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Abstract 
Writing and debugging distributed programs can be difficult. When a program is working, it 

may be difficult to achieve reasonable execution performance. A major cause of these difficulties 

is a lack of tools Cor the programmer. 

We use a model of distributed computation and measurement to implement a program 

monitoring system Cor programs running on the Berkeley UNIX 4.2BSD operating system. The 

model or distributed computation describes the activities or the processes within a distributed 

program in terms of computation (internal events) and communication (external events). The 

measurement model separates the detection of external events, event record selection, and data 

analysis. 

The implementation of the measurement tools involved changes to the Berkeley UNIX 

kernel, and the addition of daemon processes to allow the monitoring activity to take place across 

machine boundaries. A user interface has also been implemented. We present a users' manual 

and an example or the use or the measurement system. 
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1. Introduction 

1.1. Overview 

Most operating systems being designed today support some level or concurrent programming 

and multiple machine environments(Almes et al 83, Cheriton 6l Zwaenepoel 83]. Despite the 

increased activity in distributed systems, there is no agreed upon model or computation, nor is 

there a widely accepted model or program performance monitoring. 

When we monitor a traditional, single process program, we observe such well defined metrics 

as the paging activity or the frequency or subroutine calls. For programs consisting or multiple 

processes cooperating in a computation, there are no such standards. Applying the traditional 

metrics to the each or the processes in a multiple-process program does not provide a complete 

solution. These programs present a new level or complexity. The main factors that contribute to 

this complexity are a3ynchrony, time, and delay. 

Asynchrony occurs when more than one piece or the distributed program is executing 

simultaneously on different machines. A program that runs on a single machine, while possibly 

having the illusion or parallel execution, really executes a single instruction at a time. When a 

program runs in a distributed environment, we can have many instructions in the program 

executing at the same time. Thus, synchronization or the different pieces or a computation is 

more important and more difficult than in the single machine case. 

Time is a factor or additional complexity because we cannot provide a universal time base 

for all the machines. Time can be synchronized in a relative sense between processors(Lamport 

78], but a complete ordering or events (full synchronization) is not possible. There have been 

algorithms designed to keep an approximation or a universal time(Gusella 6l Zatti 83], but even 

algorithms that work well cannot guarantee perfectly synchronized clocks. 

The delay factor is due to the finite and non-deterministic time needed for communications 

between machines. No action affecting a part or a computation on one machine can instantly 

affect other parts or the computation on different machines. This causes two problems. The first 

problem is that there is no way or obtaining an instantaneous picture, or 3nllp3hot, or the state or 

a computation. The second problem is that there is no way of causing an instantaneous change of 

control for all parts of a computation on different machines. Nor is it possible to arrange for 

actions to occur at an agreed on time in the future, since we cannot keep the clocks fully 

synchronized. 

Traditional performance measurement and debugging tools do not provide enough 

information to deal with the problems or a distributed environment. The concept or a 

computation consisting or numerous concurrently executing parts is missing in them. The 

primary goal or this research is to provide the tools and the methodology to deal with the 

problems one encounters when developing distributed computations. In particular, we present the 

Berkeley UNIX implementation or a system or tools(Miller 84] for monitoring such computations. 

These tools are intended to aid the programmer in developing, debugging, and measuring the 

performance or distributed programs. This is the second implementation or these tools. The first 

implementation, described in (Miller 84], was for the DEMOS/MP operating system. 

The remainder or this section describes the basic terms and definitions that will be used 

throughout this paper. This will present a more concrete definition or the problem we are trying 

to solve. The basic measurement model and methodology are presented in Section 2, which 

includes a description or the components and structure or the model. Section 3 describes the 

structure or the implementation or the measurement system for Berkeley UNIX. The structure or 

monitoring facilities, both within the operating system kernel and outside, are described. Section 

4 describes the user interfaces to the various parts or the measurement system. That section also 

includes a user manual for programmers wishing to measure distributed computations. 
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1.2. What l• a Dl•trlbuted Program? And Other Deflnltlona 

We define a distributed program (or more simply, a computation) to be a collection of 

processes cooperating to perform a common task. The component processes are not constrained 

to run on the same machine; no assumptions are made about the locations of the processes. The 

two extremes are the case where aU processes run on the same machine and the case where each 

process runs on its own machine. The tools and methodologies that we are describing do not 

depend on how the program is physically distributed. 

A process is the basic building block of a computation. It consists of an address space 

containing code and data, and an execution stream. Each process has access only to its own 

address space. Processes do two things: compute and communicate. Computing is the normal 

execution of instructions. Communication is the means by which a process interacts with other 

processes and with the operating system. An interaction is an activity that involves more than 

one process, or a process and part of the operating system. The complexities of the distributed 

environment become apparent when a process in a computation interacts with another part of the 

computation. 

Communication is based on messages. A message allows the copying of part of one process's 

address space into that of another process. A message is an interaction involving exactly two 

processes, the process originating the data (the Bender) and the process consuming the data (the 

receiver). We make no assumptions about the network underlying the communications 

mechanism. The model of communications described here is applicable to a wide range of 

systems. 

Berkeley UNIX is not a message based operating system. This means that some of the 

interactions between a process and the operating systems (e.g., file system operations) will not 

involve message communications, but rather a subroutine call style interface. The subroutine call 

can be modeled as a request/reply message pair. 

Processes execute on machinu, each consisting of a central processor (CPU), memory, and 

peripheral devices. Machines do not have direct access to each other's memories. Each machine 

has a portion of the operating system running on it to support process execution, communications, 

memory management, and device management. The communication functions supplied by the 

operating system provide for interprocess communications both within and between machines. 

2. The Measurement Model and Tool Dnlp 

1.1. Measurement Model 

The model or processes cooperating via messages provides a uniform structuring for a 

computation. The communications in a computation involve the processes performing the 

communication functions, and the objects being communicated. This dictates the types of events 

we will need to monitor to understand the behavior or a computation. First, we must monitor 

events such as processes being created or destroyed, or starting or stopping execution. Second, 

activities associated with the shipment, delivery, and receipt of a message must be monitored. 

Also in this category are events describing the creation or destruction of communication paths. 

There are two major requirements for the measurement model described above. These are 

transparency and consistency. Transparency means that, when we talk of measuring events 

associated with the execution or a computation, we assume that the measurement of these events 

will do nothing (or at least as little as possible) to change how the events occur. Monitoring the 

program is a passive activity. This is in contrast to message debuggers, which allow 

rearrangement of the messages sent!Philips 82, Schifrenbauer 81]. No actions such as redirection of 

messages, breakpoints, and modifications of the message streams are done. The measurement 

facility should be an observer of the computation, and not in any way a participant. 
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Consistency means providing a uniform view of the computation being measured. The 

programmer uses a certain set of primitive functions to build a distributed computation. The 

programmer's model or computation and communication tends, therefore, to be based on these 

primitives. The events defined in our measurement model should be consistent with this view. 

Consider, for example, the problem or monitoring a message sent from one process to another. 

The programmer would see und and receive operations. The actual communications may be 

implemented using a protocol that involves acknowledgements, division of the message into fixed­

size packets, routing decisions, and so on. Viewing the communications at this more detailed level 

would obscure message delivery in unnecessary detail. Likewise, adding an extra level or 

semantics to the measurement events!Baiardi et al 83, Bates 8l Wiled en 83J may be inconvenient 

to the programmer. For example, if a formal description language is used to describe the correct 

sequence or communications, we must ensure that the description is correct before we can 

determine whether the program is correct. 

Z.2. Measurement Tool Design 

The design or a monitoring tool must embody the characteristics of the model described in 

the previous section. In particular, our measurement tool must adhere to the principles of 

transparency and consistency. 

