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Abstract

Trees are convenient representations because of their hierarchical structure, which models
many situations, and the ease with which they can be manipulated. A rewrite system is a collec-
tion of rewrite rules of the form o—p where o and [ are tree patterns. A rewrite system defines
a transformation between trees by the repeated application of its rewrite rules.

Two research directions are pursued in this dissertation: augmenting the expressive power
of individual rewrite rules by using new types of patterns, and analyzing the interaction of the
rewrite rules. The dissertation contains new algorithms for linear and non-linear pattems, for a
new type of non-local pattern, and for typed pattems in which the variables are restricted to tree
languages.

The REACHABILITY problem for a rewrite system R is, given an input tree T and a fixed
goal tree G, to determine whether there exists a rewrite sequence in R, rewriting 7 into G and, if
so, to obtain one such sequence. REACHABILITY can be used to solve problems related to the
mapping between concrete and abstract syntax trees, to CONstruct a pattern matching algorithm for
typed non-local patterns, and to provide algorithms for compiler code generation. A new class of
rewrite system called finite bottom-up rewrite system (finite-BURS) is introduced for which the
REACHABILITY problem can be solved efficiently with a table-driven algorithm.

The C-REACHABILITY problem is similar to REACHABILITY except that rewrite sequences are
assigned costs, and the obtained sequence is required to have minimum COSt Over all candidates.
If the cost of a rewrite sequence is defined as the sum of the costs of its rewrite rules, the algo-
rithm for REACHABILITY can be modified for a subclass of finite-BURS to solve C-REACHABILITY
in such a way that all cost manipulation is done at table-creation time. The subclass extends the
machine grammars used by Graham and Glanville for code generation. A code generator genera-
tor based on this approach has been implemented and tested with several machine descriptions.
The code generators obtained produce locally optimal code, are faster than comparable ones
based on Graham-Glanville techniques, and are significantly faster than other recent proposals
that manipulate costs explicitly at code generation time. Table size is comparable to the
Graham-Glanville cod: generator.






Table of Contents
Table Of CONLENLS ......ooiveieeeiiereereciere st eee s eseeseas st ese st et cebssesrbsss s st srasss et saessans b e ss e sesabins i
LSt OF FIGUIES ..ottt ettt st st a s ssssasae s se st e s s en s e enes iii
ACKNOWIEAZEIMENLS ......oereveecniirinriiiitic ettt ettt et e ss e s st st st e s v
Chapter 1 Trees and Tree Transformations ..............ccooiinnnicinninnnncniientee 1
1.1 Some Examples of Tree Transformation Problems ........c.cccecvvvrinieiiinnnnene. 2
1.2 Scope of this DISSEIAtON ......ccoeivirrirrieirinerimieneseeerneee et eanans 6
1.3 General Considerations for Solving Tree Transformation Problems ........... 6
1.3.1  Solvers and SOIVEr GENETAIOTS .....icvvvvurvirrsreeriensrmrsiessnsistessnmsineeseseensanes 6
1.3.2 Bottom-Up and Top-Down Paradigms ......c..ccceveveevveemniiinnierienrieenienine 8
1.3.3  Syntax and SEMANLCS ......ccccuvveiiniininiininninsstesirsssesssseirsresssesersressssessensssnns 8
1.4 Describing Tree Transformations .......ccceoieeineoniieeineiiineeressnas 8
1.4.1 Operational DeSCIPLOIS ....c.ceerivereimsiemieiriciesiniisrieseessenseessssaesseesneases 9
1.4.2  Tree AUIOMALA ..cocrveieirrereirrecneaississsisstesse e e esss e sessaesassaesanassassesssnasnas 10
1.4.3  Attribute GIamMArS ......cccooceeecieerrceerierererecnseasisessssnesssisssnssssnessssesssnessanas 10
1.4.4  Term REWTILe SYSIEIMS ..coeeeeevrirreciirrinciiecnnenaesnssnsssnessesssecssessssssessessnsenes 12
1.5 Thesis of this DIiSSEMAUON ....ccvviiiiiiiiiiriiciiiieie et ese e 15
1.6 Introduction to the Remaining Chapters ........ccouveevereiieenerienieennnineiesesnns 16
Chapter 2 Basics of Tree Rewrite SyStems .........ccocoovviiniiiininicnccee e 18
2.1 Trees and Pattern MatChing ......occvvveivimnninecninnninieenennseee e esvec e 19
2.2 Tree Languages and AUDITIALA ........cccccrieeruenrsrmssinssnemssnessesssnnesasesnseesesennes 27
2.3 REWIIIE SYSIEIMS ..ecccrerrerrrercreereceerceecenrecnnteesieessssrsssssssesssrsrssssssossssssssssssrsnnans 33
2.4 Finite State Tree TransfOrmMations .......cceeeicieinionncinnniesnerirmeseneseseseeeenes 37
2.4.1 Labeled Bottom-Up AUIOMALA ....ccocoemiiniiiririicrecnsieisuessssessnsssesssnnerssenes 40
Chapter 3 Matching Linear N-Patterns .......c.cccoviiiriniiniininiicneienieecee e 42
3.1 Subpatterns and Match Sets .......cccecoviiiiirecniiniisnit s 43
3.2 Bottom-Up Matching Using Subpattern B-fsa ........ccccoviniinininniininniinn. 49
3.2.1 Representation of the MatCh SetS ....c.cccovvrvinniineinsincninnieiensereirenaeens 52
3.2.2 Representation of the Subpattern LB-fSa ......cccoueivvivniinccicceece 54
3.3 Bottom-Up Matching Using Match Set LB-fSa ..o, 55
3.4 The Subsumption Relationship .....ccooccievecniiniinminnieinii s 57
3.5 David Chase’s CONIDULHON ....ccvveeeieiiirniciiirinrieercint st 61
3.6 The Influence of an INPUL SEL ......ccoiiririiiiierr et s 64
3.7 Related WOTK oottt st s e 65
3.8 Summary of the Algorithms in this Chapter .......ccccevivennnininnineeieeee, 66
Chapter 4 Matching Non-Linear N-Patterns ..ot 68
4.1 Non-Linear Matching = Linear Matching + Binding Predicate ................... 69
4.1.1 BasiC DEfiMIONS ....ccccoerrieeniccnireenciiee ittt sreer st sr e 69
4.1.2 A Simple Subpattern Matching Algorithm ..o, 70
4.1.3 A Simple Match Set Pattern Matching Algonthm ..........cooeienivinnninnns 74
4.1.4 Optimal Binding PrediCates .........coeveeeiieieiieninienieetssesinsissne e snensnnne 77
4.2 P-PalITIS ..cciereeeeciereeeseeersaensesesesssissssesasessssssssosssassnessnnesnsessnsosnsssssenssesesnesnes 79
4.3 A Match Set Algorithm Using P-Pattems .......coccvvemvvinvimniiieineciceeieciieens 81
4.4 Explicit Term Representations and the Work of Purdom and Brown .......... 86
4.5 Related WOTK ...ooviciiiiecieecteeneee ettt st snee s e cesse s s e s s e s s 89
4.6 Summary of the Algorithms in this CRapter .......occivvieieieniinceieenecnens 90
Chapter 5 Bottom-Up RewrTite SYStems .........coooeiiniiieee s 92



it

5.1 NOITAL FOITS .ooioviereeneirrerssnsesessesssemsissessssssssssnsssssasssnssnesssesesssasasssssesensasees
5.2 SOME BURS CASSES ...cvrerrerrrrssruereeererssstsssessssesssesssessssasssnssssnessssessnsssassssssssos
5.3  State CharacCteriZaliON .....e.cesveeereeerrereseessonerssesvesserssnsssssnersesssssssessasssnsesseones
5.3.1  PTIOLO-SLALES ...ovvrervererreereeraeseessessesesesssmssscssiessossenssssssssaessssssassresssessnesnsasaens
532 LR ZIAPNS .ouoiecnrrtiarecensiretnees s st s st sttt st s
5.4 Fixed-Goal Reachability and UT LR graphs ......cceovemiiiniiniennncncsiinne,
5.5 Influence Of the INPUL SEL ...cc.coiiirirmnmreriieneenet ettt
5.6 Representation ISSUES .....coccceuerrreemininimsesensststnsstsictentimnisenes s e en st sssssaseses
5.6.1 Implicit REPIESENIALION .eevvruerreieetrrrereereeseencosetetese et se
5.6.2 Explicit REPreSentation ....ccouvereeiestssarsseienseseeneseeen it santessasnssenas
5.7 REIAIEd WOTK .evivvieririnrerreeererensteesceeseencsisssssanenstsssessssnsesnessaseesssessnnesssesessssase

Chapter 6 Instruction Selection for Expression Trees ...
6.1 BasiC DEfINIONS .oceeeeeeerereeraseeresirtinricssisseesisissssssssssassssssaessnsssessssesssssasss s
6.2 S-LR GIaPS ....cueviereceieiceenceteenennaesscrsssms st ss e en et sssrssasssssass st enenensstsssasasasanss
6.3 Solving C-REACHABILITY and UCODE ........cccevevcriceremimininisnssnesieiisaneniannnes
6.4 REIAIEA WOIK .oeverieercerirerneeseerereenrtiesiesstnsssr s rrsnessssssssasnsessasssseess st tsssnscnsassass

Chapter 7 X-Patterns and Projection SYStems ...t
7.1 TYPed PaleIMS ..ccooveieinieririeririseeniiiesssasst e nssnssesrcetsstnsassss s tess st ssannens
7.1.1  Typed N-PatBITIS ..ccccvvvirririinsiorninesreinesmessssiosesssecesssinessssssaness st snesntessansanes
7.1.2  Untyped X-PatITIS ..cccvcvrrerererieriireeesestninsnesessstessetsstesestens usnassnssnsnssesnsans
7.1.3  Typed X-PAEITIS ..ocovviiririrrireresentntresesstasnetssentiase sttt sass e sasssssasannses
7.2  PrOjECHON SYSIEIMS ...ceeveriiiiirirreriesiennsnssesss st snenestsneentonsassn e cansntess s sanans

7.3  Previous and Related WOTK .....cccovveviveiereeceerersisneesecsesasesormressessessrssssssrasasnns )

Chapter 8 A Code Generator Generator Using BURS ...
8.1 Implementation Of BURS-TG .....cccocereresrsrsssscsensenmsesisissisnssensnssssnssasnanansasssansne
8.1.1 Generating 8-LR Graphs .....cocccvevvuinenimnernnretennsnisisise et sssnsecaes
8.1.2  Selecting the 8-UI LR Zraphs ......ccceoeveveimieisisminressisneinenintseceseensiiisniness
8.1.3  Packing Tables ....cccccccimiiiiiinnininiensnneinnneetesstne st senne s srn st e s s
8.1.3.1  Representing the 6-UI LR Graph LB-f52 ....ccocoerinieiniecincniiiiin,
8.1.3.2  Packing the 8-UI LR Graphs ....cccecuiniirmerenrereienstsissssstseesnencsnensnss
8.1.4 Summary Of Table SIZES ....cccciviirmiiiriireietie st
8.2 Implementation Of BURS-CG ....ccceieeemmeemrsemsscntssnscsscsesinisisianssse s ss s cons
8.3 Comparison with Related WOTK ...oovooeiviiviiiiinicinni
8.4 Conclusions and Further WOTK ..ot
8.5 Acknowledgements on this Chapler ...

Chapter 9 CONCIUSIONS ....coooivciiiiiiieriit ettt sttt st anesas
0.1 Extending PaleITS ...ccccoviimiiiiiriniintieirriree et sensstest st sa s
9.2 BURS and Reachabilily ....c.cceecreervemetircrniiiniisrienteeineesassn e e e s e cone
0.3 COGE GENETALION ...ccvvvrrrreereereseenrieceesaesssesssesssvessnsssnsasassssassassssarssssssshossssssas
9.4 Bottom-Up and Top-Down Pattern MatChing ......cccoeovnenieinniinnnniiinens
0.5  COMPILEr PHASES ....coeuivirinrireirriesnenteretieseia ettt snca s sr s an s

BIDHOZIAPIY oottt st r s st st b st
G10SSArY Of SYMDOIS ....oceiiieieeiecitiirci ettt e s s e



List of Figures

1.1 A Compiler Orgamization ......c.ecocieieeresssreseseetsenescsesenionist st
1.2 Language Based EQItOr ..ottt s
1.3 The Solver and Solver Generator APProach ..c.ceecvvrcecmecininiecereeite e

1.4 Dependencies among Chapters

......................................................................................

2.1 Examples Of PAEITIS ...ccoiririieiiieeteinisentcien ittt e
2.2 EXample 0f B-fS ..ccecvuiriiriiriiisesnni et s s
2.3 Non-Deterministic to DeterminiStic B-£Sa ......cocovorieimvnieiiimiriiicre et

2.4 Example of a Deterministic B-

F8A veeeeeeeeeeeieeiiieereeeeerteeereeseaarsrtessesreeetaresaasnsansasanansasseneninns

2.5 Minimizing @ DB-fSA ...ccccoviriiiniiiniiie ittt sttt e st
2.6 A Simple REWHLE SYSIEM .ocviviiiuiiiieirieniie st estensse sttt sa st sa s
3.1 Summary Of Pattemn ClaSSES .....ccoveriiirmeerrerssenieninisnsestecsnsessstentsssasscessas s sns s

3.2 Example of a Simple Pattem S

et and its Subpattern B-fSa ...

3.3 Matching Algorithm for Subpattern B-f5a .....ooriiriniccni
3.4 Result of Solving Linear Pattern Matching on a SUbJeCt .....oooerriveeennniiiiiinns
3.5 Example of Computing a Match Set Using the Set of Representatives ..........cccoceveneee
3.6 MAICh SEEBLSA ...iivveetiernierneeeerienersarseeeseeesersssesssssressrseorsesrsnenstassssssnansssessesessssscsnssssrss
3.7 Matching of Linear MatCh SetS .....cocviiiiiiemnine e e
38 G ; and FInding MatCh SetS ....ccceeeemiiiiniiiiieenteeie ettt s
3.9 Chase’s AIZOTIHIM ..ccevivercirircericnini ettt eee st et st sttt sa bt saesa b ts
3.10 Folding Rows and Columns in a Match Set B-f5a .......cooeeieieniiiieiceein
3.11 Overview of Algorithms for Linear Pattern MatChing .......ccocoeeveenniiniicnciinninnnnnns
4.1 Matching Using Structural SUDPALIEIMS .....cceieireemiiiiiiintiestesnsc sttt
4.2 Example 0f @ PAtterm SEL ...coiiiiiiiniiiiieiieenre ettt sttt s
4.3 B-fsa Used for Matching Using Structural SubpPattermns .........oeeeeecncnniinncnicniinnnne
4.4 Example of an All-Discrimination TIEE .......cvomvireriniinicncntiiciciinec st
4.5 A First Example of a First-Discrimination Tree ......ovievriniiienncnsnninniniini e
4.6 A Pattern Set for Match Set Pattern MatChing .......ccovvvviiinrmivcesniesne st

4.7 Different Subsumes Relations

4.8 Matching Using Structural MatCh S€IS ..ot
4.9 Algorithm to Find Optimal Binding Predicates of Pattems .........cccovcuvieveniinicnniiinnnne.
4.10 Finding a Discrimination TTEE .....cceieieeremiestnineie ettt
4.11 P-patterns are Better than PatteImns ...ttt e

4.12 Finding all P-patterns ...........
4.13 First Example of F, and F, .
4.14 Second Example of F, and F

........................................................................................

........................................................................................

4.15 Example of a Slow Incremenial Binding Predicate ......ocovvvvemennciiiinninniiniinnns
4.16 Example of Alignment Problems with Representation .........oeeeeeeeecviiiucsinsnnssiesnaninns

5.1 Example of a Rewrite System

5.2 A Normal-Form ReWTte SEQUENCE .....cccivieiuiiiimiertieninse ettt et
5.3 Example of a Rewrite System not in BURS ...
5.4 Second Example of a Rewrite System not in BURS ..o,
5.5 An Extended Pattern Sl ....cciviecieririitininiintie e ste s s sttt s
5.6 Example of an LR Graph ....ccccocioiimiimiinnretine ettt
5.7 Unbounded Extended PaeIm SEL .....ccocvviiniiinieninieereeee st seescne s
5.8 Algorithm for Fixed Goal Reachability ......ccccceeeevemeirinierntsencceininiiiitiiiii e
5.9 UILR ZIAPHS .oovcuieeirecereneerercneitststesi s s et ssa s e st s st s sm b et s s s e s
5.10 Reduction and NP-COMPIEIENESS ..coccvvvirvirmiimernrnrirsinnsient et et sat s sse s s e e

5.11 Useless Nodes in LR Graphs
5.12 Algorithm for Useless Nodes

il

17
23
28
29
29
30
34
47
49
50
51
52
55
56
58
61
63
66
70
71
71
73
73
74
74
75
71
78
79
82
83
85
87
88
94
%4
97
100
104
106
107
109
111
113
114
114



v

513

Layout Of ROWS ...eoiiriiiieieeiie e

...............................................................

6.1 Example of a Optimal Sequence not in Normal FOrm ....coivvereeinniiinrenniinnreincnn

6.2 Example of an Instruction Set Description
6.3 Example of a 6 LR Graph

...............................

...............................................................

...............................................................

6.4 Example of Different 8-LR graphs per LR graph ...

6.5 Unbounded Number of 6-LR Graphs
6.6 Two Valid Rewrite Sequences
6.7 Bounded & Costs
6.8 Sequences of Rewrites that Split and Join
6.9 Two Equivalent 3-LR graphs

..............

..........................

...............................................................

...............................................................

...............................................................

...............................................................

...............................................................

6.10 An Example of two LR graphs Equivalent for UCODE .........cccooviieiininicnnenes

7.1
7.2
7.3
7.4

7.6
7.7
7.8

79 A

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

A LB-fsa for Untyped X-Pattern Matching
An LB-fsa for Typed N-patterns
Representing a Variable Assignment
Example of a Projection System
7.5 Example of a Context-Free Grammar
Example of a Cover
Second Example of Projection System
Sample Tree
Third Example of a Projection System .......
Machine Descriptions
Cost Functions
Adding a 6-LR Graph
Computing Equivalent States
Summary Transfer Graph
Computing Equivalent States for Vax.bwl{M I} .....ccovmnniicinniiiieiices
Preferred Path 10 Compute Equivalent States
Data Structures of the Code Generator
Influence of the Representation of the Restrictors for vax.bwlM ...,

..............

.....................

.............

........................................

....................................................

................................................

.....................................

.........................

...............................

...............................................................

...............................................................

...............................................................

...............................................................

...............................................................

...............................................................

...............................................................

...............................................................

...............................................................

...............................................................

...............................................................

...............................................................

...............................................................

...............................................................

8.10 States for Preferred Path (Original Generated Final) ...
8.11 Table Sizes in bytes for Preferred Path (LB-fsa Graphs Total) ....ccccoceercicciiiinninnnen.

8.12
8.13

8.14
8.15
8.16
8.17
g8.18
8.19
8.20
8.21
8.22

8.23

Total Table Size (in bytes) per State .............

Table Generation Times for the Preferred Path (Real User System) (in seconds)

Comparing States for Alternate Paths ...........
Comparing Table Sizes for Alternate Paths ..

...............................................................

...............................................................

Comparing Table Generation Times for Alternate Paths ...

Organization of UW-CODEGEN .................
Benchmark Programs .......ccccmmeenveenncinneneene
Table Size for several TPMSR (in KBytes) ..
Code Generation Time for vax.ng.ne ............
Code Generation Time for mot.ng ........c.......
lexicographic optimum (100 100 100
100) ettt saae s

(value of cost tuple (M I S O) relative to

Table Generation Times for several TPMSR

...............................................................

..............................................................

117
121
125
128
129
131
132
132
134
135
136
142
146
148
155
155
156
158
158
162
164
166
168
169
171
172
174
176
177
179
180
181

181
182
182
183
184
186
187
188
189

191
192



Acknowledgements

Many people have helped me during my stay at Berkeley. They all deserve my thanks:

To Sue Graham, for being my advisor, for emphasizing ‘‘measuring numbers’’, for collect-
ing a very interesting research group, and for being picky about what gets written; to Paul
Hilfinger, and John Addison, for agreeing to read this overweight dissertation; to my research
group for being good friends, and for listening to the material in this dissertation one too many -
times; to Charlie Farnum for debugging Chapter 5.

To Peter Kessler for introducing me to juggling and for being continually amazed about
everything; to Bob Ballance for dreaming PAN and sharing his dream with us; to Phil Hatcher for
the puzzle; to David Chase for lending me his code for pattern matching generation: to Robert
Henry for CODEGEN, UW-CODEGEN, the machine descriptions, for showing me wha: had to
be done to finish, for reviving the hiking bug in me, and for general support.

To all the friends at Berkeley who have supported Vicki and me, especially Michael and
Karen, and to the friends abroad that have kept constant despite the epistolary drought, especially
to Arturo; to my parents and brothers; and, finally and most important, to Vicki O’Day for being
here with me during all of this.

This research was partially sponsored by Defense Advance Research Projects Agency
(DoD) Arpa Order No. 4871, monitored by Naval Electronic Systems Command under Contract
No. N00039-84-C-0089, Micro, by Xerox Corporation, and by Vicki O’Day.






CHAPTER1

Trees and Tree Transformations

Quicn a bucn arbol se armima,
bucna sombra le cobija’

{Old Spanish Saying]

Trees arc hierarchical mathematical objects. Their hierarchy makes them adequate models
for many situations whilc their mathematical properties gives them a simple and sound basis. In
addition, trees can be manipulated simply and efficicntly in a traditional von Neuman computer.
Thesc attributes have made trees the preferred model for many applications. This dissertation is
concerned mainly with problems related 1o tree transformations: mappings whose domain and
image arc scts of trees. The application areas that motivated this research are compilers and syn-
tax dirccted cditors in which the program is represented as a tree to show the hierarchical organi-
zation of its syntax or its scmantics; another application area is the one referred to in the literature
as technology mapping in logic synthesis systcms [DGR87].

Tree transformation problems revolve around a description, using some descriptive
mechanism, denoting a transformation between trees in some input iree language and some out-
put tree language.

Dcscriﬁmon: D
v

Transformation: f

T

This disscriation studics several types of tree transformation problems. A first class of
problems arc notation problems: in most cascs obtaining the description that corresponds to some
desired transformation is a non-trivial task. The difficulty of the problem depends on the com-
plexity of the transformation and the adequacy of the descriptive mechanism. In general, the
descriptive mcchanism has 1o be both expressive and natural, and it must support some reasoning
on the propertics of the transformation it describes. Some of the properties of the transformation
that may be obtainable from the description are COrreciness relative to some other specification
and whether the transformation is onc-to-onc or well defined.

Another class of trec transformation problems are application problems. There are two
main varietics of application problems: forward application problems require applying the
transformation to an input trec; backward application problems require applying the functional
inverse of the transformation 1o an output tree. Since the mapping of the transformation may be,
in gencral, many-to-many, both types of applications may retum one or all of the possibilites.

! *Hc who gets close to a good tree, will be protected by good shade’



Another class of problems arc reachability problems. In some descriptive mechanisms, the
(forward or backward) application of a transformation leaves a ‘‘trace’’, a justificaton of its
existence. For example, in a transformation described as the iterated application of simpler
transformations, the list of the applications provides such a trace. A reachability problem for
such a descriptive mechanism consists of, given the description of the transformation, determin-
ing if a given trec can be transformed inio another given tree and, if so, providing a trace for the
transformation. Clcarly, if the transformation is computable and maps any input tree into a single
output tree, solving the rcachability problem is trivial, but in general the situation may be quite
complex.

The taxonomy of problems given above only reflects the types of problems that are dis-
cussed in this disscriation and is not intended to be complete. Besides, a problem can be
classified in more than once class; for instance, Chapter 7 solves application problems using
reachability problcms.

1.1. Some Examples of Tree Transformation Problems
Some cxampics of the the tree transformation problems mentioned above are the following:

Compilers

The main application of the tree transformation problems considered in this dissertation is
compiler systcms. Compilcrs arc translators {from programming languages to machine languages.
Since this translation is a complex process, it is normally decomposed into components that can
be solved more or less indcpendently. Frequently these components are simpler translations
between intcrmediate representations (IR) of the program, called phases, and many of the IR are
based on trecs. Figurc 1.1 shows a compiler model which decouples target machine dependency
from source language dependency. (The descriptions in [Rip78] and [Joh77] approximately fol-
low this model, however the one in [WJW73] does not). Some of the phases shown in the figure
have been modecled successfully without using any of the above tree transformation problems, but
others can be described as instances of those problems. Of these, this dissertaton shows how
some can be solved efficiently, and provides the foundation for handling others.
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The lexical analysis phase maps strings of characters into strings of tokens. It is frequently
described by giving for cach token a regular expression denoting the set of all strings of charac-
ters that map into the token. A program implementing the mapping can either be obtained
automatically from the description by a program like Lex [LeS75], or can be written manually in
some implementation language. Manually written lexical analyzers are frequently faster than
automatically gencrated oncs because the mapping is quite simple and all its details can be easily
grasped by the programmer who can then cxploit its peculiarities. ’

The syntactic analysis phasc maps strings of tokens into syntax trees such that their
““border’’ (the lefi-to-right concatcnation of their leaves) is the string of tokens. This problem is
also called the parsing problem and was the object of intensive research during many years.
Currently there are several very successful techniques that can be used to solve this problem.
These techniques are based on formal language theory [AhU73, Har78] and can be used to obtain
syntax analyzcrs automatically from a context-free grammar describing the set of valid syntax
trees. A popular cxample of a parscr gencrator is Yacc [Joh78] which is based on LALR(1) pars-
ing. Although some techniques, likc top-down parsing, can be used to write syntax analyzers
manually, a majority of uscrs prefer the automatic techniques because they are more powerful,
easier to usc, and, in large grammars, lend to produce better results than all but the best



programmers.

The semantic analysis phasc can be modcled as a tree transformation where the input tree is
a syntax tree and the output is an annotation of it. The annotation makes explicit some informa-
tion extracted from the syntax tree for later usc and also uses this annotation to test the ‘‘statc
semantics’’. Therc arc several techniques to describe the annotation. Attribute grammars
[Knu68] have rcecived much attention in recent years as a descriptive mechanism for this stage
[Kas80, Pcl80, Rai80], but are not accepted universally. A major problem in attribute grammars
involves describing the distribution of information across *‘long distances’ in the tree, a function
encoded in other approaches in the notion of a symbol table. There have been other approaches
1o solve this problem, including Ballancc’s proposal for a system based on logic programming
technology (Bal83). Corrcct scmantic analyzers generated automatically from one of the above
descriptions can be obtaincd fastcr but exccute less cfficiendy than manually written ones; current
research is aticmpting to remove the cfficiency disadvantages. This phase can be seen as a very
specialized forward application problem, but it is not the main focus of this dissertation.

The ncxt two phases arc cxamples of forward application problems. For the purposes of
this introduction, the name improvements includes a broad range of transformations that attempt
to “‘improve’’ a program represented using some IR tree. Since the tree transformation may be
quite gencral the description mechanism must be powerful and proving the correctness of the
description beccomes a non-trivial issuc. The high to low transformation phase is responsible for
the implemcntation of data types and control structures present in the source language using the
simpler mechanisms available in the target machine. The phase can be described as a forward
application problem for a trec transformation where the input and output trees use operators of
different conccptual level. Currendy there is no generally accepted formalism for describing
these transformations and leading 1o cfficicnt solutions to the forward application problems. Sec-
tion 1.4 below discusscs in some detail the propertics required from the descriptive formalisms.
Although this disscrtation docs not provide a compicte proposal for a descriptive mechanism for
these problems, it does provide the foundations on which to start building it.

The code generator is a phase producing target machine code, or more properly, code for
the Compiler Writer’s Virtual Machine, CWVM [Hcng84], from a low level IR tree. A convenient
formalization for this phasc is bascd on constructing a transformation encoding the possible
sequences of instructions in the CWVM in such a way that an input tree can be rewritten into a
fixed *‘goal’’ tree if and only if there 1s a scquence of instructions implementing the input tree.
Solving the rcachability problem then produces a trace that can be used to extract the desired
instruction sequence. The reachability problem can be modificd to incorporate a cost metric lead-
ing to instruction scquences with minimum cost. This approach has been explored extensively in
recent years [AhJ76,GaF82,GIG78, Hen84]. 1t is currcntly possible to automatically generate
code generators that rival the quality of the best manually written code generators. This disserta-
tion provides ncw and very cfficicnt solutions to this problem (Chapters 6 and 8).

The code improver phasc transforms target machine code into “improved’’ target machine
code. It is best described as a string-to-string transformation phase, but some researchers [Kes84]
use tree transformations when constructing the code improver. None of the different proposals
for this problem has gaincd a definitive advantage over the others; a substantial part of the prob-
lem here is deciding exactly what has to bc donc in this phase and what is done elsewhere, for
instance, in the codc gencration phase. Again, although this problem is outside the scope of this
dissertation, some approaches to it may usc the foundations.

There arc other important components of a compiler, notably the register manager [Mck84},
which interact with the phascs mentioned above. None of them will be considered here except in
the context of the implementation of the code gencrator reported in Chapter 8.



Language-Bascd Editors

Another example of @ program manipulating programs is a language-based editor: an editor
that “‘understands’’ the program that it manipulates. Typically such an editor will keep an inter-
nal representation of the program being cdited in the form of some variation of a tree and the edi-
tor commands will modify that rcpresentation. Figure 1.2 is an schematic representation of a
languagc-bascd editor where there arc two intcrnal representations of the program: the parse tree
(PT) represcnts faithfully the program according to the context-free grammar of the language,
while the abstract syntax tree (AST) only represents the *‘deep structure’’ of the program.

Scmantic Commands Syntactic Commands
-

11 |

Lo I

AST PT

T EDITOR
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v

DATA BASE

Language Based Editor

Figure 1.2

Both PT and AST are uscful in the cditor. The PT is used while parsing pieces of programs
entered as text, while the AST is a more compact form and the preferred form to perform pro-
gram modifications or querics that requirc knowledge of the semantic structure of the program. If
thesc were the only rcquirements, onc could avoid ever constructing the PT and apply the
PT—AST transformation on-the-fly as the input program is being parsed. But the PT is also use-
ful to produce preuty-printed versions of programs that have been modified by changes to the
AST, and 10 allow the application of incremental parsing algorithms that work only on the PT.
One possibility is 1o keep both representations in the editor. A better one is to store only the AST
and to regenerate the PT from it as an inverse application problem. Since the PT — AST map-
ping is many-Lo-ong, its inversion has to choose one of the possible parse trees.

A language-based cditor contains other components that are outside the scope of this disser-
tation. Sce [Bal83] for morc details.

Technology Mapping in Logic Synthesis
Tree transformation problems have other applications bevond just programs manipulating

programs. One recent cxample the area called “‘technology mapping in logic synthesis’’. Logic
synthesis starts with a sct of boolean cquations describing the desired relation between a



collection of output signals and a collcction of input signals and artempts to obtain an optimized
implementation of it for somc particular technology. One approach that has been explored
recently is to divide this problem into two different pans. The first part tries to optimize the set
of equations indcpendently of the final targct technology. The particular method used in
[BDK86] involves approximating the problem in Z, (integers modulo 2) instead of the boolean
field, minimizing the cquations there, and then “‘patching up’’ the solution to get a result in the
pooleans (this essentially involves adding the results that depend on idempotency).

The result after this first stage is a “*betier’” set of equations. This set of equations is then
mapped into the desired technology. The problem can be described as one of finding a covering
of the directed acyclic graph (dags) represented by the cquations using the graphs that correspond
to the operations available in the desired technology and such that the ‘‘cost’’ of the covering is
minimal [DGR87]. Solving this problem for dags is expensive, but, if dags are approximated
with trees by *‘pulling out’’ common subtrees, the corresponding problem is another reachability
problem with cost information for a tree transformation, and can be solved very efficiently using
the results of Chapter 6.

.2. Scope of this Dissertation

The focus of this disscriation is on onc class of descriptive mechanisms, providing some
research on its foundations and dctails on a particular subclass that has a useful range of applica-
tions. The class of descriptive mechanisms is a variation of term rewrite systems called tree
rewrite systems; they are described informally below in Section 1.5, and formally in Chapter 2.
Fundamental problcms related to this class are explored in several chapters, including Chapters 3,
4, and 7. The subclass explored in some detail is called the bottom-up rewrite systems (BURS),
described in Chapter 5. This dissenation shows how to solve efficiently some forward applica-
tion, backward application, and rcachability problems using BURS, and also reports on a com-
plete experiment where a code generalor was constructed by providing a solver for a reachability
problem for transformations based on BURS (Chapters 6 and 8). Although not implemented, the
dissertation also shows how to deal with the forward and backward applicatons of the PT—AST
ransformation, and the transformations appearing in technology mapping in logic synthesis
(Chapter 7). The high-to-low transformations secm accessible from the results of this dissertation
with some extra c{fort; they would usc the foundational results provided in the dissertation. The
transformations appearing in the improvement phase are quite more complex and seem to require
additional rescarch beyond the results described in this disscriation.

1.3. General Considerations for Solving Tree Transformation Problems

There are somec considerations that appear frequently when solving any of the tree transfor-
mation problems listed above.

1.3.1. Solvers and Solver Generators

The traditional way to measure the performance of some algorithm is by its time and space
complexity. Regardless of whether a worst-casc or an average case behavior is used, these meas-
ures treat identicatly all the arguments defining a problem. This approach is inadequate for the
problems studicd in this disscrtation. For cxample, a forward application problem has two inputs,
a tree Ty, and a description D, but typically D is **fixed”” and Tp,pu is ‘‘variable’’. It is not
accurate to treat D and Ty, in the same way when quantifying the difficulty of the problem.

The solutions to the problems considered in this dissertation can be separated in two dif-
ferent phascs: a solver generaior phase, and a solver phase. Their interaction is shown in Figure
1.3. Some of the inpul arguments arc passcd to the solver generator which analyzes them and

produces a specification that is probably larger than the input but easier to handle. This
specification is called a ‘‘tabic’” although the particular details of the encoding may vary. The



solver reccives the rest of the input specification and the processed tables and solves the desired
problcm.

/Tables
fixed input Solver- __/
Gencrator
Solver Output
variable input .
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/I 7/ 7
Solver-gencrator  Solver
Lume time

The Solver and Solver Generator Approach

Figure 1.3

Normally, the exccution time of the solver will be much smaller that that of the solver gen-
erator. In such an arrangement the solver phase may have a linear time worst-case behavior, even
if the complete problem is NP-complete. If the complete problem is NP-complete, the time spent
in the solver generator plus the time spent in the solver must be exponential on the combined
input size, at Icast for somc inpmsz. In practice, however, many problems that are NP-complete
show their extreme behavior only in some infrequently occurring sets of inputs. One example of
this paradigm is optimal plan assignment in attribute grammars [Pel], where the preprocessing
phasc can be cxponential on the description of the attribute grammar but the actual assignment
can be done in lincar time.

For most of the applications considcred in this dissertation, the size of the tables generated
by the solver gencrator is a morc important measurc than the time spent executing the solver gen-
crator. An application, not covered here, where this is not true is to algorithms in which the
description (and the transformation) is continuously changing. This is the case of the Knuth-
Bendix completion algorithms [KnB70], which rely on a patiem matching algorithm, but add pat-
terns dynamically to the pattem sct. Chapler 3 studies the problem of linear pattern matching.
Somc of the algorithms prescnied there could be used for Knuth-Bendix completion either
becausc they have a fast table construction algorithm or because their tables can be modified
incrementally, but this disscrtation docs not cxplore the issue any further.

]
* Unless PP = NP, of course.



Other details of how the problem is used may be of importance in measuring the efficiency
of an algorithm. An cxamplc is when the matching algorithm is part of a larger match-rewrite
cycle where a tree is altemnatively analyzed for matches and modified. In this case it would be
advantageous 1o have an algorithm capablc of re-using parts of previous computations.

1.3.2. Bottom-Up and Top-Down Paradigms

Many tree transformation problems can be solved by defining a notion of a state associated
with a nodc characterizing the ‘‘interaction’” between the transformation and either the input or
the output tree. Therc arc two basic approaches to this characterization named after the order in
which the states of a tree can be computcd: ‘‘bottom-up’ and “‘top-down’’. In a bottom-up
approach, the statc of a node N depends only on those of the descendants of N. In a top-down
approach, the state of a nodc N' depends only on those of the ancestors of N. In some cases it is
convenient to consider states with more complex dependencies. Bottom-up characterizations are
more powerful than top-down characterizations in many applications. For instance, Section 2.2
shows that bottom-up trce automata, a trec recognition device, are more powerful than top-down
tree automata.

This disscriation uscs two classcs of statcs: most statcs are bottom-up states, but some
notions of statc can be described as computed in a bottom-up pass followed by a top-down pass.
In all notions, the objective is to limit the amount of information present in the states to reduce
the cost of computing them. If, in addition, the sct of all possible states that may characterize an
(input or output) trce can be computed at solver gencration time and is finite, then the result of the
operations involved in computing the staic can be precomputed and stored into a table and the
state can then be computed very cfficicntly at solving time by replacing all computation with sim-
ple table lookups. Some of the nicest results of this dissertation involve showing how to encode
in a (relatively small) finite set of staics information that initially would seem to require an
infinite number of states.

1.3.3. Syntax and Semantics

A final issuc is that of syntax vs semantics. A tree uscd to represent some object will nor-
mally contain a significant amount of informaton. This information can be classified as being
either syntactic or semantic. The first one can be said to define the ‘‘structure’’ of the tree, the
second, to provide a ‘‘dccoration’” of the tree. In some sense, it would be possible to move
everything from onc class to the other. One extreme corresponds 1o a single node decorated with
a very complex semantic data value, the other 1o a large complex tree with no decoration at all.
The distinction between onc and the other is normally done based on the cardinality of the
domains involved: small domains lcad to syntactic information, large domains to semantic infor-
mation. Infinitc domains must be cncoded semantically, with the exception of the child relation-
ship. Many algorithms treat diffcrendy both typcs of attributcs, being capable of extracting more
information from syntactic attributes than from scmantic ones. Encoding a value syntactically
normally leads 1o larger tables. Through out this dissertation, syntactic information will be used
to direct the transformations, and scmantic information will be used only when necessary.

1.4. Describing Tree Transformations

The difficulty of solving the diffcrent tree transformation problems depends very strongly
on the descriptive mechanism uscd.

The considerations for notational probicms are similar to those present in the design of pro-
gramming languages. A first requirement is onc of expressiveness: every tree transformation in
the intended application domain must be cxpressible in the mechanism, The mechanism should
also lead 10 an cfficient solution to whatcver problem is solved using it: what efficient means fre-
quently ends up being “‘at Icast as fast as a good hand-coded solution to the problem’’. Clearly



these requirements arc inter-dependent; for example, increasing the expressiveness of the
mechanism is likely to lead to Icss cfficicnt implementations.

A much more fuzzy rcquircment is that the descriptive mechanism should model the
“‘natural’’ notions present in the problem domain. Most mechanisms describe a complex tree
transformation as a composition of basic transformations, which are then described in two parts: a
condition, indicating when it applies, and an action, indicating what it does. A condition can be
called local when it depends on a specific contiguous portion of the tree; similarly, an action can
be callcd local if it affects such a portion of the tree. Otherwise, conditions and actions are called
non-local®. For instance a transformation that takes a single node labeled *‘foobar’’ and replaces
it by a subtree containing nodes labeled *‘foo’” and **bar’’ is local, but a transformation depend-
ing on the presence of a node ‘“foo’” with a descendant (at an imprecise location) ‘*bar’’ is non-
local. Most individual tree transformations in compiler phases are local but some are non-local,
either in the conditions or in the transformations. Ideally a descriptive mechanism should support
efficicntly both typc: of transformations.

There arc two main composition mechanisms used in descriptive mechanisms. In a parallel
composition scveral transformations arc applicd to the same input tree and the results are com-
bined by some tree function to produce the final result. In a serial composition, the result of one
transformation is uscd as the input to a sccond one; it can be applied just once, or it can be
iterated until somc condition is mct.

The descriptive mechanisms for trec transformations published in the literature can be
classificd in four groups: operational, trce automata-based, attribute grammar-based, and term
rewrite-based, with some mechanisms having characteristics of more than one group.

1.4.1. Operational Descriptions

Opcrational descriptions can also be called *‘description by implementation’’. This descrip-
tive mechanism is, unfortunately, still the one used in the majority of the compilers. Its main
advantage is, supposcdly, onc of cxpressibility: if the implementation language is reasonable, any
computable function will be expressible. It lacks most other desirable properties.

Onc disadvantage of the technique is that by its nature, such a description is suitable only
for forward application problcms and all the other tree transformation problems have to be
mapped into them. For cxample, if the problem is more naturally described as an inverse applica-
tion, the uscr must determine how to invert the transformation and encode the inverse transforma-
tion. This increases the cffort required to produce a solution to the desired tree transformation
problem. Eventually, proving anything about the problem being solved corresponds to proving
propertics about its solving program: termination corresponds to the halting problem; correctness
is meaningless unless combined with some other descriptive method; and deciding whether the
transformation is many-to-onc is difficult. Only showing that the transformation is not one-to-
many is casy, as a consequence of the determinism of most implementation languages.

Another shortcoming of the tcchnique is that small changes to the specification of the prob-
lem may requirc large changes to the implcmentation. Since the problem specification tend to
change very frequently, this disadvantage increases very substantially the effort required to obtain
a solution. Yet another disadvantage is that, in many types of problems, a truly efficient solution
may requirc cxhaustive and quilc complete analysis of the transformation, which, for the above

3 The notions of Jocal and non-iocal are very fuzzy, but I do not attempt to formalize them since they are only
used very informally. For the descriptive mechanism used in this dissertation locality corresponds to untyped N-
patierns, while non-locality can be described using cither typed N-patterns or X-patterns; see Chapter 2 for the formal
definitions.
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reasons, a programmer may not be able to provide. A final disadvantage is that related tree
transformation problems will lead to unrclated solving programs and maintaining consistency
may be non-trivial.

There are many cxamples of the operational approach to the description of tree transforma-
tions, most of them undocumented in the rescarch journals. Those that are documented are nor-
mally build around a, frequently narrow, model for the specification of the transformation which
effectivcly lcads to somc type of higher-level descriptive mechanism. [WJW?75] is an example
including transformations rclated 10 program improvement and code generation. Code generation
was particularly prone 1o this approach, scc, for instance, [Wir71]. This dissertation, along with
other recent rescarch, shows that a code gencrator based on a formalized tree transformation tech-
nique can be very successful (scc Chapter 8).

1.4.2. Tree Automata

Tree automata and tree transducers (Section 2.2) [Eng75, Tha75], are the generalization of
word automata to trec domains. There arc many variations of the concept with different expres-
sive power. Normally thesc descriptive mechanisms are uscd as abstract devices to characterize
classes of cxpressive power. As such, they tend to be limited in the support that they provide for
the **natural’’ description of transformations and in rendering an efficient implementation. They
have somc advantages, though. Somc automata classes are closed under some operations, like
composition, union, complementation, ctc. This means that a transformation may be described as
the combination of indcpendent subtransformations. 1f the closure proof is constructive, it is pos-
sible to build a system that will take the transformations and obtain their composition. Another
advantage of trcc automata and transduccrs is that normally they can be provided with induction
principles that can be uscd to prove properties of the transformations they define.

There are two main classcs of trec automata, depending on how strings are generalized to
trees: top down or bottom up. Both classes have limited locality in specifying both conditions
and actions. [Eng75] provides an cxtension of top down automata with some global conditions.
Tree automata tend 10 be too low level 10 be proposed as direct descriptive mechanisms, and I
know of no proposal to usc them unmodified, but they can be used as the foundations for other
mechanisms. Scction 2.2 presents tree automata in more detail.

1.4.3. Attribute Grammars

Attribute grammars {Knu68, Rai80] arc a descriptive mechanism to annotate a parse tree.
A parse tree is composcd of instances of terminals and nonterminals, the nodes of the tree, and
instances of productions rclating these nodes. An attribute grammar associates a set of symbols,
the attributes, with cach node, and a sct of equations, the semantic equations, o each production.
Each semantic cquation is of the form a=f (8), where g is an attribute, B a set of attributes, and
f is called the semantic function. The evaluation of a parse tree using an attribute grammar is
an assignment of values to the attributcs satisfying the sct of equations associated with the parse
tree. In traditional attribute grammars, the sct of equations are required to have an acyclic depen-
dency graph which, when linearized, can then be used to find the values of the attributes by a pro-
cess of “‘substitutc and cvaluate’’. The implementation need not follow this naive algorithm and
many alternatives have been proposed and investigated [Kas80, Pel80].

A sct of labeled trees is called local (Scction 2.2) if it is the set of parse trees for some
context-frec grammar G. A function with a local sct as a domain can be defined by using an attri-
bute grammar and sclecting one of the atributes associated with the root of the parse tree as the
value of the transformation. To define a tree transformation from a non-local set, the description
writer must find a local st L’ which includes L and define the transformation on L’ instead of on
L.
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The straightforward way to definc trce transformations using attribute grammars is to use
attributes and scmantic functions over trec domains (for instance, [NMS83]). Such a mechanism
inherits many propertics from traditional attributc grammars. Since the semantic functions are
unrestricted, attribute grammars are a completely general descriptive mechanism: any computa-
tion can be cxpressed trivially by collecting the input tree into an attribute of the root and apply-
ing there a function denoting the desircd computation. This solution is not really useful since it
pushes the problem to a differcnt place without solving it. The advantages of attribute grammars
come from using simple scmantic functions and relying on the structure of the parse tree to com-
binc them into more complex transformations. [Kam3 ] presents some results on the expressive
power of a particular version of attributc grammars, but few other results are known. '

Probably the biggest disadvantage of attribute grammars is that they are *‘too local’’. Since
semantic functions are associatcd with productions in the parse tree, attribute grammars limit
their locality to a production. When the problem requires a larger local context, auxiliary attri-
butes and scmantic functions must be defined. These attributes will collect the information in the
local context and transmit it to the desircd node where it can be used. The problem with this
approach is that it separatcs single transformations into several constructs, increasing the
difficulty of understanding and implementing the description correctly. When the transforma-
tions arc non-local, the usc of auxiliary attributes cannot be avoided, and since the propagation
necds to be donc at cach point in the path, many rules are involved.

Another problem is that since the number of attributes that are assigned to each node is
fixed by the type of the node, it is frequently necessary to collect information into a larger attri-
bute (a frequent example is the “‘symbol table’) which is then moved to the places where the
information may be rcquired. This reduces the clarity of the description and may also reduce the
efficiency of solutions to problems based on it.

Attribute grammars have a flexible parallel composition mechanism: at any non-terminal
any numbcr of attributes can be combined to obtain a new one. Serial composition is not
straightforward because the result of the transformation is not available directly in the original
tree. The lack of itcration forces the use of complex semantic functions in some cases where they
could be avoided. For cxample, if a transformation is to be invoked under some particular con-
text, the attribute grammar must check for the context, not only in the initial parse tree, but also
in the intcrmediate trec that will be obtained by the application of successive transformations.
Keeping track of these changes may be very complex.

Attribute grammars are at their best in describing how to annotate parse trees, for instance
in a scmantic analysis phase. There have been some proposals for proof methodologies for attri-
bute grammars [Der83] bascd on proving local properties at each of the productions of the gram-
mar and then proving properties on the interactions between the productions. The applicability of
this approach depends on the complexity of the semantic functions in the attribute grammar.

The main obstacle to efficient implementations of the transformations is, again, dealing
with non-local transformations where values must be pushed around from one place of the tree to
the other. In general, since tree attributcs arc potentially large, it is particularly important to
optimize the copy and allocation of the attribute values [Rai81]. On the other hand, one advan-
tage of attribute grammars is that all the dependencies are explicit and they can be analyzed stati-
cally to select the best possible cvaluation order [Pel80].

Somec of the disadvantages of the auribute grammars can be overcome by building more
specific mechanisms on top of them. Onc such proposal is attribute coupled grammars.

Attribute Coupled Grammars

Altribute coupled grammars [GaG84] are a mechanism based on attribute grammars where
expressive power is traded for control over the result of the transformation, effectively providing
automatic proofs of the form of the transformed tree. Attribute coupled grammars have as
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domain and co-domain local sets which are explicitly described in the attribute coupled grammozrs
as context-frec grammars. The attributes are divided into “*syntactically valued'’ and *‘semanti-
cally valued” attributcs. Semantically valued attributes are normal attributes; syntactically
valued attributes are tree-valued attributcs which can have as values only (sub)parse trees of the
output grammar and arc strongly typed by their root operator. The result of the transformation is
a syntactic attributc of the root. The semantic functions of syntactic auributes are constructors of
the output grammar that may depend on the value of semantic arttributes.

Attribute coupled grammars arc closcd under composition: there exists a computable func-
tion that will assign to two attributc coupled grammars another attribute coupled grammar that
describes the (functional) composition of the transformations described by the first two. This
allows one to trade description size against efficiency in the implementation of the transforma-
ton.

This gain in control is obtaincd at the loss of expressive power. For example it is impossi-
ble to describe in autribute coupled grammars the replacement of all “‘uses’’ in a tree by their
corresponding ‘‘definitions’’ because each definition would have to be propagated as a single tree
and this cannot be done in general because the number of attributes is fixed. In contrast, in an
unrestricted attribute grammar all the definitions can be bundled together in a single attribute
which can then be used in the desired places. Intuitively, attribute coupled grammars have res-
trictions on the generative portion of the mechanism, while the analytic portion is largely unres-
tricted.

In summary, although attribute grammars and attribute coupled grammars are quite ade-
quate for some applications, they are lacking for others. The two main disadvantages are the lack
of non-local facilities, and the lack of scrial composition of individual transformations. The first
disadvantage has becn attacked by several researchers ((Hoo86,RMT86], but not very success-
fully in my opinion), but the sccond is implicit in the method.

1.4.4. Term Rewrite Systems

Term rewrite systems have advantages and disadvantages complementary to those of artri-
bute grammars: the basic operation is scrial iterative composition but there is no parallel compo-
sition.

Term rewrite systems [Chu41, Huc80] arc used describe transformations on ferms oOver
operators. Since there is an cquivalence between terms Over an alphabet and labeled trees where
leaves corrcspond to O-ary operators and intcmal nodes correspond to n 20-ary operators, a term
rewrite system can be uscd o describe tree transformations. Term rewrite systems are the basis
for the descriptive mechanism uscd throughout this dissertation.

A paticrn over an alphabet s 2 term on the alphabet extended with new O-ary operators
called variables®. A tcrm rewrite system is a collection of pairs of patterns called term rewrite
rules. The two pattemns arc called the input pattern and the output pattern, and the variables
used in the output paticrm arc required Lo be a subsct of those used in the input pattern. A pattem
matches at a nodc if there is a substitution for the variables that makes the pattern identical to the
subtree rooted by the node. A rcwritc rule defines a tree transformation: an input tree is
rransformed into an output tree by replacing the poruon matched by the input pattern by a new
tree obtained from the substitution and the output patiem.

The basic component of a term rewrite system is iterative serial compositon. A rewrite
system transforms an input trce by repeatcdly applying rewrite rules until a tree is obtained where

¢ Section 2.3 defines more formally all the concepts mentioned in this section; in particular, these vanables are
extended to allow also for non-zero ariics.
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no rule applies. Like many trcc automata, but unlike attribute grammars, tree-to-tree grammars
are potentially non-deterministic in their output since several subtrees of a tree may match one or
more rewrite rules. Traditional rescarch in term rewrite systems is concerned with determining if
a given system defines a function or not. This can be proved by a number of techniques, many
based on showing that two propertics hold: confluency and termination. Most of the proof tech-
niques for termination are formalizations based on well-founded sequences {Moz83], while there
are scveral local properties which imply confluence [HuO80]. Since transformational grammars
have the cxpressive power of a Turing Machine it comes as no surprise that, in general,
confluency and tcrmination arc undecidable.

Local conditions and actions arc described in the mechanism by simply adding a rewrite
rule with left term cqual to the local condition and right term equal to the desired result. In the
absence of additional requirements, likc order of application, this description is the only one
needed and is very natural. On the other hand, non-local transformations are not supported
directly and must be simulated by sets of rewrite rules. Non-local conditions are described in an
awkward way since the only way 10 transmit information is indirectly through modifications of
the tree. This means that what should be a simple process of gathering contextual information is
described as a complex process, which not only initially changes the contents of the tree, but also
has to retum it later 1o its original state. The technique employed to describe non-local actions is
similar.

Similar complex intcractions are necded to implement non-iterated serial composition and
parallcl composition. This style of programming is unnatural and very unstable: small changes to
the st of rewrite rules can cause large changes to the behavior of the system. This unstability has

been observed in production systems, a computational mechanism based on an organization simi-
lar 10 term rewrite systems {DaK77, For79, KDR78].

The implementation of term rewrite systems is based on tree pattern matching algorithms
[HoO82,KMR72] 10 detect the rewrite rules applicable on the subject tree. The pattem matching
algorithms employed should decal efficiently with changes to the tree as rewrite rules are applied.

The main advantages of tcrm rewrite sysicms are its support of iterated serial composition,
providing both expressive power and descriptive convenience; and the support of local transfor-
mations. Unfortunatcly, when the basic transformations cannot be described as a single rewrite
rule, the complexity of the interaction increases radically.

Another disadvantage of term rewrite systems is the inability to control the order of applica-
tion of rulcs. In somc cascs the rcwrite rules are designed to be evaluated in some particular
order, and enforcing that order with the standard mechanism may be very laborious; transforma-
tional grammars arc one attempt o alleviate this problem.

Transformational Grammars

Transformational grammars were originally used in computational linguistics; DeRemer
and Kron, [DcR69, Kro75] introduced the use of transformational grammars to describe transfor-
mations in compiler systems. Transformational grammars are like term rewrite systems with
some extra control. First, if there are two different rules which apply at some node and one of
them has an input patten more ‘‘specific’’ than the other, then the more specific rule will be
applicd. Sccond, there is a ** global’” rule that is used to choose between several nodes at which a
rule is applicable. The global rules presenied in [Kro75] are ‘‘top-down’” and ‘‘bottom-up’’. In
both cascs the rule docs not define a total order on the nodes of the tree and for some nodes the
selection between rules will still be random, but confluency can be proved for some classes of
transformation grammars [Kro73].

There have been several systems that have been implemented based on variations of

transformational grammars. Onc such sysicm is Bonsai [Wul81], which can be described as
being *‘patlem-driven’’. A transformation in Bonsai is specified as a collection of rules, each rule
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having a condition and an action. The condition is a tree pattern extended with optional invoca-
tions to generic semantic routines. The action is just a routine in some implementation language
that will return a tree value to replace the matched subtree. As in transformational grammars,
there is a global specification to indicatc the order in which the nodes are going to be tested.
Within a node the rules are tested in order and, if the condition of a rule is true, then its action is
invoked. The order in which the nodes are visited can be modified using special actions.

