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Abstract 
Trees are convenient representations because of their hierarchical structure, which models 

many situations, and the ease with which they can be manipulated. A rewrite system is a collec

tion of rewrite rules of the form a~~ where a and ~ are tree patterns. A rewrite system defines 

a tranSformation between trees by the repeated application of its rewrite rules. 

Two research directions are pursued in this dissertation: augmenting the expressive power 

of individual rewrite rules by using new types of patterns, and analyzing the interaction of the 

rewrite rules. The dissertation contains new algorithms for linear and non-linear patterns, for a 

new type of non-local pattern, and for typed patterns in which the variables are restricted to tree 

languages. 

The REACHABILITY problem for a rewrite system R is, given an input tree T and a fixed 

goal tree G, to determine whether there exists a rewrite sequence in R, rewriting T into G and, if 

so, to obtain one such sequence. REACHABILITY can be used to solve problems related to the 

mapping between concrete and abstract syntax trees, to construct a pattern matching algorithm for 

typed non-local patterns, and to provide algorithms for compiler code generation. A new class of 

rewrite system called finite bottom-up rewrite system (finite-BURS) is introduced for which the 

REACHABILITY problem can be solved efficiently with a table-driven algorithm. 

The C-REACHABILITY problem is similar to REACHABILITY except that rewrite sequences are 

assigned costs, and the obtained sequence is required to have minimum cost over all candidates. 

If the cost of a rewrite sequence is defined as the sum of the costs of its rewrite rules, the algo

rithm for REACHABILITY can be modified for a subclass of finite-BURS to solve C-REACHABILITY 

in such a way that all cost manipulation is done at table-creation time. The subclass extends the 

machine grammars used by Graham and Glanville for code generation. A code generator genera

tor based on this approach has been implemented and tested with several machine descriptions. 

The code generators obtained produce locally optimal code, are faster than comparable ones 

based on Graharn-Glanville techniques, and are significantly faster than other recent proposals 

that manipulate costs explicitly at code generation time. Table size is comparable to the 

Graharn-Glanville cod~ generator. 
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CHAPTER! 

Trees and Tree Transformations 

Quicn a bucn arbol se anima, 

buena sombra le cobija1 

[Old Spanish Saying] 

1 

Trees arc hierarchical mathematical objects. Their hierarchy makes them adequate models 

for many situations while their mathematical properties gives them a simple and sound basis. In 

addition, trees c~m be manipulated simply and efflcicntly in a traditional von Neuman computer. 

These attributes have made trees the preferred model for many applications. This dissertation is 

concerned mainly with problems related to tree transformations: mappings whose domain and 

image arc sets of trees. The application areas that motivated this research are compilers and syn

tax directed editors in which the program is represented as a tree to show the hierarchical organi

zation of its syntax or its semantics; another application area is the one referred to in the literature 

as tcclmology mapping in logic synthesis systems [DGR87]. 

Tree transformation problems revolve around a description, using some descriptive 

mechanism, denoting a transformation between trees in some input tree language and some out

put tree language. 

Dcscriftion: D 

"' Transfonnation: f 

~ 

This dissertation studies several types of tree transformation problems. A first class of 

problems arc rzoration problems: in most cases obtaining the description that corresponds to some 

desired transfom1ation is a non-trivial task. The difficulty of the problem depends on the com

plexity of the transformation and the adequacy of the descriptive mechanism. In general, the 

descriptive mechanism has to be botl1 expressive and natural, and it must suppon some reasoning 

on the propcttics of the transfom1ation it describes. Some of the properties of the transformation 

that may be obtainable from the description are correcmess relative to some other specification 

and whether t11c transformation is one-to-one or well defined. 

Another class of tree transfom1ation problems are application problems. There are two 

main varieties of application problems: forward application problems require applying the 

transformation to an input tree: backward application problems require applying the functional 

inverse of the transfom1ation to an output tree. Since the mapping of the transformation may be, 

in general, many-to-many, both types of applications may return one or all of the possibilities. 

1 'He who geLS close to a good tree, will be protected by good shade' 



2 

Another class of problems arc reaclzability problems. In some descriptive mechanisms, the 

(forward or backward) application of a transfonnation leaves a "trace", a justification of its 

existence. For example, in a transformation described as the iterated application of simpler 

transformations, the list of the applications provides such a trace. A reachability problem for 

such a descriptive mechanism consists of, given the description of the transformation, determin

ing if a given tree can be transfom1ed into another given tree and, if so, providing a trace for the 

transformation. Clearly, if the transfom1ation is computable and maps any input tree into a single 

output tree, solving the reachability problem is trivial, but in general the situation may be quite 

complex. 

The taxonomy of problems given above only reflects the types of problems that are dis

cussed in this dissertation and is not intended to be complete. Besides, a problem can be 

classified in more than once class; for instance, Chapter 7 solves application problems using 

reachability problems. 

1.1. Some Examples of Tree Transformation Problems 

Some examples of the the tree transfom1ation problems mentioned above are the following: 

Compilers 

The main application of the tree transformation problems considered in this dissertation is 

compiler systems. Compilers arc translators from programming languages to machine languages. 

Since this translation is a complex process, it is normally decomposed into components that can 

be solved more or less independently. Frequently these components are simpler translations 

between intem1ediate representations (lR) of lhe program, called phases, and many of theIR are 

based on trees. Figure 1.1 shows a compiler model which dccouples target machine dependency 

from source language dependency. (The descriptions in [Rip78] and [Joh77] approximately fol

low this model, however lhc one in [WJW75] docs not). Some of the phases shown in the figure 

have been modeled successfully without using any of the above tree transformation problems, but 

others can be described as instances of tl1osc problems. Of these, this dissertation shows how 

some can be solved efficiently, and provides the foundation for handling others. 
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Source Program 
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Code Improver 

• Target Code 
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Figure 1.1 

The lexical analysis phase maps strings of characters into strings of tokens. It is frequently 

described by giving for each token a regular expression denoting the set of all strings of charac

ters that map into the token. A program implementing the mapping can either be obtained 

automatically from the description by a program like Lex [LeS75], or can be written manually in 

some implementation language. Manually wriuen lexical analyzers are frequently faster than 

automatically generated ones because the mapping is quite simple and all its details can be easily 

grasped by the progran1mer who can then exploit its peculiarities. 

The syntactic analysis phase maps strings of tokens into syntaX trees such that their 

"border" (the left-to-right concatenation of their leaves) is the string of tokens. This problem is 

also called the parsing problem and was the object of intensive research during many years. 

Currently there are several very successful techniques that can be used to solve this problem. 

These techniques arc based on fom1allanguage theory [AhU73, Har78] and can be used to obtain 

syntax analyzers automatically from a context-free grammar describing the set of valid syntax 

trees. A popular example of a p::~rser generator is Yacc [Joh78] which is based on LALR(l) pars

ing. Although some techniques, like top-down parsing, can be used to write syntax analyzers 

manually, a majority of users prefer the automatic techniques because they are more powerful, 

easier to usc, and, in large granm1ars, tend to produce better results than all but the best 

3 
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programmers. 

The semantic analysis phase can be modeled as a tree transformation where the input tree is 

a syntax tree and the output is an annotation of it. The annotation makes explicit some informa

tion extracted from the syntax tree for later usc and also uses this annotation to test the "static 

semantics". There arc several techniques to describe the annotation. Attribute grammars 

[Knu68] have received much attention in recent years as a descriptive mechanism for this stage 

[Kas80, Pel80, Rai80], but arc not accepted universally. A major problem in attribute grammars 

involves describing the distribution of infonnation acro5s "long distances" in the tree, a function 

encoded in other approaches in the notion of a symbol table. There have been other approaches 

to solve this problem, including Ballance's proposal for a system based on logic programming 

technology [Bal83]. Correct semantic analyzers generated automatically from one of the above 

descriptions can be obtained faster but execute less efficiently than manually written ones; current 

research is attempting to remove the efficiency disadvantages. This phase can be seen as a very 

specialized forward application problem, but it is not the main focus of this dissertation. 

The next two phases arc examples of forward application problems. For the purposes of 

this introduction, the name improvements includes a broad range of transfonnations that attempt 

to "improve" a program represented using some IR tree. Since the tree transformation may be 

quite general the description mechanism must be powerful and proving the correcmess of the 

description becomes a non-trivial issue. The high to low transformation phase is responsible for 

the implementation of data types and control structures present in the source language using the 

simpler mechanisms available in the target machine. The phase can be described as a forward 

application problem for a tree transformation where the input and output trees use operators of 

different conceptual level. Currently there is no generally accepted formalism for describing 

these transformations and leading to efficient solutions to the forward application problems. Sec

tion 1.4 below discusses in some detail the properties required from the descriptive formalisms. 

Although this dissertation docs not provide a complete proposal for a descriptive mechanism for 

these problems, it does provide the foundations on which to start building it. 

The code generator is a phase producing target machine code, or more properly, code for 

the Compiler Writer's Virtual Machine, CWVM [Hen84], from a low level IR tree. A convenient 

formalization for this phase is based on constructing a transformation encoding the possible 

sequences of instructions in the CWVM in such a way that an input tree can be rewritten into a 

fixed "goal" tree if and only if there is a sequence of instructions implementing the input tree. 

Solving the rcachability rroblcm then produces a trace that can be used to extract the desired 

instruction sequence. The rcachability problem can be modified to incorporate a cost metric lead

ing to instruction sequences with minimum cost. This approach has been explored extensively in 

recent years [AhJ76, GaFS::?., GlG7S, HenS4 ]. ll is currently possible to automatically generate 

code generators that rival the quality of Ll1c best manually written code generators. This dissena

tion provides new and very efficient solutions to this problem (Chapters 6 and 8). 

The code improrer phase transforms target machine code into "improved" target machine 

code. It is best described as a suing-to-string transfonnation phase, but some researchers [Kes84] 

use tree transfonnations when constructing the code improver. None of the different proposals 

for this problem has gained a dcfmitivc advantage over the others; a substantial pan of the prob

lem here is deciding exactly what has to be done in this phase and what is done elsewhere, for 

instance, in Ll1e code generation phase. Again, although Ll1is problem is outside the scope of this 

dissertation, some approaches to it may usc the foundations. 

There arc other imponant components of a compiler, notably the register manager [Mck84], 

which interact with the pl1~1scs mentioned above. None of them will be considered here except in 

the context of the implementation of the code generator reponed in Chapter 8. 
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Language-Based Editors 

Another example of a program manipulating programs is a language-based editor: an editor 

that "understands" the program that it manipulates. Typically such an editor will keep an inter

nal representation of the program being edited in the form of some variation of a tree and the edi

tor commands will modify that representation. Figure 1.2 is an schematic representation of a 

language-based editor where there arc two internal representations of the program: the parse tree 

(PT) represents faithfully the program according to the context-free grammar of the language, 

while the abs1ract syn1ax free (AST) only represents the "deep structure" of the program. 

Semantic Commands S ynt.actic Commands 

v r 1 i 

A 
' 

I 
"' 

DATABASE 

Language Based Editor 

Figure 1.2 

EDITOR 

Both PT and AST arc useful in the editor. The PT is used while parsing pieces of programs 

entered as text, while the AST is a more compact form and the preferred form to perform pro

gram modifications or queries that require knowledge of the semantic structure of the program. If 

these were the only requirements, one could avoid ever constructing the PT and apply the 

PT ~AST transformation on-the-fly as the input program is being parsed. But the PT is also use

ful to produce pretty-printed versions of programs that have been modified by changes to the 

AST, and to allow the application of incremental parsing algorithms that work only on the PT. 

One possibility is to keep both representations in the editor. A better one is to store only the AST 

and to regenerate the PT from it as an inverse application problem. Since the PT ~ AST map

ping is many-to-one. its inversion has to choose one of the possible parse trees. 

A language-based editor contains other components that are outside the scope of this disser

tation. Sec [Bal83] for more details. 

Technology :\lapping in Logic Synthesis 

Tree transfom1ation problems have other applications beyond just programs manipulating 

programs. One recent example the area called "technology mapping in logic synthesis". Logic 

synthesis starts with a set of boolean equations describing the desired relation between a 
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collection of output signals and a collection of input signals and anernpts to obtain an optimized 

implementation of it for some particular technology. One approach that has been explored 

recently is to divide tl1is problem imo two different pans. The flrst pan tries to optimize the set 

of equations independently of the final target teclmology. The particular method used in 

[BDK86] involves approximating the problem in Z2 (integers modulo 2) instead of the boolean 

field, minimizing the equations there, and then "patching up" the solution to get a result in the 

booleans (this essentially involves adding the results that depend on idempotency). 

The result after this first stage is a ''better'' set of equations. This set of equations is then 

mapped imo t11e desired teclmology. The problem can be described as one of finding a covering 

of the directed acyclic graph (dags) represented by the equations using the graphs that correspond 

to the operations available in the desired technology and such that the "cost" of the covering is 

minimal [DGR87]. Solving this problem for dags is expensive, but, if dags are approximated 

with trees by ''pulling out'' common subtrees, the corresponding problem is another reachability 

problem witl1 cost infom1ation for a tree transformation, and can be solved very efficiently using 

the results of Chapter 6. 

1.2. Scope of this Dissertation 

The focus of this dissertation is on one class of descriptive mechanisms, providing some 

research on its foundations and details on a panicular subclass that has a useful range of applica

tions. The class of descriptive mechanisms is a variation of term rewrite systems called tree 

rewrite systems; they are described informally below in Section 1.5, and formally in Chapter 2. 

Fundamental problems related to this class are explored in several chapters, including Chapters 3, 

4, and 7. The subclass explored in some detail is called the bottom-up rewrite systems (BURS), 

described in Chapter 5. This dissenation shows how to solve efficiently some forward applica

tion, backward application, and reachability problems using BURS, and also reports on a com

plete experiment where a code generator was constructed by providing a solver for a reachability 

problem for transfom1ations based on BURS (Chapters 6 and 8). Although not implemented, the 

dissenation also shows how to deal with the forward and backward applications of the PT ~AST 

transformation, and tl1c tr:msfom1ations appearing in technology mapping in logic synthesis 

(Chapter 7). The high-to-low transformations seem accessible from the results of this dissenation 

with some extra cffon; they would usc the foundational results provided in the dissertation. The 

transformations appea1ing in the improvement phase are quite more complex and seem to require 

additional research beyond t11e results described in this dissertation. 

1.3. General Considerations for Solving Tree Transformation Problems 

There arc some considerations that appear frequently when solving any of the tree transfor

mation problems listed above. 

1.3.1. Solvers and Solver Generators 

The traditional way to measure t11c performance of some algorithm is by its time and space 

complexity. Regardless of whether a worst-case or an average case behavior is used, these meas

ures treat identically all the arguments defming a problem. This approach is inadequate for the 

problems studied in this dissenation. For example, a forward application problem has two inputs, 

a tree Tinput and a description D, but typically D is "fixed" and Tinpw is "variable". It is not 

accurate to treat D and Tinpul in the same way when quantifying the difficulty of the problem. 

The solutions to the problems considered in tl1is dissenation can be separated in two dif

ferent phases: a so/l'er generaror phase, and a solrer phase. Their interaction is shown in Figure 

1.3. Some of the input ;.1rgumems arc passed to the solver generator which analyzes them and 

produces a specification that is probably larger than t11e input but easier to handle. This 

specification is called a "table" although the particular details of the encoding may vary. The 
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solver receives the rest of the input specification and the processed tables and solves the desired 

problem. 

Tables 

I 

fixed input I lr Solver-- - f--Generator Solver 

\'ariable input 

I 

1------1 I I 
I I 

Solver-generator Solver 
Lime time 

The Solver and Solver Generator Approach 

Figure 1.3 

Output 

Nonnally, the execution time of the solver will be much smaller that that of the solver gen

erator. In such an arrangement the solver phase may have a linear time worst-case behavior, even 

if the complete problem is r--.rp-complete. If the complete problem is NP-complete, the time spent 

in the solver generator plus the time spent in the solver must be exponential on the combined 

input size, at least for some inputs2
• In practice, however, many problems that are NP-complete 

show their extreme behavior only in some infrequently occurring sets of inputs. One example of 

this paradigm is optimal plan assignml.!nt in attribute grammars [Pel]. where the preprocessing 

phase can be exponential on the description of the attribute grammar but the actual assignment 

can be done in linear time. 

For most of the applications considered in this dissertation, the size of the tables generated 

by the solver generator is a more important measure than the time spent executing the solver gen

erator. An application, not covered here, where this is not true is to algorithms in which the 

description (and the transfonnation) is continuously changing. This is the case of the Knuth

Bendix completion algorithms [KnB70]. ... ..-hich rely on a pattern matching algorithm, but add pat

terns dynamically to the pattern set. Chapter 3 studies the problem of linear pattern matching. 

Some of the algorithms presemed there could be used for Knuth-Bendix completion either 

because they have a fast table construction algorithm or because their tables can be modified 

incrementally, but t11is dissertation docs not explore the issue any further. 

2 Unless P = NP, of course. 
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Other details of how the problem is used may be of irnponance in measuring the efficiency 

of an algorithm. An example is when the matching algorithm is pan of a larger match-rewrite 

cycle where a tree is alternatively analyzed for matches and modified. In this case it would be 

advantageous to have an algorithm capable of re-using pans of previous computations. 

1.3.2. Bottom-Up and Top-Down Paradigms 

Many tree transformation problems can be solved by defming a notion of a state associated 

with a node characterizing the "interaction" between the transformation and either the input or 

the output tree. There arc two basic approaches to this characterization named after the order in 

which the states of a tree can be computed: "bottom-up" and "top-down". In a bonom-up 

approach, the state of a node N depends only on those of the descendants of N. In a top-down 

approach, the state of a node N depends only on those of the ancestors of N. In some cases it is 

convenient to consider states with more complex dependencies. Bottom-up characterizations are 

more powerful than top-down characterizations in many applications. For instance, Section 2.2 

shows that bottom-up tree automata, a tree recognition device, are more powerful than top-down 

tree automata. 

This dissertation u:;es two classes of states: most states are bottom-up states, but some 

notions of state can be described as computed in a bottom-up pass followed by a top-down pass. 

In all notions, the objective is to limit the amount of information present in the states to reduce 

the cost of computing them. If, in addition, the set of all possible states that may characterize an 

(input or output) tree can be computed at solver generation time and is finite, then the result of the 

operations involved in computing the state can be precomputed and stored into a table and the 

state can then be computed very efficiently at solving time by replacing all computation with sim

ple table lookups. Some of the nicest results of this dissertation involve showing how to encode 

in a (relatively small) finite set of states infom1ation that initially would seem to require an 

infinite number of states. 

1.3.3. Syntax and Semantics 

A final issue is that of syntax vs semantics. A tree used to represent some object will nor

mally contain a significant amount of information. This information can be classified as being 

either syntactic or semamic. The first one can be said to define the "structure" of the tree, the 

second, to provide a "decoration" of the tree. In some sense, it would be possible to move 

everything from one class to the other. One extreme corresponds to a single node decorated with 

a very complex semamic data value, the other to a large complex tree with no decoration at all. 

The distinction between one and the other is normally done based on LI-Ie cardinality of the 

domains involved: small domains lead to syntactic information, large domains to semantic infor

mation. Inlinite domains must be encoded semantically, with the exception of the child relation

ship. Many algOiithms treat differently both types of attributes, being capable of extracting more 

information from syntactic attributes than from semantic ones. Encoding a value syntactically 

normally leads to larger tables. Through out this dissertation, syntactic information will be used 

to direct the transformations, and semantic infom1ation will be used only when necessary. 

1.4. Describing Tree Transformations 

The difficulty of solving the different tree transformation problems depends very strongly 

on the descriptive mechanism used. 

The considerations for notational problems are similar to those present in the design of pro

gramming languages. A first rcquiremem is one of expressiveness: every tree transformation in 

the intended application domain must be expressible in the mechanism, The mechanism should 

also lead to an efflcient solution to whatever problem is solved using it: what efficient means fre

quently ends up being ":n least as fast as a good hand-coded solution to the problem". Oearly 
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these requirements arc inter-dependent; for example, increasing the expressiveness of the 

mechanism is likely to lead to less efficient implementations. 

A much more fuzzy requirement is that the descriptive mechanism should model the 

''natural'' notions present in the problem domain. Most mechanisms describe a complex tree 

transformation as a composition of basic transformations, which are then described in two pans: a 

condition, indicating when it applies, and an action, indicating what it does. A condition can be 

called local when it depends on a specific contiguous portion of the tree; similarly, an action can 

be called local if it affects such a portion of the tree. Otherwise, conditions and actions are called 

non-locaP. For instance a transformation that takes a single node labeled "foobar" and replaces 

it by a subtree containing nodes labeled "foo" and "bar" is local, but a transformation depend

ing on the presence of a node "foo" with a descendant (at an imprecise location) "bar" is non

local. Most individual tree transformations in compiler phases are local but some are non-local, 

either in the conditions or in the transformations. Ideally a descriptive mechanism should support 

efficiently both type:, of transformations. 

There arc two main composition mechanisms used in descriptive mechanisms. In a parallel 

composition several transfonnations arc applied to the same input tree and the results are com

bined by some tree function to produce the final result In a serial composition, the result of one 

transfom1ation is used as the input to a second one; it can be applied just once, or it can be 

iterated until some condition is met. 

The descriptive mechanisms for tree transformations published in the literature can be 

classified in four groups: operational, tree automata-based, attribute grammar-based, and term 

rewrite-based, with some mechanisms having characteristics of more than one group. 

1.4.1. Operational Descriptions 

Operational descriptions can also be called "description by implementation". This descrip

tive mechanism is, unfortunately, still the one used in the majority of the compilers. Its main 

advantage is, supposedly, one of cxprcssibility: if the implementation language is reasonable, any 

computable function will be expressible. It lacks most other desirable properties. 

One disadvantage of the technique is that by its nature, such a description is suitable only 

for forward application problems and all the other tree transformation problems have to be 

mapped into them. For example, if the problem is more naturally described as an inverse applica

tior:, the user must dctcm1ine how to invert the transformation and encode the inverse transforma

tion. Tl:i.:: increases the effort required to produce a solution to the desired tree transformation 

problem. Eventually, proving anything about the problem being solved corresponds to proving 

propcnics about its solving program: tcm1ination corresponds to the halting problem; correcmess 

is meaningless unless combined with some other descriptive method; and deciding whether the 

transformation is many-to-one is difficult. Only showing that the transformation is not one-to

many is easy, as a consequence of the determinism of most implementation languages. 

Another shoncoming of the technique is that small changes to the specification of the prob

lem may require large changes to the implementation. Since the problem specification tend to 

change very frequently, this disadvantage increases very substantially the effort required to obtain 

a solution. Yet another disadvantage is that, in many types of problems, a truly efficient solution 

may require cxlm.:stivc and quite complete analysis of the transformation, which, for the above 

3 The notions of local and non-:ocal arc very fuzzy, but I do not attempt to formalize them since they are only 

used very informally. For the descriptive mechanism used in this dissertation locality corresponds to untyped N

paucrns, while non-locality can b.; described using either typed N-pattems or X-patterns; see Chapter 2 for the formal 

dcfini Lions. 
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reasons, a programmer may not be able to provide. A fin.ll disadvantage is that related tree 

transformation problems will lead to unrelated solving programs and maintaining consistency 

may be non-trivial. 

There are many examples of the opcration.ll approach to the description of tree transforma

tions, most of them undocumented in the research journals. Those that are documented are nor

mally build around a, frequently narrow, model for the specification of the transformation which 

effectively leads to some type of higher-level descriptive mechanism. [WJW75] is an example 

including transformations rel:l.tcd to progran1 improvement and code generation. Code generation 

was particularly prone to this approach. sec. for instance, [Wir71]. This dissenation, along with 

other recent research, shows that a code generator based on a formalized tree transformation tech

nique can be very successful (sec Chapter 8). 

1.4.2. Tree Automata 

Tree automata and tree transducers (Section 2.2) [Eng75, Tha75]. are the generalization of 

word automata to tree domains. There arc many variations of the concept with different expres

sive power. Normally these descriptive mechanisms are used as abstract devices to characterize 

classes of expressive power. As such, they tend to be limited in the support that they provide for 

the "natural" description of transformations and in rendering an efficient implementation. They 

have some advantages. though. Some automata classes arc closed under some operations, like 

composition. union, complementation, etc. This means that a transformation may be described as 

the combination of independent su btr:msformations. If the closure proof is constructive, it is pos

sible to build a system that will take the transformations and obtain their composition. Another 

advantage of tree automata and transducers is that normally they can be provided with induction 

principles that can be used to prove propcnies of the transformations they define. 

There arc two main classes of tree automata, depending on how strings are generalized to 

trees: top down or bottom up. Both classes have limited locality in specifying both conditions 

and actions. [Eng75] provides an extension of top down automata with some global conditions. 

Tree automata tend to be too low level to be proposed as direct descriptive mechanisms, and I 

know of no proposal to usc them unmodified. but they can be used as the foundations for other 

mechanisms. Section 2.2 presents tree automata in more detail. 

1.4.3. Attribute Grammars 

Attribute granmurs [Knu68. Rai80] arc a descriptive mechanism to annotate a parse tree. 

A parse tree is composed oC instances of terminals and nonterminals, the nodes of the tree, and 

instances of productions relating these nodes. An attribute grammar associates a set of symbols, 

the attributes. vvith each node, and a set of equations, the semalltic equations. to each production. 

Each semantic equation is of the fom1 a=f (8 ), where a is an attribute, B a set of attributes, and 

f is called the semalllic junction. The evaluation of a parse tree using an attribute grammar is 

an assignment of values to the attributes satisfying the set of equations associated with the parse 

tree. In traditional attribute grammars, the set of equations are required to have an acyclic depen

dency graph which, when linearized, can then be used to find the values of the attributes by a pro

cess of "substitute and evaluate". The implementation need not follow this naive algorithm and 

many alternatives have been proposed and investigated [Kas80, Pel80]. 

A set of labeled trees is called local (Section 2.2) if it is the set of parse trees for some 

context-free grammar G. A function with a local set as a domain can be defined by using an attri

bute grammar and selecting one of the attributes associated with the root of the parse tree as the 

value of the transformation. To define a tree transformation from a non-local set, the description 

writer must fmd a local set L' which includes L and define the transformation on L' instead of on 

L. 
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The straightforward way to define tree transformations using attribute grammars is to use 

attributes and semantic functions over tree domains (for instance, [NMS83]). Such a mechanism 

inherits many properties from traditional attribute grammars. Since the semantic functions are 

unrestricted, auribute grammars arc a completely general descriptive mechanism: any computa

tion can be expressed trivially by collecting the input tree into an attribute of the root and apply

ing there a function denoting the desired computation. This solution is not really useful since it 

pushes the problem to a different place without solving it. The advantages of attribute grammars 

come from using simple semantic functions and relying on the structure of the parse tree to com

bine them into more complex transformations. [Kam3 ] presents some results on the expressive 

power of a particular version of attribute grammars, but few other results are known. 

Probably the biggest disadvantage of attribute grammars is that they are "too local". Since 

semantic functions are associated with productions in the parse tree, attribute grammars limit 

their locality to a production. When the problem requires a larger local context, auxiliary attri

butes and semantic functions must be defined. These attributes will collect the information in the 

local context and transmit it to the desired node where it can be used. The problem with this 

approach is that it separates single transformations into several constructs, increasing the 

difficulty of understanding and implementing the description correctly. When the transforma

tions arc non-local, the usc of auxiliary attributes cannot be avoided, and since the propagation 

needs to be done at each point in the path, many rules arc involved. 

Another problem is that since the number of attributes that are assigned to each node is 

fixed by the type of the node, it is frequently necessary to collect information into a larger attri

bute (a frequent example is the "symbol table") which is then moved to the places where the 

information may be required. This reduces the clarity of the description and may also reduce the 

efficiency of solutions to problems based on it. 

Attribute grammars have a flexible parallel composition mechanism: at any non-terminal 

any number of attributes can be combined to obtain a new one. Serial composition is not 

straightforward because the result of the transformation is not available directly in the original 

tree. The la:.:k of iteration forces the usc of complex semantic functions in some cases where they 

could be avoided. For example, if a transformation is to be invoked under some particular con

text, the attribute grammar must check for the context, not only in the initial parse tree, but also 

in the intermediate tree that will be obtained by the application of successive transfo~ations. 

Keeping track of these changes may be very complex. 

Attribute grammars are at their best in describing how to annotate parse trees, for instance 

in a semantic analysis phase. There have been some proposals for proof methodologies for attri

bute grammars [Dcr83] based on proving local properties at each of the productions of the gram

mar and then proving properties on the interactions between the productions. The applicability of 

this approach depends on the complexity of the semantic functions in the attribute grammar. 

The main obstacle to efficient implementations of the transformations is, again, dealing 

with non-local transfom1ations where values must be pushed around from one place of the tree to 

the other. In general, since tree attributes arc potentially large, it is particularly important to 

optimize the copy and allocation of the attribute values [Rai81 ]. On the other hand, one advan

tage of attribute grammars is that all the dependencies are explicit and they can be analyzed stati

cally to select the best possible evaluation order [Pcl80]. 

Some of the disadvantages of the attribute ~:-::unmars can be overcome by building more 

specific mechanisms on top of them. One such proposal is attribute coupled grammars. 

Attribute Coupled Grammars 

Auributc coupled grammars [GaG84] arc a mechanism based on attribute grammars where 

expressil'c power is traded for comrol over the result of the transformation, effectively providing 

automatic proofs of the fom1 of the transformed tree. Attribute coupled grammars have as 
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domain and co-domain local sets which arc explicitly described in the attribute coupled gramm~ 

as context-free grammars. The attributes arc divided into "syntactically valued" and "semanti

cally valued" attributes. Semantically valued attributes are normal attributes; syntactically 

valued attributes are tree-valued attributes which can have as values only (sub)parse trees of the 

output grammar and arc strongly typed by their root operator. The result of the transformation is 

a syntactic attribute of the root. The semantic fW1ctions of syntactic attributes are constructors of 

the output grammar that may depend on the value of semantic attributes. 

Attribute coupled grammars arc closed under composition: there exists a computable func

tion that will assign to two attribute coupled gran1mars another attribute coupled grammar that 

describes the (functional) composition of the transformations described by the first two. This 

allows one to trade description size against efficiency in the implementation of the transforma

tion. 

This gain in control is obtained at the loss of expressive power. For example it is impossi

ble to describe in attribute coupled grammars the replacement of all "uses" in a tree by their 

corresponding "definitions" because each defmition would have to be propagated as a single tree 

and this cannot be done in general because the number of attributes is fixed. In contrast, in an 

unrestricted attribute grammar all the ddinitions can be bundled together in a single attribute 

which can tl1cn be used in the desired places. Intuitively, attribute coupled grammars have res

trictions on the gcner~uive ponion of the mechanism, while the analytic portion is largely unres

tricted. 

m summary, although attribute grammars and attribute coupled grammars are quite ade

quate for some applications, tl1ey arc lacking for others. The two main disadvantages are the lack 

of non-local facilities. and tl1c lack of serial composition of individual transformations. The first 

disadvantage has been attacked by several researchers ([Hoo86, R...\1T86], but not very success

fully in my opinion), but the second is implicit in the method. 

1.4.4. Term Rewrite Systems 

Term rewrite systems have advantages and disadvantages complementary to those of attri

bute grammars: the basic operation is serial iterative composition but there is no parallel compo

sition. 

Term rewrite systems [ Chu41, Hue80] arc used to describe transformations on terms over 

operators. Since there is an equivalence between terms over an alphabet and labeled trees where 

leaves correspond to 0-ary operators and internal nodes correspond to n ~0-ary operators, a term 

rewrite system can be used to describe tree transformations. Term rewrite systems are the basis 

for the descriptive mechanism used throughout this dissenation. 

A pattern over an alphabet is a term on the alphabet extended with new 0-ary operators 

called variables 4
. A tcm1 rewrite system is a collection of pairs of patterns called term rewrite 

rules. The two patterns arc called the input pattern and the output pattern, and the variables 

used in the output pattern arc required to be a subset of those used in the input panern. A panem 

matches at a node if there is a substitlllion for the variables that makes the panem identical to the 

subtree rooted by the node. A rewrite rule defmes a tree transformation: an input tree is 

transformed into an output tree by replacing tl1c ponion matched by the input panem by a new 

tree obtained from the substitution and tl11.! output pattern. 

The basic component of a term rewrite system is iterative serial composition. A rewrite 

system transforms an input tree by repeatedly applying rewrite rules until a tree is obtained where 

4 Section 2.3 defmes more formally all the concepts mentioned in this section; in particular, these variables are 

extended to allow also for non-zero arities. 
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no rule applies. Like many tree automata, but unlike attribute grammars, tree-to-tree grammars 

are potentially non-deterministic in their output since several subtrees of a tree may match one or 

more rewrite rules. Traditional research in term rewrite systems is concerned with determining if 

a given system defines a function or not. This can be proved by a number of techniques, many 

based on showing that two properties hold: confluency and termination. Most of the proof tech

niques for termination are formalizations based on well-founded sequences [Moz83], while there 

are several local properties which imply confluence [Hu080]. Since transformational grammars 

have the expressive power of a Turing Machine it comes as no surprise that, in general, 

conflucncy and tcrmin:nion arc undecidable. 

