tree Operators Section 5.6.6

70

5.7. Addressing Mode Sid&-Eft'ect Idiom DiscoverJ

In addition to the idiom transformations discussed above to decompose one

instruction sequence into another, the idiom discoverer also discovers idioms that

traD.!form an in~truction sequence into an addressing mode side-effect. First, addressing

modes are classified to determine which, if any, have side-effects. Next, addressing modes

are compared to find equivalences among their references. Finally, the decomposition

algorithm is used to find instruction sequences that cover addressing mode side-effects.

Separating addressing modes into those addressing modes with side-effects and those

modes without side-effects is easy, since the addressing mode descriptions explicitly include

descriptions of any side-effects. Addressing mode side-effects are distinguished in the

descriptions as either pre-effects, i.e., taking place before reference to the operand, or

post-effects, i.e., taking place after reference to the operand. Pre-effects can be used to

replace iD.5truction sequences preceding an operand; post-effects can be used to replace

instruction sequences following an operand. Two pieces of information from the machine

description are needed to replace an instruction sequence with an addressing mode side

effect. The idiom applier needs to know, first, which addressing modes without side-effects

can be replaced by the addressing mode with side-effects and continue to reference the

same object; and second, what instruction sequences cover the side-effect.

The idiom discoverer determines, for each addressing mode with side-effects, which

addressing modes without side-effects reference the same object, given the same operand

parameters, e.g., type, offset, base register, and index register. Since each addressing

mode may access either the effective address or contents of its operand, two lists are

derived for each addressing mode with side-effects: one list for each possible access to the

operand. The comparison of addressing modes takes time proportional to s Xp, where s

and p are the sizes of the description trees for addressing modes with and without side

effects. The lists of equivalences are recorded as attributes of each addressing mode.

Instruction sequences that cover the side-effect of an addressing mode are determined

by the same covering algorithm used for discovering idioms of iD.!tructions. The tree

describing the side-effect of an addressing mode is made the subject in a match against an

initially empty pattern instruction sequence. This match is passed to the tree covering

routine, which returns a list of covers. The time required to find covering sequences is,

again, polynomial in the number of instructions on the target machine, with the degree of

the polynomial varying with the length of the covering sequences, i.e., the complexity of

the side-effect. The addressing mode and the instruction sequences covering the side-effect

of that addressing mode are recorded in a table for use by the idiom applier.

Section 5.7 Addressing Mode Sid&-Eft'ect Idiom Discovery

71

5.8. Artifacts of My Implementation

5.8.1. Trees versus Instruction Sequences

In the discussion of decomposition above, it may appear that both the instruction

sequence and parts of the trees representing those instructions exist in the cover (or.

match) simultaneously. In fact, in my implementation only the tree or the instruction

sequence is needed at any one time, and so instruction sequences and trees are variants of

a data structure rather than members of a more general structure. If I had to do this

work again, I would include them both in the structure and selectively ignore one or the

other when I didn't need it.

5.8.2. Allowing Sid&Efl'ects on Addressing Modes

Addressing modes with side-effects are disallowed during decomposition and added to

operand attributes after decomposition is complete. Side-effects are disallowed because

the operand matching routines cannot constrain the rest of the decomposition algorithm

to account for the side-effects of operands. In addition, the data flow information required

is not gathered by the prototype idiom discoverer. Part of the problem is that my

machine descriptions do not include operand evaluation order. Different architectures

may evaluate addressing modes and their side-effects in different orders, e.g., in parallel, or

sequentially either left-to-right or right-to-left. The solution outlined below is

conservative, and works with either parallel or sequential left-to-right evaluation orders.

In practice, our Graham-Gianville-Henry code generator rarely uses addressing mode side

effects. However, the idiom discoverer does identify opportunities to fold instructions into

addressing modes, so the idiom applier might construct addressing modes with side-effects.

At first glance, it might appear that side-effects of operand addressing modes in a

subject could extend a pattern instruction sequence by covering larger patterns. Instead, I

chose to have the idiom discoverer find covered sequences for side-effects once for each

side-effect, rather than once each time the side-effect might appear as an addressing mode

in a subject. As a consequence, the idiom applier folds instructions into side-effects as a

separate pass before applying other transformations.

The output of the covering routine is a list of covers. In these covers, each operand

is attributed with a list of addressing modes. These lists are originally constructed from

the lists of addressing modes in the addressing mode class of the operand. Addressing

mode attributes are restricted, before matching, to only those modes without side-effects.

Addressing mode attributes may be further restricted during matching, e.g., to the

intersection with some other addressing mode attribute during binding, or to a particular

addressing mode during set idiom discovery. After decomposition, side-effect addressing

Allowing Sid&Efl'ects on Addressing Modes Section 5.8.2

72

modes are added to addressing mode attributes in a very conservative fashion, discussed

below.

A first observation is that a side-effect addressing mode can be added to the

addressing mode attribute of an operand only if the address mode class of the operand

includes that addressing mode. The second observation is that if a side-effect is added to

the operand of a pattern, that side-effect must also be added to an operand of the subject.

