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TRYGVE HAAVELMO AND THE
EMERGENCE

OF CAUSAL CALCULUS

JUDEA PEARL
University of California, Los Angeles

Haavelmo was the first to recognize the capacity of economic models to guide
policies. This paper describes some of the barriers that Haavelmo’s ideas have had
(and still have) to overcome and lays out a logical framework that has evolved from
Haavelmo’s insight and matured into a coherent and comprehensive account of the
relationships between theory, data, and policy questions. The mathematical tools
that emerge from this framework now enable investigators to answer complex pol-
icy and counterfactual questions using simple routines, some by mere inspection of
the model’s structure. Several such problems are illustrated by examples, including
misspecification tests, nonparametric identification, mediation analysis, and intro-
spection. Finally, we observe that economists are largely unaware of the benefits
that Haavelmo’s ideas bestow upon them and, to close this gap, we identify con-
crete recent advances in causal analysis that economists can utilize in research and
education.

1. INTRODUCTION

To students of causation, Haavelmo’s paper “The statistical implications of a sys-
tem of simultaneous equations” (Haavelmo, 1943) marks a pivotal turning point,
not in the statistical implications of econometric models, as historians typically
presume, but in their causal counterparts. Causal implications, which prior to
Haavelmo’s paper were cast to the mercy of speculation and intuitive judgment
have thus begun their quest for full membership in the good company of scien-
tific discourse.

Haavelmo introduced three revolutionary insights in 1943.
First, when an economist sits down to write a structural equation he/she

envisions, not statistical relationships but a set of hypothetical experiments, qual-
itative aspects of which are then encoded in the system of equations. Second,
an economic model thus constructed is capable of answering policy intervention
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questions, with no further assistance from the modeler. Finally, to demonstrate
the feature above, Haavelmo presented a mathematical procedure that takes
an arbitrary model and produces quantitative answers to policy questions
(see Section 1.3).

1.1. What Is an Economic Model?

This first idea that an economic model depicts a series of hypothetical experiments
was expressed more forcefully in Haavelmo’s 1944 paper (The Probability
Approach in Econometrics) where he states:

“What makes a piece of mathematical economics not only
mathematics but also economics is, I believe, this: When we set up
a system of theoretical relationships and use economic names for
the otherwise purely theoretical variables involved, we have in mind
some actual experiment, or some design of an experiment, which we
could at least imagine arranging, in order to measure those quantities
in real economic life that we think might obey the laws imposed on
their theoretical namesakes.” (1944, p. 5)

But the methodological implications of this idea are demonstrated more explicitly
in 1943, where Haavelmo tries to explain what a modeler must have in mind in
putting together two or more simultaneous equations, say

y = ax + ε1 (1)

x = by + ε2. (2)

Haavelmo first showed that, contrary to naive expectation, the term ax is not
equal to E(Y |x)1 and, so, asked Haavelmo, what information did the modeler
intend a to carry in equation (1), and what information would a provide if we are
able to estimate its value.

In posing this question, Haavelmo addressed the dilemma of incremental model
construction. Given that the statistical content of a can only be discerned (if at all)
by considering the entire system of equations, how can a modeler write down one
equation at a time, without knowing what the meaning of the coefficients is in each
equation. “What is then the significance of the theoretical equations...” Haavelmo
asked (1943, p. 11) and answered it immediately: “To see that, let us consider, not
a problem of passive predictions, but a problem of government planning.”

In modern terms, Haavelmo rejected the then-ruling paradigm that parameters
are conveyors of statistical information and prepared the ground for the causal
definition of a (Pearl, 1994):

a = ∂

∂x
E(Y |do(x)) (3)
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which refers to a controlled experiment in which an agent (e.g., Government) is
controlling x and observing y.2 In such experiment, the average slope of Y on X
(i.e., a) bears no relationship to the regression slope (i.e., ∂

∂x E(Y |X = x)) in the
population prior to intervention. Whereas the statistical content of a (if identified)
may come from many equations, its causal content is local—to the great relief of
most economists who think causally, not statistically.

This simple truth, which today is taken (almost) for granted, took a long time
to take roots. To illustrate, the fierce debate between prominent statisticians and
economists that flared up in 1992, fifty years after Haavelmo’s paper, revolved
precisely around this issue of interpreting the meaning of a. The economist in
the debate, Arthur Goldberger (1992), claimed that ax in equation (1) may be
interpreted as the expected value of Y “if x were fixed,” so that the a parameter
“has natural meaning for the economist.” The statistician, Nanny Wermuth (1992),
argued that since ax �= E(Y |X = x), “the parameters in (1) cannot have the
meaning Arthur Goldberger claims they have.” Summarizing their arguments,
Wermuth concluded that structural coefficients have dubious meaning, and
Goldberger retorted that statistics has dubious substance. Remarkably, each side
quoted Haavelmo to prove the other wrong, and both sides were in fact correct;
structural coefficients have no meaning in terms of properties of joint distribu-
tion functions, the only meaning that statisticians were willing to accept in the
1990’s. And statistics has no substance, if it excludes from its province all aspects
of the data generating mechanism that do not show up in the joint distribution, for
example, a, or E(Y |do(x)).

The confusion did not end in 1992. The idea that an economic model must
contain extra-statistical information, that is, information that cannot be derived
from joint densities, and that the gap between the two can never be bridged, seems
to be very slow in penetrating the mind set of mainstream economists. Hendry, for
example, wrote: “The joint density is the basis: SEMs are merely an interpreta-
tion of that” (Hendry, 1998, personal communication). Spanos (2010), expressing
similar sentiments, hopes to “bridge the gap between theory and data” through
the teachings of Fisher, Neyman, and Pearson, disregarding the fact that the gap
between data and theory is fundamentally unbridgeable. This “data-first” school
of economic research continues to pursue such hopes, unable to internalize the
hard fact that statistics, however refined, cannot provide the causal information
that economic models must encode to be of use to policy making.3

The dominance of statistical thinking in econometrics goes beyond theory
testing. A highly influential econometric textbook writes: “A state implements
tough new penalties on drunk drivers: What is the effect on highway fatalities?...
[This effect] is an unknown characteristic of the population joint distribution of
X and Y ” (Stock and Watson, 2011, Ch. 4, p. 107). The fact that “effects” are not
characteristics of population joint distributions, so compellingly demonstrated by
Haavelmo (1943; see eq. (1)–(3)), would probably come as a surprise to modern
authors of econometric texts. To witness, almost seventy years after Haavelmo
defined a model as a set of hypothetical experiments, the common definition of
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“Econometric Models” reads (Wikipedia, February 18, 2012): “An econometric
model specifies the statistical relationship that is believed to hold between the
various economic quantities pertaining to particular economic phenomena under
study.”4

1.2. An Oracle for Policies or an Aid to Forecasters?

Haavelmo’s second and third insights also took time to be fully appreciated. Even
today, the idea that an economic model should serve as an oracle (i.e., a provider
of valid answers to nontrivial questions) for interventional questions tends to
evoke immediate doubts and resistance: “How can one predict outcomes of ex-
periments that were never performed, nor envisioned by the modeler?” Ask the
skeptics. And if the modeler’s assumptions possess such clairvoyant powers, why
not ask the modeler to answer policy questions directly, rather than engage in
modeling and analysis? How can a set of ordinary equations encapsulate the in-
formation needed for predicting the vast variety of interventions that a policy
maker may wish to evaluate? How is this vast amount of information encoded
nonparametrically, and what means do we have to extract it from its encoding?5

To a large extent, this typical resistance stems from the absence of distinct
mathematical notation for marking the causal assumptions that enter into an eco-
nomic model; the syntax of the equations appears deceptively algebraic, similar to
that of regression models, hence void of causal content. Some economists, lured
by this surface similarity, were led to conclude: “We must first emphasize that,
disturbance terms being unobservable, the usual zero covariances “assumptions”
generally reduce to mere definitions and have no necessary causality and
exogeneity implications.” (Richard, 1980, p. 3).