Local conditions and actions arc described in the mechanism by simply adding a rewrite 

rule with left term equal to the local condition and right term equal to the desired result. In the 

absence of additional requirements, like order of application, this description is the only one 

needed and is very natural. On the other hand, non-local transformations are not supported 

directly and must be simulated by sets of rewrite rules. Non-local condjtions are described in an 

awkward way since the only way to transmit information is indirectly through modifications of 

the tree. This means that what should be a simple process of gathering contextual information is 

described as a complex process, which not only initially changes the contents of the tree, but also 

has to return it l:ncr to its original state. The technique employed to describe non-local actions is 

similar. 

Similar complex interactions are needed to implement non-iterated serial composition and 

parallel composition. This style of programming is unnatural and very unstable: small changes to 

the set of rewrite rules can cause large changes to the behavior of the system. Tilis unstability has 

been observed in production systems, a computational mechanism based on an organization simi

lar to term rewrite systems [DaK77, For79, KDR78]. 

The implementation of term rewrite systems is based on tree pattern matching algorithms 

[Ho082,KMR72] to detect the rewrite rules applicable on the subject tree. The pattern matching 

algorithms employed should deal efficiently with changes to the tree as rewrite rules are applied. 

The main advantages of tcnn rewrite systems are its support of iterated serial composition, 

providing both expressive power and descriptive convenience; and the support of local transfor

mations. Unfortunately, when the basic transformations cannot be described as a single rewrite 

rule, the complexity of the interaction increases radically. 

Another disadvantage of tcm1 rewrite systems is the inability to control the order of applica

tion of rules. In some cases tl1c rewrite rules arc designed to be evaluated in some particular 

order, and enforcing that order with tl1e standard mechanism may be very laborious; transforma

tional grammars arc one attempt to alleviate this problem. 

Transformational Grammars 

Transfom1ational grammars were originally used in computational linguistics; DeRemer 

and Kron, [DeR69, Kro75] introduced tl1e usc of transformational grammars to describe transfor

mations in compiler systems. Transformational grammars are like: term rewrite systems with 

some extra control. First, if tl1ere arc two different rules which apply at some node and one of 

them has an input pattern more "specific" than the other, then the more specific rule will be 

applied. Second, there is a "global" rule that is used to choose between several nodes at which a 

rule is applicJblc. The globJl rules presented in [Kro75] are "top-down" and "bottom-up". In 

botl1 cases the rule docs not define a total order on the nodes of the tree and for some nodes the 

selection between rules will still be random, but confluency can be proved for some classes of 

transformation gramn1:1rs [Kro75]. 

There have been several systems that have been implemented based on variations of 

transformational grammars. One such system is Bonsai [Wul81], which can be described as 

being ''patLcm-drivcn' '. A transfom1ation in Bonsai is specified as a collection of rules, each rule 
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having a condition and an action. The condition is a tree pattern extended with optional invoca

tions to generic semantic routines. The action is just a routine in some implementation language 

that will return a tree value to replace the matched subtree. As in transformational grammars, 

there is a global specification to indicate the order in which the nodes are going to be tested. 

Within a node the rules are tested in order and, if the condition of a rule is true, then its action is 

invoked. The order in which the nodes are visited can be modified using special actions. 

The main advantage of Bonsai is the expressiveness of the technique: when needed one can 

always escape to a complex action routine to produce the replacement tree. This is also its new 

disadvantage: since it is impossible to predict the interaction of the different rewrite rules without 

understanding the action routines this descriptive mechanism can be used only to solve forward 

application and rcachability problems. Also in some cases the implementation may suffer, since 

there is less information available to the solver generator. 

Twig [Tji] is a descriptive mechanism that has the normal rewrite rules, plus rules similar to 

those in Bonsai and additional cost information that is used to select the rules to apply. Twig was 

designed for generating code generators and is discussed again in Chapter 9, where it is compared 

against the solution presented in Chapter 8. 

Attributed Transformational Grammars 

Attributed transformational grammars [GMW80, MWW84] are an attempt to combine the 

strengths of attribute grammars with those of transformational grammars into a practical tool for 

the specification of compiler phases. The interaction of the attribute grammars and the transfor

mational grammar has two facets. First, input patterns in the term rewrite rules can be extended 

with an arbitrary predicate on attributes of the non-t~rminals in the input tree; the predicate must 

be true and the input pattern must match for the rewrite rule to be applied. Second, after an appli

cation of a transformation rule, attributes may be recomputed according to new semantic func

tions described in the transformation rule. The re-evaluation may involve a larger context than 

the one directly affected by the transfom1ation. A direct consequence of the characteristics of the 

interaction is that the domain of the tree transformation must be a local set which is described 

explicitly with a context-free grammar. 

The evaluation of tl1c rewrite rule is controlled as in transformational grammars, with a gen

eral traversal order. The attributed transformational grammar papers (GMW80, MWW84] also 

contain a proposal for non-local conditions called combined attributed transformations, and an 

abstraction mechanism. A combined attributed transformation ties together a local rule with a 

global rule connected through a connector node which normally is an attribute explicitly updated 

through the description specification. When the conditions for the local rule are satisfied, the 

conditions on the global rule arc checked and, if valid, both rules are performed. The global rule 

can then access the infom1ation in the local rule to perform non-local actions. The abstraction 

mechanism can abstract a set of local and global rules. attribute reevaluation. and traversal con

trol into a transfom1ation unit which can later be invoked. 

Attributed transformational gran1mars arc a very interesting proposal. The expressive 

power and the description of local transformations is unchanged from transformational grammars. 

but non-local conditions can now be described through attributes which describe the condition, 

while non-local actions usc combined attributed transformations. The abstraction mechanism 

also provides new f1cxibility in the composition facilities allowing non-iterated composition. As 

in transformational grammars, there is slill no parallel composition. 

Proving propcnics is simplified somewhat by the presence of procedures which make it pos

sible to decompose the problem into smaller and simpler problems. Non-local transformations 

can be analyzed, at least panially, using techniques from attribute grammars. [GMW80] provides 

no proof methodology for combined attributed transformations. 
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The efficient implementation of attributed transformational grammars is more complex than 

for transformational grammars. Finding the set of transformations which are applicable to some 

tree implies both an attribute evaluation and a pattern matching over the tree. Any later change to 

the tree as a result of the application of a rewrite rule will force an attribute reevaluation and an 

update of the pattern matching information. Special algorithms are used to reduce the number of 

attributes which must be changed in a reevaluation. 

Some properties are not catered by the mechanism as well as desired. Non-local conditions 

must be described semantically using several attributes and semantic functions, even when the 

described condition is strictly syntactic. The restrictions of a general purpose attribute evaluator 

may produce inefficient implementations, and the dispersion of the description through several 

attributes and evaluation rules will make it less understandable. Non-local actions require that 

the description writer update the value of the attribute which provides the connection between the 

local and the global rule. This updating will be dispersed in the semantic revaluation functions of 

several rewrite rules, which is unnatural and may also be inefficient 

Tree-to-tree Grammars 

Tree-to-tree grammars [KMP84] can be seen as an extension of either attribute grammars, 

or, as in this subsection, tem1 rewrite systems. They are a specialized descriptive mechanism, 

less expressive t11an attributed transformational grammars. Tree-to-tree grammars are a collec

tion of extended rewrite rules; each rule relates an input subgrammar and an output subgram

mar. The rule matches at subtrees t11at belongs to the input subgrammar and the output subgram

mar describes the replacing subtrec5. 

Unlike traditional term rewrite systems, there is no iteration. Instead the input tree is parti

tioned, and a single rewrite rule is applied to each portion to obtain the output tree. Properties of 

the output set can be obtained automatically from the set of rewrite rules. 

A tree-to-tree grammar is implemented by translating it into an attribute grammar with new 

attributes which determine what input subgrammars apply to a given input tree. The semantic 

functions used for the new attributes implement a tree pattern matching algorithm (see every

where in this dissertation). This new attribute grammar satisfies the constraints of attribute cou

pled gran1mars, thus proving that the expressive power of tree-to-tree grammar is not larger than 

attribute coupled grammars. 

The main advantage of this approach is that (some) non-local actions can be described quite 

naturally. Probably the main disndvantage is the lack of iteration, and the somewhat imprecise 

state of the proposals in [KMP84]. Chapter 7 formalizes a similar proposal around the notion of a 

projection system. The results of that chapter show how to solve, strictly in terms of rewrite sys

tems, not only the "forward" application problem, but also its inverse function. 

L5. Thesis of this Dissertation 

The intention of this dissertation is to start exploring how much it is possible to improve the 

"pure" rewrite system paradigm to overcome its shortcomings, and how to solve with it the tree 

transformation problems mentioned at the beginning of this chapter. 

The biggest asset of descriptive mechanisms based on term rewrite systems is their support 

for serial composition and local transfomntions. But the basic term rewrite mechanisms support 

poorly both non-local transformations and parallel composition, and have trouble imposing con

straints on the order of evaluation. Some descriptive mechanisms, notably attributed transforma

tional grammars, ha\ c attempted to alleviate the problems by departing from the "pure" 

5 The proposal of [K.\1P84] is not very precise in some fine details. 
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approach and adding attribute grammars. Attribute grammars have their own problems, they still 

do not provide a good description of non-local conditions, and detract from the simplicity of 

rewrite systems. The goal of this dissertation is to extend the power of the individual rewrite 

rules in a way that is a "nice" extension to the "traditional" rewrite rules to deal with non-local 

rewrites so that. in most cases each conceptually single rewrite action can be described as a single 

action in the mechanism. 

This is an ambitious goal. [Pel84] contained several proposals for future research. This 

dissertation is a first step in that direction, and restricts its attention mainly to extending the 

notion of pattern to allow non-locality in the form of the typed N-patterns and X-patterns of 

Chapter 7, and the non-linear patterns of Chapter 4. 

Another goal of this dissertation is to show that even simple descriptive mechanisms based 

on term rewrite systems can be very useful to solve the tree transformation problems presented at 

the beginning of this chapter. This goal is achieved by defining and exploring the notion of 

bottom-up rewrite systems. 

1.6. In~i·oduction to the Remaining Chapters 

The dissertation is divided into four major parts. The frrst, introductory pan consists of this 

chapter and the next, which introduces basic defrnitions on trees, pattern matching, tree languages 

and tree automata, rewrite systems. and fmite state tree transformations. The reader is advised at 

least to skim through the chapter since some of the defmitions are new, particularly those on tree 

transformation problems and on labeled bottom-up tree automata (Definition 2.37). 

The second part of the dissertation contains foundational material for the descriptive 

mechanism outlined in Section 1.5. Chapter 3 investigates pattern matching for the simplest type 

of patterns, the linear N-patterns, which arc the "traditional" patterns where variables appear 

only once and have 0 arity. The chapter contains a consistent description of several table-driven 

algorithms which cover a space of table-size x matching speed. Some of the algorithms have 

appeared previously in the literature, but others arc new and may be useful in some applications. 

Chapter 4 studies non-linear N-patterns, that is, patterns as before but in which variables 

may appear more than once. Matching for these patterns is solved by combining matching for 

linear N-pattcrns with the testing of additional equality predicates. The chapter contains several 

table-driven algorithms. The size of the tables depends, in part, on how much of the results of the 

tests is stored: faster algorithms require larger tables. 

The logical continuation of Chapters 3 and 4 is the first part of Chapter 7 where algorithms 

for typed X-pattcrns arc studied. X-pattcms arc a generalization of traditional patterns in which 

variables arc allowed to have non-zero arity. X-pattems are designed to describe non-local condi

tions. Types are constraints imposed on what a variable can match, and can appear in both N

patterns and X-pattcrns. Again, types allow the i~troduction of some non-locality into patterns. 

Pattern matching for typed N-patterns can be solved using techniques similar to those of Chapters 

3 and 4, but pattern matching for X-pattcrns uses results from the third pan of this dissertation. 

The third part of the dissertation contains an analysis of a simple type of rewrite systems 

called bottom-up rewrite systems (BURS) and of its applications. Chapter 5 introduces BlJRS 

and shows how to solve a reachability problem for them. The algorithm used is based on com

puting a state characterizing the interaction of the rewrite system and the input tree. If the set of 

possible states for a given rewrite system is finite, the algorithm can be implemented very 

efficiently. The chapter discusses the algorithm and conditions for the finite number of states. 

Chapter 6 then analyzes the problem of code generation and shows how to solve it using a 

modified rcachability problem over BURS that have been extended with cost information. 

Finally, Chapter 7 shows how to do typed X-pattcrn matching using BURS and defines a 

new type of descriptive mechanism, called projection systems, for which forward and inverse 
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projection systems can be solved by solving a reachability problem for BURS. Projection sys

tems are expressive enough to describe the transformations between abstract and concrete syntax 

trees of language-based editors. 

The last part of the dissertation, Chapter 8, reports on an implementation of a locally 

optimal code generator generator based on the results of Chapter 6. The implemented algorithm 

is compared with several other recent proposals and shown to be substantially faster than other 

optimal code generators and even faster than implementations of successful techniques that are 

not guaranteed to be optimal [GIG78] . .Moreover, the tables obtained are of competitive size. 

Chapter 9 discusses the dissertation and contains some conclusions. Figure 1.4 indicates 

the inter-dependencies among the chapters, which are represented by their chapter number, 

together with a short identifying keyword. 
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CHAPTER2 

Basics of Tree Rewrite Systems 

'When I use a word,' 

Humpty Dumpty said, in rather a scornful tone, 

'it means just what I choose it to mean 
- neither more nor less.' 

'The question is,' said Alice, 'whether you 

can make words mean so many different things.' 

'The question is,' said Humpty Dumpty, 

'which is to be master- that's all.' 

[Lewis Carroll [ 1832-1898]] 

This chapter collects definitions, notation conventions, and results related to the notions of 

tree, pattern, tree language, and rewrite system. Some of the terminology is traditional, some is 

new, and some corresponds to traditional notions in a new perspective. It is always difficult to 

find a happy balance between formality and convenience. This chapter leans towards formality to 

compensate for the possibly different backgrounds among readers; later chapters can then be 

more informal and rely on the definitions presented here for fine points. 

First some basic notation. A sequence a 1a 2 · · ·a" sometimes will also be represented as 

a 1 • a 2 • · · · • a11 to emphasize its components. The empty sequence is represented as "e", and a 

sequence consisting of a single element a will frequently be denoted by a. Sequences with ele

ments from some setS are also called words over the alphabetS. The concatenation operation 

between sequences is denoted explicitly by// or implicitly simply by the concatenation of the two 

operands. Other notations and definitions not defined in this dissertation are from elementary set, 

graph, and language theory. The introductory chapters of most textbooks on those topics (for 

instance [AhU73]) will contain the necessary definitions. 

Definitions will frequently be presented as a collection of "defining equations" where the 

left hand side describes a syntactic case, the symbol ~ indicates it is a defining equation, and the 

right hand side gives the definition. ~ can be read as "is defined to be". This convention is 

commonly used in areas such as denotational semantics. For example, the length of a sequence 

can be defined as: 

length (e) ~ 0 
length (x //a) ~length (a)+ 1 

Note that in the last defining equation there are implicit universal quantifiers; that is, it should be 

read as '<i a '<i x. .. .. Moreover, a is assumed to range over the set of sequences and x over the set 

of sequence elements. Both constraints are left out to reduce verbosity in the definitions. There 

is an implicit defining equation defining all remaining cases (if any) to have value undefined. The 

example above is a total function. 

Section 2.1 defines trees, patterns, linear and non-linear patterns, N- and X-patterns, and 

pattern matching. The section also compares pattern matching to unification and to subgraph iso

morphism. 
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Section 2.2 discusses a class of accepting mechanisms for tree languages. Tree languages 

are useful in several applications, including problems related to pattern matching and rewrite sys

tems. The topic is revisited in Chapter 7. 

The main application of pattern matching in this dissertation is to rewrite systems. A 

rewrite system is a collection of rewrite rules, each one describing the operation of replacing a 

tree matching some pattern by another tree. Section 2.3 presents the basic definitions, including 

some traditional problems: confluence and termination, and some non-traditional ones: reachabil

ity and blocking. 

Section 2.4 defmes a class of tree transformations. It also relates tree languages defined 

through accepting mechanisms to those defined through generating mechanisms. 

2.1. Trees and Pattern Matching 

The notion of a tree can be formalized in several ways. This dissertation uses two main for

malizations. The basic definition identifies a tree with a subset of "well-formed" words over an 

alphabet. This alphabet is composed of a set of operators and three other symbols: "( ", ") ", and 

'',' '. For example, +(-(a, 1),3) is a tree over the set of operators { +,-,a, 1, 3}. The subtrees of a 

tree are its subwords that arc trees (that is, they are well formed). For example both -(a, 1) and 3 

are subtrees of the tree above, but -(a, is not. 

A subtree of a tree is identified through its position relative to the root of the tree. The 

notion of a position can be related intuitively to an alternate representation of a tree: a rooted, 

directed, and acyclic graph, with nodes labeled with the operators, and all nodes having a single 

incoming arc except for the root which has none. For example, +(-(a ,1),3) is represented as: 

+ 
/\ 
- 3 
1\ 
a 1 

In a graph representation of a tree, the position of a subtree is a sequence of integers 

des;::ribing a path from the root of the tree to the root of the subtree, each integer indicating (in a 

left-to-right numbering of the children of a node starting from 1) the next node in the path. In the 

above example, the position of the subtrees -(a ,1) and 1 are " 1 ", the left-most subtree of the 

root, and '' 1 • 2 '', the second subtree of the first subtree of the root, respectively. 

The notion of a position can be formalized and leads to an alternative definition of a tree as 

a "tree shape", the set of all the positions in the tree, together with a labeling from positions in 

the shape into the operators. This is the approach used, for example, in [Knu73]. 

In this dissertation, trees are formalized either as a set of words, or as a tree shape with a 

labeling. Informally, trees will also be represented as graphs. 

Definition 2.1 An operator set Op is a set of symbols together with an arity function, assigning 

to each symbol a non-negative integer, its arity. Op will always be assumed not to have the spe

cial symbols"(",")", and",". Operators with arity 2, 1, and 0 are said to be binary, unary, 

and nullary operators, respectively. 

The set of trees over Op, denoted by Lop• is the smallest set of non-null words with alphabet 

Opu {"(", ")",","}satisfying 
"1 op e Op, with arity n, "1 t 1, ... , tn e L0 P' "op • ( • t 1 •, • · · · • tn • )" e Lop 
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A member of Lop is said to be a term over Op, or a tree over Op. 

If t e LoP' the set of all positions in t, denoted by P1 , is the set of sequences of non

negative integers defined recursively as: 

Pop (1,, ...• 1.) t1 { E }u{kl/sk such that 1::;k ::;n and sk e P1,}. 

If p , q, and r are positions and p = q I !r we say that q is an ancestor of p , and that p is a 

descendant of q. 

If t is a tree, and p e P1 is a position in t, the subtree oft at position p, t@p, is defined 

recursively as: 
t.. t@E = t 

Op (t I • · · · • tn )@kls @ (tk )@s, if l::;k ::;n 6 . 

The set of subtrees oft is the collection of trees t@p, for p e P1 • Because of the one-to-one 

correspondence, positions and subtrees can be used interchangeably. A subtree is also called a 

subterm. 

The frontier oft, fr (t) is the word over Op defined by: 

fr (op)@ op, if arity (op )=0; 

fr (op (t 1, ... , t11 )) @ fr (t 1) · · · fr Ctn ), if arity (op )=n ?.0. 

The children of a tree t are the trees t@k for 1::;k ::;n , n being the arity of the operator at 

the root oft. 

The leaves of a tree t, leaves (t) is the subset of Op defined by: 

leaves (op) @ op , if arity (op )=0; 

leaves (op (t 1, ... , t 11 )) @leaves (t 1)u · · · uleaves (t11 ), if arity (op )=n ?.0. 

The height oft, height (t) is the natural number defined by: 

height (op) @ 1, if arity (op )=0; 

height (op (t 1, ... , t11 )) tl1 +max {height (t 1), ... , height (t11 )}, if arity (op )=n ?.0. 

Aforest is a collection of trees. 

Thus, t =+(-(a, 1),3) is a tree (a term) over {+,-,a, 1,3}, where the arities of+ and- are 2, 

and those of a, 1, and 3 are 0. P1 is { 1 • 1, 1 • 2, 2, E}, with associated subtrees: t 1 • 1 =a, t 1 • 2 = 1, 

t 1 =-(a ,1), t 2 ::3, and tE=t. The frontier is fr(t)=a 1 3. The set of leaves is {a ,1,3}. The 

sequence +(3) is not a tree. 

An alternate way to characterize a tree is as a tree shape plus a labeling. 

Definition 2.2 A tree shape is a collection of position sequences S over the non-negative 

integers satisfying: 
if(s 1,i's:z) E S, then s 1 e S; and, 

if (s 111k e S ), k >0, and 1::; k 1 <k, then s 111k 1 e S. 

6 The parentheses in (tk )@s are added for readability to delimit the subscript k and have no other significance. 
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The arity of a position p in a shape S is the largest integer n such that p • n e S. A label

ing of a shapeS is a mapping, f ,from S into Op, such that: iff (p) =op ,for peS, op e Op, 

the arity of op in Op is the same as the arity ofp inS, 

The reader can easily prove: 

Proposition 2.1 The following two statements are true: 

For every tree T, the set Pr is a tree shape. 

LetS be a tree shape and f a labeling of S. Then, there is a unique tree T with set of posi

tions S and such that the root ofT @p equals f (p) 

The next chapters will use either of the two characterizations of trees. In this dissertation, 

the arity of an operator is assumed to be fixed. This models closely the semantics of the operators 

in the applications to programming systems, and although no basic result uses this assumption, 

some implementations (like the one of Chapter 8) depend on it for their efficiency. The European 

school of algebraic trees is similar to the definition of a tree as a labeled shape except for having 

operators with variable arity. 

Tree Patterns 

Patterns are intended to be used to describe "shapes" of trees. Intuitively, they can be 

thought of as trees where some positions are labeled not with an operator but with a "variable". 

The variables can then be replaced by trees to obtain all the trees that have the "shape" described 

by the pattern. In general, there may be more than one position in the tree that is labeled with a 

variable. When there z.:-e no constraints between the values used to replace any two variables, the 

pattern will be called linear (Def. 2.3). If the values used to replace two or more variables are 

constrained to be identical, the pattern will be called non-linear. Finding a convenient formal 

definition for linear patterns is quite simple: we can use a reserved operator symbol, for instance 

V, and define patterns as trees over a set of operators extended with V. Thus, if a is a nullary 

operator and + is a binary operator, we could describe the shape of the trees rooted by a + and 

with a as right child, by the tree +(V ,a). This definition is unique (that is, each "different" 

shape of trees corresponds to a different pattern), and, since a pattern is formally a tree, we can 

use tree operations in patterns (for instance, the left child of the pattern +(V ,a) is the pattern V ). 

The situation is substantially more complex if we want to describe non-linear patterns. For 

example, consider two patterns, p 1 describing the shape of trees rooted by a binary operator+, 

and p2 describing the shape of trees rooted by the binary operator+ and having a left child identi

cal to a right child. Following the approach outlined in the previous paragraph, we could defme 

p 1 and p2 as the two trees +(V 1 ,V 2), and +(V 1 ,V 1), where V 1 and V 2 are two symbols that 

represent variables. The problem with this approach is that now patterns do not have a unique 

representation. Thus, the pattern represented by +(V 1, V 0 could also be represented by +(V 2,V 1). 

There are several solutions for this problem. 

A first possibility is just to let the two representations exist as patterns, and to define an 

equivalence relation =between patterns so that two patterns p1 and p2 are ec;uivalent if there is a 

one-to-one renaming of the variables in one into the variables of the other. Thus, +(V 1, V ~ would 

be equivalent to +(V 2, V 1). This approach has the disadvantage that the writer must be carefuJ to 

use = instead of = whenever appropriate, and that some operations, such as constructing a set of 

patterns, must be done very carefully to avoid having equivalent patterns in the set 

Another possibility is to define a pattern as an equivalence class under = of the trees defined 

above. Such a definition simplifies many operations but makes others more complex. In particu

lar, since patterns are no longer trees. tree operations can not be applied to patterns. This problem 

could be solved by defining "coercion" operations between patterns and trees, taking a tree into 

its equivalence class, and an equivalence class into any of its members. Then, an expression like 
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+(X ,a) used in some context would mean either a tree or a pattern depending on the context. 

This approach to the formal definition of a p:.J.ttern has the disadvantage that some contexts do not 

uniquely determine whether the desired value is a tree or an equivalence class. The approach also 

has some other disadvantages. For instance, the notion of an assignment to the variables in a pat

tern would have to be independent of the names of the variables, probably by using positions. 

Tree positions are less convenient that variable names because positions arc relative while names 

are absolute. 

A final possibility is to define a pattern as some canonical tree. For instance, we could 

require all the variables to be taken from a fixed set { V 1 ,V 2, ... , } and to be used in a predefmed 

order, so that +(V 1,V 2) would be a pattern, but +(X ,Y) and +(V 2.V 1) would not. One problem of 

this approach is that tree operations applied to patterns may produce non-patterns: for instance, 

the right chlld of +(V 1,-(V 2.V 3)) is not a pattern. This renaming also reduces the readability of 

some operations: for instance, it makes it less visible that -(V 1 ,V 2) is the right child c f 

+(V 1,-(V 2.V 3)). 

The approach that we use in this dissertation is to define a pattern as a tree over an operator 

set which is extended with a disjoint set of variable symbols (Definition 2.3) and to provide an 

equivalence relation on patterns (Definition 2.7). In addition we usc flexible canonical forms (the 

set of subpattcrns nF of Definition 3.2, and the extended pattern set of Definition 5.7) to reduce 

the number of cases in which we have to make a distinction between equality and equivalence 

and yet retain some readability in our exa.:nples. 

Although the notation used in tl".Js dissertation is correct, the author is not completely 

satisfied with it. Most of the complexity arises from the presence of non-linear patterns. It 

should be possible to obtain an overall improvement in clarity of presentation by assuming pat

terns to be linear in all chapters except in Chapter 4, where they could be defined as extensions to 

linear patterns. Time constraints have prevented us from following this approach in this disserta

tion. 

This dissertation deals with two types of patterns, depending on the arity of the variables. If 

all variables have arity 0 we obtain the traditional notion, called here an "N-pattern"; if some 

variable has non-zero arity, the pattern is called an "X-pattern". X-pattern is a new notion used 

to describe non-local situations. 

Definition 2.3 A pattern is a member of LopvV· where Op and V are disjoint sets called the 

operators and the variables respectively. The pattern is called an N-pattern £fall the variables 

have arity 0, and an X-pattern otherwise. A pattern is called linear if it contains at most one 

occurrence of any particular variable; otherwise it is called non-linear. 

Associated with each variable X appearing in a pattern there is a set of trees called its 

type, denoted by type (X). If the arity of a variable is n, it has a default type which is the set of 

all linear patterns over Op with exactly n variables. Alternatively, the type of a variable can be 

any subset of the default type. 

Ifp is a pattern over Op and V. Vars(p) denotes the set ofvariables in p. /fp 1 and p2 are 

patterns over Op and V, we say that p1 and p2 are variable-disjoint zf Vars(p 1) n Vars(p2)= 0. 

By extension, given a set of patterns F = {p 1,p2, ... , p,}, F is variable-disjoint if for i ,j, 

1 ~i ,j ~n , V ars( pi ) n V ars( p J ) = 0. 

Typed variables are useful to constrain the valid replacements for the variable (see Def. 

2.6). Note that a variable with arity 0 has as default type the set o; all trees over the operator set. 

Figure 2.1 shows some examples of patterns. In a convention followed throughout the disserta

tion, the names of variables start with an upper case letter. From left to right the examples are 

linear and non-linear N-patterns, and linear and non-linear X-patterns. In the rightmost pattern, 

the default type of X 1 is the set of all linear patterns with exactly one variable. Traditional tree 



patterns [Ho082] are linear N-patterns. 
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P:merns are used for matchings. Intuitively, a pattern "matches" against a tree, called the 

"subject", if there is a way to associate a value with each variable in the pattern, so that when 

each instance of the variables is replaced by its associated value, the resulting tree is identical to 

the subject tree. 

The matching of N-patterns and X-panerns differs only in what are the values that can be 

associated with a variable: in the first case a tree without variables, in the second an N-pattern 

with as many variables as the arity of the X-variable. With some care, the formal definition can 

be made identical in both cases. First some auxiliary definitions and new notation. 

Definition 2.4 Let T be a rree with labeling f T, p E Pr a position in T, and t a tree with label

in; f 1 • The replacement of the subtree T @p by t is denoted as T @pH, and is defined as the new 

tree with shapeS, and labeling f' such that: 
Jfr E Pr is not of the form p lis, then r E S, and f' (r )=fr(r ); 

lfr E P1 , thenp//r E S, andf'(p!!r)=f1 (r). 

Let T be a pattern over Op, X a variable with arity n ;?:0 appearing in T at position p , and 

t a pattern over Op with n distinct variables with arity 0 at positions q 1 , ... , q,. (and maybe others 

with non-zero arity ). The reglacement of X in T at f. by t, denoted by Tx@p H, is defined to be 

equal toT @p.-B"• where B 0 = t' and,for l.~i~n' B' = B'-1@q;t-T@pli. 

1fT is a pattern over Op, X is a variable in T appearing at positions p 1, ... ,pm, and t is a 

pattern over Op, the replacement of X by t in T, is denoted by Tx H, and defined to be equal to 

A m h Aot;T dAi t:..Ai-1 ,were = ,an = X@p;;-t· 

For example, if T = +(3,-(9,4)), and t = 5, then T@ l<-~ is the tree +(3,5). If 

T =+(X ,-(4,X)), then Tx,_3 is the tree +(3,-(4,3)). And, ifT =+(X(a,b),3), and t =*(X 1,9.X 2). 

then Tx<-~ is the tree+(* (a ,9,b ),3). 

Formally, the correcmess of the above definition of the replacement of a variable requires a 

proof that the order in which the variables are listed does not change the result. The proof is 

immediate and is left to the reader. 
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Definition 2.5 Let Op and V be disjoint sets of operators and variables with arity. An assign

ment over Op for Vis a function assigning to each variable A e V of arity nA, a linear N-pattern 

over Op with exactly nA variables. 

Let a be an assignment over Op for 11, and p a pattern over Op and V, with n variables V 1 

, ... , V11 • The application of a to p, denoted a(p), is defined to be A 11
, where A 0 ~ p, and, for 

l~i ~n, A i ~A i-IV,Hr(V,)· 

Definition 2.6 Let p be a pattern over V and Op, and T be a tree over Op. An assignment a 

over Op and V is a match of p at T, if a(p )=T. and ,for every variable X in p, a(X) e type (X). 

p is said to match at T, if there exists such a match. Let Po be a subtree of p; the tree associated 

with p0 by a is defined to be a(p0). If p matches at T, then T is a subject at which p matches. 

For example, the pattern +(X ,Y) matches twice in the tree +(-(2,a ),+(3,4)); in the first case 

the associated assignment is {X f- "-(2,a )" ,Y f- "+(3,4)"}; in the second case, 

{X f- "3" ,Y f- "4"}. If the pattern were modified so that type (X) included only those trees 

whose leafs are digits, then only the second assignment would be legal. 

Since, given an N-pattern and a tree, there is at most one match of the pattern at the tree, the 

assignment can always be computed from the pattern, although in some applications it might be 

convenient to keep the representation explicit. X-patterns are different. X-patterns mJy have 

more than one match at a given node. As an example, consider the X-pattern p =a (X (b ,c)) and 

the four trees: 

a a a a 
I I I I 

1\ A }\ A 
b c 1\1\ }\c 1\1\ 

b d c d 1\d b c b c 

b d 

Each of the first 3 trees has one match for p, namely: {X f-OP (X 1.X iJ}, 
{Xf-op(op(X 1,d),op(X 2,d))}, and {Xf-op(op(op(X 1,d),d),X 2)}, but it h:is three matches at 

the last tree: {Xf-op(op(X 1,XiJ,op(b,c))}, {Xf-op(op(b,c),op(X 1,X2))}, and 

{X f-Op (op (X 1 ,c ),op (b ,X iJ)}. 

One way to reduce the number of matches of an X-pattern, and thus make the X-pattern 

more precise, is by giving non-default types to its variables. This can also be done for N-patterns. 

In the introduction to this subsection we mentioned that the names of the variables in a pat

tern are non-significant. Formally: 

Definition 2. 7 Let Op be an operator set, let V be a set o.f variables, and let p 1 and p2 be two 

patterns over Op and V. p1 and p2 are equivalent (p 1=p2) iffor any tree T, p1 matches at T if 

and only if p2 matches at T. 

It is straightforward that 

Proposition 2.2 The = relation between patterns is an equivalence relation. 

It is also straightforward that 
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Proposition 2.3 Let p1 and p2 be two patterns over Op and V. If there is a one-to-one mapping 

between Vars(p 1) and Vars(p1) that preserves the types of the variables, then p1 = p2. 

Section 3.1 defines more relations between patterns. 

This dissertation studies some new and old ''problems''. The format used to present these 
problems formally follows that of [GaJ80], where first the parameters of the problem are given 

and then the problem is described There are two main classes of problems: decision problems 
where the answer is either "yes" or "no", and construction problems where the answer is some 

object that has to be obtained. 

Definition 2.8 We say that a decision problem is decidable if there exists a procedure that 
always terminates and that will dc:crmine for every possible input whether the answer to the 

problem is "yes" or "no". If no such procedure exists the problem is said to be undecidable. If 
there is a procedure that provides the correct answer when it terminates but is guaranteed to ter
minate only when the answer to the problem is "yes", the problem is said to be semi-decidable. 

We say that a construction problem is soll'able if there exists a procedure that always ter
minates and that will determine for every possible input the correct answer. If no such procedure 

exists the problem is said to be unsolvable. 