A third observation is that a side-effect may change the effective address to which the

operand refers. For this last reason, pre-effects are added only to the first operand of an

instruction sequence, and post-effects are added only to the last operand of an instruction

sequence. Combining these observations leads to the conclusion that the first operand of a

pattern can have ~ pre-effect only if that operand is bound to the first operand of the

subject, and the last operand of a pattern can have a post-effect only if that operand is

bound to the last operand of the subject. For example, it is acceptable to transform:

add3 srcl,src2,dest ; deat := src2 + ard

into:

add3 -(srcl),src2,dest ; deat := arc2 + {ard := ard- 1)

(with the '-(srcl)' indicating a. pre-effect on 'srcl '), since any correspondence between the

operand referred to by 'src2' and 'dest' (and between 'src2' and 'srcl ', for that matter)

will be maintained. In contrastf the transformation to:

add3 srcl,-(src2),dest ; deat := {arc2 := arc2- 1) + arc1

is disallowed since the side-effect on 'src2' may alter a. component common to the 'srcl'

and 'dest' operands in the original instruction. Consider the cover:

add2 src,dst • add3 dst,sre,dst

(with bindings indicated by identical operand names) and a potential transformation to

allow side-effects on operands into:

a.dd2 -(src:),dst .,. add3 dst, -(src),dst

This transformation is disallowed since the side-effect of '-(src)' may change a. component

of 1dst' such that with sequential evaluation of operands the two 'dst's of the add3 yield

different operands.

If the only bindings on a subject and pattern operand are the binding necessary for

allowing a side-effect, the side-effect can be allowed "in place". That is, the addressing

mode attributes of the operands are augmented to include the addressing mode with the

side-effect. If in addition to the binding necessary for allowing the side-effect, either the

subject or pattern operand is bound to another operand, the side-effect must be added to

the operands in a. copy of the original cover to separate the addressing modes of the

Section 5.8.2 Allowing Side-Eff'ecta on Addressing Modes

73

operands from the binding. The original cover is left untouched, representing the cover in

the absence of any side-effect addressing modes. In the copy the addressing modes of the

first (or last) operands are restricted to the addressing mode with the side-effect, and other

operands bound to those two operands are restricted to addressing modes that reference

the same object but without any side-effects. All the bound operands continue to share

other operand attributes (e.g., offset, base register, index register), but not addressing

modes. The correspondence of addressing modes is thus made explicit in the operand

attributes. Thus, to extend the previous example, using addressing modes from the VAX-ll

(specifically, '(dst)', which refers to the object pointed to by 'dst', and '(dst)+', which

references the same object, but then increments 'dst'), the idiom discoverer may copy the

general cover:

add2 src,dst ~ add3 dst,src ,dst

with multiple addressing modes possible for 'dst', and restrict it to:

add2 src,(dst)+ ~ add3 (dst),src,(dst)+

with '(dst)' and '(dst)+' representing specific addressing modes for those operands.

5.9. Experience with Idiom Discovery

The prototype idiom discoverer runs acceptably fast for use in a phase constructor.

The VAX-11 description takes somewhat over 2 cpu hours (on a VAX-11/750) for

decomposition. The prototype idiom discoverer is written in LISP, in a style chosen for

clarity and debugging, rather than speed, so it is likely that a different implementation

could be faster. 1273 idioms are discovered from the VAX-11 description. The number of

partial matches found during idiom discovery is also of interest. When decomposing the

instructions from the VAX-11, 111 partial matches of lengt.h 0 were extended to 53

complete matches and 112 partial matches of length 1. These partial matches were

extended to 290 complete matches and 27 partial matches of length 2. The partial

matches of length 2 were extended to 138 complete matches of length 3. Note that there

are many fewer partial matches of length 0 than instruction descriptions (238). Idiom

discovery does not consider decomposing unique instructions, so those instructions do not

appear in the partial matches of length 0. ·Note also that many fewer complete matches

(481) are formed than idioms are discovered. The increase is due to the distribution of

types into complete matches as the matches are recorded as idioms.

Similar results are found for the MC68000. Decomposition of the MC68000 description

requires somewhat under 4 cpu hours (also on a VAX-11/750) to discover 503 idioms. 177

partial matches of length 0 are extended to 50 complete matches and 306 partial matches

of length 1. These partial matches are extended .to 376 complete matches and 2 partial

Experience with Idiom Discovery Section 5.9

matches oC length 2. The partial matches of length 2 are extended to 6 complete matches

. or length 3.

Section 5.9 Experience with Idiom Discovery

75

CHAPTER 8

An Implementation of Idiom Applieation

The previous chapter describes a system for automating the discovery or machine

specific improvements for compiled code. This chapter presents one proposal for applying

those improvements: a separate phase of a retargetable compiler that transforms

assembler source code. \Vhat is discussed below is a simple pattern matching and

replacement system. The idiom applier identifies instances of idiom patterns in the input

assembler source code. This identification is partly syntactic, for example, comparing

instruction names, and partly semantic, for example, checking restrictions on operand

attributes. For each identified pattern the idiom applier instantiates the idiom subject

using attribute values from the pattern. The attributed subject then replaces the pattern,

and the idiom applier continues searching for applicable patterns. The purpose of the

prototype idiom applier described here is to verify that the information produced by the

idiom discoverer is sufficient to retarget an idiom applier. Little or no attention was given

to building a fast idiom applier.

