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Introduction:   In order to more clearly define the functional role of milky spots and their components 
in metastatic colonization, we evaluated the lodging and progressive growth of ovarian cancer cells in 
peritoneal fat that either contains or lacks milky spots.  In vivo studies using a panel of ovarian cancer 
cell lines showed that milky spots dramatically enhance early cancer cell lodging on peritoneal adipose 
tissues.  Similarly, conditioned medium from milky spot-containing fat had a significantly increased 
ability to direct cell migration, compared with conditioned medium from milky spot-deficient fat. 
Studies using a panel of immunodeficient mice showed that the number and size of omental milky 
spots is not dependent on the mouse genetic background and, similarly, that ovarian cancer cell 
colonization does not depend on the immune composition of the milky spot. Finally, consistent with 
the role for lipids as an energy source for ovarian cancer cell growth, in vivo time-course studies 
revealed an inverse relationship between metastatic burden and omental adipocyte content.  

Body:  After escape from the primary tumor, ovarian cancer cells in the peritoneal fluid have access to and can 
potentially lodge within a variety of tissues  (1,2).  In both clinical disease and experimental models, 
however, the omentum is the site of prodigious metastasis formation (3-5). Thus, attachment of ovarian 
cancer cells to the omentum represents an early step in the development of widespread peritoneal 
disease (6,7).    As the central regulator of peritoneal homeostasis, its functions include regulating fluid 
and solute transport, sensing and repairing injuries, promoting angiogenesis, fighting infection, serving 
as a source of stem cells, producing regulatory molecules, and storing and supplying lipids (8-12). 
These diverse functions are conferred by the cellular composition and architecture characteristic of 
human omenta.  

Aside from the clear collagenous membrane that acts as a scaffold for the organ, the majority of the 
omentum is composed of bands of adipose tissue that contain adipocytes, blood and lymph vessels, 
immune cells, stromal cells, and connective matrix components that lie beneath an irregular 
mesothelium (8-12).  In general, adipocytes have a variety of functions, ranging from lipid storage to 
production of endocrine molecules, and can serve as an integrating hub for inflammation, metabolism, 
and immunity (13-20).  A distinctive feature of the omental vasculature is the presence of numerous 
branching blood vessels ending in tortuous glomerulus-like capillary beds near the tissue periphery 
(21-23).  Immune cells aggregate around and within these capillary beds to form milky spots, which 
are the major immune structure for host defense of the peritoneal cavity (20, 25-36).  In milky spots, 
both the endothelial lining of the capillaries and the overlying mesothelium are specially adapted to 
facilitate transmigration of immune cells (35).   Additional structural elements include plasmocytes, 
fibroblasts, and mesenchymal cells, as well as collagen and reticular and elastic fibers (21). 

A comprehensive literature review showed that studies examining the role of the omentum in 
metastasis focus on the contribution of its individual components, and not on the tissue as a whole. In 
our view, results from the majority of studies support models in which ovarian cancer metastatic 
colonization is driven either purely by milky spots or purely by adipocytes. The milky spot-driven 
model is based on a large body of in vivo data showing that, on intraperitoneal injection, cancer cells 
rapidly and specifically localize, invade, and proliferate within omental milky spots (36-40).  In 
contrast, the adipocyte-driven model is based on studies published since the awarding of this grant. 
This model was prompted by the observation that, in its resting state, the omentum is composed 
predominantly of adipose and that cultured adipocytes can produce adipokines capable of promoting 
ovarian cancer cell migration and invasion in vitro (41).  Adipocytes can also provide a proliferative 
advantage by transferring fatty acids to ovarian cancer cells (41).  Although both models have clear 
strengths, neither addresses the intimate and dynamic interaction among milky spots, surrounding 
adipocytes, and other components of omental tissues.   
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Key Research Accomplishments:  
1. Identified both milky spot containing and deficient depots of peritoneal adipose to use to dissect 

that role(s) of milky spots and adipocytes in the promotion of ovarian cancer cell metastatic 
colonization. 

