
Circus: A Replicated Procedure Call Facility

Abstract

Eric C. Cooper

Computer Systems Research Group
Computer Science Division - EECS

University of California
Berkeley, CA 94720

The Circus replicated procedure call facility for Berkeley UNIX* is described. The main

components of the system are a paired message protocol, a runtime library implementing

replicated procedure call semantics, a binding service for replicated modules, and a stub compiler

for the C programming language. The implementation of each of these components is discussed.

1. Introduction

This paper describes a replicated procedure call facility, called Circus, that has been

implemented for Berkeley UNIX. Replicated procedure call [7J is a new mechanism for

constructing highly available distributed programs. It combines remote procedure call with

replication of program modules for fault tolerance.

The main components of the Circus system are a paired message protocol, a runtime library

implementing replicated procedure call semantics, a binding service for replicated modules, and a

stub compiler for the C programming language [17J.

Figure 1 shows the structure of the Circus system. The protocol layers used in Circus are

shown in figure 2.

2. Remote Procedure Call

The goal of remote procedure call [24J is to allow distributed programs to be written in the

same style as conventional programs for centralized computers. Details or communication are

hidden, and the syntax of a remote call is similar or identical to the local case.

A complete remote procedure call facility must address the following issues.

(1) Reliable communication of CALL and RETURN messages of variable length.

(2) Procedure invocation semantics.

(3) Binding (importing and exporting remote modules).

(4) Representation of parameter and result types.

'UNIX is & tr:a.dema.rlc of Bell Laboratories.

This work was sponsored by a Nation&! Science Foundation Gr:a.du&te Fellowship &nd by the Defense AdV&need Research

Projeets Agency (DoD), ARPA Order No . .001, monitored by the Nav&l Eleetronies Systems Comma.nd under contract

No. N00039-C-0235. The views &nd conclusions contained in this doeumen\ are those of the &uthor &nd should not be in­

terpreted as representing offici&! policies, either expressed or implied, or the Defense Research Projects Agency or of the

U.S. Government.

This paper will appear in the Proceeding• of the -4tla Symponum on Reliability in Di•tributed Software and Datl!.ba1e Sy,.,

tern~, October 1084.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 1984 2. REPORT TYPE

3. DATES COVERED
 00-00-1984 to 00-00-1984

4. TITLE AND SUBTITLE
Circus: A Replicated Procedure Call Facility

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Circus replicated procedure call facility for Berkeley UNIX is described. The main components of the
system are a paired message protocol, a runtime library implementing replicated procedure call semantics,
a binding service for replicated modules, and a stub compiler for the C programming language. The
implementation of each of these components is discussed.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

client
client
stubs

......
......

runtime
libary

stub
compiler

binding
agent

runtime
libary

Figure 1: Structure of the Circus system

replicated procedure call

paired message protocol

unreliable datagrams

Figure 2: Circus protocol layers

3. Troupes and Replleated Procedure Call

server
stubs

server

Remote procedure call allows program modules to be located on different machines.

Replicated procedure call generalizes this by allowing modules to be replicated any number or

times. The set of replicas of a module is called a troupe. When a client troupe makes a replicated

procedure call to a server troupe, each member of the server troupe performs the requested

procedure exactly once, and each member or the client troupe receives all the results. Figure 3

shows a replicated procedure call from a client troupe to a server troupe. A replicated distributed

program constructed in this way will continue to function as long as at least one member of each

troupe survives.

Troupe members are required to behave deterministically: two replicas in the same state

must execute the same procedure in the same way. In particular, they must call the same remote

procedures, produce the same side effects, and return the same results. Note that this

Client troupe Server troupe

Figure 3: Replicated procedure call

determinism requirement is also implicit in roll-forward crash recovery schemes such as replay of

message logs [5, 14J or re-execution of intention lists [18]. An advantage of the troupe mechanism

is that "same" can be replaced by an application-specific equivalence relation.

Just as replicated procedure call is a conceptual extension of remote procedure call, the

Circus implementation described here evolved as an extension of a remote procedure call

implementation for Berkeley UNIX. When the degree of module replication is one, Circus

functions as a conventional remote procedure call system.

A description of replicated procedure call and the algorithms required to implement its

semantics has appeared elsewhere [7J. This paper concentrates on the implementation of these

algorithms in a practical system.