The main advantages of usmg a separate compiler phase to perform code

improvement are that a separate phase is easier to write, test, and evaluate. A

disadvantage or a separate phase is that there is no feedback from the idiom applier to the

code generator. In practice, the idiom discoverer is constrained to identify only idioms for

which feedback is unimportant. If the idiom discoverer identifies tree substitution idioms,

for example, the idiom applier would have to be able to return resources to the resource

manager, e.g., the compiler temporary variable holding the value of the substituted

expression. In fact the idiom applier could benefit from integration with the code

generator. For example, idioms may be predicated on data flow context. Therefore the

idiom applier must determine the data flow context during pattern matching. If an earlier

compiler phase develops data flow information, that information could be used by the

idiom applier. As a separate phase, the prototype idiom applier must compute data flow

information from summary data flow equations for instructions as that information is

needed.

An alternative use or the results or idiom discovery would be an integrated machine

specific code improver that worked in parallel with code generation and resource

allocation. For example, the idioms could be used to generate predicates and functions for

An Implementation of Idiom Application Chapter 6

78

an attribute influenced parsing code generator. In this way, idioms (e.g., improved code

sequences) would be selected directly by the code generator, as opposed to the current

scheme in which generated code is transformed after code selection. An advantage of such

integration is that idioms affecting resource allocation (e.g., tree substitutions idioms,

which free registers, and available expression idioms, which reuse registers) could be

identified and resources requested from or returned to the resource manager. The idiom

discoverer would have to be extended to discover idioms exploiting tree substitutions and

available expressions. Such a proposal is not unreasonable, but is left for future research.

8.1. Information Required for Idiom Application

The idiom applier does no analysis of the target machine. All machine-specific

information needed for idiom application is supplied by the idiom discoverer. In

particular, no description of the semantics of instructions or addressing modes is needed

by the idiom applier. Any useful information about the semantics of instructions or

addressing modes has been incorporated in the discovered subject and pattern pairs that

are the major input to the idiom applier. (Recall, also, that the idiom discoverer

determines equivalence of instruction sequences with no knowledge about the semantics of

most operations performed by instructions.) The idiom applier also uses tables of

summary information about instructions and addressing modes.

Space and time costs are not incorporated into the idioms, but are supplied by

auxiliary tables. Costs can not be associated with idioms since idioms may specify

correspondence of attribute values, rather than particular attribute values. Thus an

operand of an idiom pattern may be restricted to a set of addressing modes, but the

particular addressing mode found in the program during idiom application will determine

the cost of the operand, and thus the benefit that can be derived from applying the idiom.

Consider, for example, the idiom on the VAX-11:

moval offset(reg),reg • addl2 offset,reg

which, on the left, uses a "move address" instruction and "offset from base register"

addressing mode arithmetic to add an offset to a register, and, on the right, uses an

explicit 2-operand addition instruction. If the offset is a small integer (in the range

[0, ... ,63)), the addl2 instruction saves 1 byte over the moval instruction. If the offset is

not a small integer, the moval instruction saves up to 3 bytes over the addl2 instruction.

Therefore, idioms are discovered without regard for costs. The idiom applier calculates

costs from tables of instruction and addressing mode costs as idiom instances are found.

The idiom applier must determine the data flow context for instructions in the input

source program, since idioms are predicated on particular data flow contexts. The idiom

Section 8.1 Information Required for Idiom Application

77

discoverer derives summary data flow information during its analysis of the target

machine. Summary information for each instruction gives t~ee sets of processor state

variables, describing how the values of those variables are affected by the execution of the

instruction. The sets specify which values are used before being defined by the

instruction, which values are defined before being used by the instruction, and which

values are killed by the instruction. This summary information is used by the idiom

applier to construct data flow contexts without any additional description of the semantics

or instructions.

Entire programs need not be examined all at once. The idiom applier is concerned

only with a few instructions and their data flow context when identifying any given idiom.

Computing correct data flow information would require examining the entire program. If

simplifying assumptions can be made at the boundaries between basic blocks, the idiom

applier need only examine the program one basic block at a time. These assumptions

about data flow between basic blocks can be conservative, i.e., all processor state variables

are live at block boundaries, or optimistic, i.e., all processor state variables are dead at

block boundaries. A third alternative is to have the compiler writer specify some set of

processor state variables that are live across basic block boundaries.

The idiom applier needs a machine-independent technique to identify basic block

boundaries. Boundaries can be identified given a list of instructions that transfer program

control, thus ending the basic block in which they appear. Such a list is derived by the

idiom discoverer from the instruction descriptions (see Section 5.4).