2. Ovarian cancer cells preferentially colonize peritoneal adipose that contains milky spots.  
3. Omental tissues secrete a factor(s) that can promote ovarian cancer cell migration.  
4. Milky spot-containing tissues show enhanced ability to stimulate directed migration. 
5. In vivo colonization of omental milky spots by ovarian cancer cells is not dependent on their 

immune cell composition. 
6. During progressive growth ovarian cancer cells replace omental adipose. 

Reportable Outcomes: 
Several sources of adipose tissue are accessible to ovarian cancer cells in the peritoneal cavity. 
There are five major adipose depots structures in the peritoneal cavity (2). As shown in Figure 1A, a 
lateral view of a ventral dissection allows visualization of the omentum (OM), gonadal fat (GF), 
uterine fat (UF), and mesentery (MY). The ovary (ov), uterine horn (uh) and small intestine (si) are 
indicated as points of reference. Further dissection allows for clear visualization of the splenoportal fat 
(SP), which surrounds the splenic artery and connects the hilum of the spleen to the celiac artery 
(Figure 1B), and the omentum, shown isolated from the pancreas (Figure 1C). The gross structure and 
relative size of these tissues is shown in Figure 1D.  

	    

	  

Figure 1. The relative locations of the main 
peritoneal adipose depots. A: View of the 
peritoneal cavity of a B6 mouse. Beginning at the 
top center and moving clockwise are: the omentum 
(OM; outlined) located over the stomach and 
spleen, the gonadal fat (GF) surrounding the left 
ovary (ov), the uterine fat (UF) attached to the 
uterine horns (uh) and the mesentery (MY) 
attached to the small intestine (si). B: The 
splenoportal fat can be exposed by lifting the 
spleen with forceps (SP; outlined). C: The 
omentum is shown dissected free from the 
pancreas to improve visualization. D:  relative 
size. From left to right: splenoportal fat (SP), 
omentum (OM), gonadal fat (GF), uterine fat (UF) 
and mesentery (MY; with attached mesenteric 
root). 
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 Interestingly, in 1995 Takemori et al, reported the presence of milky spots in the splenoportal fat 
of New Zealand Black mice that are similar in structure and composition to omental milky spots;  
however, they did not examine cancer cell localization to these structures (42). Consistent with their 
findings, we found that both the omentum and splenoportal fat have archetypal milky spot structures 
(Figure 2A). In contrast, these structures were not observed in uterine, gonadal and mesenteric fat 
(Figure 2A).  Further, 7 days after i.p. injection of SKOV3ip.1 cells, comparable cancer cell lesions 
were observed in both omental and splenoportal fat (Figure 2B) and not other fat depots. IHC using a 
human pan-cytokeratin (pan-CK) antibody showed that the lesions were composed of SKOV3ip.1) 
cells intermingled with the immune cells.  The specificity of IHC staining was confirmed by staining 
with an IgG control antibody (Figure 2B).  
 
Figure 2. Ovarian cancer cells 
preferentially colonize peri-
toneal adipose that contains 
milky spots. A: Milky spots (MS) 
are observed in the adipose (A) of 
the omentum and splenoportal fat 
of PBS-injected and naïve mice. In 
contrast, no milky spots were 
detected in the uterine fat, gonadal 
fat and mesentery, each composed 
mostly of adipocytes.  Repre-
sentative data from PBS-injected 
B6 mice is shown.  Arrows indicate 
blood vessels. Scale bar equals 50 
µm.  B. Standard histology and 
IHC shows comparable 
colonization of milky spots in both 
omentum and splenoportal fat 
(after injection of 1x106 