The main advantage of Bonsai is the expressiveness of the technique: when needed one can
always escape to a complex action routinc to produce the replacement tree. This is also its new
disadvantagc: sincc it is impossiblc to predict the interaction of the different rewrite rules without
understanding the action routines this descriptive mechanism can be used only to solve forward
application and rcachability problems. Also in some cases the implementation may suffer, since
there is less information available to the solver generator.

Twig (Tji] is a descriptive mechanism that has the normal rewrite rules, plus rules similar to
those in Bonsai and additional cost information that is used to select the rules to apply. Twig was
designed for gencrating code generators and is discussed again in Chapter 9, where it is compared
against the solution presented in Chapter 8.

Attributed Transformational Grammars

Attributed transformational grammars [GMW80, MWW84] are an atempt to combine the
strengths of attribute grammars with those of transformational grammars into a practical tool for
the specification of compiler phases. The interaction of the attribute grammars and the transfor-
mational grammar has two faccts. First, input paticrns in the term rewrite rules can be extended
with an arbitrary predicate on attributes of the non-terminals in the input tree; the predicate must
be true and the input pattern must match for the rewrite rule to be applied. Second, after an appli-
cation of a transformation rule, attributes may be recomputed according to new semantic func-
tions described in the transformation rule. The re-evaluation may involve a larger context than
the one dircctly affccted by the transformation. A direct consequence of the characteristics of the
interaction is that the domain of the tree transformation must be a local set which is described
explicidy with a context-frec grammar.

The cvaluation of the rewrite rule is controlled as in transformational grammars, with a gen-
eral traversal order. The attributed transformational grammar papers [GMW80, MWW84] also
contain a proposal for non-local conditions called combined attributed transformations, and an
abstraction mechanism. A combincd attributed transformation ties together a local rule with a
global rule connected through a connector node which normally is an auribute explicitly updated
through the description specification. When the conditions for the local rule are satisfied, the
conditions on the global rulc are checked and, if valid, both rules are performed. The global rule
can then access the information in the local rule to perform non-local actions. The abstraction
mechanism can abstract a sct of local and global rulcs, attribute reevaluation, and traversal con-
trol into a transformation unit which can later be invoked.

Attributed transformational grammars arc a very interestng proposal. The expressive
power and the description of local (ransformations is unchanged from transformational grammars,
but non-local conditions can now be described through attributes which describe the condition,
while non-local actions usc combined attributed transformations. The abstraction mechanism
also provides new flexibility in the composition facilities allowing non-iterated composition. As
in transformational grammars, there is still no parallel composition.

Proving propertics is simplificd somewhat by the presence of procedures which make it pos-
sible to dccomposc the problem into smaller and simpler problems. Non-local transformations
can be analyzcd, at least partially, using techniques from attribute grammars. [GMW?80] provides
no proof mcthodology for combined attributed transformations.
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The efficicnt implementation of attributed transformational grammars is more complex than
for transformational grammars. Finding the set of transformations which are applicable to some
tree implics both an attribute evaluation and a pattern matching over the tree. Any later change to
the tree as a result of the application of a rewrite rule will force an attribute reevaluation and an
update of the pattern matching information. Special algorithms are used to reduce the number of
attributes which must be changed in a recvaluation.

Some properties are not catcred by the mechanism as well as desired. Non-local conditions
must be described semantically using scveral attributes and semantic functions, even when the
described condition is strictly syntactic. The restrictions of a general purpose attribute evaluator -
may produce incfficient implementations, and the dispersion of the description through several
attributes and cvaluation rules will make it less understandable. Non-local actions require that
the description writer update the value of the attribute which provides the connection between the
local and the global rule. This updating will be dispersed in the semantic revaluation functons of
several rewrite rules, which is unnatural and may also be inefficient.

Tree-to-tree Grammars

Trce-to-tree grammars [KMP84] can be seen as an extension of either attribute grammars,
or, as in this subsection, term rewrite systems. They are a specialized descriptive mechanism,
less cxpressive than attributed transformational grammars. Tree-to-tree grammars are a collec-
tion of extended rewrite rules; cach rule relaics an input subgrammar and an output subgram-
mar. The rule matches at subtrecs that belongs to the input subgrammar and the output subgram-

mar describes the replacing subtree’.

Unlike traditional term rewrite systems, there is no iteration. Instead the input tree is parti-
tioned, and a single rewrite rule is applied to each portion to obtain the output tree. Properties of
the output set can be obtained automatically from the set of rewrite rules.

A tree-to-tree grammar is implemented by translating it into an attribute grammar with new
attributes which determine what input subgrammars apply to a given input tree. The semantic
functions uscd for the new attributes implement a tree pattern matching algorithm (see every-
where in this dissertation). This new attribute grammar satisfies the constraints of artribute cou-
pled grammars, thus proving that the expressive power of tree-to-tree grammar is not larger than
attribute coupled grammars.

The main advantage of this approach is that (some) non-local actions can be described quite
naturally. Probably thc main disadvantage is the lack of iteration, and the somewhat imprecise
statc of the proposals in [KMP84]. Chapter 7 formalizes a similar proposal around the notion of a
projection system. The results of that chapter show how to solve, strictly in terms of rewrite sys-
tems, not only the *‘forward’’ application problem, but also its inverse function.

1.5. Thesis of this Dissertation

The intention of this disscrtation is to start exploring how much it is possible to improve the
“‘purc’’ rewrite system paradigm to overcome its shortcomings, and how to solve with it the tree
transformation problems mentioned at the beginning of this chapter.

The biggest assct of descriptive mechanisms bascd on term rewrite systems is their support
for scrial composition and local transformations. But the basic term rewrite mechanisms support
poorly both non-local transformations and parallel composition, and have trouble imposing con-
straints on the order of evaluation. Some descriptive mechanisms, notably attributed transforma-
tional grammars, have altempted to allcviate the problems by departing from the ‘‘pure’”’

5 The proposal of [KMP84] is not very precise in some fine details.
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approach and adding attribute grammars. Attribute grammars have their own problems, they still
do not provide a good description of non-local conditions, and detract from the simplicity of
rewrite systems. The goal of this disscrtation is to extend the power of the individual rewrite
rules in a way that is a ‘‘nice’” extension to the “‘traditional’’ rewrite rules to deal with non-local
rewrites so that, in most cases cach conceptually single rewrite action can be described as a single
action in the mechanism.

This is an ambitious goal. [Pcl84] containcd several proposals for future research. This
disscrtation is a first step in that direction, and restricts its auention mainly to extending the
notion of pattern to allow non-locality in the form of the typed N-patterns and X-pattemns of
Chapter 7, and the non-linear pattcmns of Chapter 4.

Another goal of this dissertation is to show that even simple descriptive mechanisms based
on term rewrite systems can be very uscful to solve the tree transformation problems presented at
the beginning of this chapter. This goal is achicved by defining and exploring the notdon of
bottom-up rewrite Systcms.

1.6. Introduction to the Remaining Chapters

The disseriation is divided into four major parts. The first, introductory part consists of this
chapter and the next, which introduces basic definitions on trees, pattem matching, tree languages
and tree automata, rewrite systems, and finite state tree transformations. The reader is advised at
Jeast to skim through the chapter since some of the definitions are new, particularly those on tree
transformation problems and on labeled bottom-up tree automata (Definition 2.37).

The second part of the disscrtation contains foundational material for the descriptive
mechanism outlined in Section 1.5. Chapter 3 investigates pattern matching for the simplest type
of patterns, the linear N-pattemns, which are the ““traditional’’ patterns where variables appear
only once and have 0 arity. The chapter contains a consistent description of several table-driven
algorithms which cover a space of table-size X matching speed. Some of the algorithms have
appeared previously in the literature, but others arc new and may be useful in some applications.

Chapter 4 studies non-linear N-patterns, that is, pattems as before but in which variables
may appear more than once. Matching for thesc pattems is solved by combining matching for
linear N-pattcrns with the testing of additional equality predicates. The chapter contains several
table-driven algorithms. The size of the tables depends, in part, on how much of the results of the
tests is storcd: faster algorithms require larger tables.

The logical continuation of Chapters 3 and 4 is the first part of Chapter 7 where algorithms
for typed X-patterns arc studicd. X-patiems are 2 gencralization of traditional patterns in which
variables arc allowed to have non-zero arity. X-patterns are designed to describe non-local condi-
tions. Types are constraints imposed on what a variable can match, and can appear in both N-
patterns and X-patterns. Again, types allow the introduction of some non-locality into patterns.
Pattern matching for typed N-patterns can be solved using techniques similar to those of Chapters
3 and 4, but pattern matching for X-paticmns uses results from the third part of this dissertation.

The third part of the disscrtation contains an analysis of a simple type of rewrite systems
called bottom-up rcwrite systems (BURS) and of its applications. Chapter 5 introduces BURS
and shows how 10 solve a rcachability problem for them. The algorithm used is based on com-
puting a state characterizing the interaction of the rewrite system and the input tree. If the set of
possible states for a given rewrile sysicm is finite, the algorithm can be implemented very
efficiently. The chapter discusses the algorithm and conditions for the finite number of states.

Chapter 6 then analyzes the problem of code ceneration and shows how 10 solve it using a
modificd rcachability problem over BURS that have been extended with cost information.

Finally, Chapter 7 shows how to do typed X-patterm matching using BURS and defines a
new type of descriptive mechanism, called projcction systems, for which forward and inverse
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projection systems can be solved by solving a reachability problem for BURS. Projection sys-
tems are expressive enough to describe the transformations between abstract and concrete syntax
trees of language-based editors.

The last part of the disscrtation, Chapter 8, reports on an implementation of a locally
optimal code generator gencrator bascd on the results of Chapter 6. The implemented algorithm
is comparcd with several other recent proposals and shown to be substantially faster than other
optimal code generators and cven faster than implementations of successful techniques that are
not guaranteed to be optimal [GIG78]. Moreover, the tables obtained are of competitive size.

Chapter 9 discusses the disscrtation and contains some conclusions. Figure 1.4 indicates
the inter-dependencies among the chapters, which are represented by their chapter number,
together with a shor identifying keyword.
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CHAPTER 2

Basics of Tree Rewrite Systems

‘When I use a word,’
Humpty Dumpty said, in rather a scornful tone,
‘it means just what [ choose it to mean
- neither more nor less.’

‘The question is,’ said Alice, ‘whether you
can make words mean so many different things.’

“The question is,” said Humpty Dumpty,
‘which is to be master — that’s all.’

[Lewis Carroll [1832-1898]]

This chapter collects definitions, notation conventions, and results related to the notions of
tree, pattern, tree language, and rewrite system. Some of the terminology is traditional, some is
new, and some corresponds to traditional notions in a new perspective. It is always difficult to
find a happy balance between formality and convenience. This chapter leans towards formality to
compensate for the possibly different backgrounds among readers; later chapters can then be
more informal and rely on the definitions presented here for fine points.

First some basic notation. A sequence a,a, - " - a, sometimes will also be represented as
@,-a,s - +a, to emphasize its components. The empty sequence is represented as “€”, and a
sequence consisting of a single element a will frequently be denoted by a. Sequences with ele-
ments from some set S are also called words over the alphabet S. The concatenation operation
between sequences is denoted explicitly by / or implicitly simply by the concatenation of the two
operands. Other notations and definitions not defined in this dissertation are from elementary set,
graph, and language theory. The introductory chapters of most textbooks on those topics (for
instance [AhU73]) will contain the necessary definitions.

Definitions will frequently be presented as a collection of ‘‘defining equations’’ where the
left hand side describes a syntactic case, the symbol 8 indicates it is a defining equation, and the
right hand side gives the definition. 2 can be read as ‘‘is defined to be’’. This convention is
commonly used in areas such as denotational semantics. For example, the length of a sequence
can be defined as:

length (€) 20
length (x /o) 4 length (0)+1

Note that in the last defining equation there are implicit universal quantifiers; that is, it should be
read as V @V x..... Moreover, a is assumed to range over the set of sequences and x over the set
of sequence elements. Both constraints are left out to reduce verbosity in the definitions. There
is an implicit defining equation defining all remaining cases (if any) to have value undefined. The
example above is a total function.

Section 2.1 defines trees, pattemns, linear and non-linear patterns, N- and X-patterns, and
partern matching. The section also compares pattermn matching to unification and to subgraph iso-
morphism.
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Section 2.2 discusses a class of accepting mechanisms for tree languages. Tree languages
are useful in several applications, including problems related to pattern matching and rewrite sys-
tems. The topic is revisited in Chapter 7.

The main application of pattern matching in this dissertation is to rewrite systems. A
rewrite system is a collection of rewrite rules, each one describing the operation of replacing a
tree matching some pattern by another tree. Section 2.3 presents the basic definitions, including
some traditional problems: confluence and termination, and some non-traditional ones: reachabil-
ity and blocking.

Section 2.4 defines a class of tree transformations. It also relates tree languages defined
through accepting mechanisms to those defined through generating mechanisms.

2.1. Trees and Pattern Matching

The notion of a tree can be formalized in several ways. This dissertation uses two main for-
malizations. The basic definition identifies a tree with a subsct of ‘‘well-formed’’ words over an
alphabet. This alphabet is composed of a set of operators and three other symbols: **("’, **)"", and
', For example, +(—(a,1),3) is a tree over the set of operators {+,—.a,1,3}. The subtrees of a
tree are its subwords that are trees (that is, they are well formed). For example both —(a,1) and 3
are subtrees of the tree above, but —(a, is not.

A subtree of a tree is identified through its posifion relative to the root of the tree. The
notion of a position can be related intuitively to an alternatc representation of a tree: a rooted,
directed, and acyclic graph, with nodes labeled with the operators, and all nodes having a single
incoming arc except for the root which has none. For example, +(—a ,1),3) is represented as:

In a graph representation of a tree, the position of a subtree is a sequence of integers
describing a path from the root of the tree to the root of the subtree, each integer indicating (in a
left-to-right numbering of the children of a node starting from 1) the next node in the path. In the
above example, the position of the subtrees —(a,1) and 1 are ** 1 ", the left-most subtree of the
root, and ‘* 1.2 *’, the second subtree of the first subtree of the root, respectively.

The notion of a position can be formalized and leads to an alternative definition of a tree as
a “‘tree shape’’, the set of all the positions in the tree, together with a labeling from positions in
the shape into the operators. This is the approach used, for example, in [Knu73].

In this dissertation, trees are formalized either as a set of words, or as a tree shape with a
labeling. Informally, trees will also be represented as graphs.

Definition 2.1 An operator set Op is a set of symbols together with an arity function, assigning
10 each symbol a non-ncgative integer, its arity. Op will always be assumed not to have the spe-
cial symbols *‘("", "), and **;’. Operators with arity 2, 1, and 0 are said to be binary, unary,
and nullary operators, respectively.

The set of trees over Op, denoted by Ly, is the smallest set of non-null words with alphabet
Opuw {“(,)’, ")} satisfying
Vop e Op,witharityn, ¥ty,...,1, € Loy, “0p «(s1ye,0 "~ *1y «)" €Ly,



A member of Lo, is said to be a term over Op, or a tree over Op.
If t € Lgp, the set of all positions in t, denoted by P,, is the set of sequences of non-
negative integers defined recursively as:

Popier ... 1y 2 (EVO(kHsy such that 1Sksn and s, € Py}

Ifp.,q,andr are positions and p =q/lr we say that q is an ancestor of p, and thatp is a
descendant of q .

If t is a tree, and p € P, is a position in t, the subtree of t at position p, tg,, is defined
recursively as:
A
t@E =1
8 (t) s if 15k<n
op(ty, .. tadakss = (dgs. f 1sksn”.
The set of subtrees of t is the collection of trees tg, for p € P,. Because of the one-to-one

correspondence, positions and subtrees can be used interchangeably. A subtree is also called a
subterm.

The frontier of t, fr (1) is the word over Op defined by:
fr(op) B op., if arity (op)=0;
fr(Op (tl, e ,tn)) éfr(tl) .. 'fr(t,‘), ifarity (Op )=n->-0

The children of a tree t are the trees tgy for 1sk<n, n being the arity of the operator at
the root of t.

The leaves of a tree t, leaves (t) is the subset of Op defined by:

leaves (op ) 4 op , if arity (op =0,
leaves(op(ty, .. ..t )) 8 Jeaves (- - Vleaves (1,), if arity (op )=n20.

The height of t, height (t) is the natural number defined by:
height (op) 81, if arity (op Y=0;
height(op (ty, ... . 1,)) 8 1+max{height (t,), . . . , height (z,)}, if arity (op )=n20.

A forest is a collection of trees.

Thus, ¢ =+(—(a,1),3) is a tree (a term) over {+—,a ,1,3}, where the arities of + and - are 2,
and those of @, 1, and 3 are 0. P, is {1+1, 12,2, €}, with associated subtrees: 7,,,=a,; D=1,
t;=—=(a,l), 12=3, and t =1. The frontier is fr(t)=a 13. The set of leaves is {a,1,3}. The
sequence +(3) is not a tree.

An alternate way to characterize a tree is as a tree shape plus a labeling.

Definition 2.2 A tree shape is a collection of position sequences S over the non-negative
integers satisfying:

if(s{/s)€ S, thens,e S, and,

if (sylk € §),k>0,and 1<k 1<k, thensifkleS.

¢ The parentheses in (#; )@_‘. are added for readability to delimit the subscript k and have no other significance.
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The arity of a position p in a shape S is the largest integer n such tharp -n € S. A label-
ing of a shape S is a mapping, f , from S into Op, such that: if f (p)=op, for p € S,op € Op,
the arity of op in Op is the same as the arity of p in §,

The reader can easily prove:

Proposition 2.1 The following two statements are true:
For every tree T, the sct Pr is a tree shape.

Let S be a tree shape and f a labeling of S. Then, there is a unique tree T with set of posi-
tions S and such that the root of Tg, equals f (p)

The next chapters will use either of the two characterizations of trees. In this dissertation,
the arity of an operator is assumed to be fixed. This modcls closely the semantics of the operators
in the applications to programming systems, and although no basic result uses this assumption,
some implementations (like the one of Chapter 8) depend on it for their efficiency. The European
school of algebraic trees is similar to the definition of a tree as a labeled shape except for having
operators with variable arity.

Tree Patterns

Pattems are intended to be used to describe ‘‘shapes’” of trees. Intuitively, they can be
thought of as trees where some positions are labeled not with an operator but with a ‘‘variable”’.
The variables can then be replaced by trees to obtain all the trees that have the ‘‘shape’” described
by the pattemn. In general, there may be more than one position in the tree that is labeled with a
variable. When there =re no constraints between the values used to replace any two variables, the
pattern will be called linear (Def. 2.3). If the values used to replace two or more variables are
constrained to be identical, the pattern will be called non-linear. Finding a convenient formal
definition for linear patterns is quite simple: we can use a reserved operator symbol, for instance
V, and define patterns as trees over a set of operators extended with V. Thus, if a is a nullary
operator and + is a binary operator, we could describe the shape of the trees rooted by a + and
with @ as right child, by the tree +(V,a). This definition is unique (that is, each ‘“different’’
shape of trees corresponds to a different pattern), and, since a pattem is formally a tree, we can
use tree operations in patterns (for instance, the left child of the pattern +(V ,a) is the pattern V).

The situation is substantially morc complex if we want to describe non-linear patterns. For
example, consider two patterns, p; describing the shape of trees rooted by a binary operator +,
and p, describing the shape of trees rooted by the binary operator + and having a left child identi-
cal to a right child. Following the approach outlined in the previous paragraph, we could define
p; and p, as the two trees +(V;,Vy), and HV,,Vy), where V; and V, are two symbols that
represent variables. The problem with this approach is that now pattems do not have a unique
representation. Thus, the pattern represented by +(V1,V3) could also be represented by + V5, V).
There are several solutions for this problem.

A first possibility is just to let the two representations exist as patterns, and to define an
equivalence relation = between patterns so that two patterns p; and p, are eguivalent if there is a
one-to-one renaming of the variables in one into the variables of the other. Thus, +(V,V ) would
be equivalent to +(V,,V ;). This approach has the disadvantage that the writer must be careful to
use = instead of = whenever appropriate, and that some operations, such as constructing a set of
patterns, must be done very carefully to avoid having equivalent patterns in the set.

Another possibility is to define a pattern as an equivalence class under = of the trees defined
above. Such a definition simplifies many operations but makes others more complex. In particu-
lar, since patterns are no longer trees, tree operations can not be applied to patterns. This problem
could be solved by defining *‘coercion’’ operations between patterns and trees, taking a tree into
its equivalence class, and an equivalence class into any of its members. Then, an expression like
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+(X ,a) used in some context would mean either a tree or a pattern depending on the context.
This approach to the formal definition of a pattern has the disadvantage that some contexts do not
uniquely determine whether the desired value is a tree or an equivalence class. The approach also
has some other disadvantages. For instance, the notion of an assignment 1o the variables in a pat-
tern would have to be independent of the names of the variables, probably by using positons.
Tree positions are less convenient that variable names because positions are relative while names
are absolute.

A final possibility is to define a pattern as some canonical tree. For instance, we could
require all the variables to be taken from a fixed set {V,V,,...,} and to be used in a predefined
order, so that +(V,,V,) would be a pattern, but +(X,Y) and +(V,,V ) would not. One problem of
this approach is that tree operations applied to patterns may produce non-patterns: for instance,
the right child of +(V;,—(V2,V3)) is not a pattern. This renaming also reduces the readability of
some operations: for instance, it makes it less visible that —(V{,V,) is the right child ¢f
+V1,=(Va,Va)).

The approach that we use in this dissertation is to define a pattern as a tree over an operator
set which is extended with a disjoint sct of variable symbols (Definition 2.3) and to provide an
equivalence relation on patterns (Definition 2.7). In addition we use flexible canonical forms (the
set of subpatterns Il of Definition 3.2, and the extended pattern set of Definition 5.7) to reduce
the number of cases in which we have to make a distinction between equality and equivalence
and vet retain some readability in our examples.

Although the notation used in this dissertation is correct, the author is not completely
satisfied with it. Most of the complexity arises from the presence of non-linear patiems. It
should be possible to obtain an overall improvement in clarity of presentation by assuming pat-
terns to be linear in all chapters except in Chapter 4, where they could be defined as extensions to
linear patterns. Time constraints have prevented us from following this approach in this disserta-
tion.

This dissertation deals with two types of patterns, depending on the arity of the variables. If
all variables have arity O we obtain the traditional notion, called here an ‘‘N-pattern’’; if some
variable has non-zero arity, the pattern is called an **X-pattern”’. X-pattern is a new notion used
to describe non-local situations.

Definition 2.3 A pattern is a member of Loy y, where Op and V are disjoint sets called the
operators and the variables respectively. The pattern is called an N-pattern if all the variables
have aritv 0, and an X-pattern otherwise. A pattern is called linear if it contains at most one
occurrence of any particular variable; otherwise it is called non-linear.

Associated with each variable X appearing in a pattern there is a set of trees called its
npe, denoted by type (X). If the arity of a variable is n, it has a default rype which is the set of
all linear paterns over Op with exactly n variables. Alternatively, the type of a variable can be
any subset of the default type. )

If p is a pattern over Op and V, Vars(p) denotes the set of variables in p. If py and p, are
patterns over Op and V, we say that p, and p, are variable-disjoint if Vars(p;) ~ Vars( p=.
By extension, given a set of patterns F ={py,pa2, ..., Pn ), F is variable-disjoint if for i.j,
1<i,jsn, Vars(p;) N Vars(p;)=9.

Typed variables are useful to constrain the valid replacements for the variable (see Def.
2.6). Note that a variable with arity O has as default type the set of all trees over the operator set.
Figure 2.1 shows some examples of pattemns. In a convention followed throughout the disserta-
tion, the names of variables start with an upper case letter. From left to right the examples are
linear and non-linear N-patterns, and linear and non-linear X-pattems. In the rightmost pattern,
the default type of X is the set of all linear patterns with exactly one variable. Traditional tree
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patterns [HoO82] are linear N-pattemns.

+ + X +
/\ /\ AN /\
* . * , * 4 .
| X5 X | X|1>‘|1

X, X, X, 45

Examples of Pattemns

Figure 2.1

Patterns are used for matchings. Intuitively, a pattern ‘‘matches’’ against a tree, called the
““subject”’, if there is a way to associate a value with each variable in the pattern, so that when
each instance of the variables is replaced by its associated value, the resulting tree is identical to
the subject tree.

The matching of N-patterns and X-pattems differs only in what are the values that can be
associated with a variable: in the first case a tree without variables, in the second an N-pattern
with as many variables as the arity of the X-variable. With some care, the formal definition can
be made identical in both cases. First some auxiliary definitions and new notation.

Definition 2.4 Let T be a tree with labeling fr, p € Pr a positioninT, and t a tree with label-
ing f,. The replacement of the subtree Tg, by t is denoted as Tg, ., and is defined as the new
tree with shape S, and labeling f* such that:

Ifr € Py is notof the formpls, thenr € S, and f* (r)=fr(r);

Ifre P, thenpiir € S,and f' (lr)=f,(r).

Let T be a pattern over Op, X a variable with arity n20 appearing in T at position p, and

t a pattern over Op with n distinct variables with arity O at positions q,..., qn (and maybe others
with non-zero arity). The replacement of X inT atp by t, denoted by Txgp y» IS defined 10 be
equal 10 T, =, Where B%Z2¢, and, for 1<i<n,B' 2 B'_l@q,-(_T@,,‘-

If T is a pattern over Op, X is avariable in T appearing ar positionspy, ... ,Pm, andtisa
pattern over Op, the replacement of X by t inT, is denoted by Ty ., , and defined to be equal 10
A™ where A2 T, and A" £ A yap -

For example, if T=+3~94)), and r=5, then Tgi_, IS the tree +(3,5). If
T =+X ,—~(4X)), then Ty, 5 is the tree +(3,~(4,3)). And, if T =+(X(a,b).3), and ¢ =*(X1.9X,),
then Ty, is the tree +(* (a 9,b ),3).

Formally, the correctmess of the above definition of the replacement of a variable requires a

proof that the order in which the variables are listed does not change the result. The proof is
immediate and is left to the reader.
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Definition 2.5 Let Op and V be disjoint sets of operators and variables with arity. An assign-
ment over Op for V is a function assigning to each variable A € V of arity n, , a linear N-pattern
over Op with exactly ny variables.

Let © be an assignment over Op for V, and p a pattern over Op and V, with n variables V
... V.. The application of ¢ 10 p, denoted o(p), is defined t0 be A", where A%8p, and, for
1<isn, A* B A o)
Definition 2.6 Let p be a pattern over V and Op, and T be a tree over Op. An assignment G
over Op and Vis amatch ofpatT, if 5(p)=T, and, for every variable X in p, c(X) e type (X).
p is said to match at T, if there exists such a match. Let py be a subtree of p; the tree associated
with pg by © is defined to be 6(po). If p marches at T, then T is a subject at which p maiches.

For example, the pattern +(X ,Y') matches twice in the tree +—(2,a),#+(3,4)); in the first case
the associated assignment is ({X&—(2a)"Y «""+(3,4)"}; in the second case,
{(Xe*3"Ye""4"}). If the pattern were modified so that zype (X) included only those trees
whose leafs are digits, then only the second assignment would be legal.

Since, given an N-pattern and a tree, there is at most one match of the pattern at the tree, the
assignment can always be computed from the pattern, although in some applications it might be
convenient to keep the representation explicit. X-patterns arc different. X-patterns may have
more than one match at a given node. As an example, consider the X-pattem p=a X(b,c)) and
the four trees:

f I I
A A A A
"¢ A R A° A A
bdcd %d bcbec

b d

Each of the first 3 trees has one match for p, namely: ({X«opX X2h
{X «op (op (X ,d),0p(X2.d))}, and (X «op(op (op (X1,d),d)X )}, but it has three matches at
the last  tree: {X «op(op (X X2,0p(b.c)}, {X «op(op(b,c)opX XN}, and
(X «op (op (X 1.¢).0p (b X))}

One way to reduce the number of matches of an X-pattern, and thus make the X-pattemn
more precise, is by giving non-default types to its variables. This can also be done for N-patterns.

In the introduction to this subsection we mentioned that the names of the variables in a pat-
tern are non-significant. Formally:

Definition 2.7 Ler Op be an operator set, let V be a set of variables, and let p, and p, be two
patterns over Op and V. py and p, are equivalent (p,=p) if for any tree T, p, matches at T if
and only if py matches at T .

It is straightforward that

Proposition 2.2 The = relation between patterns is an equivalence relation.
It is also straightforward that



Proposition 2.3 Let py and p; be two pattern& over Op and V. If there is a one-to-one mapping
between Vars(p,) and Vars(ps) that preserves the types of the variables, then py=p,.

Section 3.1 defines more relations between pattemns.

This dissertation studies some new and old ‘‘problems’’. The format used to present these
problems formally follows that of [GaJ80], where first the parameters of the problem are given
and then the problem is described There are two main classes of problems: decision problems
where the answer is either “‘yes’” or ‘‘no’’, and construction problems where the answer is some
object that has to be obtained.

Definition 2.8 We say that a decision problem is decidable if there exists a procedure that
always terminates and that will de:crmine for every possible input whether the answer to the
problem is *‘yes’’ or *‘no’’. If no such procedure exists the problem is said to be undecidable. If
there is a procedure that provides the correct answer when it terminates but is guaranteed to ter-
minate only when the answer to the problem is ‘‘yes’’, the problem is said to be semi-decidable.

We say that a construction problem is solvable if there exists a procedure that always ter-
minates and that will determine for every possible input the correct answer. If no such procedure
exists the problem is said to be unsolvable.

An example of an unsolvable problem is the REACHABILITY problem (Definition 2.28) for
general rewrite systems. The main problem of pattemn matching is a construction problem:

Definition 2.9 Given: a set of trees, T C Lgy, and a set of patterns F C Topov; the tree pattern
matching problem, over T and F, abbreviated as PATTERN MATCHING, consists of, given a subject
tree T e T, finding for every subtree of T, all the patterns in F that match at it, and matching
assignments for those patterns.

Unification

Unification is a problem that seems very similar to matching for N-patterns, yet it is
significantly different. Formally, unification can be defined as follows:

Definition 2.10 Ler V be a set of 0-ary variables. Two terms t and t’ in T,y are unifiable if
there is an assignment ¢ over OpUV, such that 6(t)=0(t"). © is called a unifier for 1 and t’.

An important property of unification is the following:

Proposition 2.4 [Rob65] For any two terms py and P there is a unique (up to a renaming of
variables) most general unifier, G, , such that for any other unifier G for py and p,, there is a
replacement T such that for all variables X , 6(X ) =UOpmgu X)).

Definition 2.11 The unification problem (UNIFICATION) consists of, given two terms, finding
their most general unifier.

Unification can be solved in linear time on the size of the two patterns [PaW78]. In one
sense, unification is more gencral than pattern matching. Either term in an unification problem
may contain variables, and the same variable may be present in both terms, but only the pattern in
a matching problem can contain variables. Thus, any algorithm used for unification can be used
for pattern matching.

Yet, in another sense unification is simpler than pattern matching. In unification only the
two complete terms are considered; in pattern matching, any subterm of the subject tree is con-
sidered. Also, unification only considers a single pair of terms, while the applications of pattern
matching studied here consider a set of patterns to be matched against a single subject. The algo-
rithms for pattern matching presented later in this dissertation are significantly more efficient than
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the straightforward application of unification algorithms to the same problems.

In some cases it is convenient to represent a tree in such a way as to underscore the com-
mon parts of it.

Finding Common Subexpressions in the Subject

Since a tree may have more than one identical subtree, in general, determining if the sub-
trees at two positions are equal requires a rccursive comparison. An altemnative is to encode the
tree as a directed acyclic graph (dag) wherc multiple occurrences of subtrees are replaced by a
single subdag. This dag is called a computation dag.

A computation dag can be computed from a tree using a bottom-up traversal that works in
time linear on the size of the subject tree. The main operation computes, given the dags
corresponding to the children of a node, the dag correspond to the node, and in the process also
finds if an identical dag had been computed previously (for some other subtree of this tree). This
operation can be computed cfficiently with a hash function. The resulting algorithm was named
the value number method and presented by Cocke and Schwartz in [CoS70); it also appears in
[AhU77].

Computation dags allow the replacement of subtree comparisons by pointer comparisons.
Chapter 4 shows that this type of comparison is a basic operation in non-linear pattern matching.
Also, the algorithms for linear N-pattem matching 7. which are based on a bottom-up traversal of
the subject tree, can use either a tree representation or a computation dag representation. Using a
computation dag has the advantage of requiring traversal of fewer nodes.

Representing the subject tree as a computation dag suggests considering another problem:
‘‘subgraph isomorphism’’.

Subgraph Isomorphism
The technical definition of graph and subgraph isomorphism are the following:

Definition 2.12 Given two graphs G =(V ,E 1) and G =(V2.E,), G is isomorphic 10 G, if there
is a one-to-one function f :V |V, such that <u ,v>e€ E if and only if<fu)fyy>e ks,

Definition 2.13 The graph isomorphism problem conrsists of determining, given two graphs G,
and G,, if G is isomorphic to G». The subgraph isomorphism problem is determining if there
is a subgraph of G | that is isomorphic 10 G .

The complexity of graph isomorphism between general graphs is a famous open problem.
The problem can be solved in polynomial deterministic time? for several special cases, including
planar graphs and, hence, trees. Graph isomorphism differs from pattern matching in its concem
with only two graphs.

Subgraph isomorphism is known to be NP-complete for the general case and even for some
simple spccial cases. One such case is when G is a directed forest’ and G, is a directed tree
([GaJ80]). Given the comments of the previous subsection, a careless reading of this result might
suggest that pattern matching between a subject tree and an N-pattern would be NP-complete if
both were represented as computation dags. This is not true; The two problems are different. A

7 Unfortunately, there are some problems with X-pattern matching: the technique employved requires three passes
over the subject, and using a dag conflicts with the top-down pass. More on this in a future publication.

8 See [GaJ80] for a definition of this notion and that of NP.

9 A directed forest is a collection of directed trees.
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main difference is that matching has less freedom: if two nodes match, they must have exactly the
same number of children; this is not true for subgraph isomorphism.

2.2. Tree Languages and Automata

Any tree transformation involves at least two different sets of trees: the domain of the
transformation, the input set, and the image of the transformation, the output set. In most tree
transformation problems it is important to be able to describe these sets so that some properties
can be obtained automatically. This section presents some background material on sets of trees,
also called tree languages. Most of the material in this section is from [Tha75], and [Eng75].
Recall our convention that, unless otherwise indicated, the type associated with a variable in a
pattern is its default type.

A tree automaton is a tree language recognizer, that is, it defines a mapping from L, into
(true false). The definition of a tree automaton is a generalization of that of a (word) one-way
finite state automaton (FSA). Normally, the behavior of a FSA is defined through a sequence of
pairs, containing a position in the input tape and a state. Without loss of generality, this can be
understood as an assignment of a statc to each position in the input tape. A tree automaton is like
a FSA cxcept that the state is associated with the nodes of a tree. There are two main approaches
to defining a tree automata depending on the ‘‘direction’ in which the ‘‘state tree’’ is traversed:
top-down or bottom-up.

Definition 2.14 A deterministic top-down automaton (DT-fsa) consists of a finite set of states S;
an initial state s; a transition function assigning 1o each nullary operator op a set of final states
F,, S, and, for each arity n, a function Trans, :OpxS —S". The automaton associates with
each subtree in an input tree a single state from S . The state associated with the inpu: tree is S .
IfT=0p(Ty,...,T,)is an n-ary node, then its i -th child has as its state the i-th component of
Trans, (op ,st), where st is the state associated with T . An input tree is accepted if every leaf of
the tree with label op is associated with a state in Fp .

A non-deterministic top-down automaton fsa (T-fsa) is like a DT-fsa except that the func-
tion Trans, above has functionality OpxS —(2°)*, and s, is not a state but a set of states. The
automaton associates with each subtree in the tree a set of states from S . The set of states asso-
ciated with the input ree is 5. If T=0p(Ty,...,T,) is ann-ary node, then the i -th child has as
its set of states the union of all the i-th components of Trans, (op ,5t), where st is a member of
the set of states associated with T. An input tree is accepted if every leaf subtree of the tree is
associated with a set containing at least one final state.

The class of languages that can be recognized with a T-fsa will be called T-RECOG. The
class of languages that can be recognized with a DT-fsa will be called DT-RECOG.

T-fsa are also called root-to-frontier automata (RFA) in the literature. DT-fsa are not very
powerful and therefore not very interesting. For example, the (finite) set of trees
{op(a.b),op (b,a)} cannot be recognized by a DT-fsa. Intuitively the reason is that a DT-fsa can
only recognize that all the ‘‘paths’’ from the root to the leaves of the tree are of some form.
Thus, in the example above, the automaton accepts as valid, for the tree op (a,b),the pathsop - a
for 1.1, and op +b for 1.2; and, for op (b,a), the paths op +b for 1.1, and op «a for 1.2.
Hence, it must also accept the trees op (a,a), and op (b,b), and {op(a,b),op(b.a)} cannot be a
language accepted by a T-fsa. But, note that this set can be recognized by a (non-deterministic)
T-fsa: the automaton just *‘guesses’’ the right tree to check.

An alternate approach to defining a tree automaton is based on a bottom-up traversal of the
tree.



Definition 2.15 A deterministic bottom-up automaton (DB-fsa) consists of a set of states S; a
final set F =S, and, for each arity n, a transition function Trans, :0pxS™ S . The automaton
associates with each subtree in the tree a single state from S. If T=op(Ty, . .. ,T,) is an n-ary
node, then the state associated with T is Trans,(op .sty, . - . ,St,), where st; is the state associ-
ated with T;. An input tree is accepted if the state associated with it is a final state, that is, a
member of F .

A non-deterministic bottom-up automaton (B-fsa) is like DB-fsa except that the function
Trans, has functionality OpxS” —25 . The automaton associates with each subtree in the tree a
set of states fromS. If T=op(Ty,...,T,) isan n-ary node, then the state associated with T is
the union of all Trans,(op ,Sty, . .. ,St,), where st; is the state member of the set associated with
T.. Aninput tree is accepted if the the automaion associates with it a set including a final state.

The class of languages that can be recognized with a B-fsa is denoted B-RECOG. The class
of languages that can be recognized with a deterministic B-fsa is denoted DB-RECOG.

The initial state in a B-fsa at a leaf is obtained from the application of Transg 10 the opera-
tor at the leaf. B-fsa are also called frontier-to-root automata (FRA) in the literature. In this
disscrtation, B-fsa are frequently represented graphically in a way resembling a graph: states are
drawn as nodes, while transitions are drawn as some type of higher-order directed edges. In addi-
tion, most of the B-fsa are complete, that is, there is a new state at any node for any combination
of states of its children, and one node will be distinguished as the **default’™ transition, to which
any non-specified transition will go. Figure 2.2 shows a B-fsa with 4 states numbered O to 3 (See
Figure 3.2 for another interpretation of the same example). This example is a non-deterministic
B-fsa. The defaul: state is shown at the bottom; the default transitions are not shown to avoid
cluttering the figure.

Example of B-fsa

Figure 2.2

Non-deterministic B-fsa have the same expressive power as deterministic B-fsa. There is
an algorithm, similar to the one used for string fsa, that obtains a deterministic B-fsa from a non-



deterministic one; the states of the DB-fsa model the power sets of the states of the original B-fsa.
Figure 2.3 shows this algorithm, which is used in later chapters.

procedure ND-to-D-Bfsa(ND)
let ND be a non-deterministic B-fsa,
and Trans™P . its transfer function.
let D be the new (deterministic) B-fsa;
initially it has no states;
let Trans? , be the new -to be determined- transfer function.
while D has changed
for each possible n -ary operator Op
for each n-tuple pair (N, ...,N,)ofnodesinD do
for each n-tuple pair (sty,.....st, ), with 52, € N, do
let S be the set of all states st in ND such that
st=Trans™P ,(sty,...,5t)
if no node in ND has label §
then
creatc a new node;
additto ND;
make Trans? (N, . .., N,) equal to the new node;
if there is a node but no transition
then
| make Trans® , (Ny, ...,N,)equal to the pre-existing node;

Non-Deterministic to Deterministic B-fsa

Figure 2.3

Figure 2.4 shows part of the deterministic equivalent of the automaton of Figure 2.2 (and,
again, see Figure 3.7 for a related figure). In the figure, all the states of the new automaton are
shown, but not all the edges; the reader may want to complete the figure. As before, the
“‘default’”’ state is shown at the bottom, and all the ‘‘edges’’ entering a given state are labeled
with the same operator. The ‘‘pscudo-graph’ representation of the B-fsa is adequate for non-
deterministic automata with a small number of non-default transfers, but it becomes quite
unmanageable for larger examples. Nevertheless, the graph representation is quite suggestive,
and not much worse than other alternatives.
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Example of a Deterministic B-fsa

Figure 2.4

Another algorithm that will be used later is the one that, given a DB-fsa, will obtain the
DB-fsa with the smallest number states that recognizes the same set. The algorithm, shown in
Figure 2.5, is a simple modification of the one used in string fsa. The algorithm keeps and
updates equivalence classes between states. The first two classes are characterized by whether a
state is in the final set or not. Then two states are kept in the same class if, for every operator,
they transfer to equivalent states. The algorithm terminates when no more changes occur.
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procedure minimize()
let new_class_of and class_of be arrays over the sct of states.
or each state st
if st is a final state then
| new class_of [st]=0;
else
| new class_of [st]1=1;
changes =true;
class_cnt =2,
while (changes) do
changes =false ;
foreach class C do
foreach sate st® € C do
new_class _of [st®1=class_of [s:%);
or each state st € C do
if transfer_equivalent (st® 5t%) then
new_class_of [st®)=class_of [st°};
else
new_class_of [st®1=class_cnt;
changes =true;
class_cnt +=1,
exchange new_class_of and class_of ;

function transfer_equivalen: (st° s51%)
for each operator Op with arity n

for each r—1 states st2,..st"
Tfar each permutation t of 1..n
let ©@ be mo(st? st2, ..., st™)
let ©° be mo(st? st2, .., 5t7);
let c® be class_of [Trans, (Op Stpa, ... ,Sty o))
let c® be class_of (Trans,op Strps - - -+ Str o)k
if c®#ct
return (false);

return (true);

Minimizing a DB-fsa

Figure 2.5

The reader can furnish the proofs for the other propositions related to tree automata: they
are all quite similar to those in the case of string languages. Propositions 2.5 to 2.7 can be proved
in a similar way to the corresponding properties for sequential automata; [Tha75] and [Tha67]
contain some more details.
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Proposition 2.5 The following equations are truc:
B-RECOG =T-RECOG.
DB-RECOG = B-RECOG.

DT-RECOG < T-RECOG.
Because of the above equivalences, B-RECOG is normally called RECOG.
The members of RECOG are the recognizable sets. They arc a nice and stable class:

Proposition 2.6 RECOG isa boolean algebra.

There are tree recognizers more powerful than FRA. An example is the *‘push down tree
automaton’’ of Guessarian {Gue81]. This is a top-down tree automaton with unlimited memory.
The memory is a push-down storc and it is, in the most general form, a tree structure from which
the components can be accessed. When the tree structure is a chain, the memory corresponds to
the traditional notion of a stack.

An example of a tree language that s recognizable by a push-down tree automaton but is
not in RECOG is {Plus (Minus*(1),Minus'(2))1i20}, where Minus® means a chain of i Minus
(non-membership in RECOG can be shown using Proposition 2.7 below). Although push-down
tree automata are more powerful than B-fsa, it is more difficult to prove properties of them, and,
since B-fsa seem adequate to the applications investigated in this dissertation, they are the only
ones used.

In regular word languages, there exist effective procedures to determine whether a language
is empty and whether it is finite. Both results follow from the existence of a pumping lemma. A
similar result is true for recognizable sets.

Proposition 2.7 Let A be a B-fsa over Op with r states, and let T be a tree accepted by A with
height larger than r. Then there are linear N-patterns p and ¢ over Op{X )} and a tree t over
Op such that:

° The height of ¢ is larger than I
o T=pxor whereT =6x,..
o  Aacceptspy,», where To=t, and T' =0y, .

The pumping lemma can be proved in a similar way as in the sequential case. The lemma
leads to:

Proposition 2.8 Finiteness and emptiness are decidable for recognizable sets.

RECOG can also be charzcterized through a class of *‘regular’” expressions (see [Tha67]),
but this dissertation does not use that characterization.

Context-Free Grammars

Recognizable sets are strongly related to context-{rce grammars. This section assumes the
standard notions of context-free grammar and derivation tree, see [Har78) or [AhU73] for the
definitions. Unless otherwise specified, context-free grammars are assumed to be e-free.

Definition 2.16 A set of trees U is called local if there is a context-free grammar
G=W,R,S) andan M <N, such that the set of derivation trees of G rooted with variables in
MisU.

Given G and M, their associated local set can be recognized by a B-fsa with | N1+2 states

representing the nonterminals in N plus the starting state S, and an error State Serror - The auto-
maton just assigns to a tree T (1) the state So. if T is aleaf, (2) S0y if T isnOt 2 derivation tree
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for G, and (3) Sp if T is a derivation tree in G rooted by B € N. The final set of states of the
automaton is the set Sp for B e M. Thus,

Proposition 2.9 Local sets are in RECOG.
The converse of the above proposition is not true, but can be patched up:

Definition 2.17 A tree relabeling is a mapping between two sets of operators Op and Op’ such
that their arity is preserved. A relabeling induces a function assigning to a tree T a new tree
f (T) where each operator has been replaced by its image under the relabeling.

Relabelings satisfy:

Proposition 2.10 Every recognizable sc: is the image of a local set under a relabeling transfor-
mation.

Proposition 2.10 can be proved by constructing a context-free grammar that will simulate
the behavior of the B-fsa. There each non-terminal will characterize the state of the tree, together
with the original operator. The relabeling discards the state and retrieves the operator.

Another possible gencralization of the notion of a relabeling is that of a homomorphism:

Definition 2.18 Let Op and Op’ be two sets of operators with arity and let
X={X, ..., X;, -}, be a set of variables of arity 0 disjoint from both Op and Op’. A
homomorphism between Op and Op’ is a mapping h:0p—T oy x, such that, if op has arity n,
h(op) has (at most) only variables Xy, . . . , X,

A homomorphism is linear if, for all operators op , h(op) is a linear pattern.

An homomorphism h induces a transformation i’ between tree languages. For t € Ly,
k' (t) is defined recursively by:

W (Op (tl ..... t,,))éh(op )Xle-h'(tl)"'x.l——h'(l,.);
i (op) & op

[Eng75] contains full proofs of the next two propositions.

Proposition 2.11 RECOG is not closed under general homomorphisms. But, RECQG is closed
under linear homomorphisms (including relabelings).

Proposition 2.12 RECOG is closed under (general) inverse homomorphisms, that is, if
A € RECOG, and h is a homomorphism, then h™'(A) e RECOG .

Section 7.2 defines a generalization of homomorphism called a ‘‘projection system’’.
Corollaries 7.3 and 7.2 show that RECOG is closed under both projections and inverse projec-
tions. :

2.3. Rewrite Systems
The basic definition of rewrite system is:

Definition 2.19 A rewrite rule over OpUV is of the form a.— (3, where o. and B are patterns in
OpuV, and Vars(B) < Vars(c). o is called the input pattern of the rewrite rule, and B is the
output pattern. A rewrite system over OpUYV is a collection of rewrite rules over OpLV.

A rewrite system is linear if all the patterns of all the rewrite rules are linear. Otherwise it
is non-linear.
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A rewrite rule a—p is erasing in X if X e Vars(o) and X eVars(B). A rewrite rule o—B is
non-erasing if Vars(o)=Vars(p).

Unless otherwise indicated, the rewrite systems considered in this dissertation are linear
and contain only N-patterns.

A simple example of a rewrite system is the system of Figure 2.6 describing a commutative
operator and its *‘reduction’’.

To T
+ — reg + = o+
reg const XY YX

A Simple Rewrite System

Figure 2.6

Rewrite rules are applied to an input tree to obtain a new tree.

Definition 2.20 Let R be a rewrite system over Op, and let r = a.— B be a rewrite rule. Ler T
be a tree over Op, and let p be a position inT. r is applicable atp in T if aomatches at Tg, for
some assignment G. If so, the application of r atp is Tape—o@y A rewrite application is a pair
<r.p>wherer is a rewrite rule and p is a position.

Trees that cannot be rewritten are important.

Definition 2.21 A tree T is said to be irreducible with respect to some rewrite system R, when
no rewrite rule in R applies to any position in T .

The language generated by a rewrite system and an initial tree T is the set of all the
irreducible trees T" into which T can be rewritten.

Rewrite rules are normally applied in a sequence. The appropriate notion is that of a
rewrite sequence.

Definition 2.22 Let R a rewrite system over Op. A rewrite sequence for R is a sequence T of
rewrite applications. If T=<ropo> - <Ipp,> IS a rewrite sequence, then 1 is applicable t0 a
tree T if rq is applicable to T g, and its application yields Ty, and for 1<i <n, r; is applicable to
(T:)@p, and its application is T,.;. The application of T to T is denoted W(T) and is T ,y.

If Tis a rewrite sequence and T is a tree to which T is applicable, then T is said to be valid
at T. A rewrite sequence is said to be valid if there is some tree T at which it is valid. Two
rewrite sequences Ty, and T are said to be equivalent if, for every tree T,t isvalidatT if and
only if 1, is valid at T, and, when valid, 1(T)=1o(T). The length of a rewrite sequence is the
number of rewrite applications in it.

Referring to the example of Figure 2.6 a valid rewrite sequence for +(+(const ,reg ),const) is
1=<ry,1> <ro,1> <rpe>. The application of 1 to the tree produces reg . The length of T is 3.
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A rewrite sequence may involve only a subtree of the original input tree. In this case, the
rewrite sequence can be restricted, to obtain another sequence.

Definition 2.23 Lct R be a rewrite system over Op, T be atree over Op, p a position in T, and
t=Tg,. Lett be a rewrite sequence for T such that all the rewrite applications in T have posi-
tions below p . The restriction of T10p, Ty, iS the sequence of applications identical to T except
that every position is stripped of the initial sequence corresponding to p. T, (1) is frequently
denoted simply as t(t).

It is easily shown that:

Proposition 2.13 Let T be a tree over Op, p aposition in T, and T a rewrite sequence with all
its applications below p . Then, (T)=Tgp 14, (T Equivalently, 1g, Tap) =1T)ap-

Loops can always be removed from a rewrite sequence.

Proposition 2.14 Let R be a rewrite system for Op, and let Ty be a valid rewrite sequence over
R. 7, is said to “‘loop”’ if it contains a proper subsequence T, such that, for any trec T for which
1, is valid, 1,(T)=T. For any rewrite sequence over R with a loop there is a rewrite sequence
over R which is an order-preserving subsequence of the original one and does not loop.

The proposition follows by repeatedly “removing”’ the undesired subsequence. Obviously
the removal of a loop leaves a rewrite sequence with a length strictly smaller than the original
one.

The notion of the ¢‘composition’” of rewrite applications is used in later chapters.

Definition 2.24 Let R be a rewrite system over a set of operators Op, and let T be a valid rewrite
sequence over R. The composition of T is a rewrite application <r.,p >, with r; possibly not in R,
such that, for any tree T, r. is applicable at position p in T if and only if T is applicable 10 T,
and, if so, W(T)=rAT).

Not every rewrite sequence has a composition that is expressible with a rewrite rule using
N-pattemns, but the following condition is sufficient.

Proposition 2.15 Let R be a (linear) rewrite system over Op, let r; =0, —P;, for i =1,2 be wo
rewrite rules in R, and let T=<r|,p ><r,,p.> be a rewrite sequence. Let Py, be the set of posi-
tions in By, and let P o, be the set of positions in 0. If{piiqg 'qgePp) N i{pag tqe Pyl #
@, then T has a composition.
Proof There are two cases to consider.

Case 1. Let p, be a descendant of py; that is, p,=p./q, for some position q. Let
X4, ...,X, be those variables in §; whose position is of the form g/q, ..., q/q,, (that is, their
positions are descendents of g). Let ol . 0" be (MD@qgy - - -+ (D@g,- 73 is o3 — f35, with
3 being (G ay - X, —ap» aDd B; being (B1)@q —p,» the composition of T is <r3,p;>. This can
be proved by a straightforward case analysis of the tree positions.

Case 2. Let p; be a descendent of p,, that is py=p2lq for some position g. Let
X, ...,X, be those variables in o, whose position in a, can be expressed as /gy, ..., q/q,-
Let B, ... ,By" be (B@ger - - - » B)@g,- The composition of T is <rs,p,> where ry=0a—Ps,
where 0 =(0) @ o 204 B3=Bx B, - X, B Again, this can be proved by a case analysis
of the tree positions.

The linearity of the rewrite rules is critical for the validity of Proposition 2.15. The propo-
sition can be used iteratively to provide a sufficient condition for a sequence to have a composi-
tion.



Another useful notion that will be used later in the dissertation is that of a *‘permutation”
of a rewrite sequence.

Definition 2.25 Let rq and ry be two rewrite rules in R, and let <rq,po><ri,p> be a valid
rewrite sequence for R. An ““exchange’’ of the two applications is an equivalent rewrite
sequence of the form: <ry,pa><ro,p3>.

Ler T, and T, be two valid rewrite sequences in R. 1, is a permutation of 1, if T, can be
obtained from T, through a sequence of exchanges.

The definition of exchange is quite loose: it only requires that the order in which the two
rewrite applications appear is inverted, and that the net effect remains unchanged. There are
some cases where two rewrite applications can be exchanged regardless of the particulars of the
rewrite rules themselves. The next proposition is valid even in non-linear rewrite systems:

Proposition 2.16 Ler R be any rewrite system over Op, and let <rqp¢><r,p> be a valid
rewrite sequence over R, with ro=00—p, and ri=oy-Py. Ifpoisnotaprefixofpyandp, is
not a prefix of p o, then <ro,p ¢><r ,p 1> is equivalent 10 <r,p\><r o.,p o>-

If the rewrite system is linear, we can also add some addit:onal sufficient conditions:

Proposition 2.17 Ler R be a linear rewrite system over Op, and let <ry,p><ryp> be a valid
rewrite sequence over R, with ro=0g—Bq, and ry=0—=p,. Then:

(1) if py is poiqlit where g is a position in By corresponding to a variable X, and s is the
position of X in O, then <ro,p o> <rp,p1>is equivalent to <ry,py.Siit> <ro,p o>

(2) if po is pyiqlt, where q is a position in 0y corresponding to a variable X and s is the
position of X in By and ry is non-erasing in X, then <rope><ri.pi> is equivalent to
<r(,pi><ropilsit>

The proofs of the last two propositions are left to the reader.