The idiom discoverer identifies addressing modes that have side-effects. For each

such addressing mode, the idiom discoverer constructs a list of attributed instructions that

perform the same computation as the side-effect, and a list of addressing modes that

reference the same operand without the side-effect. Folding arithmetic into addressing

mode side-effects involves changing the address modes of instruction operands. While the

idiom applier can assume that it is only given legal addressing modes for instruction

operands in the input program, to change operand addressing modes, it must be given a

table of valid addressing mode classes for each instruction operand, and a table of

addressing modes in each class.

6.2. An Implementation or an Idiom Applier

The prototype idiom applier is retargeted by loading tables of idioms, costs,

summary data flow information, and instruction and addressing modes classifications.

(Unfortunately, in the prototype, the compiler writer also has to supply routines to read

and print the assembler source code for the target machine. The construction of these

routines is automated by the use of standard scanner and parser generators, but in

An Implementation or an Idiom Applier Section 6.2

another implementation of the idiom applier these routines should be derived from format

information in the instruction and addressing mode descriptions.)

Instructions are read from a program until the end of basic block is found. The

idiom applier exhausts all possibilities for pattern matching and replacement idioms in a

single pass over the program, once data flow information is available. The pattern

matching pass can be either forward or backward. Since data flow information is

computed by a backward pass over each basic block, it is possible to combine these two

operations into a single backward pass. In contrast, applying addressing mode side-effect

idioms may require examination of the instruction stream multiple times, and so is

implemented as a separate phase of the idiom applier. Finally, the transformed basic

block is written out. The transformation of basic blocks continues until the entire

program has been examined.

6.2.1. Pattern Matching and Replacement

Pattern matching and replacement of idioms consists of identifying instances of

idiom patterns, verifying operand and data flow constraints, and replacing the pattern

with an appropriately constrained subject from the idiom. The object of idiom

application is to minimize the cost of the code for a basic block.

Matching and replacement of idioms is exhaustive in a single pass over the

instructions of a basic block. The proof of this claim relies on the thoroughness of idiom

discovery and the application of the most beneficial idiom at each point. There are three

sources of counterexamples to this claim: that the replacement subject is a pattern of

another idiom all by itself, that the replacement subject is part of another idiom pattern

whe'n combined with instructions preceding the subject, or that the replacement subject is

part of another idiom pattern when combined with instructions following the subject.

The first ease, in which the subject is itself another pattern, is ruled out by choosing the

most beneficial idiom to apply at each transformation. Clearly the subject is an idiom for

the pattern it replaces. If the subject is also a pattern for a second idiom, then the

subject of that second idiom is a replacement for the original pattern. The idiom

consisting of the original pattern and the second subject will have been considered by the

idiom discoverer. That idiom cannot be more beneficial than the chosen idiom, since the

most beneficial idiom is chosen at each transformation. A similar argument holds for a

transformation placing a subject where it can be extended, in either direction, into a

pattern of a second idiom. If the subject can be extended into a longer pattern, that

extension will have been considered by the idiom discoverer. The longer idiom cannot be

more beneficial than the chosen idiom, or it would have been chosen by the idiom applier.

Therefore a single pass over the instructions exhausts all opportunities to apply idioms.

Section 6.2.1 Pattern Matching and Replacement

79

The idioms applied by a forward pass may differ from the idioms applied by a backward

pass.

Idiom application depends on having data flow context information available for the

evaluation of data flow predicates. Data flow context consists of live and dead variable

sets. These sets are computed in a single backward pass from data flow summary

information for instructions and the assumptions about data flow between basic blocks.

The data flow context following an instruction is not needed until idiom application

examines that instruction. Therefore it seems natural to combine data flow computation

with pattern matching and replacement.

6.2.2. Identifying Patterns and Forming Replacements

The idiom applier begins transforming an instruction sequence by computing the

data flow context of that sequence. The initial instructions of the sequence are examined

to select possible idioms based only on the syntax of the instructions, i.e., the names of

the instructions. Any of these idioms may have data flow predicates that make the idiom

inapplicable in the current data flow context. All variables that must be dead to apply

the idiom must be faint (i.e., their values are unused) in the program. Not all variables

that are preserved by the idiom need be live in the program. Next, the attributes of

operands to the instructions in the program are compared against the restrictions on those

attributes in the idioms. For example, if the base register of an operand is restricted to a

particular register, that register must appear as the base register of that operand in the

program. Idioms may also note required correspondence between operand attributes. The

correspondence between the actual operands of the instruction sequence are checked.

Idioms whose patterns satisfy all these conditions are applicable to the instruction

sequence. Note that more than one idiom may be applicable at any point in a program,

and that the patterns of the applicable idioms need not match the same num her of

instructions.

Operand attributes of an idiom subject may be specified as correspondences to

attributes of the idiom pattern. Attributes of the actual program operands are copied

into the corresponding attributes of each subject operand. This last step annotates the

subject as a replacement sequence for the instructions from the program. Finally, the

costs of the attributed subjects and patterns are computed.