The absence of distinct notation for causal assumptions further compelled
economists to assume that, to qualify for policy analysis, an economic model
must be hardened by some extra ingredients; the equations themselves, even those
ordained and causally interpreted by Haavelmo and the Cowles Commission,
were deemed too simplistic or “fragile” to convey interventional information.

The literature on “exogeneity” (e.g., Richard, 1980; Engle, Hendry, and
Richard, 1983; Hendry, 1995), for example, sought such extra power in the notion
of “parameter invariance.” Similarly, Cartwright (2007) views models as close to
useless for policy evaluation because “the policy may affect a host of changes in
other variables in the system, some envisaged and some not” (see Pearl, 2010d
for rebuttal). And, in general, one would be hard pressed to find an economic
textbook that encourages readers to answer policy questions from the equations
themselves, without resorting to metamathematical disclaimers or preconditions
that reside outside the model.

This lack of confidence in the ability of economic models to guide policies has
threatened the utility of the entire enterprise of economic modeling for, taken to
extreme, it commits economic analysis to statistical extrapolation of time series
data. I doubt Haavelmo would agree to such restriction. Indeed, what is the point
of parameter estimation if at the end of such exercise one must appeal to judgment
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to decide which parameter is invariant and which is not, or, lacking such judgment,
to physically trying out the policy and observing its effect on various parameters.

A more reasonable alternative, one that I have advocated in Pearl (2000) and
that is gaining support among economists (e.g., Heckman, 2000, 2003, 2008;
Keane, 2010; Leamer, 2010), is to treat an economic model as an oracle for
all causally related queries, including questions of prospective and introspective
counterfactuals and, simultaneously, insist on encoding the assumptions needed
for answering such queries within the model itself, not external to it. In other
words, these assumptions should be guiding the modeler in the way the equations
are authored. Moreover, even if the model is misspecified it can still be useful to
policy makers, if each of its conclusion is accompanied by a meaningful set of
assumptions, as long as each assumption points to a condition that could conceiv-
ably be realizable or achievable.

“And what if an intervention changes the very equation that purports to pre-
dict its effect?” ask the critics and cite Lucas Jr. (1976), who attributed the
predictive failure of macroeconometric models of the 1960s and 1970s to their
non-invariance under changes of policy regime. What Lucas argued in fact was
that to get useful policy advice from a model we have to (a) specify the model
correctly and (b) pose the right questions to it. Since the model provides the
facility for encoding side effects associated with any given implementation of
the policy evaluated, neglecting to encode them in the model constitutes a case
of query misspecification, posing no lesser threats than model misspecification.
In other words, if an intervention I , intended to increase variable X from X = x
to X = x ′, has a side effect on some other variables or parameters, it would be
inappropriate to seek the estimation of P(y|do(x ′)); the proper query should be
the estimation of P(y|do(I )), so as to take into account the various side effects
of I .6 The burden of properly specifying queries rests with the query provider not
with the model.

1.3. The Algorithmization of Interventions

Modern days interest in causal models and their tentative conclusions, owes
its renaissance to Haavelmo’s third insight—a concrete procedure for eliciting
answers to policy questions from the model equations. This he devised at the end
of his 1943 paper:

“Assume that the Government decides, through public spending, tax-
ation, etc., to keep income, rt , at a given level, and that consumption
ui and private investment vi continue to be given by (2.5) and (2.6),
the only change in the system being that, instead of (2.7), we now
have

ri = ui + vi + gi (2.7′)

where gi is Government expenditure, so adjusted as to keep r con-
stant, whatever be u and v ,...” (1943, p. 12)
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This idea of simulating an intervention on a variable by modifying the equation
that determines that variable while keeping all other equations intact is the ba-
sis of all currently used formalisms of causal inference. Haavelmo’s proposal of
adding an adjustable term to the equation so as to keep the manipulated variable
constant differs somewhat from Fisher’s proposal of subjecting such a variable to
randomized external variations. Haavelmo was more interested in simulating the
actual implementation of a pending policy, rather than the Fisherian experiment
from which we may learn about the average effect of the policy.

Haavelmo’s approach was later transformed by Strotz and Wold (1960) into the
operation of “wiping out” the equation altogether and was further translated into
graphical models as “wiping out” incoming arrows into the manipulated variable
(Pearl, 1993; Spirtes et al., 1993).7 This operation, called do-operator, has subse-
quently led to do-calculus (Pearl, 1994, 2000) and to the structural theory of coun-
terfactuals (Balke and Pearl, 1995; Pearl, 2000, Ch. 7), which unifies structural
equation modeling with the potential outcome paradigm of Neyman (1923) and
Rubin (1974) and the possible-world semantics of Lewis (1973).

Key to this unifying framework has been a symbolic procedure for reading
counterfactual information in a system of economic equations, as articulated in
the following Definition:

DEFINITION 1. (unit-level counterfactuals) (Pearl, 2000, p. 98)
Let M be a fully specified structural model and X and Y two arbitrary sets of
variables in M. Let Mx be a modified version of M, with the equation(s) of X
replaced by X = x (see Fig. 2(b), Section 3.1). Denote the solution for Y in the
modified model by the symbol YMx (u), where u stands for the values that the
exogenous variables take for any given individual (or unit) in the population.
The counterfactual Yx (u) (Read: “The value of Y in unit u, had X been x”) is
defined by

Yx (u)
�= YMx (u). (4)

In words: the counterfactual Yx (u) in model M is defined by the solution for
Y in the modified submodel Mx , with the exogenous variables held at U = u. For
example, in Haavelmo’s model of equations (1)–(2), the modified model Mx (u)
consists of equation (1) alone, with x treated as a constant. The counterfactual
Yx (u) therefore becomes ax + ε1(u), with ε1(u) standing for the omitted factors
that characterize unit U = u.8

We see that every structural equation, say y = ax + ε1(u) (equation (1)),
carries counterfactual information, Yx (u) = ax + ε1(u), which, in our sim-
ple case, conveys the assumptions of effect-linearity and effect homogeneity
(i.e., Yx (u)− Yx ′(u) = a(x − x ′), for all u). The structural assumption is in fact
much stronger. The fact that the equation contains only X on the right hand
side conveys the counterfactual assumption (known as an “exclusion restriction”)
Yxz(u) = ax + ε1(u), where Z is any set of variables (in the model) that does not
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appear on the right hand side of the equation. The exclusion restriction and linear-
ity assumption are refutable in interventional experiments, not so the homogeneity
assumption.9 Naturally, when the exogenous variables U in a model are random
variables, the counterfactual Yx will be a random variable as well, the distribution
of which is dictated by both the distribution P(U = u) of the exogenous variables
and the structure of the model Mx . This interpretation permits us to define joint
distributions of counterfactual variables and to detect conditional independencies
of counterfactuals directly from the structure of the model (Pearl, 2000, Ch. 7).

