
A Distributed Programs Monitor for Berkeley UNIX

Barton P. Miller
Cathryn Macrander

Stuart Sechrest

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

Abstract
Writing and debugging distributed programs can be difficult. When a program is working, it

may be difficult to achieve reasonable execution performance. A major cause of these difficulties

is a lack of tools Cor the programmer.

We use a model of distributed computation and measurement to implement a program

monitoring system Cor programs running on the Berkeley UNIX 4.2BSD operating system. The

model or distributed computation describes the activities or the processes within a distributed

program in terms of computation (internal events) and communication (external events). The

measurement model separates the detection of external events, event record selection, and data

analysis.

The implementation of the measurement tools involved changes to the Berkeley UNIX

kernel, and the addition of daemon processes to allow the monitoring activity to take place across

machine boundaries. A user interface has also been implemented. We present a users' manual

and an example or the use or the measurement system.

Keywords
Distributed, performance, debugging, monitor, UNIX.

Research tupported by the National Science Foundation K"oDt MCS-80tOG88, the State or Calif'omia MICRO

program, and the Derense Advance Research Projects Agency (DoD) Arpa Order No. 4031 monitored by Naval Electronic

System Command under Contract No. N00030-82-C-0235. The views and conclusions contained in this document are

those or the authors and should not be interpreted u representing official policies either expressed or implied, or the

Derense Advance Research Projects Agency or ol the United States Government.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1984 2. REPORT TYPE

3. DATES COVERED
 00-00-1984 to 00-00-1984

4. TITLE AND SUBTITLE
A Distributed Programs Monitor for Berkeley UNIX

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Writing and debugging distributed programs can be difficult. When a program is working, it may be
difficult to achieve reasonable execution performance. A major cause of these difficulties is a lack of tools
for the programmer. We use a model of distributed computation and measurement to implement a
program monitoring system for programs running on the Berkeley UNIX 4.2BSD operating system. The
model of distributed computation describes the activities of the processes within a distributed program in
terms of computation (internal events) and communication (external events). The measurement model
separates the detection of external events, event record selection, and data analysis. The implementation of
the measurement tools involved changes to the Berkeley UNIX kernel, and the addition of daemon
processes to allow the monitoring activity to take place across machine boundaries. A user interface has
also been implemented. We present a users’ manual and an example of the use of the measurement system.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1

1. Introduction

1.1. Overview

Most operating systems being designed today support some level or concurrent programming

and multiple machine environments(Almes et al 83, Cheriton 6l Zwaenepoel 83]. Despite the

increased activity in distributed systems, there is no agreed upon model or computation, nor is

there a widely accepted model or program performance monitoring.

When we monitor a traditional, single process program, we observe such well defined metrics

as the paging activity or the frequency or subroutine calls. For programs consisting or multiple

processes cooperating in a computation, there are no such standards. Applying the traditional

metrics to the each or the processes in a multiple-process program does not provide a complete

solution. These programs present a new level or complexity. The main factors that contribute to

this complexity are a3ynchrony, time, and delay.

Asynchrony occurs when more than one piece or the distributed program is executing

simultaneously on different machines. A program that runs on a single machine, while possibly

having the illusion or parallel execution, really executes a single instruction at a time. When a

program runs in a distributed environment, we can have many instructions in the program

executing at the same time. Thus, synchronization or the different pieces or a computation is

more important and more difficult than in the single machine case.

Time is a factor or additional complexity because we cannot provide a universal time base

for all the machines. Time can be synchronized in a relative sense between processors(Lamport

78], but a complete ordering or events (full synchronization) is not possible. There have been

algorithms designed to keep an approximation or a universal time(Gusella 6l Zatti 83], but even

algorithms that work well cannot guarantee perfectly synchronized clocks.

The delay factor is due to the finite and non-deterministic time needed for communications

between machines. No action affecting a part or a computation on one machine can instantly

affect other parts or the computation on different machines. This causes two problems. The first

problem is that there is no way or obtaining an instantaneous picture, or 3nllp3hot, or the state or

a computation. The second problem is that there is no way of causing an instantaneous change of

control for all parts of a computation on different machines. Nor is it possible to arrange for

actions to occur at an agreed on time in the future, since we cannot keep the clocks fully

synchronized.

Traditional performance measurement and debugging tools do not provide enough

information to deal with the problems or a distributed environment. The concept or a

computation consisting or numerous concurrently executing parts is missing in them. The

primary goal or this research is to provide the tools and the methodology to deal with the

problems one encounters when developing distributed computations. In particular, we present the

Berkeley UNIX implementation or a system or tools(Miller 84] for monitoring such computations.

These tools are intended to aid the programmer in developing, debugging, and measuring the

performance or distributed programs. This is the second implementation or these tools. The first

implementation, described in (Miller 84], was for the DEMOS/MP operating system.

The remainder or this section describes the basic terms and definitions that will be used

throughout this paper. This will present a more concrete definition or the problem we are trying

to solve. The basic measurement model and methodology are presented in Section 2, which

includes a description or the components and structure or the model. Section 3 describes the

structure or the implementation or the measurement system for Berkeley UNIX. The structure or

monitoring facilities, both within the operating system kernel and outside, are described. Section

4 describes the user interfaces to the various parts or the measurement system. That section also

includes a user manual for programmers wishing to measure distributed computations.

I

1.2. What l• a Dl•trlbuted Program? And Other Deflnltlona

We define a distributed program (or more simply, a computation) to be a collection of

processes cooperating to perform a common task. The component processes are not constrained

to run on the same machine; no assumptions are made about the locations of the processes. The

two extremes are the case where aU processes run on the same machine and the case where each

process runs on its own machine. The tools and methodologies that we are describing do not

depend on how the program is physically distributed.

A process is the basic building block of a computation. It consists of an address space

containing code and data, and an execution stream. Each process has access only to its own

address space. Processes do two things: compute and communicate. Computing is the normal

execution of instructions. Communication is the means by which a process interacts with other

processes and with the operating system. An interaction is an activity that involves more than

one process, or a process and part of the operating system. The complexities of the distributed

environment become apparent when a process in a computation interacts with another part of the

computation.

Communication is based on messages. A message allows the copying of part of one process's

address space into that of another process. A message is an interaction involving exactly two

processes, the process originating the data (the Bender) and the process consuming the data (the

receiver). We make no assumptions about the network underlying the communications

mechanism. The model of communications described here is applicable to a wide range of

systems.

Berkeley UNIX is not a message based operating system. This means that some of the

interactions between a process and the operating systems (e.g., file system operations) will not

involve message communications, but rather a subroutine call style interface. The subroutine call

can be modeled as a request/reply message pair.

Processes execute on machinu, each consisting of a central processor (CPU), memory, and

peripheral devices. Machines do not have direct access to each other's memories. Each machine

has a portion of the operating system running on it to support process execution, communications,

memory management, and device management. The communication functions supplied by the

operating system provide for interprocess communications both within and between machines.

2. The Measurement Model and Tool Dnlp

1.1. Measurement Model

The model or processes cooperating via messages provides a uniform structuring for a

computation. The communications in a computation involve the processes performing the

communication functions, and the objects being communicated. This dictates the types of events

we will need to monitor to understand the behavior or a computation. First, we must monitor

events such as processes being created or destroyed, or starting or stopping execution. Second,

activities associated with the shipment, delivery, and receipt of a message must be monitored.

Also in this category are events describing the creation or destruction of communication paths.

