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The Circus replicated procedure call facility for Berkeley UNIX* is described. The main 

components of the system are a paired message protocol, a runtime library implementing 

replicated procedure call semantics, a binding service for replicated modules, and a stub compiler 

for the C programming language. The implementation of each of these components is discussed. 

1. Introduction 

This paper describes a replicated procedure call facility, called Circus, that has been 

implemented for Berkeley UNIX. Replicated procedure call [7J is a new mechanism for 

constructing highly available distributed programs. It combines remote procedure call with 

replication of program modules for fault tolerance. 

The main components of the Circus system are a paired message protocol, a runtime library 

implementing replicated procedure call semantics, a binding service for replicated modules, and a 

stub compiler for the C programming language [17J. 

Figure 1 shows the structure of the Circus system. The protocol layers used in Circus are 

shown in figure 2. 

2. Remote Procedure Call 

The goal of remote procedure call [24J is to allow distributed programs to be written in the 

same style as conventional programs for centralized computers. Details or communication are 

hidden, and the syntax of a remote call is similar or identical to the local case. 

A complete remote procedure call facility must address the following issues. 

( 1) Reliable communication of CALL and RETURN messages of variable length. 

(2) Procedure invocation semantics. 

(3) Binding (importing and exporting remote modules). 

(4) Representation of parameter and result types. 

'UNIX is & tr:a.dema.rlc of Bell Laboratories. 

This work was sponsored by a Nation&! Science Foundation Gr:a.du&te Fellowship &nd by the Defense AdV&need Research 

Projeets Agency (DoD), ARPA Order No . .001, monitored by the Nav&l Eleetronies Systems Comma.nd under contract 

No. N00039-C-0235. The views &nd conclusions contained in this doeumen\ are those of the &uthor &nd should not be in­

terpreted as representing offici&! policies, either expressed or implied, or the Defense Research Projects Agency or of the 

U.S. Government. 

This paper will appear in the Proceeding• of the -4tla Symponum on Reliability in Di•tributed Software and Datl!.ba1e Sy,., 

tern~, October 1084. 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
AUG 1984 2. REPORT TYPE 

3. DATES COVERED 
  00-00-1984 to 00-00-1984  

4. TITLE AND SUBTITLE 
Circus: A Replicated Procedure Call Facility 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
The Circus replicated procedure call facility for Berkeley UNIX is described. The main components of the
system are a paired message protocol, a runtime library implementing replicated procedure call semantics,
a binding service for replicated modules, and a stub compiler for the C programming language. The
implementation of each of these components is discussed. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

13 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



client 
client 
stubs 

...... 
...... ..... ..... 

runtime 
libary 

stub 
compiler 

binding 
agent 

runtime 
libary 

Figure 1: Structure of the Circus system 
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Figure 2: Circus protocol layers 

3. Troupes and Replleated Procedure Call 
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Remote procedure call allows program modules to be located on different machines. 

Replicated procedure call generalizes this by allowing modules to be replicated any number or 

times. The set of replicas of a module is called a troupe. When a client troupe makes a replicated 

procedure call to a server troupe, each member of the server troupe performs the requested 

procedure exactly once, and each member or the client troupe receives all the results. Figure 3 

shows a replicated procedure call from a client troupe to a server troupe. A replicated distributed 

program constructed in this way will continue to function as long as at least one member of each 

troupe survives. 

Troupe members are required to behave deterministically: two replicas in the same state 

must execute the same procedure in the same way. In particular, they must call the same remote 

procedures, produce the same side effects, and return the same results. Note that this 



Client troupe Server troupe 

Figure 3: Replicated procedure call 

determinism requirement is also implicit in roll-forward crash recovery schemes such as replay of 

message logs [5, 14J or re-execution of intention lists [18]. An advantage of the troupe mechanism 

is that "same" can be replaced by an application-specific equivalence relation. 

Just as replicated procedure call is a conceptual extension of remote procedure call, the 

Circus implementation described here evolved as an extension of a remote procedure call 

implementation for Berkeley UNIX. When the degree of module replication is one, Circus 

functions as a conventional remote procedure call system. 