An example of an unsolvable problem is the REACHABILITY problem (Definition 2.28) for 

general rewrite systems. The main problem of pattern matching is a construction problem: 

Definition 2.9 Given: a set of trees, T c L0 P' and a set of patterns F c T opvv; the tree pattern 
matching problem, overT and F, abbreviated as PATTERN MATCHING, consists of, given a subject 
tree T e T, finding for every subtree ofT, all the patterns in F that match at it, and matching 

assignments for those patterns. 

Unification 

Unification is a problem that seems very similar to matching for N -patterns, yet it is 

significantly different. Formally, unification can be defmed as follows: 

Definition 2.10 Let V be a set of 0-ary variables. Two terms t and t' in T opvv are unifiable if 
there is an assignment cr over OpuV, such that cr(t) = cr(t' ). cr is called a unifier for r and t '. 

An important property of unification is the following: 

Proposition 2.4 [Rob65] For any two terms PI and p2 there is a unique (up to a renaming of 

variables) most general unifier, crmgu, such that for any other unifier cr for PI and p2, there is a 

replacement 't such that for all variables X, cr(X) ='t(crmgu (X)). 

Definition 2.11 The unification problem (UNIFICATION) consists of, given two terms, finding 

their most general unifier. 

Unification can be solved in linear time on the size of the two patterns [PaW78]. In one 
sense, unification is more general than pattern matching. Either term in an unification problem 

may contain variables, and the same variable may be present in both terms, but only the pattern in 
a matching problem can contain variables. Thus, any algorithm used for unification can be used 

for pattern matching. 

Yet, in another sense unification is simpler than pattern matching. In unification only the 

two complete terms are considered; in pattern matching, any subterm of the subject tree is con

sidered. Also, unification only considers a single pair of terms, while the applications of pattern 
matching studied here consider a set of patterns to be matched against a single subject. The algo
rithms for pattern matching presented later in this dissertation are significantly more efficient than 
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the straightforward application of unification algorithms to the same problems. 

In some cases it is convenient to represent a tree in such a way as to underscore the com

mon parts of it. 

Finding Common Subexpressions in the Subject 

Since a tree may have more than one identical subtree, in general, detennining if the sub

trees at two positions are equal requires a recursive comparison. An alternative is to encode the 

tree as a directed acyclic graph (dag) where multiple occurrences of subtrees are replaced by a 

single subdag. This dag is called a computation dag. 

A computation dag can be computed from a tree using a bottom-up traversal that works in 

time linear on the size of the subject tree. The main operation computes, given the dags 

corresponding to the children of a node, the dag correspond to the node, and in the process also 

finds if an identical dag had been computed previously (for some other subtree of this tree). This 

operation can be computed efficiently with a hash function. The resulting algorithm was named 

the value number method and presented by Cocke and Schwanz in [CoS70]; it also appears in 

[AhU77]. 

Computation dags allow the replacement of subtree comparisons by pointer comparisons. 

Chapter 4 shows that this type of comparison is a basic operation in non-linear pattern matching. 

Also, the algorithms for linear N-pattern matching 7, which are based on a bottom-up traversal of 

the subject tree, can use either a tree representation or a computation dag representation. Using a 

computation dag has the advantage of requiring traversal of fewer nodes. 

Representing the subject tree as a computation dag suggests considering another problem: 

'· subgraph isomorphism''. 

Subgraph Isomorphism 

The technical definition of graph and subgraph isomorphism are the following: 

Definition 2.12 Given two graphs G 1=(V 1,£ 1) and Gr(V2.£2). G 1 is isomorphic to G 2 if there 

is a one-to-one function f :V 1 V 2 such that <u ,v > e E 1 if and only 1/ <! (u )J (v )> e E 2. 

Definition 2.13 The graph isomorphism problem cor.sists of determining, given two graphs G 1 

and G 2, if G 1 is isomorphic to G 2. The subgraph isomorphism problem is determining if there 

is a subgraph ofG 1 that is isomorphic to G 2 . 

The complexity of graph isomorphism between general graphs is a famous open problem. 

The problem can be solved in polynomial detenninistic time8 for several special cases, including 

planar graphs and, hence, trees. Graph isomorphism differs from pattern matching in its concern 

with only two graphs. 

Subgraph isomorphism is known to be :t',rp-complete for the general case and even for some 

simple special cases. One such case is when G 1 is a directed forest9 and G 2 is a directed tree 

([GaJ80]). Given the comments of the previous subsection, a careless reading of this result might 

suggest that pattern matching between a subject tree and anN-pattern would be :t',rp-complete if 

both were represented as computation dags. This is not true; The two problems are different. A 

7 Unfortunately, there are some problems with X-pattern matching: the technique employed requires three passes 

over the subject, and using a dag conilicts with the top-down pass. More on this in a future publication. 

8 See [GaJ80] for a definition of this notion and that of NP. 

9 A directed iorest is a collection of directed trees. 
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main difference is that matching has less freedom: if two nodes match, they must have exactly the 

same number of children; this is not true for subgraph isomorphism. 

2.2. Tree Languages and Automata 

Any tree transformation involves at least two different sets of trees: the domain of the 

transformation, the input set, and the image of the transformation, the output set. In most tree 

transformation problems it is important to be able to describe these sets so that some properties 

can be obtained automatically. This section presents some background material on sets of trees, 

also called tree languages. Most of the material in this section is from [Tha75], and [Eng75]. 

Recall our convention that, unless otherwise indicated, the type associated with a variable in a 

pattern is its default type. 

A tree automaton is a tree language recognizer, that is, it defines a mapping from Lop into 

{true false). The definition of a tree automaton is a generalization of that of a (word) one-way 

finite state automaton (FSA). Normally, the behavior of a FSA is defmed through a sequence of 

pairs, containing a position in the inrut tape and a state. Without loss of generality, this can be 

understood as an assignment of a state to each position in the input tape. A tree automaton is like 

a FSA except that the state is associated with the nodes of a tree. There are two main approaches 

to defining a tree automata depending on the "direction" in which the "state tree" is traversed: 

top-down or bottom-up. 

Definition 2.14 A detenninistic top-down automaton (DT-fsa) consists of a finite set of states S; 

an initial state s 0; a transition function assigning to each nullary operator op a set of final states 

Fop cS; and, for each arity n, a function Trans11 :OpXS ~sn. The automaton associates with 

each subtree in an input tree a single state from S. The state associated with the inpur tree is s 0. 

If T = op (T 1, ... , T11 ) is an n-ary node, then its i -th child has as its state the i -th component of 

Trans11 (op ,st ), where st is the state associated with T. An input tree is accepted if every leaf of 

the tree with label op is associated with a state in Fop . 

A non-deterministic top-down automaton fsa (T-fsa) is like a DT-fsa except that the func

tion Trans11 above has functionality OpXS ~(25 
)

11
, and s 0 is not a state but a set of states. The 

automaton associates with each subtree in the tree a set of states from S . The set of states asso

ciated with the input tree is s 0. 1fT= op (T 1, ... , T11 ) is an n-ary node, then the i -th child has as 

its set of states the union of all the i -th components of Transn (op ,st ), where st is a member of 

the set of states associated with T. An input tree is accepted if every leaf subtree of the tree is 

associated with a set containing at least one final state. 

The class of languages that can be recognized with a T-fsa will be called T-RECOG. The 

class of languages that can be recognized with a DT jsa will be called DT-RECOG. 

T-fsa are also called root-to-frontier automata (RFA) in the literature. DT-fsa are not very 

powerful and therefore not very interesting. For example, the (finite) set of trees 

{op (a ,b ),op (b ,a)} cannot be recognized by a DT-fsa. Intuitively the reason is that a DT-fsa can 

only recognize that all the "paths" from the root to the leaves of the tree are of some form. 

Thus, in the example above, the automaton accepts as valid, for the tree op (a ,b), the paths op • a 

for 1 • 1, and op • b for 1 • 2; and, for op (b ,a), the paths op • b for 1 • 1, and op • a for 1 • 2. 

Hence, it must also accept the trees op (a ,a), and op (b ,b), and { op (a ,b ),op (b ,a)) cannot be a 

language accepted by aT -fsa. But, note that this set can be recognized by a (non-deterministic) 

T-fsa: the automaton just "guesses" the right tree to check. 

An alternate approach to defining a tree automaton is based on a bottom-up traversal of the 

tree. 
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Definition 2.15 A deterministic bottom-up automaton (DB-jsa) consists of a set of states S; a 

final set F cS; and,for each arity n, a transition function Transn :OpxSn ~s. The automaton 

associates with each subtree in the tree a single state from S. 1fT =op (T 1, ... , Tn) is ann -ary 

node, then the state associated with T is Transn (op ,st 1, ... , stn ), where sti is the state associ

ated with Ti. An input tree is accepted if the state associated with it is a final state, that is, a 

member ofF. 

A non-deterministic bottom-up automaton (B-fsa) is like DB-fsa except that the function 

Transn has functionality OpxSn ~25 . The automaton associates with each subtree in the tree a 

set of states from S. If T = op (T I> ... , Tn) is an n-ary node, then the state associated with T is 

the union of all Transn (op ,st 1, ... , stn ), where sti is the state member of the set associated with 

T;. An input tree is accepted if the the automaton associates with it a set including a final state. 

The class of languages that can be recognized with a B-fsa is denoted B-RECOG. The class 

of languages that can be recognized with a deterministic B-fsa is denoted DB-RECOG. 

The initial state in a B-fsa at a leaf is obtained from the application of Trans 0 to the opera

tor at the leaf. B-fsa are also called frontier-to-root automata (FRA) in the literature. In this 

dissertation, B-fsa are frequently represented graphically in a way resembling a graph: states are 

drawn as nodes, while transitions are drawn as some type of higher-order directed edges. In addi

tion, most of the B-fsa are complete, that is, there is a new state at any node for any combination 

of states of its children, and one node will be distinguished as the "default" transition, to which 

any non-specified transition will go. Figure 2.2 shows a B-fsa with 4 states numbered 0 to 3 (See 

Figure 3.2 for another interpretation of the same example). This example is a non-deterministic 

B-fsa. The defaul: state is shown at the bottom; the default transitions are not sho'm to avoid 

cluttering the figure. 

0 
a d 

Example of B-fsa 

Figure 2.2 

Non-deterministic B-fsa have the same expressive power as deterministic B-fsa. There is 

an algorithm, similar to the one used for string fsa, that obtains a deterministic B-fsa from a non-
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detenninistic one; the states of the DB-fsa model the power sets of the states of the original B-fsa. 

Figure 2.3 shows this algorithm, which is used in later chapters. 

procedure ND-to-D-Bfsa(ND) 
· let ND be a non-detenninistic B-fsa, 

and Tran/''0 n its transfer function. 
let D be the new (detenninistic) B-fsa; 
initially it has no states; 
let Trans0 n be the new -to be detennined- transfer function. 

while D has changed 
or each possible n-ary operator Op 

or each n -tuple pair (N 1, ... , Nn) of nodes in D do 
or each n -tuple pair (st 1, .... ,stn ), with st.- e N, do 

let S be the set of all states st in ND such that 
st =TransND n (st 1, ... , Stn) 

if no node in ND has labelS 
then 

create a new node; 
add it to ND; 
make Trans 0 n (N 1, ... , Nn) equal to the new node; 

if there is a node but no transition 
then 
I make Trans 0 n (N 1, ... ,Nn) equal to the pre-existing node; 

Non-Detenninistic to Detenninistic B-fsa 

Figure 2.3 

Figure 2.4 shows part of the detenninistic equivalent of the automaton of Figure 2.2 (and, 

again, see Figure 3.7 for a related figure). In the figure, all the states of the new automaton are 

sho\V!l, but not all the edges; the reader may want to complete the figure. As before, the 

"default" state is sho\V!l at the bottom, and all the "edges" entering a given state are labeled 

with the same operator. The "pseudo-graph" representation of the B-fsa is adequate for non

detenninistic automata with a small number of non-default transfers, but it becomes quite 

unmanageable for larger examples. Nevertheless, the graph representation is quite suggestive, 

and not much worse than other alternatives. 
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Example of a Deterministic B-fsa 

Figure 2.4 

Another algorithm that will be used later is the one that, given a DB-fsa, will obtain the 

DB-fsa with the smallest number states that recognizes the same set. The algorithm, shown in 

Figure 2.5, is a simple modification of the one used in string fsa. The algorithm keeps and 

updates equivalence classes between states. The first two classes are characterized by whether a 

state is in the final set or not. Then two states are kept in the same class if, for every operator, 

they transfer to equivalent states. The algorithm terminates when no more changes occur. 



rocedure minimizeO 
let new_ class_ of and class_ of be arrays over the set of states. 

r

or each state st 
if st is a final state then 
I new_class_of[st]=O; 
else 
I new_class_of[st]=1; 

changes =true ; 
class_cnt =2; 
while (changes) do 

changes =false; 
or each class C do 

or each state sta e C do 
new _class _of [sta] =class _of [st b ]; 
or each state stb e C do 

if transfer equivalent (sta ,stb) then 
I new _Ciass_of [stb] = class_of [stb ]; 
else 

I 
new_ class_ of [st b] =class_ cnt; 
changes =true; 

class_cnt += 1; 
exchange new _class_of and class_of; 

Junction transfer _equivalent (sta ,stb) 
or each operator Op with arity n 

or each r. -1 states st 2, ... stn 
or each permutation 1t of l..n 

return (true); 

let 'If be rro(sta ,st 2, ... , stn ); 
let 1tb be rro(stb ,st2, ... , stn ); 
let ca be class_of [Transn(Op ,strr.t• ... ,strr.,.)]; 

let cb be class_of [Transn(Op,st.r.:,•· ... , str ... •)]; 
if Ca *Cb 

I return (jalse); 

Minimizing a DB-fsa 

Figure 2.5 
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The reader can furnish the proofs for the other propositions related to tree automata: they 

are all quite similar to those in the case of string languages. Propositions 2.5 to 2.7 can be proved 

in a similar way to the corresponding propenies for sequential automata; [Tha75] and [Tha67] 

contain some more details. 
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Proposition 2.5 The following equations are true: 

B-RECOG = T-RECOG. 

DB-RECOG ::B-RECOG. 

DT-RECOG 6 T-RECOG. 

Because of tire above equivalences, B-RECOG is normally called RECOG. 

The members of RECOG are the recognizable sets. They arc a nice and stable class: 

Proposition 2.6 RECOG is a boolean algebra. 

There are tree recognizcrs more powerful than FRA. An example is the "push down tree 

automaton" of Guessarian [GueS 1]. This is a top-down tree automaton with unlimited memory. 

The memory is a push-down store and it is, in the most general form, a tree structure from which 

the components can be accessed. When the tree structure is a chain, the memory corresponds to 

the traditional notion of a stack. 

An example of a tree language that is recognizable by a push-down tree automaton but is 

not in RECOG is {Plus (Minus; (l),Minusi (2)) I i~O}, where Minusi means a chain of i Minus 

(non-membership in RECOG can be shown using Proposition 2.7 below). Although push-down 

tree automata are more powerful than B-fsa, it is more difiicult to prove properties of them, and, 

since B-fsa seem adequate to the applications investigated in this dissertation, they are the only 

ones used. 

In regular word languages, there exist effective procedures to determine whether a language 

Js empty and whether it is finite. Both results follow from the existence of a pum;-:ng lemma. A 

similar result is true for recognizable sets. 

Proposition 2.7 Let A be a Bjsa over Op with r states, and letT be a tree accepted by A with 

height larger than r. Then there are linear N-patterns p and¢ over Opu{X 1} and a tree t over 

Op such that: 

• The height of¢ is larger than 1 

• T = Px 1._r, where T = ¢x 1._1 . 

• A accepts Px
1 
..... r·, where T 0 = t, and Ti = ¢x

1
._y;-t. 

The pumping lemma can be proved in a similar way as in the sequential case. The lemma 

leads to: 

Proposition :.8 Finiteness and emptiness are decidable for recognizable sets. 

RECOG can also be chara~terized through a class of "regular" expressions (see [Tha67]), 

but this dissertation docs not use that characterization. 

Context-Free Grammars 

Recognizable sets are strongly related to context-free grammars. This section assumes the 

standard notions of colltext-free grammar and deriration tree, see [Har7S] or [AhU73) for the 

definitions. Unless otherwise specified, context-free grammars are assumed to be £-free. 

Definition 2.16 A set of trees U is called local if there is a context-free grammar 

G = (N ,I.,R ,S ), and an Af ~ N, such that the set of derivation trees of G rooted with variables in 

M isU. 

Given G and M, their associated local set can be recognized by a B-fsa with IN I +2 states 

representing the nonterminals in .\' plus the starting state S 0, and an error state Serror. The auto

maton just assigns to a tree T (l) the state S 0, if T is a leaf, (2) Serror if T is not a derivation tree 
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for G, and (3) S8 if T is a derivation tree in G rooted by B eN. The final set of states of the 

automaton is the set S8 forB eM. Thus. 

Proposition 2.9 Local sets are in RECOG. 

The converse of the above proposition is not true, but can be patched up: 

Definition 2.17 A tree relabeling is a mapping betrvecn two sets of operators Op and Op' such 

that their arity is preserved. A relabeling induces a function assigning to a tree T a new tree 

f (T) where each operator has been replaced by its image under the relabeling. 

Relabelings satisfy: 

Proposition 2.10 Every recognizable sc: is the image of a local set under a relabeling transfor

mation. 

Proposition 2.10 can be proved by constmcting a context-free grammar that will simulate 

the behavior of the B-fsa. There each non-terminal will characterize the state of the tree, together 

with the original operator. The relabeling discards the state and retrieves the operator. 

Another possible generalization of the notion of a relabeling is that of a homomorphism: 

Definition 2.18 Let Op and Op' be trvo sets of operators with arity and let 

X={X 1, ... ,Xi····}. be a set of variables ofarity 0 disjoint from both Op and Op'. A 

homomorphism between Op and Op' is a mapping h :Op-:,T Op'uX• such that, if op has arity n, 

h (op) has (at most) only variables X 1> .•• ,Xn. 

A homomorphism is linear if,for all operators op, h (op) is a linear pattern. 

An homomorphism h induces a transformation h' benveen tree languages. For t e L0P' 

h' (t) is defined recursively by: 

h' (op (t 1, ...• tn )) t1 h (op )x ,,._h' (1 1) ... x.,_h' (1. ); 

h' (op) t1 op 

[Eng75] contains full proofs of the next two propositions. 

Proposition 2.11 RECOG is not closed under general homomorphisms. But, RECOG is closed 

under linear homomorphisms (including relabelings). 

Proposition 2.12 RECOG is closed under (general) inverse homomorphisms, that is, if 

A e RECOG, and h is a homomorphism, then h-1(A) e RECOG. 

Section 7.2 defines a generalization of homomorphism called a "projection system". 

Corollaries 7.3 and 7.2 show that RECOG is closed under both projections and inverse projec

tions. 

2.3. Rewrite Systems 

The basic definition of rewrite system is: 

Definition 2.19 A rewrite rule over OpuV is of the form ex.__, ~. where ex. and ~ are patterns in 

OpuV, and Vars(~) c Vars(cx.). ex. is called the input pattern of the rewrite rule, and ~ is the 

output pattern. A rewrite system over OpuV is a collection of rewrite rules over OpuV. 

A rewrite system is linear if all the patterns of all the rewrite rules are linear. Otherwise it 

is non-linear. 



34 

A rervrite rule a~~ is erasing in X if X e Vars(a) and X E:Vars(~)- A rervrite rule a~~ is 

non-erasing ifVars(a)=Vars(~)-

Unless othern:ise indicated, the rewrite s:;.·stems considered in this dissertation are linear 

and contain only N-patterns. 

A simple example of a rewrite system is the system of Figure 2.6 describing a commutative 

operator and its "reduction". 

+ 
~ 

~ reg + ---1 + 
1\ 1\ 

reg canst XY YX 

A Simple Rewrite System 

Figure 2.6 

Rewrite rules are applied to an input tree to obtain a new tree. 

Definition 2.20 Let R be a rervrite system over Op, and let r =a~~ be a rervrite rule. LetT 

be a tree over Op, and let p be a position in T. r is applicable at p in T if a matches at T @p for 

some assignment cr. If so, the application of r at p is T @p~cr(~)· A rewrite application is a pair 

<r ,p > where r is a rev.·rite rule and p is a position. 

Trees that cannot be rewritten are important. 

Definition 2.21 A tree T is said to be irreducible with respect to some rervrite s:;.•stem R, when 

no rervrite rule in R applies to any position in T. 

The language generated by a rewrite s:;.•stem and an initial tree T is the set of all the 

irreducible trees T' into which T can be rervritten. 

Rewrite rules are normally applied in a sequence. The appropriate notion is that of a 

rewrite sequence. 

Definition 2.22 Let R a rervrite system over Op. A rewrite sequence for R is a sequence 1: of 

rervrite applications. If 't = <r0,p 0> · · · <rn •Pr. > is a rervrite sequence, then 1: is applicable to a 

tree T zf r 0 is applicable toT @Po and its application yields T 1, and for I::;;i <n, ri is applicable to 

(Ti )@p, and its application is Ti+I· The application of't toT is denoted 't(T) and is Tn+I· 

lf't is a rervrite sequence and T is a tree to which 1: is applicable, then 'tis said to be valid 

at T. A rervrite sequence is said to be valid if there is some tree T at which it is valid. Two 

rervrite sequences 1:1, and '!2 are said to be equivalellt if,for every tree T, 1:1 is valid at T if and 

only if'"C2 is valid at T, and, when valid, 1:1(T)=1:2(T). The length of a rewrite sequence is the 

number of rervrite applications in it. 

Referring to the example of Figure 2.6 a valid rewrite sequence for+( +(const ,reg ),const) is 

1:= <r 1,1> <r 0,1> <ro,E>. The application of1: to the tree produces reg. The length of1: is 3. 
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A rewrite sequence may involve only a subtree of the original input tree. In this case, the 

rewrite sequence can be restricted, to obtain another sequence. 

Definition 2.23 Let R be a rewrite system over Op, T be a tree over Op, p a position in T, and 

t = T @p. Let 't be a rewrite sequence for T such that all the rewrite applications in 't have posi

tions below p. The restriction of't top, 't@p, is the sequence of applications identical to 't except 

that every position is stripped of the initial sequence corresponding to p . 't@p (t) is frequently 

denoted simply as 't(t ). 

It is easily shown that: 

Proposition 2.13 LetT be a tree over Op, p a position in T, and 't a rewrite sequence with all 

its applications below p. Then, 't(T) = T @p +-'t@, (T)· Equivalently, 't@p (T @p) = 't(T)@p. 

Loops can always be removed from a rewrite sequence. 

Proposition 2.14 Let R be a rewrite system for Op, and let 't 1 be a valid rewrite sequence over 

R. 't 1 is said to "loop" if it contains a proper subsequence 't2 such that.jor any tree T for which 

't2 is valid, 't2(T) = T. For any rewrite sequence over R with a loop there is a rewrite sequence 

over R which is an order-preserving subsequence of the original one and does not loop. 

The proposition follows by repeatedly "removing" the undesired subsequence. Obviously 

the removal of a loop leaves a rewrite sequence with a length strictly smaller than the original 

one. 

The notion of the "composition" of rewrite applications is used in later chapters. 

Definition 2.24 Let R be a rewrite system over a set of operators Op, and let 't be a valid rewrite 

sequence over R. The composition of't is a rewrite application <r't,p >,with r'tpossibly not in R, 

such that, for any tree T, r 't is applicable at position p in T if and only if 't is applicable to T, 

and, if so, 't(T) = r -;(T). 

Not every rewrite sequence has a composition that is expressible with a rewrite rule using 

N-patterns, but the following condition is sufficient. 

Proposition 2.15 Let R be a (linear) rewrite system over Op, let ri = ai ~~i ,for i = 1,2 be two 

rewrite rules in R, and let 't = <r 1 ,p 1><r 2,p 2> be a rewrite sequence. Let P ~1 be the set of posi

tions in ~ 1 , and let P a
2 

be the set of positions in a2. If {p 111q I q E P ~1 } n {p 211q I q E P aJ :F. 

0, then 't has a composition. 
Proof There are two cases to consider. 

Case 1. Let p 2 be a descendant of p 1; that is, p 2 = p 111 q , for some posmon q . Let 

X 1, ... , Xn be those variables in ~ 1 whose position is of the form q llq 1, ... , q II qn, (that is, their 

positions are descendents of q ). Let a 2
1
, ... , a 2 n be ( az)@q 

1
, ••• , (az)@q.. If r 3 is a3 ~ ~3 • with 

a 3 being (a1)x 1 ._~1 .. -x • ._a
2
•, and ~3 being (~ 1 )@q+-~' the composition of't 1s <r 3,p 1>. This can 

be proved by a straightforward case analysis of the tree positions. 

Case 2. Let p 1 be a descendent of p 2, that is p 1 =pzllq for some position q. Let 

X 1, ... ,Xn be those variables in az whose position in az can be expressed as qllq 1, ... ,qllqn. 

Let ~ 1 1 , ... • ~ 1 n be (~ 1)@q 1 , ••• ,(~ 1 )@q.· The composition of't is <r3,p 2> where r 3 =a::~~3 , 

where a3 = ( a2)@q +-o.
1

, and ~3 = (~2)x 1._~1 1 ... x • ._~1 •• Again, this can be proved by a case analysis 

of the tree positions. 0 
The linearity of the rewrite rules is critical for the validity of Proposition 2.15. The propo

sition can be used iteratively to provide a sufficient condition for a sequence to have a composi

tion. 
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Another useful notion that will be used later in the dissertation is that of a "permutation" 

of a rewrite sequence. 

Definition 2.25 Let r 0 and r 1 be two rev.·rite rules in R, and let <r0,pc}><r 1,p 1> be a valid 

re-.,vrite sequence for R. An "exchange" of the two applications is an equivalent rev.•rite 

sequence oftheform: <r 1,pz><ro.P3>· 

Let 't 1 and 'tz be two valid rt?'Nrite sequences in R. 't 1 is a permutation of 'tz if 't1 can be 

obtained from 'tz through a sequence of exchanges. 

The defmition of exchange is quite loose: it only requires that the order in which the two 

rewrite applications appear is inverted, and that the net effect remains unchanged. There are 

some cases where two rewrite applications can be exchanged regardless of the particulars of the 

rewrite rules themselves. The next proposition is valid even in non-linear rewrite systems: 

Proposition 2.16 Let R be any rt?'Nrite system over Op, and let <r0,p 0><r 1,p 1> be a valid 

rt?'Nrite sequence over R, with r o = Cl()~~o. and r 1 = a.1 ~~1 . If p 0 is not a prefix of p 1 and p 1 is 

not a prefix ofp 0, then <r 0,pc}><r 1,p 1> is equivalent to <r 1,p 1><r 0,pc}>. 

If the rewrite system is linear, we can also add some additiOnal sufficient conditions: 

Proposition 2.17 Let R be a linear re-.,vrite system over Op, and let <r0,pc}><r 1,p 1> be a valid 

rt?'Nrite sequence over R, with r 0 =Cl()~~0 • and r 1 =a.1~~ 1 . Then: 

( 1) zf p 1 is p c}iq /It where q is a position in ~0 corresponding to a variable X, and s is the 

position of X in a.o. then <r o.P 0> <r 1 ,p 1> is equivalent to <r r.P o' s /It> <r o.p r? 

(2) if p 0 is p 11/q /It, where q is a position in a.1 corresponding to a variable X and s is the 

position of X in ~ 1 and r 1 is non-erasing in X, then <r 0,p 0> <r 1 ,p 1 > is equivalent to 

<r 1 ,p 1> <r O•P 1/ls !It> 

The proofs of the last two propositions are left to the reader. 

Problems in Rewrite Systems 

Two tradition:ll properties involving a rewrite system, R0 P' and a set of input trees, L cL0 P' 

are termination and confluence. These properties lead to corresponding decidability problems: 

Definition 2.26 Let R be a rt?'Nrite system over a set of operators Op, and La set of trees over 

Op. The TERMINATION problem for R and L is to determine whether for some tree T e L there is 

an infznite rewrite sequence applicable to T. 

Definition 2.27 Let R be a rt?'Nrite system over a set of operators Op, and La set of trees over 

Op. The CONFLU£11/CE problem for R and L is to determine whether, for all trees T e L, all 

rt?'Nrite sequences applicable at T producing an irreducible tree produce the same one. 

The previous two properties are quite standard in the literature, see, for instance, [Ros73). 

A non-standard problem is the reachability problem, a construction problem that comes in several 

variations. 

Definition 2.28 Let R be a rt?'Nrite system over Op, and let Li and L 0 be two sets of trees over 

Op. The REACHABILJTY problem for R, Li, and L 0 is, given T ELi and T' E L 0 , to determine 

whether there is a rewrite sequence 't for R applicable at T such that 't(T) = T' , and, if so, to pro

duce one such 't. 

If L 0 is a singleton { G}, then the REACHABILITY problem is called the fixed goal REACHABIL

m' problem, and G is called the goal. 
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Without loss of generality, the fixed-goal REACHABILITY problem can be further restricted 

by assuming that the goal tree is a nullary symbol in Op. All the applications ofREACHABILITY 

in this dissertation are fixed goal REACHABILITY problems where the goal is restricted as indi

cated above. Hence, from here on, unless otherwise indicated, REACHABILITY means fixed goal 

REACHABILITY. 

Note that, if the set L 0 is finite, the variable-goal REACHABILITY problem is equivalent to a 

fixed-goal REACHABILITY problem: the equivalent problem is obtained by extending the rewrite 

system with new rewrite rules of the form t ~ G for all t in L 0 , where G is the fixed goal and is 

a new nullary operator that did not appear in R . 

BLOCKING is a decision problem closely related to REACHABILITY. Given a rewrite system 

Rover Op, a tree language, L; cLop• and a fixed goal G, the BLOCKING problem is to determine 

whether there is a tree T ELi that cannot be rewritten toG. 

The above problems are unsolvable (undecidable) for general rewrite systems since they can 

be used to solve the halting problem, but they are solvable for some classes of rewrite systems . 

Rewrite Systems and Generating Devices 

Some restricted types of rewrite systems are related to the tree languages mentioned in Sec

tion 2.2. 

Definition 2.29 Let N be a set of nullary operators, called the non-terminals, disjoint from set 

of operators T called the terminals. A regular tree grammar over TuN, is a rewrite system 

where all rewrite rules are of the form N ~t. where N is a variable. and t is any tree over TuN. 

The language generated by a regular tree grammar is the language generated by its rewrite 

system applied to the start non-terminal. 

It is simple to prove that: 

Proposition 2.18 A tree language is in RECOG if and only if it can be generated by a regular 

tree grammar. 

Guessarian [Gue81] shows that there is a similar situation with push down tree automata. 

Definition 2.30 Let N be a set of nullary operators, called the non-terminals, disjoint from set 

of operators T called the terminals. A co1Zlext-free tree grammar over TuN is a rewrite system 

where all rewrite rules are of the form: op (N 1 •... , N n) ~ p, where ,for I::;i ::;n, N; E N, and p is 
a tree containing operators from T and, possibly, also N 1, ... ,Nn. 

For this generating device, the corresponding accepting device is the push-down tree auto

mata briefly presented in Section 2.2 

Definition 2.31 A tree language is generated by a contPn-free tree grammar if and only if it is 
recognized by a push down tree automata. 

2.4. Finite State Tree Transformations 

Finite state automata for strings can be extended to obtain transforming devices over 

(string) languages called transducers. The accepting automata of Section 2.2 can be modified in a 

similar way to obtain tree transformation devices that are called finite state tree transducers. The 

formalizations and results of this section are from [Eng75]; most of them are not used elsewhere 

in this dissertation and are included here only for completeness. The transducers are described 

using a variation of a rewrite system. 
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Definition 2.32 A bottom-up (finite) tree transducer, M, is a tuple (R,Op1 ,Op0 ,Q,Q1 ), where R 

is a rewrite system over Op1 uXuQ; with X the variables with arity 0, and Q the states, with arity 

1; Op1 is the set of input symbols; Op0 is the set of output symbols; Q1 c Q are the final states; 

and the rewrite rules in R are of the form: 
op (q 1 (X l), ... ,q n (Xn ))-7q (t ), 

for op E Op1 of arity n, q, E Q, X, EX, and t E Topou(X,, .... x. }· 

The set of tree transformations realized by a transducer Af is 

{ (s ,t) Is e Lop
1

, t E Lopo, and s rewrites into q (t) for some q E Q1 } 

The set of transformations realized by M is denoted by T (M ). The class of transformations 

realized by bottom-up finite state tree transducers will be denoted by B -ftt. 

As an example, 

a-7q(c) 
b (q (X 1))-7q (d (X 1, X 1)) 

are the rewrite rules of a transducer mapping trees over {a ,b } into those over { c ,d}. The trans

ducer implements the tree homomorphism defined by: 

h (a)~ c 
h(b)~d(X1,X1) 

T -fsa lead to a similar definition for a transducer: 

Deffnition 2.33 A top-down (finite) tree transducer, M, is a tuple (R ,Op1 ,Op0 ,Q,Qs), where R 

is a rewrite system over Op1uXuQ; X, Op1 , and Op0 are as in def2.32; Qs cQ are the starting 

states; and, the rewrite rules in R are of the form: 
q (op (X 1· ... , Xn ))-7t, 

for opE Op1 of arity n, q E Q, xi EX, and t E Topou(q(X,), ... ,q(X.)}· 

The set of tree transformations reali:;ed by a transducer M is 

{ (s ,t) Is E L0 Pt' t E Lopo, and q (s) rewrites into t for some q E Qs } 

The class of transformations realized by top-down finite state tree transducers will be 

denoted by T -ftt. 