The measurements must be done in a transparent manner. This means that, to measure a 

program, we cannot require a priori knowledge of the computation. No special action by the 

programmer or the computation should be necessary, and we should be able to measure any 

program. The program ought to be unaware that it is being monitored, and none or the interfaces 

to the operating system should be changed. The measurements will cause some degradation of 

the computation's performance, but this degradation should be kept as small as possible. This is a 

standard goal for any measurement facility, and early examples of this can be found in !Ferrari 

78J. 

We require the measurements to be consistent with the programmer's view. The 

measurements are based on the recording or interesting actions occurring during the lire or 

processes within a computation. These actions, called meter event8, or simply event3, consist 

primarily or activities that reflect interactions between processes (such as messages being sent and 

received). Events related to communications are recorded, as are events that pertain to the 

change of state of the processes in the computation. These events include the creation of a 

process, the starting and stopping or its execution, and the destruction (termination) or the 

process. 
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Figure 1.1 Overview of Meuurement Faclllty 

The overall structure or the measurement facility is shown in Figure 2.1. The three stages 

of measurement are called metering, filtering, and analy.!i.!. Metering is the extraction of the 

data from the operating system for processing outside of it. We refer to the operating system 

kernel as that part or the system that implements the basic objects and communications 

primitives. The ho.!t kernel is the kernel for the machine on which a particular process currently 

resides. Note that this implies that each machine bas a kernel or portion of a kernel resident on 

it. The ho.!t operating .!y.!tem is the operating system of which the host kernel forms a part. 

Filtering does selection and reduction of the data. This stage records or passes the reduced data 

on for analysis. Analysis is the extraction or information from the collected data. For a complete 

motivation and overview or the parts of the measurement system, see !Miller 84J. 

The measurement structure is similar to that of METRIC!McDaniel 75J. Our measurement 

system differs from METRIC in a number or ways. First, METRIC was not transparent; 

programmers bad to explicitly insert trace calls into their programs. Second, METRIC used a 

different model or distributed processing. The design or METRIC incorporates the concept or a 

broadcast network media, with the structure or the network visible to the measurement tools. 

3. Structure of the Meuurement Tool 

The measurement tools for Berkeley UNIX have a structure dictated by the model or the 

previous section. Metering is implemented in the UNIX kernel by examining the system calls 

made by metered processes and generating meter messages. The meter messages are sent to a 

filter across a communication path provided for each metered process. In addition to the metered 

processes and the filters, there is a user interface process, called the control process, that assists in 

the creation and control of the metered processes and filters. The following sections describe 

interprocess communication in Berkeley UNIX 4.2BSD, the implementation or metering within the 

kernel, the design or a filter process, and the design or the control process. The control commands 

available to the user are discussed in Section 4.3. 

3.1. UNIX Interproceaa Communication 

This section briefly reviews the interprocess communication (IPC) mechanism available in 

Berkeley UNIX 4.2BSD. The system calls that provide the interface to the IPC mechanism are 

discussed to clarify the relationship between the calls included in a program and the events that 
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are metered by the monitor. For a more complete description or Berkeley UNIX 4.2BSD IPC 

see !Leffler 83, Sechrest 84J. 

Communication in Berkeley UNIX is based on ~ocket~. A socket is an endpoint or 

communication. Sockets are created by processes in order to be able to communicate with one 

another. A socket, once created, exists independent or the creating process. Several processes 

might have access to the same socket at the same time. A socket disappears when it is no longer 

reCerenced by any process. Ir a process Corks, its child gains access to the parent's sockets, just as 

the child gains access to the parent's open files. Pointers to sockets and open files are recorded Cor 

each process in a descriptor table. 

Communication has two phases: establishing a channel Cor communication, and transCerring 

data. A channel may be established between two sockets beCore any messages are sent. This is 

done Cor connection-based, or ~tream communication. A new channel may also be established Cor 

each message as it is sent. Connectionless communication is done with datagrams. The term 

datagram has certain other implications that will be discussed below. 

Datagrams are messages exchanged between unconnected sockets. The delivery or the 

messages is not guaranteed, though it is likely. Nor is the order in which a set or datagrams 

arrive guaranteed to be the order in which they were sent. A datagrams is read as a complete 

message. Each new read will obtain bytes Crom a new message. 

Stream communication concatenates messages into a single, reliable, ordered byte stream. 

In this case, message delivery is guaranteed and messages arrive in the same order as they were 

sent. As many bytes as possible are delivered Cor each read without regard Cor whether or not the 

bytes originated rrom the same message. 

When two processes communicate with datagrams, each creates a socket with a call to 

socket(}. To send a message rrom one socket to the other, it is necessary to speciCy the 

prospective recipient. A name is given to the recipient when the owner or the target socket calls 

bind{}. Once the receiving socket has a name, the sender may send a message by calling the 

routine ~endto(), with arguments speciCying the message and the name or the recipient. (It is also 

possible Cor the sender to predefine the recipient by calling the routine connect(), specifying the 

recipient's name, and then calling ~end(}, speciCying the message.) The receiver reads the message 

by calling one or five routines, read(}, readv(}, recv(), recvfrom() or recvmsg(). These routines are 

only slight variations or one another, and thus we may assume that the program always calls 

read(}. 

Stream communication requires that a connection be established between two sockets. 

Typically, connections are formed Collowing a client-server model, though after the connection is 

established there is no difference between the two processes in their use or the connection Cor 

communication. One or the processes must initiate the connection, acting as a client; the other, 

acting as server, must have bound a name to its socket, must have initialized a queue or pending 

requests, and must accept the connection. As before, sockets are created by calling socket(}, and 

names are bound by calling bind(}. The list or pending connections is initialized by calling 

listen(), specifying the maximum number or connections allowed to wait. Connections are 

initiated by calling connect() and specifying a name, and accepted by calling accept(), without 

speciCying a name. To be successCul, these calls must Collow the binding or the target name and 

the initialization or the pending connection list by a call to li~ten(}. Either call can result in the 

process blocking until the other process bas made its call and the connection is established. The 

result or the calls is the creation or a new connection ~ocket owned by the accepting process and 

connected to the initiating process's socket. The accepting process's original socket is only used 

for the establishment or connections. Transfer or data is done through the connection socket, 

which disappears when the connection is broken. A connection consists or a pair or byte streams 

traveling in opposite directions. Hence one can both read from and write to a connected socket. 

Either process may send a message to the other by calling one or four routines, namely write(), 

writev(}, und(} or ~endm~g(}, that may all be thought or as variations or write(). Messages are 
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read by calling some variety of read(}. 

It is also possible for a process to obtain a pair of connected sockets by calling the routine 

~ocketpair(). Since the sockets created can be inherited by a child process when the process forks, 

processes can use socket pairs to set up communication between their children in a simple way. 

Socket pairs provide stream communication identical to that provided by sockets connected using 

connect(} and accept(). 

3.1. Kernel Level Structur• 

To monitor a process's communications, it is necessary for the process's IPC events to be 

detected, and for a filter process to be informed when one of these events occurs. Typically these 

events are associated with system calls. For every metered process, a connection is established 

with the filter. On every call to a routine that might initiate a meter event, the kernel checks 

whether the call is currently metered for the process that is making the call. If the call is 

metered, the kernel creates and stores a message containing trace data. When a sufficient number 

of messages have been stored, the kernel sends them together to the filter across the meter 

connection. AB part of process termination, any unsent messages are forwarded to the filter. Of 

course, it is also possible to have aU meter messages sent immediately after the occurrence of each 

event. 