SKOV3ip.1 cells into Nude mice). 
Sections evaluated by H&E 
staining. Epithelial (cancer) cells 
within the lesions were confirmed 
by IHC for cytokeratin using a pan-
cytokeratin (pan-CK) antibody. 
IHC using an IgG isotype antibody 
for pan-cytokeratin served as a 
control. The scale bar is the same 
for all images and denotes 100 µm.   
C.  Eval-uation of ID8, CaOV3, 
and HeyA8 ovarian cancer colon-
ization of peritoneal fat depots at 7 
dpi. Cancer cell lesions are 
outlined.  Representative exam-ples 
of the cancer lesions occasionally 
seen in uterine, gonadal, and 
mesenteric fat are shown in insets. 
D. Flow cytometric analyses of 
omentum (OM), uterine fat (UF), 
gonadal fat (GF), and mesentery 
(MY) harvested from mice at 7 dpi 
of ID8-tdTomato cells. Data is 
presented as fold change increase 
of tdTomato-postive cells over 
PBS-injected mice (right).  Error 
bars indicate standard error of the 
mean.  ** denotes p<0.01 
compared to PBS controls. 
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Ovarian cancer cells preferentially colonize peritoneal adipose that contains milky spots. As 
described in the introduction, a review of the literature showed that ovarian cancer’s predilection for 
omental metastasis formation can be ascribed to either adipose-driven or milky spot-driven 
mechanisms. However, these models are based upon studies focusing on either structural features (i.e. 
milky spots) or cellular components (i.e. adipocytes) of omental tissue (25,38,41). The availability of 
peritoneal fat depots that contain or lack milky spot structures	   enabled	   us	   to	   distinguish	  
experimentally between the two models in the physiologically relevant setting of the peritoneal cavity. 
We reasoned that if colonization were purely adipocyte-driven, ovarian cancer cells would colonize the 
various peritoneal adipose depots to a similar extent after i.p. injection. In contrast, if milky spots drive 
this process, the omentum and splenoportal fat would have cancer cell foci in their numerous milky 
spots, while uterine, gonadal, and mesenteric fat would essentially be free of cancer cell colonies. 
Although our previous studies using SKOV3ip.1 cells support this latter model, studies using 
additional ovarian cancer cell lines are needed to determine the generalizability of these findings.  To 
this end, the ability of ID8, CaOV3, and HeyA8 cells to form cancer cell foci on the five distinct 
peritoneal fat after i.p. injection into B6 (ID8) or Nude (CaOV3, HeyA8) mice was assessed by 
histology.  The average number of cancer cells in a representative section of tissue was determined and 
expressed as foci/slide (Table 1). At 
7 dpi, numerous large foci of ID8 
cells were seen within the milky 
spots of both the omentum (ave. 48 
foci/slide) and splenoportal fat 
(ave. 5 foci/slide) (Figure 2C). No 
ovarian cancer cells were detected 
in the uterine or gonadal fat (Figure 
2C). In the mesentery, small 
clusters (<10 cells) of cancer cells 
were seen observed (ave. 2 
foci/slide) on the tissue periphery 
(Figure 2C, inset). In agreement 
with these findings, CaOV3 cells 
showed similar pattern and extent 
of foci formation in the peritoneal 
adipose (Figure 2C, inset). 
Interestingly, HEYA8 cells had a 
greater ability to form surface foci 
on gonadal fat (UF) with 8 
foci/slide (ave). [Figure 2C, inset 
(Table 1)].   

 Finally, to complement our findings from our histological analyses and enable future studies, we 
developed a protocol to quantitate the number of cancer cells present in peritoneal adipose depots.  
ID8-tdTomato cells were prepared and injected i.p. into B6 mice.  At 7 dpi, the adipose organs were 
harvested and dissociated into a single-cell suspension. The number of tdTomato cells present in the 
population of remaining cells (i.e. immune, endothelial, and mesothelial cells, fibroblasts, etc.) was 
quantified via flow cytometry as described in the Materials and Methods.  It should be noted that 
splenoportal fat was excluded because its small size prohibited reliable cell recovery. As shown in 
Figure 2D, omental tissue preparations contained a significant population of tdTomato-positive cells. 
When quantified (Figure 2D, right), the omentum showed a ~ 12-fold increase in the number of ID8- 
tdTomato cells present over PBS-injected controls while there was no significant increase in cell preps 