As an example, 

q (b (X 1))-7d (q (X 1), q (X 1)) 

q (a)-7c 

are the rewrite rules of a transducer that realizes the same transformation as the previous exam

ple. 

Bouom-up and top-down transducers are generalizations of the transformational devices 

presented in the Section 2.2. As a set, every function between tree languages that can be 

described using those transformational devices can be described using both bouom-up and top

down transducers. 

Proposition 2.19 Both B-ftt and T-ftt include: 

REL relabelings 
FTA (t ,t) such that t e RECOG 

HOM homomorphisms 



LHOM linear homomorphisms 

The capabilities of bottom-up transducers and top-down transducers are incomparable, in 

the sense that neither set is included in the other. 

Proposition 2.20 B -ftt and T -ftt are incomparable. Moreover, both B -ftt and T -ftt are not 

closed under (junctional) composition. 

Both T -ftt and B -ftt can be modified as follows: 

Definition 2.34 A transducer in T -ftt or in B -ftt is said to be linear if the output pattern of 

each rewrite rule is a linear pattern. It is said to be non-deleting if the output pattern of each 

rewrite rule contains instances of all the variables appearing in the input pattern. 

A transducer in B -ftt is said to be (partial) deterministic if,for each op e Op with arity n, 

there is at most one rewrite rule with left hand side op (q 1(X 1), ... , qn (Xn )). It is said to be total 

deterministic if for each op e Op there is exactly one such rewrite rule. 

A transducer in T -ftt is said to be (partial) deterministic if, the set of initial states is a sin

gleton, and, for each op e Op with arity n , there is at most one rewrite rule with left hand side 

q (op (X 1, ... ,Xn)). It is said to be total deterministic if for each op e Op there is exactly one 

such rewrite rule. 

The classes of transformations implementable by each one of the above restrictions are 

denoted by T -ftt and B -ftt prepended by one of L, N, D, or DP. 

The classes of transformations definable by top-down and bottom-up transducers restricted 

as suggested above are still incomparable: 

Proposition 2.21 LB-ftt, the class of transformations implementable with a linear bottom-up ftt, 

and LT jtt, the class of transformations implementable with a top-down ftt, are incomparable. 

DB-ftt and DT-ftt are incomparable. 

[Eng75] contains several decomposition propositions. A simple class transformations is 

useful in them. 

Definition 2.35 A top-down relabeling is a top-down transducer in which all the rewrite rules 

have the form: 
q (a (X 1• ... ,Xn ))-?b (q 1 (X 1), ... , qn (Xn )) 

for a e Op1 of arity n, b e Op0 of arity n, and c; ,qi e Q. 

A bottom-up relabeling is a bottom-up transducer in which all the rewrite rules have the 

form: 
a (q 1 (X 1), ... , qn (Xn ))-?q (b (X 1, ...• Xn)) 

where a ,b ,q ,qi are as above. 

The class of transformations implementable by top-down relabeling is denoted by T-QREL. 

That implementable by bottom-up relabeling is denoted by B-QREL. DT-QREL and DB-QREL 

are the corresponding deterministic transducers. The non-deterministic versions of the relabel

ings are equivalent since the corresponding top-down and bottom-up automata are equivalent, but 

the deterministic versions are not. In particular: 

Proposition 2.22 The following equations hold: 

DB-QREL ~ B-QREL 
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B-QREL = D-QREL 

DB-QREL 6 DT 

DT-QREL 6 DB. 
Proof Left to the reader. If in trouble, consult [Eng75]. 0 

Relabelings play an important role in the decomposition of more complex transformations: 

Proposition 2.23 Let T• denote the set of zero or more compositions ofT with itself. The fol

lowing equations are true: 

B -ftt b: QRELoHOM. 

B-ftt=LB-fttoHOM 

T -ftt 6 HOM oLT -ftt. 

T• =B· = (RELuFTA uHOM)• 

In some sense, bottom-up transducers are more powerful than top-down transducers: 

Proposition 2.24 The following two equations are true: 

LT -ftt 6 LB -ftt. 

NLT -ftt= NLB -ftt. 

To close the gap between linear T -ftt and linear B -ftt, definition 2.33 can be modified allow 

a look-ahead. The input patterns used in that definition did not explicitly indicate the type of 

their variables. Hence, following our convention, their type is the default type. Dropping this 

restriction effectively increases the descriptive power of the mechanism. 

Definition 2.36 A top-down finite transducer with look-ahead is a tuple as in the top-down 

finite transducer except that the variables appearing in the rewrite rules of the rewrite system 

may have as types any set in RECOG. 

The class of transformations implemenrable by a top-down finite transducer with look

ahead is denoted by 1 . 

The gain in expressive power is indicated in the next proposition: 

Proposition 2.15 The following equations are true: 

Li -ftt = LB -ftt. 

1-ftt and B -ftt are incomparable. 

1 -ftt is not closed under composition. 

1 -ftt 6 DB -QRELoT -ftt. 

2.4.1. Labeled Bottom-Up Automata 

A notion related to DB-QREL is that of "labeled B-fsa". This notion is used in Chapters 3 

and 4 to provide algorithms for solving PATIER.l'<" MATCHING, but its main usefulness will not be 

apparent until Chapter 610. 

1° Chapter 5 can also be said to be based on LB-fsa, but this is pretty much a technicality since the labeling func

tion is the identity. 
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Definition 2.37 A (deterministic) labeled bottom-up automaton is a pair <AL> where A is a 

(deterministic) B-fsa and Lis a labeling function assigning to each state in A a subset of a given 

set of labels. Let St (t) denote the set of states assigned to a tree t by A (a singleton if A is deter

ministic), and Lb (t) the set of labels obtained by applying L to each state in St (t ). The transfor

mation described by a labeled bottom-up automaton is the set of all pairs (t ,new label (t )) where 

new _label() is defined recursively by: 

new label (op) ~ <op Lb (op )>, if op is a nullary operator 
- ~ 

new _label (op (t 1• ... , tn) = <op ,Lb (op )>(new _label (t 1) •... , new _label Ctn )) 

The class of transformations definable by a labeled bottom-up automaton is denoted by 

LB1sa; that of deterministic ones by DLB-fsa. 

The standard notion of a B-fsa as an acceptor corresponds to a special case of a LB-fsa: one 

where the only two labels are accepted and non-accepted. A B-fsa can also be seen as a translat

ing LB-fsa by associating with each state a label that is the name of the state. This is the 

approach used in Chapter 3 to solve pattern matching for linear N -patterns. The general notion of 

LB-fsa is used in Chapter 5 to solve the REACHABILITY problem for a class of rewrite systems. 

Deterministic labeled automata have the same power as DB-QREL, but non-deterministic 

LB-fsa are only as powerful as deterministic LB-fsa and, hence, less powerful than B-QREL. 

Proposition 2.26 DLB1sa equals LB-fsa and DB-QREL. LB-fsa 6 B-QREL. 

Proof All are easy and left to the reader D 
An alternative definition for the notion of a' 'labeled B-fsa'' could have associated the label 

with the transition function instead of with the state itself. The reader can verify that the resulting 

notion has the same expressive power as the one given here. 

The algorithm of Figure 2.5 can be modified to obtain algorithms to minimize the number 

of states in a LB-fsa. to minimize the number of states in a DB-QREL. 

For DB-QREL, if Transn(op ,st 1, ... ,stn) represents the new state and 

Labeln (op ,st 1, ... ,stn) the new label, the modificatir:~ requires changing the routine 

transfer _equivalent so that the last if is replaced by: 

let! a be Labeln (Op ,st rr.l•' ... 'st rr. •• ); 

letlb beLabeln(Op,strr.
1
•, ••• ,strr..•); 

i r c IJ ";t.(. b (J r l'' ;' ! 1' I,, 'II 

If •Ill I; I I''' 
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CHAPTER3 

:Matching Linear N-Patterns 

These unhappy times call for the building of plans ... 

that build from the bottom-up and not from the top-down ... 

Radio address 
April 7th, 1932 

[Franklin Delano Roosevelt [ 1882-194 5]] 

Linear N-patterns are the simplest type of patterns studied in this dissenation. Their impor

tance is twofold. First, the techniques used to perform pattern matching on linear N-patterns 

form the basis for extensions to deal with more complex types of patterns. Second, some very 

irnponant applications use only linear patterns (Chapter 5). 

All the pattern matching algorithms investigated in this chapter are based on the B-fsa of 

Chapter 2. In all cases, the idea is to assign to each node in the subject tree its match set. This is 

the set containing all patterns and subpattems (subtrees of a pattern) matching at the node. PAT

TERN MATC.I-JIAG is then solved by extracting from these match sets the patterns. Section 3.1 

defines match sets and related notions. 

The main pattern matching algorithms of this chapter are based on LB-fsa (Section 2.4.1). 

The first type is a non-deterministic LB-fsa called a subpattern LB-fsa (Section 3.2). The states 

in this LB-fsa are individual patterns and subpatterns, and the labeling function assigns to a sub

pattern either the empty set or the singleton containing that subpanern, depending on whether the 

subpattern is or is not a pattern. The second type is a deterministic LB-fsa called a match set 

LB-fsa (Section 3.3). The states in this LB-fsa are the match sets themselves and the labeling 

function assigns to a match set the patterns it contains. 

The algorithm using the match set LB-fsa is substantially faster than the one using the sub

pattern LB-fsa but requires tables that are bigger and take longer to construct. One way to com

pute the match set LB-fsa is to construct the subpattern LB-fsa first and then apply the algorithm 

of Figure 2.3 for convening a non-deterministic LB-fsa into a deterministic one. This is the 

approach presented in the second pan of Section 3.3. An alternate approach to compute the 

match set LB-fsa, developed by David Chase, is presented and elaborated in Section 3.5. 

The structure of the subsurnption relation (Def. 3.1) plays an irnponant role in the computa

tion of the match set. Section 3.4 explores this role and introduces two new algorithms to com

pute match sets. The algorithms are based on the subsumption relation. They require smaller 

tables than a match set LB-fsa yet have smaller matching time than the subpanern LB-fsa, and 

their tables can be constructed faster. 

Section 3.7 compares previous work with the results presented in this chapter. It discusses 

some other results in matching algorithms that are based on bottom-up traversals, as well as some 

that are based on top-down traversals. In general, algorithms based on top-down traversals seem 

to be intrinsically slower than the fastest algorithms based on bottom-up traversal. Chapter 8 

contains some measurements for both bottom-up and top-down algorithms that solve REACHABIL

ITY, a problem that Chapter 5 shows it is quite similar to PATTER.""l" MATCHING. 
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Section 3.8 summarizes the results of this chapter. 

3.1. Subpatterns and Match Sets 

Since all the patterns considered in this chapter are linear N-patterns, they arc frequently 

described simply as "patterns". 

In bottom-up pattern matching, a subtree is characterized by its match set, the set of all the 

subpatterns matching at that subtree. This section introduces the notions required to describe 

algorithms based on match sets. Some of the notions are borrowed from [Kro75] and [Ho082]. 

The same terminology is used whenever possible and convenient. 

Patterns and Subpatterns 

Central to the development of the algorithms is the notion of a subpanern. The notion is 

influenced by the bottom-up bias of the matching algorithms. It is convenient to define opera

tions and new relations between patterns in addition to the notion of equivalence of Definition 

2.7. 

Definition 3.1 Let PI and p2 be two patterns. They are independent (PI- p2) if there are trees 

T I•T 2,T 3 such that PI matches at T I and at T 3, but not at T 2, and p2 matches at T 2 and at T 3, but 

not at T 1. They are inconsistent (pi// p2) if there is no tree T such that PI matches at T and p2 

matches at T. pI subsumes p2 ( p 1 ~ P2Y if for any tree T, if pI matches at T, then p2 matches at 

T. 

If a and a' are two sets of patterns, we say that a and a' are eqlfivalent if ( 1) every pattern 

in a is equivalent to some pattern in a', and (2) every pattern in a' is equivalent to some pattern 

in a. 
If a is a set of patterns, the =-reduction of a is an equivalent set of patterns a' such that no 

two patterns in a' are equivalent. 

Oearly, the equivalent reduction of a set of patterns is unique up to equivalence. 

Definition 3.2 A pattern set, F over an operator set Op is any collection of patterns over Op 

such that no two patterns in F arc equivalent. 

Let F be a pattern set over Op. A subpattern ofF is either a subte.rm of a pattern in F, or 

the pattern containing a single variable, X. Tip is an =-reduction of the set containing all sub

patterns ofF, and such that X e Tip, and F c Tip. 

p1 immediately subsumes p2 for a pattern set F (p 1 > i P2Y if PI $p2, p1 ~ p2, and there is no 

subpattern <I> e Tip, such that PI$<\>, P2 s=<\J, PI~ <\land <I>~ pz. 

If p is a pattern in Tip. the immediate subsumption set of p, I P' is the set of all those patterns 

p' in Tip such that p >. p'. 
l 

For a given F, Tip is unique up to =. In this dissertation, Tip plays a role somewhat similar 

to that of a canonical representation for all the patterns that are subpatterns of patterns in F. Sets 

of patterns taken from Tip are known to be =-reduced, and set equivalence between two such sets 

is identical to set equality. 

Since all sets Tip are equivalent, we will not explicitly specify which one of them we use. 

The advantage of using Tip instead of any fixed set of canonical representatives is that we can 

tailor which Tip we use to the didactic requirements of our examples. Thus, in one particular case 

we could use {+(X,* (Y ,R )), * (Y ,R ), X } as our Tip to emphasize that the second pattern in the 

set is a subpattern obtained from the first pattern in the set. Requiring X e Tip and F c Tip 

simplifies many situations. 
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As an example of the relations defined above, if the original pattern set F is 

"{+(a .X),+(a ,Y),+(b .X),+(a ,a)}", then the following relationships hold: "+(a .X) -+(X ,b)", 

"+(a.X)!!+(b.X)", "+(a.X)~X", and, for TIF. "+(a .X)>. +(a,a)". Note that all the rela

tions defined above are independent of the given pattern set, e~cept for the notion of >. : thus, if 

+(a ,a) had not been present in F, +(a .X) >. X would have been true. 
1 

l 

The defmition of ~ satisfies: 

Proposition 3.1 ~ is a partial order. 

Note that in a set of patterns, each pattern has a separate set of variables. For example, in 

the set {+(a .X), X } , the two uses of X are independent. It follows from Proposition 2.2 that we 

can always replace any pattern by an equivalent pattern that contains different variable names. 

Therefore, by systematic renaming, any pattern set is equivalent to a pattern set that is variable

disjoint. 

A very useful notion is that of the meet of a set of patterns. 

Definition 3.3 [Kro75] The meet of two patterns p and p' (p EB p') is a new pattern¢ such that 

a tree is matched by¢ zf and only if it is matched by both p and p' 

As an example, the meet of +(a .X) and +(X ,b) is +(a ,b). Given two patterns that are not 

inconsistent, their meet will always exist. 

Proposition 3.2 Let p1 and p2 be two patterns that are not inconsistent. Then, there is a pattern 

p3 =p1 EB p2. In addition, p3 ~p 1 andp3 ~P2· 
Proof Follows from the existence of a unique most general unifier. Without loss of generality, 

assume that p 1 and p2 are variable-disjoint. If p 1 and p2 are not inconsistent, then there is a sub

ject tree T at which both match. This is equivalent to saying that p1 and p2 are unifiable. Let 't 

be the most general unifier of p1 and p2. Let 8 be 't(p 1) = 't(P0- Then 8 = p1 EB p2. If 8 matches 

at a tree T, then both p 1 and p2 match at T: construct their substitutions from 't and the substitu

tions for 8. If both p1 and p2 match at T. then T provides a unifier for both p1 and p2. Since 8 is 

the most general unifier, a substitution for it will also exist, and it will match at T 0 

Match Sets 

Matches of subpatterns at the same tree are of interest in several ways. The following 

definitions are used throughout this and the next chapters. 

Definition 3.4 Let Op be an operator set. F be a pattern set over Op, and T be a tree over Op. 

The match set associated with T, ay, is the subset of TIF containing those patterns that match at 

T. A subset a of TIF is called a match set if there is a subject tree T over Op with associated 

match set d 1
. 

For a given pattern set, the match set associated with any tree is unique up to choice of TIF 

because TIF iS E -reduced. 

Note that not every subset of TIF is a match set because a match set must include all subpar

terns matching at some tree T, up to equivalence. For example, '' {+(a .X)}'' is a collection of 

matches, but not a match set because it is missing X, while '' {+(a .X ),+(b .X)} '' is not a match 

set because there is no tree at which both patterns would match. 

11 Strictly, a match is an assignment of values to variables (Def. 2.6), but this assignment is uniquely implied by 

the pattern and the subject tree. Hence, the name of "match set" and "collection of matches" for sets of subpatterns, 

and the use of a to denote them. 
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Definition 3.5 The size of a pattern pis the cardinality of Pp, the set of all positions in p. Let F 

be a pattern set over an operator set Op. The si:.e ofF is the sum of the sizes of all the patterns 

in F. 

Proposition 3.3 [Ho082] There are pattern sets F with a number of match sets exponential in 

the size of F. There are pattern sets F with match sets as large as the number of patterns in ITF. 

The number of patterns in ITF is no larger than the size of F. 

Proof As an example of the first two properties consider a pattern set as follows. It will contain 

0 (2n) patterns. Each pattern will "mark" the presence of a single, distinguished, atom b at a 

specified position in its leaves, while all the internal nodes are identical binary operators labeled 

a. The patterns will differ in the position of the b. The patterns will be of height 0 (n) and will 

have 0 (2n) leaves. 

Now consider subjects that are binary trees with all the internal nodes labeled a, with leaves 

marked either b or c. There are 0 (22
") such trees, and each one has a different match set. 

Formally, define a family of balanced binary trees pi j, with OSi and OSj si, by 

P 0o~X 

P i+l. ~a(pi. pi) 
1 - 1' 0' 

i+l !!. (pi i ) 
P j =a o·P j-:; • 

The pattern set Sn ~ {p n i I lSi $2n } is of size 0 (2n ). When used with a fully balanced tree 

of depth n with all its leaves b, there will be 0 (2n) elements in the match set. A pattern will be 

in the match set of the root if and only if the i -th leaf from left to right has a b. Since there are 

0 (22") such trees, that is the number of distinct match sets 

The result on the number of distinct subpatterns is immediate from the association of every 

subpattern with a sub term in a pattern in F. 0 
To investigate the propenies of match sets, it is convenient to characterize them in two dif

ferent ways. The first one characterizes a match set ofF through a single pattern that may not be 

equivalent tO any pattern in ITF. 

Definition 3.6 Let F be a pattern set over Op. Let p be a pattern over Op (maybe not in F). H'e 

define the set M(p) to be the subset ofiTF that contains every pattern in ITF subsumed by p. 

Note that for a given TIF M(p) is unique since ITF is =-reduced. 

Proposition 3.4 Let F be a pattern set over Op. Let a be a match set of F.· Then there is a pat

tern Pcr (unique up to =J such that a=M(Pcr)· For any two match sets a and a', Pcr=Pcr' if and 

only ifa=a' 
Proof Let a' be a variable-disjoint set of patterns equivalent to a. Let p0 be the meet of all the 

patterns in a'. Pcr is well defined because no two patterns in a' can be inconsistent, since they all 

match at the same tree. The propeny follows from the definitions of match set and e . D. 

The second characterization uses only patterns in TIF. In this case it may be necessary to 

use a collection of patterns to characterize the match set. The members of the collection are 

called the representatives. 
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Proposition 3.5 Let F be a pattern set, and let cr be a match set of F. Define R a the set of 

representatives of cr, as that subset ofTIF containing all those patterns p such that p is in cr and 

for no other pattern p' in cr, p'2::p. For any nvo match sets cr and cr', Ra=Ra' if and only if 

cr=cr'. 
Proof Left to the reader. D 

For example, let the match set be {+(a .X), +(Y ,b), Z } . A match set associated with the 

input tree +(a,b) is "{+(a,X),+(Y,b),Z}", and a set of representatives for it is 

" {+(a .X), +(Y ,b)}". 

Both R a and Pcr uniquely characterize the match set cr and can b:.: used to represent it. In 

general, Pcr is a more concise r~presentation than R a• but it may require (a potentially exponential 

number of) new patterns not p:-~viously present in nF. There are some conditions that guarantee 

that the exponential explosion will not occur. A firsi. condition is the following: 

Definition 3.7 [Ho082] A pattern set F is simple if there are no nvo patterns in TIF that are 

independent. 

For instance '' {+(a .X), +(Y ,b), +(a ,b)}'' is not a simple pattern set, whereas 

'' {+(a .X), +(a ,b)}'' is. The relationship between the simple panem set property and match sets 

is developed in the following propositions. 

Definition 3.8 The immediate subsumption graph G >. of a pattern set F is the directed acyclic 

graph in which the nodes are the patterns in TIF, and tliere is an edgefrom a node p to a node p' 

ifp>ip'inF. 

Proposition 3.6 [Ho082} IfF is a simple pattern set, the graph obtained by reversing the direc

tion of the edges of the graph G >. induced by F is a forest. 

Proof By the definition of a foreJt, the above condition is equivalent to !:laying that there are no 

subpanerns PI• p2, and p3 such that PI>. p2• and PI>. p3. If such PI· p2, and p3 exist, p2 and p3 

would not be independent, contradicting llie definition 
1
of a simple pattern set. D. 

Proposition 3.7 [Ho082} Let F be a pattern set. If the graph obtained by inverting the direc

tion of the edges in a G >. graph is a forest, then the number of distinct march sets is equal to 

the number of patterns in frF· 

Proof Immediate from the meaning of G > i . D 
The notion of a simple pattern set is unnecessarily restrictive. A more useful definition is 

the following: 

Definition 3.9 [Kro75] A pattern set F is a closed template forest (CTF) if for every nvo non

inconsistent patterns p and p' in TIF, their meet<!> is equivalent to some pattern in nF. 

It is easy to show that CTF is a less restrictive notion than that of a simple pattern set. 

Proposition 3.8 If a set of patterns is simple, then it is CTF. 

Proof If two subpatterns arc neither independent nor inconsistent one of them must ~ubsume the 

other and be identical to their meet. 0 
To see that the reverse implication is false, just consider the pattern set 

'' {+(a X). +(Y ,b), +(a ,b)}'', which is CIF but not simple. 

Proposition 3.9 Let F be a pattern set. F is CTF zf and only if for every match set cr, R a is a 

singleton. 
Proof The only if part is immediate since the meet Pcr of all the patterns in cr is equivalent to a 

pattern in TIF. 
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To prove the if pan, assume that, for every match set cr, R cr is a singleton. Let p 1 and P: be 

two non-inconsistent patterns in TIF. Let t = p1 9 p2, and let cr be the match set at t. By 

hypothesis R cr = { p} for some p. Then t 2: p 1, and t 2: p2 by definition of meet. t 2: p because p 

matches at t. p 2: p 1 and p 2: p2 by definition of R cr• and from this and the definition of meet, p 2: t. 

From the antisymmetry of 2:, t=p. D 

Corollary 3.1 Let F be a pattern set. The number of distinct match sets ofF is, at most, equal 

to the number of patterns in TIF. 

The properties established in Propositions 3.6 to 3.9 are summarized in Figure 3.1. The 

relationship between "CTF pattern set" and">. is an inverted forest" is proved by finding two 

pattern sets each one satisfying one property bu~ not the other, and is left as an exercise to the 

reader. 

Simple pattern set 

1 
CTF pattern set 

l 

---+ >.is an inverted Forest 
1 

/ 
Number of match sets is linear in the number of patterns 

(implications are strict) 

Summary of Pattern Classes 

Figure 3.1 

The algorithms presented in this chapter use different types of B-fsa to encode information 

that is used in the main operation in bottom-up matching: combining the match sets associated 

with the children of a node to obtain the match set for the node itself. The following proposition 

contains several facts related to this computation. 

Proposition 3.10 Let F be a linear pattern set over Op, let op be an operator in Op, let 

T=op(T 1, ... ,Tn) be a tree, let cr 1, ... ,an be the match sets ofT 1, ... ,Tn respectively, and 

let p1, ... , Pn be patterns equivalent to the meets of cr1, ... , an respectively, where the variables 

are renamed, if necessary, so that {p 1, ... , Pn} is variable-disjoint. Recall that crT denotes the 

match set at T, and M(p) denotes the set of all patterns in ITF subsumed by p. The following 

assertions are true: 

( 1) Let \jf 1, ... , \jf n be any n variable-disjoint patterns. Then, { (\> I op ('I' 1, ... , \jf n) 2: <\>} = {X } 

U {op(<\>1, ... ,<\>n) I \jf12:<\>1 1\ \jf22:<\>2 1\ ··· 1\ 'l'n2:<\>n 1\ {<\> 1.<\>2····,<\>n} is variable

disjoint } . 
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(2) ay =M(op (PI· ... , Pn)). 

(3) If p1 =X 1 , ... , Pn =Xn, and op (X I• ... ,Xn) is not equivalent to a pattern in ITF, then 

07 =12 {X}. 

f4) Let lp; = {pi 1, ... ,p1n;} denote the immediate subsumption set of each Pi· 

M(op(PI·····Pn)) = { op(PI·····Pn) if op(pi·····Pn)eiTF u 
n ni 

i =1j=l 
Proof 

All proofs are done for n = 2, to reduce the notation burden. The generalizations are 

straightforward. 

(1) follows directly from properties of subsumption and oflinear patterns. 

(2) can be proved by the following sequence of steps. 

aT= {X} u { op ($1.<\>z) e ITF matching at T } , 

={X} u { op (<\> 1.<1>2) e ITF I $1 matches at T 1 "<!>2 matches at T 2}, 

= {X} u { op (<\>1.<\>il E rrF I P1;:: <l>r 1\ P2;:: <1>2}, 
= { <\> I op (p1.pz);:: <\>and<\> E ITF}, by (1), 

=M(op (P1·P2)), by definition. 

(3) is straightforward 

(4) can be proved by the following sequence of steps. 

M(op (p1,pz)) ={X} U { op C<\>1,<\>z) e ITF I P1 ;::q,1" P2;::<l>2J. by (1), 

={X} u { op(<\>1,<\>z)e ITF I p1>$1 " p2;::q,2} u {X} u {op(<\>1,<\>z)e ITF I p1;::<!>1 

"P2><l>2} u {op(pr .... ,pn.),if op(p 1, ... ,pn.)e ITF}, by definition of;:: and>, 

= {X} u { op(<\>1.<\>2.-)eflFI p1><!>1 "$1ef1F "p2;::q,2} u {X}u 

{op(<\>r.<!>z)e ITF I P1;::<l>I" P2><1>2" ¢2e rrF} u{ op(p1, ... ,pn), if op(p1, ... ,pn)E ITF}, 

by property of ITF, 
={X} u { op(¢1,<\>z)e ITF I (P11;::q,1 v ... v P1n.';::q,1)" P2;::<1>2} u {X} u { 

op($1.<\>z)e ITF I P1;::<l>1 " CP21;::<l>2 V V P2n 2 ;::<1>2) } U { op(p1, · · · ,pn), if 
op($ 1, .•• ,<\>n)e ITF}, by definition of>., 

Which, by distribution of v ind definition of M produces the desired result. 0 

Assertions (2), (3), and (4) above provide a recursive algorithm to compute the match set 

associated with a tree given the match sets associated with its immediate subtrees. For example, 

if the pattern set is '' {foo (V 1, * (Z ,W ), V 3), foo (*(X ,Y), V 2, * (U ,R )) } '', then the match set of 

"foo (*(X ,Y), * (Z ,W), * (U ,R )) " is equivalent to the union of the match sets of 

"foo (V 1, * (Z ,W), * (U ,R ))", "foo (*(X ,Y), V 2, * (U ,R ))", and "foo (*(X ,Y), * (Z ,W), V 3)' '. 

Of these, the match set of foo (* (X ,Y),V 2, * (U ,R )) is represented directly by a pattern in ITF 

equivalent to that pattern, and repeated applications of the above assertions to the other two terms 

both yield "foo(V 1,*(Z,W),V3)". Hence, the set of representatives of 

"foo (*(X ,Y), * (Z ,W), * (U ,R )) " is equivalent to 

" {foo (* (X ,Y), V 2, * ( U ,R ) ), foo (V 1, * (Z, W ), V 3)} ". Section 3.4 analyzes in some more detail 

this recursive algorithm. 

Bottom-up matching of linear N-patterns is based on the following proposition: 

12 An = is not necessary because X E rrF. 
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Proposition 3.11 Let F be a set of linear patterns, and let OP 0, ... , OP,. be the sets of opera

tors ofF of arity 0 up to n. Let A be the set of match sets of F. Then, for each k from 0 ra n 

there exist functions h from OPkxAk (k+l-tuples) into A such that: for all trees T with root op 

of arity k and children T 1, ... , Tk, if cri is the match set at Ti, then the match set at T is 

fk(op ,cr1- ... , ck). 
Proof The key observation for the proof is that a substitution for the matching at T can be 

obtained directly by concatenating the substitutions forTi, regardless of their particular value. 0 

Non-linear pattern sets do not have this property: the corresponding f k functions need to 

referto the actual values ofT. This "independence" ofT is reflected in the ability to encode the 

transition functions into a B-fsa. 

3.2. Bottom-Up Matching Using Subpattern B-fsa 

A subpattern LB-fsa is a non-deterministic bottom-up tree automaton together with a label

ing function. The automaton encodes the functions of Proposition 3.11 by associating with each 

pattern in ITF a single state and encoding the combination of the children of a pattern into the pat

tern. 

Definition 3.10 The linear subpattern B-jsa associated with a pattern set F is a non

deterministic LB-fsa <A.L>. The set of states of A is ITF . Let St P be the state associated with a 

pattern p E fiF. 

The transition function is defined as follows. Let p1, ... , p,. be patterns in ITF. If there are 

equivalent patterns p'1, ... , p',. such that op (p'1, ... , p',. )=g E ITF, then 

Trans,.(Op,Stp, .... ,Srp.) ~ {Stp.Stx};otherwise,Trans,.(Op.Stp,•····Stp.) = {Stx}. 

The labeling function L assigns to each state St P the set { p} if p E F, and 0 otherwise. 

Since the labeling function is always fixed, the rest of this section concentrates on the B-fsa. 

The automaton of Definition 3.10 is non-deterministic because it is always possible to 

transfer to a default state representing the subpattern X. Figure 3.2 shows a pattern set, its sub

patterns, and its associated subpattern B-fsa. The B-fsa is presented without all its "default" 

transfers, and assumes that there are three nullary operators a, b, and c. The B-fsa is the same as 

in Figure 2.2. 
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Pattern Set: 

+ + 
/\ A 
* z X * 
1\ 1\ 
XY YZ 

Sub patterns: 

Po P2 
X + + * 

/\ A 1\ 
* z X * XY 
1\ 1\ 
XY YZ 

Subpattern B-fsa 

Example of a Simple Pattern Set and its Subpattern B-fsa 

Figure 3.2 

The matching algorithm simply tracks all the accessible states using the non-deterministic 

B-fsa. Once the match sets have been computed, the labeling function could be applied to obtain 

the set of matching patterns. The algorithm to compute the match sets is described in Figure 3.3. 

It is the standard algorithm for non-deterministic B-fsa, but it is listed here to allow some com

parisons later. The states associated through B-fsa with a subject tree are shown in Figure 3.4. 



rocedure match-lSP(N: node in subject) 

let N be a node in the subject; 
let N 1 , ..• , Nn be the children of N; 
let Op be the label of N; 
[oreach Ni 
I call match-lSP(Ni) 
let cri be the match set associated with the subtree of the subject rooted at Ni 

set cr=0; 
for each p1 e cr1 do 

or each p2 e cr2 do 

r
or each Pn e crn do 

let p=Transn(op,pl, ... ,pn) 

if (p"#X )1\p is not in cr then 
I set cr=cru{p }; 

cr=cru{X); 
let cr be the match set associated with the subtree of the subject rooted at N; 

Matching Algorithm for Subpattem B-fsa 

Figure 3.3 

Result of Solving Linear Pattern Matching on a Subject 

Figure 3.4 

The algorithm described in Figure 3.3 is quite straightforward, as is its correcmess proof. 

51 
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3.2.1. Representation of the Match Sets 

There are two different but related representation issues in an implementation of the previ

ous matching algorithm: how to represent the match set, and how to represent the subpattern LB

fsa. 

Three possible representations for match sets are: as a simple list of all the patterns in the 

match set, through its set of representatives, or through a list of patterns in TIF that subsume all 

the patterns in the match set, thus including all the representatives but, maybe, also some others. 

The first two representations are unique, but the last one is not. 

The major cost of the algorithm of Figure 3.3 is in the inner loop, which, in turn, seems to 

depend on how many possible combinations of patterns in TIF, one from the match set of each 

child, have to be considered. The first representation mentioned above is the one assumed up to 

this point. If it is used, it leads to the algorithm described in Figure 3.3. The algorithm is simple, 

but its main disadvantage is that, if the match sets are of substantial size, the algorithm is quite 

slow since the number of possibilities to consider may be considerable. 

Representing a match set through its set of representatives leads to substantially smaller 

representations. Hence, one would expect a faster implementation. Unfortunately, there is no 

guarantee that considering the combination of representatives of match sets will lead to the 

desired representatives of the new match set. For instance, consider the example of Figure 3.5. 