A description of replicated procedure call and the algorithms required to implement its 

semantics has appeared elsewhere [7J. This paper concentrates on the implementation of these 

algorithms in a practical system. 

3.1. Related Work 

This research began as an attempt to transfer the Xerox RPC ideas [4, 23, 24, 33J to an 

environment based on Berkeley UNIX [16J and DARPA Internet protocols [27, 28J. The idea of 

achieving fault tolerance by means of replication dates back to von Neumann [32J. The present 

work may be viewed as an extension of the techniques of tripl~modular and N-modular 

redundancy [1, 21J. This approach is also similar to the one taken by Gunningberg, who proposed 

a fault;..tolerant message protocol based on tripl~modular redundancy [15J. We have extended 

Gunningberg's idea to a system based on remote procedure calls and Cully general replication and 

voting schemes. 

A methodology known as N-version programming uses multiple implementations of the 

same module specification to mask software faults [6]. This technique can be used in conjunction 

with replicated procedure call to increase software as well as hardware fault tolerance. 

We use a form of replication in which each component performs the same function, in 

contrast to !'chemes such as those of Tandem [2,30J or Auragen [5J in which only a single 
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component functions normally and the remaining replicas are on stand-by in case the primary 

fails. 

4. The Paired Message Protocol 

The paired message protocol provides reliably delivered, variable-length, paired 
CALL/RETURN messages. It uses UDP, the DARPA User Datagram Protocol [27]. 

The paired message protocol is responsible for segmenting messages that are larger than a 
single datagram, in order to permit variable-length messages, and Cor retransmission and 
acknowledgment of message segments to ensure reliable delivery. It is connectionless and geared 
towards the fast exchange of short messages. Our protocol is based very closely on the RPC 
protocol of Birrell and Nelson [4]. The only real difference lies in the treatment of messages 
requiring multiple datagrams; our protocol provides better recovery from lost datagrams in this 
case. 

The paired message protocol does not specify how remote modules or procedures are 
identified, how clients and servers are bound together, how parameters. and results are 
represented, or how exceptional conditions are handled. The contents of the messages are 
uninterpreted. It is therefore possible for several remote (or replicated) procedure call systems, 
with different type representation and module binding requirements, to use this same protocol as a 
basis for communication. For example, in addition to the Circus system, a simple remote 
procedure call facility was implemented for Franz Lisp [12] that uses the same paired message 
protocol, but represents procedures and values symbolically in messages. 

4.1. Addresses 

Messages are exchanged between processes. A process address consists of a 32-bit host 
address together with a 16-bit port number. The host address identifies the machine within the 
DARPA Internet, and the port number identifies the process within the machine. This is the same 
address format used by the underlying UDP layer; we rely on the UDP implementation for the 
assignment of port numbers to processes. 

4.2. Messages and Segments 

A message is a sequence of bytes, together with a type (CALL or RETURN). Messages are 
transmitted as one or more segments of fixed maximum length. A segment is a UDP datagram of 
the form shown in figure 4. 

A data segment consists of a segment header together with some portion of the message 
data. A control segment contains only a segment header; it is used to send acknowledgment 
information. The message type field is a byte containing either 0 for a CALL message or 1 for a 
RETURN message. The control bits field is a byte containing two Boolean values used to control 
the acknowledgment and retransmission procedures. The least significant bit is the PLEASE ACK 

flag, and the next least significant bit is the ACK flag. The six most significant bits are unused. 

The next two bytes are used to specify the logical position of the segment within the whole 
message. The total segments field is a byte containing the total number or segments in the 
message, which must be in the range from 1 to 255, inclusive. The segment number field is a byte 
containing a number between 0 and the total number or segments, inclusive. The meaning of this 
field depends on whether the segment contains data or acknowledgment information. 

The call number field is a 32-bit unsigned integer, represented most significant byte first. 
The call number is used to pair CALL messages with the corresponding RETURN messages. 