Equation (4) constitutes the bridge between the structural interpretation of
counterfactuals and the potential outcome framework advanced by Neyman
(1923) and Rubin (1974), which takes the controlled randomized experiment as its
guiding paradigm (see Appendix 1). One of the main differences between the two
frameworks is that counterfactuals, as well as assumptions such as “ignorability,”
“sequential ignorability,” or “instrumentality,” can actually be derived from
the economic model (see Appendix 1); they need not be imposed as separate
assumptions external to, and oblivious to the model. Another difference is that the
antecedent x in the structural interpretation of Yx (u) need not be a manipulable
treatment but may consist of any exogenous or endogenous variable (e.g., sex,
genetic traits, race, earning) that affects Y as part of a social or biological process
(Heckman, 2008). This interpretation has extended Haavelmo’s theory of inter-
ventions from linear to nonparametric analysis and permitted questions of identi-
fication, estimation, and generalization to be handled with mathematical precision
and algorithmic simplicity (see Section 3).

Haavelmo did not deem his intervention theory to be revolutionary, but natural.
In his words:

“That is, to predict consumption ... under the Government policy,...
we may use the ‘theoretical’ equations obtained by omitting the error
terms...”
“this is only natural, because now the Government is, in fact, per-
forming ‘experiments’ of the type we had in mind when constructing
each of the two equations.” (1943, p. 12)

I do consider it revolutionary in that it defines the effect of interventions not in
terms of the model’s parameters but in terms of a procedure (or “surgery”) that
hypothetically modifies the structure of the model so as to simulate the actual
intervention.10 It thus liberates economic analysis from its dependence on para-
metric representations and permits a totally nonparametric calculus of causes and
counterfactuals that makes the connection between assumptions and conclusions
explicit and transparent.

In the next section I will give a brief summary of nonparametric structural
models and the wealth of mathematical tools that they now offer to economists
and other policy-minded data analysts.
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2. THE LOGIC OF STRUCTURAL CAUSAL MODELS (SCM)

This section describes a coherent theory of causal inference that I propose to
call Structural Causal Model (SCM). It takes seriously the original insights of
Haavelmo and the subsequent philosophy of the Cowles Commission program
and, enriched with a few ideas from logic and graph theory, provides a unifying
framework for all known approaches to causation.

A simple way to view SCM is to imagine a logical machine, or an inference
engine,11 that takes three inputs and produces three outputs. The inputs are:

I-1. A set A of qualitative causal assumptions that the investigator is
prepared to defend on scientific grounds, and a model MA that en-
codes these assumptions. Traditionally, MA takes the form of a set of
structural equations with undetermined parameters. A typical assump-
tion is that certain omitted factors, represented by error terms, are un-
correlated, or that no direct effect exists between a pair of variables
(i.e., an “exclusion restriction”).

I-2. A set Q of queries concerning causal and counterfactual relationships
among variables of interest. Traditionally, Q concerned the magnitudes of
structural parameters but, in general, Q may address causal relations more
directly, e.g.,

Q1 : What is the effect of treatment X on outcome Y ?

Q2 : Is this employer guilty of gender discrimination?

Formally, each query Qi ∈ Q should be computable from a fully speci-
fied theoretical model M in which all functional relationships are given,
together with the joint distribution of all omitted factors. Noncomputable
queries are inadmissible.

I-3. A set D of experimental or nonexperimental data.

The outputs are

O-1. A set A∗ of statements which are the logical implications of A, prior to ob-
taining any data. For example, that X has no effect on Y if we hold Z con-
stant, or that Z is an instrument relative to a pair {X , Y }.

O-2. A set C of data-dependent claims (or conclusions) concerning the mag-
nitudes or likelihoods of the target queries in Q, each conditional of A.
C may contain, in the simple case, the estimated mean and variance of a
given structural parameter, or the expected effect of a given intervention
or, to illustrate a counterfactual query, the probability that a student trained
in a given program who now earns 50K per year would not have reached
a salary level greater than 30K had he/she not been trained (Pearl, 2000,
Ch. 9).
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Auxiliary to C , SCM also generates an estimand Qi (P) for each query
in Q, or a determination that Qi is not identifiable from P , the joint density
of observed variables.

O-3. A list T of testable statistical implications of A, and the degree g(Ti ),
Ti ∈ T , to which the data agrees with each of those implications. A typ-
ical implication would be the vanishing of a specific regression coefficient,
or the invariance of such coefficient to the addition or removal of a given
regressor; such constraints can be read from the model MA and confirmed
quantitatively by the data.

The structure of this inferential exercise is shown schematically in Fig. 1.

FIGURE 1. SCM methodology depicted as the inference engine converting assumptions
(A), queries (Q), and data (D) into logical implications (A∗) Conditional claims (C) and
data-fitness indices (g(T )).

Several observations are worth noting before illustrating these inferences by
examples. First, SCM is not a traditional statistical methodology, typified by
hypothesis testing or estimation, because neither claims nor assumptions are
expressed in terms of probability functions of realizable variables (Pearl, 2000).

Second, all claims produced by SCM are conditional on the validity of A and
should be reported in conditional format: “If A then Ci ” for any claim Ci ∈ C .
Such claims assert that anyone willing to accept A must also accept Ci out of
logical necessity. Moreover, no other method can do better, that is, if SCM analy-
sis finds that a subset A′ of assumptions is necessary for inferring a claim Ci , no
other methodology can infer Ci with a weaker set of assumptions. This follows
from casting the relationship between A and C in a formal mathematical system,
coupled with the completeness theorems of Halpern (1998) and Shpitser and Pearl
(2008).12

Thirdly, passing a goodness-of-fit test is not a prerequisite for the validity
of the conditional claim “If A then Ci ,” nor for the validity of Ci . While it is
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important to know if any assumptions in A are inconsistent with the data, MA may
not have any testable implications whatsoever. In such a case (traditionally called
“just identified”), the assertion “If A then Ci ” may still be extremely informa-
tive in a decision making context, since each Ci conveys quantitative information
extracted from the data compared with the qualitative assumptions A with which
the study commences. Moreover, even if A turns out inconsistent with D, the in-
consistencies may be entirely due to portions of the model which have nothing to
do with the derivation of Ci (Marschak, 1953). It is therefore important to iden-
tify which statistical implication of A is responsible for the inconsistency; while
global tests for goodness-of-fit hide this information, a variety of local tests have
been developed as more viable alternatives (Pearl, 2000, pp. 144–145, 2004).

Finally, and this has been realized by many researchers in the 1980’s, there
is nothing in SCM’s methodology to protect C from the inevitability of contra-
dictory equivalent models, namely, models that satisfy all the testable implica-
tions of MA and still advertise claims that contradict C (see footnote 19). Modern
developments in graphical modeling have devised visual and algorithmic tools
for detecting, displaying, and enumerating these equivalent models (Kyono,
2010). Researchers should keep in mind therefore that only a tiny portion of the
assumptions behind each SCM lends itself to scrutiny by the data; the bulk of
it must remain untestable, substantiated by scientific theories, controlled exper-
iments, or conclusions of causal discovery algorithms (Pearl and Verma, 1991;
Spirtes et al., 1993; Pearl, 2000, Ch. 2).

