
Process Control in a Distributed
Berkeley Unixt Environment

Ram6n C6,cere3

Computer Systems Research Group*
Computer Science Division

Department or Electrical Engineering and Computer Sciences

University or California at Berkeley

ABSTRACT

The Berkeley Unix operating system is evolving into a more distributed

computing environment. As such, applications written for it will increasingly

consist or programs that spawn several processes, processes which may reside on

more than one machine. A distributed system must provide facilities through

which the processes that are part or such distributed computations can be

controlled. There must be a way or terminating these processes, suspending their

execution, restarting them, and otherwise notifying them or asynchronous internal

and external events that require their attention. Unix signals, which can be

viewed as software interrupts, allow processes to be controlled in this way. In the

current implementation, however, their use is limited to processes within a single

host. There must also be available facilities for debugging-style process control,

such as inspecting and modifying a process's address space. Debugging-style

process control is currently provided by ptrace(), which is also very limited in the

context or distributed process control.

The process control scheme presented here allows processes to send each

other process control information through the Unix interprocess communication

facility. Processes acquire an endpoint for communication, or socket in Berkeley

Unix terminology, that is used to receive the control information Cor the process.

The use or a general message delivery system such as Unix interprocess

communication permits a set of process control mechanisms to act among any set

or processes, even when such processes reside on different machines.

t Unix is & tr&demulc or AT&T Bell L&bor&tories

; This work was sponsored by the DeCense Advuced Reseuch Projects Agency (DoD), ARPA Order No. 4031,

monitored by the N&va.l Electronics Systems Cornn'W1d under contrut No. N0003U-C-023S. The views ud

conclusions cont&ined in this document ue those or the &uthor ud should not be interpreted as representing

official policies, either expressed or implied, or the Defense Reseuch Projects Agency or of the U.S. Government.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1984 2. REPORT TYPE

3. DATES COVERED
 00-00-1984 to 00-00-1984

4. TITLE AND SUBTITLE
Process Control in a Distributed Berkeley Unix Environment

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Berkeley Unix operating system is evolving into a more distributed computing environment. As such,
applications written for it will increasingly consist of programs that spawn several processes, processes
which may reside on more than one machine. A distributed system must provide facilities through which
the processes that are part of such distributed computations can be controlled. There must be a way of
terminating these processes, suspending their execution, restarting them, and otherwise notifying them of
asynchronous internal and external events that require their attention. Unix signals, which can be viewed
as software interrupts, allow processes to be controlled in this way. In the current implementation,
however, their use is limited to processes within a single host. There must also be available facilities for
debugging-style process control, such as inspecting and modifying a process’s address space.
Debugging-style process control is currently provided by ptrace(), which is also very limited in the context
of distributed process control. The process control scheme presented here allows processes to send each
other process control information through the Unix interprocess communication facility. Processes acquire
an endpoint for communication, or socket in Berkeley Unix terminology, that is used to receive the control
information for the process. The use of a general message delivery system such as Unix interprocess
communication permits a set of process control mechanisms to act among any set of processes, even when
such processes reside on different machines.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

23

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Table of Contents

Introduction ... 2
Processes and Process Control in Unix .. 3

Unix Processes 3
Unix Signals .. 4
The Ptrace Facility 4

Process Control in a Distributed Environment - Previous Work 5
The Rexec Facility .. 5
Processes as Files .. 6

Process Control Through Unix Interprocess Communication 8
Interprocess Communication in Berkeley Unix 4.2BSD 8
Omnipresent Control Sockets ... 9

Functional Description ... 9
Initial Implementation ... 10
Evaluation .. 11

On-Demand Control Sockets - The Process Manager Approach 11
A Process Manager Implementation ... 12

Keeping Track of a User's Processes ... 13
Remote Signal Delivery Through Control Sockets .. 14
The Distributed Debugging Scenario .. 14
Implementation Details ... 16

Kernel Changes .. 16
Process Manager Code ... 16

Future Research ... 17
Conclusion .. , ... ,................................ 20
Acknowledgements ... 20
References .. 20

- 2-

0. Introduction

Modern multiprogramming operating systems rely on the notion of a P.!'Ocess to

separate distinct units of task execution existing within them. In such systems, certain

urgent events take place which force the interruption of normal process execution before

most processes can run to completion. Some of these events, such as page faults and

scheduling decisions, are taken care of by the operating system and do not involve the

process code directly. However, the necessity to notify a process of certain other

unexpected events requires that process control mechanisms be embedded into operating

systems. These process control mechanisms typically provide ways for a process to be

made aware of asynchronous events which can be internal or external to the process.

They allow for process execution to be halted, restarted, or permanently terminated.

Another type of process control available on most systems is that which supports

debugging activities. Here, the goal is to allow a user to supervise the progress of a

program executing in the context of a particular process state. Some of the actions

provided by debugging-style process control, namely starting and stopping a process, are

common to both styles of control. However, debugging support must also include the

ability to inspect and modify the address space of a process. This allows the debugging

agent to look into the status of the program in question, and to set breakpoints where

needed.

The steady evolution of computer systems towards distributed computing motivates

the search for extended process control facilities, ones that deal effectively with the new

distributed environment. Present systems are sorely lacking in such facilities, and new

ones must be developed to meet the demands of future systems.

In a distributed system single programs will often be composed of several

communicating processes, with these processes residing en different machines. Such

distributed programs constitute an important asset to the system because without them

the system could not take advantage of the distributed nature of its resources. Facilities

that can effectively control distributed programs would therefore be a very useful part of

a distributed system, both during the evolution of the system and later when application

programs that use the new environment are written.

This report focuses on ways through which the Berkeley Unix process control

facilities can be extended to a network of machines. Both general-purpose and

debugging-style process control mechanisms are considered. This is part of a wider effort

to provide an effective set of debugging tools for a distributed programming environment.

The scheme being offered allows processes to send each other process control

information through the Unix interprocess communication (IPC) facility. Each process

acquires an endpoint for communication, or socket in Berkeley Unix terminology, which is

used to receive the control information for the process.

In addition, the report will address the obvious security problems that arise under

such a scheme, since any process in the system could potentially exert control on any

other process unless appropriate precautions are taken.

Naming schemes are also a consideration. At present, processes are named by an

integer, or process id, which is unique within a host. However, this process id is not

guaranteed to be unique within a cluster of machines. Therefore, an appropriate method

of naming processes in a distributed environment must be agreed upon.