4.3. Sending a Message 

This section describes the protocol for sending a message. It is the same for both client and 
server; the only difference is whether the message type is CALL or RETURN. 



r----------------------------, 
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Figure 4: Segment format 

A sequence of bytes to be sent as a message is first divided into segments. Each segment is 

assigned a number, starting at 1, which is placed in the segment number field of its header. The 

message type, total number of segments, and call number fields of the header are the same for 

each segment of the message. The sender maintains a queue of the unacknowledged segments of 

the message, initially containing all the segments. 

The sender initially transmits all the segments to the receiver with no control bits set. It 

then periodically retransmits the first unacknowledged segment on its queue, with the PLEASE ACK 

bit set. Simultaneously, the sender listens for acknowledgments and removes acknowledged 

segments from its queue. When all the segments have been acknowledged and the queue is 

empty, transmission of the message is complete. 

An acknowledgment is either explicit or implicit. An explicit acknowledgment is a segment 

with the ACK bit set and the same message type, call number, and total number of segments as 

the current message. Acknowledgment segments contain no data.; the segment number field is 

used as an acknowledgment number, indicating that all segments with numbers less than or equal 

to the acknowledgment number have been received. 

An implicit acknowledgment is a data segment sent by the receiver back to the sender. A 

segment from a RETURN message implicitly acknowledges all the segments of the previous CALL 

message if it carries the same call number, and a segment from a CALL message implicitly 

acknowledges all the segments of the previous RETURN message if it carries a later call number. 

Implicit acknowledgments are possible because processes alternate between sending and receiving. 

4.4. Reeelvlng a Message 

The protocol for receiving a message is also the same for both client and server. The 

receiver maintains a queue of incoming segments Cor the current message, and an acknowledgment 

number, initially zero. The acknowledgment number is the highest consecutive segment number 
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received. 

When a segment arrives, it is placed in its proper position in the queue. The segment may 

have filled a gap in the queue, enabling the acknowledgment number to be advanced. IC the 

PLEASE ACK bit is set in the incoming segment, an explicit acknowledgment segment is sent with 

the current value of the acknowledgment number in the segment number field. 

Reception of the message is complete as soon as all the segments have been received. 

4.5. Client Probing 

Once a client has sent an entire CALL message and its receipt has been acknowledged, the 

client may wait arbitrarily long before the remote procedure finishes and sends back the RETURN 

message. In order to detect crashes during this interval, the client periodically probes the server 

with a PLEASE ACK segment containing no data. 

4.&. Correctness and Crash Detection 

The send and receive protocols guarantee that messages will be communicated correctly in 

the presence of lost or duplicated datagrams, (assuming that any segment retransmitted 

repeatedly will eventually be received). 

This assumption does not hold in the event of a crash. In order to detect crashes, an upper 

bound must be placed on the number of retransmissions with no response before it is assumed that 

the receiver has crashed. A bound that is too low increases the chance of incorrectly deciding that 

a receiver has crashed. A bound that is too high introduces a long delay in the detection of true 

crashes. 

4. 7. Optimizing Acknowledgments and Retransmissions 

Several optimizations are possible to reduce the number of acknowledgments and 

retransmissions. For instance, when an out-of-order segment arrives during receipt of a multiple­

segment message, the receiver knows that one or more segments have been lost. It should 

therefore immediately send an explicit acknowledgment for the last consecutively received 

segment, so that the sender will retransmit the first lost segment, rather than an earlier segment. 

When a segment that completes a CALL message arrives at a server, acknowledgment of the 

message can be postponed, even if the PLEASE ACK bit was set, in the hope that the RETURN 

message will be forthcoming soon enough to serve as an implicit acknowledgment. Subsequent 

PLEASE ACK segments should be acknowledged promptly. 

The retransmission strategy could be changed to retransmit all the remaining 

unacknowledged segments rather than just the first, depending on the reliability characteristics of 

the network. 