The idiom providing the most benefit is selected. The annotated subject of this

idiom replaces the instructions that match the pattern. The current implementation

computes both space and time costs, and prefers saving time over space. A better way to

handle cost information is to have the compiler writer supply routines to compute and

compare costs. These routines could incorporate biases or tradeoffs with which the

Identifying Patterns and Forming Replacements Section 6.2.2

80

compiler writer wishes to experiment.

The idiom applier computes the data flow context for the instructions preceding the

replacement from the following context of the replacement and the summary information

for the instructions of the replacement. If no pattern is applicable at a given instruction,

the data flow context preceding that instruction is computed from the following context

and the summary information for the instruction.

8.2.3. Addressing Mode Side-Effect Idioms

Folding arithmetic into pre- and post-effects of addressing modes is performed by a

two additional passes over each basic block. The transformations made by these passes ·

are different from the pattern match and replacement strategy described for instruction

idioms. Instruction idioms replace contiguous instructions; address mode side-effect idioms

remove instructions and relocate their computations into addressing modes. The pre- and

post-effect passes may examine the instructions of a basic block more than once. In the

worst case, each instruction that might be subsumed causes the examination of every

other instruction in the basic block.

Side-effect idiom application identifies instances of instructions that can be subsumed

into addressing mode side-effects and instances of addressing modes to which the side

effects can be added. Identification of instructions that may be subsumed is comparable

to the pattern matching phase of instruction idiom application. Instruction sequences

from the program are matched against the table of instruction sequences that can be

subsumed into addressing mode side-effects. This matching involves checking restrictions

on attributes, including data flow context attributes. Attribute values of the idiom are

qualified by the specific values found in the program instructions. A search through the

program is begun for an operand to whose addressing mode the equivalent side-effect can

be added. Relocating a computation to an addressing mode assumes left-to-right operand

evaluation, in the current implementation. If the idiom subsumes instructions into a pre

effect, the search is forward through the operands of following instructions. I£ the idiom

subsumes instructions into a post-effect, the search is backwards through the operands of

preceding instructions. The search ends successfully if an operand is found that can be

changed to perform the side-effect. The search is abandoned if an operand is encountered

that uses any parameter of the instruction being replaced (e.g., a base or index register

used by operands of the subsumed instruction). The search must also be abandoned if an

instruction is encountered that uses such a parameter implicitly, e.g., as a stack

manipulation instruction uses a stack pointer register. This last condition is verified by

examining the summary data Row information for the instruction. The search is

unsuccessful if the operand found to perform the side-effect can not be changed due to

Section 6.2.3 Addressing Mode Side-Effect Idioms

81

restrictions on the addressing mode class of that operand.

If the search identifies an operand that can be changed to perform the side-effect, the

idiom applier makes that change and deletes the original instruction.

6.3. Interactions of Idiom Application Phases

Since idioms for instructions are discovered without considering addressing mode

side-effect idioms, applying side-effect idioms to a program may create additional

opportunities for applying instruction idioms. (The converse is not true, since the search

for instruction sequences covered by side-effects discovers all idioms for those instruction

sequences") Therefore, it seems reasonable to apply side-effect idioms before instruction

idioms. An unfortunate artifact of my prototype idiom discoverer is that side-effects on

operands of instruction idioms patterns are disallowed, except for special cases, due to the

inability to prohibit certain operand correspondences. Therefore is also seems reasonable

to apply instruction idioms before side-effect idioms. The traditional solution to this

"phase ordering" problem is to perform alternate phases until no more idioms are

applicable [Wulf et al. 75). It would appear that a better description of the semantics of

operand evaluation, and a stronger language for predicates, e.g., prohibited

correspondences between operands, would allow these two phases to be integrated. Note

however that instruction idiom application is a linear pass over the instructions of a basic

block, examining at most the number of instructions in the longest pattern at each

instruction. The number of instructions examined by each attempt to apply a side-effect

idiom is based on the particular attribute values found in the program being transformed.

For example, if idioms were applied during code generation, a basic block buffering

mechanism would be necessary to apply side-effect idioms. Such a buffering mechanism is

visible in Ganapathi's code generators [Ganapathi 80]. More study is needed of the effects

and alternative implementations of idiom application.

6.4. Experience with Idiom Application

In practice, my prototype idiom applier runs just fast enough to verify the ideas

presented in this dissertation. The idiom applier is written in LISP, in a style chosen for

ease of debugging rather than speed of execution. The idiom applier spends much more

than half of its time reading instructions, constructing the internal representations for

them, and writing instructions back out. Instruction idiom application is 7 pages of code.

Each of pre- and post-effect idiom application is 5 pages of code, and either pass could be

parameterized to perform both passes. The LISP implementation processes 5 instructions

per second on a VAX-11/750. Davidson and Fraser quote speeds of over 200 instructions per

second for a similar table-driven idiom applier. An alternative to table-driven idiom

Experience with Idiom Application Section 6.-i

82

application represents idioms by compiled routines to check applicability and perform the

transrormations [Lamb 81). Another alternative is the integration or idiom application

into the .code generation phase. The integrated code generator and idiom applier has the

advantage or allowing reedback rrom idiom applier to the resource manager and code

selector.