Section 1 provides the background for the ensuing discussion by describing the

existing processing environment and process control mechanisms of Berkeley Unix 4.2BSD.

In Section 2, some previous approaches to the problem of extending the Unix process

- 3-

control facilities to a distributed system are presented. Section 3 introduces the new

schemes, which use Berkeley Unix IPC to deliver process control information. This is

followed by Section 4, where the proposed approach to using Berkeley Unix- IPC for

controlling processes is described in detail. Finally, Section 5 makes some suggestions as

to what steps should be taken to further incorporate the process control scheme of Section

4 into Berkeley Unix.

1. Processes and Process Control in Unix

1.1. Unix Processes

A process is often informally defined as a program in execution. More specifically, a

process can be considered as a single thread of instruction execution in the context of a

well defined execution environment, or state. The concept of a process was used

extensively for the first time by the designers of the MUL TICs!DaleyGSJ system and,

independently, by the group that designed the THE!Dijkstra6SJ system. In Unix, processes

exist as the fundamental units of task execution.

Processes should not be equated to programs. A program is a static entity, w bile a

process is active and always changing. A program is a set of statements that describes

how execution should proceed, and as such can be thought or as part or the environment

of a process. On the other hand, with the help of the operating system, a program may

divide itself into two of more lines of control, each with its own distinct process state. In

this case, the program will be associated with more than one process and can be termed a

multiprocess program.

Unix programs can split up in this manner by issuing the system call fork{2)t. fork{}

creates a new process (the child) that is an exact copy of the calling process (the parent).

The two processes have identical initial states, including the code they will execute.

Because of this identity, there must be a way for each process to determine its

individuality, otherwise the forking mechanism would not be very useful. This is provided

by the value returned from the fork{} call. fork{} returns the unique process id of the

child to the parent process, and 0 to the child process.

Unix processes run in a very rich environment. In addition to closely related

processes in the process hierarchy, a process's state contains objects such as the files and

the sockets that it is presently reading or writing (sockets are endpoints for interprocess

communication; they will be described later). These open files and sockets are accessed

through a table of object descriptors that each process holds as part of its state. The first

three descriptors in this table are said to point to the standard input, standard output,

and standard error files, respectively.

Another important part of the environment of a process is the Unix kernel. The

kernel provides a process with all the functionality usually associated with operating

systems. This includes access to the file system and interprocess communication. Kernel

functions are available to a process through a uniform interface: system calls.

Increasingly, Unix programs consist of multiple cooperating processes. This is

sometimes done to exploit some inherent parallelism in the algorithms involved. Other

times, this is done to take advantage or distributed system facilities by having the

t First instances or Unix commands and system calls appear in italics, with the ~~ection number or the

Unix Manual(URlMLDua.IJ,(Procn.mme~Ma.DuJ) in which they appear inside parentheses. Succeeding

rererences to these programs and routines will also be in italics, but their ~~ection numbers will be

omitted.

- 4-

different processes reside on different hosts in a network. In any case, there must be a way for these processes to synchronize and communicate among themselves. In Unix, this task is performed by the IPC facility.
Process control mechanisms must be available that allow a process to be notified or asynchronous internal and external events, such as the execution or an illegal instruction or an interrupt from a user terminal. Such mechanisms must also allow a process to carry out debugging related actions on another. These include stopping and restarting the other process, and inspecting that process's address space. These activities are an essential part of any system, and in Unix are made possible by the signal{!!), ptrace{!!), and wait{!!) facilities, described below.

1.2. Unix Signals
Signals are one-word (32 bits) chunks of data that are delivered by the kernel to a process to notify it or some asynchronous event. They are the software equivalent or hardware interrupts. Signals are sent between processes by the kill{!!) system call. The sending process specifies the signal number or the signal to be sent together with the process id of the receiving process. After authentication (only processes with the same user id can send each other signals), the signal is added to the state or the receiving process. The next time this process is scheduled to be run, the scheduler will note that there are signals pending and notify the process.
Received signals can be ignored or caught and acted upon by the process, with some exceptions. Signals can be ignored by constructing a bit mask or those signals that are to be disregarded. For signals that are not ignored a process can specify, in the form of a signal handler, the steps to be followed when a particular signal arrives. Ir no handler is specified, the default action is taken; usually the receiving process is terminated.
Unix signals are an efficient means of process control, but they have one great disadvantage: they cannot be delivered across machine boundaries. Thus, even though their functionality is effective in carrying out most or the process control primitives mentioned earlier, their present implementation is severely lacking in the context or controlling distributed processes.

1.3. The Ptrace Facility
The Unix system call ptrace() provides a way for a process to control the execution or another process on a finer level or detail than that allowed by signals. ptrace() also allows the controlling process to examine and change the core image or the other process. ptrace() is mainly used for the implementation or breakpoint debugging in utilities such as adb{J) and dbx{l).

A typical debugging session using ptrace() will follow the steps outlined below. First, the debugger process forks a child process. The child process then calls ptrace() with a 0 argument in order to initialize the debugging activity. This is done before the child changes its core image in order to execute the program to be debugged instead or just another instance of the debugger. The system call exec{!!) is used to overlay a new executable image on top or the previous one.
Once ptrace{) has been initially called, the debugger process places a series or calls to ptrace() which allow it to control and debug its child. The debugging session proceeds with the debugger periodically stopping and starting the debuggee, examining the debuggee's address space, modifying this address space, and inserting breakpoints in the code segment or this address space.

.Ed It
F:

- 5-

Unfortunately, the ptrace(} facility has several drawbacks that make it a very limited

and inappropriate mechanism for distributed process control and debugging.

First, only the immediate parent of a process in the process hierarchy is allowed to

collect status information for the process. A debugger typically sends a control signal to

the debuggee, waits for the process to stop by calling wait(2}, and then collects its status.

It is the structure of the wait() call which imposes the restriction that a process may only

be notified of changes of status in an immediate child. This limitation restricts the

program to be debugged to only one process, since any children or the process being

debugged will be unaccessible to the debugger. Distributed applications, however, are

almost by definition multiprocess programs, and therefore the mechanism fails entirely

where such programs are concerned.

Second, a process must agree explicitly to be debugged and must itself initialize the

debugging session. This precludes dynamic binding of the debugger and the debuggee.

There seems, however, to be no fundamental reason why a debugging session cannot be

initiated "on the fly" provided the right environment exists for debugging. This could

occur without explicit initialization by the process to be debugged and after this process

has started execution.