In UNIX each process is described by an entry in the process table. This entry is available 

even when the process is not running. For the purpose of metering, three fields have been added 

to the process structures in the process table. One field is a pointer to the meter ~ocket, a socket 

which has been connected to a filter process. This connection differs from other IPC connections 

in that the descriptor of the socket through which meter messages are sent to the filter is not 

stored in the process's descriptor table and is, therefore, not directly accessible by the process. A 

second field is a bit mask indicating the events to be metered. (This is currently a 32 bit word, 

but it could be expanded.) The third field is a pointer to meter messages that have yet to be sent. 

The meter socket is created and connected to the filter by the control program. The fields 

of the process table that point to the meter socket and hold the meter event bit mask are set by 

the system call ~etmeter(), described in a later section. The bits of the bit mask are called the 

meter flag~. Both the meter ftags and _the meter socket can be changed at any point during 

process execution by any process having the same effective user id or any superuser process. 

When a process forks, the child process inherits the meter socket and the meter ftags of the 

parent. Thus, all of the children of a metered process will also have the same events monitored. If 

an outside agent is used to create a process, such as the system rezec server, the new process will 

be monitored only if the server is being monitored or if monitoring is explicitly set for the new 

process after it is created. 

In general, each communication event for a process corresponds to a meter event. For 

example, one can meter both accepts and connects, or only one of the two or neither. However, 

the many versions of write{) all correspond to the same meter event, as do the varieties of read(}. 

It is not important to distinguish between the varieties of these operations to understand the 

communication taking place. Similarly, ~ocketpair() is not treated differently from a pair of 

socket creates followed by separate connects and accepts; all four messages are produced. 

3.3. Proceu Structure of the Measurement Sy•tem 

The measurement system is a distributed program in that it is structured as a group of 

cooperating processes not required to execute on the same machine. Active cooperation among 

these processes is necessary. The measurement system has four parts, the meter~, the filter 

processes, the control process, and the analy~i3 routines. This structure is illustrated in Figure 

3.1. 
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Figure 3.11 Structure of 4.JBSD Meterln1 Toola 

The meter is responsible for the extraction or event data. Metering requires the ability to 

detect process events and to subsequently pass the event data on to the next stage or 

measurement. Events are detected in the kernel, data are extracted from operating system data 

structures, and these data are sent as an event record over an IPC connection to a filter process. 

The selection, reduction, and storage or trace data is the responsibility or a filter process. 

This represents the second stage or measurement. A filter is the recipient or the measurement 

data that are generated by the meters. The user may only be interested in saving meter events 

which match certain criteria. For example, the user may only want to save event records or 

messages having a message length over a specified minimum, or event records or a process only 

when the CPU time is under a specified maximum. It is the filter that interprets the selection 

criteria and decides which event records are to be kept and which are to be discarded. Filter 

processes do not exist by default in the measurement tool. The user must tell the control process 

to create a filter process. Many filter processes may exist simultaneously. Usually, there will be a 

filter process created per computation. A standard filter, described in section 3.4, is provided by 

the measurement tool. However, given a few basic constraints, custom filters can be easily 

written. 

The task or organmng the parts or the measurement system and providing a control 

interface to the user is performed by the control process (or controller}. The controller provides 

the mechanisms for establishing the communication paths between all or the components or the 

measurement system. The controller is a command interpreter. It provides the user with a 

concise menu or commands to use in the measurement and control or one or more distributed 

computations. The controller, upon receiving a command, interprets the command and perforDns 

the requested function. Executing this request may require interacting with other components or 

the measurement system and establishing communication paths between the various components. 

The analysis routines provide the means for interpreting the traces created by filters. They 

give meaning to the data by summarizing and operating on the event records collected. The user 

produces his own analysis routines according to the purpose or the study. Examples or some 

analyses that have been performed are detailed in !Miller 84]. These analyses include 

communications statistics, measurement or parallelism, and structural studies. 
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3.4. Dealgn of the Filter 

Difl'erent filter processes can be used in the measurement system. Given one basic 

constraint, a user can write a custom fitter. This one constraint is that a filter process must listen 

to its standard input in order to receive meter messages from the kernel meter. Once the filter 

has received these messages, it8 actious should not afl'ect the operation or the rest or the 

measurement system processes. A staadll.rd filter is provided by the measurement tool. Arter 

receiving a message from standard input, the default filter performs selection and reduction 

operations on the event records received. It uses event record descriptions and selection rules to 

specify the criteria for data selection and reduction. 

HEADER 
1lse 
maehlne 
cpu Time 
procTime 
traeeT;ype 

SEND 1, 
pld,0,4,10 
pc,4,4,10 
10Ck,8,4,10 
msgLength,U,4,10 
destNameLen,1&,4,10 
destName,20,1&,1& 

Figure 3.2: Description of the Send Event 

The event record descriptions define the message formats. These descriptions are stored in a 

file with there being a description for each type or event. A description (see the sample shown in 

Figure 3.2) is a list or fields within an event record. The header is a standard header which is part 

or every meter message. The digits next to a field specify the position or the field within the 

message. For example, the field 3ock contains the descriptor or the IPC socket through which the 

message was sent. This field starts on the eighth byte from the end or the message, is four bytes 

long and is displayed in base ten. Since the meter creates these messages, such definitions are 

very important for establishing a successful protocol between the meter and a filter. 

The selection rules are stored in another file and are used to select and edit event records. 

They are chosen according to the objective or the analysis. The conditions that may be used to 

specify selection criteria in a template are >, <, =, !=, >=, and <=. Example selection rules 

which specify simple field values are shown in Figure 3.3. 

aachine=&, cpuTt.e<10000 
aachine=O, tJP8=1, •oct=4, destlaae=228320140 

Figure 3.3: Simple Selection Rules 

The first or these rules will match any event records received from machine 5 and time stamped 

with a cpuTime under 10000 milliseconds. The second rule specifically matches a send event 

occurring on machine 0, sent over socket 4, and to the destination indicated by 228320140. 

The value specified in a template does not have to be simple. A wildcard value which 

matches any value may be specified. The wildcard value is indicated by the character '*'. To 

reduce the size or the data which is saved in the trace file, any field value may be prefixed with 

the discard character '#'. II an event record is accepted by the filter, any fields with this value 



prefix will be discarded. Examples of selection rules which use these options are shown in Figure 

3.4. 

.achine--t•. type=1, pid=l•, •1ze>=612 

type=8, •octlue=peerlue 

Figure 3.4& Selection Rulu 

A filter sends its output to a log file located in the "/usrftmp" directory. Each filter has its 

own log file. This file is used to store the trace messages collected by the filter. When a 

computation is associated with a filter, all or the event records produced by processes which are 

part of the computation are stored in that filter's log file. U desired, it is possible to have one 

filter collect data from several computations. The events detected and logged by the filter process 

are not seen by the user as they occur. Event records are sent directly to the filter. When the 

computation has completed, the user then retrieves the trace file produced by the filter and has 

the data analyzed. 

There are no restrictions placed on the locations of the processes in the computation and on 

the location or the filter to which the processes are connected. A filter process may execute on a 

machine that is disjoint from the set of machines on which the processes of the computation are 

executing. In situations where filter operations contribute significantly to the system load (i.e, 

when large computations are being metered), this ftexibility may be useful. 

3.5. Deelp of the Controller 

The design or a distributed computation is often more complicated than a program designed 

Cor a single machine environment. Issues which demand little or no attention when only one 

machine is involved may demand significant attention when addressed in a distributed computing 

environment. Since the measurement system is a distributed program, the implementation of its 

control program addresses many or the issues involved in distributed computing. We discuss a 

number of these issues in the remainder of this section. 