Mouse  
Strain 

Cell  
Line 

Tissue 
 Type 

Presence of   
Cancer Foci in 

Adipose Depota 
# Foci/Slide Ave. # Foci/ 

Slide 

C57Bl/6 ID8 OM 5 / 5  36, 46, 50, 51, 58  48 
SP 5 / 5    3,   3,   6,   6,   6  5 
GF 0 / 5    0,   0,   0,   0,   0 0 
MY 5 / 5    1,   1,   1,   2,   4  2 
UF 0 / 5    0,   0,   0,   0,   0 0 

Nude CaOV3 OM 5 / 5  17, 19, 22, 23, 24  21 
SP 5 / 5    7,   7, 13, 13, 20  12 
GF 1 / 5     1,  0,   0,   0,   0 0 
MY 5 / 5     1,  2,   2,   4,   4 3 
UF 2 / 5     1,  1,   0,   0,   0 0 

HeyA8b OM 4 / 4   25, 27, 29, 35 29 
SP 4 / 4      6,   7,   8, 10 8  
GF 3 / 4     1,   1,   3,   0 1 
MY 4 / 4     1,   4,   6,   8 5 
UF 4 / 4     6,   6, 10, 11 8 

a Incidence of cancer foci in organ in each of 5 mice injected 
b HeyA8 mouse cohort n=4 due to mis-injection of an individual mouse 

Table 1.  Histologic assessment of ID8, CAOV3, and HeyA8 
colonization of peritoneal adipose depots 
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from the gonadal fat, uterine fat, or mesentery.  These data support our histological finding that ovarian 
cancer cells preferentially colonize milky spot-containing adipose and provide an additional 
quantitative method for future studies by our laboratory and others.   

Omental tissues secrete a factor(s) that can promote ovarian cancer cell migration. Ovarian 
cancer cells specifically localize to the omentum within minutes after i.p. injection (3, 6, 36). This 
suggests that omental tissue produces a factor(s) that promotes cancer cell homing; however, previous 
studies have only examined the contribution of isolated adipocytes (41). To address this gap in 
knowledge, we first tested the ability of omentum-conditioned media to promote directed cancer cell 
migration. Using a modification of our published method for ex vivo organ culture (6), omenta were 
excised and allowed to normalize in DMEM/F12 media containing 20% FCS for 24 hrs. Tissues were 
then rinsed with PBS, placed in serum-free DMEM/F12, and maintained for up to 5 days ex vivo. 
Tissue integrity was assessed both histologically by visually evaluating intact (round, continuous cell 
membrane) versus necrotic (stellate, discontinuous cell membrane) adipocytes and functionally by 
measuring the level of IL-6 in the conditioned media every 24 hrs. In agreement with our previously 
published studies (6), omental tissues did not show loss of integrity or function under these conditions 
(Figure 3). 

After normalization in DMEM/F12 containing 20% FCS, omenta were rinsed with PBS and allowed 
to condition serum-free DMEM/F12 for 24 hrs (subsequently referred to as conditioned serum-free 
media; CSF). Omenta maintained in serum-free (SF) media are termed starved omenta (SOM). The 
combinations of omenta and media used as chemoattractants for the 6 hr migration assay are 
summarized in Figure 4A, upper panel, while representative membranes from the migration assays are 
shown in Figure 4A, lower panel. The number of cells that migrated to the lower side of the membrane 
was determined by summing the number of cells in each of 5 independent fields observed at 100x 
magnification.  