4.8. State Information 

The protocol is connectionless in the sense that no initial handshake is needed to establish 

communication; a client merely sends a CALL message to a server. Clients and servers must 

maintain state information about active message exchanges (segment queues and acknowledgment 

numbers). After an exchange has completed, only its call number must be kept, and this may be 

discarded once sufficient time has passed to guarantee that no delayed segments from the 

exchange can arrive. This is to prevent the "replay" of delayed CALL messages. 

4.9. Maximum Segment Length 

The maximum length of a segment is implementation dependent, but must be no larger than 

the maximum UDP datagram size minus the 8 bytes of segment header. It may be desirable to 

use a smaller limit in order to prevent fragmentation at the IP level [28J. This requires knowledge 



or the maximum transmission unit (MTU) Cor the physical networks or interest (presumably the 

local area networks expected to be used most often). 

4.10. UNIX Implementation Issues 

This section discusses various details of the implementation of the paired message protocol 

under Berkeley UNDC The protocol is currently implemented entirely in user code, although a 

project is under way to transfer it to the UNIX kernel for improved performance. 

Asynchronous events, specifically the arrival of datagrams and the expiration of timers, 

must be handled in parallel with the activity of the client or server. For instance, a probe may 

arrive while a server is performing a procedure that may take arbitrarily long. If multiple 

processes sharing the same address space were available under UNIX, a separate process could be 

devoted to listening Cor incoming segments and handling timers. Since this is not possible, these 

events are modelled as software interrupts using the signal mechanism, interrupt-driven 1/0 

facility, and interval timer of Berkeley UNIX version 4.2 I16J. Protection or critical regions is 

achieved by using system calls that mask and enable interrupts. 

The protocol package uses timers to handle retransmission, probing, no-response timeouts, 

and n0eactivity timeouts. A general timer package was built on top or the single UNIX interval 

timer for this purpose. It allows a timer to be defined by a timeout interval and a procedure to be 

invoked upon expiration; any number of timers may be active at the same time. 

5. Implementation of Troupes and Repllcated Procedure Call 

This section describes how replicated procedure calls are implemented on top of the paired 

message layer. 

5.1. Addresses 

Replicated procedure calls are made between troupes, which consist of modules. A module 

address is a refinement of a process address, since one process may export several modules. It 

consists or a process address together with a 16--bit module number that identifies the module 

among those exported by that process. (The module number is assigned by the export procedure 

and is an index into a table or exported interfaces.) 

A troupe is represented at this level by a sequence of module addresses. This representation 

is returned by the binding agent when a client imports a server troupe. 

5.2. CALL messages 

We now describe the contents or a CALL message. Remember that this data is uninterpreted 

by the paired message layer. A CALL message consists or a header containing a module number 

and procedure number, and the parameters to the procedure. The module number is the only 

component of the module address or the destination that is required at this level; the underlying 

paired message protocol deals with the process address component. The procedure number is 

assigned by the stub compiler and is the index or the procedure within the module interface. The 

header also contains other information described below. The parameters are represented in a 

standard external form by the routines produced by the stub compiler. 

5.3. RETURN messages 

A RETURN message consists of a 16--bit header, used to distinguish between normal and error 

results, and the results of the procedure in the standard external representation. 

5.4. Onec-tOo>many calls 

The client half of the replicated procedure call algorithm performs a one--t0emany call as 

shown in figure 5. The same CALL message is sent to each server troupe member, with the same 
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Client Server 

Figure 5: A one-to-many call 

call number at the paired message level. The client then awaits the arrival o( the RETURN 

messages from the members of the server troupe. 

In a. language with multiple processes, a. one-to-many call could be expressed as many 

concurrent processes, each performing a conventional remote procedure call. 

5.5. Many-to-one calls 

Now consider what occurs at a single server when a. client troupe calls a server troupe. The 

server will receive CALL messages (rom each client troupe member, as shown in figure 6. The 

semantics of replicated procedure call require the server to execute the procedure only once and 

return the results to all the client troupe members. How can the server tell that all the CALL 

messages are part or the same replicated call, rather than many unrelated calls? Our solution 

requires a unique ID Cor each troupe (assigned by the binding agent) and two more fields in the 

CALL message header. 