There are two major requirements for the measurement model described above. These are

transparency and consistency. Transparency means that, when we talk of measuring events

associated with the execution or a computation, we assume that the measurement of these events

will do nothing (or at least as little as possible) to change how the events occur. Monitoring the

program is a passive activity. This is in contrast to message debuggers, which allow

rearrangement of the messages sent!Philips 82, Schifrenbauer 81]. No actions such as redirection of

messages, breakpoints, and modifications of the message streams are done. The measurement

facility should be an observer of the computation, and not in any way a participant.

3

Consistency means providing a uniform view of the computation being measured. The

programmer uses a certain set of primitive functions to build a distributed computation. The

programmer's model or computation and communication tends, therefore, to be based on these

primitives. The events defined in our measurement model should be consistent with this view.

Consider, for example, the problem or monitoring a message sent from one process to another.

The programmer would see und and receive operations. The actual communications may be

implemented using a protocol that involves acknowledgements, division of the message into fixed­

size packets, routing decisions, and so on. Viewing the communications at this more detailed level

would obscure message delivery in unnecessary detail. Likewise, adding an extra level or

semantics to the measurement events!Baiardi et al 83, Bates 8l Wiled en 83J may be inconvenient

to the programmer. For example, if a formal description language is used to describe the correct

sequence or communications, we must ensure that the description is correct before we can

determine whether the program is correct.

Z.2. Measurement Tool Design

The design or a monitoring tool must embody the characteristics of the model described in

the previous section. In particular, our measurement tool must adhere to the principles of

transparency and consistency.

The measurements must be done in a transparent manner. This means that, to measure a

program, we cannot require a priori knowledge of the computation. No special action by the

programmer or the computation should be necessary, and we should be able to measure any

program. The program ought to be unaware that it is being monitored, and none or the interfaces

to the operating system should be changed. The measurements will cause some degradation of

the computation's performance, but this degradation should be kept as small as possible. This is a

standard goal for any measurement facility, and early examples of this can be found in !Ferrari

78J.

We require the measurements to be consistent with the programmer's view. The

measurements are based on the recording or interesting actions occurring during the lire or

processes within a computation. These actions, called meter event8, or simply event3, consist

primarily or activities that reflect interactions between processes (such as messages being sent and

received). Events related to communications are recorded, as are events that pertain to the

change of state of the processes in the computation. These events include the creation of a

process, the starting and stopping or its execution, and the destruction (termination) or the

process.

.,

Figure 1.1 Overview of Meuurement Faclllty

The overall structure or the measurement facility is shown in Figure 2.1. The three stages

of measurement are called metering, filtering, and analy.!i.!. Metering is the extraction of the

data from the operating system for processing outside of it. We refer to the operating system

kernel as that part or the system that implements the basic objects and communications

primitives. The ho.!t kernel is the kernel for the machine on which a particular process currently

resides. Note that this implies that each machine bas a kernel or portion of a kernel resident on

it. The ho.!t operating .!y.!tem is the operating system of which the host kernel forms a part.

Filtering does selection and reduction of the data. This stage records or passes the reduced data

on for analysis. Analysis is the extraction or information from the collected data. For a complete

motivation and overview or the parts of the measurement system, see !Miller 84J.

The measurement structure is similar to that of METRIC!McDaniel 75J. Our measurement

system differs from METRIC in a number or ways. First, METRIC was not transparent;

programmers bad to explicitly insert trace calls into their programs. Second, METRIC used a

different model or distributed processing. The design or METRIC incorporates the concept or a

broadcast network media, with the structure or the network visible to the measurement tools.

3. Structure of the Meuurement Tool

The measurement tools for Berkeley UNIX have a structure dictated by the model or the

previous section. Metering is implemented in the UNIX kernel by examining the system calls

made by metered processes and generating meter messages. The meter messages are sent to a

filter across a communication path provided for each metered process. In addition to the metered

processes and the filters, there is a user interface process, called the control process, that assists in

the creation and control of the metered processes and filters. The following sections describe

interprocess communication in Berkeley UNIX 4.2BSD, the implementation or metering within the

kernel, the design or a filter process, and the design or the control process. The control commands

available to the user are discussed in Section 4.3.

3.1. UNIX Interproceaa Communication

This section briefly reviews the interprocess communication (IPC) mechanism available in

Berkeley UNIX 4.2BSD. The system calls that provide the interface to the IPC mechanism are

discussed to clarify the relationship between the calls included in a program and the events that

6

are metered by the monitor. For a more complete description or Berkeley UNIX 4.2BSD IPC

see !Leffler 83, Sechrest 84J.

Communication in Berkeley UNIX is based on ~ocket~. A socket is an endpoint or

communication. Sockets are created by processes in order to be able to communicate with one

another. A socket, once created, exists independent or the creating process. Several processes

might have access to the same socket at the same time. A socket disappears when it is no longer

reCerenced by any process. Ir a process Corks, its child gains access to the parent's sockets, just as

the child gains access to the parent's open files. Pointers to sockets and open files are recorded Cor

each process in a descriptor table.

Communication has two phases: establishing a channel Cor communication, and transCerring

data. A channel may be established between two sockets beCore any messages are sent. This is

done Cor connection-based, or ~tream communication. A new channel may also be established Cor

each message as it is sent. Connectionless communication is done with datagrams. The term

datagram has certain other implications that will be discussed below.

Datagrams are messages exchanged between unconnected sockets. The delivery or the

messages is not guaranteed, though it is likely. Nor is the order in which a set or datagrams

arrive guaranteed to be the order in which they were sent. A datagrams is read as a complete

message. Each new read will obtain bytes Crom a new message.

Stream communication concatenates messages into a single, reliable, ordered byte stream.

In this case, message delivery is guaranteed and messages arrive in the same order as they were

sent. As many bytes as possible are delivered Cor each read without regard Cor whether or not the

bytes originated rrom the same message.

When two processes communicate with datagrams, each creates a socket with a call to

socket(}. To send a message rrom one socket to the other, it is necessary to speciCy the

prospective recipient. A name is given to the recipient when the owner or the target socket calls

bind{}. Once the receiving socket has a name, the sender may send a message by calling the

routine ~endto(), with arguments speciCying the message and the name or the recipient. (It is also

possible Cor the sender to predefine the recipient by calling the routine connect(), specifying the

recipient's name, and then calling ~end(}, speciCying the message.) The receiver reads the message

by calling one or five routines, read(}, readv(}, recv(), recvfrom() or recvmsg(). These routines are

only slight variations or one another, and thus we may assume that the program always calls

read(}.

Stream communication requires that a connection be established between two sockets.

Typically, connections are formed Collowing a client-server model, though after the connection is

established there is no difference between the two processes in their use or the connection Cor

communication. One or the processes must initiate the connection, acting as a client; the other,

acting as server, must have bound a name to its socket, must have initialized a queue or pending

requests, and must accept the connection. As before, sockets are created by calling socket(}, and

names are bound by calling bind(}. The list or pending connections is initialized by calling

listen(), specifying the maximum number or connections allowed to wait. Connections are

initiated by calling connect() and specifying a name, and accepted by calling accept(), without

speciCying a name. To be successCul, these calls must Collow the binding or the target name and

the initialization or the pending connection list by a call to li~ten(}. Either call can result in the

process blocking until the other process bas made its call and the connection is established. The

result or the calls is the creation or a new connection ~ocket owned by the accepting process and

connected to the initiating process's socket. The accepting process's original socket is only used

for the establishment or connections. Transfer or data is done through the connection socket,

which disappears when the connection is broken. A connection consists or a pair or byte streams

traveling in opposite directions. Hence one can both read from and write to a connected socket.

Either process may send a message to the other by calling one or four routines, namely write(),

writev(}, und(} or ~endm~g(}, that may all be thought or as variations or write(). Messages are

0

read by calling some variety of read(}.