3.1. Related Work

This research began as an attempt to transfer the Xerox RPC ideas [4, 23, 24, 33J to an

environment based on Berkeley UNIX [16J and DARPA Internet protocols [27, 28J. The idea of

achieving fault tolerance by means of replication dates back to von Neumann [32J. The present

work may be viewed as an extension of the techniques of tripl~modular and N-modular

redundancy [1, 21J. This approach is also similar to the one taken by Gunningberg, who proposed

a fault;..tolerant message protocol based on tripl~modular redundancy [15J. We have extended

Gunningberg's idea to a system based on remote procedure calls and Cully general replication and

voting schemes.

A methodology known as N-version programming uses multiple implementations of the

same module specification to mask software faults [6]. This technique can be used in conjunction

with replicated procedure call to increase software as well as hardware fault tolerance.

We use a form of replication in which each component performs the same function, in

contrast to !'chemes such as those of Tandem [2,30J or Auragen [5J in which only a single

3

component functions normally and the remaining replicas are on stand-by in case the primary

fails.

4. The Paired Message Protocol

The paired message protocol provides reliably delivered, variable-length, paired
CALL/RETURN messages. It uses UDP, the DARPA User Datagram Protocol [27].

The paired message protocol is responsible for segmenting messages that are larger than a
single datagram, in order to permit variable-length messages, and Cor retransmission and
acknowledgment of message segments to ensure reliable delivery. It is connectionless and geared
towards the fast exchange of short messages. Our protocol is based very closely on the RPC
protocol of Birrell and Nelson [4]. The only real difference lies in the treatment of messages
requiring multiple datagrams; our protocol provides better recovery from lost datagrams in this
case.

The paired message protocol does not specify how remote modules or procedures are
identified, how clients and servers are bound together, how parameters. and results are
represented, or how exceptional conditions are handled. The contents of the messages are
uninterpreted. It is therefore possible for several remote (or replicated) procedure call systems,
with different type representation and module binding requirements, to use this same protocol as a
basis for communication. For example, in addition to the Circus system, a simple remote
procedure call facility was implemented for Franz Lisp [12] that uses the same paired message
protocol, but represents procedures and values symbolically in messages.

4.1. Addresses

Messages are exchanged between processes. A process address consists of a 32-bit host
address together with a 16-bit port number. The host address identifies the machine within the
DARPA Internet, and the port number identifies the process within the machine. This is the same
address format used by the underlying UDP layer; we rely on the UDP implementation for the
assignment of port numbers to processes.

4.2. Messages and Segments

A message is a sequence of bytes, together with a type (CALL or RETURN). Messages are
transmitted as one or more segments of fixed maximum length. A segment is a UDP datagram of
the form shown in figure 4.

A data segment consists of a segment header together with some portion of the message
data. A control segment contains only a segment header; it is used to send acknowledgment
information. The message type field is a byte containing either 0 for a CALL message or 1 for a
RETURN message. The control bits field is a byte containing two Boolean values used to control
the acknowledgment and retransmission procedures. The least significant bit is the PLEASE ACK

flag, and the next least significant bit is the ACK flag. The six most significant bits are unused.

The next two bytes are used to specify the logical position of the segment within the whole
message. The total segments field is a byte containing the total number or segments in the
message, which must be in the range from 1 to 255, inclusive. The segment number field is a byte
containing a number between 0 and the total number or segments, inclusive. The meaning of this
field depends on whether the segment contains data or acknowledgment information.

The call number field is a 32-bit unsigned integer, represented most significant byte first.
The call number is used to pair CALL messages with the corresponding RETURN messages.

4.3. Sending a Message

This section describes the protocol for sending a message. It is the same for both client and
server; the only difference is whether the message type is CALL or RETURN.

r----------------------------,
(UDP header)

I

message control segment total
type bits number segments

call number

(segment data)

Figure 4: Segment format

A sequence of bytes to be sent as a message is first divided into segments. Each segment is

assigned a number, starting at 1, which is placed in the segment number field of its header. The

message type, total number of segments, and call number fields of the header are the same for

each segment of the message. The sender maintains a queue of the unacknowledged segments of

the message, initially containing all the segments.

The sender initially transmits all the segments to the receiver with no control bits set. It

then periodically retransmits the first unacknowledged segment on its queue, with the PLEASE ACK

bit set. Simultaneously, the sender listens for acknowledgments and removes acknowledged

segments from its queue. When all the segments have been acknowledged and the queue is

empty, transmission of the message is complete.