Problems in Rewrite Systems

Two traditional properties involving a rewrite system, R, and a set of input trees, L C Lo,
are termination and confluence. These properties lead to corresponding decidability problems:

Definition 2.26 Let R be a rewrite system over a set of opcrators Op, and L a set of trees over
Op. The TERMINATION problem for R and L is to determine whether for some tree T € L there is
an infinite rewrite sequence applicable 1o T .

Definition 2.27 Let R be a rewrite svstem over a set of operators Op, and L a set of trees over
Op. The CONFLUENCE problem for R and L is to determine whether, for all trces T € L, all
rewrite sequences applicable at T producing an irreducible tree produce the same one.

The previous two properties are quite standard in the literature, se, for instance, [Ros73].
A non-standard problem is the reachability problem, a construction problem that comes in several
variations.

Definition 2.28 Let R be a rewrite system over Op, and let L; and L, be two sets of trees over
Op. The REACHABILITY problem for R, L;, and L, is, given Tel,and T € L,, to determine
whether there is a rewrite sequence T for R applicable at T such that «T)=T,and, if so, to pro-
duce one such T.

IfL, is a singleton (G}, then the REACHABILITY problem is called the fixed goal REACHABIL-
ITY problem, and G is called the goal.



Without loss of generality, the fixed-goal REACHABILITY problem can be further restricted
by assuming that the goal tree is a nullary symbol in Op. All the applications of REACHABILITY
in this dissertation are fixed goal REACHABILITY problems where the goal is restricted as indi-
cated above. Hence, from here on, unless otherwise indicated, REACHABILITY means fixed goal
REACHABILITY.

Note that, if the set L, is finite, the variable-goal REACHABILITY problem is equivalent to a
fixed-goal REACHABILITY problem: the equivalent problem is obtained by extending the rewrite
system with new rewrite rules of the form ¢ — G forall ¢ in L,, where G is the fixed goal and is
a new nullary operator that did not appcar in R. '

BLOCKING is a decision problem closely related to REACHABILITY. Given a rewrite system
R over Op, a tree language, L; < L), and a fixed goal G, the BLOCKING problem is to determine
whether there is a tree T € L; that cannot be rewrittento G.

The above problems are unsolvable (undecidable) for general rewrite systems since they can
be used to solve the halting problem, but they are solvable for some classes of rewrite systems.

Rewrite Systems and Generating Devices

Some restricted types of rewrite systems are related to the tree languages mentioned in Sec-
tion 2.2.

Definition 2.29 Let N be a set of nullary operators, called the non-terminals, disjoint from set
of operators T called the terminals. A regular tree grammar over TUN, is a rewrite system
where all rewrite rules are of the form N —t, where N is a variable, and t is any tree over TUN.

The language generated by a regular tree grammar is the language generated by its rewrite
system applied to the start non-terminal.

It is simple to prove that:

Proposition 2.18 A tree language is in RECOG if and only if it can be generated by a regular
tree grammar.

Guessarian [Gue81] shows that there is a similar situation with push down tree automata.

Definition 2.30 Let N be a set of nullary operators, called the non-terminals, disjoint from set
of operators T called the terminals. A context-free tree grammar over TUN is a rewrite sysiem
where all rewrite rules are of the form: op(Ny, ... ,N,)—p, where, for 1<i<n,N; € N,and p is
a tree containing operators from T and, possibly, alsoNy, ... ,N,.

For this generating device, the corresponding accepting device is the push-down tree auto-
mata briefly presented in Section 2.2

Definition 2.31 A tree language is generated by a context-free tree grammar if and only if it is
recognized by a push down tree automatra.

2.4. Finite State Tree Transformations

Finite state automata for strings can be extended to obtain transforming devices over
(string) languages called transducers. The accepting automata of Section 2.2 can be modified in a
similar way to obtain tree transformation devices that are called finite state tree transducers. The
formalizations and results of this section are from [Eng75]; most of them are not used elsewhere
in this dissertation and are included here only for completeness. The transducers are described
using a variation of a rewrite system.
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Definition 2.32 A bottom-up (finite) tree transducer, M , is a tuple (R 0p;.0po.Q.Qf), where R
is a rewrite system over Op; UXUQ; with X the variables with arity 0, and Q the states, with arity
1; Opy is the set of input symbols; Opg is the set of output symbols; Qr < Q) are the final states;
and the rewrite rules in R are of the form:
op (§1(X D@ X )9 (1),

forop € Op; of arityn, q; € 0.X;eX, andt € Top,uix,. ... X, )

The set of tree transformations realized by a transducer M is

{(s,2)!s € Lgp,, t € Lop,, and s rewrites into q(t) for some q € Qr }

The set of transformations realized by M is denoted by T (M ). The class of transformations

realized by bottom-up finite state tree transducers will be denoted by B —ftt.

As an example,

a—q(c)
b(gX)—qdX,X 1)

are the rewrite rules of a transducer mapping trees over {a,b } into those over {c.d}. The trans-
ducer implements the tree homomorphism defined by:

h(a)éc
R(bY2d(X1. X))

T-fsa lead to a similar definition for a transducer:

Definition 2.33 A top-down (finite) tree transducer, M , is a tuple (R,0p; .Opo ,0,Q;), where R
is a rewrite system over Op; WX\UQ; X, Op;, and Opg are as in def 2.32; Q, < Q are the swarting
states; and, the rewrite rules in R are of the form:
glop Xy, ... . X)),
fOf op € Op] ofarity ngqge Q, X € X, andt € TOpou{q(Xl) ..... P AIE
The set of tree transformations realized by a transducer M is
{(s.)s € Lop,,t € Lop,» and q(s ) rewrites into t for some q € QO }

The class of transformations realized by top-down finite state tree transducers will be
denoted by T ~ftt.
As an example,

gbX N—=d@X ). gX )
g(a)—c

are the rewrite rules of a transducer that realizes the same transformation as the previous exam-
ple.

Bottom-up and top-down transducers are generalizations of the transformational devices
presented in the Section 2.2. As a set, every function between tree languages that can be
described using those transformatonal devices can be described using both bottom-up and top-
down transducers.

Proposition 2.19 Both B-fir and T-ftt include:

REL relabelings
FTA (¢t.t) such thatt € RECOG
HOM homomorphisms



LHOM  lincar homomorphisms

The capabilities of bottom-up transducers and top-down transducers are incomparable, in
the sense that neither set is included in the other.

Proposition 2.20 B—fit and T—fut are incomparable. Moreover, both B—ftt and T—ftt are not
closed under (functional) composition.

Both T—frt and B —ft can be modified as follows:

Definition 2.34 A transducer in T—fit or in B—ftt is said to be linear if the output pattern of
each rewrite rule is a linear pattern. It is said to be non-deleting if the output pattern of each
rewrite rule contains instances of all the variables appearing in the input pattern.

A transducer in B—fit is said to be (partial) deterministic if, for each op € Op with arity n,
there is at most one rewrite rule with left hand side op (¢ (X 1), . . . .4, (X, ). It is said to be total
deterministic if for each op € Op there is exactly one such rewrite rule.

A transducer in T—ftt is said to be (partial) deterministic if, the set of initial states is a sin-
gleton, and, for each op € Op with arity n, there is at most one rewrite rule with left hand side
glop Xy, ..., Xp)). Itis said to be total deterministic if for each op € Op there is exactly one
such rewrite rule.

The classes of transformations implementable by each one of the above restrictions are
denoted by T -fit and B -ftt prepended by one of L, N, D,orD,.

The classes of transformations definable by top-down and bottom-up transducers restricted
as suggested above are still incomparable:

Proposition 2.21 LB-fi, the class of transformations implementable with a linear bottom-up ft,
and LT-ft, the class of transformations implementable with a top-down ftt, are incomparable.

DB-ftt and DT-ftt are incomparable.

[Eng75] contains several decomposition propositions. A simple class transformations is
useful in them.

Definition 2.35 A twp-down relabeling is a top-down transducer in which all the rewrite rules
have the form:
gaXy, ... . X))=b(q1X ), . ... 4, (X))
fora € Op; of arityn, b € Opy of arityn, and ¢ .q; € 0.
A bortom-up relabeling is a bottom-up transducer in which all the rewrite rules have the
form:
a(@ (X1, @K D—=g (O Xy, Xn))
where a b ,q ,q; are as above.
The class of transformations implementable by top-down relabeling is denoted by T-QREL.
That implementable by bottom-up relabeling is denoted by B-QREL. DT-QREL and DB-QREL
are the corresponding deterministic transducers. The non-deterministic versions of the relabel-
ings are equivalent since the corresponding top-down and bottom-up automata are equivalent, but
the deterministic versions are not. In particular:

Proposition 2.22 The following equations hold:
DB-QREL ¢ B-QREL
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B-QREL = D-QREL
DB-QREL ¢ DT

DT-QREL ¢ DB.
Proof Left to the reader. If in trouble, consult [Eng75]. O

Relabelings play an important role in the decomposition of more complex transformations:

Proposition 2.23 Let T" denote the set of zero or more compositions of T with itself. The fol-
lowing equations are true:

B—ftt @ QRELoHOM .

B —fit= LB —fttocHOM

T—ftt c HOMoLT—fir.

T"=B"=(REL UFTA VHOM)’

In some sense, bottom-up transducers are more powerful than top-down transducers:

Proposition 2.24 The following two equations are true:
LT ~ftt « LB—f1t.
NLT —ftt=NLB —fit.

To close the gap between linear T -fit and linear B -fit, definition 2.33 can be modified allow
a look-ahead. The input patterns used in that definition did not explicitly indicate the type of
their variables. Hence, following our convention, their type is the default type. Dropping this
restriction effectively increases the descriptive power of the mechanism.

Definition 2.36 A top-down finite transducer with look-ahead is a tuple as in the top-down
finite transducer except that the variables appearing in the rewrite rules of the rewrite system
may have as types any set in RECOG.

The class of transformations implementable by a top-down finite transducer with look-
ahead is denoted by T .

The gain in expressive power is indicated in the next proposition:

Proposition 2.25 The following equations are true.
LT —fut=LB—ft.
T’ —ftt and B—ftt are incomparable.
T —ftt is not closed under composition.
T —ftt € DB—QRELoT —fir.

2.4.1. Labeled Bottom-Up Automata

A notion related to DB-QREL is that of *‘labeled B-fsa’’. This notion is used in Chapters 3
and 4 to provide algorithms for solving PATTERN MATCHING, but its main usefulness will not be

apparent until Chapter 6'°.

19 Chapter 5 can also be said to be based on LB-fsa, but this is pretty much a technicality since the labeling func-
tion is the identity.
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Definition 2.37 A (deterministic) labeled bottom-up automaton is a pair <A,L> where Aisa
(deterministic) B-fsa and L is a labeling function assigning to each state in A a subset of a given
set of labels. Let St(t) denote the set of states assigned to atreet by A (a singleton if A is deter-
ministic), and Lb (1) the set of labels obtained by applying L to each state in St (t). The transfor-
mation described by a labeled bottom-up automaton is the set of all pairs (t ,new_label (1)) where
new_label () is defined recursively by:
new_label(op) 4 <op.Lb(op)>, if op is a nullary operator
new _label (op (1, . . . ,1,) 2 <op Lb(op)>(new_label(t1), ..., new_label (1,))

The class of transformations definable by a labeled bottom-up automaton is denoted by
LB-fsa; that of deterministic ones by DLB-fsa.

The standard notion of a B-fsa as an acceptor corresponds to a special case of a LB-fsa: one
where the only two labels are accepted and non-accepted. A B-fsa can also be seen as a translat-
ing LB-fsa by associating with each state a label that is the name of the state. This is the
approach used in Chapter 3 to solve pattern matching for linear N-patterns. The general notion of
LB-fsa is used in Chapter 5 to solve the REACHABILITY problem for a class of rewrite systems.

Deterministic labeled automata have the same power as DB-QREL, but non-deterministic
LB-fsa are only as powerful as deterministic LB-fsa and, hence, less powerful than B-QREL.

Proposition 2.26 DLB-fsa equals LB-fsa and DB-QREL. LB-fsa < B-QREL.

Proof All are easy and left to the reader UJ

An alternative definition for the notion of a ‘‘labeled B-fsa’’ could have associated the label
with the transition function instead of with the state itself. The reader can verify that the resulting
notion has the same expressive power as the one given here.

The algorithm of Figure 2.5 can be modified to obtain algorithms to minimize the number
of states in a LB-fsa. to minimize the number of states in a DB-QREL.

For DB-QREL, if Trans,(op.sty,...,st,) Tepresents the new state and
Label, (op sty ...,st,) the new label, the modificatic requires changing the routine
transfer_equivalent so that the last if is replaced by:
let |° be Label, (Op ,Stye, ..., Sty )
let 1° be Label, (Op Stpp, ... Sty s);
ir L‘aicb orl? 217 then

PR YR
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CHAPTER 3

Matching Linear N-Patterns

These unhappy times call for the building of plans ...
that build from the bottom-up and not from the top-down ...

Radio address
April 7th, 1932

[Franklin Delano Roosevelt [1882-1945]]

Linear N-pattems are the simplest type of patterns studied in this dissertation. Their impor-
tance is twofold. First, the techniques used to perform pattern matching on linear N-patterns
form the basis for extensions to deal with more complex types of patterns. Second, some very
important applications use only linear pattemns (Chapter S).

All the pattern matching algorithms investigated in this chapter are based on the B-fsa of
Chapter 2. In all cases, the idea is to assign to each node in the subject tree its match set. This is
the set containing all patterns and subpattemns (subtrees of a pattern) matching at the node. PAT-
TERN MATCHING is then solved by extracting from these match sets the patiems. Section 3.1
defines match sets and related notions.

The main pattern matching algorithms of this chapter are based on LB-fsa (Section 2.4.1).
The first type is a non-deterministic LB-fsa called a subpattern LB-fsa (Section 3.2). The states
in this LB-fsa are individual pattems and subpatterns, and the labeling function assigns to a sub-
pattern either the empty set or the singleton containing that subpattern, depending on whether the
subpattern is or is not a pattern. The second type is a deterministic LB-fsa called a match set
LB-fsa (Section 3.3). The states in this LB-fsa are the match sets themselves and the labeling
function assigns to a match set the patterns it contains.

The algorithm using the match set LB-fsa is substantially faster than the one using the sub-
pattern LB-fsa but requires tables that are bigger and take longer to construct. One way to com-
pute the match set LB-fsa is to construct the subpattern LB-fsa first and then apply the algorithm
of Figure 2.3 for converting a non-deterministic LB-fsa into a deterministic one. This is the
approach presented in the second part of Section 3.3. An altemnate approach to compute the
match set LB-fsa, developed by David Chase, is presented and elaborated in Section 3.5.

The structure of the subsumption relation (Def. 3.1) plays an important role in the computa-
tion of the match set. Section 3.4 explores this role and introduces two new algorithms to com-
pute match sets. The algorithms are based on the subsumption relation. They require smaller
tables than a match set LB-fsa yet have smaller matching time than the subpattern LB-fsa, and
their tables can be constructed faster.

Section 3.7 compares previous work with the results presented in this chapter. It discusses
some other results in matching algorithms that are based on bottom-up traversals, as well as some
that are based on top-down traversals. In general, algorithms based on top-down traversals seem
to be intrinsically slower than the fastest algorithms based on bottom-up traversal. Chapter 8
contains some measurements for both bottom-up and top-down algorithms that solve REACHABIL-
ITY, a problem that Chapter 5 shows it is quite similar to PATTERN MATCHING.
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Section 3.8 summarizes the results of this chapter.

3.1. Subpatterns and Match Sets

Since all the patterns considered in this chapter are linear N-patterns, they arc frequently
described simply as ‘‘patterns’’.

In bottom-up pattern matching, a subtree is characterized by its match set, the set of all the
subpattemns matching at that subtree. This section introduces the notions required to describe
algorithms based on match sets. Some of the notions are borrowed from [Kro75] and [HoO82].
The same terminology is used whenever possible and convenient.

Patterns and Subpatterns

Central to the development of the algorithms is the notion of a subpattern. The notion is
influenced by the bottom-up bias of the matching algorithms. It is convenient to dcfine opera-
tions and new relations between patterns in addition to the notion of equivalence of Definition
2.7.

Definition 3.1 Lez p; and p, be two patterns. They are independent (py~p2) if there are trees
T1,T2,.T5 such that py matches at Ty and at T3, but not a T, and p, matches ar T, and at T3, but
not at T1. They are inconsistent (p, [ py) if there is no tree T such that py matches ar T and p,
matches at T. p, subsumes p, (py2p2) if for any tree T, if py matches at T, then p, matches at
T.

If 6 and & are two sets of patterns, we say that G and & are equivalent if (1) every pattern
in © is equivalent to some pattern in ©’, and (2) every pattern in o’ is equivalent to some pattern
in G.

If G is a set of panterns, the =-reduction of G is an equivalent set of patterns ' such that no
two patterns in & are equivalent.

Clearly, the equivalent reduction of a set of pattems is unique up to equivalence.

Definition 3.2 A pattern set, F over an operator set Op is any collection of patterns over Op
such that no two patterns in F arc equivalent.

Let F be a pattern set over Op. A subpattern of F is either a subterm of a pattern in F, or
the pantern containing a single variable, X . Il is an =-reduction of the set containing all sub-
patterns of F, and such that X € Ilp, and F Ig.

p; immediately subsumes p, for a pattern set F (p, > p2) if P1EP2, P1 2 P2, and there is no
subpattern ¢ € Tlg, such that py =6, p2 =0, p1 260 and ¢ 2py.

If p is a pattern in I, the immediate subsumption set of p, I, is the set of all those parterns
p" inTlp such tharp >, p’.

For a given F, ITx is unique up to =. In this dissertation, Ir plays a role somewhat similar
to that of a canonical representation for all the patterns that are subpatterns of pattemns in F. Sets
of patterns taken from Iy are known to be =-reduced, and set equivalence between two such sets
is identical to set equality.

Since all sets I1p are equivalent, we will not explicitly specify which one of them we use.
The advantage of using Iy instead of any fixed set of canonical representatives is that we can
tailor which ITz we use to the didactic requirements of our examples. Thus, in one particular case
we could use {+(X,*(Y,R)), *(Y,R). X} as our Ilg to emphasize that the second pattern in the
set is a subpattern obtained from the first pattern in the set. Requiring X € Ilp and Fcllf
simplifies many situations.
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As an example of the relations defined above, if the original pattern set F is
“{+@a X),HaY)Hb X)Ha,a)}", then the following relationships hold: “‘+(a ,X)~+X.b)"",
“Ha X)) +b X)) “+aX)2X ", and, for [Ip, “+aX)>; +(a.a)"”. Note that all the rela-
tions defined above are independent of the given pattern set, except for the notion of >t thus, if
+(a ,a) had not been present in F,+@a.X) > X would have been true.

The definition of 2 satisfies:

Proposition 3.1 > is a partial order.

Note that in a set of patterns, each pattern has a separate sct of variables. For example, in
the sct {+(a.X), X}, the two uses of X are independent. It follows from Proposition 2.2 that we
can always replace any pattern by an equivalent pattem that contains different variable names.
Thercfore, by systematic renaming, any patterm set is equivalent to a pattern set that is variable-
disjoint.

A very useful notion is that of the meet of a set of patterns.

Definition 3.3 [Kro75] The meet of two patterns p and p’ (p © p’) is a new pattern ¢ such that
a tree is matched by ¢ if and only if it is matched by both p and p’

As an example, the meet of +(a,X y and +(X ,b) is +(a,b). Given two patterns that are not
inconsistent, their meet will always exist.

Proposition 3.2 Let p; and p, be two patterns that are not inconsistent. Then, there is a pattern
p3=p; D p,. Inaddition, p32p; and p32ps.

Proof Follows from the existence of a unique most general unifier. Without loss of generality,
assume that p, and p, are variable-disjoint. If p, and p, are not inconsistent, then there is a sub-
ject tree T at which both match. This is equivalent to saying that p, and p; are unifiable. Let T
be the most general unifier of p; and p,. Let 8 be T(py) = 1(p2). Then d=p,; @ p, If 6 matches
at a tree T, then both p; and p, match at T: construct their substitutions from T and the substitu-
tions for 8. If both p, and p, match at T, then T provides a unifier for both p, and p,. Since d is
the most general unifier, a substitution for it will also exist, and it will match at T [J

Match Sets

Matches of subpatterns at the same tree are of interest in several ways. The following
definitions are used throughout this and the next chapters.

Definition 3.4 Letr Op be an operator set. F be a pattern set over Op, and T be a tree over Op.
The match set associated with T , Gy, is the subset of Il containing those patierns that march at
T. A subset ¢ of I is called a match set if there is a subject tree T over Op with associated

match set o',

For a given pattern set, the match set associated with any tree is unique up to choice of I1g
because Ig is =-reduced.

Note that not every subset of 1y is a match set because a match set must include all subpat-
temns matching at some tree T, up to equivalence. For example, ‘‘{+a X )}’ is a collection of

matches, but not a match set because it is missing X, while ““{+(a . X),+(b X))}’ is not a match
set because there is no tree at which both patterns would match.

11 Srrictly, a match is an assignment of values to variables (Def. 2.6), but this assignment is uniquely implied by
the pattern and the subject tree. Hence, the name of “‘match set’’ and *‘collection of matches’’ for sets of subpatterns,
and the use of G to denote them.



Definition 3.5 The size of a pattern p is the cardinality of P, the set of all positions inp. Let F
be a pattern set over an operator set Op. The size of F is the sum of the sizes of all the patterns
inF.

Proposition 3.3 [HoO82] There are pattern sets F with a number of match sets exponential in
the size of F. There are pattern sets F with match sets as large as the number of patterns in Tlg.
The number of patterns in I is no larger than the size of F.

Proof As an example of the first two properties consider a pattern set as follows. It will contain
O (2") patterns. Each pattern will *‘mark’’ the presence of a single, distinguished, atom b at a
specified position in its leaves, while all the internal nodes are identical binary operators labeled -
a. The patterns will differ in the position of the b. The patterns will be of height O (n) and will
have O (2") leaves.

Now consider subjects that are binary trees with all the internal nodes labeled a, with leaves
marked either b or c. There are O (2%') such trees, and each one has a different match set.

Formally, define a family of balanced binary trees p‘ j» with 0si and 0<j<2¢, by
pY%ex

p*L8ai;piy.  for 0sj<V

pi+lj éa(pi()vpij—:‘)! fOr 2i <jg2i+1

The pattern set S, 4 {p";11<i<2"™} is of size O (2"). When used with a fully balanced tree
of depth n with all its leaves b, there will be O (2") elements in the match set. A pattem will be
in the match set of the root if and only if the i -th leaf from left to right has a b. Since there are
0 (22") such trees, that is the number of distinct match sets

The result on the number of distinct subpatterns is immediate from the association of every
subpattern with a subterm in a pattern in F. [

To investigate the properties of match sets, it is convenient to characterize them in two dif-
ferent ways. The first one characterizes a match set of F through a single pattern that may not be
equivalent to any pattern in I1.

Definition 3.6 Let F be a pattern set over Op. Let p be a pattern over Op (maybe not in F). We
define the set M(p) to be the subset of Tl that contains every paitern in I1p subsumed by p.

Note that for a given Iz M(p) is unique since I is =-reduced.

Proposition 3.4 Let F be a pattern set over Op. Let G be a match set of F. Then there is a par-
tern pg (unique up rto =) such that 6=M(py). For any wo match sets © and &', pg=py if and
only ife=0

Proof Let ¢’ be a variable-disjoint set of pattemns equivalent to 6. Let p. be the meet of all the
patterns in ¢’. pg is well defined because no two patterns in o’ can be incensistent, since they all
match at the same tree. The property follows from the definitions of match setand & . O

The sccond characterization uses only patterns in ITg. In this case it may be necessary to
use a collection of pattemns to characterize the match set. The members of the collection are
called the representatives.
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Proposition 3.5 Let F be a patern set, and let 6 be a match set of F. Define R 4 the set of
representatives of o, as that subsetr of Ilp containing all those patterns p such that p is in © and
for no other pattern o’ in ©, p'2p. For any nwo match sets G and ', Rg=Ry if and only if
c=0".

Proof Left to the reader. O

For example, let the match set be {+(a X),+Y ,b),Z}. A match set associated with the
input tree +(a.b) is ‘‘{+HaX),+TY b),Z)’, and a set of representatives for it is
“AHa X),+HY b))

Both R, and p, uniquely characterize the match set © and can bc used to represent it. In
general, p is a more concise 2presentation than R, but it may require (a potentially exponential
number of) new patterns not previously present in I1p. There are some conditions that guarantee
that the exponential explosion will not occur. A firsi condition is the following:

Definition 3.7 [HoO82] A pattern set F is simple if there arc no two patterns in Ilp that are
independent.

For instance ‘‘{+a.X),+(Y.,b),+a,b)}’’ is not a simple patiern set, whereas
“{+(a X ),+(a b)) is. The relationship between the simple pattern set property and match sets
is developed in the following propositions.

Definition 3.8 The immediate subsumption graph G > of a pattern set F is the directed acyclic
graph in which the nodes are the patterns in I1g, and there is an edge.from a node p to a node p’
ifp>; p'inF.

Proposition 3.6 [Ho082] If F is a simple pattern set, the graph obtained by reversing the direc-
tion of the edges of the graph G >, induced by F is a forest.

Proof By the definition of a forest, the above condition is equivalent to saying that there are no
subpatterns py, P, and p; such that p, > P2 and p,y >; Pa If such p;, p,, and ps exist, p; and p3
would not be independent, contradicting the defirition of a simple pattern set.

Proposition 3.7 [HoO82] Let F be a pattern set. If the graph obtained by inverting the direc-
tion of the edges in a G >. graph is a forest, then the number of distinct march sets is equal to
the number of parterns inIlg.

Proof Immediate from the meaning of G >; . O

The notion of a simple pattern set is unnecessarily restrictive. A more useful definition is
the following:

Definition 3.9 [Kro75] A pattern set F is a closed template forest (CTF) if for every two non-
inconsistent patterns p and p’ in Iy, their meet ¢ is equivaient to some pattern in Il

It is easy to show that CTF is a less restrictive notion than that of a simple pattern set.

Proposition 3.8 If a set of patterns is simple, then it is CTF.
Proof If two subpatterns are neither independent nor inconsistent one of them must subsume the
other and be identical to their meet. [J

To see that the reverse implication is false, just consider the pattemn set
“{+a X),+¥.,b),+a,b)}, whichis CTF but not simple.

Proposition 3.9 Let F be a pattern set. F is CTF if and only if for every match set 6, Rgis a
singleton.
Proof The only if part is immediate since the meet pg of all the patterns in © is equivalent to a

pattern in I1g.
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To prove the if part, assume that, for every match set 6, R4 is a singleton. Let p; and p2 be
two non-inconsistent patterns in IIp. Let t =p; © py, and let be the match set at . By
hypothesis R = {p} for some p. Then ¢ 2py, and ¢ 2p, by definition of meet. ¢ 2p because p
matches at . p=p; and p 2p; by definition of R, and from this and the definition of meet, p21.
From the antisymmetry of 2, 1=p.

Corollary 3.1 Let F be a partern set. The number of distinct match sets of F is, at most, equal
to the number of patterns in Ilp.

The properties established in Propositions 3.6 to 3.9 are summarized in Figure 3.1. The
relationship between *‘CTF pattern set’’ and ** >, is an inverted forest’’ is proved by finding two
pattern sets each one satisfying one property but not the other, and is left as an exercise to the
reader.

Simple pattern set  ——>d >, is an inverted Forest

|

CTF pattern set

l

Number of match sets is linear in the number of patterns

(implications are strict)

Summary of Pattern Classes

Figure 3.1

The algorithms presented in this chapter use different types of B-fsa to encode information
that is used in the main operation in bottom-up matching: combining the match sets associated
with the children of a node to obtain the match set for the node itself. The following proposition
contains several facts related to this computation.

Proposition 3.10 Let F be a linear pattern set over Op, let op be an operator in Op, let

T=op(Ty,...,T,) be arree, let oy, ...,0, be the match sets of Ty, . .., T, respectively, and
let py, . ..,Pn be patterns equivalent 10 the meets of Gy, . . . , O, respectively, where the variables
are renamed, if necessary, so that {py, . ..., } is variable-disjoint. Recall that o denotes the

match set at T, and M(p) denotes the set of all patterns in Ilg subsumed by p. The following

assertions are true:

(1) Letv,,...,V, beanyn variable-disjoint paiterns. Then, (¢ 1 op (Wy, ..., W) 20} = (X}
U (0pOp - 0,0 | W10 A WaZ02 A A W, 20, A {010,070, ) I variable-
disjoint }.
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(2) or=M(p @y, ... ,Pn))

(3) Ifp1=X1...., Pa=Xn,and opXy,. .. ,X,) is not equivalent to a pattern in Ilf, then
=12
Cr= (X }.
(4) Let I = {p;',....p;") denote the immediate subsumption set of each p;.
Mop @y, .--.pa)) = op@Pu..-.ps) I opPi.. . payellp ] U

UMp Py, - - Pic1Pi? it PR
i=1j=1
Proof
All proofs are done for n=2, to reduce the notation burden. The generalizations are
straightforward.
(1) follows directly from properties of subsumption and of linear patterns.
(2) can be proved by the following sequence of steps.
O = (X} v { op (9.9 € N1p matching at T 1,
= (X} U { 0p(01,0,) € TIg | & matches at Ty A &, matches at T,},
(X} u{op@nope el p120; APr20),
{ & | op(p1,p2) 20 and ¢ € I1F}, by (1),
=M(op (p;.p2)), by definition.

(3) is straightforward

(4) can be proved by the following sequence of steps.

M(op (p1p) = (X} U { op (10D € TIp | p1 201 A p2202), by (D),

= (X} U {op@pope g ! py>0; A P20y} W (X} U {op (010 € Tl | pr20;
AP2>0r} U {op (P, Pa ) if 0P (P - - ,Pn) € If}, by definition of 2 and >,

= (X} U [ op@oDeTIr! p1>0; A 0ellp A P226} U {X}u
(op (0100 € TIg | 1201 A p2>0y A G2 TIp } W{ op Py, - Pn)s if 0P (P1, - 0n)€ I },
by property of I,

= (X) U (op@rodeTp! (01201 v - v P20 A 226} LX) U
op@.00e Il P20y A (Pu20 v - v P20 Y [ PP Pa) if
op (9, . ..,0,)€ Ig }, by definition of >

Which, by distribution of v and definition of M produces the desired result. [

Assertions (2), (3), and (4) above provide a recursive algorithm to compute the match set
associated with a tree given the match sets associated with its immediate subtrees. For example,
if the pattern set is *‘ {foo (V1,*(Z W), V3), foo (*(X.Y), Vo, *(U,R)}", then the match set of
“foo(* (X ,Y),*(Z W), *(U,R))" s equivalent to the union of the match sets of
“foo(Vy,*(@Z W), *(U.,R))", “‘foo(* X.Y),Vy,*(U,R))’, and ““foo (* X.Y),*@ W)V
Of these, the match set of foo (* (X.Y),V,,*(U,R)) is represented directly by a pattern in g
equivalent to that pattern, and repeated applications of the above assertions to the other two terms
both yield “‘foo(Vi,*(Z.W),V3)". Hence, the set of representatives of
“foo(* (X Y),*(Z W),*(U.R)" is equivalent 10
“Ufoo(* (X ,Y),Va,*(U.R)), foo(Vy,* (Z,W),V4)}"". Section 3.4 analyzes in some more detail
this recursive algorithm.

Bottom-up matching of linear N-patterns is based on the following proposition:

12 An = is not necessary because X € Tlf.
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Proposition 3.11 Let F be a set of linear patterns, and let OPy,...,0P, be the sets of opera-
tors of F of arity O up to n. Let A be the set of match sets of F. Then, for each k from Q10 n
there exist functions f, from OP, xA* (k+1-tuples) into A such that: for all trees T with root op
of arity k and children Ty, ..., Ty, if ©; is the match set at T;, then the match set at T is
filop Oy, - .- k).

Proof The key observation for the proof is that a substitution for the matching at T can be
obtained directly by concatenating the substitutions for T;, regardless of their particular value. O

Non-linear pattemn sets do not have this property: the corresponding f functions need 1o
refer to the actual values of T. This ‘‘independence’” of T is reflected in the ability to encode the
transition functions into a B-fsa.

3.2. Bottom-Up Matching Using Subpattern B-fsa

A subpattern LB-fsa is a non-deterministic bottom-up tree automaton together with a label-
ing function. The automaton encodes the functions of Proposition 3.11 by associating with each
pattern in I a single state and encoding the combination of the children of a pattern into the pat-
tern.

Definition 3.10 The linear subpattern B-fsa associated with a pattern set F is a non-
deterministic LB-fsa <A,L>. The set of states of A is I1p . Let St be the state associated with a
pattern p € Ilg.

The transition function is defined as follows. Let py, ... ,p, be patterns in I1g. If there are
equivalent  patterns  p'y,...,P'n such  that opP’y,....p'n)=pellg,  then
Trans, (Op.Stp,, - - - Sp.) a {S1,,5tx }; otherwise, Trans,(Op ,St,,, . . . ,Stp,) 2 {Sty }.

The labeling function L assigns to each state St , the set {p} ifpe F, and & otherwise.
Since the labeling function is always fixed, the rest of this section concentrates on the B-fsa.

The automaton of Definition 3.10 is non-deterministic because it is always possible 10
transfer to a default state representing the subpattern X . Figure 3.2 shows a pattern set, its sub-
patterns, and its associated subpattern B-fsa. The B-fsa is presented without all its ‘‘default’”’
transfers, and assumes that there are three nullary operators a, b, and ¢. The B-fsa is the same as
in Figure 2.2.
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Pattern Set:

+ +
N VAN
* Z X *
A\ AN
XY YZ
Subpatterns:
P1 P2 P3
+ + *
N /AN N
* 7 X * XY
A
XY YZ

Subpattern B-fsa

Example of a Simple Pattern Set and its Subpattern B-fsa

Figure 3.2

The matching algorithm simply tracks all the accessible states using the non-deterministic
B-fsa. Once the match sets have been computed, the labeling function could be applied to obtain
the set of matching patterns. The algorithm to compute the match sets is described in Figure 3.3.
It is the standard algorithm for non-deterministic B-fsa, but it is listed here to allow some com-
parisons later. The states associated through B-fsa with a subject tree are shown in Figure 3.4.
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procedure match-1SP(N: node in subject)
let N be a node in the subject;
let Ny...., N, be the children of N;
let Op be the label of N;
or each N;
{ call match-1SP(N;)
let o; be the match set associated with the subtree of the subject rooted at N;
set 6=,
foreachp,e o, do
or each p, € G, do

or each p, € ¢, do
let p=Trans,(0p P1.---,Pn)
if (p#X )Ap isnot in G then
set c=0U{p};

o=cuU{X};
let  be the match set associated with the subtree of the subject rooted at N;

Matching Algorithm for Subpattern B-fsa

Figure 3.3

{Po»Pl P2,P3}
{Po,P3) ,< > <P3
{Po] [Po} [PO] [Po}

Result of Solving Linear Pattern Matching on a Subject
Figure 3.4

The algorithm described in Figure 3.3 is quite strai ghtforward, as is its correctness proof.
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3.2.1. Representation of the Match Sets

There are two different but related representation issues in an implementation of the previ-
ous matching algorithm: how to represent the match set, and how to represent the subpattern LB-

fsa.

Three possible representations for match sets are: as a simple list of all the patterns in the
match set, through its set of representatives, or through a list of patterns in ITg that subsume all
the patterns in the match set, thus including all the representatives but, maybe, also some others.
The first two representations are unique, but the last one is not.

The major cost of the algorithm of Figure 3.3 is in the inner loop, which, in turn, seems to
depend on how many possible combinations of pattems in I1f, one from the match set of each
child, have to be considered. The first representation mentioned above is the one assumed up to
this point. If it is used, it leads to the algorithm described in Figure 3.3. The algorithm is simple,
but its main disadvantage is that, if the match sets are of substantal size, the algorithm is quite
slow since the number of possibilities to consider may be considerable.

Representing a match set through its set of representatives leads to substantially smaller
representations. Hence, one would expect a faster implementation. Unfortunately, there is no
guarantee that considering the combination of representatives of match sets will lead to the
desired representatives of the new match set. For instance, consider the example of Figure 3.5.
The top row shows a pattern set composed of three pattemns. The second row shows a tree whose
match set is the set containing the first two patterns of the pattern set together with +(X,Y)and X.
The third row shows the set of representatives of the root of the pattern in the second row, while
the fourth row show the sets of representatives corresponding to the immediatc subtree of that
pattern.
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Example of Computing a Match Set Using the Set of Representatives

Figure 3.5

Figure 3.5 shows that finding the set of representatives for a tree given the set of representa-
tives of its children requires additional computation: the representative of a subtree at a node is
not the combination of the representatives of its children. The additional computation relates 1o
the relationship implicit in a set of representatives: the subsumes relationship. This topic is
described in more detail in Section 3.4.
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A final type of representation is a ‘‘mixed’’ representation, in which a set of patterns in I1g
that includes the set of representatives, but maybe also other patterns in the match set, is used.
This approach can be used in some applications to alleviate the difficulties of the representation
by the set of representatives while retaining some of their advantages. Its main disadvantage is
that it is not a unique representation and comparing two match sets for equality has non-trivial
cost.

3.2.2. Representation of the Subpattern LB-fsa

A very interesting issue is how to represent the B-fsa. The choice of data structures to
represent the B-fsa has a big influence on the performance of the table construction algorithms
and the pattern matching algorithms. A first observation is that, since the default state (the match
set {X }) is always in the new set of states, it is not necessary 1o encode it in the representation.
Different representations allow different implementations of the internal loop in Figure 3.3. Two
possible representations are ‘‘direct’’, and ‘‘inverse’’.

The most straightforward alternative is to encode the transition “‘directly’’. This can be
done using one n dimensional table for each n-ary operator. This representation leads directly to
the algorithm of Figure 3.3. The use of the table has two disadvantages. First, the table will con-
tain a large percentage of empty entries since for most combinations of subpatterns and operators
the new state set contains only the default state. Second, the representation does not reduce the
large number of combinations that need to be considered.

The first problem could be corrected using, for example, some hash encoding, but the
second problem is intrinsic to the ‘‘direct’” approach. An alternative is to use an ‘‘inverse’’
representation. The idea with this representation is the opposite of the previous one: instead of
starting with the members of the match set, combining them and then asking whether a combina-
tion is valid, the valid combinations under a given operator are found first, and then the subpat-
temns are checked for their presence in the match sets of the children. Which approach is best
depends on the probabilistic behavior of the match sets.

A convenient representation of the inverse approach is one that keeps, for a given operator,
a list of all the subpatterns that appear as a first child in a subpattern rooted by that operator.
Then, for each one of these, it keeps a list of all the subpatterns that appear as a second child in a
subpattern rooted by that operator and with first child the one chosen, and so on up to the arity of
the operator. This representation makes it possible to “prune’’ unwanted combinations. This
comes at the cost in space used in the representation. In an inverse representation the inner loop
of Figure 3.3 can be implemented as follows:
set 6=J;
let G ,..., ©, be the match sets of the children;
for each p, that is a 1st child of a pattern rooted by op do
if pisino; do
for each p, that is a 2st child of a pattemn p rooted by op
and with p; the 1st child of p do

if ppisino, do

for each p,, that is an n-th child of a patter p rooted by op
and with py ,..., P,; the 1st, 2nd ..., n—=1th children of p do
if p,isinc, do
let p=Trans,(0p.P1,..-+Pn)
if (p#X )~p isnotin o then
set o=cuU{p};
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The inverse representation is used in several places in this dissertation, including the imple-
mentation described in Chapter 8.

Another possible representation organization is to combine both the direct and the inverse
representations.  Such a representation is suggested in [PuB87] where it is called a ‘‘curried
dag”. A curried dag uses a 3-argument hash function. The hash function returns a value that
represents either a valid partial combination of subpatterns for the children, or an indication of a
non-valid combination. The first argument to the hash function is the operator, and the second
argument is the subpattern in consideration in the match set of the chi'd. The third argument is
nil 10 obtain the value for the first child, and is the value obtzined from the n—1st invocation -
aftc: ards. The main advantages of the curried dag representation are its flexibility, allowing
addiiion of patterns, and the way it generalizes to non-lincar patterns (see Chapter 4). This makes
it suitable for problems like the Knuth-Bendix completion algorithm [KnB70]. The curried dag
representation may be slower, or faster, than both the direct and the inverse representations.

3.3. Bottom-Up Matching Using Match Set LB-fsa

The main difficulty in using the algorithm of the previous section in some application areas
is that it may be quite slow to track all the reachable states of the (non-deterministic) LB-fsa to
find the match sets. The alternative is to convert the non-deterministic LB-fsa into a determinis-
tic one, and to track only one state, directly corresponding to the match set.

Definition 3.11 The linear match set LB-fsa associated with a pattern set F is a complete deter-
ministic LB-fsa A together with a labeling function L. The set of states of A is the set of march
sets of F.

The transition function is defined as follows. Let St be the state associated with the match
set 6. Let Op be an n-ary operator, and let Gy,.., ©, be any n match sets, then
Trans,(Sts, .- .,Stg,) 8 (S14), where © is the match set at the term Op (g, - - -, P, )-

The labeling function L assigns G; to each state St,.

Since the lzheling function is fixed, frequently a match set LB-fsa is identified with its B-
fsa. The maich set LB-fsa does what its name suggests:

Proposition 3.12 Let F be a pattern set and let A be the B-fsa of its match set LB-fsa. Then, for
every tree T, the state at T under A is St if and only if the label of the state associated with T is
.

ProofD Structural induction on the trees, using the definition of match set B-fsa and Proposition
3.10

From Proposition 3.12 we get:

Corollary 3.2 Let F be a pattern set, let A be its subpattern LB-fsa, and let A’ be its maich set
LB-fsa. Then, A’ is the result of converting a non-deterministic LB-fsa into a deterministic LB-
fsa (Section2.4.1)

It is difficult to present examples of match set B-fsa because of the large number of edges
present. Figure 3.6 shows part of the match set B-fsa corresponding to the pattern set of Figure
3.2. In this case, thc match set B-fsa has one more state than the subpatiern B-fsa, and many
more non-default transitions. The new state is the one at the top.
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Match Set B-fsa

Figure 3.6

Note that the B-fsa is identical to that of Figure 2.4, confirming that the match set B-fsa is
the deterministic version of the subpattern B-fsa. The new matching algorithm just computes the
state associated with a tree for a deterministic B-fsa.
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procedure match-IMS(N:node)

let N be a node in the subject;

let Ny,..., N, be the children of N;

let Op be the label of N,

Jor each N;

| call match-IMS(N;)

let G; be the match set associated with the subtree rooted at N;
6 =Trans, (Op .St p,,.....5t )5

o is the match set associated with the subtree rooted at N;

Matching of Linear Match Sets
Figure 3.7

Figure 3.7 gives an algorithm for linear pattern matching based in the match set LB-fsa.
The correctness of the procedure follows from the definition of match set LB-fsa.

Computing the Match Set LB-fsa

The basic approach to computing the match set B-fsa is to first compute the subpattern B-
fsa and then use it to compute all the match sets in an algorithm essentially identical to the con-
struction of a deterministic automaton from a non-deterministic one (Figure 2.3). Everything
mentioned in the previous section on computing the match set applies here. The only difference
is that it must be possible to find out efficiently if two match sets are identical or not. This prob-
ably rules out any type of ‘‘mixed’’ representation for the match sets at match set B-fsa construc-
tion time.

Representation of the match set LB-fsa

Given the (proportionally) large number of ‘‘non-default’ transitions, some type of table
representation seems the appropriate choice. These tables are not an efficient encoding because a
match set B-fsa is not a generic DB-fsa. A very successful encoding technique is to use, instead
of one i -dimensional table for each arity i, as many tables as operators in Op. Each one of these
tables can then be encoded independently. Section 3.5 discusses the work of David Chase regard-
ing how to compute efficiently, for each one of these tables, sub-tables that are identical and can
be shared.

A drawback to the use of match set B-fsa instead of subpattern B-fsa is the potential
increase in the size of the tables. Since the number of states in the match set B-fsa is identical to
the number of possible match sets of the pattern set, the CTF property is sufficient, but not neces-
sary, to guarantee a small number of states. Experience collected by Chase [Cha87], and the
author (Chapter 8), indicates that, in practice, table size is not a problem.

3.4. The Subsumption Relationship

The key operation in the two algorithms presentec in the two previous sections is, given an
n-ary operator op and match sets Gy, ..., G, corresponding to trees Ty, . .. ,T,, to obtain the
match set 6 of op (T4, . . ., T,,). This operation is done at match time when using the subpattern
LB-fsa and at table construction time when using the match set LB-fsa, and involves combining



58

subpatterns from the children under the operator of the parent. In this section we show how to
use Proposition 3.10 together with the immediate subsumption graph (Def. 3.8) to perform this
computation.

Recall the example of Figure 3.5. The left part of Figure 3.8 is the immediate subsumption
graph for * (+(a ,b),+(c .d)), the right part is the immediate subsumption graph for /(* (e .f ), £),
and the broken lines in a thicker pen represent those pairs of patterns <py,p2> such that +(p'1,p"2)
is a subpattern, where p’; and p’, are patterns equivalent to p, and p, respectively except that no
variable in p’; appears in p’.

*(HXY),HZW)) o /(*(W,R),S)

-~
-
-
-
-
-

(X, Y 2)) SXHY Z),X) D /W R)

e . — -

*(W.R) -9 X

G>i and Finding Match Sets

Figure 3.8

Let T =op (T,,T5), and let 6; and G, be the match sets of Ty and T-. We want to compute
the match set of T, 6. The direct approach would be to consider all possible trees of the form
op (p1.p) With p; € 6, and p, € G, and 1o see if each tree is equivalent to a pattern p € [g. If it
is, then p is added to o7; if it is not, p is not added. This direct approach can be described as
traversing the subsumption graphs for 6, and &, considering all possible pairs of visited nodes,
and testing if the pair of nodes in the two graphs is joined by a broken line. In Figure 3.8, this

approach will test 15=5* 3 combinations to find the 3 subpatterns that correspond to the combi-

nations marked by the thick broken lines!®.

Proposition 3.10 allows us to impose some order on the traversal of the two graphs so that
some pairs of nodes are not visited. In Figure 3.8, since +(* (+(¥ ,Z).X), /(* (W ,R),S)) is & sub-
pattern, we know that any term subsumed by it that is a subpattern will be in the match set or.
And similarly for +(* (X ,+(Y ,.Z)), /(W ,R)). Thus, the traversal can be done recursively top-down
starting at the root, using part (4) of Proposition 3.10 to perform the decomposition (that is, when
finding the set M(op (n,n2)) associated with a pair <ny,n;>, we have to consider all the nodes

3 That is, the match set of +(*(+(a.,b),+(c.,d)),/(*(e.f),g)) consists of the pattems
+(* (X, +Y ,Z), /(W ,R)), +(* (+(Y ,Z), X),/(*(W,R),S), and +(X,Y) (not +(X ,X), since the two Xs

are unrelated).
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that are directly connected to n, and to 7, in the left and right dag respectively), part (2) to
“prune’’ down traversals (that is, if a pair <n,n,> is found to be connected. all the pairs
<n’y,n’ > where both n’; is below n; and n ’, is below n, need not be tested), and part (3) to end
the recursion at the leaves (if a pair of leaves are not connected, then the M set is empty).

The “‘traversal’” approach described above can be used in different ways depending on the
representation used for match sets, and on how efficiently it can be detected that a pair need not
be visited. If match sets are represented explicitly by a list of their subpatterns, then we could
keep a table containing, for cach subpattemn the list of subpattemns subsumed by it. Then, when-
ever a subpattern is found in the top-down traverszl, all the subpatterns subsumed by it could be
added to or. This case has the additional advantage that the correctness of the approach does not
depend on detecting all the nodes that don’t have to be visited: visiting a node after it has already
been included in o7 is incfficient but still correct.

The situation is more complicated (in the general case) if a match set is represented by its
set of representatives. The idea herc would be just to add to o7 the representatives as they are
found in the top-down traversal. The problem is that in this case the corrcciness of the represen-
tation depends on not considering a node unless it is not subsumed by any other pattern in the
final match set 6. In the cxample mentioned above, we must avoid reaching +(X,Y) or other-
wise it will be added incorrectly to the sct of representatives of 7. Determining the situation
correctly in all cases seems expensive, especially in those cases where the cost of testing whether
a pair is connected or not is low.

Thus, it seems that the benefits of using the G >, depend on the pattern sct and the particu-
lar application. In an application where it is statisticaily likely that the representatives of the two
match sets will succeed in combining, using the G >, will be more efficient than a exhaustive
enumeration of all the possibilities; in other cases that may not be the true.

Yet another alternative is to collect a set of patterns that will include all the representatives
and, hopefully, only a few more, and then 1o remove them. This approach will pay off only when
there is a very small number of candidate representaiives, since discarding the duplicates is a
quite expensive operation.

Simple and CTF pattern sets

The problems mentioned above can be solved efficiently if the pattern set is CTF. In that
case part (4) of Proposition 3.10 can be strengthened as follows:

Proposition 3.13 Let F be a pattern set over Op, let op be an operator in Op, let

T=0p(T,,...,T,) be arree, let oy, ...,C, be the match sets of Ty, ..., T, respectively, and
ict Py, . .., P, bepartterns equivalent to the meets of 6y, ...,0C, respectively, where the variables
are renamed, if necessary, so that {py, ....Pn) is variable-disjoint. Let Iy, = ™)

denote the immediate subsumption set of each p;. If op (Pg,s--Pg,) IS nOt equivalent to a pattern
n n

in T, then M(op Pg,. - - -+ Ps.)) = \ I IMp(P1. - -  Pie1Pi? Pists - Pn)), and, there are
i=1j=1

.y, 1<i’ <n, ‘ 1</ <n;

such that Vi 1<isn V) 1sjsmy (M(op (Py, - - Pi—tPi! Pis1r---+PR)))  C

M(op (Py. ... . Pr—1:Pi) Pirstr - P D))
Before proving the proposition we need an auxiliary Lemma:

Lemma 3.1 Let F be a (linear or non-linear) pattern set. Let p, py, P2, Py, and p,’ be patterns
in F. Then, if both p; ©®p, and py ©py exist, and p;2p, and po2py, then
p1 © p22p)” ©py

Proof By definition of @ and the conditions of the lemma, p, @ p,2p;2py and
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P @© py2pr2p.’. The desired result follows by a new application of the definition of ©. 0

Proof of Proposition 3.13 Once again, we provide the proof only for the case of n =2. Let
M(op (Pg, P60 BE 01, - O Let ¢ be the meet of ¢y, ...,4,. Since F is CTF, ¢ € IIg, and,
by Lemma 3.1, op (p1,p2)20. By definition of > there must be some pattern v of the form
op (p1,p2") or op (py',py) that subsumes y. M(v) is the desired one. [J

Proposition 3.13 says that, if the subsumption graph of op (py, - . . ,P,) is explored in a top-
down, breadth-first manner, the first successful node found in T is the representative of the
match set. The traversal can also be obtained through the simultancous and coordinated traversal
of the subsumption graphs of Gy, . .., G, as suggested in the previous section, never testing for
the presence of a pair of nodes (denoting a pattern) in [T until all the pairs with both nodes above
the current pair have been tested.

The breadth-first traversal can be enforced cheaply. If the combination is done by travers-
ing through the subpattems in each of the o; and then testing their combination, the subpatterns
can be renumbered according to a topological sort under >. . If the combination is done by using
the children of the combining operator (as was suggested at the end of Section 3.3), the topologi-
cal sort has to be applied to the order in which the children are kept.

For concreteness, assume an inverse representation of the subpattern B-fsa. Then the algo-
rithm to combine the match sets could look like:

let Gy ,..., G, be the match sets of the children,;
for each py that is a 1st child of a pattern rooted by op
and in a topological order by > do
if pyisinc; do-
for each p- that is a 2st child of a pattern p rooted by op
with p; the 1st child of p
and in a topological order by >; do
if ppisinc, do

for each p,, that is an n-th child of a pattern p rooted by op
and with py, . . ., p,_; the 1st, 2nd ..., n—1-th children ofp
and in a topological order by > i do
if p,isinc, do

let p;’,...,p, bepatterns equivalent to py, ... ,P, respectively
where {p,’, .. .,p, } is variable-disjoint
if there exists a pattem p=op (P, . - - .p,)in F then

| return the march set induced by p;

There are other possible traversal orders that satisfy the ‘“‘breadth-first’’ requirement.

If the pattern set is not only CTF but also simple, then the dags are actually just chains and
the breadth-first traversal becomes just a linear search. :

CTF subpattern B-fsa

The above technique is quite fast but, as stated, it only works for CTF pattern sets. The idea
to modify it to deal with non-CTF pattern sets is quite simple. Given any pattern set F, obtain the
pattern set that contains the meets of all the subpatterns of F (that is, the meets of all the match
sets in F). Then construct the subpattern B-fsa for this new pattern set, which is clearly CTF.
The new tree automaton suggested by this approach is called the CTF subpattemn B-fsa.

The result is a pattern matching algorithm that will be slower than the one using a match set
B-fsa, but with smaller table requirements. The comparison of the two table sizes 1S quite
straightforward. The match set B-fsa has the same number of states as the CTF subpattern B-fsa
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but contains many more transfer edges that need to be represented. Also, computing the tables
for the CTF subpattern B-fsa is substantially faster.

Ken Rimey’s Contribution

Ken Rimey [Rim85] independently has proposed yet another way of using the subsumes
relation. In his paper, Rimey restricts his attention to binary trees. Using the terminology
presented in this dissertation, his proposal corresponds to using a match set B-fsa where *‘half”’
of the transfer edges are missing. For each match set ¢, and each operator op, the modified B-fsa
stores directly the entry corresponding to op (6,0") only for a few states o’. The values for the -
other entries are obtained by decomposing them using G >

Rimey’s proposal is more expensive in space than the CTF subpattern B-fsa, but faster at
matching time. On the other hand, the size of the tables is of the same order as a match set B-fsa,
which, for the case of two arguments, is quadratic in the number of match sets. Of course, as in
the CTF subpattern B-fsa, this last one can be exponential in the size of the pattern set.

3.5. David Chase’s Contribution

David Chase has done independent research in linear N-pattern matching. This section
describes his work briefly; see [Cha87] for more details.