It is also possible for a process to obtain a pair of connected sockets by calling the routine

~ocketpair(). Since the sockets created can be inherited by a child process when the process forks,

processes can use socket pairs to set up communication between their children in a simple way.

Socket pairs provide stream communication identical to that provided by sockets connected using

connect(} and accept().

3.1. Kernel Level Structur•

To monitor a process's communications, it is necessary for the process's IPC events to be

detected, and for a filter process to be informed when one of these events occurs. Typically these

events are associated with system calls. For every metered process, a connection is established

with the filter. On every call to a routine that might initiate a meter event, the kernel checks

whether the call is currently metered for the process that is making the call. If the call is

metered, the kernel creates and stores a message containing trace data. When a sufficient number

of messages have been stored, the kernel sends them together to the filter across the meter

connection. AB part of process termination, any unsent messages are forwarded to the filter. Of

course, it is also possible to have aU meter messages sent immediately after the occurrence of each

event.

In UNIX each process is described by an entry in the process table. This entry is available

even when the process is not running. For the purpose of metering, three fields have been added

to the process structures in the process table. One field is a pointer to the meter ~ocket, a socket

which has been connected to a filter process. This connection differs from other IPC connections

in that the descriptor of the socket through which meter messages are sent to the filter is not

stored in the process's descriptor table and is, therefore, not directly accessible by the process. A

second field is a bit mask indicating the events to be metered. (This is currently a 32 bit word,

but it could be expanded.) The third field is a pointer to meter messages that have yet to be sent.

The meter socket is created and connected to the filter by the control program. The fields

of the process table that point to the meter socket and hold the meter event bit mask are set by

the system call ~etmeter(), described in a later section. The bits of the bit mask are called the

meter flag~. Both the meter ftags and _the meter socket can be changed at any point during

process execution by any process having the same effective user id or any superuser process.

When a process forks, the child process inherits the meter socket and the meter ftags of the

parent. Thus, all of the children of a metered process will also have the same events monitored. If

an outside agent is used to create a process, such as the system rezec server, the new process will

be monitored only if the server is being monitored or if monitoring is explicitly set for the new

process after it is created.

In general, each communication event for a process corresponds to a meter event. For

example, one can meter both accepts and connects, or only one of the two or neither. However,

the many versions of write{) all correspond to the same meter event, as do the varieties of read(}.

It is not important to distinguish between the varieties of these operations to understand the

communication taking place. Similarly, ~ocketpair() is not treated differently from a pair of

socket creates followed by separate connects and accepts; all four messages are produced.

3.3. Proceu Structure of the Measurement Sy•tem

The measurement system is a distributed program in that it is structured as a group of

cooperating processes not required to execute on the same machine. Active cooperation among

these processes is necessary. The measurement system has four parts, the meter~, the filter

processes, the control process, and the analy~i3 routines. This structure is illustrated in Figure

3.1.

Dnetered processes

o9
il-9
i :

0
0

L.~------·-·-·-·-i

7

filter

Dneter
. .
-·······························

. .

..

IPC connections

control process

\
\

6J
rdaeDnon

Figure 3.11 Structure of 4.JBSD Meterln1 Toola

The meter is responsible for the extraction or event data. Metering requires the ability to

detect process events and to subsequently pass the event data on to the next stage or

measurement. Events are detected in the kernel, data are extracted from operating system data

structures, and these data are sent as an event record over an IPC connection to a filter process.

The selection, reduction, and storage or trace data is the responsibility or a filter process.

This represents the second stage or measurement. A filter is the recipient or the measurement

data that are generated by the meters. The user may only be interested in saving meter events

which match certain criteria. For example, the user may only want to save event records or

messages having a message length over a specified minimum, or event records or a process only

when the CPU time is under a specified maximum. It is the filter that interprets the selection

criteria and decides which event records are to be kept and which are to be discarded. Filter

processes do not exist by default in the measurement tool. The user must tell the control process

to create a filter process. Many filter processes may exist simultaneously. Usually, there will be a

filter process created per computation. A standard filter, described in section 3.4, is provided by

the measurement tool. However, given a few basic constraints, custom filters can be easily

written.

The task or organmng the parts or the measurement system and providing a control

interface to the user is performed by the control process (or controller}. The controller provides

the mechanisms for establishing the communication paths between all or the components or the

measurement system. The controller is a command interpreter. It provides the user with a

concise menu or commands to use in the measurement and control or one or more distributed

computations. The controller, upon receiving a command, interprets the command and perforDns

the requested function. Executing this request may require interacting with other components or

the measurement system and establishing communication paths between the various components.

The analysis routines provide the means for interpreting the traces created by filters. They

give meaning to the data by summarizing and operating on the event records collected. The user

produces his own analysis routines according to the purpose or the study. Examples or some

analyses that have been performed are detailed in !Miller 84]. These analyses include

communications statistics, measurement or parallelism, and structural studies.

8

3.4. Dealgn of the Filter

Difl'erent filter processes can be used in the measurement system. Given one basic

constraint, a user can write a custom fitter. This one constraint is that a filter process must listen

to its standard input in order to receive meter messages from the kernel meter. Once the filter

has received these messages, it8 actious should not afl'ect the operation or the rest or the

measurement system processes. A staadll.rd filter is provided by the measurement tool. Arter

receiving a message from standard input, the default filter performs selection and reduction

operations on the event records received. It uses event record descriptions and selection rules to

specify the criteria for data selection and reduction.

HEADER
1lse
maehlne
cpu Time
procTime
traeeT;ype

SEND 1,
pld,0,4,10
pc,4,4,10
10Ck,8,4,10
msgLength,U,4,10
destNameLen,1&,4,10
destName,20,1&,1&

Figure 3.2: Description of the Send Event

The event record descriptions define the message formats. These descriptions are stored in a

file with there being a description for each type or event. A description (see the sample shown in

Figure 3.2) is a list or fields within an event record. The header is a standard header which is part

or every meter message. The digits next to a field specify the position or the field within the

message. For example, the field 3ock contains the descriptor or the IPC socket through which the

message was sent. This field starts on the eighth byte from the end or the message, is four bytes

long and is displayed in base ten. Since the meter creates these messages, such definitions are

very important for establishing a successful protocol between the meter and a filter.

The selection rules are stored in another file and are used to select and edit event records.

They are chosen according to the objective or the analysis. The conditions that may be used to

specify selection criteria in a template are >, <, =, !=, >=, and <=. Example selection rules

which specify simple field values are shown in Figure 3.3.

aachine=&, cpuTt.e<10000
aachine=O, tJP8=1, •oct=4, destlaae=228320140

Figure 3.3: Simple Selection Rules

The first or these rules will match any event records received from machine 5 and time stamped

with a cpuTime under 10000 milliseconds. The second rule specifically matches a send event

occurring on machine 0, sent over socket 4, and to the destination indicated by 228320140.

The value specified in a template does not have to be simple. A wildcard value which

matches any value may be specified. The wildcard value is indicated by the character '*'. To

reduce the size or the data which is saved in the trace file, any field value may be prefixed with

the discard character '#'. II an event record is accepted by the filter, any fields with this value

prefix will be discarded. Examples of selection rules which use these options are shown in Figure

3.4.

.achine--t•. type=1, pid=l•, •1ze>=612

type=8, •octlue=peerlue

Figure 3.4& Selection Rulu

A filter sends its output to a log file located in the "/usrftmp" directory. Each filter has its

own log file. This file is used to store the trace messages collected by the filter. When a

computation is associated with a filter, all or the event records produced by processes which are

part of the computation are stored in that filter's log file. U desired, it is possible to have one

filter collect data from several computations. The events detected and logged by the filter process

are not seen by the user as they occur. Event records are sent directly to the filter. When the

computation has completed, the user then retrieves the trace file produced by the filter and has

the data analyzed.