An acknowledgment is either explicit or implicit. An explicit acknowledgment is a segment

with the ACK bit set and the same message type, call number, and total number of segments as

the current message. Acknowledgment segments contain no data.; the segment number field is

used as an acknowledgment number, indicating that all segments with numbers less than or equal

to the acknowledgment number have been received.

An implicit acknowledgment is a data segment sent by the receiver back to the sender. A

segment from a RETURN message implicitly acknowledges all the segments of the previous CALL

message if it carries the same call number, and a segment from a CALL message implicitly

acknowledges all the segments of the previous RETURN message if it carries a later call number.

Implicit acknowledgments are possible because processes alternate between sending and receiving.

4.4. Reeelvlng a Message

The protocol for receiving a message is also the same for both client and server. The

receiver maintains a queue of incoming segments Cor the current message, and an acknowledgment

number, initially zero. The acknowledgment number is the highest consecutive segment number

6

received.

When a segment arrives, it is placed in its proper position in the queue. The segment may

have filled a gap in the queue, enabling the acknowledgment number to be advanced. IC the

PLEASE ACK bit is set in the incoming segment, an explicit acknowledgment segment is sent with

the current value of the acknowledgment number in the segment number field.

Reception of the message is complete as soon as all the segments have been received.

4.5. Client Probing

Once a client has sent an entire CALL message and its receipt has been acknowledged, the

client may wait arbitrarily long before the remote procedure finishes and sends back the RETURN

message. In order to detect crashes during this interval, the client periodically probes the server

with a PLEASE ACK segment containing no data.

4.&. Correctness and Crash Detection

The send and receive protocols guarantee that messages will be communicated correctly in

the presence of lost or duplicated datagrams, (assuming that any segment retransmitted

repeatedly will eventually be received).

This assumption does not hold in the event of a crash. In order to detect crashes, an upper

bound must be placed on the number of retransmissions with no response before it is assumed that

the receiver has crashed. A bound that is too low increases the chance of incorrectly deciding that

a receiver has crashed. A bound that is too high introduces a long delay in the detection of true

crashes.

4. 7. Optimizing Acknowledgments and Retransmissions

Several optimizations are possible to reduce the number of acknowledgments and

retransmissions. For instance, when an out-of-order segment arrives during receipt of a multiple­

segment message, the receiver knows that one or more segments have been lost. It should

therefore immediately send an explicit acknowledgment for the last consecutively received

segment, so that the sender will retransmit the first lost segment, rather than an earlier segment.

When a segment that completes a CALL message arrives at a server, acknowledgment of the

message can be postponed, even if the PLEASE ACK bit was set, in the hope that the RETURN

message will be forthcoming soon enough to serve as an implicit acknowledgment. Subsequent

PLEASE ACK segments should be acknowledged promptly.

The retransmission strategy could be changed to retransmit all the remaining

unacknowledged segments rather than just the first, depending on the reliability characteristics of

the network.

4.8. State Information

The protocol is connectionless in the sense that no initial handshake is needed to establish

communication; a client merely sends a CALL message to a server. Clients and servers must

maintain state information about active message exchanges (segment queues and acknowledgment

numbers). After an exchange has completed, only its call number must be kept, and this may be

discarded once sufficient time has passed to guarantee that no delayed segments from the

exchange can arrive. This is to prevent the "replay" of delayed CALL messages.

4.9. Maximum Segment Length

The maximum length of a segment is implementation dependent, but must be no larger than

the maximum UDP datagram size minus the 8 bytes of segment header. It may be desirable to

use a smaller limit in order to prevent fragmentation at the IP level [28J. This requires knowledge

or the maximum transmission unit (MTU) Cor the physical networks or interest (presumably the

local area networks expected to be used most often).

4.10. UNIX Implementation Issues

This section discusses various details of the implementation of the paired message protocol

under Berkeley UNDC The protocol is currently implemented entirely in user code, although a

project is under way to transfer it to the UNIX kernel for improved performance.

Asynchronous events, specifically the arrival of datagrams and the expiration of timers,

must be handled in parallel with the activity of the client or server. For instance, a probe may

arrive while a server is performing a procedure that may take arbitrarily long. If multiple

processes sharing the same address space were available under UNIX, a separate process could be

devoted to listening Cor incoming segments and handling timers. Since this is not possible, these

events are modelled as software interrupts using the signal mechanism, interrupt-driven 1/0

facility, and interval timer of Berkeley UNIX version 4.2 I16J. Protection or critical regions is

achieved by using system calls that mask and enable interrupts.