Section 6.-' Experience with Idiom Application

83

CHAPTER "/

Summary and Conclusions

The thesis of this dissertation is that target machine descriptions can be analyzed at

compiler construction time to discover transformations yielding improved code from a

retargetable compiler. Target machine analysis identifies equivalences between instruction

sequences. Once two instruction sequences are shown to compute the same results,

instances of the more expensive instruction sequence may be replaced by the cheaper

instruction sequence. The analysis of the target machine is called idiom discoverfl. The

replacement of inefficient code sequences is called idiom application.

The idiom discoverer is run once for each target machine at compiler construction

time, leaving only program-dependent predicates to be verified during compilation of any

particular program. Therefore, more time may be devoted to target machine analysis

than would be acceptable during compilation.

Two sets of predicates must be satisfied to identify instruction sequence equivalences:

machine-dependent predicates based on the effects of the instructions, and program

dependent predicates based on the operands and data flow contexts found in particular

programs. Machine-dependent predicates are tested by examining a description of the

target machine instructions and addressing modes. In the proposed idiom discoverer,

most of the required testing is syntactic matching. This matching is augmented by a very

small set of semantic tests that identify program-dependencies from certain syntactic

mismatches. Program-dependent predicates include tests for particular values of operand

attributes, or tests of correspondence between two (or more) operands. In addition,

program-dependent predicates may test data flow context conditions, e.g., that the values

of particular variables are dead.

The traditional view of program dependencies is that they are conditions that must

hold in a particular program to assure an equivalence between instruction sequences. The

view taken in this dissertation is that program dependencies may be manipulated by the

idiom discoverer to achieve an equivalence. That is, the idiom discoverer does not so

much discover equivalences between instruction sequences as attempt to constrain

instruction sequences to perform equivalent computations.

Summary and Conclusions Chapter 7

84

This dissertation describes a new technique for selecting instruction sequences to

compare during idiom discovery. Previous work in automated improvement of generated

code [Davidson and Fraser 80)[Kessler 84) relies on compo8ition of instructions to form

sequences. Instructions are composed, either by substituting definitions for uses or by

concatenation of effects, and the target architecture is searched for a better

implementation of the combined effects of the sequence. Composition takes time

polynomial in the number of instructions composed, in both the best and worst cases.

Composition is limited, by practical considerations, to composing pairs of instructions,

that is, discovering instructions that are equivalent to pairs of instructions. In contrast,

this dissertation proposes decompo8itit?n _to discover idioms. The individual effects of

complex instructions are matched against simpler instructions until the complex

instruction is decomposed into a sequence of simple instructions. Decomposition also takes

time polynomial in the length of the decomposed instruction sequence in the worst case,

but takes much less time in the average case. Decomposition is not limited to discovering

equivalence to pairs of instructions; it may discover that an instruction is equivalent to a

longer sequence of instructions.

A prototype idiom discoverer has been implemented that acts as a phase constructor

for a retarget able idiom applier. The prototype idiom discoverer examines a target

machine description for instances of a small interesting set of idioms and produces tables

that retarget a transformer of assembler source code. The idiom discoverer has been used

to replace analyses formerly done by the compiler writer and encoded in hand-written

routines in an otherwise automatically retargeted code generator [Henry 84]. The idiom

applier performs the same transformations as the hand-written routines. Further

experimentation should shift more of the target machine analysis from the compiler writer

to the idiom discoverer. Such a shift should clarify the uses of machine-dependent

information in retargetable compilers.

Critique of the System

The prototype system is not without its problems. The most serious deficiency is

that the idiom discoverer finds instances of idioms for which it was designed to search,

and not others. New classes of idioms can be identified only by adding code to the idiom

discoverer. (Once added, however, those idioms will be identified in each machine

description analyzed.) On different classes of architectures, e.g., stack machines, the

prototype idiom discoverer will not discover many idioms, since it was designed for

multiple-operand architectures.

The machine descriptions used for idiom discovery have proven inadequate in several

respects. There is no specification of the order of evaluation of operands, and thus no

Critique of the System

85

ordering on side-effects of those evaluations. Without this specification, the allowing of

side-effects on operands to idioms is awkward, and the folding of instructions into

addressing mode arithmetic or side-effects is extremely limited. Many interesting cases

simply can not be handled by the idiom applier without the ordering information.

The program-dependent predicates manipulated by the idiom discoverer and

evaluated by the idiom applier are all positive; that is, they are sets to which operand

attributes must belong, or correspondences that must hold between operands. In many

cases it would be useful to have predicates specifying negative set membership and

negative correspondence between operands. I do not foresee any problems with adding

negative predicates, but others trying to build on this research should be reminded of the

utility of such specifications.

At several points during this research it appeared that adding temporaries to

instruction descriptions might simplify certain aspects of machine description.

Temporaries could be treated as additional operands by the idiom discoverer algorithms

(that is, they would be subject to constraints and bindings). The idiom applier would

then have to verify that the program operands corresponding to instruction temporaries of

an idiom subject were, in fact, single use compiler temporaries, since the corresponding

instruction temporaries would not appear in the transformed code. It it still unclear to

me that adding this mechanism to the idiom discoverer is worth the additional complexity

it would require in the idiom applier.