In addition, the communication channel established by ptrace(} has very low

bandwidth and yet is very expensive. Two context switches (debugger-debuggee and back

again) are necessary to transfer every word of data, since no multiple-word messages are

allowed. The low bandwidth comes from the fact that a four word structure is allocated

per svstem to carry ptrace() data. Therefore, all debugger processes (e.g., adb, dbx) must

synchronize on this one data structure in order to guarantee that only one of them is

using it at any one time. Again, there is no fundamental reason for this restriction that

only one debugging request may be serviced within one system at any one time.

Finally, the process to be debugged must be put on a stopped state before it can be

examined, usually by sending it a signal. However, that process may be ignoring signals

(e.g., sleeping forever on a locked inode), in which case the complete debugging facility can

rail !JG11ian84J.

2. Process Control in a Distributed Environment- Previous Work

2.1. The Rexec Facility

In 4.2BSD, the rexu{9X} call permits a process to create another process on a .

remote host and to control its execution through signals. The original process specifies the

machine where the new process is to be executed, and the file name of the executable

image to be run. After authentication and process creation, the controlling process is

returned a stream socket connecting it to the remote process. In turn, the remote process

has its standard input and standard output directed through the other end of the IPC

connection. Thus, the original process can send data to the new process's standard input

through the connection and read its standard output in the same manner.

It is also possible to set up a second IPC connection between the controlling and the

remote processes. This other connection is used for two purposes: to make available to

the controlling process the standard error of the remote process, and to send signals to the

remote process.

The rexec(} approach uses a combination of mechanisms for distributed process

control. It uses a daemon (the rexecd{BC} daemon) to initiate the remote execution and to

set up the IPC connections. It also uses the IPC mechanisms to deliver control

information across machines.

- 6-

This facility has many limitations, especially in the area of process control. First of

all, if the remotely executed process forks, there is no provision for sending signals to the

child process, or any other control information. Thus, the fact that the remotely executed

process can receive signals across machines is only a half-way solution to the distributed

control problem. In addition, the rexee() mechanism does not include any debugging

support such as a way of delivering data associated with ptraee{). Lastly, the remotely

created process is restricted in what it can do. It cannot be considered a general purpose

process because its standard input, output, and error are always tied to the sockets that

connect the process with the controlli~g process on the originatiQg machine.

In the light of these shortcomings, it is apparent that rexee(}, while useful in many

applications, does not create an appropriate environment for general remote process

execution and control.

2.2. Processes as Files

Another approach to improving the existing Unix facilities for process control and

debugging is to present processes as files. Processes as files were introduced to Unix

Version 8 by T. J. Killian at AT&T Bell Laboratories!KillianS4J. This solution is also

suggested in the Berkeley Unix 4.2BSD manual page {ProgrammerManual) for ptraee(}. It

allows for many of the functions provided by ptraee(J to be performed in a much more

elegant way, very much in accordance with the rest of the Unix system.

The system introduces a new file system, jproe. Each file in this file system

corresponds to the address space of a running process. The names of the members of this

file system are of the form jproejnnnnn, where nnnnn is the five digit unique process id

of the process the file corresponds to. At present, nnnnn cannot be larger than 30,000, a

limitation inherited from the PDP-11.

The entries in /proe are accessed via the standard file 1/0 system call interface. A

typical series of system calls will start with open{2}, which opens the /proe file

transparently, so that the process being affected is unaware that its address space has

been opened for inspection and/or modification. The open(} call can be followed by any

combination of read{2}, write{2}, and laeek{2}. laeek(} allows random access to the address

space, while data may be transferred to or from the locations reached through laeek(} by

calling read() and write{), respectively. Finally, when no further operations are necessary,

a call to eloae(2} will commit any changes made to the address space.

Process control in the jproe implementation is possible through ioct/{2} calls. The

requests available through ioctl(} implement a superset of the operations performed by

ptraee(J, but with a more natural and elegant protocol. Among the operations possible

through ioctl(} requests are: fetching the kernel process table entry for a process

(PIOCGETPR), and obtaining a read-only file descriptor for a process's executable image

(PIOCOPENT). To these are added the equivalents of the ptrace{) operations in the

/proe scheme. These operations include starting and stopping a process, and waiting for

the debugged process to stop because of a breakpoint or other event (PIOCSTOP,

PIOCRUN, and PIOCWSTOP, respectively).

The majority of the security problems associated with processes as files are

automatically taken care of by the protection mechanisms in the file system, such as

permission mode bits. This is a very attractive feature of the /proc scheme.

The /proe directory and its contents are used by a window-based interactive

debugger developed by T.A. Cargill, also at AT&T Bell Laboratories. Because of the

advantages of the processes as files approach over ptraee(}, Cargill's debugger (named pi,

for process inspector) avoids many of the shortcomings of ptrace-based debuggers. For

- 7 -

example, it can acquire multiple processes dynamically, without the explicit participation

of the processes being affected. Binding the debugger to a process is simply a matter of

calling open(} on the appropriate fproc file.

In spite of its elegance and semantics that closely agree with the Unix philosophy, the

processes as files approach has some shortcomings in the context of distributed process

control. First, the scheme as described in [Killian84) does not support fproc objects or

any of the operations on them across multiple machines. This can be corrected by

incorporating the mechanisms into a distributed or remote file system. A distributed file

system is implemented in the LOCUS systemlfopekSIJ,(WalkerS3J, and work is near

completion on a remote file system for Berkeley Unix. Peter Weinberger's Network File

System (NFS) for Unix Version 8 at Bell Labs(WeinbergerS4) would also allow the fproc

directories to be accessible from any machine on the network. However, as things stand,

the ioctl{} facility is not yet operational across machines in NFS. This is not expected to

be too difficult to correct, and once ioctl() works, all the operations on fproc described

above will follow trivially.

A suitable naming strategy must also be found to allow an extension of fprocfnnnnn

file names to a distributed context, w bile avoiding naming conflicts between processes

residing on different hosts in the system. In the fproc approach, this responsibility falls

with the file system. When NFS is used, the naming across machines is of the form

/n/machinefproc/nnnnn (n stands for network, and machine for the name of the host

where the particular fproc directory actually resides).