The top row shows a pattern set composed of three patterns. The second row shows a tree whose 

match set is the set containing the first two patterns of the pattern set together with +(X ,Y) and X. 

The third row shows the set of representatives of the root of the pattern in the second row, while 

the fourth row show the sets of representatives corresponding to the immediate subtree of that 

pattern. 
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I. 

Pattern Set 

+ + * 
~ ~ A 
* A * A + + 
A /\ 1\1\ 
X + WR + X * s XYZW 

1\ 1\ 1\ 
yz yz WR 

Subject Tree 

+ + * a 
1\1\1\ 
a a a a a a 

Representatives of Root 

+ + 
~ ~ 
* A * A A /\ 

X + WR + X * s 
1\ 1\ 1\ 
YZ YZ WR 

Rep. of Left Child Reo. of Right Child 

* A A 
+ + * s 
1\1\ 1\ 
XYZW WR 

Example of Computing a Match Set Using the Set of Representatives 

Figure 3.5 

Figure 3.5 shows that finding the set of representatives for a tree given the set of representa

tives of its children requires additional computation: the representative of a subtree at a node is 

not the combination of the representatives of its children. The additional computation relates to 

the relationship implicit in a set of representatives: the subsumes relationship. This topic is 

described in more detail in Section 3.4. 

53 
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A final type of representation is a "mixed" representation, in which a set of patterns in TIF 

that includes the set of representatives, but maybe also other patterns in the match set, is used. 

This approach can be used in some applications to alleviate the difficulties of the representation 

by the set of representatives while retaining some of their advantages. Its main disadvantage is 

that it is not a unique representation and comparing two match sets for equality has non-trivial 

cost. 

3.2.2. Representation of the Sub pattern LB-fsa 

A very interesting issue is how to represent the B-fsa. The choice of data structures to 

represent the B-fsa has a big influence on the performance of the table construction algorithms 

and the pattern matching algorithms. A first observation is that, since the default state (the match 

set {X } ) is always in the new set of states, it is not necessary to encode it in the representation. 

Different representations allow different implementations of the internal loop in Figure 3.3. Two 

possible representations are "direct", and "inverse". 

The most straightforward alternative is to encode the transition "directly". This can be 

done using one n dimensional table for each n-ary operator. This representation leads directly to 

the algorithm of Figure 3.3. The use of the table has two disadvantages. First, the table will con

tain a large percentage of empty entries since for most combinations of subpatterns and operators 

the new state set contains only the default state. Second, the representation does not reduce the 

large number of combinations that need to be considered. 

The first problem could be corrected using, for example, some hash encoding, but the 

second problem is intrinsic to the "direct" approach. An alternative is to usc an "inverse" 

representation. The idea with this representation is the opposite of the previous one: instead of 

starting with the members of the match set, combining them and then asking whether a combina

tion is valid, the valid combinations under a given operator are found first, and then the subpar

terns are checked for their presence in the match sets of the children. Which approach is best 

depends on the probabilistic behavior of the match sets. 

A convenient representation of the inverse approach is one that keeps, for a given operator, 

a list of all the subpatterns that appear as a first child in a subpattern rooted by that operator. 

Then, for each one of these, it keeps a list of all the subpatterns that appear as a second child in a 

subpattern rooted by that operator and with first child the one chosen, and so on up to the arity of 

the operator. This representation makes it possible to "prune" unwanted combinations. This 

comes at the cost in space used in the representation. In an inverse representation the inner loop 

ofFigure 3.3 can be implemented as follows: 

set cr=0; 
let cr 1 , ... , an be the match sets of the children; 

or each p1 that is a 1st child of a pattern rooted by op do 

if p1 is in cr 1 do 
for each p2 that is a 2st child of a pattern p rooted by op 

and with p 1 the 1st child of p do 

if P2 is in cr2 do 

for each Pn that is ann -th child of a par.:em p rooted by op 

and with p1 , .••• Pn-l the 1st, 2nd, ... , n-lth children ofp do 

if Pn is in crn do 
let p=Transn(op,pi, ... ,pn) 

if (p:.=X )1\p is not in cr then 
I set cr=cru {p}; 
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The inverse representation is used in several places in this dissertation, including the imple

mentation described in Chapter 8. 

Another possible representation organization is to combine both the direct and the inverse 

representations. Such a representation is suggested in [PuB87] where it is calkd a "curried 

dag". A curried dag uses a 3-argumcnt hash function. The hash function returns a value that 

represents either a valid partial combination of subpattems for the children, or an indication of a 

non-valid combination. The first argument to the hash function is the operator, and the second 

argument is the subpattem in consideration in the match set of the chi1d. The third argument is 

nil 10 obtain the value for the first child, and is the value obt:-Jined from the n -1st invocation 

aftc: ;;ards. The main advantages of the curried dag representation are its ftex.ibility, allowing 

addition of patterns, and the way it generalizes to non-linear patterns (see Chapter 4). This makes 

it suitable for problems like the Knuth-Bendix completion algorithm [KnB70]. The curried dag 

representation may be slower, or faster, than both the direct and the inverse representations. 

3.3. Bottom-Up Matching Using Match Set LB-fsa 

The main difficulty in using the algorithm of the previous section in some application areas 

is that it may be quite slow to track all the reachable states of the (non-deterministic) LB-fsa to 

find the match sets. The alternative is to convert the non-deterministic LB-fsa into a determinis

tic one, and to track only one state, directly corresponding to the match set. 

Definition 3.11 The linear match set LB-jsa associated with a pattern set F is a complete deter

ministic LBjsa A together with a laheling function L. The set of states of A is the set of match 

sets of F. 

The transition function is defined as follows. Let St cr be the state associated with the match 

set cr. Let Op be an n-ary operator, and let cr1, ... , cr" be any n match sets, then 

Trans" (Sta,• ... , StcrJ ~ {St crL where cr is the match set at the term Op (Pcr,• ... , PcrJ· 

The labeling function L assigns cri to each state St cr;. 

Since the l:.ll.:leling function is fixed, frequently a match set LB-fsa is identified with its B

fsa. The match set LB-fsa does what its name suggests: 

Proposition 3.12 Let F be a pattern set and let A be the B-fsa of its match set LB:fsa. Then ,for 

every tree T, the state at T under A is St cr if and only if the label of the state associated with T is 

cr. 
Proof Structural induction on the trees, using the definition of match set B-fsa and Proposition 

3.10 0 
From Proposition 3.12 we get: 

Corollary 3.2 Let F be a pattern set, let A be its subpattern LB-fsa, and let A' be its match set 

LB-fsa. Then, A' is the result of converting a non-deterministic LB-fsa into a deterministic LB

fsa (Section 2.4.1) 

It is difficult to present examples of match set B-fsa because of the large number of edges 

present. Figure 3.6 shows part of the match set B-fsa corresponding to the pattern set of Figure 

3.2. In this case, the match set B-fsa has one more state than the subpattern B-fsa, and many 

more non-default transitions. The new state is the one at the top. 
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+ 

Match Set B-fsa 

Figure 3.6 

Note that the B-fsa is identical to that of Figure 2.4, confirming that the match set B-fsa is 

the deterministic version of the subpattem B-fsa. The new matching algorithm just computes the 

state associated with a tree for a deterministic B-fsa. 



rocedure match-lMS(N:node) 
let N be a node in the subject: 
let N 1 , .•• , Nn be the children of N; 
let Op be the label of N; 
foreach Ni 
I call match-lMS(Ni) 
let cri be the match set associated with the subtree rooted at Ni 

cr = Transn (Op ,St p,, .... ,St p.); 

cr is the match ~et associated with the subtree rooted at N; 

Matching of Linear Match Sets 

Figure 3.7 
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Figure 3.7 gives an algorithm for linear pattern matching based in the match set LB-fsa. 

The correctness of the procedure follows from the definition of match set LB-fsa. 

Computing the Match Set LB-fsa 

The basic approach to computing the match set B-fsa is to first compute the subpanern B

fsa and then use it to compute all the match sets in an algorithm essentially identical to the con

struction of a deterministic automaton from a non-deterministic one (Figure 2.3). Everything 

mentioned in the previous section on computing the match set applies here. The only difference 

is that it must be possible to find out effic:iently if two match sets are identical or not. This prob

ably rules out any type of "mixed" representation for the match sets at match set B-fsa construc

tion time. 

Representation of the match set LB-fsa 

Given the (proportionally) large number of "non-default" transitions, some type of table 

representation seems the appropriate choice. These tables are not an efficient encoding because a 

match set B-fsa is not a generic DB-fsa. A very successful encoding technique is to use, instead 

of one i -dimensional table for each arity i, as many tables as operators in Op. Each one of these 

tables can then be encoded independently. Section 3.5 discusses the work of David Chase regard

ing how to compute efficiently, for each one of these tables, sub-tables that are identical and can 

be shared. 

A drawback to the use of match set B-fsa instead of subpattem B-fsa is the potential 

increase in the size of the tables. Since the number of states in the match set B-fsa is identical to 

the number of possible match sets of the pattern set, the CfF property is sufficient, but not neces

sary, to guarantee a small number of states. Experience collected by Chase [Cha87], and the 

author (Chapter 8), indicates that, in practice, table size is not a problem. 

3.4. The Subsumption Relationship 

The key operation in the two algorithms presentee in the two previous sections is, given an 

n-ary operator op and match sets cr1, ... , an corresponding to trees T 1, ... , Tn, to obtain the 

match set cr of op (T 1o ... , Tn ). This operation is done at match time when using the subpattem 

LB-fsa and at table construction time when using the match set LB-fsa, and involves combining 
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subpatterns from the children under the operator of the parenL In this section we show how to 

use Proposition 3.10 together with the immediate subsumption graph (Def. 3.8) to perform this 

computation. 

Recall the example of Figure 3.5. The left pan of Figure 3.8 is the immediate subsumption 

graph for* (+(a ,b), +(c ,d)), the right pan is the immediate subsumption graph for/(* (e J ), g), 

and the broken lines in a thicker pen represent those pairs of patterns <p 1 ,p2> such that +(p'1 ,p'2) 

is a subpattern, where p'1 and p' 2 are patterns equivalent to p 1 and p2 respectively except that no 

variable in p'1 appears in p'2. 

*(+(X ,Y),+(Z ,W)) 
/(* (W ,R ), S) 

,. 
*(X ,+(Y ,Z)) "*(+(Y ,Z),X~...... !(W ,R) 

*(W,R) 

G>i and Finding Match Sets 

Figure 3.8 

X 

Let T = op (T 1.T z), and let cr 1 and cr2 be the match sets of T 1 and T 2. We want to compute 

the match set of T, aT. The direct approach would be to consider all possible trees of the form 

op (p 1,pz) with p1 e cr 1 and p2 e cr2 and to see if each tree is equivalent to a pattern p e TIF. If it 

is, then p is added to crr; if it is not, p is not added. This direct approach can be described as 

traversing the subsumption graphs for cr1 and cr2, considering all possible pairs of visited nodes, 

and testing if the pair of nodes in the two graphs is joined by a broken line. In Figure 3.8, this 

approach will test 15 =5* 3 combinations to find the 3 subpatterns that correspond to the combi-

nations marked by the thick broken lines 13 . 

Proposition 3.10 allows us to rmpose some order on the traversal of the two graphs so that 

some pairs of nodes arc not visited. In Figure 3.8, since+(* (+(Y ,Z).X), /(* (W ,R ),S)) is a sub

pattern, we know that any term subsumed by it that is a subpattern will be in the match set crT. 

And similarly for+(* (X ,+(Y ,Z )), I(W ,R )). Thus, the traversal can be done recursively top-down 

starting at the root, using part (4) of Proposition 3.10 to perform the decomposition (that is, when 

finding the set M(op (n 1 ,n z)) associated with a pair <n ~on 2>, we have to consider all the nodes 

13 That is, the match set of +(*(+(a ,b), +(c ,d)),/(* (e ,f), g)) consists of the patterns 

+(*(X, +(Y ,Z )), !(W ,R )), +(* (+(Y ,Z), X),!(* (W ,R ), S ), and +(X ,Y) (not +(X X), since the two X s 

are unrelated). 
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that are directly connected to n 1 and to n2 in the left and right dag respectively), part (2) to 

"prune" down traversals (that is, if a pair <n 1 ,n 2> is found to be connected. all the pairs 

<n \,n' 2> where both n ' 1 is below n 1 and n '2 is below n2 need not be tested), and part (3) to end 

the recursion at the leaves (if a pair ofleaves are not connected, then theM set is cr:1pty). 

The • 'traversal'' approach described above can be used in different ways depending on the 

representation used for match sets, and on how efficiently it can be detected that a pair need not 

be visited. If match sets arc represented explicitly by a list of their subpattems, then we could 

keep a table containing, for each subpattcm the list of subpattems subsumed by it. Then, when

ever a subpattem is found in the top-dov.'TI travcr~al, all the subpattems subsumed by it could be 

added to crT. This case has the additional advantage that the correctness of the approach does not 

depend on detecting all the nodes that don't have to be visited: visiting a node after it has already 

been included in crT is inefficient but still correct. 

The situation is more complicated (in the general case) if a match set is represented by its 

set of representatives. The idea here would be just to add to crT the representatives as they are 

found in the top-down traversal. The problem is that in this case the correctness of the represen

tation depends on not considering a node unless it is not subsumed by any other pattern in the 

final match set crT. In the example mentioned above, we must avoid reaching +(X ,Y) or other

wise it will be added incorrectly to the set of representatives of crT. Determining the situati :m 

correctly in all cases seems expensive, especially in those cases where the cost of testing whether 

a pair is connected or not is low. 

Thus, it seems that the benefits of using the G >. depend on the pattern set and the particu

lar application. In an application where it is statisticahy likely that the representatives of the two 

match sets will succeed in combining, using the G >. will be more efficient than a exhaustive 

enumeration of all the possibilities; in other cases that :U.ay not be the true. 

Yet another alternative is to collect a set of patterns that will include all the representatives 

and, hopefully, only a few more, and then to remove them. This approach will pay off only when 

there is a very small number of candidate representat.ives, since discarding the duplicates is a 

quite expensive operation. 

Simple and CTF pattern sets 

The problems mentioned above can be solved efficiently if the pattern set is CfF. In that 

case part ( 4) of Proposition 3.10 can be strengthened as follows: 

Proposition 3.13 Let F be a pattern set over Op, let op be an operator in Op, let 

T =op(T1, ... ,T,.) be a tree, let cr1, ... ,cr,. be the match sets ofT1, ... , T,. respectively, and 

icz p1, ... , p,. be patterns equivalent to the meets of cr 1, ... , cr,. respectively, where the variables 

are renamed, if necessary, so that {p 1, ... , p,.} is variable-disjoint. Let lp; = {P; 1, ... , P; ";} 

denote the immediate subsumption set of each P;. If op CPcr,•·····PcrJ is not equivalent to a pattern 

in ITF, then M(op (Pcr,• ... , PcrJ) = uuM(op (Pl· ... , Pi-l·P/ ·Pi+!• ... : p,. )), and, there are 
i=lj=1 

i' ,j' , 1 ::;:t ::;:n , l::;:j' ::;:n;· 

such that "v'i l::;:i::;:n "v'j l::;:j::;:n; (M(op(PI·····Pi-t•PiJ•Pi+l•· .. ,p,.))) c 

M(op CPt· ... , Pi'-t·P/ ·Pi'+t• · · ·, p,.))). 

Before provin~ the proposition we need an auxiliary Lemma: 

Lemma 3.1 Let F be a (linear or non-linear) pattern set. Let p, p1, p2• p1', and p2' be patterns 

in F. Then, zf both p 1 Gl p2 and p1' Gl p2' exist, and p1 ~p 1 ' and p2 ~p2', then 

Pt Gl P2~P1' Gl P2'· 
Proof By definition of Gl and the conditions of the lemma, p1 9 p2 ~ p1 ~ p1' and 
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p 1 EB p2 ~ p2 ~ p2'. The desired result follows by a new application of the defmition of EB. 0 

Proof of Proposition 3.13 Once again, we provide the proof only for the case of n =2. Let 

.M(op CPcrt•Pcr)) be ¢1, ... '<\>m. Let¢ be the meet of ¢J .... '<\>m. Since F is Cff, ¢ E nF, and, 

by Lemma 3.1, op(p 1 ,p2)~¢. By definition of> .. there must be some pattern v of the form 

op (p1 ,p2i) or op (p 1 i .p0 that subsumes 'tf. M(v) is fhe desired one. 0 

Proposition 3.13 says that, if the subsumption graph of op (p 1, ... , Pn) is explored in a top

down, breadth-first manner, the first successful node found in DF is the representative of the 

match set. The traversal can also be obtained through the simultaneous and coordinated traversal 

of the subsumption graphs of a1, ... , an, as suggested in the previous section, never testing for 

the presence of a pair of nodes (denoting a p:mern) in DF until all the pairs with both nodes above 

the current pair have been tested. 

The breadth-first traversal can be enforced cheaply. If the combination is done by travers

ing through the subpatterns in each of the ai and then testing their combination, the subpatterns 

can be renumbered according to a topological sort under > .. If the combination is done by using 

the children of the combining operator (as was suggested it the end of Section 3.3), the topologi

cal sort has to be applied to the order in which the children are kept. 

For concreteness, assume an inverse representation of the subpattern B-fsa. Then the algo

rithm to combine the match sets could look like: 

let a 1 , ... ,an be the match sets of the children,; 

or each p1 that is a 1st child of a pattern rooted by op 

and in a topological order by > . do 
if p 1 is in a 1 do · 

1 

for each P: that is a 2st child of a pattern p rooted by op 

with p1 the 1st child of p 
and in a topological order by >. do 

if p2 is in a 2 do 
1 

for each Pn that is an n-th child of a pattern p rooted by op 

and with PI· ... , Pn-I the 1st, 2nd, ... , n-1-th children of p 

and in a topological order by >. do 

if Pn isinan do 
1 

let PI'· ... , Pn' be patterns equivalent to PI· ... , Pn respectively 

where {p{, ... , p/} is variable-disjoint 

if there exists a pattern p = op (p 1', ... , p n ') in F then 

I return the match set induced by p; 

There are other possible traversal orders that satisfy the "breadth-first" requirement. 

If the pattern set is not only CfF but also simple, then the dags are actually just chains and 

the breadth-first traversal becomes just a linear search. 

CTF subpattern B-fsa 

The above technique is quite fast but, as stated, it only works for CfF pattern sets. The idea 

to modify it to deal with non-Cff pattern sets is quite simple. Given any pattern set F, obtain the 

pattern set that contains the meets of all the subpatterns ofF (that is, the meets of all the match 

sets in F). Then construct the subpattern B-fsa for this new pattern set, which is clearly CfF. 

The new tree automaton suggested by this approach is called the CfF subpattern B-fsa. 

The result is a pattern matching algorithm that will be slower than the one using a match set 

B-fsa, but with smaller table requirements. The comparison of the two table sizes is quite 

straightforward. The match set B-fsa has the same number of .;tate' as the CfF subpattern B-fsa 
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but contains many more transfer edges that need to be represented. Also, computing the tables 

for the CTF subpattern B-fsa is substantially faster. 

Ken Rimey's Contribution 

Ken Rimey [Rim85] independently has proposed yet another way of using the subsumes 

relation. In his paper, Rimey restricts his attention to binary trees. Using the terminology 

presented in this dissertation, his proposal corresponds to using a match set B-fsa where "half" 

of the transfer edges are missing. For each match set cr, and each operator op, the modified B-fsa 

stores directly the entry corresponding to op (cr,cr') only for a few states cr'. The values for the 

other entries are obtained by decomposing them using G > i . 

Rimey's proposal is more expensive in space than the CTF subpattern B-fsa, but faster at 

matching time. On the other hand, the size of the tables is of the same order as a match set B-fsa, 

which, for the case of two arguments, is quadratic in the number of match sets. Of course, as in 

the CTF subpattern B-fsa, this last one can be exponential in the size of the pattern set. 

3.5. David Chase's Contribution 

David Chase has done independent research in linear N-pattern matching. This section 

describes his work briefly; see [ Cha87] for more details. 

Chase's pattern matcher is essentially a match set B-fsa represented so that for each n-ary 

operator there is an n -dimensional table. In addition, identical n -1 dimensional sub-tables are 

found and shared. In the frequent case of a binary operator, this means finding identical rows and 

columns and sharing them. For n =2, the process can be visualized as one of "folding" the 

array. The folding function, also called a restrictor, is a mapping associated with an n-ary 

operator and a i (l~i ~n) child position that maps from the set of match sets to an n -1-

dimensional subtable. The importance of Chase's contribution lies in that the folding is found in 

the same closure operation that produces the collection of match sets. For large pattern sets, his 

technique is substantially faster than an implementation that would compute the automaton first 

and then find the folding. This speedup is particularly significant when there is a large B-fsa 

where the unfolded representation may exceed virtual memory constraints. 

Recall that cr1 denotes the match set associated with t. If op E Op has arity n, and 1~i ~n, 

let Pop ,i denote the set of all patterns in ITF that are equivalent to the i -th child of a subpattern in 

ITF rooted by op. If cr is a match set, let R a,op ,i denote cr n Pop ,i. If T =op (T 1, ... , Tn ), then 

pan (1) of Proposition 3.10 states that crr is the set consisting of X and all those patterns in 11F 

equivalent to op (t 1, ... , tn) where ti E crr,. It follows that 

Proposition 3.14 If op E Op with arity n, and T 1, ... , Tn are trees over Op, then aop(T
1

, ••• , T.) 

is the set containing X and all the patterns in 11F equivalent to op (t 1, ... , tn) with ti E R ar .• op .i. 

The advantage of this observation is that it provides a ''natural'' restrictor: for each n-ary 

operator op, and each integer i, l~i ~n, the restrictor maps a match set cr into R a,op ,i. Chase 

shows [Cha87] that this folding is optimal: that is, the size of the folded array is as small as possi

ble. Chase's algorithm is described in Figure 3.9, for the case where all operators are either nul

lary or binary. 
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frocedure Chases-Compute-B-fsa 
Construct a curried representation of the subpattem B-fsa; 

r
or each op e Op do 

let n be the arity of op 
for each i, 1~i ~n do 
I compute the set Pop ,i. 

set last iteration =0 

r
or each op of arity 0 do 

compute its match set cr; 
set index =add ( cr); 
set B -fsa [op ].Oary =index; !*index represents the match set cr */ 

while there is some R o,op ,i with mark [R o,op ,i] =last _iteration do 

or each op e Op do 
let n be its arity 
for any selection of R 0 op i, 1~i ~n 
I ' ' 

where at least one of them has mark [R a.op ,i] =last _iteration , do 

set cr'=0 
for each ti selected from R o,op ,i do 

let {t 1', ... , t/} be a variable-disjoint set 

equivalent to { t 1, ... , t, } ; 

consult the subpanem B-fsa to determine if op (t 1', ... , t, ') 

is equivalent to a pattern in ITF, and if so, add it to cr' 

comment now cr' is the match set corresponding to the collection R a,op ,i 

set index =add ( cr'); 
set B -fsa [op ]Nary.transfer [R cr,op ,I• ... , R o,op ,n] =index; 

set last_iteration = last_iteration + 1; 

f
or each op e Op with arity > 1 do 

for each i l~i ~n do 
I set B -fsa [op ].Nary.restrictor [i] =make -map (R o,op ,i ); 

procedure add(cr) returns index into SetOfAllMatchSets 

I let cr be a match set 
let index be the index of cr in SetOfAllMatchSets; 

if cr is new then 
or each ope OP do 

let n be the arity of op 
for each i, l~i ~n do 

compute R cr,op ,i; 

if R cr,op ,i had not been generated before then 

I set mark [R cr,op .i] =last _iteration; 

return index; 

Chase's Algorithm 

Figure 3.9 
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The result of the algorithm is the match-set B-fsa in folded representation; the information 

associated with each operator op is denoted by B -fsa [op ]; if op is an 0-ary operator, the infor

mation is simply its corresponding match set (B -fsa [op ].Oary ); if op is an n >0-ary operator, 

the information is a structure (B -fsa [op] .Nary) with two fields, transfer, which contains the 

folded transfer arrays for op, and, for each i with l$i $n, restrictor which is computed from the 

sets Rcr,op,i by applying the (here undefined) function make-map. The B-fsa obtained by the 

algorithm is organized as shown in Figure 3.10, which only shows the situation for binary opera

tors: associated with each binary operator there are two restrictor arrays which map indices 

representing match sets into indices representing the R cr,op ,i, which are then used to fetch the 

index of the match set of the node rooted with the binary operator from the folded transfer table. 

The algorithm of Figure 3.9 computes all the match sets cr and R cr,op ,i through a closure 

technique. The cr sets are represented by indices into a set named "SetOfAllMatchSets", and are 

''marked'' to indicate that all they have already been considered in the closure algorithm. Since 

the new states are always computed by first fmding the set R cr,op ,i, there is no need \0 compute or 

store the complete match set B-fsa, only the much smaller transition tables indexed by R cr,op,i. 

Another factor in the success of Chase's algorithm is that many of the structures involved 

can be represented using bit vectors: 

• Match Set. The match set is represented as a bit vector over all the patterns in Tip. 

• Pop ,i. The patterns that can appear per position and operator are also represented as a bit 

vector over the same base set. This means that the most frequent operation of the algo

rithm, computing the sets R cr,op,i can be done very efficiently. 

• R cr,op ,i. All the (distinct) intersections of a match set and a Pop ,i are stored in a se: of bit 

vectors. 

The final shape of the generated tables is shown in Figure 3.10. Final table sizes are, for 

most applications, very small. The interested reader should consult [Cha87] for some comparis

ons in table generation time and table generated size. 
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Folding Rows and Columns in a Match Set B-fsa 

Figure 3.10 

Improvements to the Technique 

[Cha87] misses a simple but very useful consideration for reducing table size. In most 

applications after finding the folding, most of the table space is spent describing the folding, in 

the restrictor arrays. It is also common that patterns have the same subpattems. When these two 

conditions occur together, for instance in the applications of Chapter 8, it is possible to obtain big 

savings in table size by sharing identical restrictor arrays. Finding the identical restrictors is quite 

simple: it can be done by just checking for identical Pop ,i. 

It is also tempting to try to use ideas described in Section 3.4 to speed up the inner loop of 

the table construction algorithm. In practice it seems that there would be implementation prob

lems to make it run faster than the current "direct" approach. 

3.6. The Influence of an Input Set 

Up to this point this chapter has assumed that PATIERN MATCHING is solved relative to the 

input set Lor That is, we want to find the patterns matching for all possible trees over the set of 

operators Op. In some cases we have additional knowledge about the possible input trees that can 

be used profitably. In particular, we may know that the set of input trees is a recognizable set L 

(Definition 2.5). This additional information can be employed using the following general tech

nique: 
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Proposition 3.15 Let A and B be two B-fsa over some operator set Op. There is an algorithm 

that will compute,for each state StA in A, the set of all those states St8 in B such that there is a 

tree T labeled with state St8 in B that would have been labeled with state StA in A. 

Proof The set of states associated with each node in A is finite and can be computed through 

iteration on the nodes of A. 0 
The question of interest is the followin~: 

Proposition 3.16 Let L be a set of trees over Op, and let F be a set of patterns over Op. There 

exists an algorithm that will determine which match sets ofF correspond to subtrees of trees in 

L. 
Proof Let AF be the B-fsa that computes the match sets for F, and let AL be the B-fsa that recog

nizes membership in L. By Proposition 3.15 there is an algorithm that will associate sets of states 

from AF with the states of AL. A "good" state in AF is one that corresponds to a match setofF 

containing at least one subpattern in TIF present in F. There is a tree in L with a subtree matching 

some pattern in F if and only if there is a state in AL that reaches (in the B-fsa) a final state and 

that has been labeled with a set containing at least one good state in AF. 0 

This provides directly a solution to: 

Corollary 3.3 Let L be a set of trees over Op, and let F be a set of patterns over Op. There 

exists an algorithm that will determine whether there exists a tree T e L such that some pattern 

in F will match at some node ofT. 

The algorithm of Proposition 3.16 can be used to reduce the table size requirements for 

solving pattern matching, while that of Corollary 3.3 can be used to detect specification incon

sistencies. 

3.7. Related Work 

There are two main approaches to pattern matching: those based on a "top-down" traversal 

of the subject tree, and those based on a "bottom-up" traversal of the subject tree. This chapter 

has used only a bottom-up approach. 

Top-Down Pattern Matching 

The most straightforward algorithms for pattern matching are based on top-down traversals. 

Unfortunately they are quite inefficient. The main advantage of a bottom-up traversal over a 

top-down traversal is that it aggregates the information in a natural way from children to their 

parents. 

The simplest method for matching a set of patterns against a single subject is to decompose 

the problem into several independent problems of matching a single pattern against a single sub

ject. Likewise, the simplest approach to matching a single subject against a single pattern is to 

reduce the problem to the case where the pattern is forced to match at the root of the subject, and 

to repeat the problem for all the nodes in the tree. 

The approach outlined above is very easy to implement but, except in the most simple 

applications, is impractical. A better approach is presented in (IC.\1R 72]. The technique 

employed maps the problem of tree pattern matching into string pattern matching by using as pat

terns the strings obtained when doing a preorder traversal of the tree patterns. Since this mapping 

is not unambiguous, whenever any such string is found, its origin in the subject tree is marked. 

Any node with "enough" marks is matched. The string matching problem is solved using an 

automata that keeps track of all the different strings at once (using its finite state memory). 

This algorithm works fairly well when there is only one pattern to consider. When there are 

several patterns, it is necessary to keep independent markers for each tree pattern. There are 
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several ways to do this. The simplest one is to keep different locations for each counter, incre

ment the locations. and check the values for all of them at the second visit to Ll-)e node in the 

preorder traversal. Depending on the density of "hits" (of which currently the author has no 

experimental data) it may be better to test after each increment. Yet another alternative would be 

to use a heap of increment requests. In general, it appears that top-down pattern matching will be 

slow if there are many patterns. 

[Ho082] and [KMR72] elaborate on these ideas. The biggest advantage of top-down pat

tern matching is the reduced size of the tables created. The price for this reduction in table size is 

an increase in the pattern matching time. This is particularly true when the bottom-up algorithm 

uses an implicit representation of the match set Which technique to use will depend on the par

ticular application. See Chapter 8 for some performance numbers for the REACHABILITY problem 

where pattern matching is employed. 

Bottom-Up Pattern Matching 

[Ho082] is probably the best known reference to bottom-up algorithms for linear N-pattcrn 

matching. The bottom-up algorithm for general pattern sets presented there is based on match 

sets, represented in a table form. Most of the emphasis of Hoffman and O'Donnell [Ho082] is on 

simple pattern sets (Defmition 3.7). disregarding other weaker constraints. 

[Kro75] is an excellent, but little known, dissertation. The emphasis of the author is on 

CfF pattern sets. The trees that the author deals with are slightly different from those defined in 

this dissertation: they are defmed as labelings on tree domains, and their operators do not have a 

fixed arity. This probably influenced Kron's recognizer, which is based on "orthogonal tree auto

mata • '. The dissertation contains equivalent material to that presented in the bottom-up part of 

[Ho082], and also additional material on rewrite systems. It lacks an analysis of the space com

plexity of the generated automata. but orthogonal tree automata seem good for sharing similar 

entries, at the expense of a small reduction in matching speed. It is important to note that the 

notion of a CfF pattern set is far more important than the notion of a simple pattern set intro

duced by Hoffman and O'Donnell (Proposition 3.8). 

3.8. Summary of the Algorithms in this Chapter 

The research presented in this chapter contains several contributions to the theory of 

bottom-up linear N-pattern matching. The proof that simple pattern sets are CTF provides a 

better understandi:~g of the results of both [Ho082] and [Kro75]. The major contribution is the 

understanding of the role of G > .. Proposition 3.10 is used in Rimey's algorithm and in the CfF 

subpattern B-fsa algorithm (Section 3.4). 

The chapter also presents a unif1ed approach, based in the notion of B-fsa, for five bottom

up algorithms. The flexibility of the model shows its applicability. 

The CTF subpattern B-fsa algorithm is interesting in its own right, especially -in application 

areas with a large number of p::merns. With the advent of D. Chase's algorithm, many applica

tions can use a shared table representation of a match set B-fsa with reasonable table sizes. but 

some applications may need a method that uses a representation guaranteed to produce tables 

with table size linear in the number of states. 

Figure 3.11 shows the five al_;orithms mentioned here, together with an indication of their 

situation in a table-size x matching-speed space. The actual values for size and speed are 

strongly dependent on the properties of the pattern sets. Thus, deciding among the algorithms 

requires an analysis of the intended application. 



67 

Al~rorithm Table Size I Matchinrr Speed 

Subpattern B-fsa 
I 

Edges are linear in # states Depends on size cf match set 

States are linear in description size 

CTF Subpanern B-fsa Edges are linear in # states Depends on depth of G > . 
l 

'Rimey's 

Chase's 

Match set B-fsa 

States mav be ex_ponential in descr. size 

Edges are quadratic in # states 
I 

Depends on depth of G > . 
States may be exponential in descr. size 

l 

Edges are quadratic in# states -3 table lookups per tree node 

(but there is folding) 
States mav be exponential in descr. size 

Edges are quadratic in #states 1 table lookup per tree node 

States mav be exponential in descr. size 

Overview of Algorithms for Linear Pattern Matching 

Figure 3.11 

Chapter 4 explores how to perform non-linear pattern matching using variations on these 

ideas. 

i 
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CHAPTER4 

Matching 1'\on-Linear N-Patterns 

Divide et impera 

[cited by Machiavelli] 

In this chapter we study the problem of pattern matching for non-linear pattern sets. The 

approach taken is to regard a non-linear pattern as a linear pattern extended with a predicate 

which will evaluate to true if the non-linear conditions are satisfied. For example, the non-linear 

pattern 

+ 
A 
* * 
AA 

XYXY 

corresponds to the linear pattern 

+ 
~ 
* * 
/\ /\ 

together with a predicate that tests whether the trees matched at positions 1. 1 and 2 • 1, and those 

at 1 • 2 and 2 • 2 are equal. Such a predicate is denoted in this chapter as 

(1 • 1 = 2 • 1) A (1 • 2 = 2 • 2). The linear pattern associated with a non-linear pattern is called its 

structure; the predicate its binding predicate. The structure is unique up to pattern equivalence, 

but the binding predicate is not: another binding predicate for the above pattern is 1 = 2, where 1 

and 2 are positions. 