Chase’s pattern matcher is essentially a match set B-fsa represented so that for each n-ary
operator there is an n-dimensional table. In addition, identical n-1 dimensional sub-tables are
found and shared. In the frequent case of a binary operator, this means finding identical rows and
columns and sharing them. For n =2, the process can be visualized as one of “‘folding’’ the
array. The folding function, also called a restrictor, is a mapping associated with an n-ary
operator and a i (1<i<n) child position that maps from the set of match sets to an n—1-
dimensional subtable. The importance of Chase’s contribution lies in that the folding is found in
the same closure operation that produces the collection of match sets. For large pattern sets, his
technique is substantially faster than an implementation that would compute the automaton first
and then find the folding. This speedup is particularly significant when there is a large B-fsa
where the unfolded representation may exceed virtual memory constraints.

Recall that 6, denotes the match set associated with . If op € Op has arity n, and 1<i<n,
let P,, ; denote the set of all patterns in Iy that are equivalent to the i -th child of a subpattern in
Iy rooted by op. If o is a match set, let Rq,,; denote SNP,, ;. Ui T=0p(Ty, ..., Ty), then
part (1) of Proposition 3.10 states that 67 is the set consisting of X and all those patterns in I1g

equivalent to op (¢, . . . ,1,) where t; € or,. It follows that

Proposition 3.14 I[fop € Op with arityn,and Ty, ..., T, are trees over Op, then Sop(r,,....T,)
is the set containing X and all the patterns in T equivalent to op (1, ... , 1) With t; € R op ;-

The advantage of this observation is that it provides a ‘‘natural’’ restrictor: for each n-ary
operator op, and each integer i, 1<i<n, the restrictor maps a match set ¢ into R ,, ;. Chase
shows [Cha87] that this folding is optimal: that is, the size of the folded array is as small as possi-
ble. Chase’s algorithm is described in Figure 3.9, for the case where all operators are either nul-
lary or binary.



]procedure Chases-Compute-B-fsa
Construct a curried representation of the subpattern B-fsa;
foreach op € Op do
let n be the arity of op
foreach i,1si<n do
|  compute the set P, ;.
set last_iteration =0
for each op of arity O do
compute its match set G;
set index =add (G);
set B—fsalop).0ary =index; [* index represents the match set ¢ */
while there is some R4 ,, ; With mark (R op i1= last_iteration do
foreach op € Op do
let n be its arity
for any selection of R, ;, 15isn
where at least one of them has mark [R 5 ,, ;1= last_iteration, do
set 0'=0
for each 1; selected from Rg,,; do
let {t,,...,1, ) beavariable-disjoint set
equivalentto {ty,...,%, };
consult the subpattern B-fsa to determine if op (N A
is equivalent to a pattern in I, and if so, add it to o
comment now o is the match set corresponding to the collection R ,p
set index =add (o),
set B—fsa[op . Nary.transfer [Rsop 1, - - - 1R op n)= index;
set last_iteration = last_iteration + 1;
for each op € Op with arity >1 do
or each i 1<i<n do
{ set B—fsa [op 1.Nary.restrictor [i]= make-map (R 5 5 i )

procedure add(c) returns index into SetOfAllMatchSets
let © be a match set
let index be the index of ¢ in SetOfAllMatchSets;
if 0 is new then
or each op € OP do
let n be the arity of op
foreach i,1<i<n do
compute R 4 ;5
if R g0p. had not been generated before then
set mark (R s o, ;1 =last_iteration;

return index;

Chase’s Algorithm

Figure 3.9




The result of the algorithm is the match-set B-fsa in folded representation; the information
associated with each operator op is denoted by B—fsalop]; if op is an 0-ary operator, the infor-
mation is simply its corresponding match set (B —fsa [op).0ary); if op is an n>0-ary operator,
the information is a structure (B —fsa[op].Nary) with two fields, transfer, which contains the
folded transfer arrays for op, and, for each i with 1Si<n, restrictor which is computed from the
sets Rgop,i DY applying the (here undefined) function make —map . The B-fsa obtained by the
algorithm is organized as shown in Figure 3.10, which only shows the situation for binary opera-
tors: associated with each binary operator there are two restrictor arrays which map indices
representing match sets into indices representing the R ,, ;, Which are then used to fetch the -

index of the match set of the node rooted with the binary operator from the folded transfer table.

The algorithm of Figure 3.9 computes all the match sets © and R ,, ; through a closure
technique. The o sets are represented by indices into a set named ‘‘SctOfAllMatchSets’’, and are
“‘marked’’ to indicate that all they have alrcady been considered in the closure algorithm. Since
the new states are always computed by first finding the set R4 4 ;» there is no need 10 compute or
store the complete match set B-fsa, only the much smaller transition tables indexed by R p -

Another factor in the success of Chase’s algorithm is that many of the structures involved
can be represented using bit vectors:

. Match Set. The match set is represented as a bit vector over all the patterns in .

) P,, ;. The patterns that can appear per position and operator are also represented as a bit
vector over the same base set. This means that the most frequent operation of the algo-
rithm, computing the sets R 5, ; can be done very efficienty.

Rgop,i- All the (distinct) intersections of a match set and a P, ; are stored in a set of bit

VECLOTS.

The final shape of the generated tables is shown in Figure 3.10. Final table sizes are, for
most applications, very small. The interested reader should consult [Cha87] for some comparis-
ons in table generation time and table generated size.



64

binary Op

TRANSFER Tables e
Left Child Match S Index
| RESTRICTOR
| Right .
; ] »  Parent Match Set Index
i Child
i Match
i Set
i Index
/
L
RESTRICTOR

Folding Rows and Columns in a Match Set B-fsa

Figure 3.10

Improvements to the Technique

[Cha87] misses a simple but very useful consideration for reducing table size. In most
applications after finding the folding, most of the table space is spent describing the folding, in
the restrictor arrays. It is also common that patterns have the same subpatterns. When these two
conditions occur together, for instance in the applications of Chapter 8, it is possible to obtain big
savings in table size by sharing identical restrictor arrays. Finding the identical restrictors is quite
simple: it can be done by just checking for identical P,y ;.

It is also tempting to try to use ideas described in Section 3.4 to speed up the inner loop of
the table construction algorithm. In practice it seems that there would be implementation prob-
lems to make it run faster than the current ‘‘direct’” approach.

3.6. The Influence of an Input Set

Up to this point this chapter has assumed that PATTERN MATCHING is solved relative to the
input set Lg,. That is, we want t0 find the patterns matching for all possible trees over the set of
operators Op. In some cases we have additional knowledge about the possible input trees that can
be used profitably. In particular, we may know that the set of input trees is a recognizable set L
(Definition 2.5). This additional information can be employed using the following general tech-
nique:
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Proposition 3.15 Let A and B be two B-fsa over some operator set Op. There is an algorithm
that will compute, for each state Sty in A, the set of all those states Stg in B such that there is a
tree T labeled with state Sty in B that would have been labeled with state Sty inA.

Proof The set of states associated with each node in A is finite and can be computed through
iteration on the nodes of A. [

The question of interest is the following:

Proposition 3.16 Let L be a set of trees over Op, and let F be a set of patterns over Op. There
exists an algorithm that will determine which match sets of F correspond to subtrees of trees in
L.

Proof Let Ar be the B-fsa that computes the match scts for F, and let A; be the B-fsa that recog-
nizes membership in L. By Proposition 3.15 there is an algorithm that will associate sets of statcs
from Ap with the states of A,. A ‘‘good’’ state in Ap is one that corresponds to a match set of F
containing at least onc subpattern in I1g present in F. There is a tree in L with a subtree matching
some pattern in F if and only if there is a state in A; that reaches (in the B-fsa) a final state and
that has been labeled with a set containing at least one good state in Ar. O

This provides directly a solution to:

Corollary 3.3 Let L be a set of trees over Op, and let F be a set of patterns over Op. There
exists an algorithm that will determine whether there exists a tree T € L such that some pattern
in F will match at some node of T .

The algorithm of Proposition 3.16 can be used to reduce the table size requirements for
solving pattern matching, while that of Corollary 3.3 can be used to detect specification incon-
sistencies.

3.7. Related Work

There are two main approaches to pattern matching: those based on a ‘‘top-down’’ traversal
of the subject tree, and those based on a “*bottom-up’’ traversal of the subject tree. This chapter
has used only a bottom-up approach.

Top-Down Pattern Matching

The most straightforward algorithms for pattern matching are based on top-down traversals.
Unfortunately they are quite inefficient. The main advantage of a bottom-up traversal over a
top-down traversal is that it aggregates the information in a natural way from children to their
parents.

The simplest method for matching a set of patterns against a single subject is to decompose
the problem into several independent problems of matching a single pattern against a single sub-
ject. Likewise, the simplest approach to matching a single subject against a single pattern is to
reduce the problem to the case where the pattem is forced to match at the root of the subject, and
to repeat the problem for all the nodes in the tree.

The approach outlined above is very easy 1o implement but, except in the most simple
applications, is impractical. A betier approach is presented in [KMR72]. The technique
employed maps the problem of tree pattern matching into string pattern matching by using as pat-
terns the strings obtained when doing a preorder traversal of the tree patterns. Since this mapping
is not unambiguous, whenever any such string is found, its origin in the subject tree is marked.
Any node with ‘‘enough’’ marks is matched. The string matching problem is solved using an

automata that keeps track of all the different strings at once (using its finite state memory).

This algorithm works fairly well when there is only one pattern to consider. When there are
several patterns, it is necessary to keep independent markers for each tree patterm. There are
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several ways to do this. The simplest one is to keep different locations for each counter, incre-
ment the locations, and check the values for all of them at the second visit 1o the node in the
preorder traversal. Dcpending on the density of “*hits”’ (of which currently the author has no
experimental data) it may be better to test after each increment. Yct another alternative would be
10 use a heap of increment requests. In general, it appears that top-down pattem matching will be
slow if there are many pattems.

[HoO$2] and (KMR72] claborate on these ideas. The biggest advantage of top-down pat-
tern matching is the reduced size of the tables created. The price for this reduction in table size is
an increase in the pattern matching time. This is particularly true when the bottom-up algonthm
uses an implicit representation of the match set. Which technique to use will depend on the par-
ticular application. See Chapter 8 for some performance numbers for the REACHABILITY problem
where pattern matching is employed.

Bottom-Up Pattern Matching

[HoO82] is probably the best known reference to bottom-up algorithms for linear N-paticrn
matching. The bottom-up algorithm for general pattern sets presented there is based on match
sets, represented in a table form. Most of the emphasis of Hoffman and O’ Donnell [HoO82] is on
simple pattern sets (Definition 3.7), disregarding other weaker constraints.

[Kro75] is an excellent, but litle known, dissertation. The emphasis of the author is on
CTF pattern sets. The trees that the author deals with are slightly different from those defined in
this dissertation: they are defined as labelings on tree domains, and their operators do not have a
fixed arity. This probably influenced Kron's recognizer, which is based on “‘orthogonal tree auto-
mata’’. The dissertation contains equivalent material to that presented in the bottom-up part of
[Ho082], and also additional material on rewrite systems. It lacks an analysis of the space com-
plexity of the generated automata, but orthogonal tree automata seem good for sharing similar
entries, at the expense of a small reduction in matching speed. It is important t0 note that the
notion of a CTF pattern set is far more important than the notion of a simple pattern set intro-
duced by Hoffman and O’Donnell (Proposition 3.8).

3.8. Summary of the Algorithms in this Chapter

The research presented in this chapter contains several contributions to the theory of
bottom-up linear N-pattern matching. The proof that simple pattern sets are CTF provides a
better understanding of the results of both {HoO82] and [Kro75]. The major contribution is the
understanding of the role of G >, . Proposition 3.10 is used in Rimey’s algorithm and in the CTF
subpattern B-fsa algorithm (Section 3.4).

The chapter also presents a unified approach, based in the notion of B-fsa, for five bottom-
up algorithms. The flexibility of the model shows its applicability.

The CTF subpattern B-fsa algorithm is interesting in its own right, especially in application
areas with a large number of patterns. With the advent of D. Chase’s algorithm, many applica-
tions can use a shared table representation of a match set B-fsa with reasonable tabie sizes, but
some applications may need a method that uses a representation guaranteed to produce tables
with table size linear in the number of states.

Figure 3.11 shows the five algorithms mentioned here, together with an indication of their
situation in a table-size x matching-speed space. The actual values for size and speed are
strongly dependent on the properties of the pattern sets. Thus, deciding among the algorithms
requires an analysis of the intended application.
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Algorithm

Table Size

| Matchine Speed

l

Subpatten B-fsa

Edges are lincar in # states
States are linear in description size

Decpends on size ¢f match sct

CTF Subpattern B-fsa

Edges are linear in # states
States may be exponential in descr. size

Depends on depth of G >

(but there is folding)
States may be exponential in descr. size

Rimey’s Edges are quadratic in # states Depends on depth of G >
States may be exponential in descr. size
Chase’s Edges arc quadratic in # states -3 table lookups per tree node

Match set B-fsa

Edges are quadratic in # states
States may be exponential in descr. size

1 table lookup per tree node

Overview of Algorithms for Linear Pattern Matching

Figure 3.11

Chapter 4 explores how to perform non-linear pattern matching using variations on these
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CHAPTER 4

Matching Non-Linear N-Patterns

Divide et impera

[cited by Machiavelli]

In this chapter we study the problem of pattern matching for non-linear pattern sets. The
approach taken is to regard a non-linear pattern as a linear pattern extended with a predicate
which will evaluate to true if the non-linear conditions are satisfied. For example, the non-linear
pattern

corresponds to the linear pattern

/\

* *
VA VAN
X, Xy X3 X,

together with a predicate that tests whether the trees matched at positions 1+ 1 and 2 + 1, and those
at 1.2 and 2.2 are equal. Such a predicate is denoted in this chapter as
(1+1=2+1)A(1+2=2.2). The linear pattern associated with a non-linear pattern is called its
structure; the predicate its binding predicate. The structure is unique up to pattern equivalence,
but the binding predicate is not: another binding predicate for the above pattern is 1=2, where 1
and 2 are positions.

All the binding predicates that we consider are like the ones shown above: if p is the pat-
tern, a binding predicate for p has the form A\p; =q;, where, foreach i, p; and g; are positions in

i
p such that pg,, =Pag, A binding predicate is evaluated by comparing the trees that the match
of the structure assigns to the positions mentioned in the binding predicate. The actual com-
parison may involve a tree comparison if a traditional representation of the subject tree is used, or
a simple pointer comparison if the subject tree is represented as a computation dag.

The view of non-linear pattern matching as linear pattern matching together with predicate
testing leads to several algorithms for non-linear pattern matching that are modifications of algo-
rithms in Chapter 3. The simplest of these algorithms is presented in Secton 4.1.2 and uses a
subpattemn LB-fsa to find subtrees of the subject tree that match the structural patterns; then these
««candidates’’ are tested with binding predicates to find the rcal matches. This algorithm is quite
straightforward and does not use any knowledge specific to non-linear patterms; it could be used
equally well if the binding predicate were replaced by another (more general) semantic predicate.
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In Chapter 3 we showed that there is a big reduction in matching time if a match set LB-fsa
is used instcad of a subpattern LB-fsa. In Section 4.1.3 we show how to apply these idcas to
non-linear pattern matching. The resulting algorithm is more complex than the corresponding
one in Chapter 3 due to some characteristics of the notion of the structure of a pattern.

The algorithms of Sections 4.1.2 and 4.1.3 require testing collections of binding predicates.
Section 4.1.4 shows how to select, for a given pattern, a binding predicate with as few tests as
possible. This predicate is the one that compares subtrees as high as possible. For the pattern at
the beginning of this introduction, 1=2 is the best predicate. Section 4.1.4 also contains some
analysis of how to evaluate efficiently binding predicates that share some sub-predicates.

All the algorithms for non-linear pattemn matching in this chapter characterize the subtrees
of the subject tree with two parts: one of a finite number of states, and additional information
referring to the subject tree. In the algorithms of Sections 4.1.2 and 4.1.3 the state is either a list
of structures or a pattern equivalent to their meet, and the additional information is a pointer to
the node being visited. Section 4.2 provides a definition that enrichs the notion of state. A p-
pattern is a linear pattern extended with a collection of equalities and inequalities between its
variables. For example, <* (+X {.X ), * (X3.X4)), {1+1=1.2,2.1#2.2}> is a p-pattern. P-
patterns are used to record information that is available from the evaluation of binding predicates.
If T is a tree of the form op(Ty,...,T,), knowing that p-patterns ¢y,...,0, match at
T,,...,T, may make it possible to replace the binding predicate at T by a simpler predicate. It
is possible to use p-pattemns to obtain several different improved pattern matching algorithms;
Section 4.3 shows one particular alternative based on a variation on a deterministic B-fsa.

Section 4.4 presents a patten matching algorithm by Purdom and Brown [PuB87]. Their
algorithm suggests another approach to extending the information associated with the node in the
subject tree at matching time: extend the dynamic information instead of extending the state.
Specifically, the idea is to keep a list of all the subterms of the node that may be used in binding
predicates of this node and its ancestors. The basic premise of this approach is that extracting
these subterms is an expensive operation and that it may be cheaper to extract them when the
node is being visited and to propagate them up the tree. Although most tree representations do
not justify this premise, Section 4.4 briefly analyzes this approach.

Unlike other results in this dissertation, none of the algorithms presented in this chapter
have been implemented, and we cannot provide definitive answers on their applicability.

4.1. Non-Linear Matching = Linear Matching + Binding Predicate

This section presents the simplest algorithms for non-linear pattern matching. They are
based on the idea of applying the algorithms for linear patten matching of Chapter 3 to the
“‘structures’’ of the original pattern set.

4.1.1. Basic Definitions
The central definitions are those of the structure of a pattern and its binding predicate.

Definition 4.1 The structure of a pattern p is a pattern in which each occurrence of a variable
in p is replaced by a new variable. A binding predicate of a pattern p is a partial predicate

P (T) on trees such that, if a structure of p matches T, then p maiches at T if and only if Po(T)
is true. If a structure of p does not match T, Py is undefined.

The above definition of binding predicate is well-defined because all the structures of a pat-
tern are equivalent. As mentioned previously, all the binding predicates of a pattern p considered

in this chapter have the form: Ap; =g¢;, where, for each i, p; and g; are positions in p such that

Paer. =Pag:-
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As in Chapter 3, we will use several =-reduced sets of patterns to simplify later definitions.

Definition 4.2 If F is a pattern set, Zg is a =-reduction of the set of all patterns § which are
structures of a pattern p € F. Zp is a pattern set; MZ is an equivaient denotation for I1z,.

We define S as an =-reduction of the set of all patterns pg that are meets of match scts G
in F., and ZSp as an =-reduction of the st of all structures of patterns in 2r.

For any pattern p € T, Cp is the pattern in TIZg which is a structure of p. If G is a march
set of F, then L, is the pattern in ZEg which is a structure of the meet of ©.

The next proposition lists some properties of the definition of structure. Note that (4) and
(5) show that the notion of structural match set as defined above is different from the meet of the
structures of all the subpattemns in the match sct.

Proposition 4.1 Let F be a non-linear pattern set. Let ¢. py, and p, be patterns in F. The fol-
lowing properties are true:

(1)  Ifpy2p, thenf, 2 sz.
2) & ©p=p.
(3)  Ifpy ©® psexists, then Gy @ Ly, also exists and Cpl © 2 Lo @ Lo,

(4)  Tiere are cases where the above implication may be strict.
(5) L, © Lp, may existevenifp ® p, does not.
Proofs
(1) and (2) are straightforward.
(3). By definition of & and (1), ’;pl © 0.2 L, and Cpl ® p 2 Lo, A further application of the
definition of & yields the desired result.
4). Proof by example. Let py be +(X X), and let p; be +* (X, Y)Z). py ©py =
X)X, L g, = ALK X3X ), but &, @ Ly, = +(* (X 1,X2).X3).

(5). Proof by example. Let p; and p; be * (+(X,Y),X) and * x,+X,y). U

4.1.2. A Simple Subpattern Matching Algorithm

The first algorithm for non-linear pattern matching presented in this chapter is also the sim-
plest. The algorithm uses a subpattern LB-fsa for the set of the structures of the original pattern
set. The LB-fsa is used to find the structural subpatterns matching a: each node of the subject
tree. Once any one such structure is found it is necessary to determine to what original pattern it
corresponds. The notion of discrimination set encodes this information.

Definition 4.3 Let F be a non-linear pattern set and let y € Ilg. A discrimination set DS (&) of
Ly is a collection of pairs <p,P ;> such that p € IIF, Ly=Cp and P, is a binding predicate for p.

Proposition 4.2 Let F be a non-linear pattern set over Op and let T be a trec over Op. The
algorithm of Figure 4.1 correctly computes the { explicit) match sets over F for every subtree t of
T.

Proof Straightforward. U
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find the set of structures matching at every subtree ¢ of T using
the subpattern B-fsa of Zg.
let DS ({) be the discrimination set of {;
or each subtreet of T do
or each structure { in the structural match set do
set o(t)=C;
or each <p,P ;> DS() do
( if Pp(t) then
o(t)=0o(1)p;

Matching Using Structural Subpattems
Figure 4.1

The above algorithm is correct but slow. All the problems associated with keeping track of
all the subpatterns explicitly are compounded by having to test a (potentially) large number of
binding predicates for each subpattern.

Normally, we assume that we are only interested in the patterns of F, not in its subpat-
terns. The notion of discrimination set can be changed to acknowledge this assumption by
including only those patterns p that are members of F. This would lead to a somewhat faster pat-
tern matching algorithm.

Figure 4.2 contains an example of a non-linear pattern set, while Figure 4.3 shows the B-fsa
representing the computation of the structural subpattems for that pattern set and the discrimina-
tion sets associated with each structural subpattern.

P1: pa: 3
+ * *
A A A
* Y + Y + Y
A A A
XX * Y * X
VAN AN
XX XX

Example of a Pattern Set

Figure 4.2




(1-1=1-2)>p

<+

:

B-fsa Used for Matching Using Structural Subpatterns

Figure 4.3

This example provides a good motivation for the notion of a discrimination tree. The
discrimination set for some structural subpatterns (as in the case of *(+(* (X 1,X2),X3), X4)
above) may contain binding predicates that duplicate equality tests (such as 1+1:2=1.1.1
above). A discrimination tree helps to share the result of those tests. There are two types of
discrimination trees, one for the algorithm of this subsection and the other for the one shown
below in Section 4.1.3.

Definition 4.4 Let p be a pattern. An all-discrimination tree for p is an ordered tree in which
each edge is labeled with either “'p1=p,"", for p, and p » positions in p, or with “‘true’’, and in
which the leaves are labeled. If DT is an all-discrimination tree for p, and p matches at T, the
sequence of valid labels for DT and T is the ordered sequence of labels of those leaves reached
in an ordered depth first search of DT, such that all the predicates in the path from the root to
the leaf evaluate to true at T .

A first-discrimination tree for p is an ordered binary tree in which each edge is labeled
with either true or false, each internal node is labeled with 'p=p '’ for py and p, positions in
p, and each leave is labeled. If DT is a first-discrimination tree for p, and p matches at T, the
valid label for DT and T is the label (if any) of the leaf that is found by traversing DT, starting
at the root, evaluating at each internal node reached its predicare and selecting one of the two
outgoing paths from the node depending on the outcome of the test.

Let p be a pattern. Given a sequence of predicates S, each one a conjunction of equalities
between positions in p, an all-discririination tree for p, DT, is correct if for every tree T at
which p maiches, the set of valid labels for DT and p equals the set of predicates of S true ar T.
A first-discrimination tree DT for p is correct if for every tree T at which p maiches, the first
valid label for DT and p is the first predicate in S that evaluates to true for T .
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All-discrimination trees can be used to compute efficiently the set of all the valid predicates
for a discrimination set of a structure. For example, a discrimination tree for the patterns p, and
p5 of Figure 4.2 is shown in Figure 4.4.

Pz
1-2-——2
10101=1'1'2 1-1-2=1'2
O
P3

Example of an All-Discrimination Tree

Figure 4.4

An example of a first-discrimination tree, for a different set of pattems is shown in Figure
4.5. This discrimination tree will be used later in this section, is:

A First Example of a First-Discrimination Tree

Figure 4.5

The cost of a discrimination tree can be defined (for example) as the number of predicates
(edges) in the tree. Other alternatives could include the expected number of predicates that have
to be tested for some input distribution. Algorithms to compute minimum COSt correct discrimi-
nation trees have not been developed, but Section 4.1.4 below contains some related results.
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4.1.3. A Simple Match Set Pattern Matching Algorithm

Point (5) in Proposition 4.1 indicates that structural match sets are not closed under ©.
Hence, the algorithm to use structural match sets uses as state information the closure of ZZp
under ©. Let this set be denoted by Z).'.Fe. It is possible to define a notion of discrimination set

similar to the one in structural subpatterns for the members of ZZ£°.

Definition 4.5 Let F be a non-linear pattern set over Op. Ifvye ZZFe a discrimination set
DS () of v is a collection of pairs <G,P s>, where G is amatch setin F, P is a binding predicate
associated with ©, and G satisfies the following two properties:

(i) Y28, and

(ii) there does not exist a match set 9, in F such that y2{, and ¢; © o=0; with Co,> 7
Intuitively, the definition of DS (y) is trying to capture all the possible match sets that could

have v representing their structure. Condition (ii) is intended to eliminate those structural match

sets whose membership in DS (y) would imply that a member Z)I.Fe larger than y matches at the
node. As an example of the role of (ii) consider the two pattern sets F ’ and F” of Figure 4.6.

F' p . P2 i} P3 . Par
A\ S\ VAN VAN
+ X + X XY XX
AN AN
XX XY

F” . Py X Py Par
N\ A\ VAN VAN
+ X + Y XY XX
AN /\
XX XX

A Pattern Set for Match Set Pattern Matching
Fizure 4.6

The subsumes relations for Zr in the two examples are shown in Figure 4.7.
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Different Subsumes Relations

Figure 4.7

Now consider the structural match set represented by a pattern ¥

and its discrimination set in each case. For the pattern set F” the match sets in the discrimination
set of v are * (+(X . X).X), *(+(X X),Y), *(X X)), and *(X,Y) but, for the pattern set F”, the
match sets for y are * (+(X .X).X), *(+(X X),Y), and *(X,Y). *(X,X) does not appear in the
second case because, were that pattern a possibility, the structural match set would have been
*(HX 1.X D, HX 3.X 9)).

Discrimination sets are used in a pattern matching algorithm based on match set B-fsa.

Proposition 4.3 Ler F be a non-linear pattern set over Op, and let T be a tree over Op. The
algorithm of Figure 4.8 correctly computes the match sets over F for every subtreet of T .

Proof The correctness of the algorithm follows from the definition of discrimination set of .
Condition (i) includes all the match sets of interest. Condition (ii) discards those match sets that
would have required a structural match set different from . 0
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let B be a (deterministic) match set B-fsa for ZZpe;
assign to each subtree £ of T a pattem in ZZF@ using B;
or each subtreet of T do
let v be the pattern in ZZ,;-GB assigned to ¢;
let DS (y) be the discrimination set of v,
or each <6,P 5> e DS (y)in 2 order do
( if Py(t)then
let the match set of ¢ be o,

Matching Using Structural Match Sets
Figure 4.8

The above algorithm assigns to each structural match set a list of match sets whose binding
predicates then are evaluated sequentially to find the largest valid one. The evaluation of this
sequence may contain redundancies. An alternative is to associate with each structural match set,
a first-discrimination tree.

For the pattern set F* of Figure 4.6, a first-discrimination tree for

%

N\

+
/\ %3

X%

is the one shown previously in Figure 4.5, while the one for F’is

P

P4

P3

false
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4.1.4. Optimal Binding Predicates

In general there is more than one valid binding predicate for a given pattern. Some of them
may be more expensive, that is, perform more tests, than others. The following proposition tells
how to find one with minimum cost.

Proposition 4.4 Let p be a pattern. Let S(p) be the class of binding predicates for p of the form
N\p; =q;, where, for each i, p; and q; are positions in p such that pgp, =P@q,- Thereisan algo-

i

rithm to find a member of S with a minimum number of equality tests.

Proof Let C (p) be the partition of the positions in p so that two positions are in the same block if
they correspond to identical subtrees in p. Define a relation = between the blocks of C(p) by
P;2P; if and only if a position in P; is an ancestor (a prefix) of a position in P,, i#j. The rela-
tion = is well defined, and is a pariial order. > is well defined because otherwisc there would be
tree positions p, ¢, p’, and ¢ such that p is ancestor of g, and ¢’ is ancestor of p’, and with
Par=Paep 4 P@s=Pay which leads to a subtree being inside itself, which is impossible for
finite trees. The proof of 2 being a partial order is straightforward and is lcft to the reader.

The algorithm needs some additional concepts. For each block P; in C (p), we consider a
complete graph, G (P;), with nodes the positions in the block; each edge represents a predicate on
positions of p. Anedge <p,g>is a descendant of another edge <p’,g’> if there is a position §
such that p=p’fs and g=q’lls. Two edges are connected if they are of the form <p ;,p,> and
<p,,p3>; their connection is <p,p3>.

These last two relations satisfy that, if an edge is true, all its descendants are true; and, if
two connected edges are true, their connection is true. Given that a set of edges (for some of the
complete graphs mentioned above) are known to be true, applying repeatedly the two proposi-
tions above is known as ‘‘taking’’ the closure of the graph under connection and descendant.

Let E be the set of edges in the complete graphs returned by an invocation to the algorithm
of Figure 4.9. To prove that A Ep; =¢;, has minimum cost we first prove that an optimal
<pigi>€
binding predicate is a possible output of the algorithm, which follows from the following con-
siderations.

° All the edges in E’ must belong to the graph of some block in C (p). Otherwise we perform
either a trivially true comparison — which can be removed — or a trivially false comparison
— an incorrect predicate — or a comparison that can be made to fail in wees where p
matches.

° E’ contains no edges that can be obtained from the others by applying transitivity or the
descendant relation (see above).

. The transitive and descendant closure of E contains all the edges in the graphs of the
blocks of C (p).

Finally, all possible outcomes of the algorithm of Figure 4.9 have the same number of
edges. This follows because all the topological orderings of the blocks of C (p) produce the same
result, and because all minimum spanning trees have the same number of edges.
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let P,,...,P, beanordering of the blocks of C (p) following 2;

let G (P;) be the complete graph with P; as nodes;

mark all the edges in each G (P;) as *‘unknown’’;

E =0;

foreachi from 1 ton do

choose a minimum spanning tree MST for the ‘‘unknown’’edges of G(P;);
E =E wall the edges of MST;

mark all the edges of G (P;) as *‘known’’;

comment now compute the closure under connection and descendant
repeat

if a* known '’ edge e has an unknown descendant ¢ then
| mark ¢ as‘‘known’’;
if two ** known '’ edges e, and e, are connected and
their connection is an ‘‘unknown’’ edge ¢’ then
| mark € as ‘‘known’’;

until there are no more changes;

Algorithm to Find Optimal Binding Predicates of Patterns
Figure 4.9

Another algorithm of interest is how to compute, given a discrimination set, a discrimina-
tion tree for it. Ideally we would like the discrimination tree to minimize some cost function like
the number of edges in the tree. We do not have a solution 10 that problem, but the algorithm
presented in the proof of the following proposition contains a heuristic that tries to attain the goal.
The *‘goodness’’ of the heuristic cannot be measured until after it is implemented and compared
with the optimal, maybe found with some type of exhaustive search.

Proposition 4.5 Let F be a non-linear pattern set, and let { € ZZg. There is an algorithm that
will select a first-discrimination tree implementing a discrimination set for L.

Let F be a non-linear pattern set, and let { € Zg. There is an algorithm that will select an
all-discrimination tree implementing a discrimination set for ¢
Proof We solve the problem involving a match set represented by some pattern p; the problem
for structural subpatterns is similar. Let S be the subsct of Zp that appear in any discrimination
set for p (Definition 4.5). For every pair of positions in p, let count (p 1,p2) be the number of pat-
terns in S in which the subtrees at p; and p» are identical. Now use the algorithm of Figure 4.10.

The correctness of the algorithm follows from its use of the algorithm of Figure 4.9 to com-
pute the individual binding predicates for each match set. The use of count (p,p,) attempts 10
share equality tests between the different binding predicates, and the sort tries to put the queries
in the right order.

This heuristic is clearly non-optimal. Other heuristics could be used. For instance, one
could try to select the minimum spanning tre¢ so as t0 choosc previously used equality tests if
possible. U]
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choose one ordering of § following 2 and letitbe {Gy, ..., G, };
or each G; do
( let E; be the set of edges <p 1,p o> retumed by the algorithm of Figure 4.9,
modified so that the minimum spanning tree is chosen using first edges with highest count ();
let E be UEI';
i=1
ori fromn downto 1 do
{ move to the front of E those edges in £;;
comment the move is supposed to preserve the previous order;
ori from 1ton do
( lay a path using E; sharing as much as possible with
the previous paths;

Finding a Discrimination Tree
Figure 4.10

4.2. P-Patterns

The idea behind the notion of p-patterns introduced in this section is to evaluate the binding
predicates of the children before computing the state of the parent and to extend the linear pat-
terns used to represent states in the previous sections with equalities and inequalities to record the
results of these tests.

As a motivation, consider the pattern set composed of the two patterns at the top of Figure
4.11, and the subject tree at the bottom of the figure. Assume that T, T,, and T'5 are all different
subtrees.
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P . P2t Pa:
| AN AN
+ - - XX
VAN [
XX + o+
VANIVAN
XYYX

+ +
/N /N
T, T, T, T,

P-patterns are Better than Pattens

Figure 4.11

The children of the subtrees marked A and B have match sets represented by +X ,X) and
HY .Z), respectively. Accordingly, at some point we have to test binding predicates and deter-
mine whether T, and T, and also T and T 5 are equal so as t0 determine if we have found p,. If
we encode the state information as members of ZZFe, nodes A and B will be characterized as
—(+(X,Y)), which contains no information about the equality between X and Y, and the binding
predicate (for p) at the root would be (1«11 =2e1e2)A(1+1.2=2+.1.1). Instead, if the test
of the binding predicates at the children of A and B is done before computing the states of A and
B, and the result of the test is incorporated into states <—(+X,Y),{1.1=1.2}> for A and
<—(+(X,Y)),{1+1#1+2}> for B, the binding predicate at the root for p, is equivalent to false.

Definition 4.6 Let F be a non-linear pattern set over Op. A p-pattern over F is a pair <C,E>,
where { is a linear pattern and E is a conjunction of equalities and inequalities between loca-
tions of variables in§,. A p-pattern <U.E > matches at some term T if { matches at T with assign-
ment o, and ail the equations in E are satisfied by o.

{ in Definition 4.6 will be either a member of Zp or a member of ZEFG. If the set E is
empty, we obtain the notions of structures that we used in the previous section.

P-patterns are used to represent state information. Thus, we want to find how to compute
the new states given the previous ones. For this, we need the notion of an incremental binding
predicate.
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Definition 4.7 Let F be a non-linear pattern set F over Op. Let ¢ be a p-pattern over F. The
incremental binding predicate for a pattern p € F satisfying ¢ is a partial predicate, P, o(T),
such that, if (‘;p matches at T, and ¢ matches at T, then P, (T) is true if and only if p matches at
T.

Definition 4.7 is a slight generalization of what is needed as the equalities and inequalitics
in ¢ may span across different children of its structure.

A good incremental binding predicate can be computed.

Proposition 4.6 Let F be a non-linear paticrn set over Op. Let ¢ be a p-pattern over F, and
pellp. Let S be the class of incremental binding predicates for p satisfying ¢ of the form

/A\p; =q;, where, for each i, p; and q; are positions in p such that pgp, =P @, Thereisan algo-

rithm to compute a member of S with the smallest number of comparisons.

Proof The algorithm used is a variation of the one in Proposition 4.4. Let ¢ be <¢’.E>. If p can-
not be unified with ¢’ then the desired predicate is false. If it can, let f be their most general
unifier (Definition 2.10).

Let C (f (p)) be the partition of the positions in f (p) such that two positions are in the same
block if they correspond to identical subtrees of f (p). If there is an inequality in E between posi-
tions p and ¢ and those positions are in the same block in C(f (p)) the desired predicate is
(again) false.

Otherwise, apply the algorithm of Figure 4.9 modified so that instead of initially ‘‘mark-
ing’’ all the edges in G (P;) as ‘‘unknown’’, an edge <p.q> is marked ‘‘known’’ if (p =q)€ E,
and ‘‘unknown’’ otherwise, and after this the graphs are closed under connection and descen-
dant . The rest of the algorithm stays the same. L[]

The other notion needed for obtaining a pattern matching algorithm is:

Definition 4.8 Let F be a (non-linear) pattern set. Let ¢o=<{,E> be a p-pattern of F. A
discrimination set of ¢, DS (), is a collection of pairs <P 5,0> where G is a match set in F satis-
fving (i) Y2 L, (ii) there does not exist a match set ¢y in F such thar 2§, and (9, D o)=Y,
with (,,>7Y, and, and P is an incremental binding predicate associated with & such that P s is
not equivalent to false.

Finally, a discrimination tree can be obtained using the algorithm of Proposition 4.5.

4.3. A Match Set Algorithm Using P-Patterns

P-patterns can be used in several different ways to implement matching algorithms. One
alternative is to construct a faster version of the match set pattemn matcher described in Section
4.1.3; this is the alternative explored in this section. Another, less attractive alternative, would be
to extend the algorithm of Section 4.1.2; this alternative is not explored in this chapter.

The idea followed in this section is to modify the algorithm of Section 4.1.3 so that, after
testing some binding predicate the information gained by the evaluation is not thrown away but it
is encoded in p-pattemns which are then, in tumn, used 10 simplify the later evaluation of other
binding predicates.

The computation of the states associated with the nodes of the tree is no longer just a LB-
fsa. There are two functions evaluated sequentially at each node of the input tree. The first func-
tion looks like

F :OpXp—pattern X - * - Xp—pattern, —p —patern
while the second takes the p-pattern produced by the first one and uses its discrimination set and
the actual tree to compute the p-pattern associated with the node, that is,
F ,.p—pattern XT —p —pattern



82

There are variations within this approach. One may always compute F,, or only do it when
there is some match set in the discrimination set that includes a pattern (as opposed to a tree that
appears only as a subpattern of a pattern) in F. The latter approach is a better one since it post-
pones testing the binding predicates until necessary, and some predicates may never be tested as
their applicability is discarded due to structural reasons.

The matching algorithm can be described as follows:

procedure find_stare (T: tree) return 2 state (a p-pattern)

let T=op(Ty, ..., Ty
ori from1ton do

( o;=find_state (T;);

"F:Fl(OP ’¢l’ cee r¢n);

o=F,(v.T )

comment depending on the policy followed and the discrimination
set of v, F', may just return v,

return v,

F,(op 91, . .., 0,)is a simple computation:

Proposition 4.7 Let F be a (non-linear) pattern set over Op. Let op be an n-ary operator in
Op, and let ¢y, . .., 0, be p-patterns in F, with ¢; =<{,,E;>. Let{ be the largest (relative 10 2)
member of ZZp® that matches at op (§y, ..., G,). There is an algorithm that will compute the.
collection E of equalities and inequalities berween variables in C such that for every tree
T=op(Ty,...,T,) &; matches atT; for 1<i<n if and only if <C,E>matches at T .

Proof Assume, without loss of generality, that the sets of variables of ¢;, for 1sisn, are disjoint.
Let f be the matching assignment for § and op ({;, . . ., §,). For each two variables X,and X,in
{ with positions p; and py, p;=p, is in E if the function eq (f (X 1)f (X)), defined below,
retumns frue; p#p, is in E if the function ne (f (X ).f (X)), defined below, returns true.

eq(Op Xy, ..., X)0p Xy, ... ,X’,,))QOp =0p AneqX X' DA neqX, X))
eg X X)2X =X n@i)X =X €E)

ne(Op (X1, ..., X )0p X 1, - .. ,X’,,»%Op#Op'vne(Xl,X'l)v cvne (X, X' n)
neX XYA@ENHX X €E;)

The correctmess of the algorithm is left to the reader. [J

F 5(,T) are the equalities and inequalities known when a leaf in the discrimination tree of ¢
is reached (that is, equalities of those internal nodes whose true branch has been taken, inequali-
ties of those whose false branch has been taken).

To implement the algorithm efficiently it is necessary to precompute F, and to encode
F 5(¢,T) for all useful ¢. This means finding all the ““yseful’’ p-patterns. This can be done using
a closure algorithm. In the algorithm, U contains the p-patterns in the image of F,, (those used as
states of the nodes of the tree) while V contains the p-paterns ir. the image of F';, (those used as
starting points for F ;).
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U={<X D>},
V=0,
repeat
or each op € Op do
let n be the arity of op;

oreach ¢,...,9,inU do
0=F 1(op 91, - - - ®n)s
=Vulo);

U=Uu/{ all those ¢ obtained by evaluating F2(¢,T N
until no more changesin UorV.

Finding all P-patterns

Figure 4.12

The algorithm in Figure 4.12 generates all the p-pattems that can be obtained using F'», but
does not take ‘into consideration that some of them are useless, in the sense that some of the
equalities and inequalities carried in the p-pattern are not used. Removing these p-patterns would
lead to smaller tables (but no faster matching algorithms). This could be done using another clo-
sure algorithm to propagate useful equations backwards from the match sets containing at least
one pattern (as opposed to a subpattern) of F.

Some equalities and inequalities can be determined useless by simple inspection. If an
equality or inequality involves variables where at least one of the them appears only once in all
patterns (representing match sets), then that equality or inequality can be dropped safely from the
p-patterm.

Consider the pattern set containing the patterns p; and p of Figure 4.11.

¢ A
AT
XX + +
TANAN
XYYX

Figure 4.13 shows some of the most interesting parts of the two functions F; and F, for this pat-
tern set. F, is represented by the first-discrimination trees inside the dotted boxes, and F; is
represented by the other edges.
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i h EAg
; true | 1 2=Xj
fl1.1 M N
} - alse
2.1, Jals .
L false /N

5 - X, X,

¢ X, =X}

e /+\ +

é X‘ X’)

. False ?Xlﬁxz

1 \

Xl X2 @ + /—‘
— / \

First Exampic of Fl and F2
Figure 4.13

Restoring the pattern p;=+(X ,X) to the pattern set changes things because it forces some

tests to be performed earlier. The pattern set is:

¢ A A

+ S — XX

N\ [

XX + o+
FANIVAN
XYYX

and Figure 4.14 contains the most interesting parts of the new functions.
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X, X,

Second Example of F1 and F,
Figure 4.14
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4.4. Explicit Term Representations and the Work of Purdom and Brown

The previous sections have assumed that the binding predicates have a single input: the sub-
tree in the subject tree being analyzed. Thus, a reference to a position implies the extraction of a
subtree. All uses of the same position in a discriminating tree may share the extraction cost, but
references to the same position in different discriminating trees imply repeated extractions. The
cost of these extractions depend on the representation of the tree. An alternative approach is to
extend the state information that is manipulated at pattern matching time to include an explicit
representation of the subterms needed for the evaluation of the binding predicate. The subterms
can now be extracted when the extraction cost is minimum, at the point of the matching algo-
rthm where the node representing the subterm is being visited, and they can be propagated from
a node to its ancestors for as long as they are useful and some ancestor of the node might need
them to evaluate a binding predicate.

Whether an explicit representation of the terms is cost-effective depends on the cost to
store, retrieve, and propagate the representation of the subterms and its comparison against the
cost to extract the subterms from the subject tree. It seems likely that the explicit representation
is not the best choice for most tree representations. This section presents one algorithm based on
an explicit term representation developed by Purdom and Brown [PuB87], and discusses briefly
the problems involved in extending it.

The main issue in an algorithm involving an explicit term representation is determining
what subterms have to be kept explicit, and where they should be placed for access by the binding
predicates and for propagation. The algorithm by Purdom and Brown is intended for a Knuth-
Bendix completion algorithm [KnB70] and, as such, places heavy emphasis on the ability to
increase the pattern set dynamically“. The states used are explicit representations of match sets
(which are, as we know, a special type of p-pattemns). Associated with each subpattern in the
match set there is a list of pointers to the subtrees in the subject tree that correspond to the vari-
ables in the subpattern. The encoding of the computation of the new subpatterns uses a ‘‘curried
dag’’ (Section 3.2.2).

The binding predicate of [PuB87] belongs to the same class that we have used before in this
chapter: A\p; =g¢;, where, for each i, p; and g; are positions in p such that pg,, =Pa,- More
i

precisely:

Definition 4.9 Let F be a non-linear pattern set, and let p € Ilp. The slow incremental binding
predicate of p is the predicate of the form /\p; =q;, where, for each i, p; and q; are positions in

p labeled with the same variable and descendants of different children of the root of p.

It is pretty straightforward that the slow incremental binding predicate is actually an incre-
mental binding predicate as defined in Definition 4.7. We call this predicate ‘‘slow’’ because it
may use more queries than the optimal binding predicates presented previously.

The main advantage of using the slow binding predicate is one of simplicity: no special
effort is needed to determine what subterms to encode in the explicit representation and where to
encode them. Simply, pointers to all the variables are kept in the (left-to-right) order in which

1¢ Since the research reported in this dissertation does not consider changing pattern sets, straight comparisons are
not directly meaningful. Another way to tackle the problem of *'changing’’ pattern sets is 10 use a fast algorithm with
the original pattern set and a patch for the updates. When the updates are beyond some threshold, then the complete
new set can be analyzed to obtain new tables for the fast algorithm. In 2 multi-processor situation (which will be quite
common in the near future, it seems), computing the new tables can be done concurrently while using the previous
ones.
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they appear in a linear array. The binding predicate for a pattern with an n-ary operator at the
root uses n such arrays for its evaluation. If the predicate is true, the propagation algorithm
combines the n arrays into a new array corresponding to the variables of the pattern.

Purdom and Brown show, in [PuB87], how to combine the two operations, testing the predi-
cate and propagating values, into a single algorithm that uses a compact rcpresentation of the
binding predicate. Figure 4.15 shows an example of the constructions used by the algorithm.
The top row shows a non-linear pattern. The bottom row shows different versions of its incre-
mental binding predicate. The slow incremental binding predicate is at the left. In the middle,
the predicate and the propagation are described through four equations between variables in the -
left, and right children of the pattern, denoted as left.V; and rightV;, and variables in the pattern
itself, denoted as self.V;. These equations are described in a compact form at the right by simply
listing the slots in the arrays corresponding to the variables.

*

/N
+ o+
ARWAN
XYYX
(11=2.2)(1.2=2.1) self V=left.V, 12
self Vo=leftVy 21

self.V2=right.V1
self.Vl = right.V2

Example of a Slow Incremental Binding Predicate
Figure 4.15

The compact representation at the right of the second row is called a ‘‘substitution map’’ in
[PuB87]. Sce that paper for further details.
Extensions
If we compare the implementation of pattern matching presented in [PuB87] with one using
the ideas of Section 4.1.3, we can note the following sources of inefficiency:
(1)  The use of explicit match sets instead of implicit match sets.
(2)  The use of non-optimal binding predicates.
(3) Somewhat slow testing of the binding predicate, as it has to be interpreted from the sub-
stitution maps.
The last point can be seen as just a detail of the implementation: th: propagation and testing

could have been done by direct encoding into a sequence of instructions, thus yielding a faster
representation but also a probably larger table. The first two points are more important.

For any pattern matching algorithm, the goal of subterm represesentation is to assign a col-
lection of subterms to a state at table construction time. The solving-time values of these sub-
terms are then used either to evaluate the binding predicate or to compute the values of subterms



88

associated with nodes higher in the subject tree. The collection of subterms of interest can be
found using a closure algorithm that starts by assigning to a state those subterms used by its bind-
ing predicate and then repeats computing new subterms until no more need to be found. Since we
assume that the subterms can only be extracted when the algorithm is visiting the root of the
node, any subterm that is needed and is not the root comes from a node lower in the tree; these
are the subterms used in the closure.

An additional problem appears with algorithms involving match sets. In these algorithms,
unlike those involving subpattems, a given state may be reached in more than one “‘way’’. The
problem is to decide where to place the subterms so that they are accessible to the binding predi-
cates in a way independent of how the state was reached. For example, consider the pattern set

Plus Minus
* X * Y
AN
X Y

Figure 4.16 shows part of the functions F; and F, of Section 4.3 for this pattern sct.
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Example of Alignment Problems with Representation
Figure 4.16

The discrimination tree marked ‘‘A’’ requires the presence of the subterm of position
1.1.1, while that at *‘B’" requires 12 . 1. The first value may come from either “C’or ‘D",
while the second may come from either *‘D’’ or *‘E’’. The question is how to lay out the subterm
representation so that “‘C’’, “‘D’’, and *‘E"’, all can place the pointers to the subterms in a loca-
tion that can then be used by ‘“A’* and ‘‘B’’ disregarding how it got there. The answer is that
either “‘E”’ or **C*’ will have to deal with a subterm representation that, from its standpoint, has a
“hole”’. ““C”’, “‘D’’, and “‘E’’ could use [1+1,2.1] as a representation. *‘C"’ would only store
into the first slot and leave the second unmodified, ‘‘E’* would only store into the second and
leave the first unmodified, and ‘‘D’’ would store into both slots.

Choosing the slot assignment to minimize the number of ‘‘holes’’ might be non-trivial. If
the minimization is ignored, which is a safe assumption in most cases, a valid siot assignment can
be chosen by considering all the possible subterms required and leaving space for all of them.

4.5. Related Work
Top-Down Pattern Matching

As in the case of linear pattern matching, top-down algorithms are somewhat simpler, but
slower, than bottom-up algorithms.
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A very simple algorithm for non-linear N-pattem matching based on a top-down traversal is
described in [Sny82]. The algorithm starts by detecting common sub-expressions in the subject
tree. The algorithm then maintains a list of partial matchings, where a partial matching is com-
posed of a pattern, a node in the subject tree, a (maybe incomplete) substitution, and an indication
of what portion of the pattern has already been considered so far. This list is updated as the sub-
ject tree is traversed.

The algorithm requires traversing two lists at each node of the subject tree: the list of
““active’’ partial pattemns to enlarge, and the list of *“possible’’ patterns to start. This makes the
algorithm quite slow. There is no precomputation at all, and the list of patterns is searched
always to determine which new pattemns have 10 be added. It might be possible to pre-analyze the
sct of input patterns so that it is not necessary to traverse the whole list over and over again; prob-
ably some of the ideas in [KMR72] could be used. But it is not clear how to carry the idea further
and get rid of the traversal of the list of active partial patterns.

Splitting Using the Number of Parents

The previous sections have emphasized how to do pattern matching using equality tests on a
subject where common subexpressions have been detected and encoded in the form of a computa-
tion dag. One piece of information present in the computation dag that none of the previous algo-
rithms has used explicitly is the number of parents of a node. In particular, if the number of
parents of a node is just one, then the subterm described by the node is not being used in more
than a single place in the subject. This information could be used to discard from consideration
as members of the match set of the node all those patterns that would require the subterm to
appear more than once.

The main advantage of such an approach would be that if a poruon of the subject does not
contain any common sub-expressions no tests for them would be considered, since the matching
algorithm assigns to the nodes only states corresponding to subterms with a single parent. A state
including binding predicates would be reached only when a subterm in the subject has the
minimum number of parents.

This idea is not explored any further. Probably the most practical application of this idea
would limit itself to differentiating subject nodes with one parent from those with more than one
and likewise with the states. Such an approach could make up for the additional cost of checking
the number of parents of the node.

In theory the algorithm is not fully satisfactory since there is a potential for a combinatorial
explosion in the number of states. Also the algorithm docs not attain the goal of doing pattern
matching on a cost (including evaluation of binding predicates) linear on the number of edges of
the original subject dang. In some scnse, this algorithm is just one method — not particularly
clean — of making context present in the subject available to the matching algorithm. A cleaner
soluticn could be a two-pass algorithm that would, first, in 2 top-down phase, transmit context
information down the subject, and then, in a bottom-up phase, would collect it arid find all the
matches neatly.

4.6. Summary of the Algorithms in this Chapter

This chapter has several new contributions to the theory of non-linear pattern matching.
The key notion is the equation non-linear matching = linear matching + binding test. The
chapter has explored in some detail its implications, obtaining new algorithms that speed up the
matching process by increasing the size of the tables representing the matching functions. In

15 An example is left 1o the reader.
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addition, the results on optimal binding predicates allow further reduction in the matching cost.

A nice property of the algorithms prescnted here is that the extra power of the non-linear
matching is used (for the most part) only on those patterns that need it. If a linear pattern set is
used, the algorithms degenerate to the linear pattern case. The only exception is with a naive
implementation of explicit subterm representations using a substitution map, but careful encoding
can avoid this problem.

This chapter has explored a moderate number of approaches 10 non-linear pattern matching.
Lack of time has prevented the author from following the next obvious step: select a specific
application for non-linear pattern matching, implement several of the algorithms, and measure
their performance. This is a topic for future research.



CHAPTER 5

Bottom-Up Rewrite Systems

Everything that goes up must go down

[after Newton]

Recall the definition of REACHABILITY:

Definition 2.28 Let R be a rewrite system over Op, and let L, and L,,, be two sets of trees over
Op. The REACHABILITY problem for R, L;,, and L, s, givenT e L, and T € L,,, to deter-
mine whether therc is a rewrite sequence T for R applicable at T such that WT)=T, and, if 50,
to produce one such .

If L, is a singleton (G}, then the REACHABILITY problem is called the fixed goal REACHA-
BILITY, and G is called the goal.

In this chapter we study mostly the fixed-goal REACHABILITY problem for a particular class
of rewrite systems. For the most part, the input language, L;, is restricted to be the set of all trees
L, although Section 5.5 answers some questions relative to any set L;, € RECOG. Variable-goal
REACHABILITY is studied in Section 5.3.1. All rewrite rules contain only linear N-patterns.

REACHABILITY, even fixed goal REACHABILITY, is unsolvable in general, since it can model
the HALTING problem, but it can be solved for special classcs of rewrite systems. This chapter
defines two classes of rewrite systems. Bottom-up rewrite systems (BURS) have an algorithm
for solving REACHABILITY; finite bottom-up rewrite systems (finite BURS) have a very efficient
algorithm for solving fixed goal REACHABILITY in ume linear in the size of the input tree. Finite
BURS have an important practical value: Chapter 6 shows how they can be used to solve locally
optimal instruction selection, and Section 7.2 shows how they can be used to define tree
languages and a generalized notion of homomorphism.

The algorithms to solve variable-goal REACHABILITY and fixed-goal REACHABILITY ar¢
based on several notions of state to be associated with the nodes of the input tree. All the notions
satisfy two basic requirements:

(STATE-1)  The collection of states associated with the nodes contains enough information to
characterize all the “‘interesting’’ rewrite sequences that are applicable to the input
tree.

(STATE-2) The states can be computed in a bottom-up pass over the input tree.