Furthermore, the approach described in the paper does not completely address the

remote signal delivery problem. As was explained above, delivering signals across machine

boundaries is an important requirement of an effective distributed Unix system. Again,

this can be easily fixed, this time by creating new ioctl{} services that perform actions

equivalent to the delivery of certain signals. This has recently been implemented with the

PIOCKILL request, which sends a particular signal to a process specified through a fproc

pathname. Adding signals to the list of available ioctl() calls has the advantage that they

will also extend to several hosts once the necessary steps are taken to perform ioctl(J

requests across machines.

More importantly, the fproc solution does not provide a way for users to keep track

or their processes if some or these processes do not reside on the same machine as the o:c.e

the user originally logged into. Just as the ps(l) command is widely used today in single

host Unix systems, it will be important in a distributed system to provide the user with a

way or finding out the status or processes belonging to that user, regardless or where these

processes reside. As things stand, it would be necessary to search for processes with a

particular user id through the fproc directories or kernel process tables of all the

machines in a network in order to collect the necessary information for a ps(). Clearly,

this would be prohibitively expensive for any reasonably sized network.

Coupled with the fact that a fproc implementation is not available as a base for

further work on Berkeley Unix 4.2BSD, this last drawback justifies the pursuit of other

solutions to the distributed process control problem. The following sections describe an

approach that uses the Unix IPC mechanisms to implement new process control facilities

for Berkeley Unix 4.2BSD.

- 8-

3. Process Control Through Unix lnterprocess Communication

3.1. lnterprocess Communication in Berkeley Unix 4.2BSD

Unix interprocess communication (IPC) originally consisted only of pipes!Ritchie74J,

which allow processes to send each other data in a very simple and elegant way. Pipes,

however, are limited in that they can only act between processes with a common ancestor

in the process tree. Furthermore, they are only one-way channels between processes, and

setting up two-way communication between processes usually requires two pipes.

Berkeley Unix 4.2BSD contains new interprocess communication

facilities!Leffier83aJ, !Leffier83bJ, 1Sechrest84J. The basic abstraction is the socket, which is an

endpoint for communication to which a name may be bound. IPC can take place in two

domains: the Unix domain and the Internet domain. In the Unix domain sockets are

named with Unix pathnames; these names appear in the file system. At present,

communication in the Unix domain is restricted to one host because file systems do not

extend across machine boundaries. This situation is expected to change soon with the

advent of remote file systems. The Internet domain, on the other hand, supports the

addressing_ schemes and protocols described in the DARPA

standards1Postei7Qj,[PosteiSiaJ,[PosteiSlbJ. As such, communication in the Internet domain can

take place between processes on one machine, on different machines on a local network,

and even between processes scattered throughout an internetwork.

Two styles of communication are available: datagrams, and stream commu:1ication.

Stream communication is the style used by pipes. It is useful to think of the difference

between these two styles by relating computerized communication channels to their

human equivalents!Wecker7Ql.

Much like letters and parcels in the postal system, datagrams consist of chunks of

data transmitted devoid of any interrelation. Sequential or reliable delivery of these

datagrams is not guaranteed by the protocol. Rather, providing this functionality is left

up to the user of the datagram protocol. Datagram protocols are thus inadequate for

some applications, but they are fast and efficient.

Pursuing our analogy between computer and human communication, stream or

virtual circuit protocols can be compared to telephone conversations. A stream protocol

establishes a sequential relationship between the blocks of information sent with the

protocol so that no data arrives out of order, as in telephone communication.

Furthermore, it guarantees the delivery of all the data sent. Since messages must be

sequenced, a connection relating the messages to each other and effectively forming a

circuit between the two parties in the communication has to be created (hence the virtual

circuit nomenclature). Stream protocols are generally very useful, but they are expensive

because of the number of services provided.

The ability of the Berkeley Unix IPC mechanisms to perform communication tasks

between any two processes in a system suggests that they might be used to carry control

information, such as signals and data of the type used by ptrace{). It is this idea that is

carried forward in the new process control schemes described below.

The use of a general message delivery system such as the Berkeley Unix interprocess

communication facility would permit a set of process control mechanisms to act between

any two processes, even when such processes reside on different machines. In addition,

this facility provides a high bandwidth channel for the transfer of debugger-related

information such as portions of the address space of a process. These are marked

improvements over ptrace{}.

- 9-

3.2. Omnipresent Control Sockets

3.2.1. Functional Description

With the idea of using the IPC mechanisms to carry process control information,

Stuart Sechrest pre posed to add to the state of each process a socket to which other

processes could send control data. This socket was termed the control socket oC a process.

Figure 3.1 depicts where the control socket fits in the process state. Under this scheme,

both signals and ptrace-type information were considered forms of interprocess

communication, where the receiver would be forced to take appropriate steps to carry out

the action requested by the message.

process

descriptor table

control socket

Figure 3.1 - The Control Socket

Keeping in mind what was considered to be the main shortcoming of the Bell Labs

system, the control socket scheme included automatic reporting of important process

events to some supervising agent. For example, when a process forked, the process id,

host machine, and control socket of the new process was made known {again through the

use of IPC) to a controlling process. This allows it to keep track of the components of a

multi-process, and potentially multi-host, computation.

The first attempt to incorporate the control socket concept into Berkeley Unix

involved giving each newly spawned process a control socket already created and ready to

receive data. Such omnipresent control sockets are depicted in Figure 3.2. In order to

provide many of the semantic advantages of the Bell Labs /proc approach, it was decided

to incorporate the notion of a control socket in the file system. This was made possible by

creating the control socket in the Unix domain and binding a Unix pathname to the

socket. Thus control sockets, and in a sense processes, were made to appear in the

directory /proc. The name chosen Cor each member of /proc was, as in the Bell Labs

scheme, the process id of the process involved.

All the control data for a process, including signals ar.d ptrace-type data, would be

delivered through the control socket. As has been pointed out earlier, the generality of

the IPC mechanisms allows for this information to flow between any two processes, even

when such processes reside in more that one host on a network.

- 10-

init process

process id 1

shell

control socket 1 control socket 2

Figure 3.2 - Omnipresent Control Sockets

3.2.2. Initial Implementation

process 2

Implementing this scheme required several changes to the Unix kernel. First, each

process had to be given a handle on the structures that comprise its control socket. This

was done in the user area (u.area) of each process, where fields were added to hold the

necessary information. The choice of the u.area was made because this area is readily

available to every process as it executes in system space, when all the accesses to these

structures would be made. The u.area of a process is not, however, easily accessible to

other processes. This is not a drawback because the well known Unix pathname

(/proc/nnnnn) of the socket is all that external processes need to know to send messages

to the socket.