It is also important to emphasize that the inferential tools provided by SCM
cannot be replaced or evaded by appealing to so called “alternative approaches”
to causation, or to “causal pluralism” (Cartwright, 2007). The abilities (1) to
articulate assumptions formally and transparently, (2) to decide if they per-
mit identification, and (3) to detect whether they have testable implications
are three inescapable components of any “approach” that claims to guide
policy.13

3. CAUSAL CALCULUS, TOOLS, AND FRILLS

By “causal calculus” I mean mathematical machinery for performing the compu-
tational tasks described in the inference engine of Fig. 1.

These include:

1. Tools of reading and explicating the causal assumptions embodied in struc-
tural models as well as the set of assumptions that support each individual
causal claim.

2. Methods of identifying the testable implications (if any) of the assump-
tions encoded in the model, and ways of testing, not the model in its en-
tirety, but the testable implications of the assumptions behind each causal
claim.
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3. Methods of deciding, prior to taking any data, what measurements ought
to be taken, whether one set of measurements is as good as to another, and
which adjustments need to be made so as to render our estimates of the target
quantities unbiased.

4. Methods for devising critical statistical tests by which two competing
theories can be distinguished.

5. Methods of deciding mathematically if the causal relationships of inter-
est are estimable from nonexperimental data and, if not, what additional
assumptions, measurements, or experiments would render them estimable.

6. Methods of recognizing and generating equivalent models.
7. Methods of locating instrumental variables for any relationship in a

model, or turning variables into instruments when none exists (Brito and
Pearl, 2002).

8. Methods of evaluating “causes of effects” and predicting effects of choices
that differ from the ones actually made, as well as the effects of dynamic
policies which respond to time-varying observations.

9. A solution to the so-called “Mediation Problem,” which estimates the degree
to which specific mechanisms contribute to the transmission of a given
effect, in models containing both continuous and categorical variables, linear
as well as nonlinear interactions (Pearl, 2001, 2012b).

10. A principled treatment of the problem of “external validity” (Campbell and
Stanley, 1963), including, formal methods of deciding if a causal relation
estimated in one population can be transported to another population, in
which experimental conditions are different (Pearl and Bareinboim, 2011).

A full description of these techniques is given in Pearl (2000) as well as in
recent survey papers (Pearl, 2010a,b). Here I will demonstrate by examples how
some of the simple tasks listed above are handled in the nonparametric framework
of a SCM.

3.1. Two Models for Discussion

Consider a nonparametric structural model defined over a set of endogenous
variables {Y, X, Z1, Z2, Z3,W1,W2,W3}, and unobserved exogenous variables
{U,U ′,U1,U2,U3,U ′

1,U ′
2,U ′

2,U ′
3}. The equations are assumed to be structured

as follows:

Model 1.

Y = f (W3, Z3,W2,U ) X = g(W1, Z3,U ′)
W3 = g3(X,U ′

3) W1 = g1(Z1,U ′
1)

Z3 = f3(Z1, Z2,U3) Z1 = f1(U1)
W2 = g2(Z2,U ′

2) Z2 = f2(U2)

f,g, f1, f2, f3,g1,g2,g3 are arbitrary, unknown functions, and all exogenous
variables are mutually independent but otherwise arbitrarily distributed.
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For the purpose of our illustration, we will avoid assigning any economic
meaning to the variables and functions involved, thus focusing on the formal
aspects of such models rather than their substance. The model conveys two types
of theoretical (or causal) assumptions:

1. Exclusion restrictions, depicted by the absence of certain variables from the
arguments of certain functions, and

2. Causal Markov conditions, depicted by the absence of common U -terms
in any two functions, and the assumption of mutual independence among
the U ′s.

Given the qualitative nature of these assumptions, the algebraic representation
is superfluous and can be replaced, without loss of information, with the diagram
depicted in Fig. 2(a).14 To anchor the discussion in familiar grounds, we also
present the linear version of Model 1:

FIGURE 2. (a) A graphical representation of Model 1. Error terms are assumed mutually
independent and not shown explicitly. (b) A graphical representation of Haavelmo’s
hypothetical model Mx under the policy do(X = x).

Model 2. (Linear version of Model 1)

Y = aW3 +bZ3 + cW2 +U X = t1W1 + t2 Z3 +U ′
W3 = c3 X +U ′

3 W1 = a′
1 Z1 +U ′

1
Z3 = a3 Z1 +b3 Z2 +U3 Z1 = U1
W2 = c2 Z2 +U ′

2 Z2 = U2

All U ′s are assumed to be uncorrelated.

In our case, the recursive nature of the equations of Model 1 results in a
Directed Acyclic Graph (DAG), a structure that will be assumed throughout this
paper. The basic principles of Havvelmo’s intervention (e.g., Definition 1) are
also applicable to systems with simultaneous equations (reciprocal causation),
represented to cyclic graphs, although some of the computational tasks become
more involved. While the orthogonality assumption renders these equations
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regressional, we can easily illustrate nonregressional models by assuming that
some of the variables are not measurable.

3.2. Illustrating Typical Question-Answering Tasks

Given the model defined above, the following are typical questions that an
economist may wish to ask.

3.2.1. Testable Implications (Misspecification Tests)

a. What are the testable implications of the assumptions embedded in
Model 1?

b. Assume that only variables X,Y, Z3, and W3 are measured, are there any
testable implications?

c. The same, but assuming only variables X,Y , and Z3 are measured,

d. The same, assuming all but Z3 are measured.

e. Assume that an alternative model, competing with Model 1, has the same
structure, with the Z3 → X arrow reversed. What statistical test would
distinguish between the two models?

f. What regression coefficient in Model 2 would reflect the test devised in (e)?

3.2.2. Equivalent Models

a. Which arrows in Fig. 2(a) can be reversed without being detected by any
statistical test?

b. Is there an equivalent model (statistically indistinguishable) in which Z3 is
a mediator between X and Y (i.e., the arrow X ← Z3 is reversed)?

3.2.3. Identification

a. Suppose we wish to estimate the average causal effect of X on Y

AC E = P(Y = y|do(X = 1))− P(Y = y|do(X = 0)).

Which subsets of variables need to be adjusted to obtain an unbiased
estimate of ACE?
[Recall: P(Y = y|do(X = 1)) is equal to the probability of Y = y in the
model of Fig. 2(b), under X = 1.]

b. Is there a single variable that, if measured, would allow an unbiased esti-
mate of ACE?

c. Assume we have a choice between measuring {Z3, Z1} or {Z3, Z2}, which
would be preferred?



14 JUDEA PEARL

3.2.4. Instrumental Variables

a. Is there an instrumental variable for the Z3 → Y relationship?
If so, what would be the IV estimand for parameter b in Model 2?

b. Is there an instrument for the X → Y relationship?
If so, what would be the IV estimand for the product c3c in Model 2?

3.2.5. Mediation

a. What variables must be measured if we wish to estimate the direct effect
of Z3 on Y ?

b. What variables must be measured if we wish to estimate the indirect effect
of Z3 on Y , mediated by X?

c. What is the estimand of the indirect effect in (b), assuming that all variables
are binary?