A relatively minor inconvenience with the machine descriptions is that they do not

specify the syntax for the instructions and operands. The reading and writing of

assembler source in the idiom applier is handled by an auxiliary description of the syntax

for the assembler source.

The prototype idiom applier runs entirely too slowly for production use. Davidson

and Fraser cite speeds of 200 instructions per second through their similar transformation

system (Davidson and Fraser 84), and there is no reason to suspect my idiom applier must

be slower than theirs. Furthermore, the code produced by Davidson and Fraser's code

generator is naive, and much of it needs to be transformed to be competitive with

conventional code generators. In contrast, better code generation techniques make idiom

application truly optional, thus restricting the time spent in idiom application to those

programs that need it.

Future Research

It seems reasonable to use the idiom discoverer interactively, allowing the compiler

writer to suggest subjects for decomposition. Such usage would allow experimentation in

two orthogonal directions. The compiler writer could try decompositions of subject

Future Research

88

instruction sequences longer than those automatically considered by the idiom discoverer.

Alternatively, the success or failure of a decomposition could be used by the compiler

writer to debug an instruction description, or, by a machine architect, to change an

instruction set design, Only minor additions to the present idiom discoverer are needed to

allow interactive specification of subjects and to provide reasonable feedback.

The technique of transforming assembler source is limiting, since it is applied after

code generation and register allocation. Several classes of idioms are deliberately avoided

in the idiom discoverer since they would change the resource demands of programs.

There is nothing inherently difficult about discovering these excluded idioms. A more

integrated system could have the idiom applier running as a co-routine with code

generation and register allocation to allow some feedback on resource usage. A completely

different kind of integration would incorporate the results of idiom discovery directly into

the code generator, say, as attribute predicates and functions. More research is needed

into appropriate uses of the analysis performed by an idiom discoverer.

The allocation of machine-specific transformations to various phases of retargetable

compilers is still an open problem" As techniques are developed to automate the analysis

of machine descriptions, it will be possible to argue that certain transformation are most

appropriately performed by particular compiler phases. This dissertation is one attempt

to automate sue h target machine analysis.

Future Research

87

Bibliography

[Aho and Johnson 76]

A. V. Aho and S. C. Johnson, "Optimal Code Generation for Expression Trees",

Journal of the ACM 29, 3 (July 1976), 488-501.

[Allen and Cocke 76)

F. E. Allen and J. Cocke, "A Program Data Flow Analysis Procedure",

CommunicationB of the ACM 19, 3 (March 1976), 137-147.

[Backus et al. 57)

J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick, R. A.

Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A. Hughes and R. Nutt, "The

FORTRAN Coding System", ProceedingB of the WeBtern Joint Computer

Conference, Los Angeles, CA, February 1957, 188-198.

[Bell and Newell 71)

C. G. Bell and A. Newell, Computer StructureB: ReadingB and ExampleB, McGraw

Hill, New York, 1971.

[Cattell 78]

R. G. Cattell, "Formalization and Automatic Derivation of Code Generators", PhD

Dissertation, Technical Report 78-115, Computer Science Department, Carnegie

Mellon University, Pittsburgh, PA, 1978.

(Cocke and Schwartz 70]

J. Cocke and J. T. Schwartz, Programming LanguageB and Their CompilerB,

Courant Institute of Mathemtical Sciences, New York University, April 1970.

[Crawford 82]

J. Crawford, "Engineering a Production Code Generator", ProceedingB of the

SIGPLAN 198f SffmpoBium on Compiler ConBtruction, SIGPLAN NoticeB 17, 6

(June 1982), 205-215.

Bibliography

88

[Davidson and Fraser 80}

J. W. Davidson and C. W. Fraser, "The Design and Application of a Retargetable

Peephole Optimizer", ACM Transactions on Programming Languages and Svstems

S, 2 (April1980), 191-202.

[Davidson 81)

J. W. Davidson, "Simplifying Code Generation Through Peephole Optimization",

PhD Dissertation, Technical Report #81-19, Department of Computer Science,

University of Arizona, December 1981.

(Davidson and Fraser 84)

J. W. Davidson and C. W. Fraser, "Automatic Generation of Peephole

Optimizations", Proceedings of the SIGPLAN 198-l Svmposium on Compiler

Construction, SIGPLAN Notices 19, 6 (June 1984).

[Fraser 79)

C. W. Fraser, "A Compact Machine-Independent Peephole Optimizer", Conference

Record of the Sixth ACM Svmposium on Principles of Programming Languages,

San Antonio, TX, January 1979.

(Ganapathi 80]

M. Ganapathi, "Retargetable Code Generation and Optimization Using Attribute

Grammars", PhD Dissertation, Technical Report *406, Computer Science

Department, University of Wisconsin, Madison, WI, 1980.

[Giegerich 83)

R. Giegerich, "A Formal Framework for the Derivation of Machine-Specific

Optimizers", ACM Transactions on Programming Languages and Svstems 5, 3

(July 1983), 478-498.