The protocol package uses timers to handle retransmission, probing, no-response timeouts,

and n0eactivity timeouts. A general timer package was built on top or the single UNIX interval

timer for this purpose. It allows a timer to be defined by a timeout interval and a procedure to be

invoked upon expiration; any number of timers may be active at the same time.

5. Implementation of Troupes and Repllcated Procedure Call

This section describes how replicated procedure calls are implemented on top of the paired

message layer.

5.1. Addresses

Replicated procedure calls are made between troupes, which consist of modules. A module

address is a refinement of a process address, since one process may export several modules. It

consists or a process address together with a 16--bit module number that identifies the module

among those exported by that process. (The module number is assigned by the export procedure

and is an index into a table or exported interfaces.)

A troupe is represented at this level by a sequence of module addresses. This representation

is returned by the binding agent when a client imports a server troupe.

5.2. CALL messages

We now describe the contents or a CALL message. Remember that this data is uninterpreted

by the paired message layer. A CALL message consists or a header containing a module number

and procedure number, and the parameters to the procedure. The module number is the only

component of the module address or the destination that is required at this level; the underlying

paired message protocol deals with the process address component. The procedure number is

assigned by the stub compiler and is the index or the procedure within the module interface. The

header also contains other information described below. The parameters are represented in a

standard external form by the routines produced by the stub compiler.

5.3. RETURN messages

A RETURN message consists of a 16--bit header, used to distinguish between normal and error

results, and the results of the procedure in the standard external representation.

5.4. Onec-tOo>many calls

The client half of the replicated procedure call algorithm performs a one--t0emany call as

shown in figure 5. The same CALL message is sent to each server troupe member, with the same

7

Client Server

Figure 5: A one-to-many call

call number at the paired message level. The client then awaits the arrival o(the RETURN

messages from the members of the server troupe.

In a. language with multiple processes, a. one-to-many call could be expressed as many

concurrent processes, each performing a conventional remote procedure call.

5.5. Many-to-one calls

Now consider what occurs at a single server when a. client troupe calls a server troupe. The

server will receive CALL messages (rom each client troupe member, as shown in figure 6. The

semantics of replicated procedure call require the server to execute the procedure only once and

return the results to all the client troupe members. How can the server tell that all the CALL

messages are part or the same replicated call, rather than many unrelated calls? Our solution

requires a unique ID Cor each troupe (assigned by the binding agent) and two more fields in the

CALL message header.

First, a client troupe ID contains the troupe ID of the client troupe making the call. When

a server receives a CALL message, it maps the client troupe ID into the set or module addresses or

the members or the client troupe. This is done by consulting a local cache or by contacting the

binding agent. The server now knows how many CALL messages to expect as part of the many­

to-one call.

Second, a root ID uniquely identifies the entire chain or replicated calls or which this one is a

part. The root ID consists of the troupe ID or the client that started the chain or calls and the

call number of its original CALL message. The root ID is like a transaction ID; it is propagated

whenever one server calls another. It can be shown that two or more CALL messages arriving at a

server will have the same root ID if and only if they are part of the same replicated call [7J.

The client troupe ID and the root ID together allow the server to collect the entire set of

CALL messages that form a many-to-one call. The procedure is executed once, and a. RETURN

8

Client Server

Figure 6: A manyot<H>ne call

message containing the results is sent to each member of the client troupe.

5.8. Collators

A client making a oneot0omany call expects a. single result, but receives a. RETURN message

from each server troupe member. Similarly, a server handling a many-t<H>ne call must perform

the requested procedure once, but receives a CALL message from each client troupe member.

Under strong assumptions of determinism, one can require that all the messages in these sets

be identical. It is possible to relax this requirement (at the cost of transparency) and allow

applications to specify their own procedures Cor reducing a set of messages to a single message.

We call such procedures collators.

A collator is basically a function that maps a set of messages into a single result. For

performance reasons, it is desirable Cor computation to proceed as soon as enough messages have

arrived for the collator to make a decision. (This is equivalent to using lazy evaluation when

applying the collator.) We therefore complicate the definition of a collator slightly, The collator is

invoked each time a message in the set arrives, until it returns an indication that it has reached a

decision. The collator is applied not to a set of messages, but to a set of status records for the

expected messages. Each status record contains one of the following variants:

(1) The contents of the message.