3.2.6. Sampling Selection Bias.15 Suppose our aim is to estimate the con-
ditional expectation E(Y |X = x), and samples are preferentially selected to the
dataset depending on a set VS of variables,

a. Let VS = {W1,W2}, what set, T , of variables need be measured to correct
for selection bias? (Assuming we can estimate P(T = t) from external
sources, e.g., census data.)

b. In general, for which sets, VS , would selection bias be correctable.

c. Repeat (a) and (b) assuming that our aim is to estimate the causal effect of
X on Y .

3.2.7. Linear Digressions. Consider the linear version of our model (Model 2)

Question 1: Name three testable implications of this model

Question 2: Suppose X,Y , and W3 are the only variables that can be observed.
Which parameters can be identified from the data?

Question 3: If we regress Z1 on all other variables in the model, which regression
coefficient will be zero?

Question 4: If we regress Z1 on all the other variables in the model and then
remove Z3 from the regressor set, which coefficient will not change?

Question 5: (“Robustness”—a more general version of Question 4.) Model 2
implies that certain regression coefficients will remain invariant when an
additional variable is added as a regressor. Identify five such coefficients
with their added regressors.16
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3.2.8. Counterfactual Reasoning

a. Find a set S of endogenous variables such that X would be independent of
the counterfactual Yx conditioned on S.

b. Determine if X is independent of the counterfactual Yx conditioned on all
the other endogenous variables.

c. Determine if X is independent of the counterfactual W3,x conditioned on
all the other endogenous variables.

d. Determine if the counterfactual relationship P(Yx |X = x ′) is identifiable,
assuming that only X,Y , and W3 are observed.

3.3. Solutions

The problems posed in Section 3.2 read like homework problems in Economics
101 class. They should be! Because they are fundamental, easily solvable, and
absolutely necessary for even the most elementary exercises in nonparametric
analysis. Readers should be pleased to know that with the graphical techniques
available today, these questions can generally be answered by a quick glance at
the graph of Fig. 2 (see, for example, Greenland and Pearl, 2011; Kyono, 2010;
or Pearl, 2010a, 2010b, 2012a).

More elaborate problems like those involving transportability or coun-
terfactual queries may require the inferential machinery of do-calculus or
counterfactual logic. Still, such problems have been mathematized, and are no
longer at the mercy of unaided intuition, as they are presented for example in
Campbell and Stanley (1963).

It should also be noted that, with the exception of our linear digression (3.2.7)
into Model 2, all queries were addressed to a purely nonparametric model and,
despite the fact that the form of our equations and the distribution of the U ’s are
totally arbitrary, we were able to extract answers to policy-relevant questions in a
form that is estimable from the data available.

For example, the answer to the first identification question (a) is: the set
{W1, Z3} is sufficient for adjustment and the resulting estimand is:

P(Y = y|do(X = x)) =
∑
w1,z3

P(Y = y|X = x, Z3 = z3,W1 = w1)

×P(Z3 = z3,W1 = w1).

This can be derived algebraically using the rules of do-calculus or seen directly
from the graph, using the back-door criterion (Pearl, 1993), which has become
an indispensable tool for confounding control in epidemiology (Glymour and
Greenland, 2008; Vansteelandt and Lange, 2012) and social science (Morgan and
Winship, 2007). When a policy question is not identifiable, graphical methods
can detect it and exit with failure. Put in econometric vocabulary, these results
mean that the identification problem in nonparametric triangular simultaneous
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equations models is now solved. Given any such model, an effective algorithm
exists that decides if the causal effect of any subset of variables on another is
identifiable and, if so, the algorithm delivers the correct estimand (Shpitser and
Pearl, 2008).

The nonparametric nature of these exercises represents the ultimate realization
of what Heckman calls the Marschak’s Maxim (Heckman, 2010), referring to an
observation made by Jacob Marschak (1953) that many policy questions do not
require the estimation of each and every parameter in the system—a combina-
tion of parameters is all that is necessary and, moreover, it is often possible to
identify the desired combination without identifying the individual components.
The exercises presented above show that Marschak Maxim goes even further—the
desired quantity can often be identified without ever specifying the functional or
distributional forms of these economic models.

This nonparametric generality does not mean of course that graphical methods
cannot accommodate stronger assumptions on the functions in the model, such
as linearity, homogeneity, monotonicity, or separability. For example, DAGs have
provided critical insights into the behavior of linear causal systems (Pearl, 2013a).
The most powerful identification results in linear econometric models have
recently been derived using DAGs (Brito and Pearl, 2002; Foygel, Draisma, and
Driton, 2012). The use of instrumental variables, which some authors refer to as
“The Roy model” (Heckman and Pinto, 2013) has been extended substantially in
both acyclic (Brito and Pearl, 2006) and cyclic (Phiromswad and Hoover, 2013)
models. The instrumental inequality (Pearl, 2009a, p. 279) and tight bounds on the
binary Roy Model (Balke and Pearl, 1997) were derived through DAG’s represen-
tations. Finally, mediation and moderation effects in nonlinear parametric systems
(Pearl, 2014) and attribution problems in monotonic systems (Pearl, 2009a, Ch. 9)
are examples of specific identification constraints incorporated within the graphi-
cal model framework.

3.4. What Kept the Cowles Commission at Bay?

A natural question to ask is why these recent developments have escaped the
attention of Marschak and the Cowles Commission who, around 1950, already
adopted Haavelmo interpretation of structural models and have formulated math-
ematically many of the key concepts and underlying theories that render structural
models useful for policy making, including theories of identification, structural
invariance, and structural estimation. What then prevented them from making the
next logical move and tackle nonparametric models such as those exemplified in
Section 3.2?

I believe the answer lies in two ingredients that were not available to Cowles
Commission’s researchers and which are necessary for solving nonparametric
problems. (These had to wait for the 1980–90’s to be developed.) I will summarize
these ingredients as “principles” since the entire set of tools needed for solving
these problems emanate from these two:
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Principle 1: “The law of structural counterfactuals.”

Principle 2: “The law of structural independence.”

The first principle is described in Definition 1.1 and instructs us how to com-
pute counterfactuals from an economic model M . Simon and Rescher (1966)
came close to this definition but, lacking the “wiping out” operator, could not
reconcile the contradiction that evolves when an observation X = x ′ clashes with
the antecedent X = x of the counterfactual Yx . Later economists, like Roy and
Quandt, although they used counterfactual reasoning in their writings (Heckman,
2008), lacked the syntactic machinery for reading counterfactuals from a model
and could not therefore develop the tools necessary for solving the problems
presented in Sections 3.2.3, 3.2.5, and 3.2.8.

Principle 2 instructs us how to detect conditional independencies from the
structure of the model, i.e., the graph. This principle states that, regardless of
the functional form of the equations in a recursive model M , and regardless of
the distribution of the exogenous variables U , if the disturbances are mutually
independent, the distribution P(v) of the endogenous variables must obey certain
conditional independence relations, stated roughly as follows:

Whenever sets X and Y of nodes in the graph are “separated” by a
set Z , X is independent of Y given Z in the probability.17

This powerful theorem, called d-separation (Pearl and Verma, 1987; Verma
and Pearl, 1990; Pearl, 2000, pp. 16–18) constitutes the semantic link between
the causal assumptions encoded in the model and the constraints which they in-
duce on the observed data. The theorem permits all conditional independencies
implied by a given model to be read off the graph, thus saving researchers the
laborious effort of deriving such independencies algebraically.18 Because of this
feature, the d-separation criterion serves as the basis for all modern approaches
to causal inference, including causal discovery (Pearl and Verma, 1991; Spirtes
et al., 1993), causal identification, and misspecification testing.