As mentioned in Section 1.1, new processes are created in Unix by the fork() system

call. Since control sockets are associated with every process in the system, and these

sockets must be ready to receive data as soon as the process comes into being, the fork{}

call was the logical choice for where to construct the control sockets. Thus a Unix domain

socket was created and then bound to the pathname mentioned above within the fork(}

operation.

When a process dies, it is necessary to free all the system resources it holds. The

system call exit(2) is executed whenever a process is to terminate execution. It is within

exit() that resources such as the file descriptors held by a process are returned to the

system. It was also there that the control socket and associated structures were

deallocated so that they might become free when the process disappeared.

Control messages, those addressed to a control socket, needed to be intercepted in

the kernel before they were delivered to the user process. This is because the requests

these messages bring necessitate kernel actions on behalf of the controlling process.

Therefore, another section of the kernel that had to be modified was the IPC delivery

- 11-

code. The code was changed to recognize messages meant for a control socket and to

interpret their contents according to a well-defined format.

For example, one message type was reserved for Unix signals. \Vhen the message in

transit consisted of a signal, the IPC code would handle the message by delivering the

appropriate signal to the process to which the message was addressed. Thus, signal

delivery was transferred (rom the older mechanism to Unix IPC.

Presently, the Unix domain is restricted to one machine. However, work rear

completion will extend the 4.2BSD file system and thus the name space to a network o(

machines. It will not be difficult, and indeed desirable (or many applications, to extend all

present file system operations to work under the remote file system. This should include

access to special files such as terminals, ioctl{}, and, o(course, operations on Unix domain

sockets. The solution for remote signal delivery would then come for free once Unix

domain IPC works across machines.

Once the system was creating control sockets for processes, an ls{1) of the fproc

directory showed a list of existing processes on the machine were the command was run.

The next step was to test the new signal delivery mechanism. A program very similar to

the Unix kill(1) command was written. The program, named cskill, took as arguments a

Unix signal number and a process id, and proceeded to send the requested signal to the

specified process via the control socket o(the process. This program allowed processes to

be started, stopped, and terminated (among other things) through the new process control

facilities. It used Berkeley Unix IPC to deliver signals instead of the usual kernel

channels.

3.2.3. Evaluation

At this stage o(implementation and experimentation, several shortcomings o(the

omnipresent control socket approach became apparent. The most important objection to

this scheme is related to t.he well known "making the many pay (or the needs o(the few"

dilemma that has faced many system designers. Here, the creation or a socket and the

binding o(this socket to the Unix file name space added considerable cost to the operation

of forking new processes. Creating new processes in Unix is already quite expensive due to

the large amount o(state with which they are associated. Considering that only a small

percentage o(all processes need debugging operations performed on them or make use o(

remote signals, incurring these costs for every process was unacceptable.

This prompted the search for another solution that would avoid adding complexity

and expense to operations such as fork{} unless it was strictly necessary. The resulting

scheme, which uses on-demand control sockets, is outlined next.

3.3. On-Demand Control Sockets - The Process Manager Approach

The second attempt at incorporating the control socket notion into 4.2BSD involves

the dynamic creation of control sockets as the need (or them arises. This frees the

majority or processes (rom the burden or the added distributed process control facilities,

but provides the added functionality to those processes that need it. With on-demand

control sockets, local signals are handled through the normal channels. Only remote

signals and ptrace-type data are delivered through control sockets. This carries further

the notion that the expense of setting up communication through control sockets should

only be incurred when there is a real need.

In common with many aspects o(computer science, providing dynamic facilities such

as these implies more flexibility at the cost of added complexity on the part of the system.

In this case, since control sockets are not always available in a well known and accessible

- 12-

place such as the fproc directory, the system must go through some contortions to

initialize itself when the need for control sockets arises.

As with the omnipresent control socket scheme, it is necessary to keep traek of the

status of a distributed computation through notification of important events to some

agent. The agent can thus keep a table describing the tree of processes that has been

formed as a user's processes fork, exit, and possibly execute processes on other machines.

With on-demand control sockets this agent must take on the added responsibility of

dynamically setting up control sockets on different processes, and of routing remote

signals and ptrace-type data to the appropriate control socket. This agent is termed the

process manager.

The process manager with on-demand control sockets is the subject of Section 4.

There, more information on this approach is presented, together with some

implementation details.

4. A Process Manager Implementation

As mentioned in the previous section, a scheme that dynamically creates control

sockets has many advantages over the omnipresent control socket approach. This section

describes in detail the design and implementation of the process manager scheme with on

demand control sockets.

There is one process manager per user login session; it is itself a distributed program.

A master process manager process is always created as part of the login procedure, and

slave process managers are created on demand on those hosts to which a user's processes

spread. An IPC connection is maintained between the master process manager and each

of the slaves to allow them to easily exchange information. Stream communication is

warranted in this case because the master needs frequent access to a communication path

to its slaves, and because of the need for reliability across machines. In the remaining of

this report, references to the process manager are to the combination of the master and

slave process managers, unless explicit mention of master or slave is made.

The processes that comprise the process manager are user processes, but ones with

special responsibilities. Like the shell, the master process manager sits high on a user's

process tree and overlooks the evolution of this tree. The master process manager takes

the place of today 's shell in the process hierarchy. It is a child of the initialization

process, init(B}, and the parent of the user's initial shell. If more shells are created, as is

usual in the case of a window system, they would be descendants of the original shell and

thus also of the process manager. The result is that the process manager is an ancestor of

all processes originating from one user's login session. Figure 4.1 shows the role of the

process manager in the process hierarchy.

The master-slave organization makes as much use as possible of the existing single

machine facilities by having the slave process managers use these facilities on behalf of the

master. It also helps to reduce the amount of network traffic generated while performing

process control duties by channeling short requests to the slave processes in a remote

procedure call fashion.

A process manager's responsibilities include keeping track of a user's processes,

taking part in remote signal delivery, and assisting in debugging sessions. These

situations and the ways in which the process manager deals with them are explained

below.

- 13-

init process

process id 1

process manager

shell

process 1 process 2

Figure 4.1 - The Process Manager

4:.1. Keeping Track of a User's Processes

The major motivating factor for maintaining the state of a user's login session is the

potential for user processes to be created on, and even migrated to, a different machine

than where the login session started. As has been pointed out for the /proc scheme, it

would be too expensive in that case to dynamically search for a user's processes

throughout the hosts on a network to perform everyday operations such as ps(}.