All the binding predicates that we consider are like the ones shown above: if p is the pat

tern, a binding predicate for p has the form 1\p; = q;, where, for each i, P; and q; are positions in 
I 

p such that P@p, = p@q,· A binding predicate is evaluated by comparing the trees that the match 

of the structure assigns to the positions mentioned in the binding predicate. The actual com

parison may involve a tree comparison if a traditional representation of the subject tree is used, or 

a simple pointer comparison if the subject tree is represented as a computation dag. 

The view of non-linear pattern matching as linear pattern matching together with predicate 

testing leads to several algorithms for non-linear pattern matching that are modifications of algo

rithms in Chapter 3. The simplest of these algorithms is presented in Section 4.1.2 and uses a 

subpattern LB-fsa to find subtrees of the subject tree that match the structural patterns; then these 

"candidates" are tested with binding predicates to find the real matches. This algorithm is quite 

straightforward and does not use any knowledge specific to non-linear patterns; it could be used 

equally well if the binding predicate were replaced by another (more general) semantic predicate. 
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In Chapter 3 we showed that there is a big reduction in matching time if a match set LB-fsa 

is used insteJd of a subpattern LB-fsa. In Section 4.1.3 we show how to apply these ideas to 

non-linear pattern matching. The resulting algorithm is more complex than the corresponding 

one in Chapter 3 due to some characteristics of the notion of the structure of a pattern. 

The algorithms of Sections 4.1.2 and 4.1.3 require testing collections of binding predicates. 

Section 4.1.4 shows how to select, for a given pattern, a binding predicate with as few tests as 

possible. This predicate is the one that compares subtrees as high as possible. For the pattern at 

the beginning of this introduction, 1 =2 is the best predicate. Section 4.1.4 also contains some 

analysis of how to evaluate eff1ciently binding predicates that share some sub-predicates. 

All the algorithms for non-linear pattern matching in this chapter characterize the subtrees 

of the subject tree with two parts: one of a finite number of states, and additional information 

referring to the subject tree. In the algorithms of Sections 4.1.2 and 4.1.3 the state is either a list 

of structures or a pattern equivalent to their meet, and the additional information is a pointer to 

the node being visited. Section 4.2 provides a definition that enrichs the notion of state. A p

pattern is a linear pattern extended with a collection of equalities and inequalities between its 

variables. For example, <*(+(X 1.X 2), *(X 3,X 4)), { 1 • 1 = 1 • 2, 2 • 1 ;e 2 • 2 }> is a p-pattem. P

patterns are used to record information that is available from the evaluation of binding predicates. 

If T is a tree of the form op (T 1, ... , T11 ), knowing that p-patterns <\> 1, ... , <\> 11 match at 

T 1, ... , T11 may make it possible to replace the binding predicate at T by a simpler predicate. It 

is possible to use p-patterns to obtain several different improved pattern matching algorithms; 

Section 4.3 shows one particular alternative based on a variation on a deterministic B-fsa. 

Section 4.4 presents a pattern matching algorithm by Purdom and Brown [PuB87]. Their 

algorithm suggests another approach to extending the information associated with the node in the 

subject tree at matching time: extend the dynamic information instead of extending the state. 

Specifically, the idea is to keep a list of all the subterms of the node that may be used in binding 

predicates of this node and its ancestors. The basic premise of this approach is that extracting 

these subterms is an expensive operation and that it may be cheaper to extract them when the 

node is being visited and to propagate them up the tree. Although most tree representations do 

not justify this premise, Section 4.4 briefly analyzes this approach. 

Unlike other results in this dissertation, none of the algorithms presented in this chapter 

have been implemented, and we cannot provide definitive answers on their applicability. 

4.1. Non-Linear Matching = Linear Matching + Binding Predicate 

This section presents the simplest algorithms for non-linear pattern matching. They are 

based on the idea of applying the algorithms for linear pattern matching of Chapter 3 to the 

"strUctures" of the original pattern set. 

4.1.1. Basic Definitions 

The central definitions are those of the structure of a pattern and its binding predicate. 

Definition 4.1 The structure of a pattern p is a pattern in which each occurrence of a variable 

in p is replaced by a new variable. A binding predicate of a pattern p is a partial predicate 

P p(T) on trees such that, if a structure of p matches T, then p matches at T if and only if P p(T) 

is true. If a structure of p does not match T, P P is undefined. 

The above definition of binding predicate is well-defined because all the structures of a pat

tern are equivalent As mentioned previously, all the binding predicates of a pattern p considered 

in this chapter have the form: ~Pi =-= qi, where, for each i, Pi and qi are positions in p such that 
I 
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As in Chapter 3, we will use several =-reduced sets of patterns to simplify later dcfmitions. 

Definition 4.2 IfF is a pattern set, ZF is a =-reduction of the set of all patterns ~ which are 

structures of a pattern p e F. ZF is a pattern set; TIZF is an equivalent denotation for TizF· 

We define "I.F as an =-reduction of the set of all patterns Pcr that are meets of match sets cr 

in F, and Z"I.F as an =-reduction of the set of all structures of pattern.c in "I. F. 

For any pattern p e TIF, ~Pis the pattern in TIZF which is a structure ofp. !fa is a match 

setofF, then ~cr· is the pattern in ZL.F which is a structure of the meet of cr. 

The next proposition lists some properties of the definition of structure. Note that ( 4) and 

(5) show that the notion of structural match set as defined above is different from the meet of the 

structures of all the subpatterns in the match set. 

Proposition 4.1 Let F be a non-linear pattern set. Let p. p1, and p2 be patterns in F. The fol

lowing properties are true: 

( 1) lfPt ~P2· then ~P1 ~ ~p2· 

(2) ~p G1 p=p. 

( 3) If p 1 G1 p2 exists, then ~p 1 G1 ~p2 also exists and ~P 1 9 P
2 
~ ~p 1 G1 ~r 2 • 

(4) There are cases where the above implication may be strict. 

(5) ~p 1 9 ~P: may exist even ijp 1 G1 p2 does not. 

Proofs 

(1) and (2) are straightforward. 

(3). Bv definition of 9 and (1), ~ ,.,.. ~ ~P and ~ "' ~ ~P. A further application of the 
• pI "" P2 I pI "' P2 2 

definition of G1 yields the desired result. 

(4). Proof by ~~:ample. Let p1 be +(X ,X), and let p2 be +(*(X ,Y),Z). p1 G1 p2 = 
+(*(X ,Y), *(X ,Y)), ( "" =+(*(X 1,Xz.),* (X 3,X 4)), but ~p 1 €9 ~p2 =+(*(X 1,X2),X3). 

· -r~ "" P2 

(5). Proofbyexample. Letp 1 andp2 be*(+(X,Y),X)and*(X,+(X,Y)). 0 

4.1.2. A Simple Subpattern Matching Algorithm 

The first algorithm for non-linear p~ttern matching presented in this chapter is also the sim

plest. The algoriL"fun uses a subpattern LB-fsa for the set of the structures of the original pattern 

set. The LB-fsa IS used to fmd the structural subpatterns matching a: each node of the subject 

tree. Once any one such structure is found it is necessary to determine to what original pattern it 

corresponds. The notion of discrimination set encodes this information. 

Definition 4.3 Let F be a non-linear pattern set and let 'If e TIF. A discrimination set DS C~w) of 

~w is a collection of pairs <p .P p> such that p e I1 F• ~\j! = Sp and P P is a binding predicate for p. 

Proposition 4.2 Let F be a non-linear pattern set over Op and let T be a tree over Op. The 

algorithm of Figure 4.1 correctly computes the (explicit) match sets over F for every subtree t of 

T. 
Proof Straightfo:r.vard. 0 



find the set of structures matching at every subtree t ofT using 

the subpattern B-fsa of ZF. 
let DS (~) be the discrimination set of~; 
or each subtree t ofT do 

r

or each structure ~ in the structural match set do 

set a(t) = 0; 

r
or each <p,P p> e DS (~) do 

if P p(t) then 
I cr(t) = a(t )up; 

Matching Using Structural Subpatterns 

Figure 4.1 

The above algorithm is correct but slow. All the problems associated with keeping track of 

all the subpatterns explicitly are compounded by having to test a (potentially) large number of 

binding predicates for each subpattern. 

Normally, we assume that we are only interested in the patterns ofF, not in its subpat

terns. The notion of discrimination set can be changed to acknowledge this assumption by 

including only those patterns p that are members of F. This would lead to a somewhat faster pat

tern matching algorithm. 

Figure 4.2 contains an example of a non-linear pattern set, while Figure 4.3 shows the B-fsa 

representing the computation of the structural subpatterns for that pattern set and the discrimina

tion sets associated with each structural subpattem. 

PI: P2: r: 3: 

+ * * 
/\ /\ /\ 
* y + y + y 

1\ /\ /\ 
XX * y * X 

1\ 1\ 
XX XX 

Example of a Pattern Set 

Figure 4.2 
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(1 • 2 = 2 1\ 1 • 1 • 2 = 1 • 1 • 1 )~p,., 
(1 o 2 = 1 • 1 • 2 1\ 1 • 1 • 2 = 1 o 1 o1)~p3 

0 

B-fsa Used for Matching Using Structural Subpanems 

Figure 4.3 

This example provides a good motivation for the notion of a discrimination tree. The 

discrimination set for some structural subpanems (as in the case of * ( +(* (X 1 ,Xi), X 3), X 4) 

above) may contain binding predicates that duplicate equality tests (such as 1 • 1 • 2 = 1 • 1 • 1 

above). A discrimination tree helps to share the result of those tests. There are t\Vo types of 

discrimination trees, one for the algorithm of this subsection and the other for the one shown 

below in Section 4.1.3. 

Definition 4.4 Let p be a pattern. An all-discrimination tree for p is an ordered tree in which 

each edge is labeled with either · 'p 1 = p 2'', for p 1 and p:! positions in p, or with ''true'', and in 

which the leaves are labeled. If DT is an all-discrimination tree for p, and p matches at T, the 

sequence of valid labels for DT and T is the ordered sequence of labels of those leaves reached 

in an ordered depth first search of DT, such that all the predicates in the path from the root to 

the leaf evaluate to true at T. 

A first-discrimination tree for p is an ordered binary tree in which each edge is labeled 

with either true or false, each internal node is labeled with ''p 1 = p 1'', for p 1 and p 2 positions in 

p, and each leave is labeled. If DT is a first-discrimination tree for p, and p matches at T, the 

valid label for DT and T is the label (zf any) of the leaf that is found by traversing DT, starting 

at the root, evaluating at each internal node reached its predicate and selecting one of the two 

outgoing paths from the node depending on the outcome of the test. 

Let p be a pattern. Given a sequence of predicates S, each one a conjunction of equalities 

between positions in p, an all-discriJ:;ination tree for p, DT, is correct zf for every tree T at 

which p matches, the set of valid labels for DT and p equals the set of predicates of S true at T. 

A first-discrimination tree DT for p is correct if for every tree T at which p matches, the first 

valid label for DT and p is the first predicate inS that evaluates to true forT. 
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All-discrimination trees can be used to compute efficiently the set of all the valid predicates 

for a discrimination set of a structure. For example, a discrimination tree for the patterns p2 and 

p3 of Figure 4.2 is shown in Figure 4.4. 

1·2 = 2 

0 

Example of an All-Discrimination Tree 

Figure 4.4 

An example of a first-discrimination tree, for a different set of patterns is shown in Figure 

4.5. This discrimination tree will be used later in this section, is: 

true 
false 

false 

A First Example of a First-Discrimination Tree 

Figure 4.5 

The cost of a discrimination tree can be defined (for example) as the number of predicates 

(edges) in the tree. Other alternatives could include the expected number of predicates that have 

to be tested for some input distribution. Algorithms to compute minimum cost correct discrimi

nation trees have not been developed, but Section 4.1.4 below contains some related results. 
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4.1.3. A Simple Match Set Pattern Matching Algorithm 

Point (5) in Proposition 4.1 indicates that structural match sets are not closed under 9. 

Hence, the algorithm to use structural match sets uses as state information the closure of Z'LF 

under 9. Let this set be denoted by Z'LF EB. It is possible to defme a notion of discrimination set 

similar to the one in structural subpatterns for the members of Z'LF 9 . 

Definition 4.5 Let F be a non-linear pattern set over Op. If ye zr.F 9 a discrimination set 

DS (y) ofy is a collection of pairs <a.P cr>, where a is a match set in F, P cr is a binding predicate 

associated with a, and a satisfies the following two properties: 

(i) y?. ~cr· and 

(ii) there does not exist a match set <1> 1 in F such that y?. ~41 , and <1> 1 9 a= <1> 2 with ~q,2 > y. 

Intuitively, the definition of DS (y) is trying to capture all the possible match sets that could 

have y representing their structure. Condition (ii) is intended to eliminate those structural match 

sets whose membership in DS (y) would imply that a member Z'LF EB larger than y matches at the 

node. As an example of the role of (ii) consider the two pattern sets F' and F" of Figure 4.6. 

F' P1: p' . 2· p3: p4: 
* * * * 

/\ /\ 1\ 1\ 
+ X + X XY XX 
1\ 1\ 
XX XY 

F" P1: p" . 2· p3: p4: 
* * * * 

/\ /\ 1\ 1\ 
+ X + y XY XX 
1\ 1\ 
XX XX 

A Pattern Set for Match Set Pattern Matching 

F>:ure 4.6 

The subsumes relations for 'LF in the two examples are shown in Figure 4. 7. 



F' 

Different Subsumes Relations 

Figure 4.7 

Now consider the structural match set represented by a panern y 

* 
/"'\ 
+ X3 

A 
Xl X2 

F" 

and its discrimination set in each case. For the panem set F' the match sets in the discrimination 

set ofy are *(+(X,X),X), *(+(X,X),Y), *(X ,X), and *(X,Y) but, for the panern set F", the 

match sets for y are *(+(X ,X),X), *(+(X ,X),Y), and *(X ,Y). *(X ,X) does not appear in the 

second case because, were that panem a possibility, the structural match set woUld have been 

*(+(X 1.X 2).+(X 3,X 4)). 

Discrimination sets are used in a panern matching algorithm based on match set B-fsa. 

Proposition 4.3 Let F be a non-linear pattern set over Op, and let T be a tree over Op. The 

algorithm of Figure 4.8 correctly computes the match sets over F for every subtree t ofT. 

Proof The correcmess of the algorithm follows from the definition of discrimination set of y. 

Condition (i) includes all the match sets of interest. Condition (ii) discards those match sets that 

would have required a structural match set different from y. 0 

75 
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let B be a (deteiministic) match set B-fsa for Z'LF 9 ; 

assign to each subtree t ofT a pattern in Z'LF 9 using B ; 

or each subtree t ofT do 
let y be the pattern in Z'LF 9 assigned to t; 
let DS (y) be the discrimination set of y, 

r
or each <a.P a> e DS (y) in ;::: order do 

if P p(t) then 
I let the match set oft be a; 

Matching Using Structural Match Sets 

Figure 4.8 

The above algorithm assigns to each structural match set a list of match sets whose binding 

predicates then are evaluated sequentially to find the largest valid one. The evaluation of this 

sequence may contain redundancies. An alternative is to associate with each structural match set, 

a first-discrimination tree. 

For the panern set F" of Figure 4.6, a first-discrimination tree for 

* 

is the one shown previously in Figure 4.5, while the one for F' is 

true P1 

1 ·2=2 

true false 
p'2 

true G false 

false G 
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4.1.4. Optimal Binding Predicates 

In general there is more than one valid binding predicate for a given pattern. Some of them 

may be more expensive, that is, perform more tests, than others. The following proposition tells 

how to find one with minimum cost. 

Proposition 4.4 Let p be a pattern. Let S(p) be the class of binding predicates for p of the form 

/\pi =qi, where,for each i, Pi and qi are positions in p such that P@p; =p@q;· There is an algo-

' rithm to find a member of S with a minimum number of equality tests. 

Proof Let C (p) be the partition of the positions in p so that two positions are in the same block if 

they correspond to identical subtrees in p. Define a relation ~ between the blocks of C (p) by 

Pi ?.P1 if and only if a position in Pi is an ancestor (a prefix) of a position in P_,, i :t:-j. The rela

tion ~ is well defined, and is a partial order. ~ is well defined because otherwise there would be 

tree positions p , q , p' , and q' such that p is ancestor of q , and q' is ancestor of p' , and with 

P@p =P@p' and P@q =P@q', which leads to a subtree being inside itself, which is impossible for 

finite trees. The proof of~ being a partial order is straightforward and is left to the reader. 

The algorithm needs some additional concepts. For each block Pi in C (p), we consider a 

complete graph, G (Pi), with nodes the positions in the block; each edge represents a predicate on 

positions of p. An edge <p ,q > is a descendant of another edge <p ',q '> if there is a position s 

such thatp=p'!!s and q=q'!!s. Two edges are connected if they are of the form <p 1,p 2> and 

<p 2,p 3>; their connection is <p 1 ,p 3>. 

These last two relations satisfy that, if an edge is true, all its descendants are true; and, if 

two connected edges are true, their connection is true. Given that a set of edges (for some of the 

complete graphs mentioned above) are known to be true, applying repeatedly the two proposi

tions above is known as "taking" the closure of the graph under connection and descendant. 

Let E' be the set of edges in the complete graphs returned by an invocation to the algorithm 

of Figure 4.9. To prove that 1\ Pi =qi, has minimum cost we first prove that an optimal 
<p;,q;>E £' 

binding predicate is a possible output of the algorithm, which follows from the following con

siderations. 

• All the edges in £' must belong to the graph of some block in C (p ). Otherwise we perform 

either a trivially true comparison- which can be removed- or a trivially false comparison 

- an incorrect predicate - or a comparison that can be made to fail in trees where p 

matches. 

• E' c0ntains no edges that can be obtained from the others by applying transitivity or the 

descendant relation (see above). 

• The transitive and descendant closure of E' contains all the edges in the graphs of the 

blocks of C (p ). 

Finally, all possible outcomes of the algorithm of Figure 4.9 have the same number of 

edges. This follows because all the topological orderings of the blocks of C (p) produce the same 

result, and because all minimum spanning trees have the same number of edges. 0 
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let P 1, ... , P n be an ordering of the blocks of C (p) following ~; 

let G (Pi) be the complete graph with Pi as nodes; 

mark all the edges in each G (Pi) as ''unknown''; 

£=0; 
or each i from 1 to n do 

choose a minimum spanning tree MST for the "unknown"edges of G (Pi); 

E = E u all the edges of MST; 
mark all the edges of G (Pi) as "known"; 

comment now compute the closure under connection and descendant 

repeat 
if a '' known '' edge e has an unknovm descendant e' then 

I mark e' as ''known''; 
if two ' ' known '' edges e 1 and e 2 are connected and 

their connection is an ''unknown'' edge e' then 

I I mark e' as "known"; 
until there are no more changes; 

Algorithm to Find Optimal Binding Predicates of Patterns 

Figure 4.9 

Another algorithm of interest is how to compute, given a discrimination set, a discrimina

tion tree for it. Ideally we would like the discrimination tree to minimize some cost function like 

the number of edges in the tree. We do not have a solution to th:lt problem, but the algorithm 

presented in the proof of the following proposition contains a heuristic that tries to attain the goal. 

The "goodness" of the heuristic cannot be measured until after it is implemented and compared 

with the optimal, maybe found with some type of exhaustive search. 

Proposition 4.5 Let F be a non-linear pattern set, and let ~ E Z'LF. There is an algorithm that 

will select a first-discrimination tree implementing a discrimination set for~. 

Let F be a non-linear pattern set, and let ~ E ZF. There is an algorithm that will select an 

all-discrimination tree implementing a discrimination set for~. 

Proof We solve the problem involving a match set represented by some pattern p; the problem 

for structural subpatterns is similar. Let S be the subset of 'LF that appear in any discrimination 

set for p (Definition 4.5). For every pair of positions in p, let count (p 1 ,p 2J be the number of pat

terns inS in which the subtrees at p 1 and p z are identical. Now use the algorithm of Figure 4.10. 

The correcmess of the algorithm follows from its use of the algorithm of Figure 4.9 to com

pute the individual binding predicates for each match set. The use of count (p 1 ,p 2) attempts to 

share equality tests between the different binding predicates, and the sort tries to put the queries 

in the right order. 

This heuristic is clearly non-optimal. Other heuristics could be used. For instance, one 

could try to select the minimum spanning tree so as to choose previously used equality tests if 

possible. 0 
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choose one ordering of S following ;?; and let it be { cr1, ... , an } ; 

let Ei be the set of edges <p 1.p 2> returned by the algorithm of Figure 4.9, r
or each cr; do 

modified so that the minimum spanning tree is chosen using first edges with highest count(); 
n 

let E be uEi; 
i=l 

move to the front of E those edges in Ei; r
or i from n downto 1 do 

comment the move is supposed to preserve the previous order; 

r
or i from 1 to n do 

lay a path using Ei sharing as much as possible with 

the previous paths; 

4.2. P-Patterns 

Fmding a Discrimination Tree 

Figure 4.10 

The idea behind the notion of p-p:::tterns introduced in this section is to evaluate the binding 

predicates of the children before computing the state of the parent and to extend the linear p:lt

terns used to represent states in the previous sections with equalities and inequalities to record the 

results of these tests. 

As a motivation, consider the pattern set composed of the two patterns at the top of Figure 

4.11, and the subject tree at the bottom of the figure. Assume that T 1, T 2, and T 3 are all different 

subtrees. 
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PI: pz: p3: 
* + + 

A 1\ 
+ XX 
1\ I 
XX + + 

1\ 1\ 
XYYX 

A -+- -+-B 

I 
+ + 

I\ I\ 

P-pattems are Better than Patterns 

Figure 4.11 

The children of the subtrees marked A and B have match sets represented by +(X .X) and 

+(Y ,Z), respectively. Accordingly, at some point we have to test binding predicates and deter

mine whether T 1 and T 2 and also T 1 and T 3 are equal so as to determine if we have found p2. If 

we encode the state information as members of zr.F EB, nodes A and B will be characterized as 

-(+(X ,Y)), which contains no information about the equality between X and Y, and the binding 

predicate (for pz) at the root would be (1 • 1 • 1 = 2 • 1 • 2) 1\ (1 • 1 • 2 = 2 • 1 • 1). Instead, if the test 

of the binding predicates at the children of A and B is done before computing the states of A and 

B , and the result of the test is incorporated into states <-(+(X ,Y )), { 1 • 1 = 1 • 2} > for A and 

<-(+(X ,Y)),( 1 • 1 :t: 1 • 2}> forB, the binding predicate at the root for p2 is equivalent to false. 

Definition 4.6 Let F be a non-linear pattern set over Op. A p-pattern over F is a pair <~,E>, 

where ~ is a linear pattern and E is a conjunction of equalities and inequalities between loca

tions of variables in ~- A p-pattern <~..£ > matches at some term T if~ matches at T with assign

ment a, and ail the equations in E are satisfied by a. 

~ in Definition 4.6 will be either a member of ZF or a member of zr.F EB_ If the set E is 

empty, we obtain the notions of structures that we used in the previous section. 

P-pattems are used to represent state information. Thus, we want to find how to compute 

the new states given the previous ones. For this, we need the notion of an incremental binding 

predicate. 
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Definition 4.7 Let F be a non-linear pattern set F over Op. Let<\> be a p-pattern over F. The 

incremental binding predicate for a pattern p e F satisfying <\> is a partial predicate, P p,0(T), 

such that, if ~P matches at T, and <\> matches at T, then P p.~(T) is true if and only if p matches at 

T. 

Definition 4. 7 is a slight generalization of what is needed as the equalities and inequalities 

in<)> may span across different children of its structure. 

A good incremental binding predicate can be computed. 

Proposition 4.6 Let F be a non-linear pattern set over Op. Let¢ be a p-pattern over F, and 

p E rrF. Let s be the class of incremental binding predicates for p satisfying <\> of the form 

J':-.P; = q;, where ,for each i, Pi and q; are positions in p such that P@p, = P@q,. There is an algo-

' rithm to compute a member of S with the smallest number of comparisons. 

Proof The algorithm used is a variation of the one in Proposition 4.4. Let¢ be<<)>',£>. If p can

not be unified with ¢' then the desired predicate is false. If it can, let f be their most general 

unifier (Definition 2.1 0). 

Let C (f (p )) be the partition of the positions in f (p) such that two positions are in the same 

block if they correspond to identical subtrees off (p ). If there is an inequality in E between posi

tions p and q and those positions are in the same block in C (f (p)) the desired predicate is 

(again) false. 

Otherwise, apply the algorithm of Figure 4.9 modified so that instead of initially "mark

ing" all the edges in G (P;) as "unknown", an edge <p ,q> is marked "known" if (p =q) e E, 

and "unknown" otherwise, and after this the graphs are closed under connection and descen

dant. The rest of the algorithm stays the same. 0 

The other notion needed for obtaining a pattern matching algorithm is: 

Definition 4.8 Let F be a (non-linear) pattern set. Let ¢=<~.£> be a p-pattern of F. A 

discrimination set of<\>, DS (<\>),is a collection of pairs <P 0 ,a> where a is a match set in F satis

fying (i) "{-;;:. ~. (ii) there does not exist a match set <)> 1 in F such that"{";;:. ~4> 1 and (<\> 1 G;l a)="/2 

with ~1'2 > "{, and, and P 0 is an incremental binding predicate associated with a such that P 0 is 

not equivalent to false. 

Finally, a discrimination tree can be obtained using the algorithm of Proposition 4.5. 

4.3. A Match Set Algorithm Using P-Patterns 

P-patterns can be used in several different ways to implement matching algorithms. One 

alternative is to construct a faster version of the match set pattern matcher described in Section 

4.1.3; this is the alternative explored in this section. Another, less attractive alternative, would be 

to extend the algorithm of Section 4.1.2; this alternative is not explored in this chapter. 

The idea followed in this section is to modify the algorithm of Section 4.1.3 so that, after 

testing some binding predicate the information gained by the evaluation is not throv.rn away but it 

is encoded in p-patterns which are then, in turn, used to simplify the later evaluation of other 

binding predicates. 

The computation of the states associated with the nodes of the tree is no longer just a LB

fsa. There are two functions evaluated sequentially at each node of the input tree. The first func

tion looks like 
F 1 :Op Xp -pattern 1x · · · xp -patternn ~p -pattern 

while the second takes the p-pattern produced by the first one and uses its discrimination set and 

the actual tree to compute the p-panern associated with the node, that is, 
F 2 :p -pattern xT ~p -pattern 
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There are variations within this approach. One may always compute F 2, or only do it when 

there is some match set in the discrimination set that includes a pattern (as opposed to a tree that 

appears only as a subpattern of a pattern) in F. The latter approach is a better one since it post

pones testing the binding predicates until necessary, and some predicates may never be tested as 

their applicability is discarded due to structural reasons. 

The matching algorithm can be described as follows: 

procedure find _state (T: tree) return a state (a p-pattern) 

let T=op(T 1, ... ,Tn); 
for i from 1 to n do 
I ~i =find _state (Ti ); 

;-F 1 (op .~1• · · · , ~n ); 
~=F 2(y,T); 
comment depending on the policy followed and the discrimination 

set of y, F 2 may just return y, 
return y, 

F 1(op .~ 1 , ... , ~n) is a simple computation: 

Proposition 4.7 Let F be a (non-linear) pattern set over Op. Let op be an n-ary operator in 

Op, and let~ 1 , ...• ~n bep-patterns in F, with ~i =<~i.Ei>· Let~ be the largest (relative to 2::) 

member of Zl..p Gl that matches at op (~ 1 , ... , ~n ). There is an algorithm that will compute the 

collection E of equalities and inequalities benveen variables in ~ such that for every tree 

T =op (T 1, ... , Tn), ~i matches at Ti for l~i ~n if and only if <s.E > matches at T. 

Proof Assume, without loss of generality, that the sets of variables of ~i, for l~i ~n, are disjoint 

Let f be the matching assignment for ~ and op (~ 1 , ... , ~n ). For each two variables X 1 and X 2 in 

~with positions p 1 and p 2 , p 1=p 2 is in E if the function eq(f(X 1)J(Xz)), defined below, 

returns true; p 1 ;=p 2 is in E if the function ne (f (X 1)J (X z)), defined below, returns true. 

eq (Op (X 1• ... ,Xn ),Op (X' 1• ... ,X'n)) {;} Op = Op' 1\ eq (X I ,X' 1)/\ ... 1\ eq (Xn .X'n) 

eq (X ,X'){;} X =X'" (:li )(X =X' e Ei) 

ne (Op (X 1• ... ,Xn ),Op (X' 1• ... ,X' n )) {;} Op ;=Op' V ne (X 1.X' 1)v · · · V ne CXn ,X' n) 

ne (X ,X') {;} (:li )(X ~X' e Ei) 

The correctness of the algorithm is left to the reader. 0 

F 2(~.T) are the equalities and inequalities known when a leaf in the discrimination tree of<\> 

is reached (that is, equalities of those internal nodes whose true branch has been taken, inequali

ties of those whose false branch has been taken). 

To implement the algorithm efficiently it is necessary to precompute F 1 and to encode 

F 2(<\>,T) for all useful<!>. This means finding all the "useful" p-patterns. This can be done using 

a closure algorithm. In the algorithm, U contains the p-patterns in the image ofF 2, (those used as 

states of the nodes of the tree) while V contains the p-patterns ir: the image ofF 1, (those used as 

starting points for F z). 



U={<X,0>}; 
V=0; 
repeat 

or each op e Op do 
let n be the arity of op; 

r
or each (\> 1, ... , <\> 11 in U do 

¢=F 1(op ,¢1, ... , <\>n ); 

V=Vu{¢}; 
U=Uu{ all those¢ obtained by evaluating F 2((\>,T)}; 

until no more changes in U or V. 

Finding all P-pattems 

Figure 4.12 

The algorithm in Figure 4.12 generates all the p-patterns that can be obtained using F 2, but 

does not take ·into consideration that some of them are useless, in the sense that some of the 

equalities and inequalities carried in the p-pattern are not used. Removing these p-patterns would 

lead to smaller tables (but no faster matching algorithms). This could be done using another clo

sure algorithm to propagate useful equations backwards from the match sets containing at least 

one pattern (as opposed to a subpattern) of F. 

Some equalities and· inequalities can be determined useless by simple inspection. If an 

equality or inequality involves variables where at least one of the them appears only once in all 

patterns (representing match sets), then that equality or inequality can be dropped safely from the 

p-pattem. 

Consider the pattern set containing the patterns p 1 and p2 of Figure 4.11. 

1 + 
A 

+ -
1\ I I 
XX + + 

1\1\ 
XYYX 

Figure 4.13 shows some of the most interesting parts of the two functions F 1 and F 2 for this pat

tern set. F 2 is represented by the first-discrimination trees inside the dotted boxes, and F 1 is 

represented by the other edges. 
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/"'
T T 

/+\ /+\ 
x 1 x 2x 3 x 

: ....................................... ----- .............................. ----· -----·---·-------------·1 

FirstExampi~ ofF1 andF2 
Figure 4.13 

Restoring the pattern p3 =+(X X) to the pattern set changes things because it forces some 

tests to be performed earlier. The pattern set is: 

1 + + 
A 1\ 

+ - - XX 
1\ I I 
XX + + 

1\1\ 
XYYX 

and Figure 4.14 contains the most interesting parts of the new functions. 



T T 
/+\ /+\ 

X1 X2X3 x 

~--;=~-~-;~~ 
X1 X2 : ______________________________ .; 

_/'\ Xt=X: 
I I X2:::X: 

/+\ /+\ 
= XI X:;X3X4 

• 1 • 

false ij+\l 
~ .-----'=< 

/+\ 
XI X2 

false 

. . 
-------------------·------------------------------------------------------,; 

Second Example ofF 1 and F 2 
Figure 4.14 
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4.4. Explicit Term Representations and the Work of Purdom and Brown 

The previous sections have assumed that the binding predicates have a single input: the sub

tree in the subject tree being analyzed. Thus, a reference to a position implies the extraction of a 

subtree. All uses of the same position in a discriminating tree may share the extraction cost, but 

references to the same position in different discriminating trees imply repeated extractions. The 

cost of these extractions depend on the representation of the tree. An alternative approach is to 

extend the state information that is manipulated at pattern matching time to include an explicit 

representation of the subterms needed for the evaluation of the binding predicate. The subterms 

can now be extracted when the extraction cost i~ minimum, at the point of the matching algo

rithm where the node representing the subterm is being visited, and they can be propagated from 

a node to its ancestors for as long as they are useful and some ancestor of the node might need 

them to evaluate a binding predicate. 