4. REMARKS ON THE “STRUCTURALISTS”
VS. “EXPERIMENTALISTS” DEBATE

The Spring 2010 issue of the Journal of Econometric Perspectives (Vol. 24, No. 2)
presented an interesting discussion on causal inference between two camps of
economists: the “structuralists” and the “experimentalists;” the former acknowl-
edge their reliance on modeling assumptions, the latter argue that they don’t,
or claim to minimize such reliance. Angrist and Pischke (2010) represented the
“experimentalist” position and Keane (2010), Leamer (2010), Nevo and Whinston
(2010), and Sims (2010) defending the structural approach.

Viewed from the SCM perspective, the debate is rhetorical. We know, from first
principles, that any causal conclusion drawn from observational studies must rest
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on untested causal assumptions.19 Therefore, whatever relation an instrumental
design bears to an ideal controlled experiment is just one such assumption and,
to the extent that the “experimental” approach is valid, it is a routine exercise in
structural economics.

However, the philosophical basis of the “experimentalist” approach, as it is
currently marketed, is both flawed and error prone. First, its sole reliance on
instrumental variables weakens its inferential power and deprives researchers of
other sources of information, not less reliable, which permit identification beyond
linear models or L AT E-type subpopulations. Second, and more importantly, the
“experimentalist” paradigm takes similarities to the randomized experiment ideal
to be its sole guiding principle, instead of harnessing all available knowledge, as
well as Principle 1 and Principle 2, towards answering the research question at
hand. The fallibility of this paradigm has surfaced in a number of applications
(e.g., Pearl, 2009b, 2011c,b) and has given birth to a school of research that in the
name of mimicking controlled experiments avoids making modeling assumptions
transparent.20

Another take on the “experimental–structural” debate is provided by
Heckman (2010) who reiterates the superiority of the structural over the
Neyman–Rubin model, but stops short of identifying the key element for that su-
periority. This is important because, after all, the structural and potential-outcome
approaches are logically equivalent,21 differing only in the languages used to
encode assumptions; the former using equations and the latter using coun-
terfactual independencies (see Pearl 2000, pp. 230–234). So why did the
“experimentalists” end up with the primitive, single-equation exercises reported
in Angrist and Pischke (2010)? Why did they not import the rich knowledge that
structural modelers encode in their equations, to make their assumptions com-
pelling, explicit, and transparent?

The answer usually given is that “experimentalists” are a priori skeptical about
the assumptions embedded in structural models and feel more comfortable with
those involved in instrumental variables design. However, since the very choice of
an instrument rests on the type of modeling assumptions that “experimentalists”
attempt to avoid, namely, exclusion and exogeneity (see Section 3.2.4), why did
“experimentalists” embrace the former and reject the latter? Moreover, why did
they exempt the former from explicit representation in the model, so that they can
be reasoned about formally or examined for possible testable implications?

This practice in the “experimental” camp has also puzzled Sims (2010), who
wrote: “using instrumental variable formulas while simply listing the instruments,
with little or no discussion of what kind of larger multivariate system would justify
isolating the single equation or small system to which the formulas are applied,
was, and to some extent still is, a common practice.”

I believe the reason for this practice lies not in mistrust of modeling
assumptions but in mathematical ineptness to read those assumptions and derive
their consequences, as dictated by the two principles described in Section 3.4.
By rejecting structural equations as a language for expressing substantive



HAAVELMO AND CAUSAL CALCULUS 19

economic knowledge, and confining themselves exclusively to the language of
potential outcomes “experimentalists” have in effect cut themselves off from the
one language in which large number of relationships can be expressed meaning-
fully and reasoned about.

This uncompromising rejection has also deprived ”experimentalists” from
acquiring the basic tools of identifying instrumental variables in a system of
equations (3.2.4) or solving elementary problems such as those posed in
Section 3.2. Risking errors and oversight (Pearl, 2009b), they have chosen to
shun these tools for reasons ranging from “nonscientific ad hockery” (Rubin,
2010) to selective unawareness (Imbens and Wooldridge, 2009). It is not lack
of good intention, but lack of modern mathematical tools that prevents the
“experimentalists” from conducting a “discussion of what kind of larger multi-
variate system would justify” their formulas.22

5. CONCLUSIONS

This paper traces the logic and mathematical machinery needed for causal
analysis from the original insights advanced by Haavelmo to the nonparametric
analysis of Structural Causal Models (SCM). We have demonstrated by examples
the type of queries the SCM framework can answer, the assumptions required, the
language used for encoding those assumptions and the mathematical operations
needed for deriving causal and counterfactual conclusions.

Not surprisingly, graphical formalism was found to be the most succinct, natu-
ral, and effective language for representing nonparametric structural equations; it
highlights the assumptions and abstracts away unnecessary algebraic details. It is
for these reasons that graphical representations have become an indispensable sec-
ond language in the health sciences (Glymour and Greenland, 2008; Vansteelandt
and Lange, 2012) and are making their way towards the social and behavioral sci-
ences (Morgan and Winship, 2007; Chalak and White, 2011; Lee, 2012). Recent
adaptation of graphical methods by econometricians (Heckman and Pinto, 2013),
albeit under the cover of criticism (Pearl, 2013b), further attests to their power and
applicability. I am convinced therefore that, once the power of graphical tools is
recognized through simple examples, economists too will add them to their arse-
nal of formal methods and be able to reap the benefits of causal analysis, paramet-
ric as well as nonparametric.23 Acquiring these tools would enable researchers to
recognize the testable implications of a system of equations, locate instruments
in such systems, decide if two such systems are equivalent, if causal effects are
identifiable, if two counterfactuals are independent given another, whether a set
of measurements will reduce bias, and, most importantly, reading the causal and
counterfactual information that such systems convey.

The development of powerful mathematical tools for deriving or predicting the
logical ramifications of untested theoretical assumptions will enable us to reverse-
engineer our inferences and learn to minimize sensitivity to those assumptions.
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NOTES

1. Although Haavelmo used nonrecursive models to get his point across, this inequality prevails in
almost all economic models, certainly those in which a is not identified.

2. More precisely, the general definition of a is a = ∂
∂x [Yx,z(u)] where Yx,z(u) is the counterfac-

tual “Y if x and z” for unit u (see Definition 1.1 and Appendix 1) and Z is any set of variables in the
model (excluding X and Y ). However, counterfactuals were rather late to obtain a formal represen-
tation in structural economics (Simon and Rescher, 1966; Balke and Pearl, 1995; Heckman, 2000).
A simple recipe for computing E(Y |do(x)) from any given model is given by equation (4), together
with the identity P(Y = y|do(x)) = P(Yx = y). Note that it is only through the causal interpretation
of a that we can explain why an economist would exclude from Eq. (1) factors that are strong redictors
of Y , yet are not deemed to be causes of Y .

3. Even the “faithfulness” assumption used in causal discovery algorithms (Pearl and Verma, 1991;
Spirtes, Glymour, and Scheines, 1993; Pearl, 2000, Ch. 2) is extra statistical, for it cannot be tested
from density functions over observed variables. This assumption, however, is milder than those made
in structural equation modeling, for it is generic, and does not rely on problem-specific knowledge.

4. I was tempted to correct this sentence in the Wikipedia, but decided to keep it as a witness to
prevailing views, and as an incentive for editors of respected journals of econometrics to bring the
issue to public discussion and collective revision.