In order to maintain itself informed of the progress of a user's computations, the

process manager keeps a table with the process id and the host name of all of a user's

processes. It also maintains information regarding the hierarchy of processes, i.e. parent

child relationships, in order to be able to reconstruct a user's process tree. This user

process table is kept up to date by reports of status changes from user processes. Among

the events that would be reported to the process manager are new process creations

through fork(), and process terminations.

Here the tradeofls between datagram and stream commllnication come into play.

The reports in question are relatively sparse, and it would be wasteful of resources to set

up a connection for that type of communication. Furthermore, there is again the problem

of making the many pay for the few. Once the process manager is in place, all processes

will rely on the status reporting mechanism for normal operation. Setting up a connection

would burden all processes with a control socket and not just the ones being debugged or

- 14-

using remote signals. This is exactly w hC~.t the process manager approach is trying to

avoid. On the other hand, using pure datagrams to send status reports to the process

manager introduces unreliability into the operation, something that is unacceptable in this

situation.

Fortunately, the Berkeley Unix IPC code guarantees reliable delivery of datagrams

within a single machine. The process manager scheme uses this fact to its advantage by

having processes report only to their local instantiation of the process manager, using

datagrams with guaranteed reliability. If this is a slave process manager, it will forward

the information to the master using the connection that exists between the two, which is

again reliable. Therefore, the slave process managers are aware of the process status of

processes within their own host, but it is only the master process manager that maintains

a complete user process table.

".2. Remote Signal Delivery Through Control Sockets

With the process manager approach, local signals are delivered through the usual

channel, kill(). Only when a process desires to send a signal to a remote process are the

new process control facilities used.

To send a remote signal, a process must request its local process manager to deliver

the signal to the target process. This request is made through the same mechanism used

to report status changes to the process manager, namely, reliably delivered intra-machine

datagrams. If the local process manager is a slave, it must relay the request to the master

process manager, who has permanent connections established with all slaves. The master

process manager then has a choice. If the target process resides on its own machine, it can

send the desired local signal through kill(). Otherwise, the master process manager must

relay the request a final time to the slave on the target machine, who can then use kill().

or course, if the process manager local to the process sending the signal is the master, it

only takes one request to the appropriate slave process manager to do the job.

It is interesting to note that the levels of indirection present in the above transaction

are a direct result of doing away with omnipresent control sockets on every process. If

control sockets were always available, a remote signal would consist of a simple 8endto(2}

to the control socket of the target process. However, the disadvantages of having

omnipresent control sockets described in Section 3.2 outweigh this gain in simplicity,

especially since remote signals are expected to be a relatively rare occurrence.

Furthermore, requiring that process control requests go through a central agent, the

process manager, greatly simplifies the job of enforcing security. Not only is the system

more secure, but the policies that dictate who is allowed to send control data to whom can

be easily changed by simply changing the process manager code.

".3. The Distributed Debugging Scenario

The process control mechanisms described here will find use as a basis for distributed

debugging activities. The design of a multi-process distributed debugger for Berkeley

Unix is in progress. The debugger can use the process manager and on-demand control

sockets to send remote signals and perform ptrace-type operations on the processes being

debugged.

First, in order to dynamically bind itself to the process or processes of interest, the

debugger establishes communication with the master process manager for the user. It

then proceeds to request debugging operations to be done on the process or processes it

wishes to control. If only starting and stopping are desired, these can be carried out

through the local and remote signaling mechanisms described earlier.

- 15-

For accesses to the process's adclress space, the procedure is more complex. The

debugger must place a special reque~t for a ptrace-type operation with the master

debugger, who then triggers tht= creation of the debuggee's control socket. Tne master

debugger learns the name of the new control socket and relays that information to the

debugger. The debugger can then directly connect to the control socket of the debuggee

and proceed with the debuggiug session, using the IPC mechanisms for delivery of

debugging commands and return data. Figure 4.2 shows the state of a single-machine

debugging session once the debugger has contacted the process manager and subsequently

established IPC connections with the processes of interest. Forcing the initial debugging

request to go through the process manager allows for authentication of the requesting

process. This prevents an arbitrary process to pose as a debugger and connect to the

control socket of a process.

I .
//
i/
ii
ii
i i
i;
i i
i i
\ \
\ \
\ \

IPC connection:.:::::::::=::::::
//
'/ /.

'/ /,

debugger

I I

i i IPC connection
I J

i i
i i
i i
\ \
\ \

"" .,_

..................
·-...

init process

process id 1

process manager

shell

\ \ il
\ \ control socket 1 i i control socket 2

\\ i i
'\·.. if

·-:::, /1
"->.... //. IPC connection

'-:::::::::::::::::::=:=:::·::::·:::>·

Figure 4.2 - Debugging Using the Process Manager

Again, the complexity of these transactions is a result of the absence of permanent

and well-known control sockets. However, the cost of creating the control socket for a

process and notifying the process manager of its address is only incurred once during the

lifetime of a process, and then only if it is necessary to have a control socket present at

all.

- 16-

4.4. Implementation Details

Because of the dynamic nature of the transactions that involve on-demand control

sockets, the implementation or this scheme is more complicated than that or omnipresent

control sockets. However, as will be apparent below, less of a burden is placed on system

activities and resources when the new mechanisms are not being used.

4.4.1. Kernel Changes

The first change to be made to the kernel is one that would permit processes to get a

handle on the new process control facilities. In this case, processes must be able to

efficiently communicate with their process managers. For this reason, the u.area for each

process must be modified to include two fields: a pointer to the socket buffer of the local

process manager's datagram socket, and the Internet address of the master process

manager's stream socket. The datagram socket, as described earlier, is used by the

process manager to receive status reports from all of a user's processes. The stream

socket is used to establish a connection for longer-lived transactions, such as those

encountered in debugging activities.

The next step is to set up the status reporting mechanism which the process manager

uses to keep track of a user's processes. A report consists of a datagram delivered reliably

within a single machine by appending a kernel mbuf to the message queue at the socket

buffer of the local process manager. An mbuf is a fixed-size chunk of memory used within
the kernel to hold and manipulate IPC headers and data. The ability of these buffers to

be allocated and deallocated dynamically and to chain together to form queues make them

very useful for many IPC applications.