(2) An indication that the message has not arrived but is still expected.

(3) An indication that an error has occurred and the message will never arrive.

Only three collators are currently supported: unanimous, which requires all the messages to

be identical, and raises an exception otherwise; majority, which performs majority voting on the

messages; and first-come, which accepts the first message that arrives.

The framework or replicated calls and collators is sufficiently general to express a variety or
voting schemes and broadcast-based algorithms [13, 19, 21, 25, 26, 31,32].

5.7. Invocation semantics

Nelson argues persuasively that in the presence or concurrency, parallel invocation semantics
rather than serial are required in order to match the semantics of the local case [24J. When
incoming calls are serialized by arrival time, the possibility of deadlock is introduced. This type
of deadlock does not occur when incoming calls are handled by concurrent processes.

Our current implementation suffers from this deficiency because of the lack or multiple
processes within the same address space under UNIX. We have provided a partial solution in the
form of a simple process mechanism Cor C that supports several threads or control with
synchronization by signalling and awaiting events.

5.8. Use of multleast

The UNIX networking primitives used by Circus do not allow access to the multicast
capabilities or the Ethernet [llj. IC this were changed, the operation of sending the same message
to an entire troupe could be implemented by a multicast operation, and the binding agent,
described below, could manipulate Ethernet hardware group addresses.

&. The Binding Agent

This section describes the Ringmaster, a binding agent Cor troupes. The Ringmaster is a
specialized name server enabling programs to import and export troupes by name. It plays the
same role that Grapevine does in the Xerox PARC RPC system [3,4]. The main differences are
that the Ringmaster

(1) manipulates troupes (sets or module addresses),

(2) is a dedicated binding agent, and

(3) is itself a troupe whose procedures are invoked via replicated procedure call.

A client imports a module by calling find troupe by name. The procedure returns the set or
module addresses associated with that name.

A server exports a module by calling join troupe. IC there is already a troupe associated
with the specified name, an entry containing the address or the exported module is added to it;
otherwise, a new troupe is created with the exported module as its only member. The troupe ID
is returned.

The UNIX process ID of the server process is also recorded in the entry Cor the module, so
that the Ringmaster can periodically perform garbage collection of troupe members whose
processes have terminated.

A server handling a many-to-one call uses find troupe by ID to map a client troupe ID
into the set or module addresses or the troupe members.

Access to the binding procedures is by means of stubs produced by the stub compiler from
the Ringmaster interface. These stubs are part of the Circus runtime library.

Since the Ringmaster cannot be used to import itself, a special degenerate binding
mechanism is used for the Ringmaster module: the Ringmaster troupe is partially specified by
means of a well-known port on each machine, and the set of machines running instances of the
Ringmaster is determined dynamically.

7. The Stub Complier

This section describes a stub compiler, called Rig, that translates remote module interfaces
into client and server stub routines in C [17]. The stub routines take responsibility for sending

10

parameters and results between client and server troupe members via the replicated procedure call

runtime package.

7.1. Speclfleatlon of li.eittote Interfaces

The programmer defines module interfaces by means of a specification language derived

from Courier [33J. A module consists of a sequence of declarations of types, constants, and

procedures. The type algebra is almost identical to that of Courier. Certain of the Courier types

require a programming language capable of supporting them: error types (exceptions) that

procedures may report in lieu of returning a result, constants of arbitrary constructed types, and

procedures that return multiple results. Because of the lack of support for these features in the C

language, they are not supported in this implementation.

The predefined types include Booleans, 16-bit and 32-bit signed and unsigned integers, and

character strings. The constructed types are enumerations, arrays, records, variable-length

sequences, and discriminated unions.

The predefined types and the enumeration, array, and record types have obvious C

counterparts. The variable-length sequences and discriminated unions pose some problems when

they are mapped into C, because an object of one of these types must contain run-time

information (the length of the sequence or which variant is present) that is implicit in the Courier

type, but must be made explicit in C. Furthermore, the C programmer must bear the

responsibility of keeping this information consistent when these objects are manipulated by

functions other than those generated automatically by the stub compiler.