First, a client troupe ID contains the troupe ID of the client troupe making the call. When 

a server receives a CALL message, it maps the client troupe ID into the set or module addresses or 

the members or the client troupe. This is done by consulting a local cache or by contacting the 

binding agent. The server now knows how many CALL messages to expect as part of the many­

to-one call. 

Second, a root ID uniquely identifies the entire chain or replicated calls or which this one is a 

part. The root ID consists of the troupe ID or the client that started the chain or calls and the 

call number of its original CALL message. The root ID is like a transaction ID; it is propagated 

whenever one server calls another. It can be shown that two or more CALL messages arriving at a 

server will have the same root ID if and only if they are part of the same replicated call [7J. 

The client troupe ID and the root ID together allow the server to collect the entire set of 

CALL messages that form a many-to-one call. The procedure is executed once, and a. RETURN 

8 



Client Server 

Figure 6: A manyot<H>ne call 

message containing the results is sent to each member of the client troupe. 

5.8. Collators 

A client making a oneot0omany call expects a. single result, but receives a. RETURN message 

from each server troupe member. Similarly, a server handling a many-t<H>ne call must perform 

the requested procedure once, but receives a CALL message from each client troupe member. 

Under strong assumptions of determinism, one can require that all the messages in these sets 

be identical. It is possible to relax this requirement (at the cost of transparency) and allow 

applications to specify their own procedures Cor reducing a set of messages to a single message. 

We call such procedures collators. 

A collator is basically a function that maps a set of messages into a single result. For 

performance reasons, it is desirable Cor computation to proceed as soon as enough messages have 

arrived for the collator to make a decision. (This is equivalent to using lazy evaluation when 

applying the collator.) We therefore complicate the definition of a collator slightly, The collator is 

invoked each time a message in the set arrives, until it returns an indication that it has reached a 

decision. The collator is applied not to a set of messages, but to a set of status records for the 

expected messages. Each status record contains one of the following variants: 

(1) The contents of the message. 

(2) An indication that the message has not arrived but is still expected. 

(3) An indication that an error has occurred and the message will never arrive. 

Only three collators are currently supported: unanimous, which requires all the messages to 

be identical, and raises an exception otherwise; majority, which performs majority voting on the 

messages; and first-come, which accepts the first message that arrives. 



The framework or replicated calls and collators is sufficiently general to express a variety or 
voting schemes and broadcast-based algorithms [13, 19, 21, 25, 26, 31,32]. 

5.7. Invocation semantics 

Nelson argues persuasively that in the presence or concurrency, parallel invocation semantics 
rather than serial are required in order to match the semantics of the local case [24J. When 
incoming calls are serialized by arrival time, the possibility of deadlock is introduced. This type 
of deadlock does not occur when incoming calls are handled by concurrent processes. 

Our current implementation suffers from this deficiency because of the lack or multiple 
processes within the same address space under UNIX. We have provided a partial solution in the 
form of a simple process mechanism Cor C that supports several threads or control with 
synchronization by signalling and awaiting events. 

5.8. Use of multleast 

The UNIX networking primitives used by Circus do not allow access to the multicast 
capabilities or the Ethernet [llj. IC this were changed, the operation of sending the same message 
to an entire troupe could be implemented by a multicast operation, and the binding agent, 
described below, could manipulate Ethernet hardware group addresses. 

&. The Binding Agent 

This section describes the Ringmaster, a binding agent Cor troupes. The Ringmaster is a 
specialized name server enabling programs to import and export troupes by name. It plays the 
same role that Grapevine does in the Xerox PARC RPC system [3,4]. The main differences are 
that the Ringmaster 

(1) manipulates troupes (sets or module addresses), 

(2) is a dedicated binding agent, and 

(3) is itself a troupe whose procedures are invoked via replicated procedure call. 

A client imports a module by calling find troupe by name. The procedure returns the set or 
module addresses associated with that name. 