Initial studies tested the ability of omenta harvested from CD1 mice to promote migration of both 
mouse ID8 and human SKOV3ip.1 cells (Figure 4B). CD1 CSF media served as a strong 
chemoattractant for both ID8 and SKOV3ip.1 cells, resulting in a greater than 150-fold increase in 
migration relative to SF media controls. To ensure that these results are not specific to omenta 
harvested from CD1 mice, CSF from B6 and Nude mouse omenta were also tested in their ability to 
promote ID8 and SKOV3ip.1 cell migration. As shown in Figure 4C, CSF prepared from B6 and Nude 
mouse omenta were a strong chemoattractant for ID8 cells, stimulating migration on a par with CD1-
conditioned media (Figure 4B).   Consistent with this finding, B6 and Nude CSF also stimulated 
equivalent levels of migration in SKOV3ip.1 cells.  Interestingly, SKOV3ip.1 cells show a consistently 
lower level of migration than ID8 cells in response to media conditioned by omenta from CD1, B6, 
and Nude mice.  Taken together, these experiments showed that intact omental tissue can be used as a 
starting point for efforts to identify one or more secreted factors that promote ovarian cancer cell 
homing to omental tissues. 
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Figure 3. Evaluation of tissue integrity and function of tissues maintained in ex vivo 
culture. Left column: The appearance of freshly excised tissues. Middle column: Histology 
of tissues maintained for 24 hr in serum-free DMEM/F12. Right column: To assess tissue 
viability and function under ex vivo conditions, the amount of IL-6 in the SF culture media 
was determined at 24 hr intervals. As a control, the amount of IL-6 secreted by tissues 
maintained in media containing 20% FCS was determined in parallel. The relative amount of 
IL-6 at each timepoint is the ratio of the measured IL-6 concentration to the IL-6 
concentration in the control group. The scale bar is the same for all images and denotes 50 
µm. Error bars indicate standard error of the mean, *** denotes p<0.001. 
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Figure 4. Milky spot-containing adipose tissues show enhanced ability to stimulate directed migration. A: Top: 
Depiction of migration assay setup. Cancer cells are placed in the upper chamber of the transwell apparatus. The 
chemoattractant media, with or without starved tissue, is placed in the lower chamber as indicated. Bottom: 
Representative membranes from ID8 migration assays. B: Quantitation of ID8 (left) and SKOV3ip.1 (right) cell 
migration in response to factors produced by omenta harvested from CD1 mice. Conditions are those illustrated in Panel 
A, where SF denotes serum free media where CSF denotes conditioned serum and SOM denotes starved omentum. C: 
Quantitation of ID8 (left) and SKOV3ip.1 (right) cell migration in response to media conditioned by omenta from either 
B6 or Nude mice [indicated as CSF(B6) and CSF(Nude), respectively]. D: Migration assay of ID8 cells toward serum-
free media conditioned for 24 hr by tissue equivalents of omenta (OM), splenoportal fat (SP), uterine fat (UF) and 
mesentery (MY) harvested from B6 mice. n=5 for all conditions. Error bars indicate standard error of the mean, *** 
denotes p<0.001. 
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Milky spot-containing tissues show enhanced ability to stimulate directed migration. In their 
work, Nieman et al. showed that adipocytes cultured in vitro secreted cytokines that can promote 
migration of SKOV3ip.1 ovarian cancer cells (41).  This raised the possibility that migration of cancer 
cells toward omentum-conditioned media could be a strictly adipose-driven process. If that were the 
case, we predicted that media conditioned by adipose tissue lacking milky spots would promote 
migration of ovarian cancer cells to the same extent as milky spot-containing adipose tissue. 
Alternatively, if milky spots play a key role in organ-specific homing, we expected that conditioned 
media from tissues containing milky spots could have an enhanced ability to promote migration. To 
distinguish between these possibilities, CSF media was prepared using weight-matched tissue 
equivalents of omentum, splenoportal fat, uterine fat, and mesentery and used as a chemoattractant in 
transwell migration assays. As shown in  

Figure 3 tissues did not show loss of integrity or function for the duration of the migration assay. 
However, it was noted that the IL-6 production of the cultured uterine fat dropped significantly at 3 
days in culture (Figure 3). The migration-promoting activity of CSF prepared from each of these 
tissues is summarized in Figure 4D. Media conditioned by omenta and splenoportal fat caused a 95-
fold increase in cell migration as compared to SF media controls. In contrast, the absence of milky 
spots in uterine fat and mesentery corresponded with 75% reduction in the migration-stimulatory 
activity in their conditioned media (Figure 4D). Taken together, these functional studies bridge the 
adipocyte-driven and milky spot-driven models and argue that the presence of milky spots increases 
the chemoattractive potential of peritoneal fat depots. 