7.2. External Representation of Types

The Courier protocol specifies how objects of each type are represented when transmitted in

CALL and RETURN messages; we adopt the same representation. Most of the work of the stub

routines consists of translating parameters and results between their external and internal

representations. This may involve byte-swapping of integers, realignment of record fields, and

storage allocation for objects of variable-length types.

1.3. Transpareney of Troupes

The stub compiler also produces binding stubs to import and export each module that it

compiles. These routines make replicated procedure calls to the Ringmaster as described above.

The representations of troupes that are returned by these binding procedures are used by the

client and server stub routines. In this way, once a program has been compiled, no editing or

recompilation is required to change the number or location of troupe members.

8. Conduslon

We have described the Circus replicated procedure call facility, a preliminary

implementation of our ideas about troupes and replicated procedure call. Currently, the only

"production" program using troupes is the Ringmaster binding agent; programmers other than the

author have only used Circus in its degenerate capacity as a non-replicated remote procedure call

facility.

8.1. Future Research

We are continuing this research in a number of directions [8J. We are investigating the

relationship between replicated procedure call and concurrency control mechanisms such as nested

atomic actions, in order to clarify the semantics of concurrent replicated calls from unrelated

client troupes to the same server troupe.

At the same time, we are exploring the spectrum of possible determinism requirements on

troupe members.

11

The programming-in-the-large issues associated with troupes are also being studied. We are

designing a configuration language and a configuration manager for programs constructed from

troupes. Our approach will be to extend previous work in this area [9, 10, 20, 22, 24, 29J to handle

troupe creation and reconfiguratioo.

References
[1] T. Anderson a.nd P. A, Lee. Fault Tolerance: f'l"incipe1 and Practice. Prentice-Hall, 1081.

[2] Joel F. Bartlett. A NonStop kerneL Proceeding• of the 8th Symponum on ()per11ting Syltem. Pl"incirie•,

Operating Sy•temt Review 15, 5 (December 1081), pp. 22-20.

[3] Andrew D. Birrell, Roy Levin, Roger M. Needham, a.nd Michael D. Schroeder. Gn.pevine: An exercise in

distributed computing. Communiution• of th.e ACM 26, 4 (April1082), pp. 260-274.

[4] Andrew D. Birrell a.nd Bruce Jay Nelson. Implementing remote procedure calls. ACM Tran11action1 on

Computer Syltemt 2, 1 (February 1084), pp. 30-50.

[5] Anita. Borg, Jim Baumbach, a.nd Sam Glazer. A message system supporting fault tolera.nee. Proceeding• of th.e

oth ACM Symponum on Operating Syltemt Pl"incipu, Operating Sy1tem1 Review 17, 5 (October 1083), pp.

00-00.

[6] Liming Chen a.nd Algirdas Avizienis. N-version programming: A fault-tolera.nce a.pproa.ch to relia.bility of

software operation. Digelt of Paper•, FTCS-8: 8th Annual International Conference on Fault-Tolerant

Computing, June 1078, pp. 3-0.

[7) Eric C. Cooper. Replica.ted procedure call. Proceeding• of the !JrtJ. ACM Symponum on f'l"incipu of

Dirtributed Syrtem., August 1084.

[8) Eric C. Cooper. Meckani~m~ for Conltructing Reliable Di•tributetJ. Program.. Ph.D. dissertation, Computer

Science Division, University of California, Berkeley, in preparation.

[OJ Da.niel H. Cra.ft. Resource ma.na.gement in a. decentralized system. Proceeding• of th.e oth. ACM Symponum

on Operating Sy1tem1 Pl"incipu, Operating Syrtemt Review 17, 5 (October 1083), pp. 11-10.

[10) Fra.nk DeRemer a.nd Hans Kron. Programming-in-the-large versus prograrnming-in-the-sma.!L Proceeding• of

th.e 1(}75 International Conference on Reliable Software, April1075, pp. 114-121.

[11) Digit&! Equipment Corporation, Intel Corporation, a.nd Xerox Corporation. The Ethernet: A Local Area

Networlc. September 1080.

[12) John K. Foderaro, Keith L. Sklower, a.nd Kevin Layer. The F'f'11nz Li1p Manual. Computer Science Division,

University of California, Berkeley, June 1083.

-
[13) David K. Gifford. Weighted voting for replicated dat&. Proceeding• of the 7!h Sympon'um on Operating

Syrtemt Pl"incipu, Operating Sy1tem1 Review 13, 5 (December 1070), pp. 15G-162.