There are no restrictions placed on the locations of the processes in the computation and on

the location or the filter to which the processes are connected. A filter process may execute on a

machine that is disjoint from the set of machines on which the processes of the computation are

executing. In situations where filter operations contribute significantly to the system load (i.e,

when large computations are being metered), this ftexibility may be useful.

3.5. Deelp of the Controller

The design or a distributed computation is often more complicated than a program designed

Cor a single machine environment. Issues which demand little or no attention when only one

machine is involved may demand significant attention when addressed in a distributed computing

environment. Since the measurement system is a distributed program, the implementation of its

control program addresses many or the issues involved in distributed computing. We discuss a

number of these issues in the remainder of this section.

3.5.1. Proce•• Control

The first design issue to be addressed is process control. The minimal requirement Cor

establishing a distributed computation is to have a facility Cor creating processes on the various

machines that are to be involved in executing the computation. A more powerful tool should also

provide mechanisms to specify the events to be metered Cor a newly created process, change this

specification Cor an existing process, start a remote process, and stop a remote process.

Furthermore, when a process is created, it should be suspended prior to the start of its execution.

This is necessary to give a user sufficient time to specify the desired measurement strategy and

provide some control over the time that various processes start executing.

Process control is easily accomplished within a single machine environment. To create a

process, a standard UNIX system provides the fork(} and e:eec(} functions. To subsequently start,

stop, and terminate the execution or a process, UNIX signals are used. Through the UNIX

aignal(} system call, changes in a process's state (such as normal process termination) can be

detected and control can temporarily be given to signal handling routine Cor signal processing.

Thus, the problem or process control has a readily available solution Cor a single machine

environment running under Berkeley UNIX.

The situation is not as simple Cor controlling processes across machine boundaries. The

controller must have the power to play an active role in the control of a process on another

machine. U the operating system underlying the measurement system made no distinction

between different machines as in DEMOS/MP[Powell & Miller 83J, process control in a distributed

system would be as simple as it is Cor a single machine. The boundaries between machines in

10

4.2BSD are not transparent. In a 4.2BSD system, the identifiers of a process only have meaning

for the local operating system under which the process is executing. Consequently, direct control

or a process on another machine is impossible.

Machine B

-~E7· ,....
Machine A / :

I I

e<---/e
pro

/<.,.,.,..,.>....,._,
.....,..cr-.t

I<-..!>

\ J

I \
I I

Flpre 3.6& Role of Daemon Proeeuee

To provide process control across machine boundaries, we use daemon processes executing

on each machine. This situation is exemplified in Figure 3.5. Here, the user is working from a

terminal connected to machine A and is running the control process. The user issues commands

to the controller. The controller uses the daemons on other machines when it needs to step over

to another machine to perform a process control function. The daemons serving the controller are

referred to as meterdaemon8. There must be a meterdaemon on each machine that supports the

measurement system. The sole purpose or the meterdaemons is to carry out control functions for

the controller.

11

type body

11: create request filename

parameter count

parameter list

filter port

filter host

meter ftap

control port

control host

18: create reply pid

status

Figure 3.8: Example Formata of a Controller /Daemon Message

The cooperation between the controller and the meterdaemons implies a need for a

communication protocol. This protocol defines the information to be exchanged, the

synchronization of the exchange, and the procedure for establishing communication connections.

Examples of the format of messages exchanged between· the controller and the meterdaemons

shown in Figure 3.6. This format includes a message type and a message body. The type field

identifies the purpose of the message. This may either be the type of request issued by the user or

the type of reply returned from the meterdaemon. The remainder of the message, the body, is

variable format and depends on the message type. All of the information that is required for the

execution of the operation (in the case of a request) or for reporting the operation's result (in the

case of a reply) is contained in the message body.

The exchange is structured as a remote procedure call. A meterdaemon spends most of its

time listening for an IPC connection request from a controller process. When a controller needs

the services of a meterdaemon, it issues a request for a connection to that meterdaemon. When

the connection is established, the controller sends a request message to the meterdaemon over this

connection, and then waits for the meterdaemon 's reply. When the request message is received by

the meterdaemon, the meterdaemon carries out the requested function, sends a reply message

back to the controller over the connection, closes the connection, and then waits for a new

connection request. Upon receiving the reply from the meterdaemon, the controller closes its end

of the IPC connection, completes the processing of the request, displays any relevant information

to the user, and prompts the user for the next command.

There is one exception to this protocol. When a process terminates, connection

establishment is initiated by a meterdaemon rather than by the controller. The meterdaemon is

the parent of all processes it creates. Consequently, a meterdaemon is signaled when one of its

processes terminates. When a process changes state (stops or terminates}, a signal handling

procedure in the meterdaemon is activated. Upon receiving such a notification, the meterdaemon

requests a connection to the controller responsible for the terminating process, and then sends the

information about tht: change of state to this controller. A controller maintains an IPC socket Cor

the purpose of establishing connections Cor state change reports. It listens to this socket to detect

messages arriving from meterdaemons. The controller informs the user or the new state or his

computation upon being notified of a termination.

A reliable communication path is desirable between the controller and a meterdaemon. For

this reason, a stream connection is used instead of a datagram connection. The stream connection

between the controller and a meterdaemon exists Cor the duration of a single exchange of

messages. The reason Cor the temporary connection is that long-standing stream connections can

be undependable when used across machine boundaries. Furthermore, communication between

the controller and the meterdaemons is infrec:iuent enough that establishing these connections as

they are needed does not introduce significant overhead.

3.5.Z. Proceu 1/0

Another issue involved in providing a complete control environment Cor the execution of a

process is the redirection of a process' 1/0 across machine boundaries. This redirection may

involve reading from or writing to a specified file or standard 1/0 device.

Ir a remote file system were available, in particular one with a uniform name space such as

in LOCUS !Walker et a.l 83j, reading from or writing to a remote file would be handled by the

operating system. However, since such facility is not available in 4.2BSD, the measurement

system controller must provide this access.

For processes which are already running but are acquired Cor metering purposes, no changes

are made to the handling of the processes' 1/0. These processes continue executing in their

existing environment with the one exception that they are now being monitored. This

monitoring is transparent to the executing processes. The user is not allowed to modify the

processes' execution state or any aspect of the processes' execution environment other than the

metering state.

An example of redirecting process 1/0 is found in the implementation of the function rexec(J.

Rexec(} is used to create a stream connection to a remotely executing command. The standard

input and output or the command are redirected to this stream, allowing the user to communicate

with the remote command. We use a similar strategy Cor our processes.

We have the ability to make a connection to a meterdaemon running on each machine. To

complete the path from the process to the user, we must provide a facility Cor making a

connection between the process and the meterdaemon. Given this facility, the standard output or

the process is redirected to the meterdaemon; the meterdaemon forwards the message to the

appropriate controller; and the controller displays the message to the user. The reverse path is

traversed when sending standard input from the user to the process.

To implement this strategy, each daemon creates an IPC socket. This socket is used as

the gateway Cor 1/0 between the user and the process. It creates one additional IPC socket Cor

each process, passing this socket to the process. This socket is the process's end or the gateway

connection. The child process, before executing the ezec(J, changes its standard input, standard

output, and standard error file descriptors to the descriptor of the socket provided by the

meterdaemon. Consequently, when the new process reads from or writes to standard 1/0, it

actually is reading from and writing to the meterdaemon. Since the meterdaemon and the

metered processes are executing on the same machine, datagrams can be used Cor interprocess

communication. Such links are reliable when used within a single machine.