In vivo colonization of omental milky spots by ovarian cancer cells is not dependent on their 
immune cell composition. As a first step toward understanding the effect of the immune cell 
composition of milky spot structures on ovarian cancer cell colonization, experimental metastasis 
assays were conducted using immune competent (B6) and immunodeficient (Igh6, Nude, Rag1, and 
BN XID) mice. Specifically, 1 x 106 ID8 ovarian cancer cells were injected i.p. into all of the 5 
different mouse strains. Cancer cell foci were observed within milky spots in each of these mouse 
strains at 7 dpi (Figure 5A) and were confirmed to be epithelial via positive staining for mouse 
cytokeratin 8/18 (CK8/18). To determine if the missing immune-cell types in the various immune-
deficient mice alters cancer localization to milky spots, DAB area was quantified in CK8/18 stained 
sections. Figure 5B shows that ID8 cancer cells colonize omenta from each strain to a statistically 
equivalent degree. In parallel, 1 x 106 SKOV3ip.1 human ovarian cancer cells were injected into Nude, 
Rag1, and BN XID mice, and cancer foci were again found in each mouse strain (Figure 5C). 
SKOV3ip.1 lesions were stained for human pan-cytokeratin (pan-CK) and found to be cytokeratin-
positive. Thus, ovarian cancer cell colonization of omental milky spots is not affected by deficiency or 
absence of T cells, B cells and/or NK cells in these mouse strains. 
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Figure 5. Colonization of omental milky spots by ovarian cancer cells is not dependent on the host immune 
status. To test the possibility that the immune composition of the milky spots has a quantitative effect on ovarian cancer 
cell colonization, mice with deficiencies in T cells, B cells and/or NK cells were injected i.p. with either PBS (control)  
or 1x106 ovarian cancer cells. A: B6, Igh6-/-, Nude, Rag1-/- and BN XID mice were injected with mouse ID8 cells 
(syngeneic to B6 background). Omenta were collected at 7 dpi and stained with H&E. Cancer cell foci within milky 
spots are outlined. IHC against mouse cytokeratin 8/18 (CK8/18) was used to confirm that the epithelial origin of the 
cancer cell foci. B: DAB staining area is used as an indicator of cancer cell burden in omental tissues.  Values 
calculated as the percentage of ID8 with strong and medium intensity of CK8/18 (DAB) staining normalized to total 
stained area of the slide. Error bars indicate standard error of the mean. C: Human SKOV3ip.1 cells were injected into 
Nude, Rag1-/- and BN XID mice and treated similarly to ID8 injected animals. IHC for against human pan-cytokeratin 
(pan-CK) was used to confirm the epithelial origin of cancer cell lesions. Samples from 5 independent animals were 
evaluated for each condition of each test. The scale bar is the same for all images and denotes 50 µm.  
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During progressive growth ovarian cancer cells replace omental adipose. Mechanistic studies by 
Nieman et al. indicated that ovarian cancer cells could use adipocytes as an energy source for tumor 
growth (41).   If this holds true in vivo, we predicted that as cancer cells proliferate, they interact with 
and consume adipocyte lipids. The ultimate outcome of this inverse relationship between cancer cell 
area and adipocyte area would be that, at the experimental endpoint, the omental adipose would be 
replaced completely with cancerous tissue. To test this notion, 1 x 106 ID8 ovarian cancer cells were 
injected i.p. into a cohort of B6 mice. Groups of 5 mice were euthanized and tissues collected for 
histologic analysis at 1, 3, 6 and 9 weeks post injection (Figure 6A). Consistent with an inverse 
relationship between ovarian cancer cell growth and adipocyte depletion, there is a marked reduction 
in the adipocyte area over time. To quantify this change, we used a pixel-based image processing 
protocol similar to milky spot quantification (detailed in the Materials and Methods) to calculate the 
adipocyte area in omenta over time.  This showed a linear decrease in the percentage of adipocytes in 
the omentum corresponded to the expansion of ID8 cancer cell lesions (Figure 6B). These data are 
consistent with cancer cells’ utilization of lipids stored in adipocytes as an energy source for their 
continued growth. 