In all cases, the *‘interesting’’ rewrite sequences are restricted to be in a bottom-up normal
form: all rewrite applications are done as low in the tree as possible. All non-looping rewrite
sequences can be reordered so that they are in bottom-up normal form. A rewrite sequence for
some input tree T in normal form assigns to each node N in T a local rewrite sequence: a
sequence composed of the rewrite applications that cannot be done ‘‘below’’ N and do not need
the result of applications to nodes ‘‘above’” N. The class BURS contains all those rewrite systems
for which there is a positive integer & such that all local rewrite sequences have at most k¥ rewrite
applications. Section 5.1 defines these notions. There are several useful subclasses of BURS.
Many of them are based on the idea of reduction systems: rewrite systems in which the rules
always ‘‘reduce’’ the size of the input tree. Reduction systems are presented in Section 5.2.
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We use three notions of state in this chapter: proto-states, local rewrite graphs (LR graphs),
and uniquely invertible local rewrite graphs (UI LR graphs). The first notion is used to solve
variable-goal REACHABILITY in BURS, the last two are used for fixed-goal REACHABILITY in f{inite
BURS.

The *‘interesting’’ rewrite sequences considered in the proto-state associated with a node
are all the normal form rewrite sequences applicable to the subtree of the input tree rooted by the
node. Proto-states encode the result of applying these rewrite sequences to the input tree and
allow a three-pass algorithm to solve variable-goal REACHABILITY. The proto-states associated
with the nodes of an input tree can be computed in a bottom-up pass; then they can be consulted
by a top-down traversal to find (if it exists) a local rewrite sequence associated with each node,
which, finally, can be collected in a final bottom-up pass to obtain a rewrite sequence transform-
ing the input tree into the output tree.

Proto-states can contain an unbounded amount of information, which leads to inefficient
algorithms. This is not necessary in many applications. In the notion of a local rewrite graph
(LR graph) used for fixed goal REACHABILITY (Section 5.3), the “‘interesting’’ rewrite sequences
considered are all those normal form rewrite sequences that are apph’cablc16 to the subtree of the
input tree rooted by the node and also can lead to the goal tree. The information stored in the
state is the effect of the local rewrite sequences on members of an extended pattern set. In gen-
eral, this set can be infinite; if it is finite, the rewrite system is said to be finite BURS, and fixed-
goal REACHABILITY can be solved very efficiently.

LR graphs contain more information than is needed to solve fixed-goal RE~THABILITY; the
related notion of a uniquely invertible LR graph (UI LR graph) leads to a smuller number of
graphs (where each graph corresponds to a state). This notion is obtained by restricting further
the set of ‘‘interesting’’ rewrite sequences. UI LR graphs are introduced in Section 5.4. Scction
5.5 discusses some modifications to the algorithms and definitions that can be made when the
input set of interest is some recognizable tree language. The implementation considerations of
the algorithm are discussed in Section 5.6.

The chapter concludes with a brief summary of related work. References to other related
work can also be found in Chapter 6.

5.1. Normal Forms

The basic notion in BURS theory is that of a bottom-up normal form. Due to Proposition
2.14 we can ignore looping rewrite sequences.

Definition 5.1 Let T be a valid rewrite sequence without loops. T is in normal form at e if it is

of the form Ty - - - T, 1o, and

(1) Foralli, 1<i<n, all rewrite rule applications in T; are at positions that are descendants of
i;and,

(2) There is no rewrite sequence U, equivalent to T, and of the form 1y - - - 1, 7o, Where vy is a

permutation of T, starting with a rewrite application of the form <r kip> for some k,
1<k €n, and some position p .

1 is in normal form (everywhere) if it is in rormal form at €, and,
(3) for1<i<n, (t;)@i is in normal form.

16 Actually, just a subset of them; see Section 5.3.2 for details.
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As an example, the rewrite sequence shown in Figure 5 .2 is a valid rewrite sequence for the
rewrite system of Figure 5.1. Itis applicable 1o +0, +(Const, Const )), and is in normal form.

Rewrite Rules
biOp — reg Reg — reg amode — reg
amode amode
" r2 T3
reg — amode Const — amode + — amode
AN
Const reg
L rsg Tg
0 — Const + —= X + - o+
N A\ A\
X0 XY Y X
rq rg ro
+ — biOp - — biOp
AN N AN A\
XY XY XY XY
r10 "

Example of a Rewrite System

Figure 5.1
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+ <r<2+.1> ,* <re,2e2> + <r 2> +
/\—-ri——»/\—r—s———»/\——r&——»/\

0 + 0 + 0 + 0 biO
/N AN /N 7 X
Const Const amode Const amode amode amode amode
+ <ry,2> + <rg,&> + <rge>

0 1 0 re reg 0

X g
amode amode

A Normal-Form Rewrite Sequence

Figure 5.2

Proposition 5.1 Let R be a rewrite system and let ¢ be a valid non-looping rewrite sequence for
R. Then there exists a permutation of ¢ in normal form.
Proof We first construct a permutation of ¢ in normal form at €.

We construct a series of rewrite sequences ¢°,',... such that for each ¢* in the series, o' is
a permutation of ¢, and
*y ¢ is of the form ¢y - o', 0y satisfying part (1) of Def 5.1, and with

length(¢'y -~ - ') =i.

0 is defined to be ¢. ¢° is clearly a permutation of ¢, and 60 satisfies (*) with ¢°;=¢ for j,
1€j<n.

For i 20, ¢'*! is constructed from ¢'. If ¢' is not in normal form at € then, by condition (2)
of Definition 5.2, there exists a ¢' o' =<r lip>y, 1<I<n, which is a permutation of ¢',. Define
¢'*!; to be ¢ ; forall j, 1<j<n and j=#l, define o'*1, tobe ¢, <r.,l/p >, and define ¢'*'gto be .
The new ¢'*is a permutation of ¢ and satisfies (*).

The series 6%0,... cannot be infinite because for any ¢/, i =length (¢'y - - - o' ) < length (9).
Hence there must exist a ¢ such that ¢* is in normal form at €. To obtain a Eermutation of ¢*
which is in normal form, apply the above construction recursively to ¢*1, ..., ¢",. O

A rewrite sequence for an input tree in normal form assigns to each position in the trec a
local rewrite sequence: the rewrite applications done at that position. Formally:

Definition 5.2 Let T be a normal form rewrite sequence of the form T, - - - T, %y that is applicable
0 a tree T. The local rewrite sequence assigned by T to a position p in T is defined by
F(T t,p), where
(1) F(Tnr,¢)isTy and
(2) if p is of the form ilq, for some i, 1<i<n, and T is of the form op(Ty,...,T,), then
F(TyT’p) is F(Tl rIi7Q)-
The local rewrite assignment of T and T is the function assigning to each position in T iis
local rewrite sequence.
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For example the local rewrite sequence assigned by the rewrite sequence of Figure 5.2 at
the position 2 of the input tree is <r0,2> <r,2>.

Proposition 5.2 Let R be a rewrite system for Op, let T be a tree over Op, let p be a position in
T . and let T be a normal form rewrite sequence over R applicable to T .

Let T be a normal form rewrite sequence applicable to a tree T, and let p be a position in
T Let F be the local rewrite assignment of tand T . Let F,,,, be the function assigning F(q)
to each position q in T that is a strict descendant of p, and the null rewrite sequence 1o the other
positions in T. Similarly, let F 2rouna be the function assigning the null rewrite sequence to all
positions in T that are strict descendants of p,and F(q) to all other positions q .

There is a normal form rewrite sequence Ty, Whose local rewrite assignment is Fppiow -
Thelow IS applicable to Tg,. Thereisa normal form rewrite SeqUENCe Ta,pung Whose local rewrite
assignment is Farouna- I T =Toetow T@p) and 1=F (p), then Ty is applicable t0 Tgp T, and
Tarouna 15 applicable 10 1o(T"), where T is Tgp 1 -

Tpeiow LS Said to be the rewrite sequence assigned by T below p. Tgouna iS said to be the
rewrite sequence assigned by Taround p .
Proof Straightforward and left to the reader. [J

Returning to Figure 5.2, the rewrite sequence assigned by the rewrite sequence of the figure
below 2 is <rs,2 «2> <rs2«1>; and that around 2 is <rg,&> <7g,€>.

We can now define the BURS(k) property and the BURS class.

Definition 5.3 Let k be a positive integer and let T be a rewrite sequence in normal form appli-
cable at some input tree T. % is in k-normal form if it is in normal form and each of the local
rewrite sequences assigned by T to the nodes of T is of length at most k.

Let R be a rewrite system over Op, let L, and L,,, be sets of trees over Op, and let k be a
positive integer. The triple <R Ly Lyy> 15 said to satisfy the BURS(k) property if for any two
rees T € L, and T' € L,,, and any sequence T in R, with WT)=T", there is a permutation of ©
which is in k -normal form. The class BURS is composed of those triples <R L,, L, > satisfying
the BURS(k ) property for some positive integer k..

In the rest of this chapter, L;, is frequently L, the set of all trees over the operator set Op.
Also, L, is frequently the singleton {G } for fixed-goal REACHABILITY problems, and, Lo, for
variable-goal REACHABILITY problems. Since this dissertation solves many problems involving
only these special types of triples, frequently we will use the phrase ‘‘a rewrite system R is in
BURS’’ to mean that the triple <R,Lg,,{G }>, or <R.Lg,.Loy>, depending on the context, is in
BURS.

The rest of this chapter assumes only N-pattems because, except in some particular cases,
rules with an X-patter as input pattern inhibit membership in BURS.

Similarly, in general, rewrite systems with non-linear patterns are not in BURS. Non-
linearity in the input patterns could be handled by ““weakening’’ the definition of BURS sc that
instead of allowing only a *‘permutation’’ of the original rewrite sequence, duplication of subse-
quences would be allowed. This would make it possible to ‘‘move forward'’ rewrite applications
done “‘late’’ in the original rewrite sequence by duplicating them in cach of the subtrees matched
early on. Unfortunately, this definition would not match the semantics of many applications.
Non-linear output patterns are more difficult. The multiple copies of the subtrees produced by the
non-linear output pattern can be modified by unrelated rewrite sequences.

In addition, note that in some cases non-linear rewrite systems do not describe the desired
semantics. For example, in a rewrite sysiem describing a target machine (Chapter 6), a symbol
like register will represent a computation value stored into some member of a register class. A
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rewrite rule like —(X ,X ) — 0 is normally intended to apply only to the original input tree, but if
added to the rewrite system, it would also allow rewrite applications like
—~(register ;register) >0, which is probably incorrect as there is no guarantee that both
occurrences of register refer to the same register. Finally, rewrite rules with an input pattern
equivalent to X will, in general, produce unbounded local rewrite sequences and lead to the
failure of the BURS() property.

For all these reasons, the rewrite rules in this chapter are restricted to contain only linear N-
patterns, and do not allow input patterns equivalent to X. For example, if R denotes the rewrite
system of Figure 5.1, then <R,L,, ,{reg }> satisfies the BURS(3) property. An example of a local
rewrite sequence of length 3 is:

+ - biOp — reg — amode
PN

amode amode amode amode

An example of a rewrite system that is not in BURS is the one of Figure 5.3, for L,,={d}.
The only normal form rewrite sequence from a(b (b (..(b(c))...))) to d assigns to each non-root
node an empty local rewrite sequence, and the rest of the sequence is assigned to the root.

Rewrite Rules

_)

Ao —o —p

a
I
a
l

X

Example of a Rewrite System not in BURS

Figure 5.3

Testing the BURS(k) property is easy when both L;, and L,, are Lo, First we prove a
very useful proposition:

Proposition 5.3 Let R be a rewrite system over a set of operators Op, and let k be a positive
integer. There is an algorithm that will generate every rewrite sequence T that is a local rewrite
sequence at some position p of some tree T in Lo, and such that length (T)<k .

Before proving Proposition 3.3 we prove three auxiliary lemmas. The first lemma gives a
strong necessary condition for local rewrite sequences.

Lemma 5.1 Let R be a rewrite system over a set of operators Op. Let T, be a non-empty local
rewrite sequence for some position p of some tree T over Op. Then for every prefix ¢ of T of the
formy <r.q> and such that y=#€, we have
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(1) W has a composition <Cny—By,p>.
(2) q=pls,for some position s of By that does not correspond to a variable.

(3) & has a composition <Cy—Be.p>.

Proof The proof proceeds by induction on the length of y.

We first note that (3) follows from (1) and (2) by Proposition 2.15; (3) is stated just as a
convenience in the proof.

Basis. Assume that length (y)= 1. Then, by definition of local rewrite sequence, y is of the
form <o—f,p>. (1) follows trivially. If (2) were false, then, since the input pattern of r is not
equivalent to X, ¢ would be of the form p /u/t for some position # in P corresponding to a vari-
able and some position ¢, and part (1) of Proposition 2.17 shows that an exchange could be per-
formed between <a—f,p > and <r,g>. If p z¢ this provides a contradiction that 74 is a local
rewrite sequence. If p =€ then oo=X, which contradicts the hypothesis. Hence, (2) must be true.

Induction Step. Assume the body of the proposition true for all prefixes v with
length (W)=k, we want to prove the body of the proposition true for all prefixes y with
length (W) =k+1. Let y be a prefix of 1o of length k+1. By definition of prefix, there is a prefix
W of 1o of length & such that y=y <7’ ,¢">. By part (3) of the inductive hypothesis, (1) is true
for y; let <on,—Py.p > be the composition of y. (2) follows by the same argument used in the
basis, that is, if (2) were false, then ¢ would be of the form p ju//t for some variable position u in
B and some position ¢, and part (1) of Proposition 2.17 would show that an exchange could be
performed between <o,,—py.p> and <r.g>, thus contradicting that 1y is a local rewrite
sequence or that no rules have input pattern equivalent to x. O

A simple corollary to Lemma 5.1 is:

Corollary 5.1 Let g be a local rewrite sequence at a position p of a tree T. Then 1ty has a com-
position, and it is of the form <o, —B,p>.

The second lemma regards testing the equivalence of two rewrite sequences. If the two
rewrite sequences have a composition, then the:r equivalence can be tested by a simple structural
check.

Lemma 5.2 Let R be a rewrite system over Op. Let T and T’ be two rewrite sequences with com-
positions 0,—p- and o—>Py. Assume that Vars(apnVars(c)=C. ThenTis equivalent to v if
and only if there is a one-to-one function f from Vars(aw) into Vars( o) such that f ()= and

f@=p"
Proof Straightforward and left to the reader. [

The final lemma presents some properties regarding the validity of rewrite sequences in a
particular form.

Lemma 5.3 The following statements are true.

(1) Let R be a rewrite system over Op. Any prefix of a valid rewrite sequence over R 15 a valid
rewrite sequence over R.

(2) Let <a—P,p> be a rewrite application for some position p, and let <a’—f',g> be a
rewrite application with q=pl/s, for some position s in B that does not correspond to a
variable in B. Without loss of generality assume that Vars( BynVars(a)=C. Then,

(2.1)  If<a—Bp><a’—op.g> is valid, then By, is unifiable with o
(2.2)  IfBgs is unifiable with o then <0—=B,p><d’—p,q> is valid.
Proof: (1) is straightforward.
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(2.1) The unification assignment is constructed from the tree T provided by the validity of
<0—f,p >, and the assignment required by <o/—f’,q > being applicable at the result of applying
<o—-Bp>twT.

(2.2) If T is a tree at which <0—P,p > is applicable, and © is the assignment resulting from
the match of o to T, (2.2) follows by using the unification assignment, T. and © to construct the
assignment for the validity of <a—f,p> <o/-p,g>.

The details of all the proofs are left to the reader. O

Lemma 5.3 can be used to construct an algorithm determining whether a rewrite sequence
1, satisfying the conditions (1)-(3) indicated in Lemma 5.1 is valid or not. The algorithm tests
the validity of all the prefixes of 7. If any prefix is not valid then, by part (1) of Lemma 5.3, o is
not valid. The validity of a prefix ¢ =y <r ¢ > is tested by first finding the composition of y and
then using part (2) of Lemma 5.3.

Now we return to our original proposition:

Proof of Proposition 5.3: By Lemma 5.1 we can generate a collection of rewrite sequences
that will include all the local rewrite sequences of length no larger than £. For each one of these,
by Lemma 5.3 we test whether the rewrite sequence is valid. Let T be one such valid rewrite
sequence. By construction it has a composition, let it be oy—f,. Let S(1) be the set of those
rewrite sequences that are obtained by reordering the rules in T and which use positions of height
no larger than the maximum of height () and height (Bo). S(7) is a finite and constructible set,
and the permutations of T are those rewrite sequences in S (1) which are equivalent to T. The
equivalence between a rewrite sequence © in S (1) and 1 is equivalent to the conjunction of the
following three conditions: (1) o is applicable to 0 (as a tree), (2) the application produces B, (as
a tree), and (3) the application ‘‘uses’’ all the nodes of o, (i.e. if the nodes of o are initially
marked as being ‘‘unused’’ and are marked as ‘‘used’” whenever their labels are used, then in no
rewrite application in ¢ a variable matches a subtree containing ‘‘unused’’ nodes). T is a local
rewrite sequence for <R,L,.Lo,> if there is no o in S (1) equivalent to 7 violating condition (2)
of Definition 5.2. [J

Given a rewrite system R, <R,Lg,.Lo,> satisfies the BURS(k) property if and only if there
is no valid local rewrite sequence of length k+1. From Proposition 5.3, it folows:

Proposition 5.4 Let R be a rewrite sy<tem over a set of operators Op, and let k be a positive
integer. There is an algorithm that will determine whether <R,Lg,Lo,> satisfies the BURS(k)
property.

A simple consequence of the notion of composition of a rewrite sequence and the definition
of BURS(k) is:

Proposition 5.5 Ler Ry be a rewrite system over Op, and let L; and L, be sets of trees over Op.
Let <R,L;.L,> satisfy the BURS(k ) property for some positive integer k. Then there is a rewrite
system Ry such that <Rp,L; L,> satisfies the BURS(1) property, and such that R, implements the
same transformation as R, and there is a one-1o0-one mapping between the normal form rewrite
sequences in Ry and in R;.

Proof R, is constructed from R, by adding the composition of all the local rewrite sequences in
it. Since there are a finite number of local rewrite sequences, there are a finite number of new
rules added. O

5.2. Some BURS Classes

There are significant classes of rewrite systems in BURS. Reduction rewrite systems are a
class of rewrite systems that proceed by *‘reducing’’ a tree.
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Definition 5.4 A reduction rewrite system, R, over an operator set with arity, Op, is a collection
of rewrite rules of one of two types:

(1) A rename rule is of the form op (X1, . .. X )= op" Ky - - - Xugm)), for some permu-
tation © and some m , formsn.

(2) A reduction rule is either of the form T—op, for some tree T over Op, or
op Xy, ... Xn)—X;, for some 1sism.

The main property of reduction systems is:

Proposition 5.6 Let R be a reduction system over Op, then, <R ,Lg,, ,L,,> is in BURS.

Proof Let R be a reduction system. Any local rewrite sequence 7 satisfying the characterization
of Lemma 5.1 is of one of four forms: (i) T=q, where a.is &, possibly null, rewrite sequence con-
taining only rename rules for nullary operators; (ii) 1=0o/Ba, where « is as above, o is a, possi-
bly null, rewrite sequence containing only rename rules for operators of arity larger than 0, and f
is an application of a reduction rule of the form T —op; (iii) t=o/p’, where o is as above, and {3’
is a single reduction rule of the form op (X, ..., X, y—X;; or (iv) « where ¢ is as above. Let
the arity of the root operator of the input pattern of the first rule in o be n, and the number of dif-
ferent operators in R be m. Since local rewrite sequences have no loops, any candidate rewrite
sequence lx—_s] no longer than n'+m. Membership in BURS follows directly from that and Proposi-
tion 5.1.

It is instructive to show how some particularly tempting extensions to Definition 5.4 are not
in BURS.

Relaxing the definition of rename rules so that it is possible to rename a single operator in
some lower context seems a reasonable extension since the only “‘context’’ employed is the
lower one, and it seems plausible to collect all the desired information in a bottom-up phase and
use it accordingly. The rewrite system containing the rules: a(®X))—aa® X)),
b(b(X)—bb (b X)), b(c)—c,aa(c)—d, and bb (c )—c is a counterexample. This rewrite sys-
tem behaves similarly to the one in Figure 5.3.

Another possible extension to reduction systems would be to allow lower context only in
reductions. Again, this extension includes rewrite systems not in BURS. An example is shown in
Figure 5.4, where +, Ferch , and register are the operators.

+ - o+ + —  register
N A\ T
Fetch Fetch XY register  register
X Y

Second Example of a Rewrite System not in BURS

Figure 5.4
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To show that it does not belong to BURS, take any positive integer & and consider the tree of
height k+3

+

TN

Fe1tch Feltch

Feltch Feltch

i i
Feltch Feltch

register  register

No normal form rewrite sequence yielding ‘‘register’’ has a local rewrite sequence at the
root of this tree of length less than k.

8.3. State Characterization

We now follow the approach described in the introduction of this chapter. A normal form
rewrite sequence defines a local rewrite assignment. Conversely, a local rewrite assignment
uniquely determines one rewrite sequence (up to permutations). This leads to a first characteriza-
tion of the interaction of a rewrite system on a subtree: the proto-state. A proto-state can be used
to solve variable-goal REACHABILITY; later notions have more restricted applicability but are
leaner and allow faster implementations.

5.3.1. Proto-States

Definition 5.5 Let R be a rewrite system over Op, and let <R,L, .Lo,> be in BURS. The proto-
state associated with a tree T is the set of triples <1,T1,T>> such that there is a normal form
rewrite sequence © such that ©(T)=T and T is a local rewrite sequence with t(T\)=T,. T, are
the input trees and T - the output trees of the proto-state.

Proto-states contain enough information to characterize all the rewrite sequences, thus satis-
fying (STATE-1), and can be computed bottom-up, satisfying (STATE-2). This follows directly
from the argument used in the proof of Proposition 5.4, which shows that we can enumerate all
the local rewrite sequences of a rewrite system in BURS. Hence:

Proposition 5.7 Let R be a rewrite system over Op, and let <R L., Lo, > be in BURS. Let St(T)
denote the proto-state associated with tree T. There is a function f such that
St(op Ty, .... TuN=f(op St(T),...5t(T,)).

Variable-goal REACHABILITY between T and 7~ for a system R, can now be solved as fol-
lows:

(1)  Compute all the proto-states of the input tree T as described above.

(2) Compare the goal tree 7° against all the output trees in the local rewrite sequences of the
proto-state associated with T. There will be a rewrite sequence in R from 7T into T if
and only if at least one of the comparisons succeeds. Set N, the current node, to the root,
and set G, the current goal, t0 T" .

(3) LetT=0p(T,,...,T,). Seclect a local rewrite sequence Ty from the proto-state of T,
rewriting some input tree / into G. There must be one. By construction of the local
rewrite sequences, / must have the form Op(G,,...,G,). Repeat this step recursively
forall i, 1<i<n, setting T to T;, G to G;, and N to the root of T;.
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(4) The above steps select, if it exists, a local rewrite assignment corresponding to a normal
form rewrite sequence from T imo T”. A postfix concatenation of the local rewrite
sequences produces the desired rewrite sequence.

If R is in BURS, then each proto-state will be finite, and the above procedure is an algorithm
for solving variable-goal REACHABILITY. Hence,

Proposition 5.8 Let R be a rewrite system over Op, and let <R L, .Lo,> be in BURS. There is
an algorithm 10 solve variable-goal REACHABILITY for R, Lop, and Lo, .

5.3.2. LR graphs

In practice, proto-states may comtain either too many trees, Or trees that are too large, or
both, and the algorithm outlined in the previous section may become impractical. The notions of
LR graphs and UI LR graphs alleviate these problems for fixed-goal REACHABILITY while still
satisfying (STATE-1) and (STATE-2). LR gruphs are studied in this section, while UI LR
graphs are studied in the next section. Each such graph will correspond to a state.

As mentioned at the beginning of this chapter, the notion of LR graphs can be obtained
from that of proto-states by changing what sequences are “‘interesting’’ and modifying the
“information’’ that is encoded in the state. LR graphs consider a special type of normal form
rewrite sequences that may transform the input tree into the (fixed) goal tree.

Definition 5.6 Let R be a rewrite system over Op, and let T be a normal form rewrite sequence
over R applicable to some tree T over Op. For every position p inT, let <ap—>Bp ,p> be the
composition of the local rewrite sequence associated with p by 1. We say that T is efficient if for
every position p in T, for any position q in O, such that there is a variable X at position q in &,
that does not appear in 3, (thus making &, — B, an erasing rewrite rule), T assigns an empty
local rewrite sequence to any position that is a descendant of pliq .

Intitively an efficient rewrite sequence is one without ‘“‘obviously inefficient’” rewrite
applications. The following proposition shows that we can consider only efficient rewrite
sequences for solving fixed-goal REACHABILITY:

Proposition 5.9 Let R be a rewrite system over Op, let T be a tree over Op, and let G be a nul-
lary symbol in Op. There is a rewrite sequence, T, in R, such that ©(T)=G if and only if there is
an efficient rewrite sequence T in R such that T (T)=G .

Proof Let T bc a rewrite sequence in R such that ©(T)=G. First obtain from T an equivalent
rewrite sequence 1, in normal form. T, assigns to each position in T a local rewrite sequence.
Now perform a postorder traversal of the nodes in T removing all the local rewrite sequences that
violate the definition of efficient. The resulting set of local rewrite sequences can be composed to
obtain the desired rewrite sequence T since the only local rewrite sequences removed are those
whose effect will be discarded by the application of an erasing rewrite rule. Note that 7’ is not
necessarily equivalent to T since T’ applies to a larger set of trees since the rewrite applications in
< that were removed need not be applicable for 1’ to be applicable.

The reverse implication is immediate. U
Efficient rewrite sequences also satisfy:

Proposition 5.10 Let R be a rewrite system over Op, let T be a tree over Op, and let G be a
nullary symbol in Op. Let 1 be an ¢fficient rewrite sequence in R such thatv(T)=G. Then T has
a composition.

Proof The proof is left to the reader. It uses Proposition 2.15 and the restriction that the goal G
is a tree with a single node. [J
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Now we continue defining the notion of an LR graph, a state. Intuitively, we will encode
only enough information in the state associated with a node N so that we can decide what local
rewrite sequences can be applied at any node that is an ancestor of N. To determine this, we start
by considering the composition of each local rewrite sequence (Definition 2.24). The input pat-
tern of the composition encodes how much information is needed to determine that the local
rewrite sequence can be applied. Since the information (that is, the patterns) available at a node
is collected by the descendants of the node, the complete set of patterns that have to be encoded
into the states corresponds to some type of closure of the set of input pattens of the local rewrite
sequences under the application of the local rewrite sequences themselves. The extended pat-
tern set is a set of patterns that satisfies the above requirements.

The notion of extended pattern set depends on the rewrite system R and the goal G. This
notion has a technical problem similar to the one present in the definition of match set (Def. 3.4):
we want to collect an interesting set of patterns, but we don’t want to have two equivalent pat-
terns in the collection. The solution used in Def. 3.4 was to draw patterns only from the *‘canoni-
cal set’’ ITg. Unfortunately, here we don’t readily have such a canonical set. (Actually, the
extended pattern set will become a canonical set for further constructions). This makes the
definition more cumbersome than desired.

Definition 5.7 If 1 is a local rewrite sequence with m rewrite applications, and composition
0t—B,, let pre(zi) denote, for 0si<m, the i—th prefix of t (thus pre(t,0)(0) =0, and
pre (tam)(oy) =By

Let R be a rewrite system over Op and let G be a nullary operator in Op. We define three
sets of patterns, I'p ¢, O'r g, and M'g ¢, over Op as the minimum set satisfying the rules (1), (2),
and (3) defined below. The extended pattern set of R and G, EFg ; is a =-reduction (Def. 3.1)
of the union of I'n g, O'r g, and M'r . The set of input patterns, Ip G, is the subset of EFg ¢
that is equivalent to I'p g the set of output patterns, O G, is the subset of EFp g that is
equivalent to O’y ¢ ; and the set of of intermediate patierns, Mg i, is the subset of EF g g that is
equivalent to M'g ¢ .

(1) G belongstoO'g ;.

(2) Let T be a local rewrite sequence with composition 0 — B.. Let p be a pattern in O'g g
non-equivalent to X , and let p’ be a partern equivalent to p and variable-disjoint from B..
If B, unifies with p’, let ¢ be their most general unifier. Let Y(j) denote pre (T,j XO(0)).
Then,

(2.i) If there is no pattern in I'g ¢ equivalent 10 ¥(0), Y(0) is added to I'rgs

(2.ii) For every j,0<j<m, if there is no pattern in M’ ¢ equivalent 10 Y(J), Y(J) is added to
MlR G 5 and

(2.iii)  If there is no pattern in O'g  equivalent to f(m), Y(m) is added to O'g ¢ .

(3) For every pattern p in I'r g, and every child o’ of p, if there is no pattern in O'g g
equivalent to p’, p’ is added 10 O'g ¢ . ’

The intention of the extended pattern set is to reflect all the *‘situations of interest’’ that
may arise in normal form rewrite sequences from trees in L,, into G. Currently L, is restricted
10 be Lo, but hopefully future research will extend the above construction algorithm to more
general input and output languages. In the above definition, I s are the patterns of interest at the
beginning of local rewrite sequences, My ¢ are those at the middle, and O ¢ those at the end of
the local rewrite sequences. The patiems in Og  are those used 10 construct members of I 5
“higher up’’ into the tree. The construction iteration in Definition 5.7 stops at X because we will
characterize only efficient rewrite sequences.
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Definition 5.7 provides a constructive mechanism to compute the extended pattern set
because, by Proposition 5.3 we know how to generate all the local rewrite sequences of normal
form rewrite sequences applicable at trees in Lo, . Figure 5.5 shows the results of the construc-
tive algorithm described in Definition 5.7 in the case where R is defined to be the rewrite system
of Figure 5.1, and G is the pattern reg. The figure presents a table with two columns of pattemns,
corresponding to the input and output nodes.

OR {reg]} IR [reg}
reg Reg amode
+(Const,reg) +Hreg, Const)
amode Const reg
Const biOp (amode ,amode)  +(amode ,amode ) —(amode ,amode)
0 +(reg,0) +amode , Q) +Const,0)
+(0,reg) +(0, amode ) +(0, Const)
+(0, 0) 0
An Extended Pattern Set
Figure 5.5

Note that +(amode ,amode) € Ig ,,, by an application of step (2) in Definition 5.7, with
p=reg and T=<r g, &> <r,,€>, and that +amode ,0) € I, ,,, also by an application of step (2)
with p=reg and T=<rg,e> <r3,e>.

The desired properties of an extended pattern set can be formalized as (1), (2), and (3) in the
propositior: below. We currently know how 10 compute sets with these properties only for the
case when the input sct L;, 1S Lo, -

Proposition 5.11 Let R be a rewrite system over Op, let L., be a set of trees over Op, and let G
be a nullary operator in Op. Let I, M, and O be three sets of patterns over Op, and let (1), (2),
and (3) be the following three statements:

(1) A pattern p is equivalent to some pattern p € I if and only if there is a tree A € L;,, a posi-
tion p in A, and an efficient normal form rewrite sequence T applicable to A such that, if T
is the rewrite sequence assigned by T below p , T is the local rewrite sequence assigned by
T 10 p, 0 is the rewrite sequence assigned by T around p , and [ =1y/9, then:

(1.i) T(A)=GCG,
(1.i1) p matches at n(A@p ),
(1.iii) Let <on;—->Bc_,a> be the composition of . Then {p/is |5 is a position in pt=1{q igis

a position in o which is a (maybe non-strict) descendant of p }.

(2) A pamern p is equivalent 10 some pattern Ee M if and only if the same conditions in (1)
apply except for (1.ii) which is replaced by

(2.ii) p matches at pre (T.k }(T(Agp )), for some k with 1<k <length (1),
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(3) A pattern p is equivalent to some pattern Ee O if and only if the same conditions in (1)
apply except for (1.ii) which is replaced by
(3.ii) p matches at (n(Agp ))-

Then, if Ly, =Lo,, Ir 6. Mg g, and Og ¢ are as defined in Definition 5.7, (1), (2), and (3)
are satisfied by I=Ig 6, M=Mp ,and O=0¢ ;.

Proof We only prove the property for I ¢, the proofs for the other sets are similar

PartI: If p EEE Ip ¢ then p satisfies (1). We show that repeated applications of the gen-
erative steps in Definition 5.7 preserve condition (1).

Let p” be equivalent to some o e Iy » and by induction hypothesis, let A", p T, 7 T 0,
and ¢’ be the values satisfying condition (1). In the application of step (2) of Definition 5.7, let pg
be the s -th child of p’, let T, be the local rewrite sequence with composition <0 —Bs,p >, and let
& be the most general unifier of B,, and po. Let p=0(0y). Let Xy, ... X, be the variables in p,
and let op be any nullary operator in R distinct from G. Let B =Py, op - X,e=0p- We want to
show that p satisfies (1) withp =p’/is, A =A’gp s T the empty rewrite sequence, Tp as given, ¢
the rewrite sequence induced by ©” around p, and {="1¢/$.

(1i)tA)=G.

T(A) = YA gp ) (by definition)
= 0(To(A’ @p 8 ) (since 7 is empty)
= 0(A’ @p o8 (by definition of local rewrite sequence)
= (A" @p p,) (DY definition of most general unifier)
= ¢'(To(A" @p —p)) (DY cOnstruction)
=G (by inductive hypothesis).

(1.ii) p matches at T(Ag,)- Agp) = Aap (since & is empty) = B (by construction). p
matches at B trivially.

(1.iii) Let <cz—P,e> be the composition of {. Then {p/s | s isapositoninp}={q I ¢
is a position in o below p }. (Note that { has a composition because 7, being an efficient rewrite
sequence has one.) Since all patterns are linear and po and P, have disjoint variables, a position
in p corresponds to either a position in o, or to one in pPo.

Part II: If p satisfies (1), thenpe Ip . LetA,p, T, T, To, ¢, and { be the values satisfying
condition (1), and let p be a pattern matching at ©(Ag, ). Let the positionp bepye - - «py, and
for any position ¢ let {(q) denote the local rewrite sequence induced by { at position g. As else-
where, if T is a local rewrite sequence, its composition will be denoted by o..—f;. We construct a
sequence of patterns p° 0%, . . ., p¥ 0 .p¥; With p/; inlg g, and p/ o in Og g, p*; =p, and such
that the sequence corresponds to successive generating steps in Definition 5.7. The sequence is
obtained from { as follows.

p% equals G. and p% equals O,

For all j in 1<j<k, p/ o equals the p;-th child of p/™/, and, p/; equals S(0(p,. - op,):
where G is the most general unifier of p/ 5 and By, . -+ p,)

Note that, since T is efficient, X is not any of the patterns present in the sequence. O

The extended pattern set can now be used to define the LR graphs.

Definition 5.8 Let R be a rewrite system over Op, and let G be a nullary operator in Op. Let
<R,L,,G > be in BURS. If 1 is a local rewrite sequence with m rewrite applications, let pre (T.i)
denote, for 0<i <m, the prefix subsequence of T of length i. The LR graph associated with a tree
T is a graph (V ,E) with labeled edges together with a distinguished set of nodes S, defined as
follows.
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S is the set of patterns in Ig ¢ that match at 7(T) for some normal form rewrite sequence T
with no rewrite application at the root.

V conains all patterns in S , and any patterns in Mg ¢ or in O  equivalent to pre (T.i)(P)
for some local rewrite sequence T of length m, some p in S, and some i, 0<i<m.

There is an edge in E from a pattern p, to another pattern p; both in V if there exists a
rewrite rule r in R such that r(p1)=p;

Figure 5.6 is the LR graph for +(0,+Const ,Const)), using the bottom-up rewrite system of
Figure 5.1, and with goal {reg ). The extended pattemn set on which the LR graph is based is the
one shown in Figure 5.5. Input nodes are shown circled using dotted lines, and output nodes with
solid lines. Note that the input nodes together with R and G uniquely determine the LR graph;
this is why the notion of an LR graph does not distinguish the output nodes explicitly.

Input Tree LR Graph

NN

0 amode amode 0

el

+

Const Const

/+\__—_) e .

BiOp

o nAN

‘amode  amode; amode amode

Example of an LR Graph
Figure 5.6
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If the rewrite system were extended with an additional rewrite rule Mul(X,0)—0,
Mul (X ,0) would become a member of I ., and the pattern X would become a member of Og .
Note that we do not use X to generate new members in EFy ¢, otherwise all the nodes in the LR
graph would be marked as output nodes to reflect the fact that any result obtained by rewriting
can be discarded later using an application of the rewrite rule Mul (X ,0) — 0. The difference
between using X or not corresponds to the difference between tracking all normal forms or only
the efficient ones.

The notion of LR graphs is only practical for fixed-goal REACHABILITY in the case when
EFR G is finite. ’

Proposition 5.12 There exist <R.L,,{G }> in BURS with unbounded EFg ¢ .
Proof By example. The left part of Figure 5.7 shows the only rule of a rewrite system. The right
part shows a tree representative of a class where EF  is unbounded. O

Unbounded Extended Pattern Set

Figure 5.7

The unbound-ness of EFp is not a result of a poor definition of extended pattern sets. For
this example, no finite set of patterns produces LR graphs that can be used to reconstruct the
rewrite sequences using the type of algorithm outlined above for proto-states. This observation
motivates the following definition:
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Definition 5.9 Let R be a rewrite system over Op, let G be a nullary operator in R, and let k be
a positive integer. <R.Lg,,{G }> is said to satisfv the finite BURS(k) property if it satisfies the
BURS(k ) property and EFg ¢ is a finite set. The class finite BURS is composed of those triples
<R.L;, (G }> satisfying the finite BURS(k ) property for some positive integer k.

As in the case of BURS(k) and BURS, frequently the input and output sets of the triple will
be defaulted to Ly, and {G} (or Ly, in variable goal REACHABILITY) and omitted.

The rewrite systems describing the applications studied in this dissertation are finite BURS
(Chapter 6,7). In particular Proposition 5.6 can be strengthened as follows:

Proposition 5.13 Let R be a reduction system over Op. Then, <R.Lg,.Lo,> is in finite BURS.
Proof As in Proposition 5.6, a general local rewrite sequence has the form afa’, where o and o
are sequences of rename rules and B is a single reduction rule. The number of patterns in the
extended pattern set can be bound by bounding the height of the input patterns. If X is the height
of the tallest pattern in R, then the height of any input pattern is at most K ; this is direct if the
reduction rule used in P is of the form p—op , and follows by induction if the reduction rule is of
the form op (X1, . . ., X, )=X;. O

A simple consequence of this definition is:

Proposition 5.14 Let R be a rewrite system over Op, and let G be a nullary operator in Op. Let
<R.Lo,,{G }> be finite BURS. Then the set of all the LR graphs that are LR graphs of some tree
T over Op is finite.

Like proto-states, LR graphs satisfy (STATE-2), that is, they can be computed bottom-up:

Proposition 5.15 Let R be a rewrite system over Op, let G be a nullary operator in Op, and let
<R.L¢,,{G }>be in finite BURS. Let G (T') denote the LR graph associated with tree T. There is
a function f such that G (op Ty, ..., T,))=f (op G (T, G(TR)).

Proof Since in finite BURS the input nodes uniquely characterize the LR graph, the proof will fol-
low from showing how to compute the set of input nodes / of the parent given the set of output
nodes, O; for 1<i<n, of the children. There are two cases 10 consider. The first case is the pat-
temn X. X is equivalent to a pattemn in/ if X is equivalent to some pattern mEFg .

The second case is a pattern p distinct from X . p must be of the form op P1r---,pPn). For
each i in 1<i<n, there is a normal form rewrite sequence 7; such that p; matches at ; (T;). By
part (3) of Definition 5.7, p; is equivalent t0 some patterm in Og . Let 1; be the local rewrite
sequence of x; at T;. If o —B,, is the composition of 1;, then p; matches at B, and B, is
equivalent to an output node in G (T;), as desired. [J

Given a rewrite system R over Op and a nullary operator G in Op, it is semi-decidable
whether <R,Ly,,{G }> satisfies the finite BURS(k ) property. It is an open problem whether there
is a decision procedure. .

Corollary 5.2 Let k be a natural number. Let R be a rewrite system over Op, and let G be a
nullary operator in Op. It is semi-decidable if <R.Lgp,{G }> satisfies the finite BURS(k ) pro-
perty.

Proof First compute the local rewrites sequences of R, deciding in the process if R satisfies the
BURS(k) property. Then compute the extended pattern set for R. If <R.Lg,,{G }> is in finite
BURS, the., by Proposition 5.15, the LR graphs can be computed using a bottom-up tree automa-
ton. Try to construct this B-fsa for the LR graphs. The triple <R,Lg,,{G }> satisfies the finite
BURS(k) property if and only if the construction algorithm completes. O

LR graphs also satisfy (STATE-1):
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Proposition 5.16 Let R be a rewrite system over Op, and let G be a nullary operator in Op,
such that <R.L,, (G }> is in BURS. Let (1) and (2) be the statements described below. If L;, is
Lo, then (1) and (2) are true.

(1) For every tree A in L, every position p in A, and every efficient normal form rewrite
sequence T with T1(A)=G with local rewrite sequence Ty at p of length m, let & be the nor-
mal form rewrite sequence assigned by T below p. There is a path in the LR graph of Agp
of length m and such that the j-th pattern in the path matches pre (10.) Y ®(A@p)) for
0<j<m.

(2) For every tree T, and for every non-looping path pq - * * P, from an input node to an output
node in the LR graph for T there is a tree A € L;,, a positionp in A with Ag, =T, and an
efficient normal form rewrite sequence T with 1(A)=G , local rewrite sequence Toarp, and
with normal form rewrite sequence T assigned below p, such that T has length m and for
0<j<m, p; matches at pre(1,j )(T(Agp))

Proof Both parts follow from Proposition 5.11 and the definition of LR graph. As in Propo-
sition 5.11 this proposition could be simplified substantially since L;, is Lo, - O

LR graphs contain enough information for solving both TERMINATION and CONFLUENCE
(recall the definitions of Section 2.3). A rewrite system is not confluent if there is an LR graph
for which there are two nodes (patterns) that cannot reach a common node (pattern). The
existence of such an LR graph implies the existence of an input tree rewriting into two trees that
cannot be rewritten into a common tree. Thus, testing for CONFLUENCE can be done by testing
the above property in all the LR graphs. In the most straightforward approach, this requires a
finite number of LR graphs for the situation in which the output set is Ly,. TERMINATION is simi-
lar, but the property to test is the existence of a loop in the LR graph. Again, it depends on hav-
ing a finite number of LR graphs.

5.4. Fixed-Goal Reachability and UI LR graphs

The notion of LR graphs leads to a practical algorithm for solving REACHABILITY when
L,, is a finite set. The algorithm is given in Figure 5.8. The algorithm is non-deterministic
because of the step of the line marked (1): “‘ler 1 be a path in G (T;,) ending in Ty, L Itis
clear, from the properties of LR graphs, that any such path will provide an answer. See Section
5.6.1 below for some general comments on a possible implementation of this algorithm.
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function reachability(Tiy » Tou)

let <R Loy L ou™> be in

BURS.

let G(¢) be the LR graph of tree ¢;
call compute—LR —graphs (T, ),
comment compute the LR graphs of R,L,,, in T,;
if T, isanodein G(T)

result = find—sequence (T; T o )
emit result;

return (1rue);

return (false),

procedure compute—LR —~graphs (T);
let Theop(Ty,.... Ty
or each i € [1..n] do
{ call compute—LR —graphs (T;);
G(T)=f (op . GT1),....GT) @)%
assert f exists by Proposition 5.15

function find—sequence (T, ,p) returns result,

let Tbe apath in G (T;,) ending in T,,, and starting at an input node,
where p matches at T, ; /(1)

assert there is at least one such path by Proposition 5.16

let op(T'y, ..., T ) be the input node of 7;

let op(Ty, ..., Tn)=Tiy;

result ,= find—sequence (T,T 1)

result,, = find—sequence (T, T 1)
result =result /- - - result, /iT;
return (result);

Algorithm for Fixed Goal Reachability
Figure 5.8

Definition 5.10 A restriction of an LR graph is a subgraph G of that graph such that G con-
tains all the output patterns of the original graph, G contains at least one input pattern, and, for
every output pattern in G there is at least one path in G starting at an input pattern in G and
reaching the output pasern.

For any output tree the restricted graph will be able to provide a local rewrite sequence T
(line marked (1) in Figure 5.8). Thus, the replacement does not affect solving fixed-goal
REACHABILITY. The strongest restriction on a graph is the **uniquely invertible’’ LR graph.

Definition 5.11 A uniquely invertible LR graph (UI LR graph) is a restriction of an LR graph
in which each node has, at most, only one edge reaching it.
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For an LR graph there may be several UL LR graphs. The replacement of an LR graph by a
UI LR graph corresponds to throwing away many possible rewrite sequences, but nothing is lost
for solving REACHABILITY.

Two LR graphs may have a common UI LR graph. For example, in Figure 5.9, the LR
graph on the left has as an UI LR graph the LR graph on the right. The top row shows the
corresponding input trees. Thus, since states correspond to LR graphs, one way to reduce the
number of different states that are needed to solve REACHABILITY is 10 solve the following prob-
lem:

Definition 5.12 Given a rewrite system R over Op, and a nullary operator G in Op, with
<R.,Lg,,{G }> in finite BURS, the MINIMUM UI LR GRAPH problem consists of assigning to each LR
graph a valid Ul LR graph such that the number of UI LR graphs used is minimum.
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Chapter 8 uses this technique in one application. Unfortunately MINIMUM UI LR GRAPH is NP-
complete.

Proposition 5.17 Let R be a rewrite system over Op, and let G be a nullary operator in Op. Let
<R,Lp, {G }>bein finite BURS. MINIMUM UI LR GRAPH is NP-complete.
Proof by reduction. The NP-complete problem to use is MINIMUM COVER [GaJ80]: Given a col-
lection C of subsets of a finite set S, and a positive integer K<!C!, determine whether C con-
tains a subset ¢’ with 1 ¢’ 1<K such that every element of $ belongs to at least one member of
.

MINIMUM COVER is equivalent to the following graph problem: given a bipartite graph with
vertices A ® B, find the minimum number of nodes in B such that every node in A is connected
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to at least one node in B. The graph problem, in tum, models exactly the situation present in
MINIMUM UI LR GRAPH: the A nodes of the bipartite graph represent the LR graphs, the B nodes
the UI LR graphs, and the edges the fact that one UL LR graph is a valid representative of an LR

graph.

To complete the reduction it is only necessary to show that for any bipartite graph we can
construct a rewrite system modeled by that bipartite graph. Let A and B be as above. The
rewrite system is defined as follows:

(1)  Foreach node B; in B, there is an nullary symbol Np,. For each node A; in A, there is an
nullary symbol N,. There is a nullary symbol goal, and a unary symbol Op, different
from all the other ones.

(2) Foreachnode B; in B, there is a rewrite Op (Np)—goal.

(3)  For each node 4; in A with n incoming edges from nodes B 1...., B,, there are n rewrites
NA."_)NBW'" NA.-—)NB.'
With this definitions, the bipartite graph describing the relationship between LR graphs and
UI LR graphs can be split into two parts. The first part is the desired bipartite graph as sketched
at the left of Figure 5.10, the second part is a very simple bipartite graph that can be solved
immediately. [J

Reduction and NP-Completeness
Figure 5.10

Useless Nodes in LR Graphs

The original LR graphs were constructed to track all the possible rewrite sequences. The
initial construction of the graphs guarantees that each node in the graph is useful, that is, there are
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some trees for which an execution of the procedure reachability (T, . T,,,) will require the pres-
ence of the node. The situation changes after the selection of the UI LR graphs. Since it reduces
the possible normal form rewrite sequences that are tracked by the new states, it may make some
information (nodes) useless. Consider a rewrite system with four rewrite rules: 0— reg,
+HHreg ,0),reg) - reg, Hreg 0)—reg, and Hreg.reg) —reg, and the three LR graphs of Fig-
ure 5.11. Initially the three LR graphs are different. If the edges in thicker pen show the Ul sub-
graph selected, the first and the last LR graphs are identical, but the middle one is not because
+(reg,0) is an output pattern (and an input pattern t00). +(reg,0) was useful becausc
+(+(reg ,0),reg) was an input pattern of the first LR graph. Since that pattemn is now ‘‘useless’’,
the output pattern +(reg ,0) in the middle state can be removed, and the three states become the

same.

Useless Nodes in LR Graphs
Figure 5.11

Detection of useless nodes can be done using a simple propagation algorithm:

Proposition 5.18 Let R be a rewrite system over Op, and let G be a nullary operator in Op. Let
<R.L;, .{G }> be in finite BURS, and let S be a collection of restricted LR graphs (which may or
may not be Ul). A node N in a graph is useful if there is a tree T,, € L, suchthatN ispartofa
path (a local rewrite) T selzcted by a call to reachability (T, ,G), using S as states. If Ly, is L,,
there is an algorithm to deircrmine the set of useful nodes in all the states. :

Proof Note that Proposition 5.16 says that no nodes are useless if S is the set of all LR graphs.
The algorithm is that shown in Figure 5.12. Its correctness is straightforward. O
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procedure useless-nodes()
for each graph G
or each node N in G
{ set mark[N] = (if N =G then useful else useless ),
while (some mark on a node has changed) do
for each graph G do
for each outputtree O inG do
if mark[O]=useful
or each node N reaching O
{ set mark [N} = useful;
Jor each graph G do
for each input node p in G with mark [p]=useful
let p=op(py,....Pn):
oreachie l.n do
{ set mark[p;]=useful in all graphs G

Algorithm for Useless Nodes
Figure 5.12

Detecting Blocks

If R is a rewrite system over Op, G a nullary operator in Op, and L a tree language, a block-
ing tree is a tree in L for which there is no rewrite sequence rewriting it to G. The block detec-
tion problem (Def. 2.28) is determining if there exists such a tree in L.

A given input tree T blocks for some fixed-goal REACHABILITY problem if and only if the
state associated with T does not contain G. If the input language is Lo, there will be an input
wree that blocks if and only if there is a state that does not contain G . Hence,

Proposition 5.19 Ler R be a rewrite system over Op, and let G be a nullary operator in Op. Let
<R.Lpp (G }> be in finite BURS. There is an algorithm 1o solve BLOCKING for <R,Lgp,{G }>.

This section has considered only the case where the set of input trees is Lg,. The next sec-
tion explores some consequences of using a general recognizable set as input.

5.5. Influence of the Input Set ,

The general REACHABILITY problem involves a rewrite system, R, a set of input trees, L;,,
and a set of output trees, L, . The previous sections have studied only some special cases of L,
and L,,,. The limitation on L,,, is not significant for the applications explored in this disserta-
tion, but that on L, could be. For example, Chapter 6 presents methods to solve the C-
REACHABILITY problem and to use this solution for code generation of expression trees. In this
case L;, represents the set of expression trees that can reach the code generator. This set should
be used in determining if the rewrite system is in finite BURS: it could be that the rewrite system
fails in a class of input trees outside of L;,. Hence it is desirable to solve the problems of the pre-
vious sections relative to a general class of input trees. The obvious candidate for this class are
the recognizable sets.
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Thus, it would be ideal to solve the problems attacked in the previous sections for the case
when L;, belongs to RECOG. For completeness, it would also be nice to solve the problem for
L,, in RECOG. This general problem will be the subject of future research but is not explored in
this section. Instead this section assumes that <R,Lg, ,{goal }> is in finite BURS and then solves
some problems relative 1o to some recognizable set L;, .

The three problems considered are: determining if there exists a tree in L;, for which the
rewrite system will block; determining which states (LR graphs or UI LR graphs) are useful in
solving REACHABILITY for trees in L;,; and, determining which nodes in the state (LR graph or
UI LR graph) are useful to solve REACHABILITY for trees inL;,.

The first problem is very easy:

Proposition 5.20 Let <R.Lg,,{G )> be in finite BURS. Let L be a recognizable set. There exists
an algorithm that will determine if there is atree T € L on which R blocks.

Proof Let A, be the B-fsa that computes LR graphs for <R.Lg, {G}>. Let A, be the B-fsa
obtained from A, that accepts a tree if and only if it blocks for <R,Lgp,{G }>. Intersect A, with
the B-fsa that recognizes L obtaining a new automaton A;. Finally, determine whether A, if
empty or not. [

The second problem uses the general construction of Proposition 3.15.

Proposition 5.21 Let R be a rewrite system over Op, and let G be a nullary operator in Op. Let
<R,L,{G }> be in finite BURS, and let Ay be the B-fsa that computes the LR (Ul LR) graphs for
ir. Let L be a recognizable set. There exists an algorithm that will determine which states in Ap
will be assigned to some subtree of atree T € L.

Proof Without loss of generality, we can assume that the B-fsa recognizing L contains only one
state 5t,,j,., that will not lead into an accepting state (in A;). Compute, using Proposition 3.15,
for each node sz, in A, the set B of all those states szg in Ag such that there is atree T with state
st in Ap that would have state sz; in A . After computing it, a state in A will be *‘useful’” if it
belongs to the set B labeling a non-rejecting state in Ay . O

Note that the construction of the previous proof can also be used to solve the ““blocking’’
probiem above: check if any of the rejecting states of A is in the set B labeling a non-rejecting
state of A, . Also note that we could not simply construct the intersection of Ay and A; because
Ap has more information than a simple B-fsa (that is the internals of the LR graphs are impor-
tant).

The third problem is straightforward.

Proposition 5.22 Let R be a rewrite system over Op, and let G be a nullary operator in Op. Let
<R.Lpp.{G }> be in finite BURS. Let L be a recognizable set. Let Ag be the B-fsa computing the
(Ul) LR graphs for R. There exists an algorithm that will determine for each (Ul) LR graph
which nodes (patterns) can be used when solving the REACHABILITY problem for <R .L,{G }>.
Proof First construct, using the previous propositions, a B-fsa that will compute the (UD) LR
graphs and will have no useless states. Then apply the algorithm to compute useless nodes of
Figure 5.12 O

5.6. Representation Issues

There are several ways of implementing the algorithm of Figure 5.8. This section explores
briefly the alternatives that depend on the representation used in the UI LR graphs.
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5.6.1. Implicit Representation

The most important case is when the rewrite system is in finite BURS. In this case the UILR
graphs, the local rewrite sequences, and the input and output patterns, can all be represented by an
index into an adequate set. The computation of the UI LR graphs (the line marked (2) in Figure
5.8) can be encoded in a B-fsa. Finding, given a UI LR graph and an output goal, a local rewrite
and an input goal (the line marked (1) in Figure 5.8) can be precomputed for all possible values,
stored in a table, and then accessed through table lookups.