In the case where standard input is coming from a file rather than from the user, a different

strategy must be taken. The file is copied to the machine on which the specified process is

executing. The file is then opened by the meterdaemon, which redirects to it the standard input

or the process.

13

3.5.3. Flle Location

In order to create a process, the executable file must be accessible to the operating system

on the machine where the process is being created. If we want a process to execute on a remote

machine, but the file is local, either a remote file system must exist or we must copy the file to the

remote machine. The lack of such a file system in 4.2BSD at this time forced us to implement the

latter alternative. The rep utility was used to copy the files. This utility is accessed through a call

to the 8ystem() function.

3.5.4. Internetwork Communication

The controller is responsible for making the required connections during a metering session.

One example of a connection the controller must provide is the connection between a filter and a

process that will be metered. When a filter process is created, it opens and binds a name to the

IPC socket to which the meter messages will be sent. The controller must save the name of a

filter's socket, and must give this name to the process which is to be metered. Therefore, the

name of an IPC socket will be exchanged between processes. These processes may be executing

on different machines, and even on different networks.

A socket name is composed of the host address and the port number. A given host may be

a member of two or more networks and thus two or more different addresses may be used to

access it by the other hosts in these networks. The implication of this inconsistency is that a

socket name should not be exchanged between processes it this name will be used to make an IPC

connection. Therefore, when communicating an address, the literal name of the host and the

number of the port are exchanged. The receiving process then constructs the socket name using

its own host address for the specified machine.

3.5.5. Protection

Protection in the measurement system is implemented according to the policy used in

4.2BSD. When using the measurement tool, a user is granted no special privileges; he or she has

only those access rights dictated by his or her account. Access to any files involved in the

creation of processes or in the storing of data are checked against the privileges associated with

that account. An outside process, such as a system daemon, can only be metered by a user that

has the appropriate access rights to such a process. To create a process on a machine, a user

must have an account on that machine. This implies that, in order to meter a computation, a

user must have an account on every machine involved in that computation.

4. The User'• VIew of the Measurement Tools

4.1. The Kernel Funetlona

A system call, ~etmeter{}, provides the control program with ac:cess to other processes,

allowing them to be metered. By default processes are not metered, but once the control program

bas set the meter specifications for a process, the specifications are inherited by the child when a

process forks.

Setmeter() takes three arguments, the process ID, meter ftags, and the connection sockets.

The full options are

SELF or an integer process id,

NONE, NO_CHANGE or ftags indicating the events that are to be metered,

NONE, NO_CHANGE or a meter connection socket

The constants and ftags for events are defined in the system include file <meterftags.h>. The

llags, or the meter connection may be left unchanged by specifying the value NO_CHANGE. All

lla.gs are turned off by specifying the value NONE. The value NONE specified as a connection

socket closes the socket, it one exists. A process can set metering information for any process

belonging to the same user, including itself. A superuser process can set metering for any process.

One selects the ty~ or events to be metered by setting flags for the process. The flags

defined are:

METERACCEPT
METER CONNECT
METER SEND
METERRECEfVECALL
METERRECEfVE
METER SOCKET
METERDUP
METERDESTSOCKET
METERFORK
METERTERMPROC
M_ALL

process accepts a connection
process initiates a connection
process sends a message
process makes a call to receive a message
process receives a message
process creates a socket
process duplicates a socket or file descriptor
process closes a socket
process forks
process terminates
meter all events

In addition to flags for events, one may set a flag indicating that meter messages are to be sent

immediately, rather than buffered. The default is to buffer several messages so that the number

or meter messages is considerably smaller than the number or messages sent by the metered

process.

The meter connection consists or two connected sockets. One end is presumed to belong to

a filter process, the other to be created by the local meterdaemon. The meterdaemon creates its

socket by calling ~ocket(}, and initiates the connection to the filter. Once the connection is

established, the daemon calls ~etmeter(), passing to it the connected socket descriptor. The socket

descriptor is duplicated for the metered process, but not placed in that process's descriptor table,

so that the process is not able to send messages through the socket. The meter does not reduce

the number or open files and sockets available to the metered process. II utmeter() is called

specifying a new meter socket for a process already having one, the old socket is closed. Meter

sockets are also closed when the process terminates, and when the meter connection is set to the

value NONE.

15

size

machine

Header cpu Time Local clock

procTime Time charged to user process

trace Type

process id

pc PC at time of system call

socket Socket accepting connection

newSocket Socket created for connection

sockNameLen

peerNameLen

sock Name Name bound to accepting socket

peer Name Name bound to connecting socket

Figure 4.1 Structure of a message for an accept() call

The meter messages contain a standard header and a body that depends upon the

corresponding meter event. The structure of a message recording a accept event is shown in

Figure 4.1. The header includes fields for the message size, the event type, the machine id, the

time on the system clock, and the CPU time for which the process has executed. The system

clock time is useful for establishing the order of events on a particular machine. The separate

machines' times, however, only roughly correspond to a global time. Statements regarding the

global ordering of events can only be made on the basis of evidence within the trace. For

example, since a message must be sent before it may be received, the times of sending and

receiving a message can always be ordered relative to one another. Given these constraints, much

or the global ordering can be deduced. The process time allows the estimation or the amount or

work necessary between two events. The granularity of this measure is large, however. CPU use

is updated in increments or lOms. Estimates based on the reported values must recognize this

limitation.

The message body for most events includes the process id, the address of the instruction

that called the system routine, and the address of the socket with which the operation was

performed. Sockets are identified by their address within the system descriptor table. This

ensures that socket addresses are unique within a particular machine. Some of the message bodies

include the names of ~kets. The form of the names depends upon the domain of the

socket!Sechrest 84}. Currently, socket names are presented as either an Internet Domain name!Su

8l Postel 82}, a UNIX path name (for the UNIX domain) or, in the case or socketpairs, an

internally generated unique name. The names are important in matching the sockets in a

connection and in identifying the recipient or datagrams. The length or the name is given in the

message. For some calls, not all the information for the message is available. For example, when

one writes across a connection, the name of the recipient is not available to the metering software.

In this case the length of the name is specified as zero. By examining the sockets that were paired

18

when the connection was created, the recipient information can be recovered. This is one or the

tasks or the analysis programs. The complete message format is shown in Appendix A.

4.2. Joba and PJ"Oeeua

In our measurement model, a computation is a collection or processes working towards a

common goal. The controller uses the term job to designate a computation. A job is created by

assigning a name to it, and then adding processes to it. Once the job is created, the measurement

strategy for the job can be specified.

Figure 4.2 Process State Diagram

The processes making up a computation are tracked by the controller as they progress

through different stages or their lives. The five process states recognized by the controller are

new, acquired, running, Btopped, and killed. The state diagram representing a process' life cycle

is shown in Figure 4.2. When a process has been newly created, it is in the new state. This state

indicates that the execution environment has been set up, but the process is suspended prior to

the execution or the first instruction. From the new state, a process can enter the running state

by starting it, in which case the process begins execution. A process can also move from the new

state to the stopped state, in which case it remains suspended, this transition occurring when the

user stops the job. A process can switch between the running and the stopped states until the

time it completes. When a process completes, it is moved from the running state to the killed

state. It will remain in this state until the user removes the job. The killed state may also be

entered from the stopped state. This occurs if the user decides to remove the job before it has

completed execution. A process cannot be restarted once it has been killed. A process cannot

move directly to the killed state from the new state. This restriction is enforced as a

precautionary measure, ensuring that the user does not accidentally remove a computation that is

in progress. Ir a previously existing process such as a system server is metered, it is moved

directly to the acquired state. This is the only state such a process can be in. An acquired process

cannot be stopped or killed, it can only be metered. The acquired status ensures this limitation or

control.