Whether an explicit representation of the terms is cost-effective depends on the cost to 

store, retrieve, and propagate the representation of the subterms and its comparison against the 

cost to extract the subterms from the subject tree. It seems likely that the explicit representation 

is not the best choice for most tree representations. This section presents one algorithm based on 

an explicit term representation developed by Purdom and Brown [PuB87], and discusses briefly 

the problems involved in extending it. 

The main issue in an algorithm involving an explicit term representation is determining 

what subterms have to be kept explicit, and where they should be placed for access by the binding 

predicates and for propagation. The algorithm by Pu:-dom and Brown is intended for a Knuth

Bendix completion algorithm [KnB70] and, as such, places heavy emphasis on the ability to 

increase the pattern set dynamically14
. The states used are explicit representations of match sets 

(which are, as we know, a special type of p-patterns). Associated with each subpattem in the 

match set there is a list of pointers to the subtrees in the subject tree that correspond to the vari

ables in the subpattem. The encoding of the computation of the new subpattems uses a ''curried 

dag" (Section 3.2.2). 

The binding predicate of [PuB87] belongs to the same class that we have used before in this 

chapter: /\pi =qi, where, for each i, Pi and qi are positions in p such that P@p. =P@q,· More 
I 

precisely: 

Definition 4.9 Let F be a non-linear pattern set, and let p E ITF. The slow incremental binding 

predicate of pis the predicate of the form /\pi =qi, where ,for each i, Pi and qi are positions in 
I 

p labeled with the same variable and descendants of different children of the root of p. 

It is pretty straightforward that the slow incremental binding predicate is actually an incre

mental binding predicate as defined in Definition 4.7. We call this predicate "slow" because it 

may use more queries than the optimal binding predicates presented previously. 

The main advantage of using the slow binding predicate is one of simplicity: no special 

effort is needed to determine what subterms to encode in the explicit representation and where to 

encode them. Simply, pointers to all the variables are kept in the (left-to-right) order in which 

14 Since the research reported in this dissertation does not consider changing pattern sets, straight comparisons are 

not directly meaningful. Another way to tackle the problem of "changing" pattern sets is to use a fast algorithm with 

the original pattern set and a patch for the updates. When the updates are beyond some threshold. then the complete 

new set can be analyzed to obtain new tables for the fast algorithm. In a multi-processor situation (wi1ich will be quite 

common in the near future, it seems), computing the new tables can be done concurrently while using the previous 

ones. 
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they appear in a linear array. The binding predicate for a pattern with an n-ary operator at the 

root uses n such arrays for its evaluation. If the predicate is true, the propagation algorithm 

combines the n arrays into a new array corresponding to the variables of the pattern. 

Purdom and Brown show, in [PuB87), how to combine the two operations, testing the predi

cate and propagating values, into a single algorithm that uses a compact representation of the 

binding predicate. Figure 4.15 shows an example of the constructions used by the algorithm. 

The top row shows a non-linear pattern. The bottom row shows different versions of its incre

mental binding predicate. The slow incremental binding predicate is at the left. In the middle, 

the predicate and the propagation are described through four equations between variables in the 

left, and right children of the pattern, denoted as left. Vi and right. Vi, and variables in the pattern 

itself, denoted as self. Vi. These equations are described in a compact form at the right by simply 

listing the slots in the arrays corresponding to the variables. 

* 

+ + 
(\(\ 
XYYX 

(1-1=2·2)(1·2=2-1) self.V 1=left.V 1 12 
self.V2=left.V 2 21 

self. V 2 =right.V 1 

self.V 1 =right.V 2 

Example of a Slow Incremental Binding Predicate 

Figure 4.15 

The compact representation at the right of the second row is called a "substitution map" in 

[PuB87). See that paper for further details. 

Extensions 

If we compare the implementation of pattern matching presented in [PuB87) with one using 

the ideas of Section 4.1.3, we can note the following sources of inefficiency: 

(1) The use of explicit match sets instead of implicit match sets. 

(2) The use of non-optimal binding predicates. 

(3) Somewhat slow testing of the binding predicate, as it has to be interpreted from the sub

stitution maps. 

The last point can be seen as just a detail of the implementation: th~ propagation and testing 

could have been done by direct encoding into a sequence of instructions, thus yielding a faster 

representation but also a probably larger table. The first two points are more important. 

For any pattern matching algorithm, the goal of subter;;1 represesentation is to assign a col

lection of subterms to a state at table construction time. The solving-time values of these sub

terms are then used either to evaluate the binding predicate or to compute the values of subterms 
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associated with nodes higher in the subject tree. The collection of subterrns of interest can be 

found using a closure algorithm that starts by assigning to a state those subterrns used by its bind

ing predicate and then repeats computing new subterrns until no more need to be found. Since we 

assume that the subterrns can only be extracted when the algorithm is visiting the root of the 

node, any subterm that is needed and is not the root comes from a node lower in the tree; these 

are the subterms used in the closure. 

An additional problem appears with algorithms involving match sets. In these algorithms, 

unlike those involving subpattems, a given state may be reached in more than one "way". The 

problem is to decide where to place the subterrns so that they are accessible to the binding predi

cates in a way independent of how the state was reached. For example, consider the pattern set 

Plus :Minus 
/\ /\ 
* X * y 
1\ 1\ 

1y X-
I 

X y 

Figure 4.16 shows part of the functions F 1 and F 2 of Section 4.3 for this pattern set. 



~················-·-········Jf·····x-~~;·: 

i,i, 3 

Example of Alignment Problems with Representation 

Figure 4.16 

The discrimination tree marked ·'A'' requires the presence of the subterm of position 

1·1·1, while that at "B" requires 1·2 ·1. The first value may come from either "C" or "D", 

while the second may come from either "D" or "E". The question is how to lay out the subterm 

representation so that "C", "D", and "E", all can place the pointers to the subterms in a loca

tion that can then be used by "A" and "B" disregarding how it got there. The answer is that 

either "E" or "C" will have to deal with a subterm representation that, from its standpoint, has a 

"hole". "C", "D", and "E" could use [1 ·1, 2 • 1] as a representation. "C" would only store 

into the first slot and leave the second unmodified, "E" would only store into the second and 

leave the first unmodified, and "D" would store into both slots. 

Choosing the slot assignment to minimize the number of ''holes'' might be non-trivial. If 

the minimization is ignored, which is a safe assumption in most cases, a valid slot assignment can 

be chosen by considering all the possible subterms required and leaving space for all of them. 

4.5. Related Work 

Top-Down Pattern Matching 

As in the case of linear pattern matching, top-down algorithms are somewhat simpler, but 

slower, than bottom-up algorithms. 
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A very simple algorithm for non-linear N-pattern matching based on a top-down traversal is 

described in [Sny82]. The algorithm starts by detecting common sub-expressions in the subject 

tree. The algorithm then maintains a list of partial matchings, where a panial matching is com

posed of a pattern, a node in the subject tree, a (maybe incomplete) substitution, and an indication 

of what ponion of the pattern has already been considered so far. This list is updated as the sub

ject tree is traversed. 

The algorithm requires traversing two lists at each node of the subject tree: the list of 

"active" panial patterns to enlarge, and the list of "possible" patterns to stan. This makes the 

algorithm quite slow. There is no precomputation at all, and the list of patterns is searched 

always to determine which new patterns h::Jve to be added. It might be possible to pre-analyze the 

set of input patterns so that it is not necessary to traverse the whole list over and over again; prob

ably some of the ideas in [KMR72] could be used. But it is not clear how to carry the idea further 

and get rid of the traversal of the list of active panial patterns. 

Splitting Using the Number of Parents 

The previous sections have emphasized how to do pattern matching using equality tests on a 

subject where common subexpressions have been detected and encoded in the form of a computa

tion dag. One piece of information present in the computation dag that none of the previous algo

rithms has used explicitly is the number of parents of a node. In panicular, if the number of 

parents of a node is just one, then the subterm described by the node is not being used in more 

than a single place in the subject. This information could be used to discard from consideration 

as members of the match set of the node all those patterns that would require the subterm to 

appear more than once. 

The main advantage of such an approach would be that if a portion of the subject does not 

contain any common sub-expressions no tests for them would be considered, since the matching 

algorithm assigns to the nodes only states corresponding to subterms with a single parent. A state 

including binding predicates would be reached only when a subterm in the subject has the 

minimum number of parents. 

This idea is not explored any further. Probably the most practical application of this idea 

would limit itself to differentiating subject nodes with one parent from those with more than one 

and likewise with the states. Such an approach could make up for the additional cost of checking 

the number of parents of the node. 

In theory the algorithm is not fully satisfactory since there is a potential for a combinatorial 

explosion in the number of states. Also the algorithm docs not attain the goal of doing pattern 

matching on a cost (including evaluation of binding predicates) linear on the number of edges of 

the original subject dag15. In some sense, this algorithm is just one method -not panicularly 

clean - of making context present in the subject available to the matching algorithm. A cleaner 

soluticn could be a two-pass algorithm that would, first, in a top-down phase, transmit context 

information down the subject, and then, in a bottom-up phase, would collect it arid find all the 

matches neatly. 

4.6. Summar~· of the Algorithms in this Chapter 

This chapter has several new contributions to the theory of non-linear pattern matching. 

The key notion is the equation non-linear mate/zing = linear matching + binding test. The 

chapter has explored in some detail its implications, obtaining new algorithms that speed up the 

matching process by increasing the size of the tables representing the matching functions. In 

15 An example is left to the reader. 
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addition, the results on optimal binding predicates allow further reduction in the matching cost. 

A nice property of the algorithms presented here is that the extra power of the non-linear 

matching is used (for the most part) only on those patterns that need it. If a linear pattern set is 

used, the algorithms degenerate to the linear pattern case. The only exception is with a naive 

implementation of explicit subterrn representations using a substitution map, but careful encoding 

can avoid this problem. 

This chapter has explored a moderate number of approaches to non-linear pattern matching. 

Lack of time has prevented the author from following the next obvious step: select a specific 

application for non-linear pattern matching, implement several of the algorithms, and measure 

their performance. This is a topic for future research. 
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CHAPTERS 

Bottom-Up Re,,Tite Systems 

Everything that goes up must go down 

[after Newton] 

Recall the definition of REACHABILITY: 

Definition 2.28 Let R be a rewrite system over Op, and let Lin and Lout be two sets of trees over 

Op. The REACHAB!UIY problem for R, Lin, and Lout is, given T e Lin and T e Lout, to deter

mine whether there is a rewrite sequence 't for R applicable at T such that 't(T) = r , and, if so, 

to produce one such 't. 

If Lout is a singleton ( G } , then the REACHAB!UIY problem is called the fixed goal REACHA

BILJFY, and G is called the goal. 

In this chapter we study mostly the fixed-goal REACHABII.ITY problem for a particular class 

of rewrite systems. For the most part, the input language, Lin is restricted to be the set of all trees 

Lop• although Section 5.5 answers some questions relative to any set Lin e RECOG. Variable-goal 

REACHABll..ITY is studied in Section 5.3.1. All rewrite rules contain only linear N-patterns. 

REACHABII.ITY, even fixed goal REACHABII.ITY, is unsolvable in general, since it can model 

the HALTING problem, but it can be solved for special classes of rewrite systems. This chapter 

defines two classes of rewrite systems. Bottom-up rewrite systems (BURS) have an algorithm 

for solving REACHABILITY; finite bottom-up rewrite systems (finite BURS) have a very efficient 

algorithm for solving fixed goal REACHABII.ITY in time linear in the size of the input tree. Finite 

BURS have an important practical value: Chapter 6 shows how they can be used to solve locally 

optimal instruction selection, and Section 7.2 shows how they can be used to define tree 

languages and a generalized notion of homomorphism. 

The algorithms to solve variable-goal REACHABII.ITY and fixed-goal REACHABILITY are 

based on several notions of state to be associated with the nodes of the input tree. All the notions 

satisfy two basic requirements: 

(ST A TE-l) The collection of states associated with the nodes contains enough information to 

characterize all the "interesting" rewrite sequences that are applicable to the input 

tree. 

(ST A TE-2) The states can be computed in a bottom-up pass over the input tree. 

In all cases, the "interesting" rewrite sequences are restricted to be in a bottom-up normal 

form: all rewrite applications are done as low in the tree .:s possible. All non-looping rewrite 

sequences can be reordered so that they are in bottom-up normal form. A rewrite sequence for 

some input tree T in normal form assigns to each node N in T a local re\\Tite sequence: a 

sequence composed of the rewrite applications that cannot be done ''below'' N and do not need 

the result of applications to nodes ''above·' N. The class BURS contains all those rewrite systems 

for which there is a positive integer k such that all local rewrite sequences have at most k rewrite 

applications. Section 5.1 defmes these notions. There are several useful subclasses of BURS. 

Many of them are based on the idea of reduction systems: rewrite systems in which the rules 

always "reduce" the size of the input tree. Reduction systems are presented in Section 5.2. 
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We use three notions of state in this chapter: proto-states, local rewrite graphs (LR graphs), 

and uniquely invertible local rewrite graphs (UI LR graphs). The flrst notion is used to solve 

variable-goal REACHABll.ITY in BURS, the last two are used for flxed-goal REACHABILITY in fmite 

BURS. 

The "interesting" rewrite sequences considered in the proto-state associated with a node 

are all the nonnal fonn rewrite sequences applicable to the subtree of the input tree rooted by the 

node. Proto-states encode the result of applying these rewrite sequences to the input tree and 

allow a three-pass algorithm to solve variable-goal REACHABILITY. The proto-states associated 

with the nodes of an input tree can be computed in a bottom-up pass; then they can be consulted 

by a top-down traversal to find (if it exists) a local rewrite sequence associated with each node, 

which, finally, can be collected in a final bottom-up pass to obtain a rewrite sequence transform

ing the input tree into the output tree. 

Proto-states can contain an unbounded amount of infonnation, which leads to inefficient 

algorithms. This is not necessary in many applications. In the notion of a local rewrite graph 

(LR graph) used for fixed goal REACHABILITY (Section 5.3), the "interesting" rewrite sequences 

considered are all those normal fonn rewrite sequences that are applicable 16 to the subtree of the 

input tree rooted by the node and also can lead to the goal tree. The information stored in the 

state is the effect of the local rewrite sequences on members of an extended pattern set. In gen

eral, this set can be infinite; if it is finite, the rewrite system is said to be finite BURS, and fixed

goal REACHABILITY can be solved very efficiently. 

LR graphs contain more infonnation than is needed to solve fixed-goal RE.!-. :HABTI.ITY; the 

related notion of a uniquely invertible LR graph (UI LR graph) leads to a smiller number of 

graphs (where each graph corresponds to a state). Tnis notion is obtained by restricting further 

the set of "interesting" rewrite sequences. UI LR graphs are introduced in Section 5.4. Section 

5.5 discusses some modifications to the algorithms and definitions that can be made when the 

input set of interest is some recognizable tree language. The implementation considerations of 

the algorithm are discussed in Section 5.6. 

The chapter concludes with a brief summary of related work. References to other related 

work can also be found in Chapter 6. 

5.1. Normal Forms 

The basic notion in BURS theory is that of a bottom-up normal form. Due to Proposition 

2.14 we can igr10re looping rewrite sequences. 

Definition 5.1 Let 't be a valid rewrite sequence without loops. t is in normal form at e if it is 
of the form t 1 · · · 'tn to. and 

( 1) For all i, I:::;i :::;n, all rewrite rule applications in 't; are at positions that are descendants of 

i; and, 

(2) There is no rewrite sequence t', equivalent to 't, and of the form t 1 · · · 'tnt' 0, where t' 0 is a 

permutation of t 0 starting with a rewrite application of the form <r ,kllp >for some k, 

I:::;k :::;n, and some position p. 

'tis in normaljorm (everywhere) zfit is in normalform ate, and, 

(3) for l:::;i:::;n, (t.- )@i is in normal form. 

16 Actually, just a subset of them; see Section 5.3.2 for details. 
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As an example, the rewrite sequence shown in Figure 5.2 is a valid rewrite sequence for the 

rewrite system ofFigure 5.1. It is applicable to +(0, +(Const, Const)), and is in normal form. 

biOp ~ reg 
~ 

amode amodc 

rl 

reg ~ amode 

'4 

0 ~ Const 

'7 

+ ~ biOp 
1\ 1\ 
XY XY 

riO 

Rewrite Rules 

Reg ~ reg amode ~ reg 

,7 ,1 

Const ~ amode + ~ a mode 
/"-._ 

Const reg 

'" 
+ ~ X 
1\ 
xo 

rR 
I 

- ~ bi<)p 
1\ 1\ 
XY XY 

'n 

Example of a Rewrite System 

Figure 5.1 

rf. 

+ ~ + 
1\ 1\ 
XY YX 

rq 



• 

... 

/+~ <r 1,2> 

o ~oz 
amodeamode 

A Normal-Form Rewrite Sequence 

Figure 5.2 

/+~ 
o ~oz 

amodeamode 

reg 

Proposition 5.1 Let R be a rewrite system and let <1> be a valid non-looping rewrite sequence for 

R. Then there exists a permutation of <1> in normal form. 
Proof We first construct a permutation of <1> in normal form at e. 

We construct a series of rewrite sequences <j>0 ,<j>1 , ..• such that for each <j>i in the series, <j>i is 

a permutation of <j>, and 

(*) <j>i is of the form <j>i 1 · · · <j>i n <j>i 0 satisfying part (1) of De f. 5.1, and with 

length(<j>i 1 •· ·<t>in)=i. 

<j>0 is defined to be <j>. <j> 0 is clearly a permutation of <j>, and <j> 0 satisfies (*)with <j>01=e for j, 

l5:j 5:n. 

For i ~0. <j>i+1 is constructed from <j>i. If <j>i is not in normal form ate then, by condition (2) 

of Definition 5 .2, there exists a <t>i 0' = <r ,l lip >'V. 15:l5:n , which is a permutation of <j>i 0. Define 

<1>i+1
1 to be_<j>i 1 for all j, l5:j5:n and j:t:l, define <1>i+1

1 to be <l>i 1 <r ,l!lp >.and defme <1>i+1
0 to be 'V· 

The new <1>'+1 is a permutation of <1> and satisfies(*). 

The series <j>0 ,<j> 1 , ... cannot be infinite because for any <j>i, i =length(<\>; 1 · · · <1>; n) 5: length(<\>). 

Hence there must exist a <j>k such that <j>k is in normal form at e. To obtain a ~ermutation of <j>k 

which is in normal form, apply the above construction recursively to <j>k 1, ... , <1> n. 0 

A rewrite sequence for an input tree in normal form assigns to each position in the tree a 

local rewrite sequence: the rewrite applications done at that position. Formally: 

Definition 5.2 Let 't be a normal form rewrite sequence of the form 't1 · · · 'tn 'to that is applicable 

to a tree T. The local rewrite sequence assigned by 't to a position p in T is defined by 

F(T,'t,p), where 

(1) F (T ,'t, e) is 't0, and 

(2) if p is of the form i//q, for some i, 15:i 5:n, and T is of the form op (T 1, ... , Tn ), then 

F (T ,'t,p) is F (T; ,'ti, q ). 

The local rewrite assignmellt of 't and T is the function assigning to each position in T its 

local rewrite sequence. 

95 
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For ex:1.mple the local rewrite sequence assigned by the rewrite sequence of Figure 5.2 at 

the position 2 of the input tree is <r 10,2> <r 1,2>. 

Proposition 5.2 Let R be a rewrite system for Op, letT be a tree over Op, let p be a position in 

T, and let 't be a norma/form rewrite sequence over R applicable toT. 

Let 't be a normal form rewrite sequence applicable to a tree T, and let p be a position in 

T. Let F be the local rewrite assignment of 't and T. Let F below be the function assigning F (q) 

to each position q in T that is a strict descendant of p , and the null rewrite sequence to the other 

positions in T. Similarly, let Faround be the function assigning the null rewrite sequence to all 

positions in T that are strict descendants ofp, and F (q) to all other positions q. 

There is a normal form rewrite sequence 'tbelow whose local rewrite assignment is F below. 

'tbelow is applicable toT @p. There is a normal form rewrite sequence 'taround whose local rewrite 

assignment is Farowui. If T' ='tbelow (T @p) and ta=F (p ), then 'to is applicable to T @pt-r, and 

'taround is applicable to 'to(T''), where T is T @pt-r. 

'tbelow is said to be the rewrite sequence assigned by 't below p. 'taround is said to be the 

rewrite sequence assigned by 't around p . 

Proof Straightforward and left to the reader. D 

Returning to Figure 5.2, the rewrite sequence assigned by the rewrite sequence of the figure 

below 2 is <r 5,2 • 2> <r 5.2 • 1>; and that around 2 is <r9,£> <r 8,£>. 

We can now define the BURS(k) property and the BURS class. 

Definition 5.3 Let k be a positive integer and let 't be a rewrite sequence in normal form appli

cable at some input tree T. 't is in k-normal form if it is in normal form and each of the local 

rewrite sequences assigned by 't to the nodes ofT is of length at most k. 

Let R be a rewrite system over Op, let Lin and Low be sets of trees over Op, and let k be a 

positive integer. The triple <R Lin Low> is said to satisfy the B URS(k) property if for any two 

trees T e Lin and T' e Low and any sequence 't in R, with -r:(T)=T', there is a permutation of 't 

which is in k -normal form. The class BURS is composed of those triples <RLin Low> satisfying 

the BURS(k) property for some positive integer k. 

In the rest of this chapter, Lin is frequently L0 P' the set of all trees over the operator set Op. 

Also, Low is frequently the singleton { G } for fixed-goal REACHABll...ITY problems, and, Lop for 

variable-goal REACHABILITY problems. Since this dissertation solves many problems involving 

only these special types of triples, frequently we will use the phrase "a rewrite system R is in 

BURS" to mean that the triple <R,L0P'{G }>,or <RL0 P'L0 p>. depending on the context, is in 

BURS. 

The rest of this chapter assumes only N-patterns because, except in some particular cases, 

rules with an X-pattern as input pattern inhibit membership in BURS. 

Similarly, in general, rewrite systems with non-linear patterns are not in BURS. Non

linearity in the input patterns could be handled by "weakening" the definition of BURS so that 

instead of allowing only a ''permutation'' of the original rewrite sequence, duplication of subse

quences would be allowed. This would make it possible to ''move forward'' rewrite applications 

done "late" in the original rewrite sequence by duplicating them in each of the subtrees matched 

early on. Unfortunately, this definition would not match the semantics of many applications. 

Non-linear output patterns are more difficult. The multiple copies of the subtrees produced by the 

non-linear output pattern can be modified by unrelated rewrite sequences. 

In addition, note that in some cases non-linear rewrite systems do not describe the desired 

semantics. For example, in a rewrite sys:em describing a target machine (Chapter 6), a symbol 

like register will represent a computation value stored into some member of a register class. A 
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rewrite rule like -(X .X)~ 0 is normally intended to apply only to the original input tree, but if 

added to the rewrite system, it would also allow rewrite applications like 

-(register ,register)~ 0, which is probably incorrect as there is no guarantee that both 

occurrences of register refer to the same register. Finally, rewrite rules with an input pattern 

equivalent to X will, in general, produce unbounded local rewrite sequences and lead to the 

failure of the BURS(k) property. 

For all these reasons, the rewrite rules in this chapter are restricted to contain only linear N

pattems, and do not allow input patterns equivalent to X. For example, if R denotes the rewrite 

system of Figure 5.1, then <.R,L0 P ,{reg}> satisfies the BURS(3) property. An example of a local 

rewrite sequence oflength 3 is: 

+ 
/"--,. 

arnode amode 

biOp 
~ 

amode amode 

~ reg ~ arnode 

An example of a rewrite system that is not in BURS is the one of Figure 5.3, for L 0111 ={d}. 

The only normal form rewrite sequence from a (b (b ( ... (b (c)) ... ))) to d assigns to each non-root 

node an empty local rewrite sequence, and the rest of the sequence is assigned to the root. 

Rewrite Rules 

a ~ a a ~ d 

I I I 
b a d 
I I 

X X 

Example of a Rewrite System not in Bl.JRS 

Figure 5.3 

Testing the BURS(k) property is easy when both Li,. and L 0111 are Lor First we prove a 

very useful proposition: 

Proposition 5.3 Let R be a rewrite system over a set of operators Op, and let k be a positive 

integer. There is an algorithm that will generate every rewrite sequence 't that is a local rewrite 

sequence at some position p of some tree T in Lop and such that length ('t):::k. 

Before proving Proposition 5.3 we prove three auxiliary lemmas. The first lemma gives a 

strong necessary condition for local rewrite sequences. 

Lemma 5.1 Let R be a rewrite system over a set of operators Op. Let 'to be a non-empty local 

rewrite sequence for some position p of some tree T over Op. Then for every prefix<\> of 'to of the 

form 'l' <r ,q > and such that 'lf::;te, we have 
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( 1) 'V has a composition <~~~'V.p >. 

(2) q =p /Is ,for some positions of~'V that does not correspond to a variable. 

(3) <\>has a composition <~~~0.p>. 
Proof The proof proceeds by induction on the length of 'V· 

We first note that (3) follows from (1) and (2) by Proposition 2.15; (3) is stated just as a 

convenience in the proof. 

Basis. Assume that length ('V) = 1. Then, by definition of local rewrite sequence, 'Vis of the 

form <a~~.p >. (1) follows trivially. If (2) were false, then, since the input pattern of r is not 

equivalent to X, q would be of the form p flu /It for some position u in ~ corresponding to a vari

able and some position t, and part (1) of Proposition 2.17 shows that an exchange could be per

formed between <a~~.p > and <r ,q >. If p :Fe this provides a contradiction that 1:0 is a local 

rewrite sequence. If p = e then a =X, which contradicts the hypothesis. Hence, (2) must be true. 

Induction Step. Assume the body of the proposition true for all prefixes 'I( with 

length ('\jl') = k, we want to prove the body of the proposition true for all prefixes 'V with 

length ('V) = k + 1. Let 'V be a prefix of -r0 oflength k + 1. By definition of prefix, there is a prefix 

\jf of 1:0 of length k such that 'V=V <r' ,q'>. By part (3) of the inductive hypothesis, (1) is true 

for 'V; let <~~~w.P > be the composition of 'V· (2) follows by the same argument used in the 

basis, that is, if (2) were false, then q would be of the form p 1/u//t for some variable position u in 

~ and some position t, and part (1) of Proposition 2.17 would show that an exchange could be 

performed between <~~~'V.p > and <r ,q >, thus contradicting that 'to is a local rewrite 

sequence or that no rules have input pattern equivalent to X. D 
A simple corollary to Lemma 5.1 is: 

Corollary 5.1 Let 1:0 be a local rewrite sequence at a pDsition p of a tree T. Then 'to has a com

position, and it is of the form <CX...-c ~~'to•P >. 

The second lemma regards testing the equivalence of two rewrite sequences. If the two 

rewrite sequences have a composition, then the::- equivalence can be tested by a simple structural 

check. 

Lemma 5.2 Let R be a rewrite system over Op. Let 1: and 1:' be two rewrite sequences with com

positions a,;~~'t and 0-,;.-?~'t'· Assume that Vars(aJnVars(<:L;-)=0. Then 1: is equivalent to-r' if 
and only lf there is a one-to-one function f from Vars( a,;) into V ars( a..r) such that f ( a)=a' and 

f <~)=W. 
Proof Straightforward and left to the reader. 0 

The final lemma presents some properties regarding the validity of rewrite sequences in a 

particular form. 

Lemma 5.3 The following statements are true. 

( 1) Let R be a rewrite system over Op. Any prefix of a valid rewrite sequence over R LS a valid 

rewrite sequence over R. 

(2) Let <a~~.p > be a rewrite application for some position p, and let <a' ~W.q > be a 

rewrite application with q =p II s, for some position s in ~ that does not correspond to a 

variable in~· Without loss of generality assume that Vars(~)n Vars(a') = 0. Then, 

(2.1) If <a~~.p ><a' ~W.q > is valid, then ~@s is unifiable with a'. 

(2.2) If~@s is unifiable with a' then <a---t~,p > <a'---tW,q >is valid. 

Proof: (1) is straightforward. 
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(2.1) The unification assignment is constructed from the tree T provided by the validity of 

<a.....,~.p >, and the assignment required by <a' -1W ,q > being applicable at the result of applying 

<a-1~,p > to T. 

(2.2) If T is a tree at which <a-1~.p > is applicable, and cr is the assignment resulting from 

th~ match of a to T, (2.2) follows by using the unification assignment, T. and cr to construct the 

assignment for the validity of <a-1~,p ><a' -1W,q >. 

The details of all the proofs are left to the reader. 0 

Lemma 5.3 can be used to construct an algorithm determining whether a rewrite sequence 

1:0 satisfying the conditions (1)-(3) indicated in Lemma 5.1 is valid or not. The algorithm tests 

the validity of all the prefixes of 1:0. If any prefix is not valid then, by part (1) of Lemma 5.3, 1:0 is 

not valid. The validity of a prefix <\> = 'V <r ,q > is tested by first finding the co::1position of 'V and 

then using pan (2) of Lemma 5.3. 

Now we return to our original proposition: 

Proof of Proposition 5.3: By Lemma 5.1 we can generate a collection of rewrite sequences 

that will include all the local rewrite sequences of length no larger than k. For each one of these, 

by Lemma 5.3 we test whether the rewrite sequence is valid. Let 1: be one such valid rewrite 

sequence. By construction it has a composition, let it be ~_,~'t· Let S (1:) be the set of those 

rewrite sequences that are obtained by reordering the rules in 't and which use positions of height 

no larger than the maximum of height(~) and height(~'t). S('t) is a finite and constructible set, 

and the permutations of 't are those rewrite sequences in S (1:) which are equivalent to 1:. The 

equivalence between a rewrite sequence cr in S (1:) and 1: is equivalent to the conjunction of the 

following three conditions: (1) cr is applicable to ~ (as a tree), (2) the application produces ~'t (as 

a tree), and (3) the application "uses" all the nodes of ~ (i.e. if the nodes of ~ are initially 

marked as being "unused" and are marked as "used" whenever their labels are used, then in no 

rewrite application in cr a variable matches a subtree containing • 'unused'' nodes). 't is a local 

rewrite sequence for <.R,L0P ,L0P > if there is no cr inS (1:) equivalent to 1: violating condition (2) 

of Definition 5 .2. 0 
Given a rewrite system R, <.R,L0 pLop> satisfies the BURS(k) property if and only if there 

is no valid local rewrite sequence of length k+l. From Proposition 5.3, it follows: 

Proposition 5.4 Let R be a rewrite s; "tem over a set of operators Op, and let k be a positive 

integer. There is an algorithm that will determine whether <RLopLop> satisfies the BURS(k) 

property. 

A simple consequence of the notion of composition of a rewrite sequence and the definition 

ofBURS(k) is: 

Proposition 5.5 Let R 1 be a rewrite system over Op, and let Li and L 0 be sets of trees over Op. 

Let <.R 1 Li ,L0 > satisfy the BURS( k) property for some positive integer k. Then there is a rewrite 

system R2 such that <R2Li Lo > satisftes the BURS( 1) property, and such that R2 implements the 

same transformation as R 1 and there is a one-to-one mapping between the normal form rewrite 

sequences in R 1 and in R2. 

Proof R2 is constructed from R 1 by adding the composition of all the local rewrite sequences in 

it. Since there are a finite number of local rewrite sequences, there are a finite number of new 

rules added. 0 

5.2. Some BURS Classes 

There are significant classes of rewrite systems in BURS. Reduction rewrite systems are a 

class of rewrite systems that proceed by "reducing" a tree. 
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Definition 5.4 A reduction rewrite system, R, over an operator set with arity, Op, is a collection 

of rewrite rules of one of two types: 

(1) A rename rule is of the form op (X 1 •... ,X,.)--:, op' (X 1t(l)· ... ,X1t(m)),for some permu

tation 1t and some m ,for m $.n . 

(2) A reduction rule is either of the form T -:,op, for some tree T over Op, or 

op (X 1, ... ,Xm)-"Xi ,for some 1$.i$.m. 

The main propeny of reduction systems is: 

Proposition 5.6 Let R be a reduction system over Op, then, <.R,L0P .Lop> is in BURS. 

Proof Let R be a reduction system. Any local rewrite sequence 't satisfying the characterization 

of Lemma 5.1 is of one of four forms: (i) 't =a, where a is a, possibly null, rewrite sequence con

taining only rename rules for nullary operators; (ii) 't = a'~a. where a is as above, a' is a, possi

bly null, rewrite sequence containing only rename rules for operators Jf arity larger than 0, and ~ 

is an application of a reduction rule of the form T -:,op ; (iii) 't = a'W, where a' is as above, and W 
is a single reduction rule of the form op (X 1, ...• Xm )-:,Xi; or (iv) a' where a' is as above. Let 

the arity of the root operator of the input pattern of the first rule in a' be n, and the number of dif

ferent operators in R be m. Since local rewrite sequences have no loops, any candidate rewrite 

sequence is no longer than n !+m. Membership in BURS follows directly from that and Proposi

tion 5.1. D 
It is instructive to show how some particularly tempting extensions to Definition 5.4 are not 

in BURS. 

Relaxing the definition of rename rules so that it is possible to rename a single operator in 

some lower context seems a reasonable extension since the only ''context' ' employed is the 

lower one, and it seems plausible to collect all the desired information in a bottom-up phase and 

use it accordingly. The rewrite system containing the rules: a(b(X))-:,aa(b(X)), 

b (b (X ))-:,bb (b (X)), b (c )-:,c. aa (c )-:,d, and bb (c )-:,c is a counterexample. This rewrite sys

tem behaves similarly to the one in Figure 5.3. 