The implementation of the line marked (1) in Figure 5.8 requires some comment. If the
goal pattem p is X, any path will satisfy the condition indicated in the line marked (1) and, in
particular, a valid alternative is to simply stop the recursion at this point in the input tree. For the
general case, the search for the T, at which p matches can be done at table construction time and
encoded in the tables as described in the next paragraph.

The representation of the B-fsa is similar to the one used for the computation of match sets.
(The reader can see Chapter 3 for details). The representation of the paths in the LR graphs can
be done in several ways. The fastest possible representation is directly as one 1-dimensional
table per UI LR graph, with an entry for each output node giving the index of a rewrite sequence
7. Another alternative is to represent each individual edge in the UI LR graph in a similar form.
In either case the 1-dimensional tables have many empty slots. In the execution of
reachability (T,, T, ) in Figure 5.8, these empty slots are only accessed at the top level, when
asking if T,, belongs to the state. In fixed goal REACHABILITY, this information can be con-
sidered separatedly, encoding the single bit per state of whether a state reaches goal or not by
renumbering states, using a bit-vector, or simply detecting and reporting their existence at solver
construction time as a specificatiori error. If one of these encodings is used, the empty slots can
be considered don’t care entries, and a cheap and efficient encoding is to overlay the rows using a
base and displacement scheme like the one used in YACC [Joh78] (see Figure 5.13). Given a
state number corresponding to a UI LR graph and a tree corresponding to an output node in it, the
BASE array is accessed with the state number and the result value is then added to the index
characterizing the tree to obtain an entry into GOAL. The obtained value is either the desired local
rewrite sequence or just one rewrite rule of it depending on what is encoded.
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5.6.2. Explicit Representation

Another alternative is to represent the UI LR graphs explicitly. Such an approach would
require much smaller tables. The only information that needs to be encoded is the individual
rewrite rules. Their applicability can then be investigated at solving time. The disadvantage is
that the effort spent at solving time will be increased substantially. This approach is not explored
further in this dissertation.

5.7. Related Work

Chronologically, this chapter grew from an attempt to generalize the results used in the
chapter on code generation (Chapter 6) to the context of tree languages (Chapter 7). This
explains the emphasis on fixed-goal REACHABIITY.

The closest research related to that presented in this chapter is in the area of code genera-
tion. Hatcher [HaC] was particularly instrumental in starting the research. Recently, the author
has leamed of several researchers that have developed techniques for code generation that are
special cases of BURS theory [HeD87, WeW86]. Using this chapter’s notation, their tcchniques
involve implicit representation of some type of states for rewrite systems that are strict subclasses
of reduction systems. Their work is discussed in Section 6.4.

The theory introduced in this chapter is used successfully in Chapter 6 to attack the problem
of code generation, and in Chapter 7 for pattern matching and special types of tree transforma-
tions.
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CHAPTER 6

Instruction Selection for Expression Trees

Infinite riches
in a little room

[Christopher Marlowe [1564-1593]]

In this chapter we investigate the optimal selection of instructions and addressing modes for
expression trees. This problem can be modeled as a REACHABILITY problem extended with a cost
metric on the rewrite sequences; the technique used in this chapter to solve this problem is based
on extensions to the results of Chapter 5. The algorithms presented here are used in Chapter 8 to
implement a code generator gencrator.

An expression can be represented as a “‘low level’’ computational dag: a dag showing com-
mon sub-expressions explicitly as subdags with more than one parent, and with nodes represent-
ing low level operations, including explicit memory assignment. (In other words, references to
locations in arrays are described as indirections through displacements from a base location).
Several simplifications must be made to this model before being able to map the problem of gen-
erating code into something similar to REACHABILITY.

The presence of common subexpressions substantially increases the complexity of generat-
ing optimal code. A traditional solution [Hen84, WIW75] is to generate code for dags by ‘‘pul-
ling out’’ the parts of the input expression with more than one use and replacing them by a single
node. The sub-expression then can be evaluated independently and computed into a temporary
which is represented by the new node. In general this simplification will produce non-optimal
code (for example, it could have been cheaper to recompute the sub-expression instead of com-
puting it into a register) but it works reasonably well in practice. Hence, the first simplification
imposed in this chapter is to assume that there are no common subexpressions; that is, that the

computation dag is actually a tree.

Generating code for the expression tree can be phrased as a problem involving a rewrite
system describing the target machine architecture and some properties of the operators present in
the expression tree. The effect of an instruction can be modeled as a rewrite rule by which some
subtree representing the action of the instruction can be replaced by another representing its
result. For example, the rewrite rule

+ — reg
reg reg

could represent a 3-address, register-to-register, ““Add”’ instruction. Here, the nullary operator
reg models a whole class of registers, not one particular member of the class. Rewrite rules can
also be used to facilitate the description of the target machine by providing some type of
‘‘abstraction’’ facility, as in:
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+ = biOp
AN AN
XY XY

or to model such algebraic properties as commutative 0perators:

and other algebraic properties such as:

+ = X
N\
X0

The completion of the computation is represented by a distinguished nullary operator, G,
generated by rewrite rules such as register —G . The instructions described through the rewrite
system are ‘‘virtual”’ instructions: they need not be implemented directly by any one instruction
in the physical hardware and can be implemented as an in-line sequence of physical instructions
or by a call to run-time support routines. A rewrite sequence from an expression tree into G
corresponds to an instruction sequence implementing the expression tree.

The operators of the expression tree and intermediate trees manipulated by the rewrite sys-
tem have associated artributes. Following [Hen84], these attributes can be classified into three
groups depending on how their values affect the instruction sequences for an expression tree.
Mandatory atributes are those whose value influences whether the shape of an instruction
sequence is correct or not. A typical example is the data type of the operators; the correct instruc-
tion sequence for +(register ,register) will depend on the relationship between the types of ‘+’
and the two register symbols. Incidental attributes are those whose value is only used in the
details, not the shape of the instruction sequence. An example is a nullary symbol constant: it
models any constant!”; which one is not important to determine the correct shape of the instruc-
tion sequence. Optional atiributes are those whose value is important to determine the best
instruction sequence, but discarding them still produces correct sequences.

Atributes with a finite domain set can be encoded syntactically into the names of the sym-
bols. For example, if the data type has three possible values, byte , word , and long , the encoding
of the data type attribute of the operator register produces the operators register_b, register_w,
and register_I. One advantage of encoding mandatory attributes syntactically is that the correct-
ness of the instruction sequences emitted can be enforced through syntactic means. If optional
attributes are also encoded syntactically then the optimality of the sequence can be treated identi-
cally. [AGHS84] contains a discussion of the advantages (and disadvantages) of encoding the
mandatory attributes syntactically. Since this chapter and Chapter 8 model the selection of
instructions exclusively through the use of a rewriie system with linear N-patterns, all mandatory
and some optional attributes are encoded syntactically.

It may be impossible, or impractical, to encode some attributes syntactically. This may be
the case if the register set of the target architecture is not “uniform”’ with ‘‘even-odd™’

Y7 If the target machine distinguished between constants of different size then the ranges of the constants would
be either mandatory or incidental attributes depending on the architecture.
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constraints on register pairs, special registers, or similar things. This problem can be alleviated,
at some cost in the quality of the generated code, by modifying the ‘“‘virtual”’ target architecture.
[Hen84] discusses in detail a successful code generator generator based on this purely syntactic
approach.

If a target machine architecture is described as suggested above, a rewrite sequence for an
expression tree into goal corresponds to a valid instruction sequence for the expression tree. Any
such instruction sequence can be provided with a cost, and a resource usage. The cost quantifies
the *‘goodness’’ of the sequence. Examples can be the number of bytes required to represent the
sequence and the number of cycles required to execute it. The resource usage describes how -
many resources the sequence needs for its evaluation. The prototypical example of a resource is a
register. The problem of obtaining optimal code for an expression tree T using a machine
description can now be phrased as finding a rewrite sequence of the machine description that will
transform T into goal with minimum cost and with resource usage within the maximum number
of resources available. This problem resembles the REACHABILITY problem, except for the two
additional requirements: minimal cost, and limited number of resources.

Dealing optimally with a limited number of registers is a difficult problem. There are two
major difficulties. One is that it is no longer possible t0 restrict our attention to rewrite sequences
in bottom-up normal form: if the number of resources employed to hold a computation value is
not always constant (as is the case with a value of type double requiring twice the number of
registers than one of type single) there are non-bottom-up rewrite sequences that have lower
resource usage, and equal cost, than any bottom-up normal form rewrite sequence [AJU77].

As an example of this difficulty consider an architecture having 6 identical registers and
consider the expression tree sketched in Figure 6.1. Further, assume that the architecture is such
that the number of resources to compute the lower two subtrees is 5, while those for the two
upper subtrees is 3, and that the number of registers required to hold the value of the two lower
subtrees is 1, while the two upper subtrees require 3. Then, there is a rewrite sequence that com-
putes the tree using only the 6 available registers, but there is no rewrite sequence in hottom-up
normal that does so. The desired sequence first computes the lower left subtree anc saves the
value using a single register; then computes the complete right subtree using the remaining 5 free
registers, saves the value in 3 registers and finally completes the evaluation of the top left subtree
using the saved value and the 2 free registers.



Example of a Optimal Sequence not in Normal Form

Figure 6.1

The second difficulty is that the resource usage of a rewrite sequence is not the sum of the
resource usages of its components, as the example above also showed. As we will see later in
this chapter, this characteristic would inhibit using fast techniques to find the optimal rewrite
sequence, even if we were willing to restrict our attention only to bottom-up normal form
SEQUENnCes.

If, as in many target machine architectures, there is a finite number of resources, the limita-
tion must be removed somehow. A common simplification is to assume an infinite number of
registers. Code generation is then done using ‘‘virtual’’ registers which are later mapped
somehow into ‘‘physical’’ registers. Two ways of doing this mapping are ‘‘on-the-fly’’, and
“‘globally’”. On-the-fly register allocation is easy and computationally cheap. Global register
allocation is ‘‘global’’ to some program unit, for example, expressions, basic blocks, procedures,
separately compilable units, or the complete load module. A recent technique is based on the
notion of *‘interference graphs’* and *‘graph coloring’’ [Cha82]. The computational cost of using
this technique is related to the size of the program unit, and to the *‘complexity’’ of the unit itself.

The C-REACHABILITY problem is, given a rewrite system R and two trees T and T, to deter-
mine whether there is a rewrite sequence in R from T to T' and, if so, t0 find the one with
minimum cost. This chapter extends the techniques of Chapter S for REACHABILITY to C-
REACHABILITY. C-REACHABILITY provides a solution to code generation with no constraints on
the number of registers used. This later problem is frequently also called instruction selection.
The notion of blocking (Definition 2.28) applies well to this simplified model of code generation:
a block corresponds to an input tree for which no code could be generated. Since this is a code
generator error, it should be corrected by modifying either the set of input trees or the set of
rewrite rules available. Sometimes [Hen84] blocking is called intrinsic blocking to differentiate
it from algorithm-induced blocking in which code cannot be generated for some input tree due to
an inadequacy of a code generation algorithm.

The next section defines formally a cost metric for rewrite sequences, C-REACHABILITY, and
the notion of an instruction description. Section 6.2 defines an extension of the LR graphs intro-
duced in Chapter 5, called the 8-LR graphs, and presents a sufficient condition for the existence
of a finite number of them. Then, Section 6.3 discusses the modifications that are needed to
apply the algorithms for REACHABILITY {0 solve C-REACHABILITY. The two last sections discuss
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related work and present some conclusions. Chapter 8 shows how the theory and techniques
developed in this chapter are used to implement a code-generator generator.

6.1. Basic Definitions

““Optimal’’ code only makes sense in the presence of some cost metric. Since our approach
to code generation is based strictly on rewrite systems, this metric is defined on rewrite
sequences. The resulting notion is that of an extended rewrite system: a rewrite system where a
non-negative cost is associated with each rewrite rule.

Definition 6.1 An extended rewrite system R, is a pair <R,cost>, where R is a rewrite system,
and cost is a function associating with each rewrite rule r in R a non-negative integer. R, is
said to be an extension of R.

If T is a rewrite sequence in R, the cost of T is the sum of the costs of all the rewrite rules in
T.

Restricting the cost of a sequence to be linear on the cost of its composing rewrite rules is
intrinsic to the approach presented in this chapter. It is possible to relax the linearity constraint to
be a linear combination (this would require some redefinitions) but non-linear combinations are
outside our approach. The reason will be apparent after defining the notion of a 3-LR graph.

The main problem investigated in this chapter is:

Definition 6.2 Let R, be an extended rewrite system over Op, and let L; and L, be two sets of
trees over Op. The minimum cost REACHABILITY problem for R, L;, and L,, denoted by C-
REACHABILITY, consists in determining, given Te L; and T € L,, whether there is a rewrite
sequence T from R, such that 1(T )= T, and if so to produce one such T with cost minimum over
all rewrite sequences in R, rewriting T to T .

If L, is a singleton (G}, then the C-REACHABILITY problem is said to be fixed-goal C-
REACHABILITY, and G is called the goal.

Fixed goal C-REACHABILITY provides a solution to instruction selection. Instruction selec-
tion uses a special class of extended rewrite systems, the instruction set descriptions. These
extended rewrite systems are given a ‘‘semantics’’ by associating with each rewrite rule an unin-
terpreted string.

Definition 6.3 Let Op, OpC, and IfC be three mutally disjoint sets of operators, called the
input operators, the generic operators, and the instruction fragment symbols, with all the opera-
tors in IfC being nullary, and one of them being a distinguished member G. An instruction set
description over Op, OpC, and IfC is an extended rewrite system where the rewrite system is a
reduction system R, over Op © OpC ®IfC rogether with a function assigning to each rewrite
rule its semantic action, a (maybe null) string word in some alphabe:.

Three types of rewrite rules are given special names:

An instruction fragment is a reduction rule of the form p — cl wherecleIfCandp isa
pattern without variables.

A genmeric  operator  rewrite s a rename rule of the form
op Xy, ... X,)—>op'(Xy,....X,) whereop € Op and op’ € OpC.

A commutative  operator rewrite is a rename rule of the form
opXy, ..., X))o opXy, . ... Xg) wherenis a permutation of 1..n.

An instruction set description is flat if IfC is a singleton, otherwise it is factored. An
instruction set description has operator classes if OpC # .
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An instruction set description is a simple machine grammar if it has only instruction frag-
ment and generic operator rewrites.

The original article introducing the Graham-Glanville technique [G1G78] used only instruc-
tion fragment rewrites. [Hen84] used factored machine descriptions with operator classes, but
handled commutatdve operators through transformations on the machine description itself. Later
we will see that erasing reduction rules are difficult to handle with our approach.

An application of a rewrite rule transforms a tree T into another tree 77; the semantic
actions extend the mapping to attributed trees. By extension, the sequence of semantic actions
associated with a rewrite sequence from an input tree T into 7 defines the value of the attributes
of 7. In practice, the semantic actions also have side-effects which are used to emit instructions
as they are found. The instruction selection problem can be solved by first solving the fixed-goal
C-REACHABILITY problem for the rewrite system, thus obtaining a rewrite sequence for the input
tree T into the goal G, and then using this rewrite sequence to rewrite 7 into G while using the
semantic actions associated with each rewrite rule in the rewrite sequence 1o find the attributes of
the intermediate trees.

We will not discuss how to write the semantic actions (sec [Hen84] for details), but we
explain how some of them can be null. A simple example is a rcname rule corresponding 1o an
abstraction like amode_index =amode where amode and amode_index have exactly the same
attributes. Formally, the semantic action would copy all the attributes of amode_index into the
corresponding attributes of amode , but it may be possible 1o do better. For instance, assume that
the attributes are represented independently of the intermediate tree as objects pointed to by a
semantic stack. Then a null semantic action, leaving the stack undisturbed, would have the
desired effect. A similar situation would happen if a node in an intermediate tree is represented
by an object and the rewrite application only changes its ““label”’ field, leaving the ‘‘attribute’
fields unchanged. Even more, if no later semantic action refers to the label of the node, the origi-
nal label could be left unchanged; this works correctly because we do not use the label of the
intermediate tree to determine what rewrite rules are applicable: that decision was made when
solving the C-REACHABILITY problem.

A more complicated example is a generic operator rewrite rule like +(X,Y)—biOp (X.,Y).
One possible semantic action would change the node + into biOp and update an attribute, class,
of biOp to indicate that that biOp is an abstraction of a +; later semantic actions would then use
the class atsibute. Another possibility is to leave the + node unmodified, and to write the later
semantic actions so that they use the label of the node instead of the class attibute. In the
second case the semantic action can be null.

As an cxample of a situation where a semantic action cannot be null consider the commuta-
tive rewrite rule +(X,Y)—+Y ,X). Although no ‘‘new’’ attributes are computed in this rewrite
application. some action will be necessary so that references later in the rewrite sequence to posi-
tions in the right subtree of + (the X) wil find the values that previously were in the left subtree
of +. What speci.ic computation is done depends on how the intermediate trees anc their attri-
butes are stored. A similar situation occurs with the rewrite rule +(X L0)—=X.

The formalization of the instruction selection problem is as follows:

Definition 6.4 Let L be a set of trees over Op, and let ISD be an instruction set description over
Op (and OpC and IfC) with G its goal symbol. The unconstrained code generation problem,

UCODE?®, consists in determining, for each input tree T in L, whether there is a rewrite sequence

18 The U stands for “‘unconstrained”’. The constrained codc generation problem, CCODE, not defined here, is the
corresponding problem where the number of resources used by the sequence of semantic actions is constrained to be
smalier than some value.
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1 from ISD, such that W(T)=G , and if so to produce the sequence of semantic actions of sucha”t
with the additional property of having a cost minimum over all rewrite sequences reducing T to
G.

Clearly, solving C-REACHABILITY provides a solution to UCODE, but the converse is not
necessarily true due to the presence of null semantic actions (see section 6.3).

Since the rewrite system underlying an instruction set description is a reduction system, we
have:

Proposition 6.1 Lct R be the rewrite system of an instruction set description over Op with goal '
G . Then <R,L¢,,{G }> is in finite-BURS.

Figure 6.2 gives an example of an instruction set description. The underlying rewrite sys-
tem is the same as that of Figure 5.1. In the figure, Op = {0,Const ,Reg +,~} , OpC = {biOp },
and IfC = {reg.amode}. The rewrite rules correspond to a 2-address operation, a load, two
rename rules, three addressing modes, one commutative Operator, two operator class rewrite
rules, and a simple reduction rule corresponding to an algebraic law. The first column indicates
the type of the rewrite rule (Frag = instruction fragment, GenOp = generic operator, Comm =
commutative operator, Red = non-erasing reduction), the second column the rewrite rule itself,
and the last two columns its cost and an indication of the whether the semantic action is null or
not.
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Type | Rewrite Cost | Action
Frag SN 1 -
biOp reg
amode amode
Frag — 0 -
Reg reg
Frag - 1 -
amode reg
Frag N 0 null
0 Const
Frag N 0 -
reg amode
Frag N 0 -
Const amode
Frag SN 0 -
+ amode
PN
Const reg
Comm - 0 -
+ +
AN AN
XY Y X
GenOp N 0 null
+ biOp
AN N\
XY XY
GenOp - 0 null
- biOp
VAN A\
XY XY
Red -— 0 -
+ X
AN
X0

Example of an Instruction Set Description

Figure 6.2
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In Figure 6.2 the cost of a rewrite rule is 1 if the rewrite rule corresponds to an instruction
and O otherwise. Other examples of cost functions are the number of bytes used to represent an
instruction sequence, the number of bytes of memory data touched by the execution of an instruc-
tion sequence, and the number of cycles needed to execute an instruction sequence. Note that the
last two cost functions cannot be modeled accurately in our framework in the presence of several
important architecture features such as pipelines, cache memory, and page faults. As in the case
of a finite number of registers, the solution is to ignore the limitation of the model, generating as
good a code as possible and later using an instruction scheduling algorithm to improve the
obtained instruction sequence.

6.2. 5-LR Graphs

Chapter 5 gives two notions of state for solving REACHABILITY: LR graph and UI' LR graph.
This chapter shows how to enrich these notions with cost information. The new notions are
called 8-LR graphs, discussed in this section, and &-UI LR graphs, which are discussed in the
next one. Although not all extensions of a finite-BURS rewrite system will have a finite number
of 8-LR graphs, extended rewrite systems that model real instructions sets have a finite number of
8-LR graphs. This observation leads to a code gencrator generator system described in Chapter 8.

Since the cost of a rewrite sequence does not depend on the particular order of its com-
ponents, the rewrite sequence of minimum cost in a rewrite system can be found by considering
only rewrite sequences in bottom-up normal form. Hence, it is meaningful to try to extend the
notion of an LR graph by simply extending the meaning of its nodes. In a first approach, which
we call full cost LR graph, the nodes of the graph for a tree T represent the pairs <p,c(p)>,
where ¢ (p) is the minimum cost required to rewrite T into a pattern of interest p, while the paths
would represent local rewrite sequences with minimum cost. This definition leads to a notion
that can be used to solve C-REACHABILITY in a manner very similar to that used to solve fixed-
goal REACHABILITY: a first pass, bottom-up, computing the state information; a second pass, 10p-

down, selecting minimum cost local rewrite sequences; and a third pass, bottom-up, collecting
these local rewrite sequences.

Unfortunately, full cost LR graphs do not lead to an efficient implementation. The main
problem is that only a few trivial extended rewrite systems will have a finite number of full cost
LR graphs. Most interesting systems have unbounded sets of trees for which the minimum cost
of rewriting a tree into a given pattern p 1is a function that grows with the height of the tree (an
example is the system of Figure 6.2). This unboundness precludes the use of a fully implicit
representation of the states and the implementation of the phases as simple table lookups. And, if
the costs are carried explicitly at C-REACHABILITY solving time, the computation of the
minimum cost requires additions and comparisons in the first, bottom-up, computation phase.

The notion of &-LR graphs is an elaboration of the one presented above based on the obser-
vation that there are only two main requirements for the information kept in the states, similar to
those required of states in Chapter 5:

(C-STATE-1) The collection of states associated with the nodes contains enough information to
characterize the minimum-cost rewrite sequence applicable to the input cost reach-
ing the goal tree.

(C-STATE-2) The states can be computed in a bottom-up pass over the input tree.

Note that neither (C-STATE-1) nor (C-STATE-2) indicate that the states need to encode the
cost of the minimum cost rewrite sequence. The notion of a full cost LR graph satisfies both (C-
STATE-1) and (STATE-2), but it is too expensive. A first attempt at a new notion of state would
record not the costs themselves, but only their relative ordering. This certainly satisfies (C-
STATE-1), but, as the reader can verify, does not satisfy (C-STATE-2). The correct notion of
state is somewhere in between these two notions: it stores the differcace between the costs associ-
ated with the pattems in the state. We call this notion a 8-LR graph, and it can be obtained from
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the notion of a full cost LR graph by finding the smallest of all the costs associated with nodes in
the full cost LR graph and then subtracting this value from all of the costs. Figure 6.3 is the ana-
log of Figurc 5.6 but showing 8-LR graphs instead of LR graphs. The & costs are shown to
immediately to the right of the patterns in bold font, and the full costs to their right in italics.

Input Tree State
[ 0 I 0 !
+ A +
! _—>
0 SN TN
*0 amode amode 0

Const Const e ’ l 1 2

0 0/1
.
e

VRN / N\

0 re'gf reg

ST 0 0

Example of a 8 LR Graph

Figure 6.3

There are two differences between the 8-LR graphs and the LR graphs in Figure 6.3 and
Figure 5.6. One is the addition of the cost information, the other is that the edge between amode
and reg has been removed because it does not belong to a rewrite sequence with minimum cost.

8-LR graphs (and 8-UI LR graphs) are uscd to solve C-REACHABILITY in a slightly different
way than the way in which LR graphs are used to solve REACHABILITY. If the cost information is
removed from the 8-LR graphs the result is a restriction of the corresponding LR and UI LR
graphs. This restriction is enough to satisfy (C-STATE-1). The cost information in the & graphs
is present only to satisfy (C-STATE-2), to be able to compute the states in a bottom-up pass.
This situation was formalized in the notion of LB-fsa of Section 2.4.1, and is explored in Section
6.3.

The formal definition of a 3-LR graph is:
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Definition 6.5 Let R be a rewrite system over Op, let G be a nullary operator in Op, let
<R .cost> be an extended rewrite system, and let <R L¢,,{G }> be in BURS. The 8-LR graph asso-
ciated with a tree T over Op is « graph G =(V ,E) defined as follows.

Let (V.E) be the LR graph of T for R and G. Define, for a pattern p € Ey, its cost, c(p),
10 be the cost of the minimum cost rewrite sequence in R, from T into p. Let C i, be the
minimum value of c¢(p) for all p in E,. The members of V are pairs <p.c (P)—C > Where
pe Vo The members of E are those labeled edges <py,pr> in Eo with label T, for which
c (pp=c (p+cost (Ty).

It follows that for any tree T, the graph that contains the same edges as the 6-LR graphof T |
but whose vertices are only the patterns is a restriction (Def. 5.10) of the LR graphof T.

The formalization of (C-STATE-1) and (C-STATE-2) are Propositions 6.2 and 6.3 respec-
tively. Their proofs follow in an straightforward way from the corresponding propositions for LR
graphs.

Proposition 6.2 Let R be a rewrite system over Op, and let G be a nullary operator in Op, such
that <R L., ,{G }> is in BURS. Let <R,cost> be an extended rewrite system. Let (1) and (2) be the
statements described below. If L, is Lo, then ( 1) and (2) are true.

(1) For every tree A in L,,, every position p in A, and every efficient minimum-cost normal
form rewrite sequence T with ©(A)=G with local rewrite sequence To at p of length m, let
. be the normal form rewrite sequence assigned by T below p. There is a path in the 8-LR
graph of Ag, of length m and such that the j-th pattern in the path matches
pre (To.) ) ((Agp ) for 0sjsm.

(2) For every tree T, and for every non-looping path 0o~ * * Pm from an input node to an output
node in the 8-LR graph for T there is a tree A € L,, a position p in A with Ag, =T, and
an efficient minimum-cost normal form rewrite sequence T with T(A)=G, local rewrite
sequence Ty at p , and with normal form rewrite sequence T assigned below p , such tha: Ty
has length m and for 0Sj<m, p; matches at pre (T.J Nm(Agp))

Proposition 6.3 Let R be a rewrite system over Op, let G be a nullary operator in Op, let
<R.cost> be an extended rewrite system, and let <R,Lop,{G }> be in finite BURS. Let Gr(T)
denote the 8-LR graph associated with the tree T. There is a function f such that
Grop(Ty, ... .TuN)=f (0p,Gr (T 1),..Gr (T, )).

The following example shows that in general, LR graphs do not provide enough informa-
tion to solve C-REACHABILITY. Consider the rewrite system in Figure 6.4, where the integer on
the right is the cost of the rewrite rule to its left.
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+(reg .amode )—»amode 0
+Hamode ,reg y—amode 0
amode —reg 1

Const —»amode 0O

0

reg —amode

Example of Different 3-LR graphs per LR graph

Figure 6.4

There are input trees with the same LR graph but with different 8-LR graphs. The 6-LR
graph for the tree +Const ,reg ) would be:

/\

amode reg 0 1

amode — > reg
+ 1

reg amode

while the 8-LR graph for the tree +(reg ,Const) would be:

/\

amode reg 0 1

amode — > reg
+ 0

reg amode

Both trees have the same LR graph.

Finite Number of 3-LR Graphs

The definition of 8-LR graph does not guarantee a finite number of states, even if the under-
lving rewrite system is finite BURS. The top of Figure 6.5 shows such a rewrite system. To
show that it is necessary to track an unbounded number of states, consider the class of trees
represented at the bottom of the figure. There are two possible disjoint rewrite sequences rewrit-
ing this tree into goal: one using amode, the other using imode. Which one yields the lowest
cost depends on whether there are more or fewer nodes labeled with ‘+’ than labeled with Fezch.

It is important to note that the lack of finiteness is not a deficiency of the definition of 6-LR
graphs: any definition that is based on the bottom-up traversal paradigm that we use in Chapter 5
and in this chapter, requires an unbounded number of states to count the sizes of each tree and
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compare them.

Rewrite
Fetch (Const )>amode
Fetch (amode)—amode
+(Const .amode )—amode
amode —goal
Const —imode
Fetch (imode )—imode
+(Const ,imode )—imode
imode —goal

Ot = =D = I

PN
Const +

Const +

Const .
[
[ ]

Fetch

I
Feich

l
Fetch

Const

Unbounded Number of 3-LR Graphs
Figure 6.5

Determining whether there will be a finite number of 8-LR graphs for some extension of a
rewrite system is semi-decidable if we already know that the rewrite system is in finite BURS.

Proposition 6.4 Let R be a rewrite system over Op, and let G be a nullary operator in Op, with
<R,Lo,,{G }> in finite BURS. Let <R,cost> be an extension of R. There is a procedure that will
generate all the 8-LR graphs for <R.cost> and G and will stop if there is a finite number of them:.
Proof A closure algorithm that generates keeps generating 8-LR graphs while necessary will stop
if and only if there is a finite number of 8-LR graphs. [

Although Figure 6.5 generates an unbounded number of 8-LR graphs, a simple modification
guarantees a bounded number of states. If reg is added, together with the rewrite ruless
amode —>reg, imode —reg, and reg —imode, and reg — amode, then, the two rewrite
sequences cease to be disjoint, since it is possible to switch from one to the other. This implies
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that the difference between the minimum cost in one sequence and the other is never larger than
the cost required to switch from one sequence to the other. Fortunately, the new rewrite system is
more representative of ‘‘real’”’ machine architectures.

The remainder of this section gives a sufficient condition for the existence of a finite
number of 8-LR graphs. An intuitive discussion of the situation is given using a graphical
representation introduced in [Hen84]: the cost diagrams. Such a diagram is an exact description
of the situation only for trees with a unique rewrite ‘‘thread’, as with trees that contain only
unary and nullary operators, but hopefully it will help the intuition of the reader.

The horizontal axis of a cost diagram corresponds to the size of the wree along its only
thread. The vertical axis indicates the cost associated with a rewritten tree. A rewrite sequence is
described through a path: a connected sequence of straight segments, one for each rewrite rule in
the sequence. Several rewrite sequences will show as several paths. Paths may split, join, and
cross, according to the behavior of their associated rewrite sequences. The optimal code is that
associated with the lowest path that reaches the end of the thread (that is, it does not biock).

In this graphical presentation, the &LR graph associated with a subtree corresponds to a
vertical slice of the cost diagram, with a horizontal coordinate corresponding to the subtree. The
paths in the slice correspond to the paths in the 8-LR graph; since the absolute cost is the vertical
coordinate of the diagram, the relative cost is related to the distance between the paths. Asserting
that the number of 8-LR graph is finite is equivalent to saying that the distances between paths
are bounded.

Figure 6.6 shows a tree thread where there are two possible reduction sequences. If both
were 10 reach the end of the thread, the lower one would be the one to choose.

red-seq 2

delta-cost
cost

red-seq 1

tree thread

Two Valid Rewrite Sequences

Figure 6.6

As illustrated in Figure 6.7, the case where the cost difference is bounded corresponds to
those cases where after separation there is a fast *‘join’’, or those where the paths stay separated
but approximately *‘parallel’”.
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red-seq 2
red-path 1
bound
cost bound cost
red-path 2 red-seq 1
tree path tree path

Bounded & Costs
Figure 6.7

If the paths diverge, there may be an infinite number of states. Fortunately this is
unrepresentative of real machine architectures. Consider a typical register-oriented instruction set
without memory-to-memory instructions. Every tree can be evaluated into a register, since regis-
ter is always a good target for an instruction. In addition, every ‘‘long enough’’ rewrite sequence
for an expression has to load values into registers (in order to continue the rewriting). Intuitively
this implies that two paths in a cost diagram cannot diverge very much: given two rewrite
sequences for the same input tree, but with different output trees, register can be used to
“‘bridge’” from one rewrite sequence to the other, thus insuring that, if they are both of minimal
cost (for the given output trees), the difference in their costs is ‘‘small’’ (i.e. bounded). This
observation can be formalized in the next proposition, where register is generalized to a set of
“key’’ symbols S (in part to deal with the memory-to-memory instructions).

Proposition 6.5 Let R be a rewrite system over Op, and let G be a nullary operator'in Op, with
<R,Lo,,{G }> in finite BURS. Let <R.cos> be an extension of R. Let S be a subset of EFp
such that there are positive integers ky and k.

(1) Forany pattern p in EFg g and any s € S, p can be rewritten into s with a sequence hav-
ing cost at most k.

(2) There is an integer ko such that for any tree T and any normal form rewrite sequence Y for
T there is a permutation of Y of the form Yy, with Y of cost at most k-, and such that the
frontier of ¥,(T) contains only members of S.

Then the set of different possible 8-LR graphs is bounded.

Proof Since R is finite BURS, the only way to have an unbounded number of 5-LR graphs
is to have an unbounded delta cost in the graph. Let T be an input tree, and o and B be two nor-
mal form rewrite sequences leading to p, and pg, in EFg . Without loss of generality assume
that cost ()Scost (B). Then, we want to show that there is a constant K ,independent of T, ¢, and
B such that there is a rewrite sequence " applicable to T and leading to pg and such that
cost ()<cost (cy+K . B is constructed from B and o.. The proof proceeds by structural induction.
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From (2) applied to B and T, B is of the form BB, with Bi(T)=T" and B,(B(T))=pp. The
new P’ is obtained by replacing B; by an equivalent rewrite sequence. By normal form and by
structural induction hypothesis on (1), there is a permutation of B, of the form 7, - - * ¥,n, Where y;
applies to ¢;, a subtree of T, and ¥;(#;) is 5; € S. Let a; be the restriction of o to 7;. Consider
now the application of o; to f;, and call it Ta;. Ta; is a member of EFp ; because
o(T)=py€ EFg . Hence, by (1), there is a rewrite sequence 8; with cost at most k4 such that
8;,(Ta;)=s;. The new B, is o8, --,0,. The cost of this sequence is bound by
mxk +cost (). Hence, the cost of §” is bound by mxk ;+ky+cost (0. OJ

The condition of Proposition 6.5 is not a necessary condition; there are many ways to
strengthen it and still have a finite number of 8-LR graphs. For example, there will sull be a
finite number of 8-LR graphs if the rewrite rules can be divided into two disjoint sets correspond-
ing to floating and integer expressions, with each one satisfying the conditions of the proposition.
The proposition is provided here to give a flavor for the type of conditions that produce a finite
number of 6-LR graphs.

Erasing reduction rules almost always lead to an unbounded number of 8-LR graphs. Con-
sider a rewrite system with rewrite rules Mul (X ,0)—0, 0—const, and Mul (reg ,const )—reg, and
an input tree such as Mul(T;,0) where T} can be rewritten into reg in K rewrite applications.
Define the cost of the rewrite system to be the number of rewrite applications. The 6-LR graph
associated with such an input tree will have an output pattern **0*” with cost 1, and an output pat-
tern “‘reg '’ with cost K +2. If there is one such T'; for each positive integer K, the number of o-
LR graphs will be unbounded.

Alternatives to & Costs

Some extended rewrite systems with an unbounded number of 8-LR graphs can be handled
by approximating ‘‘large’’ differences berween costs as infinite. Using ordinal numbers one
could have a sequence, for example,

<e,0>,<e,,0>,<e3,0+1>,<€4,2% >

This would be interpreted as meaning that the difference in cost between e and e, is *‘unsur-
mountable’’ as is that between e and e, but that e is only one unit more expensive than es.
The difference between the two alternatives reaches an *‘infinite’” value when the alternative with
higher cost will be used only if the other one blocks. Cost differences can increase from being
finite to being infinite, but not otherwise.

An example of the situation could be an target architecture where it is possible to choose
between two different banks of registers but, once a bank is selected it is not possible to change
between banks. In addition, the costs of instructions in one bank must be uniformly larger than
those in the other. To generate optimal code it is necessary to track the potential costs of each
register bank selection, but only up to the point where it is obvious which selection was the best
one. ’

It is not always possible to use an approximation to infinite ordinals to solve the problem.
In some cases the two paths first diverge an unbounded distance, and then can slowly get back to
a middle ground, as shown in Figure 6.8. Related to the previous example, this corresponds to
the case where the advantage of using one register bank over the other is not “‘uniform’’.
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cost

tree path

Sequences of Rewrites that Split and Join

Figure 6.8

In the rest of this chapter it is assumed that it is possible to characterize the cost information
using 8-costs, either using finite ordinals or the modified infinite ordinals suggested above.

6.3. Solving C-REACHABILITY and UCODE

The previous section showed how to characterize minimal-cost rewrite sequences through
8-LR graphs. C-REACHABILITY can now be solved by solving a fixed-goal REACHABILITY prob-
lem using the algorithm of Figure 5.8 on any uniquely invertible subgraph of the 6-LR graphs.
Section 5.4 discussed how to select the UI LR graphs for the case of LR graphs. The same con-
siderations apply here with one difference. It has already been pointed out that the purpose of the
B-fsa computing the 8-LR graphs is not to compute them but to eventually obtain the restriction
of the LR graphs equivalent to the 8-LR graphs. Because of this, the whole process is best
described as the application of an LB-fsa, with the B-fsa computing the 5-LR graphs and with
labeling function the one that —informally put— strips the costs away from the 8-LR graphs.

This difference is apparent when minimizing the bottom-up tree automaien. Since in
REACHABILITY all the state obtained by the automaton is used (i.e. the labeling function is the
identity), removing identical states guarantees a minimum LB-fsa. In C-REACHABILITY the label-
ing function changes the situation since it ignores cost information. As an example, Figure 6.9
shows the nodes of two 8-LR graphs, St; and Sz, from an instruction set description for the Vax-
11 [DEC81] with the number of bytes referenced as the cost function. S¢, and St, have the same
underlying LR graph restriction. Moreover, the nodes can be split into two parts (shown in the
figure) so that each subset in both graphs, when considered in itself, contains the same & cost
information, and in all contexts only one of the parts is used. Hence, St and St, although being
different 8-LR graphs, are equivalent for solving C-REACHABILITY, and would be found so using
the algorithm of Proposition 2.27.
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St St
Pattern cost  cost
compute_trees 4 5
rval_b 4 5
rval_w 7 8
rval_l 7 8
register_l 6 7
register_b 3 4
register_w 6 7
(And_b rval_b constant 1) 1 2
tree 4 5
amodes_uncon 7 8
bvte_r_addr 7 8
(And_b Icon_} rval_b) 0 0

Two Equivalent ¢-LR graphs
Figure 6.9

A similar situation appears when solving UCODE. UCODE can be solved by solving C-
REACHABILITY and using the rewrite sequence to obtain a sequence of instructions, or, more
accurately, a sequence of calls to semantic routines that will generate the instructions. Instead,
the information can be extracted directly from the 8-UI LR graphs, leading to a situaton as
before, except that now the labeling is into a graph where the edges are semantic calls. Some
states in the B-fsa may be equivalent when there are different rewrite rules with the same seman-
tic calls. Again, we have an LB-fsa that can be minimized using the algorithm of Proposition
2.27.

As an example of this new situation, assume that there are rewrite rules
+X,Y)—> biOp(X.Y). and Xor(X.Y)—biOp(X.Y), where X and ¥ are variables. Further
assume that both + and Xor are not used anywhere but in this generic operator rewrite, and that
the two rewrite rules have the same semantic action routine (this could be true, for instance, if
later semantic actions consult the label of the input tree to distinguish between the two cases).
Two 8-UI LR graphs that have identical input sets except that all the patterns in one are labeled
with + and in the other with Xor, will behave the same, will produce the same semantic actions,
and will be equivalent for UCODE, as shown in Figure 6.10. But the two 8-UI LR graphs are dif-
ferent for C-REACHABILITY.



+ - bi0Op —> reg — src

reg reg reg reg

Xor — biOp — reg — src

reg reg reg reg

An Example of two LR graphs Equivalent for UCODE
Figure 6.10

6.4. Related Work

Recent years have seen a considerable amount of work in code generation algorithms. This
section briefly covers those that relate to the work presented in this chapter. As in many research
contributions, sometimes it is difficult to determine the exact chronology and authorship of the
different techniques.

Graham-Glanville

The Graham-Glanville (GG) code generation algorithm [G1G78], [AGHS84], [Hen84] is a
code generator based on SLR(1) technology. It maps trees into strings through their preorder
traversal, and has a lefi-to-right bias (due to the mapping mentioned above) and a ‘‘greedy’”’
approach to choose among different alternatives (the so-culled ‘‘maximum munching’’ heuristic).
This makes the code generator potentially non-optimal. Under the mapping from trees to strings,
the transformation rules correspond to grammar rules, instruction fragment class symbols to non-
terminals, and IR operators to terminals. This is the origin of the term machine grammar for-
malized in Def. 6.3. The sentential forms in the grammar correspond to the elements of the
extended pattern set.

GG has been used to construct practical code generator generators, including CODEGEN
[AGHS84]. CODEGEN follows closely the model presented in this chapter19 using a purely syntac-
tic approach and an ‘‘on-the-fly’’ register manager. Thus, it essentially tries to solve an approxi-
mation to the UCODE problem.

The main advantage of GG is the re-use of a well known technology, SLR(1), for pattern
matching and rewrite rule application. The main disadvantage of GG is that it cannot guarantee
optimality. It is possible to perform analysis at table construction time [Hen84] that will provide
the user of the system with information on those cases where the system will not perform as
desired, and, in some cases, to provide automatic corrections. But, in general, the user of the
technique requires some understanding of its fundamentals to write descriptions that will work

*% Or the other way around.



138

properly. Despite its limitations GG has been quite successful and has been a very influential
milestone.

Dynamic Programming

In its simplest form dynamic programming is a tabular technique used to compute the
value of certain recursive functions [AHU75]. Thatis, if P(n)is a problem of size n, and f isa
function on the problem that can be provided with a recursive decomposition into subproblems
fPn=1)) s f (P (n-1)), then a table is used to ‘‘save’’ the evaluation of each subproblem as
it is solved and thus avoid re-evaluation.

The term dynamic programming is also used to mean a more specific optimization tech-
nique in mathematical programming for problems involving a multistage decision process
[RND77): a process in which a sequence of decisions is made, the choices available being depen-
dent on the current state of the system — that is, on the previous decisions. The optimization
problem is to find a sequence of decisions that minimizes some objective function. The key pro-
perty required of the problem is the principle of optimality:

An optimal sequence of decisions has the property that whatever the initial state and initial
decisions are, the remaining decisions must be an optimal sequence of decisions with regard to
the state resulting from the first decision

The principle of optimality leads 10 a recursive formulation of the minimum cost of the
objective function. This value can then be computed using the tabular technique mentioned
above. A sequence of decisions for it can then be extracted by following the decomposition
“‘backwards’’ (maybe with the help of additional information kept in the table) and combining 1t
‘‘forwards’’.

Aho and Johnson

The notion of dynamic programming is used by Aho and Johnson in [AhJ76] to obtain an
algorithm for code generation for expression trees. There is a finite number, N, of identical regis-
ters (denoted by r), and an infinite number of memory locations (m ). There are only two types of
instructions: register operations of the form T (r ,m)—r, where T(r,m) is a tree with operators
including » and m, and memory stores of the form r —m. The cost of a rewrite sequence is
defined to be its length, and its resource usage is the maximum number of registers it uses at any
given moment. (A rewrite rule of the form » —m frees registers). The optimization problem is
to determine the sequence of rewrite rules that will rewrite the original input tree into r with a
resource usage of less than N registers.

Aho and Johnson first show that it is possible to consider only bottom-up normal rewrite
sequences®®. Then they define a notion of state at a subtree that describes, for each i with
0<i <N, the minimum number of rewrite rules needed to rewrite the subtree to r or m, with a
register usage at most i . Applying the dynamic programming technique, this leads to a three pass
algorithm. The first pass does a bottom-up traversal of the tree to compute the states. The second
pass does a top-down traversal to extract the rewrite sequences which are then reordered in a final
bottom-up pass.

The algorithm of Aho and Johnson has many similarities to our algorithm for solving fixed
goal C-REACHABILITY. The main disadvantages of the algorithm when compared with our own
are:

20 This requires assuming only one class of registers
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(D.1)The state in [AhJ76] does not contain any information that can be used by a pattern
matcher. Thus the decomposition of the problem is done by trying all the possible rewrite
rules and, for each one, reaching ‘‘down’’ the tree at different depths depending on the
shape of the rewrite rule being used. In contrast 8-LR graphs allow a direct decomposition.

(D.2) The rewrite rules accepted by [AhJ76] are more restricted than those accepted by BURS
theory.

(D.3) Explicit cost information needs to be stored in the states of [AhJ76]. 8-LR graphs do not
contain explicit cost information.

The algorithm of Aho and Johnson has some advantages over our algorithm:

(A.1) The theory described in this chapter assumes an infinite number of registers, while [AhJ76]
can deal with the additional restriction of a finite number of registers as long as there is a
single class of registers.

(A.2) The cost function of Aho and Johnson can be more complex than ours, using the full power
of the dynamic programming method.

PCC2

The original algorithm of [AhJ76] was implemented in PCC2 [HenS82], a research version
of the portable C compiler code generator. The implementation assumed an infinite number of
registers available (thus simplifying the notion of state and removing advantage (A.1)) but still
used an ad-hoc technique for recognizing the applicability of instructions.

Top-Down Pattern Matchers

A significant performance improvement in the above techniques was obtained in TAGT86]
by using a top-down pattern matcher. Similar approaches have also been developed by Wilhelm
and Weisgerber [WeW86] and by Henry and Damron [HeD87). In these implementations it is
still necessary to represent the states by explicitly mentioning both their (sub)patterns and their
costs. This leads to siow code generation algorithms.

Bottom-Up Pattern Matchers

Top-down pattern matchers are slower than bottom-up pattern matchers. The recent work
of Henry and Damron [HeD87], of Wilhelm and Weisgerber (a preliminary description is in
[WeW86]), and of Moencke [M0f387]21 are modifications to the states mentioned above to use
bottom-up pattern matching. The rewrite systems accepted by the system reported in [HeD87]
can only contain instruction fragment rewrite rules. Their states are similar to the LR graphs of
Chapter 5 for that class of rewrite systems, but Ul LR graphs are not contemplated. The states
can be precomputed at table generation time and then computed at code generation time using a
B-fsa because there is a finite number of states. Cost information is encoded essentially as in the
full cost LR graphs mentioned elsewhere in this chapter. This forces the implementation of the
state to describe the cost information explicitly and to compute it at problem solving time.
Chapter 8 quantifies the time penalty involved.

Henry and Damron observe, in [HeD87}, that, for a given cost function, it is possible to
determine that some paths of the LR graphs will never be useful. They use this analysis to
remove some of the edges and nodes from the LR graphs. One advantage of the use of 6-UI LR
graphs over this technique is the larger amount of information available statically which leads to
a much better job in removing unnceded alternatives and produces smaller and fewer states.

2 That work has been done independently of the research presented in this dissertation.
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Hatcher and Christopher

Hatcher and Christopher claim in {HaC] that it is possible to perform optimal unconstrained
code generation with an algorithm that would work in time linear in the size of the input operator
tree with a small and instruction set-independent constant of proportionality. The artcle starts
with a description of the (solving-time) code generation algorithm, which is similar to the one
used in fixed goal REACHABILITY. But the article’s (solver-generation time) code generator gen-
eration algorithm is quite confusing. Actually, the research on BURS systems in this dissertation
started as an answer to the puzzle created by their code generator generation algorithm.

The main problem with [HaC] is that it tries to get along with too little in its states. The
author’s current understanding of the notion of state in [HaC] is that of a Ul LR graph with
““locally optimal’’ edges; that is, whose paths correspond to the minimum-cost local rewrite
sequences. In addition [HaC] has additional constraints that relate to the computation of the
encoding of the B-fsa as a row and column folding. The example of Figure 6.4 shows that, even
for simple machine grammars, it is necessary to encoding some type of cost information. Hence,
the approach of [HaC] is doomed for many machine grammars. [HaC] contains an pessimistic
algorithm that is supposed to determine at table construction time when non-optimal code may be
generated. [HaC] contains examples where optimal code cannot be generated using this tech-
nique, but where new rewrite rules can be added to alleviate the problem, but neither [HaC] nor
[Hat85] characterize under what circumstances this can be done.
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CHAPTER 7

X-Patterns and Projection Systems

Use it up, wear it out;
Make it do, or do without.

[New England maxim]

This chapter collects two different applications of REACHABILITY. The first application
(Section 7.1) is PATTERN MATCHING for typed X-patterns. The second application is in a new
type of tree transducer called a projection system; the transducer and its properties are developed
in Section 7.2.

PATTERN MATCHING

A pattern defines a set of trees: those at which the pattern matches. Chapters 3 and 4 study
PATTERN MATCHING for linear and non-linear N-patterns. The patterns of thosc chapters are
untyped patterns, that is, patterns in which the values to be assigned to the variables are not con-
strained in any way. This limits the expressiveness of the pattems. For instance, there is no
untyped pattern that matches at all trees, and only at those, of the form:

not

not Even number of "not"s

not

X

In contrast, typed patterns are expressive enough for the task. The above set of trees can be
described by an N-pattern *‘X " where the type of X is a recognizable set L of trees whose top
part contains chains of nots of even length. It can also be described by the X-pattern “X (Y)"",
where the type of X is a recognizable set L’ of trees that are chains of nots of even length. The
two patterns will be denoted by *“X:L "’ and “°X :L’ (YY) respectively.

Any recognizable set of trees L can be trivially described as the set of trees matching the
pattern *‘X :L . This fact suggests dispensing completely with patterns and using, instead, B-fsa
specifying recognizable sets. Yet, there are two differences between using a (perhaps typed) pat-
tern and using a B-fsa.

The first difference is that a pattern specifies not only the set of trees at which it matches,

but also one or more variable assignments for each of these trees. These assignments ‘‘separate”’
the trees into named components that can be used by the application containing PATTERN MATCH-
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ING as a subproblem. For instance, if L’ is as above, the removal of useless operator chains?

could be specified as “X:L'(Y)—-Y".

The second difference is that patterns are much more concise and readily grasped by the
human reader. In some real sense, patterns can be seen as a higher specification that is imple-
mented as a B-fsa (or, more precisely, a LB-fsa).

The simplest extension to untyped N-patterns are typed N-patterns. This chapter will only
consider linear typed N-patterns; PATTERN MATCHING for non-linear typed N-patterns can then be
solved using the approach described in Chapter 4. PATTERN MATCHING for typed N-patterms can
be solved by constructing an LB-fsa that will label a node in a subject tree accordingly to whether
the pattern matches at the node or not. The LB-fsa can be found by taking the LB-fsa of the
untyped version of the pattern and ‘‘pasting”’ into it the B-fsa representing the types of its vari-
ables. Section 7.1.1 shows how this is done.

The general idea for solving PATTERN MATCHING for untyped X-patterns is still to use
some algorithm based on a bottom-up traversal of the subject tree to find match sets, but the
situation is more complex because it is non-trivial to find a variable assignment; indeed, there
may be more than one assignment valid at a given node.

Forgetting for a moment the variable assignment, PATTERN MATCHING could be solved by
pasting together LB-fsa ‘*solving’’ portions of the pattern. For instance, Figure 7.1 shows a non-
deterministic LB-fsa that recognizes the set of trees matched by the pattemn
““X (Minus (4),Plus (Y))"’. That figure uses a slight extension to the notation used in previous
chapters to describe LB-fsa. The symbols ‘‘NullOp”, “UnOp”’, and ‘‘BiOp’’ are used to
represent any nullary, unary, and binary operators; ‘‘ge-moves’’ indicate transitions that can occur
independently of the input; and those transfers that are symmetric are indicated by a short stroke
in a thicker pen across the transfer edges. The figure is split into 3 different portions. The lower
two correspond to the LB-fsa that recognize Minus (4) and Plus (Y ), and the upper one represcnts
the X-variable. The LB-fsa shown is non-deterministic, but the algorithms of Section 2.4.1 show
how to obtain from it a deterministic LB-fsa.

22 «Useless’’, of course, depends on the semantics of the operators. For instance, C hackers will promptly point
out that !+ is notequal w €.
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A LB-fsa for Untyped X-Pattemn Matching

Figure 7.1

One could construct a LB-fsa for any untyped X-pattern following the same approach of
“‘pasting together’’ portions of patterns, but this would not solve the problem of finding the vari-
able assignment. One possible solution to this problem would be to extend the state associated
with each node in the tree with some representation of the (partial) variable assignments. Instead,
the solution used in this chapter is to recycle the techniques of previous chapters and use the solu-
tion to REACHABILITY or, more precisely, UCODE, to solve this problem.

A rewrite system and a goal tree describe a set of trees: those that the rewrite svstem can
rewrite into the goal. Any recognizable set can be described using this mechanism by construct-
ing a rewrite system in finite-BURS emulatng the B-fsa of the recognizable set. Rewrite systems
can describe non-recognizable sets, but, if the rewrite system belongs to finite-BURS, the two
mechanisms have the same descriptive power. Despite this equivalence, rewrite systems are
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more convenient than B-fsa because they are descriptions at a higher level (in the same sense in
which patterns are at a higher level than B-fsa) and because they provide convenient ‘*hooks’’ for
the placement of semantic actions.

The idea to solve PATTERN MATCHING for untyped X-pattems, is to define a rewrite system
that performs in a way similar to the LB-fsa hinted in Figure 7.1. This rewrite system contains
some rewrite rulcs whose semantic routines are used to store information that is used to record
the root and the i:ontier of the subtrees in the subject tree that are associated with the X-variables
in the pattem. The algorithm for PATTERN MATCHING now follows the three-pass algorithm for
UCODE: the first, bottom-up, pass assigns an LR graph to each node of the subject tree from which
we can extract the collection of patterns matching at the node. The second pass, top-down, can
now be done for each pattern in the collection to find the root and frontier of the subtrees associ-
ated with the X-variables. Finally, the third pass, bottom-up, can be seen as actually collecting
the root and frontier information into the variable assignment. Rcpeated applications of passes
two and three could produce the variable assignments of all the pattems, but typical applications
will require the assignment for only one pattern.

The approach skeiched above and formalized further in Section 7.1.2 has the obvious
advantage of recycling the technology developed for UCODE. It also has the advantage that, since
most applications of pattern matching do not require the variable assignments of all the pattems,
it will run substantially faster than an approach that tracks the variable assignment as it traverses
the tree bottom-up. Finally, it can be extended :0 deal with typed X-patterns, as is shown in Sec-
tion 7.1.3.