3.5.1. Proce•• Control 

The first design issue to be addressed is process control. The minimal requirement Cor 

establishing a distributed computation is to have a facility Cor creating processes on the various 

machines that are to be involved in executing the computation. A more powerful tool should also 

provide mechanisms to specify the events to be metered Cor a newly created process, change this 

specification Cor an existing process, start a remote process, and stop a remote process. 

Furthermore, when a process is created, it should be suspended prior to the start of its execution. 

This is necessary to give a user sufficient time to specify the desired measurement strategy and 

provide some control over the time that various processes start executing. 

Process control is easily accomplished within a single machine environment. To create a 

process, a standard UNIX system provides the fork(} and e:eec(} functions. To subsequently start, 

stop, and terminate the execution or a process, UNIX signals are used. Through the UNIX 

aignal(} system call, changes in a process's state (such as normal process termination) can be 

detected and control can temporarily be given to signal handling routine Cor signal processing. 

Thus, the problem or process control has a readily available solution Cor a single machine 

environment running under Berkeley UNIX. 

The situation is not as simple Cor controlling processes across machine boundaries. The 

controller must have the power to play an active role in the control of a process on another 

machine. U the operating system underlying the measurement system made no distinction 

between different machines as in DEMOS/MP[Powell & Miller 83J, process control in a distributed 

system would be as simple as it is Cor a single machine. The boundaries between machines in 
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4.2BSD are not transparent. In a 4.2BSD system, the identifiers of a process only have meaning 

for the local operating system under which the process is executing. Consequently, direct control 

or a process on another machine is impossible. 

Machine B 

-~E7· ,.... 
Machine A / : 

I I 

e<---/e 
pro 

/<.,.,.,..,.>....,._, 
.....,..cr-.t 

I<-..!> 

\ J 

I \ 
I I 

Flpre 3.6& Role of Daemon Proeeuee 

To provide process control across machine boundaries, we use daemon processes executing 

on each machine. This situation is exemplified in Figure 3.5. Here, the user is working from a 

terminal connected to machine A and is running the control process. The user issues commands 

to the controller. The controller uses the daemons on other machines when it needs to step over 

to another machine to perform a process control function. The daemons serving the controller are 

referred to as meterdaemon8. There must be a meterdaemon on each machine that supports the 

measurement system. The sole purpose or the meterdaemons is to carry out control functions for 

the controller. 
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Figure 3.8: Example Formata of a Controller /Daemon Message 

The cooperation between the controller and the meterdaemons implies a need for a 

communication protocol. This protocol defines the information to be exchanged, the 

synchronization of the exchange, and the procedure for establishing communication connections. 

Examples of the format of messages exchanged between· the controller and the meterdaemons 

shown in Figure 3.6. This format includes a message type and a message body. The type field 

identifies the purpose of the message. This may either be the type of request issued by the user or 

the type of reply returned from the meterdaemon. The remainder of the message, the body, is 

variable format and depends on the message type. All of the information that is required for the 

execution of the operation (in the case of a request) or for reporting the operation's result (in the 

case of a reply) is contained in the message body. 

The exchange is structured as a remote procedure call. A meterdaemon spends most of its 

time listening for an IPC connection request from a controller process. When a controller needs 

the services of a meterdaemon, it issues a request for a connection to that meterdaemon. When 

the connection is established, the controller sends a request message to the meterdaemon over this 

connection, and then waits for the meterdaemon 's reply. When the request message is received by 

the meterdaemon, the meterdaemon carries out the requested function, sends a reply message 

back to the controller over the connection, closes the connection, and then waits for a new 

connection request. Upon receiving the reply from the meterdaemon, the controller closes its end 

of the IPC connection, completes the processing of the request, displays any relevant information 

to the user, and prompts the user for the next command. 

There is one exception to this protocol. When a process terminates, connection 

establishment is initiated by a meterdaemon rather than by the controller. The meterdaemon is 

the parent of all processes it creates. Consequently, a meterdaemon is signaled when one of its 

processes terminates. When a process changes state (stops or terminates}, a signal handling 

procedure in the meterdaemon is activated. Upon receiving such a notification, the meterdaemon 



requests a connection to the controller responsible for the terminating process, and then sends the 

information about tht: change of state to this controller. A controller maintains an IPC socket Cor 

the purpose of establishing connections Cor state change reports. It listens to this socket to detect 

messages arriving from meterdaemons. The controller informs the user or the new state or his 

computation upon being notified of a termination. 

A reliable communication path is desirable between the controller and a meterdaemon. For 

this reason, a stream connection is used instead of a datagram connection. The stream connection 

between the controller and a meterdaemon exists Cor the duration of a single exchange of 

messages. The reason Cor the temporary connection is that long-standing stream connections can 

be undependable when used across machine boundaries. Furthermore, communication between 

the controller and the meterdaemons is infrec:iuent enough that establishing these connections as 

they are needed does not introduce significant overhead. 

3.5.Z. Proceu 1/0 

Another issue involved in providing a complete control environment Cor the execution of a 

process is the redirection of a process' 1/0 across machine boundaries. This redirection may 

involve reading from or writing to a specified file or standard 1/0 device. 

Ir a remote file system were available, in particular one with a uniform name space such as 

in LOCUS !Walker et a.l 83j, reading from or writing to a remote file would be handled by the 

operating system. However, since such facility is not available in 4.2BSD, the measurement 

system controller must provide this access. 

For processes which are already running but are acquired Cor metering purposes, no changes 

are made to the handling of the processes' 1/0. These processes continue executing in their 

existing environment with the one exception that they are now being monitored. This 

monitoring is transparent to the executing processes. The user is not allowed to modify the 

processes' execution state or any aspect of the processes' execution environment other than the 

metering state. 

An example of redirecting process 1/0 is found in the implementation of the function rexec(J. 

Rexec(} is used to create a stream connection to a remotely executing command. The standard 

input and output or the command are redirected to this stream, allowing the user to communicate 

with the remote command. We use a similar strategy Cor our processes. 

We have the ability to make a connection to a meterdaemon running on each machine. To 

complete the path from the process to the user, we must provide a facility Cor making a 

connection between the process and the meterdaemon. Given this facility, the standard output or 

the process is redirected to the meterdaemon; the meterdaemon forwards the message to the 

appropriate controller; and the controller displays the message to the user. The reverse path is 

traversed when sending standard input from the user to the process. 

To implement this strategy, each daemon creates an IPC socket. This socket is used as 

the gateway Cor 1/0 between the user and the process. It creates one additional IPC socket Cor 

each process, passing this socket to the process. This socket is the process's end or the gateway 

connection. The child process, before executing the ezec(J, changes its standard input, standard 

output, and standard error file descriptors to the descriptor of the socket provided by the 

meterdaemon. Consequently, when the new process reads from or writes to standard 1/0, it 

actually is reading from and writing to the meterdaemon. Since the meterdaemon and the 

metered processes are executing on the same machine, datagrams can be used Cor interprocess 

communication. Such links are reliable when used within a single machine. 

In the case where standard input is coming from a file rather than from the user, a different 

strategy must be taken. The file is copied to the machine on which the specified process is 

executing. The file is then opened by the meterdaemon, which redirects to it the standard input 

or the process. 
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3.5.3. Flle Location 

In order to create a process, the executable file must be accessible to the operating system 

on the machine where the process is being created. If we want a process to execute on a remote 

machine, but the file is local, either a remote file system must exist or we must copy the file to the 

remote machine. The lack of such a file system in 4.2BSD at this time forced us to implement the 

latter alternative. The rep utility was used to copy the files. This utility is accessed through a call 

to the 8ystem() function. 

3.5.4. Internetwork Communication 

The controller is responsible for making the required connections during a metering session. 