 

Conclusions and Future Directions:   
There is now considerable literature on the structure and function of milky spots in both the omentum 
and extraomental sites. Beginning in the 1970s, investigators noted that ascites tumors had a proclivity 
for these structures (42). Subsequent studies have confirmed and refined these findings (3, 6, 36). The 
strength of this work is that it implies a functional role for milky spots in the early steps of omental 
colonization. However, the weakness of the “milky spot-driven” model prompted by this body of 
literature is that the studies on which it is based do not consider the potential contribution(s) of 
adipocytes and other cells within the omentum. While the failure to consider the contribution of 

Figure 6. Adipocyte area of the omentum decreases during the timecourse ovarian cancer growth. A: The first 
panel shows a representative H&E stained section of an omentum from a naive B6 mouse. Milky spots are seen within 
adipose at the tissue periphery. The four subsequent panels show representative images of omental tissues harvested 
from B6 mice at 1, 3, 6 and 9 weeks post injection. The scale bar is the same for all images and denotes 200 µm. B: 
Quantitation of adipocyte area from H&E images. Reported values are percent adipocyte area normalized to whole 
omental area. Data at each time point is based on five independent animals. Error bars indicate standard error of the 
mean.  A linear regression of the data points indicates a slope significantly deviant from zero (p<0.0001) with R2 = 
0.8145. 
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omental adipose in cancer metastasis is consistent with the now-antiquated view of adipocytes as an 
inert component of connective tissues (13, 18, 19), it is a fundamental oversight that must be addressed 
if we are to understand the organ specificity of ovarian cancer cells.  

In contrast, the adipocyte-driven model prompted by the findings of Nieman et al., showed that in 
omental metastases, ovarian cancer cells at the interface with adipocytes contained abundant lipids 
(41).  In vitro studies showed that the adipocytes transfer lipid droplets that contain fatty acids to 
ovarian cancer cells (41), that can be used as an energy source The strength of their studies is that they 
focused on human ovarian cancers and identified a novel function for adipocytes in the progressive 
growth of ovarian cancer lesions. The weakness of this work lies in its effort to show that adipocytes 
drive, and are solely responsible for, early steps in omental colonization. The case for adipose as the 
sole determinant of the ovarian cancer’s organotropic metastasis was based on an incomplete 
examination of the literature and a biased approach to experimental design. As a result of the focus on 
adipocytes, important clues in the data were overlooked and the potential contributions of milky spots, 
vasculature, or other unique characteristics of the omentum were neither tested nor discussed. Thus, 
like the milky spot-driven model, this model is also limited by the narrow focus of the studies upon 
which it was based. 

Despite their strengths, neither the milky spot-driven nor the adipocyte-driven models address the 
intimate and dynamic interactions among milky spot structures, adipocytes, and other omental 
components.  Integration of these two models required a fresh look from a different perspective.  Thus, 
we sought to understand why ovarian cancers do not colonize other sources of peritoneal fat as 
extensively as they do the omentum, rather than more traditional omentum-focused approaches. This 
led to our novel strategy to compare colonization of peritoneal adipose that either contains or lacks 
milky spots.  The report by Takemori et al (42), showing the presence of milky spots in the 
splenoportal fat of New Zealand Black mice was key to our approach.  To our knowledge, the 
splenoportal fat band has not been studied in other mouse strains, nor has its colonization by any type 
of cancer cells been examined prior to the work presented herein.   In vivo studies using a panel of 
ovarian cancer cell lines  (ID8, SKOV3ip.1, CaOV3, and HeyA8) yielded the most comprehensive 
assessment of ovarian cancer cell lodging in peritoneal adipose and provided clear data showing that 
milky spots dramatically enhance early cancer cell lodging.   