Projection Systems

The intuitive notion of *‘projecting’’ a input tree is to **split’’ the tree into parts and to con-
sistently replace these parts by new tree fragments which, when “*pasted’’ together, will produce
an output tree. The simplest instance of this notion of projection is the relabeling of Def. 2.17.
Relabelings can be used to describe simple tree transformations, and can also be used to describe
RECOG sets as relabelings of local sets (Proposition 2.10). As an example of this last proposition,
the tree language composed of the trees of the form: is not the set of derivation trees for any con-
text free grammar, but can be obtained as the relabcling of one such set. I particular, it is the
result of the relabeling of e, by e and e, by e in the Jerivation trees of the context-free grammar
having the rewrite rules:

e|—> e, pepe
€y— €7 fOO
e, —>bar

There are many tree transformations that correspond to our intuitive notion of a ‘‘projec-
tion’” but cannot be described using a relabeling. Linear homomorphisms (Def. 2.18) are one
generalization of relabelings in which an operator in the input tree can be replaced by a subtree.
Still, neither relabelings nor linear homomorphisms can describe a transformation that requires
““context’’ information. For instance, one would want to be able to rewrite a tree like:
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stmt

if_stmt

/\
/if}){ else_part
PN

if E then Sl else S2
into
if_stmt
E S1 S2

where E, S 1, and S2 are variables that will match trees representing expressions and statement
lists.

The notion required to describe such types of “‘projection’’ is that of a projection system.
A projection system is a rewrite system that is applied in a different way. The key concept is the
idea of a “‘cover’’, a non-overlapping collection of matchings of the input patterns in the system
completely covering the input tree. Given a cover for a tree, its projection is obtained by replac-
ing each input pattern by its associated output pattern.

Finding the cover can be done by solving a REACHABILITY problem, thus providing an algo-
rithm to compute the projection. Similarly, the results of Chapter S can be used to determine if
any tree in a recognizable set can be covered. Moreover, the function defined by the projection
system can be ‘‘inverted’’, that is, given an output tree it is also possible to use the solution to
another instance of REACHABILITY to0 obtain an input tree belonging to a recognizable set that
projects into the output tree.

One application of projection systems is to describe the transformation between concrete
and abstract syntax trees. The concrete syntax of a programming language is the syntax used by
the programmer, normally described by a context-free grammar. The concrete syntax tree for a
program is the derivation tree for the program. Since the concrete syntax grammar is used to
direct the compilation process, it may contain several constructs (new non-terminals, additional
productions) that are irrelevant to characterize the ‘‘deep structure’’, or meaning, of the program.
The abstract syntax of the language only reflects this deep structure, making it a more convenient
representation for semantics, both **static” and ‘*dynamic’’.

Some tree mappings between concrete and abstract syntax trees can be described using a
projection system. The application of the projection defines the mapping from concrete 10
abstract trees, while the application of the inversion algorithm provides an mapping between
abstract and concrete trees. An application of these mappings could be in a language-based editor
like PAN [BVGS87], where the abstract syntax tree is used internally to save space but the con-
crete syntax tree is required for incremental parsing or for pretty-printing; see [BBGS87] for
another approach to this problem.

Another application of the ‘‘inversion’’ algorithm is 10 allow more flexible ways to define
recognizable sets: as images of local sets under projection systems instead of only under relabel-
ings.

7.1. Typed Patterns

The goal of this section is to show how to solve PATTERN MATCHING for typed X-pattemns.
Before attacking the general case (Section 7.1.3), the section first solves two useful
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simplifications: typed N-patterns (Section 7.1.1) and untyped X-patterns (Section 7.1.2). The
impler cases serve as an introduction to the more complex one as well as being useful in their
own right,

7.1.1. Typed N-patterns

As indicated in the introduction, the idea used here is quite simple: graft the B-fsa describ-
ing the types of the variables into the B-fsa describing the untyped N-pattern. The key proposi-
tion is:

Proposition 7.1 Let p be a typed linear N-pattern over Op, with the types in p being described
by B-fsa over Op. There is an algorithm that will generate a (deterministic and minimal) LB-fsa
<A .L> such that for every subject tree T over Op a node in T is labeled with {p} if p matches at
the subtree rooted by the node, and is labcled with © otherwise.

Proof We first produce a non-deterministic LB-fsa with the desired properties. The LB-fsa can
then be converted into a deterministic one and minimized using the appropriate algorithms of
Section 2.4.1.

Denote the typed variables in p by X,,...,X,, and let p’ be Px,ca, - X,a, Where

a,,...,a, are new nullary operators not in Op. Clearly, there is a correspondence between trees
over Op matched by p and trees over OpU{ay, . . ., 4, } matched by p’. Now construct a match
set LB-fsa for p’, B. Let By,...,B, be the n B-fsa that recognize the types associated with
X, ..., X,. Assume that B,,...,B, have a single final state and that the states in B,
B, ...,B, are all mutually disjoint. We construct a new (non-deterministic) LB-fsa B” from B,
By, ...,B,. The states in B’ are all the states in the B-fsa except for the states in B correspond-
ing to the nullary operators @y, . .. ,d,. The transfer function in B’ is the union of those in the

B-fsa, except that those transfers that used to come from a state g;, now come from the final state
of B;. The labeling function for B” assigns p to the states in B’ that correspond to states in B that
are labeled p, and @ to the remaining states. []

The situation discussed in the proof of Proposition 7.1 is sketched in Figure 7 2.
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B

final state final state

An LB-fsa for Typed N-patterns

Figure 7.2

Given a collection of typed N-patterns, we can construct an LB-fsa for each one of them
and then collect them into a non-deterministic LB-fsa that will recognize the collection. If
desired the LB-fsa can then be converted into deterministic form and minimized. Thus:

Proposition 7.2 Let F be a collection of typed linear N-patterns over Op with the types given as
B-fsa over Op. There is an algorithm that will generate a (deterministic and minimal) LB-fsa
<A.L> such that the label of a node in a tree contains p € F if and only if p matches at the sub-
tree rooted by the node.

7.1.2. Untyped X-patterns )

This subsection deals with linear untyped X-patterns. The introduction of types is studied
in the next subsection. Again, we restrict ourselves to linear patterns since solving PATTERN
MATCHING for X-patterns where an X-variable appears more than once is quite difficult. In par-
ticular, solving this problem would require comparing two intemal portions of the subject tree
which, unlike the situation for N-patterns, cannot be solved by simple pointer equality in a com-
putation dag.

This section solves PATTERN MATCHING by solving a particular class of REACHABILITY
problems. The idea is to construct for each X-pattern a rewrite system that contains symbols to
indicate that certain parts of the pattern have been recognized, including one for the complete pat-
tern. The rewrite rules encode the conditions under which the given parts are recognized, and a
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tree can be rewritten into a symbol representing a pattern if and only if the pattem matches at the
tree.

If p is a match of an X-pattern at a subject tree, p assigns to each n-ary variable in the X-
pattern a linear N-pattern with n variables. This N-pattern can be characterized by n+1 pointers
te nodes in the subject tree: one corresponding to the root of the N-pattern, the others to the loca-
tion of its n variables. The root pointer does not need to be represented explicitly: saying that the
X-pattern matches at some subtree is equivalent to saying tha the root pointer points to the root of
that subtree. This is why we have not mentioned any explicit pointers when discussing pattern
matching for N-patterns. But for X-patterns, the remaining n -pointers arc required to uniquely
determine the assignment to the variable. Figure 7.3 sketches the situation for an assignment p
that is a matching for the X-pattern (shown at the right of the figure) at the subject tree (shown at
the left of the figure). In the figure, T; stand for fixed trees, X; for varables, and o(X ), (X ),
and 6(X 5) are the trees (N-pattemns) assigned to X, X 5, and X 3 by the matching.

Representing a Variable Assignment

Figure 7.3

The assignment of the matching can be found by associating a semantic action with the
rewrite rules ‘‘outlining’’ the lower boundary of the X-variables. These semantic actions save the
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pointer to the node in the subject tree currently being visited at matching time.

Proposition 7.3 Let p be an untyped (linear) X-pattern over Op. There is a rewrite system R,
and a goal symbol G, such that a tree T can be rewritten by R, into G, if and only if p matches
atrT.

In addition, R,, has r. distinguished rewrite rules for each n-ary variable in p. If p matches

at T, then any normal form rewrite sequence in R, from T 10 G, contains exactly one of each of
these distinguished rewrite rules. The input nodes at which the rewrite rules are applied define a
variable assignment for p, and any variable assignment corresponds to some normal form rewrite
sequence in R,
Proof The construction of the rewrite system is given. It is left to the reader to show, using struc-
tural induction on the patterns, that it satisfies the proposition. The description only contains the
cases of 0,1,2 operators. Larger arities can be obtained either by describing them using the lower
arities (e.g. X (py,P2,p3) becomes X (p1,X (p2,p3)), Or by direct extension of the technique). Nul-
I0p, UnOp, and BiOp should be replaced by all nullary, unary, and binary operators in op®.

There is a symbol ‘‘original’ that will represent a portion of the subject tree on which no
interesting rewrite rules can be applied. The rewrite rules associated with it are:

NuliOp —> original

Un‘Op — original

original

BiOp — original
original  original

None of the remaining rewrite rules will introduce either original or an operator in Op. Thus, a
tree can be rewritten into original only if no other rewrite rule is used.

The next rewrite rules recognize portions of the subpattern. They use several symbols for
each variable X in p: X-found indicates that the subpattern of p rooted by X matches at the sub-
tree, and, if X is a binary variable of the form X (py,p7), X-left and X-right respectively mean that
the patterns X (p;) and X (p,) match.

If X is a subpattern (that is, X has arity 0), then there is a rewrite rule of the form
original — X-found

If X (p,) is a subpattern, and p, is of the form %@, . .. ,8,) where v has no variables in it
and, for 1<i <n, §; has a variable X; at its root, then

B Ap alternative is to make them symbols and use a generic operator rewrite.
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/%(\ — X-found

Xl-found < X n-found

This rewrite rule is distinguished and will have a semantic action associated with it.
If X(p;.pp) is a subpattem, p, is of the form Y8y, ...,8%,), py is of the form

(%, ...,8%) where v' and ¥* have no variables, and & ; (1<i<n) each has a variable X/ ; atits
root, then
/11\ - X-left
X1 -found X1 -found
1 n
/sz\ — X-right
le-found in-found

These two rewrite rules are distinguished and have a semantic action associated with them to
record the tree position at which they are invoked. In addition there are also rewrite rules of the

form

BiOp - X-left BiOp — X-right
S
X-left  original X-right original
BiOp —  X-left BiQp — X-right
N
original  X-left original  X-right
Un‘Op -  X-left UnIOp — X-right
X-left X-right

And, finally, for any X -variable, we have
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BiOp — X-found
N

X-left X-right

BiOp — X-found

X-found original

BiOp — X-found
PN
original X-found
Un|Op - X-found
X-found

The definitions guarantee that a tree can be rewritten into X-found if and only if the subtree of p
rooted by X matches at the tree.

The rewrite system can be completed with a final rewrite rule corresponding to the top of
the original pattern p. If p can be decomposed as Y6, . . . ,8,) where §; is rooted by a variable
X;, then there is a rewrite rule of the form:

e

Xl-found Xn-found

where p is a symbol representing the matching of the pattern p.
Note that the distinguished rewrite rules detect the variable assignments. O

The rewrite system can now be used to solve PATTERN MATCHING by associating with all
the rewrite rules the null semantic function except for the distinguished rewrite rules finding the
variable assignment and solving UCODE. The algorithm for UCODE can be specialized further: the
second, top-down, phase can be modified so that whenever original is a goal, the traversal is
stopped. Solving UCODE instead of REACHABILITY has the advantage of yielding substantially
smaller tables.

There is no problem in dealing with a collection of patterns: just add new rewrite rules for
the new subpatterns. Subpatterns that appear in more than one pattern produce only one set of
rewrite rules. Consequently:

Proposition 7.4 Let F be a collection of untyped X-patterns. There exists an algorithm that will
solve PATTERN MATCHING (except for finding the variable assignment) for F in time linear in the
size of the subject tree. If the variable assignment is wanted, the extra time required is linear in
the size of the subject tree for each desired pattern.

The technique shown above also allows a simple, but probably useful, modification. When

constructing the UI LR graphs one can prefer, whenever possible, some rewrite rules instead of
others. Thus, if



BiOp —  X-left

X-left  original
is selected always before

BiOp —  X-left

original  X-left

the left subtree of a binary X-pattern is chosen *‘as far to the left’’ as possible. This might be use-
ful to reduce some of the ambiguity inherent in X-patterns. The next stage after this is to require
that the subtree associated with X must have some particular shape, that is, typed X-pattemns.

7.1.3. Typed X-patterns

This section, finally, deals with the more complex case. The idea is simply to take the
rewrite system used in the proof of Proposition 7.3 and encode the transitions of the B-fsa
describing the types into it.

The types of the nullary variables can be dealt with pretty easily. Assume that the B-fsa for
these types have disjoint states and are deterministic. The rewrite rules for original are replaced
by collections of rewrite rules of the form

NullOp — state-0

UnIOp — state-2

state-1

BiOp —  state-5

state-3  state-4

where NullOp , UnOp, and BiOp are instantiated to be specific nullary, unary, and binary opera-
tors, and state-0 ..., state-5 are new symbols corresponding to the states in the B-fsa of the types
related by state-0 = finullop), state-2 = flunop state-1), and state-5 = fibiop state-3,state-4).
Then, if state is a state in a B-fsa B, a tree can be rewritten into szate if and only if B associates
state with the tree.

Dealing with the types of the X-variables is similar. Recall (Def. 2.3) that the type of an
n-ary X-variable is a recognizable set of trees using the operator set extended with n nullary
operators, childy, . .., child, representing the ““slots”’ for the children of the X-variable. Thus,
for each typed X-variable we can assume the existence of a deterministic B-fsa over
Opu{child,, . .. ,child,}. The types of these B-fsa are then encoded into the rewrite rules that
are associated with each X-variable.

Only the case for binary X-variables 1s shown; unary X-variables are similar. For each

typed binary X-variable X and each state st in its B-fsa, there will exist symbols X-left-st, X-
right-st, X-found-st, and X-found. The first three encode the fact that the tree can be rewritten into
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the X-left, X-right, and X-found, of untyped X-patterns where the subtree assigned to the X-
variable has state st under the B-fsa. The symbol X —found encodes the fact that the tree can be
rewritten into the untyped X-found with a final state. These states are computed by simulating the
transitions of the B-fsa with the rewrite rules. Thus, if the type is described by a B-fsa B with
transfer function f , one would have:

ol —  X-left-StL
X1 -found X1 -found
1 n
/ﬁ\ —  X-Ieft-StR
2 2
X l-found X n-found

where StL=f (child,) and StR =f (child,). The values are then propagated by rewrite rules like
the ones below, where the states satisfy St3=f (biop , St 1,5¢2) and St 2=f (unop ,St1).

BiOp — X-left-St3 BiOp — X-right-S3
/\
X-left-St1  St2 X-right-Stl  S2

BiOp -  X-left-St3 BiQp —  X-right-S83
/\ /\

Stl  X-left-St2 St1 X-right-St2
Un'Op - X-left-St2 Un|Op - X-right-St2
X-left-Stl X-right-Stl
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BiOp — X-found-St3

X-left-St1  X-right-St2

BiOp —  X-found-St3

X-found-St1  St2

BiOp — X-found-St3
/\
Stl  X-found-St2
Un'Op — X-found-St2
X-found-Stl

And, if St is the final state in B, finally used as follows:
X-found-StF — X-found

The approach to solving PATTERN MATCHING is identical to the one used in untyped X-
patterns: solving a UCODE problem for this rewrite system, although many rewrite rules will be
frequently found useless if the LB-fsa computing the UI LR graphs is minimized. Thus, we have:

Proposition 7.5 Let F be a collection of ryped X-patterns, with the types of the variables pro-
vided by a collection of B-fsa. There exists an algorithm that will solve PATTERN MATCHING
(except for finding the variable assignment) for F in time linear in the size of the subject tree. If
the variable assignment is wanted, the extra time required is linear in the size of the subject tree
for each desired pattern.

Applications to Rewrite Systems

The pattern matching algorithms presented in this section can be used in an algorithm deal-
ing with rewrite systems. In particular, they could be used in a rewrite system for which REACHA-
BILITY is being solved. Postponing a deeper analysis of the implications for future work, it seems
that typed N-pattemns and both untyped and typed X-patterns can be used as input patterns in
rewrite rules without interfering with the basic principles behind the theory used in Chapter 5 to0
solve REACHABILITY. In any case, output pattems are still restricted to be untyped N-patterns:
adding types to the variables is meaningless, and dealing with X-patterns seems to easily lead to
rewrite systems outside BURS.

7.2. Projection Systems

Projection systems are tree transducers that are a generalization of linear homomorphisms
and relabelings. The generalization allows the system 10 use context information in determining
how to ‘‘project’’ a portion of the input tree. Formally, a projection system is identical to a
rewrite system, but it is applied in a different way.
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An example of a use of a projection system is the one shown at the beginning of this chapter
involving ‘‘if-then-else’” statements. Another application could be the specification of the map-
ping between concrete and abstract representations of expression trees. For example the rewrite
system of Figure 7.4 describes how portions of a parse tree for the context-free grammar of Fig-
ure 7.5 would be modified. The rewrite rule expr (X 1,X 2,X 3)—expr (X 1,X X 3) reflects the fact
that this case for expr is left unmodified. This rewrite rule should be used only if no other rerwite
rule applies and, in particular, if expr (**("” X, **)’’ )X does not apply. This constraint on the
application of the rewrite rules is formalized below as the “‘more coarser than’’ notion. The
rewrite rule is required to satisfy that the input patterns of the projection system cover (Definition -
7.1) the input tree.

ex[pr - X factor —» X
X X

term — X term — X
AN

(X) X

BRCTOSRL | RO R

X1 XXy XXy X5 X1 X% XXX
add!Op - + muI‘top - *
+ *
id - 1id

Example of a Projection System

Figure 7.4
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expr —term addop expr
expr —term

term  —factor mulop term
term —factor

factor —id

factor —»"(" expr )"
addop—-"+"
mulop—"*"

Example of a Context-Free Grammar

Figure 7.5

The application of the projection system 10 an input tree first finds a ‘‘partition’” of the
input tree using the input patterns of the rewrite rules in the projection system, and then replaces
them by the output patterns. The formal notion involved is called a cover.

Definition 7.1 Let F be a set of N-patterns over Op, and let T be a tree over Op. A cover forT
using F is a function assigning to each position p in T either the distinguished value nil or a pair
<p,0> where G is a match for the pattern p in F at the subtree T, , and such that:

(1)  The cover assigns a non-nil value to therootof T ;

(2)  If the cover assigns <p,o> to position p, and the positions of the variables in p are
D1, ... .Pn,then the cover assigns non-nil values 1o the positions pipy, ... .plp,; and

(3)  The only positions to which the cover assigns non-nil values are those indicated by (1)
and (2) above.

For example, Figure 7.6 shows a cover of a tree in the local set induced by the grammar in
Figure 7.5 using the input patterns of Figure 7.4.
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term addopg exlprué
Cfactor |+ | [eTn """"""""
kld ;ﬂf.actor i imullopé term
=T

Example of a Cover

Figure 7.6

Definition 7.2 Let F be a set of patterns over Op, let T be a tree over Op, and let Cy and C, be
two covers for T on F. C, is immediately coarser than C, if there is a position p in T such that,
for every position q different from p, if Cy assigns a non-nil value to q, then the pair assigned is
identical to the one assigned to q by C,, The relation coarser, denoted >, , is the transitive clo-
sure of ‘‘immediately coarser than’’.

A cover for T is a maximal cover if it is maximal over >, .

Note that, since both €y and C, in Definition 7.2 are covers, the pair assigned by C, to the

position p is, in some sense, ‘‘covering’’ the same portion of the input tree covered by the
remaining non-nil vatues of C.

Maximal covers are useful because larger patterns in a projection system indicate a more
precise specification.

Definition 7.3 A projection system P over Op is a rewrite system with rewrite rules o.— 3
where (1) o and B are botk linear patterns with exactly the same variables, and (2) for every tree
T, there is a cover for T on {ala—p e P}.

The result of applying P to T is a new tree h(P,T) defined recursively as follows: if P
assigns to Ty, ..., T,) a pattern Xy, ... X)), h(P.(Ty, ..., T,)) is defined to be
B, h(®.T)- Xech(P.To)

A good projection system for some recognizable set L is one such that eachT € L has a sin-
gle maximal cover.

The cover in Figure 7.6 is a maximal cover for the set of input patterns in Figure 7.4. As
such, it defines a projection of the input tree, namely, the one shown below:
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............

...........

..........

Finding a maximal cover is more complcx for some projection systems than for others.
Using the same example of the mapping between concrete and abstract syntax trees, one might
want to add the rewrite rules in Figure 7.7 to those of Figure 7.4. As always, X and Y are vari-

ables.

loop - while_stmt

strm| list while X do Y
if_stmt Y
if X then stmt
exit

lolop — loop

X X
if_stmt — if_stmt
if X then Y XY

Second Example of Projection System

Figure 7.7

In this case, there is more than one possible cover for the tree of Figure 7.8. Following the
definition of projection system, a maximal cover should be used.
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stmt_list

if_stmt strlm

if ex[pr then stmt null

tell'm exit
factor
id
Sample Tree

Figure 7.8

The projection system containing the rewrite rules of Figure 7.4 together wih the rewrite
rules of Figure 7.7 still satisfies the property that there is a single maximal cover for every input
tree. Determining whether this and other properties involving projection systems hold can be
answered using results and techniques from REACHABILITY theory. The first question is how to
compute COVeTs.

Proposition 7.6 Given a set F of patterns over Op, and a tree T over Op, there is an algorithm
that finds all the covers on T by Op.

Proof For any pattern o, with n variables Xy, . . ., X,,, we will use o L) to denote the replacement
of all the variables with L, that is, 0y, | .. .x, 1. Forany set of (linear) patterns F, F(L) will
be used to denote the rewrite system over Op © {L}, where the rewrite rules are of the form
c(L)— L. F(L) is a simple reduction system, and, thus, in BURS. Moreover, a reduction
corresponds to finding a cover. An invocation of fixed goal (T L) will find all the covers of T
over F.

The above algorithm can be modified to find good covers.

Proposition 7.7 Given a set F of patterns over Op, and a tree T over Op, there is an algorithm
that will compute a maximal cover for T over F.

Proof The algorithm is a variation of the one used for the previous proposition. As before we
solve fixed-goal REACHABILITY for F(L), but now we replace LR graphs by an appropriate res-
wriction. If G is an LR graph of F(L), associate with it a restricted LR graph G’ where there is an
edge between a( L) and L only if o is maximal under subsumes over all those patterns 3 such that
B(L)—L isin G. Using these restricted LR graphs, a solution to fixed-goal REACHABILITY with
goal L over tree 7 produces a cover for T. In addition, it is a maximal cover: otherwise there
would be a highest node in T at which a pattern B was chosen when some other pattern f’, with
B’ 2B, should have been chosen, contradicting the construction of the restricted LR graphs. [J

The above algorithm also provides information on whether the maximal cover is unique or
not
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Proposition 7.8 Given a set F of patterns over Op, and a tree T over Op, there is an algorithm
that will determine whether T has a unique maximal cover over F.
Proof There is a unique cover if and only if all nodes encountered during the solving of the
fixed-goal REACHABILITY problem using the restricted LR graphs defined in Proposition 7.7 have
a single incoming edge. [J

The questions addressed in the propositions above can also be asked relative to a recogniz-
able set described through a B-fsa.

Proposition 7.9 Let F be a pattern set and let L be a recognizable set over Op. Further assume
that L is given as a B-fsa. (1) There is an algorithm that will determine whether every tree in L
has a cover over F. (2) There is an algorithm that will determine whether every tree in L has a
unique maximal cover over F.

Proof (1) can be solved by solving the blocking problem for F(1) and L (Proposition 5.20). (2)
can be solved by removing useless nodes in the restriction of the LR graphs defined in the proof
of Proposition 7.7, removing useless nodes in them for L using Proposition 5.22, and then check-
ing whether there is any restricted LR graph where L has more than one incoming edge. [

Computing projections is a direct corollary of the definition of projection and Proposition
7.7.

Corollary 7.1 Given a projection system P over Op and a tree T over Op, there is an algorithm
that will compute all the applications of Pto T . “

If there is a unique maximal cover, Proposition 7.7 and the previous corollary show:

Corollary 7.2 RECOG is closed under inverse projections.
Finally, one can determine the shape of the output trees:

Proposition 7.10 Given a projection system P over Op and two B-fsa By and B,, there is an
algorithm that will determine whether there is any tree t over Op accepted by B, such that its
projection under P is not accepted by B,.

Proof We construct a new rewrite system R from the projection system and from B,. Assume,
without loss of generality, that B, has a single final state Sts,,. R will be defined over Op
extended with nullary symbols representing the states in B,. For every rewrite rule in the projec-
tion system of the form a(X,,...,X,)— B(X,,...,X,) where the variables in o and B are
X, ...,X,, there are rewrite rules in R of the form Oy, s, - X, 51, = Stg where Stg, ..., St,
are symbols corresponding to states in B, and Stq is the state that would be assigned by B, 10 a
tree of the form oX 4, . . . ,X,,) if, for 1<i<n, the subtree rooted by X; had state St;.

Clearly there are finitely many rewrite rules in R, and they can be computed. The reduc-
tions in R track both covers and the state information. By structural induction one can easily
prove that there is a rewrite sequence in R from T to Sz if and only if a projection T° of T under
P is assigned state St by B,. Moreover, R is a reduction system and a member of finite-BURS.

The question in the body of the proposition is equivalent to determining if there is a block-
ing tree in B, for R and goal St4,, -
Inverting a Projection

A useful question involving projection systems is the following: given a projection system
P and atree T, determine if there is a tree T that yields T under P. The answer is very simple if
there are no constraints on T .
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Proposition 7.11 Let P be a projection system over Op. There is an algorithm that will deter-
mine for a tree T over Op whether there is another tree T over Op such that the projection of T
over P is T and, if so, will provide one such tree T .

Proof There will be such a tree if and only if there exists a cover of 7° using the output patterns
of P. An application of the rewrite rules of P, *‘in reverse’” will produce 7. [

A more useful version of inversion is when the input tree is required to belong to a recog-
nizable set.

Proposition 7.12 Ler L be a recognizable set described using a B-fsa B. Let P be a projection
system over Op. There exists an algorithm that will determine, given a tree T over Op whether
there is a tree T accepted by B such that the projection of T over P is T and, if so, will provide
one suchtreeT.

Proof The proof is similar to the proof of Proposition 7.10. We construct a new rewrite system R
from the projection system and from the B-fsa. Assume, without loss of generality, that B has a
single final state Stg,, . R will be over Op extended with nullary symbols representing the states
in B. For every rewrite rule in the projection system of the form
aXy,...,X,) = BX,, ... X,)where the variables incand Bare Xy, ... ,X,, there are rewrite
rules in R of the form By, s, - X, s, — Sto Where Sto, . . . ,St, are symbols corresponding to
states in B, and St, is the state that would be assigned by B to a tree of the form B(X,, . .., X,)if,
for 1<i <n, the subtree rooted by X; had state §¢;.

Clearly there are finitely many rewrite rules in R, and they can be computed. The reduc-
tions in R track both covers and the state information. By structural induction one can easily
prove that there is a rewrite sequence in R from T to St if and only if there is a tree 7 such that
its projection under P is T and its state under B is St.

Since R is clearly a member of finite-BURS, we can construct the UI LR graphs for R and,
for any given output tree T”, solve the fixed-goal REACHABILITY problem for R with goal Stg, -
A desired T will exist if and only if T rewrites into St4,,;, and if so, it can be extracted from the
rewrite sequence. [

The above proposition shows that the projection of any recognizable set is a recognizable
set. In particular, it provides an answer to the question raised in Chapter 2 regarding the
“‘inverse’’ of Proposition 2.10.

Corollary 7.3 RECOG is closed under forward applications of projection systems. In particu-
lar, if G is any context free grammar, and P be any projection system, then the set of the projec-
tions of L(G) is a recognizable set.

Extensions

Up to this point this section has assumed that the input pattermns in the rewrite rules of the
projection systems were untyped linear N-patterns. A first extension to the notion of projection
system is to allow typed linear N-patterns to restrict the applicability of some projection transfor-
mation. This can be done using the techniques presented in Section 7.1. We leave the details for
the reader.

Adding non-linearity is complex because of the same reasons that forbade its use in BURS
theory, but it is feasible to consider allowing X-patterns, both typed and untyped as input pat-
terns. This extension requires redefining the notion of a cover. The key point is what to do with
the portions of the input tree that are assigned to an X-variable. Two obvious alternatives are to
copy them directly, and to recursively transform them using the projection system. In most cases
the second alternative is the more useful one. For example, that would be the case if we wanted
to extend the projection system of Figure 7.7 to include detecting repeat statements. The
transformation could be described as:
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loop - repeal_stmt
}1( repeat Y until )‘(
stmt_list null
if_stmt null

if Y then suim

exit
A Third Example of a Projection System
Figure 7.9

Either approach to X-patterns can be incorporated in projection systems using the tech-
niques described in Section 7.1. The details of this approach will be discussed in a future docu-
ment, which will, hopefully also include reports on the use of the technique.

7.3. Previous and Related Work

The techniques used for typed N-patterns are described by Engelfriet in [Eng75] in the con-
text of finite state tree transducers. The author is not aware of any work done in the context of
X-patterns.

The major previous work related to that presented in Section 7.2 are the tree transformation
grammars (TT-grammars) of Keller et al. [KMP84]. TT-grammars are used to describe the map-
ping between two local sets. The description contains the input and output context-free gram-
mars, associations between subgrammars of them, and associations between individual symbols
in productions of the subgrammars. The input subgrammars are used to tile the input tree ina
way similar to projection systems. The associations are then used to construct output tree frag-
ments which are then put together to construct the output tree. TT-grammars can be seen as a
cross between our projection systems and an attribute grammar [Knu68]: they are attribute gram-
mars in which the domains of the attributes are always fragments of derivation trecs of the cutput
grammar, and the semantic functions are either simple ‘‘pasting’’ of the tree components, or Jjust
copies of tree-values, but they are extended so that the unit of locality (at which the semantic
actions are chosen) is an input subgrammar instead of a production. )

The main emphasis in TT-grammars is in being able to determine the shape of the sets of
input and output trees while increasing the context information used to choose the transformation
of a portion of the input tree. [KMP84] contains three subclasses of TT-grammars of varying
degree of complexity. The simplest class, called dual grammar translation scheme (DGTS),
corresponds 10 a projection system where the input patterns represent single productions in the
input grammar (which can be described using typed variables where the type indicates that the
derivation tree is rooted by a given non-terminal) while the output patterns may represent larger
pieces of derivation trees.
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The second class of TT-grammars, called single input production — explicitly qualified
(SIPEQ), is an extension of the first class that shows more the AG relaton of TT-grammars. In
this class the input subgrammars still correspond to single productions, but the output subgram-
mars can be several, possibly disconnected, output parse subtrees. In addition it is possible to
select between several output subgrammars based on some semantic attribute. Transformations
described with this type of TT-grammar can ‘‘move’’ output tree values up and down the input
tree and may not be describable using projection systems, as expressing such a transformation
using a rewrite-based system seems to require iterated rewrite rule invocation.

The final class of TT-grammars discussed in [KMP84] is the multiple input production TT-
grammars, that is, unrestricted TT-grammars. Unlike the first two classes, this one has not been
implemented and its definition in [KMP84] has some obscure points: especially with the associa-
tion of symbols when both the input and the output subgrammars have recursive non-terminal:.
As in SIPEQ TT-grammars, this class is implemented using an attribute grammar. Moreover,
understanding the meaning of an specification using the full power of these two classes of TT-
grammars requires the same kind of rcasoning used with attribute grammars.

TT-grammars are more powerful than projection systems in the sense mentioned above. In
a different direction, projection systems allow descriptions of transformations between any two
sets of trees, and, given the properties proved in this section, the sets of trees can be restricted to
be any recognizable sets, not just derivation trees. This would be useful in transformations like
those dealing with abstract syntax trees. A disadvantage of the more general TT-grammars is that
they have to rely on attribute grammars for their implementation and to reason about their seman-
tics, while projection systems have a simpler and more natural semantic model. An additional
advantage of projection systems is that they can be inverted; (KMP84] explicitly mentions this
question as an open one for TT-grammars.

[KMP84] mentions that DGTS and SIPEQ TT-grammars have been used to specify and
implement transformations from Ada to DIANA abstract syntax trees, from DIANA abstract syn-
tax trees to C trees, and from FORTRAN 77 format statement to an intermediate representation,
and to implement the front end of a manipulation system. Many of these applications seem
describable using projection systems extended with typed patterns and X-patterns in the ways
indicated at the end of the previous section. Further research will investigate the correctness of
this hypothesis.
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CHAPTER 8

A Code Generator Generator Using BURS

Now! Now! cried the Queen,
Faster! Faster!

[Lewis Carroll {1832 - 1898]]

The proof of the pudding
is in the eating.

[Miguel de Cervantes Saavedra [1547 - 1616]]

Chapter 6 presents an algorithm for UCODE but leaves open a major question: will a finite
number of 8-UI LR graphs suffice to generate code for real target machines, and, if so, will the
required tables be competitive with other code generation techniques? This chapter describes an
implementation of a code generator generator based on BURS and the results of experiments with
several machine descriptions that allow us to answer the question affirmatively.

The implementation of the code generator generator follows the theory of Chapter 6 with
two main limitations: only factored machine grammars [Hen84] are accepted, and the input
language is assumed to be the set of all trees over the given operator set. The first limitation does
not impair the applicability of the implementation to code generation, but the second limitation
should be removed in a production-quality code generator as it affects the detection of blocks and
produces tables that are larger than necessary.

The machine descriptions used for the experiments describe three different target machines:
VAX-11 [DECS81], a popular CISC (complex instruction set computer) architecture with a quite
orthogonal instruction set; Mc68000 [Mot82], a popular micro-processor with a moderate number
of addressing modes and a (relatively) small number of irregularities; and, RISC-II {KSP83], an
experimental RISC (reduced instruction set computer) machine. Some target machines have
more than one description.

All the machine descriptions come from the CODEGEN research effort, led at the University
of California, Berkeley, by Susan L. Graham, and its successor at the University of Washington,
UW-CODEGEN, under the direction of Robert R. Henry. While CODEGEN contains only a code
generator based on Graham-Glanville technology, UW-CODEGEN is designed to compare different
code generation techniques and also contains two techniques that generate locally optimal code
based on dynamic programming: one using top-down pattermn matching and the other using
bottom-up pattern matching. The experiment reported in this chapter consisted of adding to UW-
CODEGEN a new table-driven code generator and table generator based on BURS theory and
measuring their behavior for several machine descriptions

The experiment used two groups of descriptions, summarized in Figure 8.1. The first group
contains descriptions developed at UCB for a Graham-Glanville-based code generator (see
[AGHS4] for a report of that experiment). The second group are simplifications of these descrip-
tions done at UW.
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Kevword Description Types used in the description

vax.bwl vAaX-11 Byte, Word, Long

vax.bwifd VAX-11 Byte, Word, Long, Float, Double

vax.bwlfdgh | vAX-11 Byte, Word, Long, Float, Double, Giant, Huge
mot.bwl Mc68000 Byte, Word, Long, some Float, some Double
risc.bwl RISC-II Byte, Word, Long

vax.ng VAX-11, no generics Byte, Word, Long

vax.ng.ne vaX-11, no generics, no exceptions | Byte, Word, Long

mot.ng Mc68000, no generics Bvte, Word, Long

Machine Descriptions
Figure 8.1

The first group comprises three VAX-11 descriptions using different data types, and one
description each of Mc68000 and RISC-II. The machine descriptions in this group include gen-
eric operator rewrite rules since they are supported by the Graham-Glanville technology. The
second group comprises three descriptions, one for the Mc68000, two for the Vax-11. These
descriptions do not have generic operator rewrite rules because some of the techniques used in
UW-CODEGEN do not allow them. In addition some rewrite rules that are useless for the input tree
language actually reaching the code generator are removed. Removing these rules manually
allows some more meaningful comparison between techniques when, as in our case, only some of
them can benefit from specifying the input set. Vax.ng.ne is a modification of vax.ng where
some rewrite rules have been dropped. The dropped rules are the ones that produce poor code in

the Graham-Glanville technique.

All the machine descriptions produce a finite number of 8-LR graphs. Henry explains the
structure of this type of machine descriptions [Hen84]. The main symbols are register, rval, and
Ival, describing values computed into a register, values that can be used in the right-hand side of
an assignment, and values referring to locations that can be used in the left-hand side of an
assignment, respectively. In addition there are a number of other symbols to describe individual
addressing modes and classes of them, different types of constants, and other features of the tar-
get machine.

The VAX-11 machine descriptions are reasonably complex, due mainly to the large number
of addressing modes present in that machine. The descriptions satisfy the conditions of Proposi-
tion 6.5 (on the finite number of 3-LR graphs) with S = {rval register }; rval is needed in addi-
tion to register because there are unbounded rewrite sequences of the form
val — rval — lval - -- if the memory-to-memory operations of the VAX-11 architecture are
used. Since VAX-11 is a CISC architecture its machine description allows many valid rewrite
sequences rewriting an input tree into the goal. The RISC-II machine descriptions are very sim-
ple. Since RISC-II is a load/store architecture, Proposition 6.5 is satisfied directly with
S={register }, and there are few alternative ways to implement a given input tree. The Mc68000
machine descriptions are not as large as the VAX-11 descriptions because they do not have as
many addressing modes or instructions, but they are more complex due to the non-uniformity of
the register set of the Mc68000. This non-uniformity is handled using the techniques of ‘‘syntax
for semantics’’ [Hen84], with different instruction fragment classes to track two sets of attributes:
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dedicated and temporary registers, and address and data registers. Despite the complexity, Propo-
sition 6.5 applies directly with S={rval }.

All the machine descriptions associate with each rewrite rule a 4-tuple of positive integers.
With these four values there are 6 cost functions of principal interest: each of the 4 projections,
the lexicographic order on the tuple, and a constant cost function (effectively ignoring all the
costs). The cost tuples for the different machine descriptions are shown in Figure 8.2. The com-
bination of a machine description m and a cost function ¢ is frequently denoted in this chapter as
m.c

Machine Cost tuple
vax.bwl MISO)
vax.bwlfd MISO)
vax.bwlfdgh | MISO)

mot.bwl (CSIM)
risc.bwl (CBIM)
vax.ng MISO)
vax.ng.ne M1S0)
mot.ng MI1SO)

~

ey | Meaning

Constant cost for all fragments

Number of instructions of the fragment

Number of memory bytes referenced by the fragment

Number of CPU cycles of the fragment

Number of bus cycles of the fragment

Number of operands in the fragment

Number of operands with hardware side effects in the fragment
Lexicographic ordering on the cost-tuple

frwvwownNZg—Rw

Cost Functions

Figure 8.2

Although the finiteness of the number of 8-LR graphs can be inferred from the rewrite sys-
tem underlying the machine descriptions, the actual number of states needed depends strongly on
the cost function used. The experimental results of Section 8.1.2 show that the differences in the
number of states required for each of the different cost functions can be substantial. For instance,
the number of states for vax.bwl.M is 1249, while that for vax.bwl.l is 422, and vax.bwl.K is only
91. This difference stems from the different behavior of the cost functions.

Some cost functions lead to 8-UI LR graphs with small d-costs and, thus, small total
number of graphs. These cost functions are described as “‘shallow’’. The opposite situation is a
““deep’’ cost function. In the VAX-11 description, the number of instructions is a shallow func-
tion because the VaX-11 has very powerful instructions and addressing modes and most of the
time an input tree can be covered with a very small number of instructions, while the number of
memory references is a deep cost function since different addressing modes may vary widely in
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the number of memory references used. The *‘shallowest’’ cost function is the constant function;
the ‘‘deepest’’ is the lexicographic order on the 4-tuple. The implementation reported here can-
not deal gracefully with lexicographic order; see Secuon 8.4 for further comments.

The experiment involved implementing a a table generator and a code generator. The table
generator, BURS-TG, is a stand-alone program that generates tables in the form of initialized C
structures; its implementation details and experimental results are discussed in Section 8.1. The
implementation details of the code generator, BURS-CG, are discussed in Section 8.2, with most of
the experimental results being described in Section 8.3 where BURS-CG is compared with three
other code generators integrated in UW-CODEGEN. The figures in that section show that the tables
generated by BURS-CG are competitive with those generated by the other techniques and that the
time spent solving UCODE in BURS-CG is much smaller than that spent in the other locally optimal
code generators in UW-CODEGEN, and, indeed, even significantly faster than the one based on
Graham-Glanville technology.

Section 8.4 presents the conclusions and lists the areas for further work.

8.1. Implementation of BURS-TG

The general organization of BURS-TG is essentially the one described in Chapter 6: first the
&-LR graphs are generated, then 6-UI LR graphs are chosen to minimize the number of required
states, finally the resulting transfer tables are packed with some reasonable efficiency and are
printed out as C initialization structures, to be used in BURS-CG.

8.1.1. Generating 6-LR Graphs

The 8-LR graphs are generated using a modified version of David Chase’s algorithm for
generating match sets in linear pattern sets (Section 3.5).

The central part of Chase’s original algorithm is a generation of match sets from the combi-
nation of previous match sets. This is done in the procedure add () of Figure 3.9. This procedure
has to be modified to generate new 8-LR graphs from previous 8-LR graphs, or, more exactly, the
set of input nodes of the new 3-LR graph is computed from the set of output nodes of the previ-
ous 8-LR graphs. To support this computation the representation of a 8-LR graph includes a
description of its set of output nodes and add () is actually invoked with a set of input nodes,
which will then generate a 8-LR graph (and then will be considered for new combinations and so
on, as in the generation of match sets).

Sets of nodes are sets of pairs <p,c> where p is a subpattern, and ¢ is its cOSL. For 6-LR
graphs, the only important sets are those that are normalized, i.e. those where the minimum cost
in the set is 0. The modified algorithm uses sets of nodes whenever the original algorithm used
sets of subpatterns. The key data structures involved are:

° &-LR graph. In addition to a straightforward representation of the graph, the implementa-
* tion keeps two copies of the set of output nodes. The first copy is just an optimization for
speed, and always corresponds to the information in the graph. The second value is initially
a copy of the first, but it will never be changed, even when the 8-LR graph is later modified

to reflect restrictions. This second value is used to retrieve the folding information.

. P, ;. This data structure is identical to the one used by Chase (see Section 2.5); namely, it
is a set of trees, stored as a bit vector.

° Rg op ;- For pattem matching, R4 ,p; 1S an indexed set of match sets, but for solving C-
REACHABILITY Rg ,, ; is an indexed set of normalized cost-pattern pairs: the normalized set
of the nodes of the 8-LR graph G appearing in P, ,i.
The other data structures are mostly unchanged. The modified version of add () is shown in

Figure 8.3.
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rocedure add(1IS)

=

=

let IS be a set of input nodes;
if IS is not new then

return index of IS in the set of all input sets;

compute the 3-LR graph G associated with IS
compute the output set from G, and normalize it
store IS into the set of all input sets,

and associate G with it;

comment now we update Rg 5
foreach op € OP do

let n be the arity of op
oreach i,1<i<n do
compute Rg gp i+
l:f RG op is new then
store it;
mark it with lasz_iteration (a global variable);

return the index of IS into the set of all input sets;

Adding a 8-LR Graph
Figure 8.3

The implementation of this routine is quite straightforward, the only issue is in the specific
data structures used. In this implementation, sets of <pattern cost> pairs are represented as bit
vectors plus explicit index+cost arrays, which allows the algorithms to select the fastest represen-
tation for a given operation, but it is quite expensive in memory. A production-quality imple-
mentation should be very careful in the selection of the data structures.

The above version of add () maintains a one-to-one mapping between input sets and 8-LR
graphs. The next subsection explains that this is not always the case; the changes are done by
inserting code at the places indicated by the =.

The basic algorithm described above is modified slighty to deal with generic operator
rewrite rules. For simplicity, most generic operator rewrite rules are transformed into normal
reduction rules *‘before’’ generating the 8-LR graphs. This is done by considering the contexts
where the rules could be applied and generating new rewrite rules that correspond to ‘‘instantia-
tions’’ of the generic rewrite rules to those contexis.

An exception to the ‘‘instantiating’’ process described above are those generic operator
rewrite rules, Op (X1, . .., X,)>0p" (X1, ..., X,), such that Op appears only in this rewrite rule,
and where the semantic action does not refer to any of the attributes associated with Xy, ..., X,,.
In this case, the application of the rewrite rule could have been done in a previous phase. Recog-
nizing these pattemns may reduce the number of patierns 10 consider at table generation time by
ignoring the operators Op and using only Op’. This technique is particularly useful for the
machine descriptions that were designed for Graham-Glanville technology, where generic opera-
tor rewrite rules are frequently used just as an abbreviation mechanism. A typical example are
the rewrite rules abstracting the comparison operators (for example, Ne_l ~Cmp). The
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recognition of these rewrite rules by BURS-TG does not imply that BURS-CG needs to split its
behavior into these two phases. A singic phase is used in BURS-CG since it yields smaller tables
and runs faster. The two-phase approach is slower because of the presence of the additional
phase, and has larger tables because in the one-phase implementation the tables of all the opera-
tors that are abstracted into the same generic operator can be fully shared, while a two-phase
implementation would (normally) require many entries to describe identity transformations in the
first phase.

8.1.2. Selecting the 3-UI LR graphs

The next stage after generating the 8-LR graphs is t0 select uniquely invertible subgraphs
that contain no useless nodes, contain enough information for solving UCODE, and are as small as
possible. Proposition 5.17 showed that there is little hope for solving this problem optimally.
Fortunately, the heuristic algorithm described in this section does an adequate job.

The general idea is to intermix the removal of useless nodes with the selection of increas-
ingly more restricted 6-LR graphs until obtaining the 3-UI LR graphs. At each stage, the restric-
tion of the 8-LR graphs is selected in a **first-fit”” manner: two partially restricted LR graphs are
compared and, if possible, are replaced by a common restriction. After a few iterations, 2 or 3 for
our machine descriptions, this process converges 1o a set of, probably not uniquely invertible, res-
tricted 8-LR graphs. At this stage 3-UI LR graphs are chosen. We provide two different mechan-
isms to do this. One algorithm tries to reduce the total number of 5-UI LR graphs, the other tries
1o reduce the *‘diameter’’ of the 5-UI LR graphs, that is, the length of the longest local rewrite
sequence of the graphs. Then the LB-fsa that computes the 8-UI LR graphs is minimized using
the algorithm described in Section 2.4.1. The overall organizatiorl24 is shown in Figure 8.4; the
rest of this subsection explains the most interesting details and then provides experimental
results. The actual implementation follows quite closely this description except for some speed-
ups, of which the most important one is the use of the folded representation of the LB-fsa in steps
3 and 6.

% The actual implementation allows some other heuristics. The figure only reports the most successful ones.
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1 Original §-LR graphs
2 On-the-fly Restriction of 6-LR Graphs
3 Find Useless Nodes and
identical 6-LR graphs
1T 2 4  Restriction of 8-LR Graphs
Sa  Sclect 8-UI LR Graphs (small)
Sb  Select 8-UI LR Graphs (fast)
6 LB-fsa minimization for UCODE
7 Final 6-UT LR graphs.
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Computing Equivalent States

Figure 8.4

On-the-fly Restriction (Step 2)

The first (optional) restriction is on-the-fly, done inside the add () procedure of Figure 8.3.
This is done by inserting code at the points indicated by = in Figure 8.3. As described in that
figure, add (), maintains a one-to-one mapping between input sets and d-LR graphs. When the
on-the-fly restriction is used, the mapping becomes many-to-one, reflecting the fact that different
input sets may have been found to generate different 3-LR graphs with a common restriction. If
the mapping is called inputs_to_graphs , the code to be inserted at the two = would look like:

if IS is in the domain of inputs_to_graphs then
| return the index of inputs_to_graphs (IS ),

and
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search for a previous state that can be merged with the current state
if there is one such G* then

add (IS ,G") 10 inputs_to_graphs

return the index of G’;

This restriction is very effective in reducing the number of 3-LR graphs that have to be con-
sidered, as it is done while the graphs are being generated.

Removal of Useless Nodes in the Graphs (Step 3)

The 8-LR graphs generated by the modification to Chase’s algorithm assume that any out-
put node is useful. Detecting and removing the useless nodes allows for further graphs to have
common restrictions (and also leads to smaller representations for the graphs themselves). In
addition, whenever an 8-LR graph is inverted, more nodes may be found useless. Thus, there is a
need for the detection of useless nodes.

In the current implementation useless nodes are found by constructing a summary version
of the LB-fsa computing the 8-LR graphs, and propagating useful nodes through it. The data
representation used to represent the summary is quite simple and uses the fact that, in the stages
before LB-fsa minimization, there is a single operator in the input language labeling the root of
all the patterns in the set of input nodes of cach LR graph. Since the constructed transition graph
is going to be used only to propagate information backwards, all that is needed is to store, ior
each graph and for every position of a tree as a child of the operator associated with the graph, a
list of all the graphs that, when characterizing a tree in that position, may transfer to the current
graph. The transformation is shown in Figure 8.5. The list of states is implemented using a bit
vector representation. This algorithm is simple but it is also moderately expensive in space and
time.

L /@\
ONOROBNONONO

Summary Transfer Graph

Figure 8.5

After removing useless nodes in the 3-LR graphs, identical states can be found, for exam-
ple, by comparing the set of nodes of the graphs.

Restricting the 8-LR Graphs (Step 4)

Detection and removal of useless nodes shows new oppertunities for the presence of com-
mon restrictions in the 8-LR graphs. Thus, each application of the previous algorithm is followed
by an attempt to further restrict the graphs. This is done in a way identical to the application of
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the “‘on-the-fly’’ restriction, using the updated information.

Repeated stages will further restrict the graphs until they are very ‘‘thin’’, almost uniquely
invertible, and no further restrictions are possible.

Selecting the 8-UI LR Graphs (Steps Sa and 5b)

At some point the partially restricted 6-LR graphs are restricted completely to obtain the 8-
UI LR graphs. This is normally done using a **global’” heuristic that attempts t0 make the result-
ing 8-UI LR graphs as similar as possible. Since the previous stages were stopped at a point
where no two graphs had a common restriction, this stage will not succeed in making any two
graphs identical, but, if the graphs are similar, they may become identical after removing the
nodes that became useless after this stage. If two or more edges reach a node in a graph, the
heuristic tries to select an edge that corresponds to a rewrite rule used previously in another
uniquely inverted graph. This makes graphs similar after the inversion, and reduces the number
of different rewrite rules used (and therefore reduces table size). This heuristic is related to the
heuristic used above for restricting the 8-LR graphs and, in some cases, its effects can subsume
those of the previous stages. These ‘‘first-fit’’ heuristics yield tables with reasonable sizes. The
real performance of the heuristic is difficult to estimate since the problems are large enough to
preclude computing the optimal solution to the NP-problems cxhaustively.

The previous paragraphs have assumed the goal is to minimize the number of non-
equivalent states, that is, to generate small tables. BURS-TG can also try to generate a ‘‘faster”
code generator at the expense of larger tables. This could be done optimally by defining a new
cost function that would bc a lexicographic ordering on a pair where the first component would
be the (normal) cost function to minimize, and the second would represent the (code generation
time) cost associated with generating the instruction fragrnentzs. This approach has not been
explored in BURS-TG for implementation reasons but seems likely to generate large tables.
Instead BURS-TG computes an approximation: it avoids performing any of the restriction opera-
tions on the 8-LR graphs, and then uses a modified global heuristic for selecting the 3-UI LR
graphs, trying to select always the shortest possible path in. the 8-LR graphs. A later section
reports on the results of these changes.

LB-fsa Minimization (Step 6)

This step is an straightforward implementation of the algorithm to minimize a LB-fsa using
the considerations of Section 6.3.

Experimental Results

Figure 8.4 contains many possible sequences of actions to compute a final set of 6-UI LR
graphs. A first collection of runs of the table generator provides some information on the value,
and cost, of the most interesting sequences. Figure £.6 contains two tables. The first table con-
tains the number of states of vax.bwl.I at positions in 5 sequences; the second table does the same
for vax.bwl.M except that the last sequence is not shown. The first table also shows the time
required to create the tables. Each entry contains two numbers: real (elapsed time) and user time,
as provided by the UNIX 4.3 system call gerrusage. These times are in seconds in a Vax-
11/8600.

25 Note that it is an additive function.
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vax.bwl.l
Sequence | 1 2 3 4 3 4 S5a-3  6-7 | Time®R/U)
(seconds)
States 1298 798 525 473 441 441 441 422 | 470/424
States 1298 798 525 473 - - 441 422 | 369/361
States 1298 - 962 655 512 463 441 422 | 629/597
States 1298 798 525 - - - 489 470 | 3717366
States 1298 798 - - - - 492 470 | 296/292
States 1298 - - - - - 603 561 | 606/424
vax.bwlM
Sequence | 1 2 3 4 3 4 5a-3 67
States 8619 4006 1726 1626 1596 1596 1596 1249
States 8619 4006 1726 1626 - - 1596 1249
States 8619 4006 1726 - - - 1685 1309
States 8619 4006 - - - - 1738 1318

Computing Equivalent States for Vax.bwl.{M.I}
Figure 8.6

Recall that step 2 is an on-the-fly application of step 4. The tables in Figure 8.6 suggest that
it is normally useless to repeat step 4 more than twice. In fact, only one of the description-cost
cases shows any change with three applications of step 4, and in that case the difference disap-
pears after step Sa—3. Since an additional application of these steps is expensive in time, we
limit ourselves to two applications of step 4. These are chosen as steps 2 and 4, since the on-the-
fly application is substantially faster, and cuts the memory requirements significantly.

The experiments also show that the deeper the cost function the larger the reduction
obtained by the LB-fsa minimization. But, the benefits of the LB-fsa minimization are indepen-
dent, to a certain extent, of the benefits of a careful selection of the 8-UI LR graphs. Trying to
save time by doing a too hasty selection of the 8-UI LR graphs backfires since step 6 is a very
significant part of the total time and it depends heavily on the number of states given. That is
why the last row in the first table has such large times. Even worse, the same combination is
missing from the second table because that sequence of steps would exceed the memory limits of
the machine where it was run, in this case about "28Mb.

It is necessary to explain where to apply step 3, detection and removal of useless nodes in
the 8-LR graphs. Step 3 has to be performed between restrictions (steps 2 or 4) to allow the later
restrictions to proceed. It is not applied between the last application of step 4 and steps Sa-3
because the heuristic done in step 5a acts globally and pays no attention to the presence or

absence of the nodes®. Finally, it is done between steps 5a and 6 because step Sa may introduce

26 One could make a good argument for changing the global heuristic in Sa, but this has not yet been done.
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new useless nodes and step 6 will not detect them.