(Glanville 77)

R. S. Glanville, "A Machine Independent Algorithm for Code Generation and Its Use

In Retargetable Compilers", PhD Dissertation, Technical Report 78-01, Electronics

Research Laboratory, EECS, University of California, Berkeley, Berkeley, CA,

December 1977.

[Glanville and Graham 78]

R. S. Glanville and S. L. Graham, "A New Method for Compiler Code Generation",

Conference Record of the Fifth ACM Svmposium on Principles of Programming

Languages, Tucson, AZ, January 1978, 509-514.

Bibliography

89

[Henry 84)

R. R. Henry, "Graham-Glanville Code Generators'', PhD Dissertation, Technical

Report 84/184, Computer Science Division, EECS, University o£ California, Berkeley,

Berkeley, CA, May 1984.

[Hoffmann and O'Donnell 82]

C. M. Hoffmann and M. J. O'Donnell, "Pattern Matching in Trees", Journal of the

ACM 29, 1 (January 1982), 68-95.

[Johnson 77)

S. C. Johnson, A Tour Through the Portable C Compiler, Bell Laboratories, Murray

Hill~ NJ, 1977.

[Kessler 81)

R. R. Kessler, "COG: An Architectural Description Driven Compiler Generator",

PhD Dissertation, University o£ Utah, 1981.

[Kessler 84)

R. R. Kessler, "Peep - An Architectural Description Driven Peephole Optimizer",

Proceedings of the SIGPLAN 198.4 SJ1mposium on Compiler Construction,

SIGPLAN Notices 19, 6 (June 1984), 106-llO.

[Knuth 68]

D. E. Knuth, "Semantics o£ context-free languages", Mathematics S11stems TheorJI

2, 2 (1968), 127-145.

[Lamb 81]

D. A. Lamb, "Construction o£ a Peephole Optimizer", Software-Practice &

Experience 11, 6 (June 1981), 639-647.

[Leverett 79]

B. Leverett, "Machine Independent Register Allocation in Optimizing Compilers",

PhD Dissertation, Computer Science Department, Carnegie-Mellon University,

Pittsburgh, PA, 1979.

[Leverett et al. 79]

B. Leverett, R. Cattell, S. Hobbs, J. Newcomer, A. Reiner, B. Schatz and W. Wul£,

"An Overview o£ the Production Quality Compiler Compiler Project", Technical

Report 79-105, Computer Science Department, Carnegie-Mellon University,

Pittsburgh, PA, February 1979.

Bibliography

90

[McKeeman 65)

W. M. McKeeman, "Peephole Optimization", Communication8 of the ACM 8, 7

{July 1965), 443-444.

[McKusick 84]

M. K. McKusick, "Register Allocation and Data Conversion in Machine Independent

Code Generators", PhD Dissertation, Computer Science Division, EECS, University

of California, Berkeley, Berkeley, CA, December 1984.

[Morgan and Rowe 82]

T. M. Morgan and L. A. Rowe, "Analyzing Exotic Instructions for a Retargetable

Code Generator", Proceeding8 of the SIGPLAN 1982 SvmpoBium on Compiler

ConBtruction, SIGPLAN Notice8 17, 6 (June 1982), 197-204.

[Motorola 82]

Motorola, MC68000 16 Bit Microproce88or UBer 18 Manual, 9rd Edition, Prentice

Hall, Englewood Cliffs, NJ, 1982.

[Ripken 77]

K. Ripken, "Formate Beschreibung von Maschinen, lmplementieurungen und

optimierender Maschinencodeerzeugung aus attributierten Programmgraphen", PhD

Dissertation, Teehnische Universitit Miinchen, Munich, West Germany, July 1977.

[Szymanski 78]

T. B. Szymanski, "Assembling Code for Machines with Span Dependent

Instructions", Communication8 of the ACM 21, 4 (1978), 300-308.

(Tanenbaum, van Staveren and Stevenson 82]

A. S. Tanenbaum, H. van Staveren and J. W. Steven.~on, "Using Peephole

Optimization on Intermediate Code", ACM TranBaction8 on Programming

Languagu and Sv8temB 4, 1 (January 1982), 21-36.

[Wagner and Fischer 74]

R. A. Wagner and M. J. Fischer, "The String-to-String Correction Problem'\

Journal of the ACM £1, 1 (January 1974), 168-173.

(Wulf et al. 75)

W. Wulf, R. Johnsson, C. Weinstock, S. Hobbs and C. Geschke, The DeBign of an

Optimizing Compiler, American Elsevier Computer Science Library, 1975.

Bibliography

..

Every gun that is made, every warship launched, every rocket fired signifies - in

the final sense - a theft from those who hunger and are not fed, those who are

cold and not clothed.
D. D. Eisenhower,
Peace in the World,
Speech to the American Society of Newspaper Editors,

Washington, D.C., April 16, 1953 .

Prepared by the author using the text processing tools vi, Bpell, awk, Bed, vlp,

m-l, bib, dtbl, deqn, and dtrolf with the -me macro package, coordinated by cBh

and make.