One example of a connection the controller must provide is the connection between a filter and a 

process that will be metered. When a filter process is created, it opens and binds a name to the 

IPC socket to which the meter messages will be sent. The controller must save the name of a 

filter's socket, and must give this name to the process which is to be metered. Therefore, the 

name of an IPC socket will be exchanged between processes. These processes may be executing 

on different machines, and even on different networks. 

A socket name is composed of the host address and the port number. A given host may be 

a member of two or more networks and thus two or more different addresses may be used to 

access it by the other hosts in these networks. The implication of this inconsistency is that a 

socket name should not be exchanged between processes it this name will be used to make an IPC 

connection. Therefore, when communicating an address, the literal name of the host and the 

number of the port are exchanged. The receiving process then constructs the socket name using 

its own host address for the specified machine. 

3.5.5. Protection 

Protection in the measurement system is implemented according to the policy used in 

4.2BSD. When using the measurement tool, a user is granted no special privileges; he or she has 

only those access rights dictated by his or her account. Access to any files involved in the 

creation of processes or in the storing of data are checked against the privileges associated with 

that account. An outside process, such as a system daemon, can only be metered by a user that 

has the appropriate access rights to such a process. To create a process on a machine, a user 

must have an account on that machine. This implies that, in order to meter a computation, a 

user must have an account on every machine involved in that computation. 

4. The User'• VIew of the Measurement Tools 

4.1. The Kernel Funetlona 

A system call, ~etmeter{}, provides the control program with ac:cess to other processes, 

allowing them to be metered. By default processes are not metered, but once the control program 

bas set the meter specifications for a process, the specifications are inherited by the child when a 

process forks. 

Setmeter() takes three arguments, the process ID, meter ftags, and the connection sockets. 

The full options are 

SELF or an integer process id, 

NONE, NO_CHANGE or ftags indicating the events that are to be metered, 

NONE, NO_CHANGE or a meter connection socket 

The constants and ftags for events are defined in the system include file <meterftags.h>. The 

llags, or the meter connection may be left unchanged by specifying the value NO_CHANGE. All 

lla.gs are turned off by specifying the value NONE. The value NONE specified as a connection 

socket closes the socket, it one exists. A process can set metering information for any process 



belonging to the same user, including itself. A superuser process can set metering for any process. 

One selects the ty~ or events to be metered by setting flags for the process. The flags 

defined are: 

METERACCEPT 
METER CONNECT 
METER SEND 
METERRECEfVECALL 
METERRECEfVE 
METER SOCKET 
METERDUP 
METERDESTSOCKET 
METERFORK 
METERTERMPROC 
M_ALL 

process accepts a connection 
process initiates a connection 
process sends a message 
process makes a call to receive a message 
process receives a message 
process creates a socket 
process duplicates a socket or file descriptor 
process closes a socket 
process forks 
process terminates 
meter all events 

In addition to flags for events, one may set a flag indicating that meter messages are to be sent 

immediately, rather than buffered. The default is to buffer several messages so that the number 

or meter messages is considerably smaller than the number or messages sent by the metered 

process. 

The meter connection consists or two connected sockets. One end is presumed to belong to 

a filter process, the other to be created by the local meterdaemon. The meterdaemon creates its 

socket by calling ~ocket(}, and initiates the connection to the filter. Once the connection is 

established, the daemon calls ~etmeter(), passing to it the connected socket descriptor. The socket 

descriptor is duplicated for the metered process, but not placed in that process's descriptor table, 

so that the process is not able to send messages through the socket. The meter does not reduce 

the number or open files and sockets available to the metered process. II utmeter() is called 

specifying a new meter socket for a process already having one, the old socket is closed. Meter 

sockets are also closed when the process terminates, and when the meter connection is set to the 

value NONE. 
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size 

machine 

Header cpu Time Local clock 

procTime Time charged to user process 

trace Type 

process id 

pc PC at time of system call 

socket Socket accepting connection 

newSocket Socket created for connection 

sockNameLen 

peerNameLen 

sock Name Name bound to accepting socket 

peer Name Name bound to connecting socket 

Figure 4.1 Structure of a message for an accept() call 

The meter messages contain a standard header and a body that depends upon the 

corresponding meter event. The structure of a message recording a accept event is shown in 

Figure 4.1. The header includes fields for the message size, the event type, the machine id, the 

time on the system clock, and the CPU time for which the process has executed. The system 

clock time is useful for establishing the order of events on a particular machine. The separate 

machines' times, however, only roughly correspond to a global time. Statements regarding the 

global ordering of events can only be made on the basis of evidence within the trace. For 

example, since a message must be sent before it may be received, the times of sending and 

receiving a message can always be ordered relative to one another. Given these constraints, much 

or the global ordering can be deduced. The process time allows the estimation or the amount or 

work necessary between two events. The granularity of this measure is large, however. CPU use 

is updated in increments or lOms. Estimates based on the reported values must recognize this 

limitation. 

The message body for most events includes the process id, the address of the instruction 

that called the system routine, and the address of the socket with which the operation was 

performed. Sockets are identified by their address within the system descriptor table. This 

ensures that socket addresses are unique within a particular machine. Some of the message bodies 

include the names of ~kets. The form of the names depends upon the domain of the 

socket!Sechrest 84}. Currently, socket names are presented as either an Internet Domain name!Su 

8l Postel 82}, a UNIX path name (for the UNIX domain) or, in the case or socketpairs, an 

internally generated unique name. The names are important in matching the sockets in a 

connection and in identifying the recipient or datagrams. The length or the name is given in the 

message. For some calls, not all the information for the message is available. For example, when 

one writes across a connection, the name of the recipient is not available to the metering software. 

In this case the length of the name is specified as zero. By examining the sockets that were paired 
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when the connection was created, the recipient information can be recovered. This is one or the 

tasks or the analysis programs. The complete message format is shown in Appendix A. 

4.2. Joba and PJ"Oeeua 

In our measurement model, a computation is a collection or processes working towards a 

common goal. The controller uses the term job to designate a computation. A job is created by 

assigning a name to it, and then adding processes to it. Once the job is created, the measurement 

strategy for the job can be specified. 

Figure 4.2 Process State Diagram 

The processes making up a computation are tracked by the controller as they progress 

through different stages or their lives. The five process states recognized by the controller are 

new, acquired, running, Btopped, and killed. The state diagram representing a process' life cycle 

is shown in Figure 4.2. When a process has been newly created, it is in the new state. This state 

indicates that the execution environment has been set up, but the process is suspended prior to 

the execution or the first instruction. From the new state, a process can enter the running state 

by starting it, in which case the process begins execution. A process can also move from the new 

state to the stopped state, in which case it remains suspended, this transition occurring when the 

user stops the job. A process can switch between the running and the stopped states until the 

time it completes. When a process completes, it is moved from the running state to the killed 

state. It will remain in this state until the user removes the job. The killed state may also be 

entered from the stopped state. This occurs if the user decides to remove the job before it has 

completed execution. A process cannot be restarted once it has been killed. A process cannot 

move directly to the killed state from the new state. This restriction is enforced as a 

precautionary measure, ensuring that the user does not accidentally remove a computation that is 

in progress. Ir a previously existing process such as a system server is metered, it is moved 

directly to the acquired state. This is the only state such a process can be in. An acquired process 

cannot be stopped or killed, it can only be metered. The acquired status ensures this limitation or 

control. 

4.3. User's Manual 

This section describes the details or the user's commands to the control program. The 

commands are: help, filter, newjob, addproeeu, aequlre, aetftap, atartjob, atopjob, 

removejob, removeproeesa, Jobs, getlog, aouree, sink, and die. Each or these commands is 

discussed in detail in this section. 
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First, the general command flow or a measurement session is outlined below: 

( 1) Create a filter prvc~'3 ( ftlter ). 