4.3. User's Manual

This section describes the details or the user's commands to the control program. The

commands are: help, filter, newjob, addproeeu, aequlre, aetftap, atartjob, atopjob,

removejob, removeproeesa, Jobs, getlog, aouree, sink, and die. Each or these commands is

discussed in detail in this section.

17

First, the general command flow or a measurement session is outlined below:

(1) Create a filter prvc~'3 (ftlter).

(2) Create a job (newJob).

(3) Create the procP.ssu; involved in the computation (addproeeu).

(4) Set the meterins flags on the job (aetftaga).

(5) Start the job (etartJob).

(6) When the job completes, get the logfile (getlos).

(7) Cleanup by removing the job (rmJob).

(8) Exit the controller (die).

In the command descriptions to follow, all parameters will be surrounded by the symbols'<'

and '>'. Optional parameters will be enclosed by 'I' and 'J'. Command parameters must be

literals formed from the digits 0 through 9, the upper and lower case letters, and the characters '/'

and '.'. Delimiting characters are blanks, tabs, new lines, and carriage returns. An example or a

session with the controller is presented in Section 4.4.

help
This command is a source or information. It displays the menu or the control commands

with a brief statement or their function. The required and optional parameters to the

command are indicated. At the end or the menu, the available metering flags are listed.

Biter (< ftltername > (<machine> [< ftlterftle > (< deaeriptiona > (<templates>]])]]

Ir parameters have been specified, a filter process will be created from the program in

"filterfile" and will be given the name "filtername" for identification within the control

program. The filterfile must be an existing, executable file. Ir no filterfile has been specified,

the default file "filter" is used. Ir no machine has been specified (only the filtername has

been specified on the command line) then the default is to create the filter locally. A

standard filter requires two additional files: the trace descriptions file and the templates

selection rules. Ir these files are not specified on the command line, standard filenames

("templates" and "descriptions") are used. Read access is required to these files.

Ir no parameters have been specified Cor the filter command, information about existing filter

processes is displayed. The information is a list or the available filters indicating their

process identifiers, their names, and the machines on which they are executing.

newjob <Jobname> (<ftltername>)
This command is used to create and initialize a job. The job is given the name "jobname".

The user ~an optionally specify a filter Cor the job by including the name or an existing filter

process. Ir no filter is indicated, the control program uses the default filter process. A job

cannot be created if a filter has not been created. This implies that prior to the execution or

newjob, a Biter command must have been executed.

No restriction is placed on the number or jobs or on the number or filters the user can

create. Many computations could be executing simultaneously, having traces collected by

different filters.

addproeeu <Jobname> <machine> <proceaaftle> (<parml parm2 ••• >)

Addproceu, or add, is used to create a process as part or a job. The process is added to

the job "jobname" and is created on the host "machine", by executing the file "processfile"

with the parameters "parml, parm2, .. .''. A process does not begin executing at this time,

and its process state is new. The process is connected to jobname's filter and inherits the

flags or job "jobname". A process can be added to any job at any time, even after processes

18

in the job have started execution.

aequlre <Jobname> <maehlne> <proeeaa ldentlfter>

The aequlre command provides the ust:r with the ability to meter a process that is already

executing. In this case, the process ide.utifier must be known and specified as "process

identifier". To meter this process, the user must have the appropriate access rights.

"Jobname" indicates the job to which the acquired process will be assigned. This

assignment determines the filter to which the event traces will be directed. "Machine" is the

host on which the process is executing.

The motivation for this command is that situations may arise in which a process such as a

system server is an important component or a computation. Thus, it should be metered

along with the other processes involved in the computation. Even more simply, a user may

be interested only in monitoring a system server to better understand its behavior.

aetftaga <Jobname> <flail fta1t ••• >

This command is used to set, or reset, the metering flags on a job. Setftaga is the user's

interface to the 4.2BSD UNIX system call $etmeter() described in section 4.1. The event

flags are:

fork
termproc
.!end
receivecall
receive
.!OCket
dup
destsocket
accept
connect

process creation
process termination
sending a message
ready to receive a message
receipt or a message
creation or a communication socket

duplication or a socket (descriptor)

destruction or a communication socket

request for a connection (readyness to accept)

establishment or a connection

The effect or aetftaga is to record the flag set "flag 1 flag2 ... " with "jobname" and then set

the flags for each process which is part or jobname. Flags can be set at any point in the

execution or a job. A process does not have to be stopped in order to set its flags.

Flags are set by listing the desired flags on the command line. They can be reset by

indicating a '-' in front or the flag to be reset. For instance, "-send" will turn oft' the

metering or the .!end event for the job indicated. A shorthand notation can be used. The

flag 'all' will set all or the metering flags, and '-all' will reset aU or the flags.

If two aetftaga commands are executed, the set or active flags is the union or the two

groups or flags. A aetftaga command does not implicitly negate the previous flag settings;

all resetting must be explicit.

Joba [<Jobnamel Jobnamd ••• > J
Jobs provides the user with information about the state or a computation. It does not

change the state or the system in any way. If no parameters are specified, a list or the

current jobs is displayed. This list indicates the number, the name, and the filter for each

job.

Ir a list or jobnames is specified, then, for each job in the list, information about the job's

processes will be displayed. For each process, such information includes the process

identifier, the current control state, the process name, the machine on which the process is

executing, and the meter flags that are set.

atartjob <Jobname >

This command initiates the execution or a job. "Jobname" specifies the job to be started.

AU processes in the new or stopped state are signaled to begin or resume execution.

10

Processes that are running, killed, or acquired cannot be started. The user is informed as to

the status or each process.

atopjob <Jobname>

This command is used to halt the execution of a job. "Jobname" specifies the job to be

stopped. All processes in the specified job that are in the new or running state are signaled

to halt execution. Processes that are killed or acquired are ignored.

removejob <Jobname>

This command is used to remove the record of a job from the controller. Jobname specifies

the job to be removed. A job can only be removed if all or its processes are in one of the

states killed, stopped, or acquired. If any of the processes are still running or new, the job

will not be removed. When an acquired process is removed, the control program insures

that the filter connection of that process is taken down so that the process will not continue

to be metered after its job bas been removed, but the process continues to execute.

ptlog < filtername > < dHtlnatlon filename>

The log file for the filter process identified by "filtername" is retrieved. When retrieved, the

log file is copied to the file "destination filename" .

.ouree <filename>

This command (and the alnk command) allows the user to run scripts of control commands.

Souree instructs the control program to read command lines from the command script

"filename" instead or from the terminal. Any of the control commands may be specified in

this script file. Source commands may be nested within scripts to a maximum depth of

sixteen. When the entire script has been processed, input is again expected from the

terminal.

alnk [<filename> J

die

Slnk provides a way for the output or commands to be written to a file instead or to the

terminal. Thus, the output of a sourced script can be redirected to the file "filename" by

having a "sink <filename>" command as the first line of the script. When the script is

completed, the output file should be changed back to the terminal by including a sink

command without parameters as the last command in the script; output is directed back to

the terminal when a destination filename is not specified.

This command terminates the control program. Upon exit, all executing filter processes are

removed. Aliases of this command are exit, bye, and control D (·n). If there are still

active processes (new, stopped, running, or acquired), the user is warned, and the controller

does not exit. If the user immediately repeats the die command in this situation, the

controller will assume the user is aware of the situation and exits with the processes active.