The kernel must be modified so that a report is generated whenever an event takes

place that causes an important change to the status of a process. For example, code must

be added to fork(} to notify the local process manager that a new process has been

created. exit() must also be changed to send a report indicating that a certain process has

terminated. It is not clear exactly how detailed a view of the world the process manager

should have, so it may be necessary to add certain events to the list of actions that cause

a report to be generated.

There must be a way for the process manager to trigger the creation of the control

socket for a process. To this end, the new signal SIGDEBUG is introduced. When a

process receives SIGDEBUG, it creates an Internet domain stream socket, binds an

Internet address to it, and notifies the process manager of this Internet address. This

way, the process manager can relay the address of the control socket to any interested

parties such as a debugger.

4.4.2. Process Manager Code

The above descriptions of code changes refer to kernel code. However, much of the

work in distributed process control will be done by the process manager itself, a user

process. This is another advantage of the process manager approach over the omnipresent

control socket scheme, because this makes the system easier to maintain and avoids undue

growth of the kernel.

The process manager must first initialize the process control facilities by creating its

own datagram and stream sockets, through which it will receive status reports and process
control requests. It then forks a new process that will become the user's initial shell.
Before the new process calls exec() to execute the shell, it initializes itself by filling in its
u.area with handles to the recently created datagram and stream sockets of the process
manager. This shell will spawn any succeeding user processes, and the fork() mechanism

- 17-

will guarantee that the u.area of all these processes also contains the process manager

socket information.

Once the initial shell is running, the master process manager goes into an infinite

loop waiting for status reports or requests to come in through its sockets. In the case of

reports, it will update its internal tables and return to reading the sockets. \Vith requests,

it must service the request before going back to listening to the sockets. Busy waiting is

avoided by using the call sigpause{2}, which will pause a process until some specified

signal is delivered, at which point the process will wake up. In this case the signal of

interest if SIGIO, whose arrival signifies that data is pending on a socket.

It has been mentioned that slave process managers are created on remote machines

as new user processes are formed or migrated there. The mechanism currently used for

starting these slave process managers is rexec(}. The limitations imposed on processes

created through rexec(}, described in Section 2.1, are not a problem for the special case of

slave process managers. In particular, the fact that IPC connections are established from

birth (one for input and output, and one for control and error data) is not a drawback

here, because the slave process manager must maintain an open connection with its

master in any case.

The process control facilities described here are not yet complete. The next section

outlines some of the work that remains to be done before the process manager and the

associated kernel code offer the desired functionality.

5. Future Research

The current naming scheme for Unix processes uses process id's that are unique only

within one host, and carry no information as to where in the network a process resides.

This has serious implications on the remote signal transactions, and indeed on the whole

process control issue. Since current process id's are ineffective in a distributed context,

process managers must implement their own naming strategy, separate from the one

maintained by the rest of the Unix system. In the user process table, the process manager

must associate a process id with the host name in which the process resides. This, in turn,

forces requests to the process manager to include both host and process id information.

The result is a messy solution that carries out virtually no information hiding, since

anyone wishing to use the distributed process control facilities must be made aware of

where processes reside.

This problem could be remedied by adopting a system-wide naming scheme that

would guarantee the uniqueness of a process id throughout the network, a strategy that

would also not break down when a process migrates. Such a scheme can be found in the

LOCUS system!PopekSI),[WalkerS3J and in Stanford's V-System[Cheriton84J. It is outside the

scope of this work to select the process naming scheme for a distributed Berkeley Unix

system. However, once one is adopted which satisfies the above requirements, the process

manager code should be modified to use it. The interface to the distributed process

control facilities will then become much more elegant.

In the area of remote process creation, an alternative to rexec(} should be found. As

described earlier, the processes formed through rexec(} are not regular processes at all,

since their standard input, output, and error are restricted to some predefined sockets. A

better scheme for creating a remote process would be as follows: First, the local process

manager is contacted with the request to create a process on a remote host. If there

already exists a process manager on the machine where the remote process is to reside, the

request is routed to that instance of the process manager. If one does not exist, a new

slave process manager is created on the machine in question as described in the previous

- 18-

section, and then the request is forwarded to it. The remote process manager then forks,

and execs the requested process.

This way process managers will occasionally act as process creation servers on

behalf of users. Processes created in this way will behave in exactly the same way as all

other processes, with no restrictions. Furthermore, they will be children of an easily

accessible process: the remote process manager on the machine where the process resides.

This is in contrast to to processes created through rexec(}, whose parent is the remote

execution daemon, rexecd(). The proposed scenario is shown in Figure S.L

process 1

MACIDNEA MACIDNEB

init process

process id 1
I

-------:::::::::J::::----- IPC connection

--:::::::::::::::::::::>----- I -----::::::::::::::::·-

.---
master

process manager

shell

process 2 process 3

Figure 5.1 - The Distributed Processing Environment

slave
process manager

process 4

The process manager scheme described here does not take into account a

complication that is at present relatively commonplace: multiple login sessions by the

same user throughout a network of machines. The process control facilities, and in

particular the portion that keeps track or a user's processes, should be able to handle this

case.

As things stand, process managers are associated with a single login session. If the

same user logs in to a different machine, or more than once within the same host, the
separate process managers will be unaware of each other. Furthermore, each process
manager will have no information on the processes created as part or the other login
sessions. Thus, operations such as pc() that rely on the status information kept by the

process managers will not obtain a complete picture or the extent or a user's activities.

- 19-

The advantage gained by using the data kept incrementally by the process managers,

instead of repeatedly polling the entire system for information, will be lost if this data is

incomplete. -

As Berkeley Unix presents a more transparent view of its distributed resources, it is

expected that multiple logins by the same user will become unnecessary, and thus rare.

They will never completely disappear, however, and in some cases it will be necessary to

be able to control all processes belonging to a particular user, regardless of which login

session these processes are associated with. An exam9le involves dealing with background

or "stubborn" processes that remain from a previous login session. Here, a solution is for

each newly created process manager to query the system as the login session is initiated

for any orphaned processes with the same user id. The process manager can then inherit

these processes from the system, in much the same way that the system inherited them

when their original login session was terminated.

The case of simultaneous logins is more complicated, and reasonable approaches are

not as obvious. Process managers can, as they are created, look through the system for

other process managers belonging to the same user. From there, several strategies can be

followed. One is for the new process manager to assume control and force any process

manager it finds to become a slave. This is rather limiting and assumes that the logins

have been originated by the same person, with related tasks to be performed by the

separate login sessions.