(2) Create a job (newJob). 

(3) Create the procP.ssu; involved in the computation (addproeeu). 

(4) Set the meterins flags on the job (aetftaga). 

(5) Start the job (etartJob). 

(6) When the job completes, get the logfile (getlos). 

(7) Cleanup by removing the job (rmJob). 

(8) Exit the controller (die). 

In the command descriptions to follow, all parameters will be surrounded by the symbols'<' 

and '>'. Optional parameters will be enclosed by 'I' and 'J'. Command parameters must be 

literals formed from the digits 0 through 9, the upper and lower case letters, and the characters '/' 

and '.'. Delimiting characters are blanks, tabs, new lines, and carriage returns. An example or a 

session with the controller is presented in Section 4.4. 

help 
This command is a source or information. It displays the menu or the control commands 

with a brief statement or their function. The required and optional parameters to the 

command are indicated. At the end or the menu, the available metering flags are listed. 

Biter ( < ftltername > (<machine> [ < ftlterftle > ( < deaeriptiona > (<templates>]])]] 

Ir parameters have been specified, a filter process will be created from the program in 

"filterfile" and will be given the name "filtername" for identification within the control 

program. The filterfile must be an existing, executable file. Ir no filterfile has been specified, 

the default file "filter" is used. Ir no machine has been specified (only the filtername has 

been specified on the command line) then the default is to create the filter locally. A 

standard filter requires two additional files: the trace descriptions file and the templates 

selection rules. Ir these files are not specified on the command line, standard filenames 

("templates" and "descriptions") are used. Read access is required to these files. 

Ir no parameters have been specified Cor the filter command, information about existing filter 

processes is displayed. The information is a list or the available filters indicating their 

process identifiers, their names, and the machines on which they are executing. 

newjob <Jobname> (<ftltername>) 
This command is used to create and initialize a job. The job is given the name "jobname". 

The user ~an optionally specify a filter Cor the job by including the name or an existing filter 

process. Ir no filter is indicated, the control program uses the default filter process. A job 

cannot be created if a filter has not been created. This implies that prior to the execution or 

newjob, a Biter command must have been executed. 

No restriction is placed on the number or jobs or on the number or filters the user can 

create. Many computations could be executing simultaneously, having traces collected by 

different filters. 

addproeeu <Jobname> <machine> <proceaaftle> (<parml parm2 ••• >) 

Addproceu, or add, is used to create a process as part or a job. The process is added to 

the job "jobname" and is created on the host "machine", by executing the file "processfile" 

with the parameters "parml, parm2, .. .''. A process does not begin executing at this time, 

and its process state is new. The process is connected to jobname's filter and inherits the 

flags or job "jobname". A process can be added to any job at any time, even after processes 
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in the job have started execution. 

aequlre <Jobname> <maehlne> <proeeaa ldentlfter> 

The aequlre command provides the ust:r with the ability to meter a process that is already 

executing. In this case, the process ide.utifier must be known and specified as "process 

identifier". To meter this process, the user must have the appropriate access rights. 

"Jobname" indicates the job to which the acquired process will be assigned. This 

assignment determines the filter to which the event traces will be directed. "Machine" is the 

host on which the process is executing. 

The motivation for this command is that situations may arise in which a process such as a 

system server is an important component or a computation. Thus, it should be metered 

along with the other processes involved in the computation. Even more simply, a user may 

be interested only in monitoring a system server to better understand its behavior. 

aetftaga <Jobname> <flail fta1t ••• > 

This command is used to set, or reset, the metering flags on a job. Setftaga is the user's 

interface to the 4.2BSD UNIX system call $etmeter() described in section 4.1. The event 

flags are: 

fork 
termproc 
.!end 
receivecall 
receive 
.!OCket 
dup 
destsocket 
accept 
connect 

process creation 
process termination 
sending a message 
ready to receive a message 
receipt or a message 
creation or a communication socket 

duplication or a socket (descriptor) 

destruction or a communication socket 

request for a connection (readyness to accept) 

establishment or a connection 

The effect or aetftaga is to record the flag set "flag 1 flag2 ... " with "jobname" and then set 

the flags for each process which is part or jobname. Flags can be set at any point in the 

execution or a job. A process does not have to be stopped in order to set its flags. 

Flags are set by listing the desired flags on the command line. They can be reset by 

indicating a '-' in front or the flag to be reset. For instance, "-send" will turn oft' the 

metering or the .!end event for the job indicated. A shorthand notation can be used. The 

flag 'all' will set all or the metering flags, and '-all' will reset aU or the flags. 

If two aetftaga commands are executed, the set or active flags is the union or the two 

groups or flags. A aetftaga command does not implicitly negate the previous flag settings; 

all resetting must be explicit. 

Joba [ <Jobnamel Jobnamd ••• > J 
Jobs provides the user with information about the state or a computation. It does not 

change the state or the system in any way. If no parameters are specified, a list or the 

current jobs is displayed. This list indicates the number, the name, and the filter for each 

job. 

Ir a list or jobnames is specified, then, for each job in the list, information about the job's 

processes will be displayed. For each process, such information includes the process 

identifier, the current control state, the process name, the machine on which the process is 

executing, and the meter flags that are set. 

atartjob <Jobname > 

This command initiates the execution or a job. "Jobname" specifies the job to be started. 

AU processes in the new or stopped state are signaled to begin or resume execution. 
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Processes that are running, killed, or acquired cannot be started. The user is informed as to 

the status or each process. 

atopjob <Jobname> 

This command is used to halt the execution of a job. "Jobname" specifies the job to be 

stopped. All processes in the specified job that are in the new or running state are signaled 

to halt execution. Processes that are killed or acquired are ignored. 

removejob <Jobname> 

This command is used to remove the record of a job from the controller. Jobname specifies 

the job to be removed. A job can only be removed if all or its processes are in one of the 

states killed, stopped, or acquired. If any of the processes are still running or new, the job 

will not be removed. When an acquired process is removed, the control program insures 

that the filter connection of that process is taken down so that the process will not continue 

to be metered after its job bas been removed, but the process continues to execute. 

ptlog < filtername > < dHtlnatlon filename> 

The log file for the filter process identified by "filtername" is retrieved. When retrieved, the 

log file is copied to the file "destination filename" . 

.ouree <filename> 

This command (and the alnk command) allows the user to run scripts of control commands. 

Souree instructs the control program to read command lines from the command script 

"filename" instead or from the terminal. Any of the control commands may be specified in 

this script file. Source commands may be nested within scripts to a maximum depth of 

sixteen. When the entire script has been processed, input is again expected from the 

terminal. 

alnk [<filename> J 

die 

Slnk provides a way for the output or commands to be written to a file instead or to the 

terminal. Thus, the output of a sourced script can be redirected to the file "filename" by 

having a "sink <filename>" command as the first line of the script. When the script is 

completed, the output file should be changed back to the terminal by including a sink 

command without parameters as the last command in the script; output is directed back to 

the terminal when a destination filename is not specified. 

This command terminates the control program. Upon exit, all executing filter processes are 

removed. Aliases of this command are exit, bye, and control D ( ·n ). If there are still 

active processes (new, stopped, running, or acquired), the user is warned, and the controller 

does not exit. If the user immediately repeats the die command in this situation, the 

controller will assume the user is aware of the situation and exits with the processes active. 