A server exports a module by calling join troupe. IC there is already a troupe associated 
with the specified name, an entry containing the address or the exported module is added to it; 
otherwise, a new troupe is created with the exported module as its only member. The troupe ID 
is returned. 

The UNIX process ID of the server process is also recorded in the entry Cor the module, so 
that the Ringmaster can periodically perform garbage collection of troupe members whose 
processes have terminated. 

A server handling a many-to-one call uses find troupe by ID to map a client troupe ID 
into the set or module addresses or the troupe members. 

Access to the binding procedures is by means of stubs produced by the stub compiler from 
the Ringmaster interface. These stubs are part of the Circus runtime library. 

Since the Ringmaster cannot be used to import itself, a special degenerate binding 
mechanism is used for the Ringmaster module: the Ringmaster troupe is partially specified by 
means of a well-known port on each machine, and the set of machines running instances of the 
Ringmaster is determined dynamically. 

7. The Stub Complier 

This section describes a stub compiler, called Rig, that translates remote module interfaces 
into client and server stub routines in C [17]. The stub routines take responsibility for sending 
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parameters and results between client and server troupe members via the replicated procedure call 

runtime package. 

7.1. Speclfleatlon of li.eittote Interfaces 

The programmer defines module interfaces by means of a specification language derived 

from Courier [33J. A module consists of a sequence of declarations of types, constants, and 

procedures. The type algebra is almost identical to that of Courier. Certain of the Courier types 

require a programming language capable of supporting them: error types (exceptions) that 

procedures may report in lieu of returning a result, constants of arbitrary constructed types, and 

procedures that return multiple results. Because of the lack of support for these features in the C 

language, they are not supported in this implementation. 

The predefined types include Booleans, 16-bit and 32-bit signed and unsigned integers, and 

character strings. The constructed types are enumerations, arrays, records, variable-length 

sequences, and discriminated unions. 

The predefined types and the enumeration, array, and record types have obvious C 

counterparts. The variable-length sequences and discriminated unions pose some problems when 

they are mapped into C, because an object of one of these types must contain run-time 

information (the length of the sequence or which variant is present) that is implicit in the Courier 

type, but must be made explicit in C. Furthermore, the C programmer must bear the 

responsibility of keeping this information consistent when these objects are manipulated by 

functions other than those generated automatically by the stub compiler. 

7.2. External Representation of Types 

The Courier protocol specifies how objects of each type are represented when transmitted in 

CALL and RETURN messages; we adopt the same representation. Most of the work of the stub 

routines consists of translating parameters and results between their external and internal 

representations. This may involve byte-swapping of integers, realignment of record fields, and 

storage allocation for objects of variable-length types. 

1.3. Transpareney of Troupes 

The stub compiler also produces binding stubs to import and export each module that it 

compiles. These routines make replicated procedure calls to the Ringmaster as described above. 

The representations of troupes that are returned by these binding procedures are used by the 

client and server stub routines. In this way, once a program has been compiled, no editing or 

recompilation is required to change the number or location of troupe members. 

8. Conduslon 

We have described the Circus replicated procedure call facility, a preliminary 

implementation of our ideas about troupes and replicated procedure call. Currently, the only 

"production" program using troupes is the Ringmaster binding agent; programmers other than the 

author have only used Circus in its degenerate capacity as a non-replicated remote procedure call 

facility. 

8.1. Future Research 

We are continuing this research in a number of directions [8J. We are investigating the 

relationship between replicated procedure call and concurrency control mechanisms such as nested 

atomic actions, in order to clarify the semantics of concurrent replicated calls from unrelated 

client troupes to the same server troupe. 

At the same time, we are exploring the spectrum of possible determinism requirements on 

troupe members. 
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The programming-in-the-large issues associated with troupes are also being studied. We are 

designing a configuration language and a configuration manager for programs constructed from 

troupes. Our approach will be to extend previous work in this area [9, 10, 20, 22, 24, 29J to handle 

troupe creation and reconfiguratioo. 
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