Another approach would be for the new process manager to take note of any other

process managers in existence, and to notify them of its presence. All process managers

would then keep equal status, but they would be required to communicate in order for all

of them to maintain a consistent view of the progress of a user's computations. Process

managers could keep communication channels open in order to guarantee a fine grain of

consistency. Establishing and maintaining this communication would be expensive in

terms of network traffic and other resources such as sockets, but it could be feasible if the

multiple login situation does not arise too often.

However, there is an alternative to constant communication between the process

managers. If a complete view of the world by each process manager is not considered

crucial, communication between process managers need only be sporadic. This

communication can be limited to the initial interaction when a new manager is created,

and to the case when an action to be performed by a process manager requires knowledge

about processes belonging to other process managers. Such an instance takes place when

a user requests a comprehensive p8{}, one that must include all processes belonging to a

user throughout the system.

It may seem at first glance that having a process manager poll the system for

information incurs some of the same costs that the process manager scheme is trying to

avoid. However, it is important to note that scanning the system is done only once in the

lifetime of a process manager, and not every time data on remote processes is needed.

After initialization, a process manager can go directly to the other process managers for

data without having to broadcast for help.

Other than dealing with these three major issues, the process manager approach will

have to evolve further as the notions of distributed process control are refined. New

se'!'vices may need to be added to the process manager code, with corresponding

modifications to the Berkeley Unix kernel, if the process managers and control sockets are

made to take on more responsibilities than those currently envisioned.

- 20-

6. Conclusion
This report discusses the issues involved in building process control facilities for a

distributed Berkeley Unix environment. The questions that arise when this problem is
attacked are difficult ones, and by no means completely answered as yet. Several
previously adopted solutions have been described, together with their known drawbacks.
A new approach has also been presented, one that immediately addresses the shortcomings
of the existing non-distributed process control mechanisms.

Of the existing solutions, the Bell Labs processes as files approach is very promising
because of its elegant semantics and heavy Unix flavor. However, it has a serious
shortcoming in that it does not address what is considered to be an important part of
distributed process control: doing the bookkeeping necessary to keep track of the elements
of a distributed computation.

The proposed solution uses control sockets and a per user process manager to create
an environment where all the processes belonging to a user can be effectively controlled,
even when such processes reside on more than one machine. It extends the Unix signal
concept to a distributed environment and lifts the restrictions imposed by the ptrace(}
facility, including the single machine and single process requirements.

It would be useful to implement a processes as files scheme for Berkeley Unix and
compare it with the process manager/control socket approach. If processes as files emerge
as the clear winner in terms of performance and/or ease of use, it would be advantageous
to retain the bookkeeping functions of the process manager, while substituting processes
as files for control sockets to carry out signaling and active debugging functions.

In any case, the work performed on control sockets and process managers has proven
very worthwhile. Not only do these ideas offer an interesting alternative to processes as
files, but they also present a novel message-based approach to the problem of evolving the
Unix programming environment to meet the growing demands of distributed applications.

Ack now led gem en ts
I've had the pleasure of collaborating with Stuart Sechrest throughout the duration

of this project. I want to thank him· for all his patience and help, and especially for all
those bright ideas. I would also like to extend my appreciation to Domenico Ferrari and
Luis Felipe Cabrera for their guidance and time spent reading and commenting on drafts
of this report. Finally, posthumous thanks to Bob Marley for his musical support.

References

(UserManual).
UNIX User's Manual, 4.2 Berkeley Software Distribution, Virtual V AX-11 Version,
March 1984.

[Programmer Manual).
UNIX Programmer's Manual, 4.2 Berkeley Software Distribution, Virtual V AX-11
Version, March 1984.

(Cheriton84).
D.R. Cheriton and T.O. Mann, "Uniform Access to Distributed Name Interpretation
in the V-System," Proceedings of the IEEE ..jth International Conference on
Distributed Svstems, pp. 290-297, San Francisco, May 1984.

[Daley68).
R.C. Daley and J.B. Dennis, "Virtual Memory, Processes, and Sharing m
MULTICS," Communications of the ACM, pp. 306-312, May 1968.

- 21-

[Dijkstra68].
E.W. Dijkstra, "The Structure of the THE Multiprogramming System,"

Communications of the ACM, pp. 341-346, May 1968.

[Leffier83a].
S.J. Leffier, W.N. Joy, and R.S. Fabry, "4.2BSD Networking Implementation Notes,"

Berkeley Technical Report UCB/CSD 83/146, July 1983.

[Leffier83b).
S.J. Leffier, R.S. Fabry, and W.N. Joy, "A 4.2BSD lnterprocess Communication

Primer," Berkeley Technical Report UCB/CSD 83/145, July 1983.

[Killian84].
T.J. Killian, "Processes as Files," Proceedings of the Summer 198-f USENIX

Conference, Salt Lake City, Utah, June 1984 .

(Popek81].
G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Theil,

"LOCUS: A Network Transparent, High Reliability Distributed System," Proc. of

the Sixth Svmposium on Operating Svstems Principles, pp. 169-177, Asilomar,

Calif., December 198L

[Postel79].
J. Postel, Editor, "User Datagram Protocol," RFC 768, Information Sciences

Institute, Marina del Rey, California, August 1980.

(Postel81a].
J. Postel, Editor, "Internet Protocol," RFC 791, Information Sciences Institute,

Marina del Rey, California, September 1981.

(Postel81 b].
J. Postel, Editor, "Transmission Control Protocol," RFC 793, Information Sciences

Institute, Marina del Rey, California, September 1981.

[Ritchie7 4].
D.M. Ritchie and K. Thompson, "The UNIX Time-Sharing System,"

Communications of the ACM, pp. 365-375, July 1974.

(Sechrest84].
Stuart Sechrest, "Tutorial Examples of lnterprocess Communicatin in Berkeley Unix

4.2BSD," Berkeley Technical Report UCB/CSD 84/191, June 1984.

[Walker83]. . .

B. Walker, G. Popek, R. English, C. Kline, and G. Theil, "The LOCUS Distributed

Operating System," Proc. of the Eighth Svmposium on Operating Svstems

Principles, pp. 49-70, Bretton Woods, N.H., October 1983.

(Wecker79].
S. Wecker, "Computer Network Architectures," IEEE Computer, pp. 58-72,

September 1979.

[Weinberger84].
P.J. Weinberger, "The Version 8 Network File System (Abstract)," Proceedings of

the Summer 198-4 USENIX Conference, Salt Lake City, Utah, June 1984.