4.4. Example of a Programmer's Session With the Controller 

This section presents an example of a metering session. The script for this session is shown 

in Appendix B. We step through the commands issued by the programmer and describe what 

happens throughout the system when executing each or the programmer's requests. 
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Figure 4.3 Filter Creation 

The control program, the filter, and the metered processes can run on one or on several 

machines. On every machine on which a process or the computation is to run, there must be a 

meterdaemon" The programmer chooses a machine on which to run the control program and 

starts its execution there. At this time, the programmer can issue control commands to the 

control process. 

The programmer first creates a filter process by issuing the filter command (see Figure 4.3), 

specifying the machine on which the filter is to run. To create the filter, the control program 

creates an IPC connection to the meterdaemon on the specified machine, and sends a message 

that requests the creation or the filter process. The meterdaemon creates this process and returns 

a reply. Once the request bas been satisfied, the IPC connection is removed. 

After creating a filter, the programmer requests the creation or a job with the newjob 

command. The control program creates a data structure specifying the processes comprising the 

job and the filter associated with the job. 

After the job is created, the programmer issues an addproee .. command to add a process 

to the job (in Figure 4.4 this is process A), The control program then creates an IPC connection 

to the meterdaemon, and sends a message requesting the creation or process A. The 

meterdaemon creates the process and establishes the connection between the metering mechanism 

for the process and the filter process. The IPC connection between the control program and the 

meterdaemon is closed when the process bas been created. 
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Figure 4.4 Creation of Process A 

When a process is created, it does not imnnediately begin executing. This allows the 

addition of other processes before the job is run. With process A created, the user can request 

that process B be added to the job but placed on a different nnachine. Process B would then be 

created with the sanne procedure as process A. Processes A and B are the elements of the 

computation. Having built the computation (see Figure 4.5), the programmer issues a •etftap 

command to set the ftags on processes A and B, and then issues a •tartjob connmand to start the 

execution of the processes. To execute the •etftap command, the control progrann connects to 

the meterdaemon on process A's machine and then to the meterdaemon on process B's machine. 

When connected to a meterdaemon, the control program sends the daemon a message that 

requests that the ftags on the appropriate process be set. The meterdaemon connection is 

removed when the request bas been satisfied. The execution of the •tartjob command follows 

the same proc~dure as the execution of •etftap except that the controller's message requests that 

the daemon start the process. 
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AB processes A and B execute, they communicate using the IPC mechanism. In Figure 4.6, these 

two processes are shown as having an IPC connection. System calls corresponding to metered 
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events cause the i:neters to generate messages that are sent through the meter connections to the 

filter program. 
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Figure 4.6 Process Communication 

5. Conclu•lon 
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The tool described in this document provides a means of monitoring a distributed 

computation. The model of computation is simple, involving a small set of process and 

communication activities to describe the behavior of a computation. Our measurement model is 

based on monitoring this set or activities. The tool is the implementation or the measurement 

model for the Berkeley UNIX 4.2 BSD operating system. 

The metering tools collect event records for process and communication activities. The 

activities that are monitored match those primitives that are used by the programmer of the 

computation. Thus, there is consistency between the static view of a program (the commands 

and statements used to construct it) and the dynamic view of a program (the record of its 

execution). 

The measurement tools that we have described do not require the insertion or extra 

statements into the programs being monitored, nor their recompilation. This transparency makes 

them attractive for use in the development or evaluation of any distributed program. 

Initial experience with these tools [Lai & Miller 84] has shown them to be useful for 

measurement studies, as well as for program debugging. A multiprocess computation was 

developed and debugged using the tool, which led to substantial modifications of the program 

resulting in substantial improvements or its performance. 

e. References 

[Almes et al 83] 
G. T. Almes, A. P. Black, E. D. Lazowska, and J.D. Noe, "The Eden System: A Technical 

Review," Technical Report 83-10-05, University of Washington (October 1983). 

[Baiardi et al 83] 
F. Baiardi, N. de Francesco, E. Matteoli, S. Stefanini, and G. Vaglini, "Development of a 

Debugger for a Concurrent Language," Proc. of the ACM SIGSOFT/SIGPLAN Software 

Engineering Symp. on High-Level Debugging, pp. 98-106 Pacific Grove, Calif., (March 

1983). 



!3 

[Bates & Wileden 83} 
P. Bates and J. C. Wileden, "An Approach to High-Level Debugging of Distributed 

Systems," Proc. of the ACM SIGSOFT/SIGPLAN Symp. on High-Level Debugging, pp. 

23-32 Asilomar, CaHf., (March 1983). 

(Cheriton & Zwaenepoel 83} 
D. R. Cheriton and W. Zwaenepoel, "The Distributed V Kernel and its Performance for 

Diskless Workstations," Proc. of the Ninth Symp. on Operating Sys. Principles, pp. 128-

139 Bretton Woods, N.H., (October 1983). 

[Ferrari 78} 
D. Ferrari, Computer Systems Performance Evaluation, Prentice-Hall, Inglewood Cliffs, NJ 

(1978). 

(Gusella & Zatti 83} 
Riccardo Gusella and Stefano Zatti, "TEMPO: A Network Time Controller for a Distributed 

Berkeley UNIX System," Technical Report UCB/CSD 83-163, University of California, 

Berkeley (December 1983). 

[Lai & Miller 84} 
N. Lai and B. P. Miller, "The Traveling Salesman Problem:," Technical Report UCB/CSD, 

University of California, Berkeley (June 1984). 

[Lamport 78} 
L. Lamport, "Time, clocks, and the ordering of events in distributed systems," Comm. of 

the ACM U(7) pp. 558-565 (July 1978). 

[Leffler 83} 
S. Leffler, "A 4.2BSD lnterprocess Communications Primer," Computer Systems Research 

Group Technical Report, University of California, Berkeley (1983). 

(McDaniel 75} 
G. McDaniel, "METRIC: a kernel instrumentation system for distributed environments," 

Proc. of the Sixth Symp. on Operating SyB. Principle~, pp. 93-99 Purdue University, 

(November 1975). 

(Miller 84} 
B. P. Miller, "Performance Characterization of Distributed Programs," Ph.D. Dissertation, 

University of California, Berkeley {May 1984). 

[Philips 82} 
D. Philips, "Black Flag," Technical Report, Carnegie-Mellon University (June 1982). 

[Powell & Miller 83} 
M. L. Powell and B. P. Miller, "Process Migration in DEMOS/MP," Proc. of the Ninth 

Symp. on Operating Sys. Principlu, pp. 11~119 Bretton Woods, N.H., (October 1983). 

(Schifl'enbauer 81} 
R. D. Schitfenbauer, "Interactive Debugging in a distributed computational environment," 

Technical Report MIT /LCS/TR-264, MIT (September 1981). 

(Sechrest 84} 
S. Sechrest, "Examples of Interprocess Communication in UNIX 4.2BSD," Technical Report 

UCB/CSD, University of California, Berkeley (June 1984). 



14 

[Su & Postel 82J 
Su and Postel, "The Domain Naming Convention for Internet User Applications," RFC 819, 

USC lSI (Septcmbe1· 1982). 



25 

Appendix A: Meter Mesaage Formate 

The following is the C language definition of meter message formats. Each time a metered 

event occurs, a meter mess:\6e is created in the kernel. These messages are stored in the kernel 

for eventual delivery to the filter. Each message consists of a header, whose format is common to 

all messages, and data particular to the message type. 