5. These rhetorical questions, which are rarely asked about physics or engineering, have repeatedly
been posed to the author about economic modeling, reflecting the general reluctance of economists to
examine the power of nonparametric equations (as in Section 3.2). Another recurrent question goes:
“How do we establish those assumptions? Don’t we sweep the most difficult issues under the rug when
we agree to rely on them?” See footnotes 11 and 12 for responses.

6. Cartwright (2007) used the term “impostor counterfactuals” to describe the consequences of
substituting compound interventions (e.g., do(I )) with atomic interventions (e.g., do(x)) (see Pearl,
2010d; Hoover, 2011). Compound interventions are analyzed by computing the simultaneous effects
of their atomic components (Pearl, 2000, Ch. 4), which may consist of mild or drastic changes in the
equations themselves (Pearl, 2000, Sect. 3.2.3).

7. Figure 2(b) (Section 3.1) provides a graphical representation of the model that results from
Haavelmo’s intervention. Some authors prefer to retain those arrows in the graph and split outgoing
arrows instead (Heckman and Pinto, 2013); the resulting equations and all their implications are the
same (Pearl, 2013b).

8. The set of units characterized by the same values U = u of the exogenous variables form an
equivalent class. We therefore do not distinguish between “unit” as an index for individual identity
and “unit” as a specific instantiation U = u of the exogenous variables.

9. Anecdotically, none of the six textbooks surveyed in Chen and Pearl (2013) explains to readers
what justification there is for excluding variables from an equation; such explanations require that
equations be given causal interpretation, which textbooks are reluctant to do.

10. Fearing violation of modularity, Cartwright (2007) and Heckman and Vytlacil (2007) voiced
objections to hypothetical modifications of the model’s equations as proposed by Haavelmo. These
objections are addressed in Pearl (2009a, pp. 362–265, 374–380), with emphasis on the fundamental
distinctions between definition, identification, estimation, and implementation, which become crisp
and unambiguous in nonparametric structural causal models (Section 2).

11. These terms are chosen to emphasize that, in dealing with econometric modeling, it is essential
to separate the logic of the method from the veracity of its premises. Surely, the long term goal of
economics is to see every premise substantiated by compelling empirical evidence, and the impor-
tance of efforts to establish such evidence from sources residing outside the model is far from being
overlooked by this author. However, in any given study, including those evidence-seeking efforts, the
aim is to take what little theoretical knowledge we have, and make sure it is maximally utilized, while
acknowledging its provisional status.

12. This is important to emphasize in view of often heard critics that, in SCM, one must start with
a model in which all causal relations are presumed known, at least qualitatively. This is not so. It is
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common to start with a model in which no causal relation is assumed known and ask “what must be
ascertained in order to answer the research question at hand?” Additionally, if some causal
assumptions in the model are found necessary, no other method can get away with weaker assump-
tions, although some tend to hide the assumptions under catch-all terms such as “ignorability,” “as if
randomized,” “exchangeability,” “quasiexperiment,” “exogeneity,” and the like.

13. Remarkably, none of these components is currently taught in econometric classes (Chen and
Pearl, 2013), and none is known to mainstream econometric researchers.

14. This is entirely optional; readers comfortable with algebraic representations are invited to stay
in their comfort zone.

15. This section illustrates nonparametric extensions of Heckman’s approach to selection bias
(Heckman, 1979). A complete theory can be found in Bareinboim and Pearl (2012) and Bareinboim
et al. (2014).

16. According to White and Lu (2010) “A common exercise in empirical studies is a ‘robustness
check,’ where the researcher examines how certain ‘core’ regression coefficient estimates behave
when the regression specification is modified by adding or removing regressors.” “of the 98 papers
published in The American Economic Review during 2009, 76 involve some data analysis. Of these,
23 perform a robustness check along the lines just described, using a variety of estimators.” Oster
(2013) finds that 75% of 2012 papers published in The American Economic Review, Journal of Po-
litical Economy, and Quarterly Journal of Economics sensitivity to added regressors as indicative
of misspecification. Since this practice is conducted to help diagnose misspecification, the answer
to Question 5 is essential for discerning whether an altered coefficient indicates misspecification or
not.

17. The “separation” criterion requires that all paths between X and Y be intercepted by Z , with spe-
cial handling of paths containing head-to-head arrows (Pearl, 1993; Pearl, 2000, pp. 16–18). In linear
models, Principle 2 is valid for nonrecursive models as well.

18. Heckman and Pinto (2013) propose to derive these independencies using the graphoid axioms
(Dawid, 1979; Pearl and Paz, 1986; Pearl, 1988, pp. 82–115), a task requiring exponential complexity.
The graphoid axioms are good for confirming a derivation (of one independence from others), but they
are not very helpful in finding such derivation or in deciding whether one exists. DAGs, on the other
hand, act as logical machines; they automatically compute all valid independencies and explicate them
through simple path-separation conditions (Pearl and Verma, 1987).

19. Cartwright (1989) named this principle “no causes in, no causes out,” which follows formally
from the theory of equivalent models (Verma and Pearl, 1990); for any model yielding a conclusion
C , one can construct a statistically equivalent model that refutes C and fits the data equally well.

20. For example, one doctrine in this paradigm dictates that because randomization balances
pretreatment covariances, the aim of the analysis should be to achieve such balance. This has led
researchers to surmise that one should condition on all such covariates (Hirano and Imbens, 2001;
Pearl, 2009b; Rubin, 2009). Another misguided doctrine denies causal character to nonmanipulable
variables and has led to paradoxical mediation analysis using “principal strata” (Pearl, 2011b).

21. The equivalence was shown in Galles and Pearl (1998) and Halpern (1998); a theorem in one
is a theorem in the other, and an assumption in one has a corresponding assumption in the other. The
two differ only in how substantive information is encoded. The potential outcome language insists
on encoding such information in the form of conditional independence statements about counterfac-
tual variables, a cognitively formidable task, while the structural equation model permits modelers to
encode this information in the form of cause effect relationships representing economic mechanisms
and processes. A simple translation between the two is given in Pearl (2000, pp. 231–234) which
should bridge the wall between “experimentalists” and “structuralists.” See Appendix 1 for a simple
illustration of the equivalence of the two notational systems.

22. The potential outcome language is rather inept for capturing substantive knowledge of the kind
carried by structural equation models. The restricted vocabulary of “ignorability,” “treatment assign-
ment,” and “missing data” that has ruled (and still rules) the potential-outcome paradigm is not flexible
enough to specify transparently even the most elementary models (say a three-variable Markov chain)
that researchers wish to hypothesize (Pearl, 2011a).
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23. A recent survey of econometric textbooks (Chen and Pearl, 2013) has somewhat tempered
my optimism at the pace at which economists lift themselves to the age of modernity, as most sur-
veyed textbooks were found to conflate regressional and structural vocabulary with stunning laxity.
I hope, however, that this paper will entice concerned educators and authors to write “causal inference
addenda” to supplement and illuminate standard econometric texts.

24. Integrals should replace summations when continuous variables are involved.
25. The invariance of (A.3) under the intervention X = x follows from equation (4) which interprets

the counterfactual as an incisive “surgery” that suppresses all mechanisms that may contribute to
variations in X and imposes the equality X = x without perturbing U or any other variable that is
not affected by X . Such a “surgery” is not needed in our single-equation case, since X is part of the
equation for Y ; enforcing X = x suffices.