To dissect the mechanism(s) by which milky spots promote colonization, we made use of the 
observation that after i.p. injection, ovarian cancer cells rapidly localize to omental milky spots, 
suggesting involvement of a tissue-secreted factor(s).  Development of the quantitative transwell 
migration approach (Figure 4) enabled us to assess the ability of fat (tissue)-conditioned media to 
stimulate directed migration of ovarian cancer cells.  Although milky spot-deficient tissues (uterine fat, 
gonadal fat and mesentery) secrete one or more factors that promotes directed migration, results from 
in vivo assays indicate that this signal is not sufficient for ovarian cancer cells to achieve the high level 
(both number and size) of foci formation seen in the omentum and splenoportal fat. This suggests that 
colonization requires additional chemotactic signals and/or tissue structures. In support of this notion, 
in vivo assays showed that ovarian cancer cells efficiently colonize milky spots in the omentum and 
splenoportal fat. In addition, using media conditioned by milky spot-containing adipose yielded the 
novel finding that the presence of these structures caused a significant enhancement in the media’s 
ability to promote directed cancer migration.   

Our findings show the critical importance of milky spots to ovarian cancer cell lodging and initial 
colonization of peritoneal adipose (3, 6, 21, 25, 36-40) and provide a foundation for studies to identify 
milky spot components involved in cancer cell homing and invasion. As a first step toward this goal, 
the use of immunodeficient mouse strains allowed us to rule out a requirement for B cells, T cells, or 
NK cells for ovarian cancer cell lodging within milky spots, confirming and expanding on the findings 
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of Lotan et al. (8) Previous studies have shown that mast cells and macrophages are frequently 
observed in the milky spots (27, 30, 31, 33). Macrophages are an intriguing candidate as they have 
been shown to assist the survival and growth of established tumors (43-45). Further, the depletion of 
peritoneal macrophages has been shown to decrease ovarian cancer tumor burden on the diaphragm at 
the experimental endpoint (46).  Milky spot macrophages are thus possibly contributing to the rapid 
and specific colonization of omental milky spots. Another possible source of the omentum’s 
chemotactic properties is the abundance of endothelial cells found in the milky spots. The vessels 
within the dense and tangled capillary bed of the milky spots have been shown to undergo a 
constitutive level of active vascular remodeling (25, 38). The activated endothelial cells associated 
with angiogenic vessels are known to support and promote metastatic disease (47, 48). Either or both 
of those cell types could be responsible for the prolific omental metastases and warrant future study.  

The growing emphasis on the role of the host tissue microenvironment in metastasis formation 
stems from the seminal work of Stephen Paget showing that certain tumor cells (the “seed”) have a 
proclivity for specific organ microenvironment(s) (the “soil”) (49-51). A powerful but often 
underappreciated aspect of studies by Paget and other pioneers of metastasis research was their innate 
appreciation of the unique tissue architecture, physiology, and function of the target organ that is 
essential to understanding metastatic organ specificity (51-55). The studies presented herein seek to 
integrate milky spot and adipocyte function in the omentum. We propose a two-step model for omental 
colonization wherein the localization of disseminated cancer cells is dependent upon milky spots. 
Adipocytes are then required for progressive growth and subsequent spread of cancer cells to other 
sites within the peritoneal cavity. This model is likely a more accurate representation of the overall 
process of ovarian metastatic colonization. It is our hope that both our findings and discussion of the 
larger literature will serve as a framework for studies that will continue to refine our understanding of 
omental colonization. Ultimately, it is our goal to use this information to extend the duration of 
metastatic suppression and significantly increase the quality of life for patients diagnosed with ovarian 
cancer.  
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