4.4. Example of a Programmer's Session With the Controller

This section presents an example of a metering session. The script for this session is shown

in Appendix B. We step through the commands issued by the programmer and describe what

happens throughout the system when executing each or the programmer's requests.

20

control process

filter

re green yellow

0 c9
i-·-·-·-·-·-·-·-·-·-·-·-i

daemons

Figure 4.3 Filter Creation

The control program, the filter, and the metered processes can run on one or on several

machines. On every machine on which a process or the computation is to run, there must be a

meterdaemon" The programmer chooses a machine on which to run the control program and

starts its execution there. At this time, the programmer can issue control commands to the

control process.

The programmer first creates a filter process by issuing the filter command (see Figure 4.3),

specifying the machine on which the filter is to run. To create the filter, the control program

creates an IPC connection to the meterdaemon on the specified machine, and sends a message

that requests the creation or the filter process. The meterdaemon creates this process and returns

a reply. Once the request bas been satisfied, the IPC connection is removed.

After creating a filter, the programmer requests the creation or a job with the newjob

command. The control program creates a data structure specifying the processes comprising the

job and the filter associated with the job.

After the job is created, the programmer issues an addproee .. command to add a process

to the job (in Figure 4.4 this is process A), The control program then creates an IPC connection

to the meterdaemon, and sends a message requesting the creation or process A. The

meterdaemon creates the process and establishes the connection between the metering mechanism

for the process and the filter process. The IPC connection between the control program and the

meterdaemon is closed when the process bas been created.

nnetered process

red

8
0

green

0

filter

\

control process
I

yellow I

oY
!
I
i
i

L _________ ,:_·-· i
·----------------------------------~,:

-----------------·
: ~~~-~--- .. ;

Figure 4.4 Creation of Process A

When a process is created, it does not imnnediately begin executing. This allows the

addition of other processes before the job is run. With process A created, the user can request

that process B be added to the job but placed on a different nnachine. Process B would then be

created with the sanne procedure as process A. Processes A and B are the elements of the

computation. Having built the computation (see Figure 4.5), the programmer issues a •etftap

command to set the ftags on processes A and B, and then issues a •tartjob connmand to start the

execution of the processes. To execute the •etftap command, the control progrann connects to

the meterdaemon on process A's machine and then to the meterdaemon on process B's machine.

When connected to a meterdaemon, the control program sends the daemon a message that

requests that the ftags on the appropriate process be set. The meterdaemon connection is

removed when the request bas been satisfied. The execution of the •tartjob command follows

the same proc~dure as the execution of •etftap except that the controller's message requests that

the daemon start the process.

red

Q
0

metered processes

green

8
0

meters

blue

. . ----------------------------------

filter

! ..
... '

Figure 4.5 l!rocess B Added

control process

\
yellow _\

SJ

AB processes A and B execute, they communicate using the IPC mechanism. In Figure 4.6, these

two processes are shown as having an IPC connection. System calls corresponding to metered

IZ

events cause the i:neters to generate messages that are sent through the meter connections to the

filter program.

md~r •. d processes

filter

red green blue

0 0!
8

Ol
I

~~
I

~~
i j i i

i--~·-·-·-·-·-·-·-·j
.
·---------------------·-------------··-------------------------··-------------~

Figure 4.6 Process Communication

5. Conclu•lon

control process

\
yellow ~\

p

The tool described in this document provides a means of monitoring a distributed

computation. The model of computation is simple, involving a small set of process and

communication activities to describe the behavior of a computation. Our measurement model is

based on monitoring this set or activities. The tool is the implementation or the measurement

model for the Berkeley UNIX 4.2 BSD operating system.

The metering tools collect event records for process and communication activities. The

activities that are monitored match those primitives that are used by the programmer of the

computation. Thus, there is consistency between the static view of a program (the commands

and statements used to construct it) and the dynamic view of a program (the record of its

execution).

The measurement tools that we have described do not require the insertion or extra

statements into the programs being monitored, nor their recompilation. This transparency makes

them attractive for use in the development or evaluation of any distributed program.

Initial experience with these tools [Lai & Miller 84] has shown them to be useful for

measurement studies, as well as for program debugging. A multiprocess computation was

developed and debugged using the tool, which led to substantial modifications of the program

resulting in substantial improvements or its performance.

e. References

[Almes et al 83]
G. T. Almes, A. P. Black, E. D. Lazowska, and J.D. Noe, "The Eden System: A Technical

Review," Technical Report 83-10-05, University of Washington (October 1983).

[Baiardi et al 83]
F. Baiardi, N. de Francesco, E. Matteoli, S. Stefanini, and G. Vaglini, "Development of a

Debugger for a Concurrent Language," Proc. of the ACM SIGSOFT/SIGPLAN Software

Engineering Symp. on High-Level Debugging, pp. 98-106 Pacific Grove, Calif., (March

1983).

!3

[Bates & Wileden 83}
P. Bates and J. C. Wileden, "An Approach to High-Level Debugging of Distributed

Systems," Proc. of the ACM SIGSOFT/SIGPLAN Symp. on High-Level Debugging, pp.

23-32 Asilomar, CaHf., (March 1983).

(Cheriton & Zwaenepoel 83}
D. R. Cheriton and W. Zwaenepoel, "The Distributed V Kernel and its Performance for

Diskless Workstations," Proc. of the Ninth Symp. on Operating Sys. Principles, pp. 128-

139 Bretton Woods, N.H., (October 1983).

[Ferrari 78}
D. Ferrari, Computer Systems Performance Evaluation, Prentice-Hall, Inglewood Cliffs, NJ

(1978).

(Gusella & Zatti 83}
Riccardo Gusella and Stefano Zatti, "TEMPO: A Network Time Controller for a Distributed

Berkeley UNIX System," Technical Report UCB/CSD 83-163, University of California,

Berkeley (December 1983).

[Lai & Miller 84}
N. Lai and B. P. Miller, "The Traveling Salesman Problem:," Technical Report UCB/CSD,

University of California, Berkeley (June 1984).

[Lamport 78}
L. Lamport, "Time, clocks, and the ordering of events in distributed systems," Comm. of

the ACM U(7) pp. 558-565 (July 1978).

[Leffler 83}
S. Leffler, "A 4.2BSD lnterprocess Communications Primer," Computer Systems Research

Group Technical Report, University of California, Berkeley (1983).

(McDaniel 75}
G. McDaniel, "METRIC: a kernel instrumentation system for distributed environments,"

Proc. of the Sixth Symp. on Operating SyB. Principle~, pp. 93-99 Purdue University,

(November 1975).

(Miller 84}
B. P. Miller, "Performance Characterization of Distributed Programs," Ph.D. Dissertation,

University of California, Berkeley {May 1984).

[Philips 82}
D. Philips, "Black Flag," Technical Report, Carnegie-Mellon University (June 1982).

[Powell & Miller 83}
M. L. Powell and B. P. Miller, "Process Migration in DEMOS/MP," Proc. of the Ninth

Symp. on Operating Sys. Principlu, pp. 11~119 Bretton Woods, N.H., (October 1983).

(Schifl'enbauer 81}
R. D. Schitfenbauer, "Interactive Debugging in a distributed computational environment,"

Technical Report MIT /LCS/TR-264, MIT (September 1981).

(Sechrest 84}
S. Sechrest, "Examples of Interprocess Communication in UNIX 4.2BSD," Technical Report

UCB/CSD, University of California, Berkeley (June 1984).

14

[Su & Postel 82J
Su and Postel, "The Domain Naming Convention for Internet User Applications," RFC 819,

USC lSI (Septcmbe1· 1982).