[14) J. N. Gray. Notes on data base operating systems. In Oper11ting Syltem.: An Advanced Courre, Lecture Note•

in Computer Science 60, edited by R. Bayer, R. M. Graham, a.nd G. Seegmuller, Springer-Verlag, 1078, pp.

303-481.

[15) Per Gunningberg. Voting a.nd redundancy ma.na.gement implemented by protocols in distributed systems.

Digelt of Paper•, FTCS-19: 1st/a International Symponum on Fault--Toler11nt Computing, June 1083, pp. 182-

185.

[16) William Joy, Eric Cooper, Robert Fabry, Samuel Leffler, Kirk McKusick, a.nd David Mosher. +2BSD Syltem

Manual. Computer Systems Research Group, Computer Science Division, University of California, Berkeley,

July 1083.

[17] Bria.n W. Kernigha.n and Dennis M. Ritchie. The C Progr4mming Langu11ge.. Prentice-Hall, 1078.

[18) Butler W. Lampson a.nd Howard E. Sturgis. Crtult Recovery in 11 Di.tributed DattJ StortJge Sy•tem.

Unpublished paper, Computer Science Laboratory, Xerox PARC, draft of June 1070.

[10) Butler W. Lampson. Repicated Commit. Unpublished paper, Computer Science Laboratory, Xerox PARC,

January 1081.

[20) Butler W. Lampson and Eric & Schmidt" Practical use of a polymorphic a.pplicative language. Conference

Record of the 1ah Annulll ACM Symponum on Principlu of Programming Language., January 1083, pp.

237-255.

[21) R., E. Lyons a.nd W. Yanderkulk. The use of triple-modula.r redundancy to improve computer reliability. IBM

Joumtd of RuearcA and Development 6, 2 (Aprill082), pp. 200-200.

[22) James G. Mitchell, William Maybury, and Richard Sweet. MutJ Language Manulll, VeTnon 5.0. Xerox PARC

report number CS1r70-3, April 1070.

[23) Bruce Nelson and Andrew BirrelL Lupine U1eT'• Guide: An Introduction to Remote Procedure Clllt. in Cedar.

The Cedar Manual, Computer Science Laboratory, Xerox PARC, July 1082.

[24) Bruce Ja.y Nelson. Remote Procedure Ctdl. Ph.D. dissertation, Computer Science Department, Carnegie­

Mellon University, CMU report number CMU-CS-81-110, Xerox PARC report number CSir81·0, May 1081.

[25) Derek C. Oppen and Yogen K. Dalalo The Clearinghou•e.· A Decentralized Agent for Locating Named Object1

in 11 Di.tributed Erwironmeni. Xerox Office Products Division report number OPD-T8103, October 1081.

[26] W. H. Pierce. Adaptive voteota.kers improve the use of redundancy. In Redundancy Technique. for

Computing Spt~, edited by Richard H. Wilcox and William C. Mann, Spartan Boolcs, Wa.shington, D.C.,

1962, pp. 220-250.

[21) Jon PosteL UreT Datagram Protocol. Information Sciences Institute, University of Southern Ca.lifornia, RFC

168, August 1080.

[28) Jon PosteL Internet Protocol. Information Sciences Institute, University of Southern California, RFC 701,

September 1081.

[20) Eric Emerson Schmidt. Controlling Large Software Development in a Di.tributed Environment. Ph.D.

dissertation, Computer Science Division, University of California, Berkeley, Xerox PARC report number CSIF

82-7, December 1082.

[30) Tandem Computers Inc. GUARDIAN Opet'ating Sy•tem Programming Mt~nulll, Volumu 1 11nd 2. Cupertino,

California, 1082.

[31) R. H. Thoma.s. A majority consensus approach to concurrency control for multiple copy databases. ACM

Tran•action• on Dt~taba•e Sy.term 4, 2 (June 1070), pp. 181-200.

[32) J. von Neumann. Probabilistic logics and the synthesis of relia.ble organisms from unrelia.ble components. In

AutomattJ Studie1, edited by C. E. Shannon and J. McC&rthy, Princeton University Press, 1056, pp. 43-08.

[33) Xerox Corporation. CourieT: The Remote Procedure Cllll Protocol. Xerox System Integration Standa.rd 038112,

December 1081.

13