In the UNIX system, files defining common data structures are kept in the directory 

jusr/include or one of its subdirectories. These files may be included in user programs. Included 

files are specified by placing the path relative to jusr /include within angle brackets. The message 

formats are defined in the include file <sysjmetermsgs.h>. 

typedef lons SOCKET; 
typedef •truct Boctaddr lAKE; 

•truct KeterHeader { 
lons 
•hort 
lons 
lons 
lons 
lons 

}; 

•truct KeterAccept { 
lons 

}; 

lons 
SOCKET 

SOCIET 
lons 
lons 
lAKE 
lAKE 

Btruct KeterConnect { 
lons 
lons 
SOCIET 
lons 
lons 
lAKE 
lAKE 

}; 

struct KeterDup { 
lons 
lons 
SOCKET 
SOCIET 
}; 

struct KeterFort { 

size; 
aachine; 
cpu TiM; 
Duuy; 
procTille; 
trace Type; 

pid; 
pc; 
•oct; 

new•oct; 
•octlaaeLen; 
peerlaaeLen; 
•octla.a; 
peerlaae; 

pid; 
pc; 
•oct; 
•octlaaeLen; 
peerlaaeLen; 
•octlaae; 
peerlaae; 

pid; 
pc; 
•oct; 
new•oct; 

I• Size of aessase •I 
I• Machine on which proce•• run• •I 
I• Unu•ed •I 

I• Tiae charsed to proce•• •I 
I• Type of .a••ase •I 

I• Proce•• ID •I 
I• PC when •r•tea calll wa• aade •I 
I• Socket (file tableentry addre••> 

acceptins connection •I 
I• lew •octet created for connection •I 

I• laae bound to acceptiD.s •octet •I 
I• laae bound to connectins •octet •I 

I• Socket reque•tins connection •I 

I• Jaae bound to connectins •octet •I 
I• laae bound to acceptins socket •I 

I• Socket beins duplicated •I 
I• Duplicate •octet •I 



}; 

long 
long 
long 

pid; 
pc; 
newPid; 

struct KeterRecvCKsg 
{ 

}; 

long 
long 
SOCIET 

pid; 
pc; 
soct; 

struct KeterRecvKsg 
{ 

}; 

long 
long 
SOCIET 
long 
long 
IAIIE 

pid; 
pc; 
soct; 
ugLength; 
sourcelaaeLen; 
sourcela.e; 

struct KeterSendKsg 
{ 

}; 

long 
long 
SOCIET 
long 
long 
I AilE 

pid; 
pc; 
soct; 
ugLength; 
destlaaeLen; 
destlaae; 

struct KeterSoctCrt { 
long pid; 
long 
SOCIET 
long 
long 
long 

} 

pc; 
soct; 
doaain; 
type; 
protocol; 

struct KeterKsg { 

}; 

struct KeterBeader header; 
union { 

struct Keterlccept accept; 
struct KeterConnect connect; 
struct KeterDup dup; 
struct KeterFort fort; 
struct KeterRecvCKsg recvcall; 
struct KeterRecvlsg recv; 
struct KeterSendKsg send; 
struct KeterSoctCrt crt; 
}; 

I& 

I• Parent process's ID •I 

I• Child process's ID •I 

I• Soctet receiving .assage •I 

I• Soctet receiving .assage •I 
I• BJte• in ug •I 

I• la.a of soctet where .assage was sent •I 

I• Soctet where aessage was sent •I 
I• BJte• iD .assage •I 

I• Destination naae •I 

I• File table entrJ of new soctet •I 
I• lew socket's doaain •I 
I• lew socket's tJP8 •I 
I• lew socket's protocol •I 
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Appendix B: Serlpt of Example Seulon 

This is the script of the measuremeut session demonstrated in Section 4.4. The text appearing in 

tJPnTiter font indicates prompts or responses coming from the measurement system controller. 

The controller's prompt is "<control>". Text appearing in sl•nted font indicates the 

programmer's responses, and text appearing in italiciJ are comments. 

<Control> ff/ter fl blue r· create a filter proce/JIJ on machine blue •j 

filter "f1' ... created: identifier= 2117 

<Control> newjob foo r· create a job; name it foo •j 

<Control> •ddprocess foo red A (• add process A to the job foo •j 

process "A' ... created: identifier= 2120 

<Control> •ddprocess foo green B (• add procestJ B to the job foo •j 

process 'B' ... ereated: identifier = 2122 

<Control> setff•gs foo send receive fork •ccept connect 

new job flas• = send receive fort accept connect 

Process "A' Flass set 
Process 'B' : Flass set 

<Control> stertjob foo 
'A' started. 
'B' started. 

<Control> 

r· /Jet the metering flags on the job •j 

r· IJtart the execution of the job •j 

DOlE: process B in job 'foo' terainated: re&~on: noraal 

DOlE: process .l in job 'foo' terainated: reason: noraal 

<Control> rmjob foo 
'.l' reaoved 
'B' reaoved 

<Control> getlog fl tr•ce 

<Control> bye 

r- get the trace file for filter fl •j 
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Appendix C: Setmeter System Call Manual Page,f 
The following page contains the UNIX manual page for the ~etmeter(J system call. This 

describes the system call as it is implemented on the Berkeley UNIX 4.2 BSD operating system. 



SETMETER ( 2} UNIX Programmer's Manual SETMETER ( 2) 

NAME 
setmeter - set metering of processes 

SYNOPSIS 
#lnelude < meterftap.h > 
aetmeter(proe, flap, aoeket) 
lnt proe, flap, aoeket; 

DESCRIPTION 
Setmeter marks a process for metering. Flagged system calls by metered processes cause a 

metering message to be sent to a filtering proce~a. Proc specifies the process to be metered. The 

system calls to be Bagged are specified by flaga. Socket specifies a connected stream socket, over 

which the metering messages can be sent. The routine stores the ftags and socket number for the 

specified process. 

The arguments may also be replaced by the special value -1. Ir this value is used to specify the 

process id, the id of the calling process is used. Ir this value is used for either of the last two 

arguments, those values are not changed for the process. 

A user can request metering only for processes belonging to that user. Specifying any other 

process results in an error. The ftags spacified by the user form a bit mask, which replaces the 

processes previous bit mask. These bitmasks can be formed by ORing constants found in 

<meterftags.h>. The following constants have been defined: 

M_SEND 
M_RECEIVECALL 
M_RECEIVE 
M_ACCEPT 
M_CONNECT 
M_FORK 
M_SOCKET 
M_ALL 
M_IMMEDIA TE 

These Oags indicate the system calls to be metered, except for M_IMMEDIA TE, which indicates 

that metering messages are to be sent immediately, rather than buffered for greater efficiency. 

The socket provided must be a stream socket in the Internet domain. Any other socket will result 

in a negative return value and an error status. The socket must be connected to be used, though 

this is not checked. Meter messages are lost if they are sent on an unconnected socket. 

Once a process is marked for metering, any call to a ftagged system routine will cause a metering 

message to be sent automatically. The form of these messages may be found in <metermsgs.h>. 

The interpretation of these messages is left to a filtering process on the other end of the stream 

connection. Child processes inherit metering ftags and meter connections from their parent. 

Messages will therefore l>e automatically sent from any child process of a metered parent until a 

aetmeter call is made to change the child's meter ftags. The stream connection remains open as 

long as any process can access it, either the creating process, a metered process, or any child of 

the metered process. The connected socket is not listed in the descriptor table of the metered 

process. 

This routine allows information to be gathered about processes' calls to the kernel. In particular 

about calls that result in communication with other processes. This gathering can be done 

invisibly to the metered process. 

RETURN VALUE 
A -1 is returned if an error occurs, otherwise a 0 is returned. 

ERRORS 
The aetmeter call fails if 

1 
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[EPERMJ 

[ESRCHJ 

SEE ALSO 
socket(2), connect(2) 

4th Berkeley distribution 

UNIX Programmer's Manual 

The process specified does not belong to the caller. 

The socket does not exist. 

10 November 1983 

SET METER ( 2) 
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