26. The role of potential outcomes in randomized trials is typically described as follows: “Because
an individual’s treatment status is randomly assigned, it is distributed independently of his or her
potential outcomes” (Stock and Watson, 2011, p. 471). For this argument to hold, one needs to show
first that the potential outcomes {Y1,Y0} represent immutable characteristics of an individual that do
not change with treatment status. There is nothing in the PO characterization of {Y1,Y0} that compels
this invariance and, hence, there is no a priori reason to assume that ignorability holds in randomized
trials. This invariance follows in fact from the structural interpretation of potential outcomes according
to which {Y1,Y0} are none others but the factors included in U , and those are unaffected by X a priori.
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APPENDIX 1

This Appendix lays out the conceptual and formal relationships between structural equa-
tion modeling (SEM) in economics and the potential outcome (PO) framework, usually
associated with Neyman (1923) and Rubin (1974). Some researchers regard PO as an in-
dispensable tool in modeling experiments and quasiexperiments in econometric studies
(Imbens and Wooldridge, 2009; Angrist and Pischke, 2010). This Appendix shows that
the PO framework and all its ramifications for experiments and quasiexperiments follow
naturally from standard SEM, and the causal interpretation given to it by Haavelmo (1943).

Our starting point will be a typical structural equation

y = g(x,u) (A.1)

in which X and U are arbitrary random variables, jointly distributed by a probability func-
tion P(x,u), and g an arbitrary function that maps X and U onto an “outcome” variable Y .
Together, the three variables are jointly distributed by a probability function P(x, y,u), of
which only the marginal P(x, y) = ∑

u P(x, y,u) can be estimated from sampled data.24

Variable X , sometimes called “treatment” or “independent variable,” may represent a
policy or an economic condition (e.g., education, income, prices, taxes, interest rates),
whose effects are of interest and whose status agents may choose on their own (in non-
experimental setting). Variable U , also called “disturbance,” represents all other factors,
mostly unobserved, that account for the variability of Y when X is held constant. The
causal interpretation of structural equations regards equation (A.1) as a process by which
Nature assigns values to Y after consulting the values of X and U .

Let us now define a counterfactual random variable Yx that represents “the value that
Y would attain if X were x .” According to equation (4), this variable is defined by:

Yx = g(x,U ), (A.2)

where x is a constant (usually x = 1,0), and where the the disturbance term U is governed
by the distribution25

P(U = u) =
∑

x
P(x,u). (A.3)

Given these preliminaries we will now prove four assertions about Yx and its relations
to Y and X .

Assertion-1 If X and U are independent then, for any functional relation y = g(x,u)
and any x in the support of X , we have

P(Yx = y) = P(Y = y|X = x). (A.4)

In other words, the distribution of the counterfactual Yx is identified from observations on
X and Y , and is given by the conditional probability of Y given X = x .

As a corollary, we conclude that in a randomized trial, where X and U are independent,
the average causal effect of X on Y is identified and is given by the regression

E(Yx ′ −Yx ) = Eexp(Y |X = x ′)− Eexp(Y |X = x). (A.5)

Here Eexp designates expectation according to the experimental distribution, to be distin-
guished from E , which stands for expectation according to the pretreatment distribution
P(x, y) = ∑

u P(x, y,u).
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Assertion-2 Regardless of how X and U are distributed, the following relationship
holds between X,Y, and Yx

X = x =⇒ Yx = Y (A.6)

or, in case X is binary,

Y = xY1 + (1− x)Y0. (A.7)

An immediate consequence of (A.6) is the equation

P(Yx = y|Z = z, X = x) = P(Y = y|Z = z, X = x)

which holds for any sets of variables X,Y, and Z . It permits us to convert expressions
involving probabilities of counterfactuals to expressions involving ordinary conditional
probabilities of measured variables.

Equation (A.6), also called “consistency rule,” is treated as an extra assumption in the PO
framework (Rubin, 1974), where it is used to insure the purity of the experiment (e.g., no
side-effects of treatments). It asserts, for example, that a patient who recovered after tak-
ing treatment X = x by choice would also have recovered if assigned treatment X = x
by design. In the SEM framework, in contrast, consistency is logically entailed by def-
inition (A.2), and purity of experiments remains the responsibility of the experimenter
(see footnote 6 and Pearl, 2010c).

Assertion-3 Regardless of how X and U are distributed, the slope, β, in the linear
structural equation

y = α +βx +u (A.8)

is given by

β = E(Y1 −Y0) (A.9)

or, for nonbinary X ,

β = E(Yx ′ −Yx )/(x ′ − x). (A.9’)

Assertion-4 Exogeneity implies “strong ignorability.” Formally,

U⊥⊥X =⇒ {Y0,Y1}⊥⊥X. (A.10)

The independence on the left hand side expresses the standard econometric condition
for exogeneity of X (relative to the equation of Y ), while the one on the right hand side
is a distinctive creation of the PO framework, called “strong ignorability” (Rosenbaum
and Rubin, 1983). Almost all inferences in the PO framework invoke this assumption or
its “conditional ignorability” variant, and is often advertised as a more “principled” or
more “explicit” assumption than its “exogeneity” counterpart (Angrist, Imbens, and Rubin,
1996). It is not. Even avid PO advocates resort to “omitted factors” when the need arises to
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defend or criticize the opaque assumption of “ignorability” (Pearl, 2000, 2nd ed.,
pp. 341–344). Because of its opacity, “ignorability” is used primarily as a syntactic
license for certain statistical routines, rather than a condition deserving justification
(see footnote 22).26

Properties (A.4)–(A.7), which are normally attributed to potential outcome analysis, are
here shown to emerge organically from standard structural modeling in economics. The
latter provides, therefore, the scientific basis for the former, and extends counterfactual
analysis beyond the experimental paradigm that constrains the PO framework.

Proofs

Proof of Assertion-1. We start with P(Y = y|X = x) and, using the indicator function

1(A) =
{

1 if A is true
0 if A is false

we write:

P(Y = y|X = x) =P(g(x,U ) = y|X = x)

=
∑

u
1(g(x,u) = y)P(U = u|X = x)

=
∑

u
1(g(x,u) = y)P(u)

=P(g(x,U ) = y)

=P(Yx = y)

which proves (A.4).
To prove Corollary (A.5) we note that, since a randomized control trial renders X in-

dependent on U , the average causal effect of incrementing the treatment from X = x to
X = x ′ is given by

E(Yx ′ −Yx ) = Eexp(Y |X = x ′)− Eexp(Y |X = x). n

Proof of Assertion-2. Implication (A.6) follows from the definition of Yx , because
under the condition X = x the expression of Y (A.1) and Yx (A.2) coincide. Expression
(A.7) merely encodes this implication for binary X . n

Proof of Assertion-3. (A.9) follows by substituting the function

g(x,u) = α +βx +u

into the definitions of Y1 and Y0 (A.2), yielding

E(Y1 −Y0) = E[g(1,U )− g(0,U )]

= E[α +β ×1+U −α −β ×0−U ]

= β. n

Proof of Assertion-4. Since both Y0 and Y1 are deterministic functions of U
(see A.2), it is clear that if U is independent of X so is the joint variable {Y0,Y1}.
This proves (A.10). n