Because of the above considerations, the path 1-2-3—4-5a-3-6-~7 is the one used by
default in BURS-TG; we will call it the *‘preferred path’’. Figure 8.7 now shows the effect of this
path on all the machine descriptions and cost functions.
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Machine 1 2 3 4 5a-3 6-7
vax.bwl.K 645 304 171 109 95 91
vax.bwl.M 8619 4006 | 1726 1626 1596 1249
vax.bwl.l 1298 798 525 475 441 422
vax.bwl.S 1286 753 442 390 YA 352
vax.bwl.O 651 304 168 109 95 91
vax.bwifd.K 809 380 230 146 127 121
vax.bwifd.M 12330 5777 | 2753 2635 2483 1835
vax.bwifd.l 1677 1060 736 674 626 605
vax.bwifd.S 1674 1013 643 585 552 531
vax.bwifd.O 818 380 226 146 127 121
vax.bwifdgh.K 1010 472 301 187 161 153
vax.bwifdgh.M - - - - - -

vax.bwifdgh.I 2123 1373 988 916 848 825
vax.bwifdgh.S 2132 1333 894 830 779 756
vax.bwifdgh.O 1022 472 296 187 161 153

risc.bwl.K 136 80 75 66 66 56
risc.bwl.C 227 151 143 142 142 132
risc.bwl.B 227 151 143 142 142 132
risc.bwLI 222 151 145 144 144 134
risc.bwi.M 222 151 145 144 144 134
mot.bwi.K 362 . 200 192 187 158 147
mot.bwl.C 4509 1154 768 666 662 583
mot.bwl.B 362 200 192 187 158 147
mot.bwll 392 228 221 215 188 178
mot.bwl.M 1751 634 517 441 436 392
vax.ng.K 416 149 149 112 100 95
vax.ng.M 7482 2972 | 1228 1120 1120 1045
vax.ng.l 933 430 366 310 302 296
vax.ng.S 859 435 382 303 291 286
vax.ng.O 419 149 143 111 100 95
vax.ng.ne.K 379 182 182 115 100 95
vax.ng.ne.M 3049 1733 816 731 731 652
vax.ng.neJ 754 417 328 276 276 270
vax.ng.ne.S 660 417 348 283 273 268
vax.ng.ne.O 381 182 143 111 100 95
mot.ng.K 293 190 185 182 182 167
mot.ng.M 3914 1089 787 643 637 576
mot.ng.I 293 190 185 182 182 167
mot.ng.S 309 213 211 209 209 194
mot.ng.O 1160 537 489 408 408 374

Preferred Path to Compute Equivalent States

Figure 8.7

The entry for vax.bwifdgh.M could not be computed because, due 10 the space-hungry
implementation of BURS-TG, the program runs out of swap space (28M). We expect the final
table size to be in line with the results for vax.bwl.M and vax.bwifd. M , but the final numbers will
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have to wait for more swap space or better table-generation algonithms (more on this later). The
space problem is even worse for the lexicographic cost functions. The only one that can be com-
puted with the current algorithm and the available hardware is the one for RISC-II, where it is
134. This value is not very interesting because the RISC-II description is so simple and different
from the other machine descriptions.

There is a large reduction in the number of states for vax.ng.M 10 vax.ng.ne.M, especially
considering that the difference between the two machine descriptions is only the removal of 9
rewrite rules. These are the rules that make Graham-Glanville produce poor code for some input
trees. Tracking the effect of these rules almost doubles the number of states rcquired (but, as we
will see, the table size increase is not as pronounced).

The entries in the table above show much the number of 8-UI LR graphs depends on the
depth of the cost function, and also on the details of the underlying rewrite system, including the
number of attributes that are encoded syntactically. It also reminds the reader of the potential
effects of incorporating non-orthogonal input sets. The number of states in vax.bw! and mot.bwl
are larger than those in vax.ng and mot.ng; although some of the difference is due to slightly dif-
ferent cost functions, most of the difference probably follows from the manual removal of rules
that are known to be useless for the actual input language. A more controlled experiment will
have to wait until BURS-TG is extended to allow for the description of the input set as a recogniz-
able set.

The preferred path analyzed in the tables above tries to minimize the number of final states.
Two other useful goals are to generate tables corresponding to code generators that obtain shorter
final rewrite sequences, and to generate the tables fast. The first goal can be seen as an approxi-
mation to lexicographic order; it is called the ‘‘good code generation’’ (good-cg), and it is
obtained by avoiding any of the restrictions and applying a heuristic that tries to obtain 6-UILR
graphs that have short diameter: the path 1-5b-3-6-7. The second approach is called the “‘fast
table generator’” (fast-tg) and it is obtained by generating the 3-LR graphs using step 2 to speed
up the generation, and then applying the global heuristic: the path 1-2-5a-7. Section 8.1.4 sum-
marizes results using these two paths and the preferred one.

8.1.3. Packing Tables

The output of the generation of the 8-UI LR graphs are tables organized as in Figure 8.8%7.
The top part of the figure, the TRANSFER tables, represent the LB-fsa computing the 8-UI LR
graphs. The lower part represents the 3-UI LR graphs themselves.

77 The two parts of this figure have appeared before in Chapters 3 and 5.
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8.1.3.1. Representing the 3-UI LR Graph LB-fsa

Most of the size reduction in the tables representing the LB-fsa is the result of the row and
column folding obtained using the improvements to Chase’s generative algorithms, including
sharing identical restrictor arrays shown in Section 3.5, and the state equivalence techniques men-
tioned in Section 8.1.2. A final table compression mechanism is to represent the restrictor arrays
using a variable number of bits (1, 2, 4, 8, or 16). This does not substantially slow the code gen-
erator but reduces considerably the table requirements. Figure 8.9 shows the influence of the
encoding used for the restrictor arrays for one machine description; the other machine descrip-
tons should be similar. Section 8.1.4 contains additional information on table measurements.
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Mode Restrictor Size  Total LB-fsa Size
No sharing/Full Size 123084 146404
Sharing/Full Size 55186 78506
Sharing/Bit-encoded 26010 48230%

No sharing/Bit-encoded 37196 59416

Influence of the Representation of the Restrictors for vax.bwl.M

Figure 8.9

The part of the LB-fsa that corresponds to Plus_I is always a large percentage of the total,
because Plus_[ appears in the patterns corresponding to the addressing modes. This is especially
true for the VAX-11 descriptions. For instance, in vax.bwl.M , Plus_l has 14.6KB out of 65KB of
total table size, and in vax.bwlfd.M , 18KB out of 106KB. Several unsuccessful approaches were
attempted to try to find a more compact, but still fast, representation.

The most interesting attempt notices that several rows (respectively, columns) differ in just
a few columns (resp. rows). Hence it is possible to represent a column (row) by a ‘‘default’
representative and a collection of ‘‘differences’’ relative to that representative. The columns
(rows) and the number of entries in which they disagree can be modeled by vertices in a graph
and weighted edges between them. If one allows multiple indirections (that is, the ‘‘default’’ of
some column can be, in itself, represented by a default and a list, and so on) the smallest
representation corresponds to finding a minimum-cost spanning forest of the graph. Each con-
nected component is represented by a single column listed in *‘full’’ and as many difference lists
as edges in the component. Access to the values of a given column requires consulting the lists
associated with the edges until it is found, or the fully described column is reached.

This approach was implemented but the results were disappointing. The new tables had a
size similar to the initial table, and much slower access time. The problem is that the columns are
not similar enough, the difference lists are too big, and too many representatives are needed.

8.1.3.2. Packing the 3-UI LR Graphs

The representation used for the 8-UI LR graphs is the one discussed in Section 5.6.1. A o-
UI LR graph can be seen as a sparse row, with one entry per possible pattern appearing in the
extended pattern set of the rewrite system. An entry will either be a don’t-care entry if the
represented pattern does not appear at all in the graph, or contain an indication of the rewrite rule
representing the edge leading to the node in the graph. A collection of states can be stored
together by superimposing the rows into a single 1-dimensional array, GOAL, with rows starting at
different positions in the array indicated by another array BASE.

Finding the packing with the smallest GOAL is complex. The problem can be split into two

different stages motivated by the observation that given an entry value, there is a single position
in a row where it can appear: the one corresponding to the output pattern of the transformation

28 The 1able that encodes whether a state includes the goal symbol or not can also be bit-encoded
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whose number is the entry value. In the first stage, we determine what rows will share the same
““base’’, that is, what rows are overlapped one directly on top of the other. This problem can be
described as a clique detection problem, which is NP-complete {GaJ80). (Construct a graph
where each node corresponds to a row, and there is an edge between twe ~odes if they can be
overlaid at the same BASE position. An overlapping arrangement is done by sclecting a collection
of disjoint cliques covering the graph. The best arrangement is one that minimizes the number of
cliques). The second stage tries to find how to place the resulting (denser) rows into GOAL so that
the number of ‘‘empty’’ slots is minimized.

The implementation follows these two stages, applying a first-fit approach to each problem. -
In the first stage, rows are overlapped as much as possible. In the second stage, each possible
open position in GOAL is tried. The resulting layouts seem quite reasonable.

The representation of the 8-UI LR graphs described above does not specify how to detect
that an input node has been reached. One possibility is to associate with those nodes an edge
looping from the node to itself. A better approach is based on the observation that a node is an
““input node’’ depending only on its associated pattern. Thus one can mark patterns as being an
“‘input” or not. Furthermore, this information can be encoded into the pattern by a simple
renumbering of the pattern’s index. This has the additional advantage that it produces slightly
better packing for the GOAL tables.

GOAL and BASE contribute to about half of the space requirements of the representation of
the graphs, the rest being used to represent the rewrite rules themselves. For a large table like
vax.bwlfd.M, GOAL is 7.6KB, and BASE is 3.6KB. The typical density (that is, the number of
non-zero entries) of GOAL is about 60%, which places an upper limit on how much smaller it can
become. Of course this limit can be unobtainable. One problem in obtaining higher densities are
rows (corresponding to a 8-UI LR graph) that are very dense in some region, and impede any
other row from being laid out crossing that region. If two of the dense regions are separated by a
sparse region, that area may have trouble being filled in. A heuristic that tries to correct this
situation removes the dense areas by ‘‘expanding’’ the rows by a factor & . This corresponds to
changing the external numbering of the output trees. Unfortunately, this heuristic has not been
effective for our machine descriptions, and it is clearly not effective for large values of & because
the increase in the spread of the rows dominates whatever gains could be done with a better lay-
out. Overall it seems to do little and it is not used unless explicitly requested by the user of the
table generator.

The above paragraphs represent the graph one edge at a time. Another possibility is to pro-
vide, for each pattern in the output set of the state, the full local rewrite sequence (or, actually, the
sequence of associated semantic actions). This approach increases the table space requirements
(a ‘‘back-of-the-envelope’” analysis of the vax.bwl.] machine description indicated a 4 to 5-fold
increase in the space requirements for representing the graphs), but might produce slightly faster
code generators (or it may not due to factors such as cache thrashing). Overall, this approach is
not promising, and it is not used in our system.

8.1.4. Summary of Table Sizes

This section collects the results of several experiments showing the behavior of BURS-TG for
different machine descriptions, cost functions, and the three heuristics mentioned previously (pre-
ferred, good code generation, fast table generation).

The table of Figure 8.7 indicates, for each machine description and each cost function, the
number of 8-UI LR graphs generated initially, the number generated with the restriction on-the-
fly, and the final number of non-UCODE-equivalent 8-UI LR graphs obtained using the *‘preferred
path’’ of Figure 8.4. Figure 8.10 is just a summary of that of Figure 8.7.
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Machine K M 1 S 0

vax.bwl 645 304 91 8619 4006 1249 | 1298 798 422 | 1286 753 352 651 304 91
vax.bwild 809 380 121 | 12330 5777 1835 | 1677 1060 605 | 1674 1013 531 818 380 121
vax.bwifdgh | 1010 472 153 - - -1 2123 1373 825 | 2132 1333 756 | 1022 472 153
vax.ng 416 149 95 7482 2972 1045 933 430 296 859 435 286 419 149 95
vax.ng.ne 379 182 95 3049 1733 652 754 417 270 660 417 268 381 182 95
mot.ng 293 190 167 3914 1089 576 293 190 167 309 213 194 | 1160 537 374
Machine K C B 1 M

mot 362 200 147 4509 1154 583 362 200 147 392 228 178 | 1751 634 392
risc 136 80 56 227 151 132 227 151 132 222 151 134 222 151 134

Figure 8.10

States for Preferred Path (Original Generated Final)

Figure 8.11 presents information on the table sizes, distinguishing between the contribution
from the LB-fsa computing the 8-UI LR graphs and the contribution from the encoding of the
graphs themselves. For each machine description and each cost function, it provides the size of
the LB-fsa, the size for representing the graphs, and the total size.

Machine K M I S 0 |
vax.bwi 1336 7560 8896(48230 16782 65012 11010 14546 25556| 8572 13180 21752 1336 7560 8896
vax.bwlfd 11982 10470 1245280146 25918 106064|18158 21934 4009215292 20880 36172 1982 10470 12452
vax.bwifdgh {2634 13682 16316 - - -127198 31022 58220(24332 29932 54264 2634 13682 16316
vax.ng 1722 7582 9304|36690 17338 54028] 6362 12778 19140 6812 12896 19708| 1722 7638 9360
vax.ng.ne 1722 7698 9420126388 15980 42360, 5760 12320 18080 6390 12204 18684( 1722 7682 9404
mot.ng 3652 12588 16240122500 20788 43288 3652 12588 16240 4542 13978 1852010320 18692 29012
Machine K C B 1 M

mot 12630 12290 14920124944 20316 45260| 2630 12290 14920| 3634 13858 17492 12298 17942 30240
risc i1196 4376 5572' 2396 7228 9624 2396 7228 96241 2412 7412 9824| 2412 7412 9824J

Table Sizes in bytes for Preferred Path (LB-fsa Graphs Total)
Figure 8.11
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This figure can be combined with the previous one to obtain the table size (in bytes) per
state. The table shows a very strong regularity; on closer examination, a similar regularity
appears in the previous two tables. Using this data, one can make an ‘‘educated guess’’ to the
values of vax.bwlfdgh.M : a bit over 60 bytes per state, about 2500 states, and about 150K. Test-
ing this hypothesis will wait for larger computing resources or for better algorithms.

Machine K M I S 0

bwl 9775  52.05 60.55 61.79 97.75

bwifd 102.90 57.80 66.26 68.12 102.90

bwifdgh 106.64 - 70.56 7177 106.64

vax.ng 9793 51.70 64.66 68.90 98.52

vax.ng.ne 99.15 ©64.98 66.96 69.71 98.98

mot.ng 9724 75.15 97.24  95.46 77.57

Machine K C B 1 M

mot 10149 77.63 101.49 9826 77.14

risc 99.50 72.90 7290 7331 73.31

Total Table Size (in bytes) per State
Figure 8.12

[ Machine K M 1 S ) |
vax.bwl 184.48 182.42 156 8514.76 7841.16 235.32] 69138 687.34 252| 613.28 61038 2.14)185.12 182.76 1.74
vaxbwifd 136279 360.14 1.82|36791.3 189532 4843.42|1456.94 1449.98 4.64|1336.63 1331.16 3.74)364.36 361.64 1.96
vax.bwlfdgh|677.65 673.56 2.74 - - - 290034 2864.36 15.96]2737.53 2696.84 16.7 {679.81 675.78 3.2
vax.ng 12657 124.64 1.34| 5699.23 555236 67.78] 3992 396.62 1.8 | 379.72 3774 1.58/130.36 128.36 132
vax.ng.ne 132.6 1292 1.7 | 23613 2264.6 14.7 | 3988 3377 23 | 3684 3395 37 |148.1 1344 14
mot.ng 282.8 279.2 1.74| 2582.22 2573.64 5. 28154 27934 1.4 | 324.74 321.58 1.9 |841.16 83632 2.92
Machine K C B I M
mot 237.64 23478 2.8 | 2324.84 2317.6 4781 23768 2354 1.64| 278.98 27576, 2.4 ]929.93 924.6 332
risc 39.18 33.12 0.88 72.1 67.12 1.3 67.9 65.52 14 66.9 65.48 1. ; 67.12 6536 1.

Table Generation Times for the Preferred Path (Real User System) (in seconds)
Figure 8.13
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Finally, Figure 8.13 lists the time spent generating the tables. The values are on a Sun
3/175 with 12M of memory and no local disk. It must be re-emphasized that the implementation
of BURS-TG can be called *‘exploratory programming’’, and that these numbers should be con-
sidered only rough upper bounds.

The numbers in Figure 8.13 correspond to the preferred execution path in BURS-TG. The
next tables compare this path to the ‘‘good code generator’’ and the ‘‘fast table generator’’ paths
discussed at the end of Section 8.1.2. Only the values for vax.ng, vax.ng.ne, and mot.ng are
shown here.

States (Original Generated Final)
vax.ng K M 1 S 0

Preferred | 416 149 95 | 7482 2972 1045 | 933 430 296 | 859 435 286 419 149 95
Fast-tg 416 149 149 | 7482 2972 2972 | 933 430 430 | 859 435 435 419 149 149
Good-cg 416 416 139 - - - | 933 933 369 | 859 859 390 419 419 130

vax.ng.ne K M I S O

Preferred | 379 182 95 | 3049 1733 652 | 754 417 270 | 660 417 268 381 182 95
Fast-tg 379 82 182 | 3049 1733 1733 | 754 417 417 | 660 417 417 381 182 182
Good-cg 379 379 139 | 3049 3049 739 | 754 754 326 | 660 660 368 381 381 130

mot.ng K M 1 S o

Preferred | 293 190 167 | 3914 1089 576 | 293 190 167 | 309 213 194 1160 537 374
Fast-tg 293 190 190 | 3914 1089 1089 | 293 190 190 | 309 213 213 | 1160 537 537
Good-cg 293 293 185 | 3914 3914 705 | 293 293 185 | 309 309 207 | 1160 1160 481

Comparing States for Altenate Paths
Figure 8.14

Figures 8.14, 8.15, and 8.16 provide some preliminary information on the tradeoffs avail-
able at table generation time. The *‘preferred’” path yields the smallest number of states and the
smallest tables. The table generation time can be (in some cases) reduced by more than a factor
of 2 from that of the preferred path by using the “‘fast-tg’* path. This reduction may be coupled
to a table size increase that may be up to a factor of 2 relative to the “preferred’’ path. in some
cases. The ‘‘good-cg’’ path is a first attempt to get some i::formation on the table requirements
for minimizing lexicographic cost ordering. The figures indicate that, for this approximation to
lexicographic cost, the table size is increased over the “‘preferred’’ values, but without reaching
the values for the ‘‘fast-tg’’ path. The table generation time for ‘‘good-cg’’ is increased
significantly from that for **preferred’’, and so is the memory usage (not shown), which leads to a
rapid deterioration of the behavior of the table generator in the case of mot.ng.M and reaches an
extreme with vax.ng.M , for which the table generator cannot complete.
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Table Sizes (in bytes) (fsa states total)

vax.ng

M

1

S

| 0

Preferred
Fast-tg
Good-cg

1722
12582
2514

7582
8570
10810

9304
11152
13324

36690 17338
79588 22872

540286362
102460(9146
-17956

12778
13926
13892

19140
23072
21848

6812
9250
8862

12896
14438
1459C

19708
23688
23452

1722 7638
2582 8570
2256 10548

9360
11152
12804

vax.ng.ne

K

M

1

S

O

Preferred
Fast-tg
Good-cg

1722
2924
2514

7698
8729
10786

9420
11652
13300

26388
46924
29114

15980
18576
15858

42368
65500
44972

5760
8452
7090

12320
13324
19686

18080
21776
20776

6390
8772
8450

12294 18684
13564 22336
14282 22732

1722 7682
2924 8728
2256 10452

9404
11652
12708

mot.ng

K

M

1

S

o

Preferred
Fast-tg
Good-cg

3652
4102
4210

12588
13446
14598

16240
17548
18808

22500
35354
26964

20788
23538
22360

43288
58892
49324

3652
4102
4210

12588
13446
14598

16240
17548
18808

4542
4818
4906

13978 18520
14402 19220
15194 20100

10320 18692
13454 20674
13734 20842

29012
34128
34567

Comparing Table Sizes for Alternate Paths

Figure 8.15
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Table Generation Times (in seconds) (Real User System)
Vax.ng K M 1 S o

Preferred [126.5 124.6 1.3 | 56992 55523  67.7)399.2 396.6 1.8379.7 3774 1.5 1303 1283 1.3
Fast-tg 871 85.1 14 | 23135 22634 23.8]223.7 2212 1.6]224.8 2223 1.4 | 875 859 09
Good-cg 1193.6 190.7 1.5 - - - |5683 563.6 2.6/505.9 499.7 2.8 | 177.3 1751 1.5

Vax.ng.ne K M 1 S ¢

Preferred |132.6 129.2 1.7 | 23613 2264.6 14.7|398.8 337.7 2.3|368.4 3395 148.1 1344 14
Fast-tg 94.1 836 14 9213 8674 6.81207.7 181.1 2.2{196.5 180.7 1117 84.6 1.6
Good-cg |204.7 1742 2.4 | 40163 36714 89.9{451.2 423.8 3.5{391.5 3711 178.2 158.8 2.1

mot.ng K M 1 S O

Preferred [282.8 279.2 1.74| 25822 2573.6 5. 1281.5 2793 1.4/324.7 321.5 1.9} 841.1 8363 2.9
Fast-tg 172.4 168.2 2.2 | 17579 17483 5.6/170.7 168.1 1.6|194.6 192.2 1.6 | 518.9 5152 22
Good-cg [216.7 214.2 2.4 {199843 7671.3 2564.2|1217.6 2139 2.3{236.4 231.8 2.1 |1158.3 1132.4 6.38

2o Ww
W Lh )

Comparing Table Generation Times for Alternate Paths
Figure 8.16

Vax.ng.M does not show any values for ** good-cg'’ because BURS-TG runs out of swap
space onit.

8.2. Implementation of BURS-CG

The tables of Figure 8.8 are used at solving time by BURS-CG following the ideas presented
in Section 5.6.1, and in the context of UW-CODEGEN.

UW-CODEGEN implements a plug-in compatible replacement for the code generation phase
of the portable C compiler PCC {Johes]. As such it accepts as input PCC-IR, a collection of
expression trees, and produces as output assembly code. Register allocation is done on-the-fly,
one expression tree at-a-time. The internal organization of UW-CODEGEN is shown in Figure 8.17;
see [Hen84] for more details.
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Organization of UW-CODEGEN
Figure 8.17

The kernel of the code generator is what Robert Henry calls a tree pattern match select
replacer (abbreviated TPMSR) [HeD87], which is, in fact, a module that will solve UCODE, or an
approximation to it. The TPMSR are all generated automatically from the machine description, are
mostly table-driven, and all have three main interfaces with the rest of the code generator: topIR-
codeout, recurIRcodeout, and testIRcodeout. In each case the TPMSR is given an input tree, and
the output is the cost, maybe infinite, needed to rewrite it into the goal, plus, in some cases, 4
side-effect. UW-CODEGEN contains implementations for several TPMSRs. Section 8.3 below com-
pares their performance with the BURS-based TPMSR described in this chapter.

The ‘‘principal’” interface to all the TPMSR is fopIRcodeour; as a side-effect it will invoke
the sequence of semantic actions associated with a rewrite sequence for the expression tree that is
its input. This expression tree is the output of an IR transformer, currently a simple type of tree
transformer. The IR transformer generates a sequence of trees for each of the original PCC-IR
trees. The transformation process sometimes requires measuring the complexity of the subtrees.
This is done by querying the machine description via the festIRcodeout interface to the TPMSR.
In this interface only the cost is computed and no semantic functions are evaluated.

The instruction-building actions and the IR transformer also interact through the temporary
and register manager, which does the on-the-fly register allocation and assigns temporaries. The
result of the instruction-building actions is a sequence of assembly instructions. In some cases
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the cleanest way to generate code for some construct is to build an instruction tree and then gen-
rate code for it. This is done with a recursive invocation of the TPMSR, now using the recurIR-
codeout interface.

The internal implementation of each interface of BURS-CG is very simple. There are two
main recursive routines. The first routine is invoked once per node to compute the 6-UI LR
graphs; it implements the first, bottom-up pass of UCODE. The second routine is conceptually
invoked once per rewrite rule application; when going down the tree it finds the local rewrite
sequences, when unraveling it can be used to invoke the semantic functions. The actual imple-
mentation preallocates enough space per node for all the possible rewrite rules and performs only
one recursive call per node. topIRcodeout is identical to recurIRcodeout. TestIRcodeout
varies in that the semantic functions are not invoked.

8.3. Comparison with Related Work

Chapter 6 mentions several other approaches to UCODE, and compares them against the
BURS-based techniques from a theoretical perspective. This section measures the performance
of three of these techniques, denoted by GG, TD, and BU, and compares them against our owmn,
denoted by BURS. all in the framework of UW-CODEGEN.

GG is the ‘‘classical’’ Graham-Glanville technique, in its ‘‘pure syntax’’ mode. It only
solves an approximation to C-REACHABILITY. [AGHS84]1s still the best reference for this method.
TD and BU both solve C-REACHABILITY exactly, using representations of the full-cost LR graphs.
TD uses a top-down pattern matcher and represents the full-cost LR graphs explicitly. TD is
related to the proposal of Aho, Ganapathi, and Tjiang [AGTS86], except that in that proposal, the
tree transformation phase is mixed with the solving of reachability, while in UW-CODEGEN the
two phases are done sequentially. [AGT86] does not provide many details on the interaction
between the tree transformer and the reachability phase, but it seems to be quite similar to the one
in UW-CODEGEN. It is cast in a better formalism but it has the disadvantzge of describing many
actions purely semantically, thus not providing much information at table constructior ime. BU
uses a bottom-up pattern matcher and uses a mixed representation of the full-cost LR graphs.
The LR graph is represented implicitly with an index value, while the cost information is
represented explicitly. Reinhard Wilhelm and Beatrix Weisgerber in [MWW84] propose two
methods that are similar to TD and BU. [HeD87] contains a detailed description of the implemen-
tation of UW-CODEGEN and measurements of GG, TD, and BU.

Since all the TPMSRs in UW-CODEGEN are plug-in compatible, it is possible to make mean-
ingful comparisons in table size and code generation speed. This is the intention of this section.
The UCB machine descriptions cannot be integrated fully into UW-CODEGEN and the only
descriptions used for comparing the different approaches are the UW descriptions, vax.ng.ne and
motr.ng.

The comparison uses the BURS tables obtained with the 3 alternate paths of the previous sec-
tion; in this section they are named BURS-p for the preferred path, BURS-1g for the fast table gen-
eration path, and BURS-cg for the ‘‘good’ code generation path. The three tables lead to code
generators that run at very similar speeds; based on the length of the rewrite sequences that they
find, BURS-cg should be faster than BURS-p which, in tum, should be faster than BURS-tg but the
difference is small enough it cannot be detected reliably using the profile tools available (and
given the variation due to the presence of architectural features like caches).

For measuring the dynamic performance of the algorithms to solve C-REACHABILITY, the
same benchmarks are used as in [AGHS84;. [Hen84) and [HeD87). There are 6 benchmark pro-
grams, all written in C, shown in the table of Figure 8.18.
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Name  SizeinLines Description

grep 466 find instances of regular expressions in a file
reader 1013 tree manipulation routines from the front end of PCC
knuth 118 with many complex expressions and array indices
puzzle 125 Forest Baskett’s bin packing program
dh 1266 terminal driver
mark 509 one module of a VLSI circuit simulator (Crystal)

Benchmark Programs

Figure 8.18

Table Size

Figure 8.19 gives information on table size. The size information is split into two
categories: the representation for the automaton used (which particular automaton is used varies
depending on the method) and the representation of the states themselves.

Target GG TD BU BURS-p BURS-cg BURS-ig

vax.ngne fsa 337 20.1 564 | 26.3 29.1 46.9
states | 8.8 182 18.6 | 159 15.8 18.5
total 425 383 75.0 | 423 449 65.5

mot.ng fsa 33.0 186 502 | 225 26.9 35.3
states | 8.7 182 182 | 207 223 23.5
total 417 36.8 684 | 43.2 49.3 58.8

Table Size for several TPMSR (in KBytes)
Figure 8.19

The values for GG, TD, and BU are from [HeD87]; all the BURS values correspond to the 1st
cost component (M) and were measured directly. Vax.ng.ne is used because it is the value used
in GG, TD, and BU. A comparison of the values of TD and BU (both implemented by Henry and
Damron) show a substantial difference in the table sizes of the top-down and bottom-up auto-
mata. Chase reports in [Cha87] that the vax.ng generated tables ranging from 78.7KB for no
fancy encoding at all, to 22.9KB for a bit-encoding similar to the one used in our own implemen-
tation, to 12.4KB for a run-length encoding. The middle alternative, which is the one used in
BURS-CG, causes little loss of solving time speed and would produce tables very comparable to
the top-down pattern matching ones. In addition, recall that Chase’s original implementation did
not share identical ‘‘restrictor’’ arrays. Most likely, with that additional optimization, the
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bottom-up tables would be smaller than the top-down tables.

The encoding of the 652 states in BURS-p takes 15.9KB while the 380 states in BU use
18.6KB. The reason is that the BURS states, being 3-UI LR graphs, encode only one alternative
per useful output node, while the BU states need to encode all the possibly useful alternatives.

The comparison between BURS-p, BURS-Cg, and BURS-tg is as expected: the smallest table
corresponds to BURS-p, and the largest to BURS-tg, where no effort was made to generate small
tables. Most of the increase in table size comes from the LB-fsa, since the representation of the
states depends substantially on the rewrite rules being used, which stay constant.

Speed Solving UCODE

The time spent solving UCODE was measured by using a profiler, gprof, (GKM83] to meas-
ure the time spent in the routines solving the problem, and by compensating for the time spent
measuring the routines themselves. Currently UW-CODEGEN runs on Vax-11. Two implementa-
tions of the architecture were available for the experiments: a Vax-11/8600 and a Vax-11/750.
The 8600 was chosen because it has a more rational cache architecture. Despite this precaution
and running the programs only on unloaded machines, individual measurements fluctuate quite a
bit, so the actual values used were the average of 6 compilations of each benchmark program.

Figures 8.20 and 8.21 give information on the time required (o solve the UCODE by the dif-
ferent TPMSRs. The time includes the three code interfaces to the TPMSRs. There was no
significant difference between the different versions of BURS, and a single column (for BURS-p) is
shown. The interface between UW-CODEGEN and BURS-CG is slightly less efficient than it should
be, so the numbers for BURS could actually be slightly better.



189

vax.ng.ne | GG TD BU BURS
Time in UCODE Nomalized to GG
grep 1.00 3.79 3.39 0.83
reader 1.00 3.29 2.88 0.61
knuth 1.00 4.60 3.72 0.56
puzzle 1.00 3.01 2.55 0.51
dh 1.00 3.37 3.04 0.63
mark 1.00 3.55 3.06 0.65
Percentage of Code Generation Time in UCODE

grep 12.02 34.96 32.24 9.52
reader 15.10 35.63 33.40 8.84
knuth 13.67 22.10 21.51 8.73
puzzle 16.02 33.98 32.27 7.93
dh 13.35 34.06 33.16 8.26
mark 14.09 37.10 34.25 9.16
Total Code Generation Time (User System) (in seconds)

grep 7.67 0.79 9.69 0.95 9.35 0.96 7.10 0.89

reader 2224 246 2936 2.79 28.15 251  20.88 2.52

knuth 3.20 0.18 6.69 0.67 5.67 0.64 2.88 0.18

puzzle 4.97 0.57 6.39 0.67 6.04 0.69 4.63 0.61

dh 11.08 1.17 1429 1.83 13,53 1.23 10.46 1.05

mark 7.81 092 10.33 0.90 9.90 0.91 7.25 0.85

Code Generation Time for vax.ng.ne
Figure 8.20
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motng | GG TD BU BURS
Time in UCODE Normalized to GG
grep 1.00 3.50 2.92 0.53
reader 1.00 3.65 3.13 0.52
knuth 1.00 4.53 3.78 0.60
puzzie 1.00 3.67 3.23 0.53
dh 1.00 3.72 3.10 0.59
mark 1.00 3.85 3.18 0.53
Percentage of Code Generation Time in UCODE
grep 15.97 41.55 37.05 8.31
reader 17.68 46.17 4194 8.73
knuth 16.27 24.33 25.23 9.60
puzzle 15.93 41.55 38.12 8.01
dh 16.48 45.03 40.00 9.31
mark 17.36 46.04 41.45 8.93
Total Code Generation Time (User System) (in seconds)
grep 9.16 0.90 12.07 0.99 11.63 0.85 8.67 0.86
reader | 25.90 2.39 35.24 2.52 33.19 2.61 24.43 2.54
knuth 9.11 0.67 2051 1.53 17.57 1.47 8.49 0.65
puzzle 7.56 0.73 10.28 0.86 9.87 0.84 7.50 0.75
dh 1481 127 19.76 1.40 18.83 1.32 14.04 1.26
mark 897 0.82 1217 054 11.57 0.93 8.49 (.81

Code Generation Time for mot.ng

Figure 8.21

BURS is substantially faster than any other TPMSR. It easily outperforms BU and TD because
it avoids handling costs explicitly. It is more surprising that BURS is even faster than GG. A care-
ful comparison of the respective portions of code implementing UCODE showed several causes for
the difference in speeds. Probably the biggest contribution lies in the representation of the auto-
maton: GG uses a tight encoding and a cache, which loses in speed against the more efficient table
folding. In addition, GG uses the normal technique (for parsing technology) of default transitions,
which is slower than a simple lookup. Another contributor is that the relationship between the
parser used in GG and the traversal of the tree providing the prefix traversal is not as simple as the
tree traversal used by BURS. Finally, GG stores states and other information in a stack (the parse
stack), while BURS uses (pre-allocated) slots associated with the tree; the stack requires extra
checks for overflow and the like. GG also uses a few more indirect routine calls than BURS.
Despite the difficulty in comparing the methods in the presence of these differences in implemen-
tation strategy, we think that the evidence shows that BURS is, at least, comparable in speed to GG.
To reduce effects caused by compilation of the algorithms, the values shown in Figures 8.20 and
8.21 correspond to GG compiled using the peephole optimizer, and BURS without it; the values are
more favorable to BURS otherwise.

If BURS is used, the time spent solving UCODE becomes a quite small percentage of the total
time in the code generator. After achieving this reduction, the next goal is to increase it again, by
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reducing the time spent in the other parts of the code generator. The main target for *‘reduction’
are the IR transformer routines, which are currently quite inefficient. Work is underway by the
author and other researchers to speed up this phase.

Quality of the Generated Code

For the purposes of this section, the *‘cost’” of the generated code is the cost of its associ-
ated rewrite sequence as a 4-tuple. GG does ‘‘maximum munching’’ which may lead to non-
optimal sequences in all cost components. TD, BU, and BURS are all capable of generating optimal
code, but, due to the limitations in the current implementation of BURS-TG, BURS uses tables that
minimize only the first component of the cost tuple. BURS-CZ provides the best approximation to
the lexicographic cost among BURS-tg, BURS-p, and BURS-Cg and BURS-tg provides a slightly
better value than BURS-p. The costs are shown in Figure 8.22 normalized to 100 as the optimal
cost; the smaller an entry, the smaller its cost. The abnormality of the fourth component of
BURS-cg in mot.ng is due to a strange bug in BU and TD that misleads the rewrite sequence from
Icon_w into dreg_temp_l.

vax.ng.ne GG BURS-p BURS-cg BURS-tg

grep
reader
knuth
puzzle
dh
mark

102.3 108.5 97.4 100.9 | 100.0 103.4 103.3 100.0 | 100.0 160.2 101.6 100.0 100.0 103.4 1033 100.0
100.6 101.8 99.5 100.8 | 100.0 102.0 102.7 100.0 | 100.0 100.0 101.0 100.0 100.0 102.0 102.7 100.0
117.4 115.5 104.7 100.0 | 100.0 106.3 104.4 100.0 | 100.0 100.0 100.3 100.0 100.0 100.0 104.4 100.0
100.8 101.4 100.0 110.0 | 100.0 100.0 100.7 100.0 | 100.0 100.0 100.7 100.0 100.0 100.0 100.7 100.0
101.9 104.1 98.8 109.5 | 100.0 103.1 103.2 100.0 | 100.0 100.8 101.0 100.0 100.0 103.1 103.3 100.0
1004 101.0 99.4 100.0 | 100.0 101.8 106.1 100.0 | 100.0 100.6 101.5 100.0 100.0 101.8 106.1 100.0

mot.ng

GG BURS-p BURS-g BURS-g

grep
reader
knuth
puzzle
dh
mark

101.4 100.0 103.1 95.8 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 98.8 100.0 100.0 100.0 100.0
101.3 100.0 104.0 97.6 | 100.0 100.0 100.0 103.7 ; 100.0 100.0 100.0 99.8 100.0 100.0 100.0 103.7
102.5 100.0 94.7 100.6 | 100.0 100.0 100.0 108.6 | 100.0 100.0 100.0 100.0 100.0 100.0 100.0 108.6
104.5 100.0 112.2 95.7 | 100.0 100.0 100.0 102.8 | 100.0 100.0 1000 99.8 100.0 100.0 100.0 102.8
103.1 100.0 103.2 100.3 | 100.0 100.0 100.0 104.1 | 100.0 100.0 100.0 99.3 | 100.0 100.0 100.0 104.1
101.8 100.0 1025 983 | 100.0 100.0 100.0 102.2 | 100.0 100.0 100.0 99.8 100.0 100.0 100.0 102.2

Quality of the Generated Code
(value of cost tuple (M I S O) relative to lexicographic optimum (100 100 100 100)
Figure 8.22

Table Generation Times

One of the main disadvantages of the current implementation of BURS-TG is that it generates
tables very slowly. Direct comparisons of BURS-TG against the table generators of GG, TD, and BU
are not available, but the tables of Figures 8.23 give some relevant information. The top of the
figure shows times in seconds on a Sun-3/75 with 12 MB of main memory and no local disk. The
bottom of the figure reproduces information from [HeD87] comparing the performance of the dif-
ferent table generators in UW-CODEGEN; values are in seconds on a DEC Microvax-1I. There are
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two columns for BU: the first column corresponds to the generation of tables without any effort to
use cost information at table-generation time to reduce the number of alternatives to consider at
code generation time; the second column corresponds to the tables used in our other comparisons,
in which some elimination of alternatives is done based on costs. We emphasize again that the
current implementation of BURS-TG was written with no special effort to generate tables fast.

vax.ng.ne| K M 1 S 0)

BURS 132.6 2361.3 398.8 368.4 148.1
BURS-cg| 94.1 921.3 207.7 196.5 111.7
BURS-tg [204.7  4016.3 451.2 391.5 1782
mot.ng K M 1 S 0

BURS 282.84 2582. 281.5 3247 841.1
BURS-cg|172.4 17579 170.7 194.6 5189
BURS-tg [216.7 19984.3 217.6 236.4 1158.3

(Sun 3/75 seconds

Machine | GG TD BU BU-cost

vax.ng.ne|204.7 58.0 242.1 625.7
mot.ng 194.8 61.0 4429 1753.1

(LVax-II seconds)

Table Generation Times for several TPMSR
Figure 8.23

8.4. Conclusions and Further Work

BURS-based code generators seem to be the method of choice for generating code in the
compilation model supporied by UW-CODEGEN. They generate code as good as the best methods
available, namely any of the dynamic programming-based techniques, with tables of competitive
size and with code generation speed faster than the previously fastest techniques (PCC and GG in
UW-CODEGEN). The inflexibility in changing cost functions “‘on-the-fly’’ does not seem a real
disadvantage, but, given the table size, it could be supported, if desired, by changing tables.

Two other well-known systems that have not been compared directly to BURS are PCC2 and
mwig. We did not have access to the systems for direct measurements, but there are a few pub-
lished numbers. [AGT86] indicates that a compiler built using rwig had a speed improvement of
25% over one built using PCC2; PCC2 is normally considered to be twice as slow as PCC1, (see
[HeD86] which cites a technical report by Aho, Ganapathi, and Tjiang), and we know that GG can
run as fast as PCC1 [Hen84). Hence, mwig is substantially slower than GG and, hence, than BURS.
The portion of twig that solves a subproblem similar to UCODE is based on the same theory as TD,
and one would expect their running times to be similar.
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There are several questions left open after this experiment. Most of the questions are
related to the current implementation of BURS-TG. Briefly the approach used now is to generate a
large number of states and then find and force equivalent states among them. This is both slow
and, more important, it consumes a large amount of memory, so much so that it has been possitle
to generate tables using the lexicographic cost function only for risc.owl. It is of theoretical
(although probably not practical) interest to know what will happen with the descriptions for the
Mc68000 and vax-11. The current implementation of BURS-TG grew with BURS theory and it is
very ‘‘exploratory’’; a better selection of data structures will improve performance significantly,
but a drastic reduction awaits new approaches to the generation of the states.

Another question related to the current implementation is what is the effect of the input tree
language on the table generation time and the size of the generated tables. Comparing vax.bw!
and vax.ng shows a non-trivial reduction in the number of states and table size. This is, to a large
extent, due to the removal of useless rewrite rules. Chapter 6 already has the theory required to
examine this issue. Implementing it would allow quantifying its benefit.

Finally, is is probable that better heuristics can be found to find the best 6-UI LR graph and
to lay out the GOAL array. Such heuristics could further reduce the size of the generated tables.

Another direction of research includes more experiments with different target machines,
and also with different descriptions of them, since the oncs used for this experiment where
developed considering the idiosyncrasies of the Graham-Glanville techniques. :

8.5. Acknowledgements on this Chapter

This implementation of BURS-CG and BURS-TG has used previous work from David Chase
and Robert Henry.

Chase gracefully made available to us the code implementing his algorithms to build match
set B-fsa. I had avoiding *‘bitting the bullet’’ of implementing my algorithms for solving C-
REACHABILITY and UCODE for several months, but the opportunity provided by the presence of
his code prompted me to build my table generator in top of it. My original approach was to con-
struct the first a table representation of the BURS-state B-fsa and then find row and column fold-
ings of the tables. Given the large initial number of states this approach would have been very
inefficient, if at all feasible. The timely appearance of Chase’s algorithms (late 1986) saved me
from, at best, having to re-discover them, or, at worst, giving up on the implementation alto-
gether. Overall, I increased the original 2700 lines of finely tuned code from Chase to more than
10000 lines of “‘exploratory’’ code, in the process slowing down his code by an order of magni-
tude.

UW-CODEGEN is the result of the effort of many people at UC Berkeley and at UW, and,
foremost among them is Robert Henry. Its availability was crucial in order to measure the perfor-
mance of the code generators. In some sense, my work can be seen as an outgrowth of the CODE-
GEN effort.
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CHAPTER 9

Conclusions

I do not think we can hope for any better things now.
We shall stick it to the end,
but we are getting weaker, of course,
and the end cannot be far.

It seems a pity, but I do not think I can write more.

Diary of the Terra Nova Expedition to the Antarctic
March 29, 1912 (last entry)

[Robert Falcon Scott [1868-1912]]

In this dissertation, we have studied some tree transformation problems using a descriptive
mechanism that can be characterized as ‘‘natural’’ extensions of ‘‘pure’” tree rewrite systems,
with as little intrusion as possible from other techniques such as attribute grammars. The disser-
tation explores two different areas: it contains some foundational work to support the thesis that
such a descriptive mechanism can be made expressive enough for many applications, and, it
shows that even simple tree rcwrite systems are very useful. The increase to the descriptive
power of the mechanism is based on extending the notion of pattern. Although the dissertation
does not provide the ‘‘last’’ word in this aspect, it does show several useful extensions and how
to implement them efficiently. The usefulness of simple tree rewrite systems is based on varia-
tons of the notion of BURS.

9.1. Extending Patterns

“Traditional’’ tree patterns are what have been called linear N-patterns: patterns where
variables have arity O and are not repeated. They are studied in Chapter 3, where a unified
description of several pattern matching algorithms based on bottom-up automata is presented.
The algorithms cover a range of alternatives from fast algorithms with large tables to slower algo-
rithms with small tables. Some of the algorithms are well known [HoO82], and others are sim-
ple, but useful, improvements to known ones (Section 3.5 improves an algorithm by Chase
[Cha87]), and yet others, like the CTF subpattemn B-fsa algorithm (Section 3.4), are new and
could be of interest for applications requiring small tables and reasonable matching time. The
exact table and size comparisons are application-dependent and will be the subject of future
research. Chapter 3 also contains some results providing a better understanding of the notions
involved in bottom-up pattern matching and shows how to determine which match sets will be
useful when the input tree belongs to a given recognizable set, which seems a new result and is
quite useful.

Linear N-patterns can only describe very local conditions. This dissertation contains
several ways in which to extend this notion. A first extension are the non-linear N-patterns, in
which variables are still restricted to have arity O but may be repeated. Chapter 4 considers these
patterns and reports on a family of algorithms that solve non-linear pattern matching by combin-
ing linear pattern matching with testing of semantic routines. Linear pattern matching is done
using the algorithms of Chapter 3; the result of testing semantic routines can be ‘‘folded’’ into the
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states used by these algorithms to avoid recomputing some predicates. This folding allows the
implementer to trade table size against algorithm speed. The results in this chapter provide a
practical approach to non-linear pattern matching, but they have not been implemented and it is
not known how well they perform in practice. None of the algorithms attain the goal of a practi-
cal algorithm that does at most as many semantic tests as edges are present in a dag representa-
tion of the input tree.

The algorithms in Chapter 4 can either assume a dag representation of the input tree and
perform tests for subtree equality by pointer comparison, or do full subtree equality tests. A
problem with the dag representation is that local changes to the tree may produce global changes
to its corresponding dag. This might preclude the use of a dag representation in an application
such as a rewrite system. Performance measurements would be needed to make a final decision
on this issue.

The extension to the notion of pattern is a typed N-pattem: a normal N-pattern extended
with a restriction on the valid values that can be assigned to the variables. Section 7.1 shows how
to perform pattern matching for linear typed N-pattems by modifying the B-fsa used in Chapter 3.
The techniques of Chapter 3 can be used to restrict the input set to be a recognizable set.

The final extension considered in the dissertation are X-patterns, pattems in which variables
may have non-zero arity. X-pattems are closely related to some special typed N-patterns, but
they name and identify portions of the pattern; they can also be typed. Section 7.1 shows how to
do pattern matching for typed linear X-patterns by using the techniques of Chapter 5 and solving -
a REACHABILITY problem. Recognizable sets as input sets can be taken into account using the
same techniques.

The extensions of pattemns considered above are necessary to describe non-trivial tree
transformations, but may not be enough in some cases. For example, a tree transformation such

V4N VAN

T, Op, - Op, T,
VERN /
T Op3 Op, T,
VRN / N\
T, T, T, T,

cannot be described in a single transformation with the extensions to patterns proposed here.
Moreover, a description with several individual transformations requires complicated interactions
that will reduce the readability of the description. Future research will try to extend the notion
further, but note that the above transformation could be described using an input pattern typed so
as to correspond to the input tree and extended so that one could name an undeterminate number
of variables, which then would be composed, in a different way, in the output pattern. [Pel84]
contains a sketch for several possible extensions along these lines.

9.2. BURS and Reachability

A major contribution of this dissertation is the definition of the subclass of rewrite systems
called bottom-up rewrite systems, BURS, and the definition and solving of the REACHABILITY
problem for them. The rewrite systems in BURS use only linear N-pattems, but they can be used
to solve several useful problems.
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Chapter 5 introduced the notion of a BURS and the basic algorithms for REACHABILITY for
them, as well as the faster specialized versions for finite BURS. The idea behind the algorithm
for REACHABILITY has been around for a while; maybe the earliest references in the context of
compiler systems are the dynamic programming algorithms of [AUJ77] and [Rip78] for code
generation. BURS theory differs from these early proposals in that it is based on rewrite systems,
it can handle a larger class of rewrite systems, and it emphasizes the computability of the states
by a bottom-up automaton. Also, the emphasis in solving fixed-goal REACHABILITY (as opposed
to tracking the behavior of some rewrite system as in [Moe87]) produces fast algorithms.

Chapter 7 contains two direct applications of REACHABILITY problems. Section 7.1 shows
how to solve pattern matching for typed X-patterns. The resulting algorithm seems quite fast, but
it has not been implemented and measured yet. Another application of the REACHABILITY algo-
rithm is in finding “‘tilings’’ of trees. This is the basic process underlying solving the forward
application problems of the projection systems defined in Section 7.2. Inverse application prob-
lems for projection systems can also be solved using REACHABILITY. The application of REACHA-
BILITY explored in most detail in this dissertation is code generation, which is based on solving
C-REACHABILITY, which is solved in Chapter 6.

Some questions remain unanswered. The most important are faster algorithms for the gen-
eration of the LR graphs and UI-LR graphs, and algorithms for membership in finite BURS for
the case that the input set is a general recognizable set.

9.3. Code Generation -

The idea of using some type of dynamic programming for code generation has been around
for a while (see Section 9.2 above), but it is only recently that practical proposals have been made
based on this approach. Suddenly, a number of researchers independently have proposed similar
algorithms. This dissertation contains another proposal but with several significant advantages.
Chapter 6 shows how to modify the algorithms of Chapter S for code generation. To test the
applicability of the theory a code generator generzator was implemented, which is described in
Chapter 8. The results of that chapter show that, in ine code generation model of UW-CODEGEN, a
BURS-based code generator is at least as fast as a non-optimal techniquc like Graham-Glanville,
much faster than an optimal technique based on dynamic programming with an explicit manipu-
lation of costs, and competitive in table size with all but some substantially slower approaches.

The results presented in this dissertation show the potential for BURS-based fast optimal
code generation for expression trees. It 1. important to emphasize that the main advantage of
optimality is that it frees the machine description writer from having to understand the theory
used 1o generate the code generator. A non-optimal technique like GG may generate quite good
code (see Figure 8.22) if the machine description is fine-tuned for that particular technique
[Heng4]. ’

The BURS theory was developed independently of {[WeW86], [HeD87); it differs from
them in its ability 10 enccie cost information into the 8-BURS states and in handling a larger
class of rewrite systems. Tne results obtained are similar to those claimed by Hatcher and Chris-
topher {HaC] and [Hat85] but while the Hatcher/Christopher technique requires modifying some
parts of the machine description to retain optimality, the approach described in Chapter 6 1s
always optimal, provided that a finite number of states exist. It is likely that the
Hatcher/Christopher technique can be explained as a simplification of BURS-theory, but descrip-
tions available heve been inadequate to do so.

Probably the best-known implementation for optimal code generation is the one based on
mwig and reported in {AGT86). The theory behind it is quite similar to the one used in the TD
code generator reported in Chapter 8 with two differences. The first difference is that the imple-
mentation of rwig reported in [AGT86] does more computation at solving time than TD. Thus,
mwig has smaller tables and smaller table generation times, but larger code generation times. The
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second difference is in the phase organization. Both twig and UW-CODEGEN perform two types of
transformations: some transformations do normalization and simplification, as in the mapping of
short-circuit booleans into compare and jumps, the others are the ones discussed in this article
and correspond to the machine instructions. Twig deals with both types of transformations
together in a single mechanism, but the interaction of the machine rewrite rules with the
simplification routines makes it possible t0 write looping and non-optimal transformations. UW-
CODEGEN first performs the normalization and simplification and then the machine rewrite rules,
but the simplification routines can query the machine description to make decisions. Although
there are no specific measures comparing our approach and rwig, it is safe to say that BURS-based
code generation is substantially faster than one based on rwig.

In addition to just solving the code generation problem, the 5-LR states contain information
that could be used to help the design of some parts of the instruction set of target machines. In
particular, one can determine whether the addition of a feature will affect the quality of the gen-
erated code for any valid input tree.

There are several open questions in this area. One important experiment that we did not
perform would be to quantify the effect of the input set on table size. This could be done by
implementing the algorithm presented in Section 5.5. Another experiment of interest would be to
generate tables to minimize lexicographic cost and compare their size with the ones currently
generated for the approximation to lexicographic cost; probably the benefits in the cost of the
generated code are not going to be worth the increase in table size. Finally, it would be very use-
ful to have a faster table generator. This would require a better implementation and, most likely,
new algorithms to generate the states.

9.4. Bottom-Up and Top-Down Pattern Matching

At first observation, it is not clear whether top-down or bottom-up pattern matching is the
better approach. Proponents of top-down pattern matching point out its small table size and its
table-generation speed, those of bottom-up pattermn matching, its solving-time speed.

The results of [HeD87] suggest that, at least in the context of code generation, the resulting
table sizes of fast top-down pattern matchers are not significantly smaller than what we can
obtain for bottom-up pattern matchers using recent technology (such as Chase’s algorithm
[Cha87] as modified in Section 3.5). Similarly, Chase’s algorithm to generate bottom-up pattem
matchers is fast enough for all the applications with which we are familiar.

Stll in the context of code generation, this dissertation has shown how to combine the
information required for bottom-up pattern matching together with information encoding rewrite
sequences and cost information into a single state, but we do not know how to do this for top-
down pattern matching. Combining all this information into a single state allows for very fast
code generation solving times.

If table size is a big concern, it appears certain that an implementation using either subpat-
tern B-fsa, or a faster variation like CTF subpattern B-fsa (Chapter 3) will produce very small
tables, maybe comparable to the sizes of top-down pattern matchers.

Another significant advantage of bottom-up pattern matchers is that they mix well with
recognizable sets (Def. 2.5). Chapter 3 showed how to restrict the match set to those that are used
in trees of a recognizable set, and Chapter 5 did a similar thing for BURS, but it is not clear how a
top-down pattern matcher could exploit such a restriction on the input set.

9.5. Compiler Phases

The dissertation has shown how to describe several problems in compiler systems as a few
problems involving transformation on trees. It has also shown that some of these tree transforma-
tions can be described using BURS and solved very efficiently. The application to code
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generation has been explored quite extensively in this dissertation. The use of BURS in solving
application problems in projection systems (Def. 7.3) needs additional work. Currently, the most
appealing application is to defining the the mapping back and forth between parse trees and
abstract syntax trees. Projection systems are quite similar to the tree-to-tree grammars of
[KMP84] but with a cleaner definition and with the ability for inversion. They are not as power-
ful, but some of the extensions suggested in Section 7.2 seem 10 fill the gap.

Another important open question is how useful are the extensions of patterns introduced
(typed N-patterns and typed X-patterns) for defining complex tree transformations. A specific
example for future investigation are the machine independent and machine dependent rewrites of
TTS in Codegen [AGH84]. It seems likely that a proper description will require the use of
further extensions to the notion of pattern.
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Daisy, Daisy, give me your answer, do!
I'm half crazy, all for the love of you!
It won’t be a stylish marriage,

1 can't afford a cartiage,

But you'll look sweet upon the seat
Of a bicycle built for two!

[Harry Dacre d. 1922]
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