25

Appendix A: Meter Mesaage Formate

The following is the C language definition of meter message formats. Each time a metered

event occurs, a meter mess:\6e is created in the kernel. These messages are stored in the kernel

for eventual delivery to the filter. Each message consists of a header, whose format is common to

all messages, and data particular to the message type.

In the UNIX system, files defining common data structures are kept in the directory

jusr/include or one of its subdirectories. These files may be included in user programs. Included

files are specified by placing the path relative to jusr /include within angle brackets. The message

formats are defined in the include file <sysjmetermsgs.h>.

typedef lons SOCKET;
typedef •truct Boctaddr lAKE;

•truct KeterHeader {
lons
•hort
lons
lons
lons
lons

};

•truct KeterAccept {
lons

};

lons
SOCKET

SOCIET
lons
lons
lAKE
lAKE

Btruct KeterConnect {
lons
lons
SOCIET
lons
lons
lAKE
lAKE

};

struct KeterDup {
lons
lons
SOCKET
SOCIET
};

struct KeterFort {

size;
aachine;
cpu TiM;
Duuy;
procTille;
trace Type;

pid;
pc;
•oct;

new•oct;
•octlaaeLen;
peerlaaeLen;
•octla.a;
peerlaae;

pid;
pc;
•oct;
•octlaaeLen;
peerlaaeLen;
•octlaae;
peerlaae;

pid;
pc;
•oct;
new•oct;

I• Size of aessase •I
I• Machine on which proce•• run• •I
I• Unu•ed •I

I• Tiae charsed to proce•• •I
I• Type of .a••ase •I

I• Proce•• ID •I
I• PC when •r•tea calll wa• aade •I
I• Socket (file tableentry addre••>

acceptins connection •I
I• lew •octet created for connection •I

I• laae bound to acceptiD.s •octet •I
I• laae bound to connectins •octet •I

I• Socket reque•tins connection •I

I• Jaae bound to connectins •octet •I
I• laae bound to acceptins socket •I

I• Socket beins duplicated •I
I• Duplicate •octet •I

};

long
long
long

pid;
pc;
newPid;

struct KeterRecvCKsg
{

};

long
long
SOCIET

pid;
pc;
soct;

struct KeterRecvKsg
{

};

long
long
SOCIET
long
long
IAIIE

pid;
pc;
soct;
ugLength;
sourcelaaeLen;
sourcela.e;

struct KeterSendKsg
{

};

long
long
SOCIET
long
long
I AilE

pid;
pc;
soct;
ugLength;
destlaaeLen;
destlaae;

struct KeterSoctCrt {
long pid;
long
SOCIET
long
long
long

}

pc;
soct;
doaain;
type;
protocol;

struct KeterKsg {

};

struct KeterBeader header;
union {

struct Keterlccept accept;
struct KeterConnect connect;
struct KeterDup dup;
struct KeterFort fort;
struct KeterRecvCKsg recvcall;
struct KeterRecvlsg recv;
struct KeterSendKsg send;
struct KeterSoctCrt crt;
};

I&

I• Parent process's ID •I

I• Child process's ID •I

I• Soctet receiving .assage •I

I• Soctet receiving .assage •I
I• BJte• in ug •I

I• la.a of soctet where .assage was sent •I

I• Soctet where aessage was sent •I
I• BJte• iD .assage •I

I• Destination naae •I

I• File table entrJ of new soctet •I
I• lew socket's doaain •I
I• lew socket's tJP8 •I
I• lew socket's protocol •I

27

Appendix B: Serlpt of Example Seulon

This is the script of the measuremeut session demonstrated in Section 4.4. The text appearing in

tJPnTiter font indicates prompts or responses coming from the measurement system controller.

The controller's prompt is "<control>". Text appearing in sl•nted font indicates the

programmer's responses, and text appearing in italiciJ are comments.

<Control> ff/ter fl blue r· create a filter proce/JIJ on machine blue •j

filter "f1' ... created: identifier= 2117

<Control> newjob foo r· create a job; name it foo •j

<Control> •ddprocess foo red A (• add process A to the job foo •j

process "A' ... created: identifier= 2120

<Control> •ddprocess foo green B (• add procestJ B to the job foo •j

process 'B' ... ereated: identifier = 2122

<Control> setff•gs foo send receive fork •ccept connect

new job flas• = send receive fort accept connect

Process "A' Flass set
Process 'B' : Flass set

<Control> stertjob foo
'A' started.
'B' started.

<Control>

r· /Jet the metering flags on the job •j

r· IJtart the execution of the job •j

DOlE: process B in job 'foo' terainated: re&~on: noraal

DOlE: process .l in job 'foo' terainated: reason: noraal

<Control> rmjob foo
'.l' reaoved
'B' reaoved

<Control> getlog fl tr•ce

<Control> bye

r- get the trace file for filter fl •j

18

Appendix C: Setmeter System Call Manual Page,f
The following page contains the UNIX manual page for the ~etmeter(J system call. This

describes the system call as it is implemented on the Berkeley UNIX 4.2 BSD operating system.

SETMETER (2} UNIX Programmer's Manual SETMETER (2)

NAME
setmeter - set metering of processes

SYNOPSIS
#lnelude < meterftap.h >
aetmeter(proe, flap, aoeket)
lnt proe, flap, aoeket;

DESCRIPTION
Setmeter marks a process for metering. Flagged system calls by metered processes cause a

metering message to be sent to a filtering proce~a. Proc specifies the process to be metered. The

system calls to be Bagged are specified by flaga. Socket specifies a connected stream socket, over

which the metering messages can be sent. The routine stores the ftags and socket number for the

specified process.

The arguments may also be replaced by the special value -1. Ir this value is used to specify the

process id, the id of the calling process is used. Ir this value is used for either of the last two

arguments, those values are not changed for the process.

A user can request metering only for processes belonging to that user. Specifying any other

process results in an error. The ftags spacified by the user form a bit mask, which replaces the

processes previous bit mask. These bitmasks can be formed by ORing constants found in

<meterftags.h>. The following constants have been defined:

M_SEND
M_RECEIVECALL
M_RECEIVE
M_ACCEPT
M_CONNECT
M_FORK
M_SOCKET
M_ALL
M_IMMEDIA TE

These Oags indicate the system calls to be metered, except for M_IMMEDIA TE, which indicates

that metering messages are to be sent immediately, rather than buffered for greater efficiency.

The socket provided must be a stream socket in the Internet domain. Any other socket will result

in a negative return value and an error status. The socket must be connected to be used, though

this is not checked. Meter messages are lost if they are sent on an unconnected socket.

Once a process is marked for metering, any call to a ftagged system routine will cause a metering

message to be sent automatically. The form of these messages may be found in <metermsgs.h>.

The interpretation of these messages is left to a filtering process on the other end of the stream

connection. Child processes inherit metering ftags and meter connections from their parent.

Messages will therefore l>e automatically sent from any child process of a metered parent until a

aetmeter call is made to change the child's meter ftags. The stream connection remains open as

long as any process can access it, either the creating process, a metered process, or any child of

the metered process. The connected socket is not listed in the descriptor table of the metered

process.

This routine allows information to be gathered about processes' calls to the kernel. In particular

about calls that result in communication with other processes. This gathering can be done

invisibly to the metered process.

RETURN VALUE
A -1 is returned if an error occurs, otherwise a 0 is returned.

ERRORS
The aetmeter call fails if

1

SETMETER (2)

[EPERMJ

[ESRCHJ

SEE ALSO
socket(2), connect(2)

4th Berkeley distribution

UNIX Programmer's Manual

The process specified does not belong to the caller.

The socket does not exist.

10 November 1983

SET METER (2)

2