Another possible extension to reduction systems would be to allow lower context only in 

reductions. Again, this extension includes rewrite systems not in BURS. An example is shown in 

Figure 5.4, where+, Fetch. and register are the operators. 

+ ~ + + ~ 

~ 1\ ~ 
register 

Fetch 
I 
X 

Fetch XY register register 

I 
y 

Second Example of a Rewrite System not in BURS 

Figure 5.4 
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To show that it does not belong to BURS, take any positive integer k and consider the tre.e of 

height k+3 

+ 
~ 

Fetch Fetch 
I I 

Fetch Fetch 
I I 

i 
Fetch Fetch 

I I 
register register 

No nonnal fonn rewrite sequence yielding "register" has a local rewrite sequence at the 

root of this tree of length less than k . 

5.3. State Characterization 

We now follow the approach described in the introduction of this chapter. A nonnal fonn 

rewrite sequence defines a local rewrite assignment. Conversely, a local rewrite assignment 

uniquely detennines one rewrite sequence (up to pennutations). This leads to a first characteriza

tion of the interaction of a rewrite system on a subtree: the proto-state. A proto-state can be used 

to solve variable-goal REACHABILITY; later notions have more restricted applicability but are 

leaner and allow faster implementations. 

5.3.1. Proto-States 

Definition 5.5 Let R be a rewrite system over Op, and let <RLop Lop> be in BURS. The proto

state associated with a tree T is the set of triples <'t,T 1 ,T 2> such that there is a normal form 

rewrite sequence 1t such that 7t(T) = T 1 and 't is a local rewrite sequence with 't(T 1) = T 2. T 1 are 

the input trees and T 2 the output trees of the proto-state. 

Proto-states contain enough infonnation to characterize all the rewrite sequences, thus satis

fying (ST A TE-l), and can be computed bottom-up, satisfying (ST A TE-2). This follows directly 

from the argument used in the proof of Proposition 5.4, which shows that we can enumerate all 

the local rewrite sequences of a rewrite system in BURS. Hence: 

Proposition 5.7 Let R be a rewrite system over Op, and let <R,L0 P ,Lop> be in BURS. Let St(T) 

denote the proto-state associated with tree T. There is a function f such that 

St (op (T 1• ... , Tn )) = f (op ,St (T 1), ... ,Sr (Tn )). 

Variable-goal REACHABILITY between T and T' for a system R, can now be solved as fol

lows: 

(1) Compute all the proto-states of the input tree T as described above. 

(2) Compare the goal tree T' against all the output trees in the local rewrite sequences of the 

proto-state associated with T. There will be a rewrite sequence in R from T into T' if 

and only if at least one of the comparisons succeeds. Set N, the current node, to the root, 

and set G , the current goal, to T' . 

(3) Let T = Op (T 1, ... , Tn ). Select a local rewrite sequence 'tN from the proto-state of T, 

rewriting some input tree I into G. There must be one. By construction of the local 

rewrite sequences, I must have the fonn Op(G 1, ... ,Gn). Repeat this step recursively 

for all i, lSi Sn, setting T to Ti, G to Gi, and N to the root of Ti. 
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(4) The above steps select, if it exists, a local rewrite assignment corresponding to a normal 

form rewrite sequence from T into T'. A postfix concatenation of the local rewrite 

sequences produces the desired rewrite sequence. 

If R is in BURS, then each proto-state will be finite, and the above procedure is an algorithm 

for solving variable-goal REACHABIUTY. Hence, 

Proposition 5.8 Let R be a rewrite system over Op, and let <RLop Lop> be in BURS. There is 

an algorithm to solve variable-goal REACHAB!Lm' for R, Lop, and Lop. 

5.3.2. LR graphs 

In practice, proto-states may contain either too many trees, or trees that are too large, or 

both, and the algorithm outlined in the previous section may become impractical. The notions of 

LR graphs and UI LR graphs alleviate these problems for fixed-goal REACHABll.lTY while still 

satisfying (STATE-1) and (STATE-2). LR gr;;.phs are studied in this section, while UI LR 

graphs are studied in the next section. Each such graph will correspond to a state. 

As mentioned at the beginning of this chapter, the notion of LR graphs can be obtained 

from that of proto-states by changing what sequences are "interesting" and modifying the 

"information" that is encoded in the state. LR graphs consider a special type of normal form 

rewrite sequences that may transform the input tree into the (fixed) goal tree. 

Definition 5.6 Let R be a rewrite system over Op, and let 't be a normal form rewrite sequence 

over R applicable to some tree T over Op. For every position p in T, let <ap --t~P ,p > be the 

composition of the local rewrite sequence associated with p by 't. We say that 't is efficient if for 

every position p in T, for any position q in aP such that there is a variable X at position q in CJ..p 

that does not appear in ~P (thus mahng aP--t ~P an erasing rewrite rule), 't assigns an empty 

local rewrite sequence to any position that is a descendant ofpl/q. 

Intuitively an efficient rewrite sequence is one without "obviously inefficient" rewrite 

applications. The following proposition shows that we can consider only efficient rewrite 

sequences for solving fixed-goal REACHABILITY: 

Proposition 5.9 Let R be a rewrite system over Op, letT be a tree over Op, and let G be a nul

lary symbol in Op. There is a rewrite sequence, 't, in R, such that -r(T)=G if and only if there is 

an efficient rewrite sequence 't' in R such that -r'(T) =G. 

Proof Let 't be a rewrite sequence in R such that -r(T)=G. First obtain from 't an equivalent 

rewrite sequence 'tnt in normal form. 'tnf assigns to each position in T a local rewrite sequence. 

Now perform a postorder traversal of the nodes in T removing all the local rewrite sequences that 

violate the definition of efficient. The resulting set of local rewrite sequences can be composed to 

obtain the desired rewrite sequence 't' since the only local rewrite sequences removed are those 

whose effect will be discarded by the application of an erasing rewrite rule. Note that 't' is not 

necessarily equivalent to 't since -r' applies to a larger set of trees since the rewrite applications in 

't that were removed need not be applicable for -r' to be applicable. 

The reverse implication is immediate. 0 
Efficient rewrite sequences also satisfy: 

Proposition 5.10 Let R be a rewrite system over Op, let T be a tree over Op, and let G be a 

nullary symbol in Op. Let 't be an efficient rewrite sequence in R such that 't(T) =G. Then 't has 

a composition. 
Proof The proof is left to the reader. It uses Proposition 2.15 and the restriction that the goal G 

is a tree with a single node. 0 
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Now we continue defining the notion of an LR graph, a state. Intuitively, we will encode 

only enough information in the state associated with a node N so that we can decide what local 

rewrite sequences can be applied at any node that is an ancestor of N. To determine this, we start 

by considering the composition of each local rewrite sequence (Definition 2.24). The input pat

tern of the composition encodes how much information is needed to determine that the local 

rewrite sequence can be applied. Since the information (that is, the patterns) available at a node 

is collected by the descendants of the node, the complete set of patterns that have to be encoded 

into the states corresponds to some type of closure of the set of input patterns of the local rewrite 

sequences under the application of the local rewrite sequences themselves. The extended pat

tern set is a set of patterns that satisfies the above requirements. 

The notion of extended pattern set depends on the rewrite system R and the goal G. This 

notion has a technical problem similar to the one present in the definition of match set (Def. 3.4): 

we want to collect an interesting set of patterns, but we don't want to have two equivalent pat

terns in the collection. The solution used in Def. 3.4 was to draw patterns only from the "canoni

cal set" ITF. Unfortunately, here we don't readily have such a canonical set. (Actually, the 

extended pattern set will become a canonical set for further constructions). This makes the 

definition more cumbersome than desired. 

Definition 5.7 If 't is a local rewrite sequence with m rewrite applications, and composition 

<X.c~P-c. let pre('t,i) denote, for O~i9n, the i-th prefix of 't (thus pre('t,O)(<X.c)=<X.c, and 

pre ('t,m )(<X.c) = PJ. 

Let R be a rewrite system over Op and let G be a nullary operator in Op. We define three 

sets of patterns, I'R ,G, O'R ,G, and M' R ,G, over Op as the minimum set satisfying the rules (1 ), (2), 

and ( 3) defined below. The extended pattern set of R and G, EF R ,G is a =-reduction ( Def 3.1) 

of the union of I'R ,G, 0' R ,G, and M'R ,G. The set of input patterns, IR ,G, is the subset of EF R ,G 

that is equivalent to I'R,G; the set of output patterns, OR,G• is the subset of EFR,G that is 

equivalent to 0' R G; and the set of of intermediate patterns, M R G, is the subset of EF R G that is 

equivalent to M'R .. G. . . 

( 1) G belongs to 0' R G . 

(2) Let 't be a local rewrite sequence with composition <X.c ~ P-c· Let p be a pattern in 0' R ,G 

non-equivalent to X, and let p' be a pattern equivalent to p and variable-disjoint from P-c· 

If P-c unifies with p', let cr be their most general unifier. Let y(j) denote pre('t,j)(a(<X.c)). 

Then, 

(2.i) If there is no pattern in I' R .G equivalent to "1(0), )'(0) is added to I'R ,G; 

(2.ii) For every j, 0<} <m, if there is no pattern in M'R G equivalent to y(j), y(j) is added to 

M'R.G; and · 

(2 .iii) If there is no pattern in 0' R ,G equivalent to "f._m ), )'(m) is added to 0' R ,G. 

( 3) For every pattern p in r R ,G, and every child p' of p, if there is no pattern in 0' R ,G 

equivalent to p', p' is added to 0' R c . 

The intention of the extended pattern set is to reflect all the "situations of interest" that 

may arise in normal form rewrite sequences from trees in Lin into G. Currently Lin is restricted 

to be Lop, but hopefully future research will extend the above construction algorithm to more 

general input and output languages. In the above definition, I R ,G are the patterns of interest at the 

beginning of local rewrite sequences, MR ,G are those at the middle, and OR ,G those at the end of 

the local rewrite sequences. The patterns in OR ,G are those used to construct members of IR .G 

"higher up" into the tree. The construction iteration in Definition 5.7 stops at X because we will 

characterize only efficient rewrite sequences. 
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Definition 5.7 provides a constructive mechanism to compute the extended pattern set 

because, by Proposition 5.3 we know how to generate all the local rewrite sequences of nonnal 

fonn rewrite sequences applicable at trees in Lop. Figure 5.5 shows the results of the construc

tive algorithm described in Definition 5.7 in the case where R is defined to be the rewrite system 

of Figure 5.1, and G is the pattern reg. The figure presents a table with two columns of patterns, 

corresponding to the input and output nodes. 

OR.frevl 
reg 

am ode 
Canst 

0 

IR .fre~ \ 
Reg amode 

+(Canst, reg) +(reg, Canst) 
Canst reg 

biOp (amodc, amode) +(amode, amode) 
+(reg ,0) +(amode ,0) 
+(0, reg) +(0, amode) 

+(0, 0) 0 

An Extended Pattern Set 

Figure 5.5 

-(am ode , am ode ) 
+(Canst ,0) 
+(0, Canst) 

Note that +(amode, amode) e I R ,reg by an application of step (2) in Definition 5. 7, with 

p =reg and 't = <r 10, e> <r 1, D, and that +(amode, 0) e I R ,reg also by an application of step (2) 

with p=reg and 't=<r 8,e> <r 3,e>. 

The desired propenies of an extended pattern set can be fonnalized as (1), (2), and (3) in the 

proposition below. We currently know how to compute sets with these propenies only for the 

case when the input set Lin is Lop . 

Proposition 5.11 Let R be a rewrite system over Op, let Lin be a set of trees over Op, and let G 

be a nullary operator in Op. Let I, M, and 0 be three sets of patterns over Op, and let (1 ), (2), 

and ( 3) be the following three statements: 
-

( 1) A pattern p is equivalent to some pattern p e I if and only if there is a tree A e Lin , a posi-

tion p in A , and an efficient normal form rewrite sequence 't applicable to A such that, if 1t 

is the rewrite sequence assigned by 't below p , 'to is the local rewr;te sequence assigned by 

't top, <1> is the rewrite sequence assigned by 't around p, and~ ='tdl<\>, then: 

(1 .i) 't(A ) = G , 

( 1.ii) p matches at 1t(A@p ), 

( 1.iii) Let <a.::~~c.e> be the composition of~. Then {p /Is I s is a position in p} = { q i q is 

a position in a.~ which is a (maybe non-strict) descendant of p}. 

(2) A pattern p is equivalent to some pattern p e M if and only if the same conditions in ( 1) 

apply except for ( 1.ii) which is replaced by 

(2.ii) p matches at pre ('t,k )(1t(A@p )),for some k with 1~k ~length ('t), 
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-
( 3) A pattern p is equivalent to some pattern p e 0 if and only if the same conditions in ( 1) 

apply except for ( l.ii) which is replaced by 

(3.ii) p matches at 't(1t(A@p )). 

Then, if Lin =Lop, IR ,G, MR .G, and OR ,G are as defined in Definition 5.7, ( 1 ), (2), and (3) 

are satisfied by I=IR G, M=MR G, and O=OR G. 

Proof We only prove' the property for I R ,G • the proofs for the other sets are similar 

Part I: If p =P e IR ,G then p satisfies (1). We show that repeated applications of the gen

erative steps in Definition 5.7 preserve condition (1). 

Let p' be equivalent to some p' e I R ,G. and by induction hypothesis, let A' • p' , -r', 1t'. 't' 0, <\)', 

and ~,be the values satisfying condition (1). In the application of step (2) of Definition 5.7, let p0 

be the s -th child of p',let 'to be the local rewrite sequence with composition <Cl.;0~~'to•P >, and let 

a be the most general unifier of ~'to and p0. Let p = cr( ex..;). Let X I, ... , Xm be the variables in p, 

and let op be any nullary operator in R distinct from G. Let B = Px,~op ... x .. ~op. We want to 

show that p satisfies (1) with p =p' /Is, A =A' @p~B, 1t the empty rewrite sequence, 'to as given,$ 

the rewrite sequence induced by -r' around p, and ~='tdl$. 

(l.i) 't(A ) = G . 
-r(A) = 't(A' @p~B) (by definition) 

= <\}('to(A' @p~B )) (since 1t is empty) 
=<\}(A' @p ~-to(B )) (by definition oflocal rewrite sequence) 

=<\)(A' @p ~P~ (by definition of most general unifier) 

= $' ( 't' 0(A '@p' ~p')) (by construction) 
= G (by inductive hypothesis). 

(l.ii) p matches at 1t(A@p ). 1t(A@p) = A@p (since 1t is empty) = B (by construction). p 

matches at B trivially. 

(l.iii) Let <a~~~~.D be the composition of~. Then {p//s Is is a position in p} = {q I q 

is a position in a~ below p } . (Note that ~ has a composition because -r', being an efficient rewrite 

sequence has one.) Since all patterns are linear and p0 and ~'to have disjoint variables, a position 

in p corresponds to either a position in ~· or to one in p0. 

Part ll: If p satisfies (1), then p e IR .G. Let A. p, 't, 1t, -r0, ¢, and ~be the values satisfying 

condition (1), and let p be a pattern matching at 1t(A@p ). Let the position p be pI • · · · • Pk, and 

for any position q let ~(q) denote the local rewrite sequence induced by ~ at position q. As else

where, if't is a local rewrite sequence, its composition will be denoted by cx..:~~'t· We construct a 

sequence of patterns p0 
0 ,p

0
1 , ... , pk 0 ,pk 1 with p" 1 in IR .G, and p" 0 in OR ,G, pk 1 = p, and such 

that the sequence corresponds to successive generating steps in Definition 5.7. The sequence is 

obtained from ~ as follows. 

p0 
0 equals G. and p0

1 equals a~(t) 

For all j in 15.}$k, p" 0 equals the Prth child of pi-I1 , and, pi1 equals cr(a~(p,• ... "PiY· 

where a is the most general unifier of pl 0 and ~~(p, •... Pi)· 

Note that, since 't is efficient, X is not any of the patterns present in the sequence. 0 

The extended pattern set can now be used to define the LR graphs. 

Definition 5.8 Let R be a rewrite system over Op, and let G be a nullary operator in Op. Let 

<R,L0P'G >be in BURS. lf't is a local rewrite sequence with m rewrite applications, let pre ('t,i) 

denote ,for 05.i 5.m, the prefix subsequence of 't of length i. The LR graph associated with a tree 

T is a graph (V ,£)with labeled edges together with a distinguished set of nodes S, defined as 

follows. 
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S is the set of patterns in IR ,G that match at rc(T)for some normal form rewrite sequence rc 

with no rewrite application at the root. 

V contains all patterns inS, and any patterns in MR ,G or in OR ,G equivalent to pre ('t,i)(p) 

for some local rewrite sequence 't of length m, some p inS, and some i, O<i Sm. 

There is an edge in E from a pattern p 1 to another pattern p2 both in V if there exists a 

rewrite rule r in R such that r (p 1) = P2 

Figure 5.6 is the LR graph for +(O,+(Const ,Const )), using the bottom-up rewrite system of 

Figure 5.1, and with goal {reg } . The extended pattern set on which the LR graph is based is the 

one shown in Figure 5.5. Input nodes are shown circled using dotted lines, and output nodes with 

solid lines. Note that the input nodes together with R and G uniquely determine the LR graph; 

this is why the notion of an LR graph does not distinguish the output nodes explicitly. 

In ut Tree 

+ ;---___ 
0 + 
~ 

Const Canst 

LR Gra h 

+ 

(/;~~~ .... ··.)--+ 

\~_onst r~~./ / 
·· ..... _ .. -· 

_ .................. . 

.· ··...... + 

( ... / + ~ ....;.,.--.) --+ / ~ 
\.~ re_~./ reg 0 

·~.. -· ... · 

...... ··· + 

(/~ 
~ode amode/ 

·· .. ...................... 

BiOp 

/'\_ 
amode amode 

Example of an LR Graph 

Figure 5.6 
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If the rewrite system were extended with an additional rewrite rule Mul (X ,0) ---t 0, 

Mul (X ,0) would become a member of IR ,G, and the pattern X would become a member of OR ,G. 

Note that we do not use X to generate new members in EF R ,G, otherwise all the nodes in the LR 

graph would be marked as output nodes to reflect the fact that any result obtained by rewriting 

can be discarded later using an application of the rewrite rule Mul (X ,0) ---t 0. The difference 

between using X or not corresponds to the difference between tracking all normal forms or only 

the efficient ones. 

The notion of LR graphs is only practical for fixed-goal REACHABILITY in the case when 

EF R G is finite. 

Proposition 5.12 There exist <R ,L0P' { G } > in BURS with unbounded EF R ,G . 

Proof By example. The left part of Figure 5.7 shows the only rule of a rewrite system. The right 

part shows a tree representative of a class where EF R ,G is unbounded. 0 

foo 
I 

foo 
foo 
I 

I __,. X foo 
bar I 
I 
X I 

bar 
I 

bar 
I 

bar 
I 
G 

Unbounded Extended Pattern Set 

Figure 5.7 

The unbound-ness of EF R is not a result of a poor definition of extended pattern sets. For 

this example, no finite set of patterns produces LR graphs that can be used to reconstruct the 

rewrite sequences using the type of algorithm outlined above for proto-states. This observation 

motivates the following definition: 
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Definition 5.9 Let R be a rewrite system over Op, let G be a nullary operator in R, and let k be 

a positive imeger. <R ,L0P' { G } > is said to satisfy the finite B URS(k) property 1! it satisfies the 

BURS( k) property and EF R ,G is a finite set. The class finite BURS is composed of those triples 

<R .Lin, { G } >satisfying the finite BURS( k) property for some positive integer k. 

As in the case of BURS(k) and BURS, frequently the input and output sets of the triple will 

be defaulted to Lop and { G} (or Lor in variable goal REACHABILITY) and omitted. 

The rewrite systems describing the applications studied in this dissertation are finite BURS 

(Chapter 6, 7). In particular Proposition 5.6 can be strengthened as follows: 

Proposition 5.13 Let R be a reduction system over Op. Then, <R,L0 P .Lop> is in finite BURS. 

Proof As in Proposition 5.6, a general local rewrite sequence has the form a~a', where a and a' 

are sequences of rename rules and ~ is a single reduction rule. The number of patterns in the 

extended pattern set can be bound by bounding the height of the input patterns. If K is the height 

of the tallest pattern in R, then the height of any input pattern is at most K; this is direct if the 

reduction rule used in ~ is of the form p-top. and follows by induction if the reduction rule is of 

the form op (X 1o ... , Xn )-tXi . 0 
A simple consequence of this defmition is: 

Proposition 5.14 Let R be a rewrite system over Op, and let G be a nullary operator in Op. Let 

<R.Lop ,{G }>be finite BURS. Then the set of all the LR graphs that are LR graphs of some tree 

T over Op is finite. 

Like proto-states, LR graphs satisfy (STATE-2), that is, they can be computed bottom-up: 

Proposition 5.15 Let R be a rewrite system over Op, let G be a nullary operator in Op, and let 

<R .Lop , { G } > be in finite B L'RS. Let G (T) denote the LR graph associated with tree T. There is 

a function f such that G (op <T 1, ... , T,J)= f (op ,G (T 1), .... G (Tn )). 

Proof Since in finite BURS the input nodes uniquely characterize the LR graph, the proof will fol

low from showing how to compute the set of input nodes I of the parent given the set of output 

nodes, Oi for l$i $n, of the children. There are two cases to consider. The first case is the pat

tern X. X is equivalent to a pattern in I if X is equivalent to some pattern in EF R ,G. 

The second case is a pattern p distinct from X. p must be of the form op (p 1, ... , Pn ). For 

each i in l$i $n. there is a normal form rewrite sequence 1ti such that Pi matches at 1ti (Ti ). By 

part (3) of Definition 5.7, Pi is equivalent to some pattern in OR G· Let "Ci be the local rewrite 

sequence of 1ti at Ti. If a,;, -t~'t, is the composition of 'tj, then Pi matches at ~-:., and ~'t, is 

equivalent to an output node in G (Ti ), as desired. 0 

Given a rewrite system R over Op and a nullary operator G in Op, it is semi-decidable 

whether <R.Lop ,{ G ] >satisfies the finite BURS(k) property. It is an open problem whether there 

is a decision procedure. 

Corollary 5.2 Let k be a natural number. Let R be a rewrite system over Op, and let G be a 

nullary operator in Op. It is semi-decidable if <R.L0 p,{G }>satisfies the finite BURS(k) pro

perty. 
Proof First compute the local rewrites sequences of R, deciding in the process if R satisfies the 

BURS(k) property. Then compute the extended pattern set for R. If <R.Lop ,{G }>is in finite 

BURS, th~· ., by Proposition 5.15, the LR graphs can be computed using a bottom-up tree automa

ton. Try to construct this B-fsa for the LR graphs. The triple <R.Lop, { G } > satisfies the finite 

BURS(k) property if and only if the construction algorithm completes. 0 

LR graphs also satisfy (ST A TE-l): 
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Proposition 5.16 Let R be a rewrite system over Op, and let G be a nullary operator in Op, 

such that <R.Lu. ,{G }> is in BURS. Let (1) and (2) be the statements described below. If Lin is 

Lop then ( 1) and (2) are true. 

( 1) For every tree A in Lu., every position p in A, and every efficient normal form rewrite 

sequence 't with 't(A) =G with local rewrite sequence 'to at p of length m, let 1t be the nor

mal form rewrite sequence assigned by 't below p. There is a path in the LR graph of A@p 

of length m and such that the j -th pattern in the path matches pre ('t0,j )(1t(A@p )) for 

O$j$m. 

(2) For every tree T, and for every non-looping path Po· · · Pm from an input node to an output 

node in the LR graph for T there is a tree A e Lin , a position p in A with A@p = T, and an 

efficient normal form rewrite sequence 't with 't(A )=G, local rewrite sequence 'to at p, and 

with normal form rewrite sequence 1t assigned below p, such that 'to has length m and for 

O$j $m, p j matches at pre ('t,j )(1t(A@p )) 
Proof Both pans follow from Proposition 5.11 and the definition of LR graph. As in Propo

sition 5.11 this proposition could be simplified substantially since Lin is Lop. 0 

LR graphs contain enough information for solving both TERMINATION and CONFLUENCE 

(recall the definitions of Section 2.3). A rewrite system is not confluent if there is an LR graph 

for which there are two nodes (patterns) that cannot reach a common node (pattern). The 

existence of such an LR graph implies the existence of an input tree rewriting into two trees that 

cannot be rewritten into a common tree. Thus, testing for CONFLUENCE can be done by testing 

the above property in all the LR graphs. In the most straightforward approach, this requires a 

finite number of LR graphs for the situation in whi.ch the output set is Lop· TERMINATION is simi

lar, but the property to test is the existence of a loop in the LR graph. Again, it depends on hav

ing a finite number of LR graphs. 

5.4. Fixed-Goal Reachability and UI LR graphs 

The notion of LR graphs leads to a practical algorithm for solving REACHABILITY when 

L 0 uz is a finite set. The algorithm is given in Figure 5.8. The algorithm is non-deterministic 

because of the step of the line marked (1): "let 't be a path in G (Tin) ending in T0 uz .•. ". It is 

clear, from the properties of LR graphs, that any such path will provide an answer. See Section 

5.6.1 below for some general comments on a possible implementation of this algorithm. 
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unction reachability(Tin, Tow) 
let <RLop Low> be in 
BURS. 
let G (t) be the LR graph of tree t; 
call compute -LR -graphs (Tin); 
comment compute the LR graphs of RLow in Tin; 
if T0 is a node in G (T) 

result= find -sequence (Tin ,T0 w ); 
emit result; 
return (true); 

return (false); 

rocedure compute -LR -graphs (T); 

let T be op (T 1, ... , Tn ); 
for each i e [l..n] do 
\ call compute -U -graphs (Ti ); 
G (T)=f (op ,G (T 1), ... , G (Tn )); /* (2) */ 
assert f exists by Proposition 5.15 

function find -sequence (Tin ,p) returns result; 
let 't be a path in G (Tin) ending in T0111 and starting at an input node, 

where p matches at Tow; I* (1) *I 
assert there is at least one such path by Proposition 5.16 
let op (T' 1, ... , T' m) be the input node of 't; 
let op (T1, ... , Tm)=Tin; 
result 1 =find -sequence (T 1 ,T' 1) 

rcsultm =find -sequence (T m ,T' m) 
result =result 111 · · · resultm //'t; 
return (result); 

Algorithm for Fixed Goal Reachability 

Figure 5.8 

Definition 5.10 A restriction of an LR graph is a subgraph G of that graph such that G con

tains all the output patterns of the original graph, G contains at least one input pattern, and,for 

every output pattern in G there is at least one path in G starting at an input pattern in G and 

reaching the output pattern. 

For any output tree the restricted graph will be able to provide a local rewrite sequence 'C 

(line marked (1) in Figure 5.8). Thus, the replacement does not affect solving fixed-goal 

REACHABll.lTY. The strongest restriction on a graph is the "uniquely invertible" LR graph. 

Definition 5.11 A uniquely invertible LR graph (Ul LR graph) is a restriction of an LR graph 

in which each node has, at most, only one edge reaching it. 
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For an LR graph there may be several UI LR graphs. The replacement of an LR graph by a 

UI LR graph corresponds to throwing away many possible rewrite sequences, but nothing is lost 

for solving REACHABlllTY. 

Two LR graphs may have a common UI LR graph. For example, in Figure 5.9, the LR 

graph on the left has as an UI LR graph the LR graph on the right. The top row shows the 

corresponding input trees. Thus, since states correspond to LR graphs, one way to reduce the 

number of different states that are needed to solve REACHABlllTY is to solve the following prob

lem: 

Definition 5.12 Given a rewrite system R over Op, and a nullary operator G in Op, with 

<R .Lop, { G } > in finite BURS, the MINIMUM VI LR GRAPH problem consists of assigning to each LR 

graph a valid UI LR graph such that the number of UI LR graphs used is minimum. 
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Figure 5.9 

Chapter 8 uses this technique in one application. Unfortunately MlJ'I.TIMUM UI LR GRAPH is NP

complete. 

Proposition 5.17 Let R be a rewrite system over Op, and let G be a nullary operator in Op. Let 

<.R,L0p, { G }>be infinite BURS. MINIMUM UI LR GRAPH is NP-complete. 

Proof by reduction. The NP-complete problem to use is MINIMUM COVER [GaJ80]: Given a col

lection C of subsets of a finite set S, and a positive integer K $1 C I , determine whether C con

tains a subset C' with I C' I $K such that every element of S belongs to at least one member of 

C'. 

MlJ'I.TIMUM COVER is equivalent to the following graph problem: given a bipartite graph with 

vertices A ~ B , find the minimum number of nodes in B such that every node in A is connected 
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to at least one node in B. The graph problem, in tum, models exactly the situation present in 

MINIMUM UI LR GRAPH: the A nodes of the bipartite graph represent the LR graphs, the B nodes 

the UI LR graphs, and the edges the fact that one UI LR graph is a valid representative of an LR 

graph. 

To complete the reduction it is only necessary to show that for any bipartite graph we can 

construct a rewrite system modeled by that bipartite graph. Let A and B be as above. The 

rewrite system is defined as follows: 

( 1) For each node B i in B , there is an nullary symbol N 8 ,. For each node Ai in A , there is an 

nullary symbol NA,· There is a nullary symbol goal, and a unary symbol Op, different 

from all the other ones. 

(2) For each node Bi in B, there is a rewrite Op (N8)~goal. 

(3) For each node Ai in A with n incoming edges from nodes B 1, •• ., Bn, there are n rewrites 

NA,~NBI····· NA,~NB.· 

With this definitions, the bipartite graph describing the relationship between LR graphs and 

VI LR graphs can be split into two parts. The first part is the desired bipartite graph as sketched 

at the left of Figure 5.10, the second part is a very simple bipartite graph that can be solved 

immediately. 0 

---+goal 

Useless Nodes in LR Graphs 

~ 
go 

/ 

Reduction and NP-Completeness 

Figure 5.10 

The original LR graphs were constructed to track all the possible rewrite sequences. The 

initial construction of the graphs guarantees that each node in the graph is useful, that is, there are 
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some trees for which an execution of the procedure reachability (Tin ,T0 w) will require the pres

ence of the node. The situation changes after the selection of the UI LR graphs. Since it reduces 

the possible nonnal form rewrite sequences that are tracked by the new states, it may make some 

infonnation (nodes) useless. Consider a rewrite system with four rewrite rules: 0 -t reg, 

+(+(reg ,O),reg) -t reg, +(reg ,0) -t reg, and +(reg ,reg) -t reg, and the three LR graphs of Fig

ure 5 .11. Initially the three LR graphs are different If the edges in thicker pen show the UI sub

graph selected, the first and the last LR graphs are identical, but the middle one is not because 

+(reg ,0) is an output pattern (and an input pattern too). +(reg ,0) was useful because 

+(+(reg ,O),reg) was an input pattern of the first LR graph. Since that pattern is now "useless", 

the output pattern +(reg ,0) in the middle state can be removed, and the three states become the 

same . 

. ·············-~ / ... ...- 1 + \. .......... reg 

i + reg \ 

\.. I\ _.../ .. ··········· ... 
····~!T 0 .. ·· .... + .... 

Q •••••••••• •• ( 1\ \ 
\ reg reg / 

···· ............................ ·· 

.. ...... -·---- .......... 

(/ ;\ '·: 
\ reg reg/ 

··· ............................ ···· 

Useless Nodes in LR Graphs 

Figure 5.11 

cp 
("/\·., 
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Detection of useless nodes can be done using a simple propagation algorithm: 

Proposition 5.18 Let R be a rewrite system over Op, and let G be a nullary operator in Op. Let 

<.R .Lin , { G } > be in finite BURS, and let S be a collection of restricted LR graphs (which may or 

may not be Ul). A node N in a graph is usejulzf there is a tree Tin e Lin such that N is part of a 

path (a local rewrite) 't seh:cted by a call to reachability (Tin ,G), using S as states. If Lin is Lap 

there is an algorithm to dercrmine the set of useful nodes in all the states. 

Proof Note that Proposition 5.16 says that no nodes are useless if S is the set of all LR graphs. 

The algorithm is that shown in Figure 5.12. Its correcmess is straightforward. 0 



rocedure useless-nodesO 

r
or each graph G 

for each node N in G 
I set mark[N] =(if N =G then useful else useless); 

while (some mark on a node has changed) do 

f

or each graph G do 

f
or each output tree 0 in G do 

if mark [ 0 ] =useful 

I 
for each node N reaching 0 
I set mark [N] = useful; 

f

or each graph G do 

f

or each i~put node p in G _with mark [p] =useful 

let p-op(p 1, ... ,pn), 
for each i e l..n do 
I set mark [Pi ]=useful in all graphs G 

Detecting Blocks 

Algorithm for Useless Nodes 

Figure 5.12 

If R is a rewrite system over Op, G a nullary operator in Op, and La tree language, a block

ing tree is a tree in L for which there is no rewrite sequence rewriting it to G . The block detec

tion problem (Def. 2.28) is determining if there exists such a tree in L. 

A given input tree T blocks for some fixed-goal REACHABILITY problem if and only if the 

state associated with T does not contain G. If the input language is Lop• there will be an input 

tree that blocks if and only if there is a state that does not contain G . Hence, 

Proposition 5.19 Let R be a rewrite system over Op, and let G be a nullary operator in Op. Let 

<RL0 p,{G }>be infinite BURS. There is an algorithm to solve BWCKINGfor <.R,L0P,{G }>. 

This section has considered only the case where the set of input trees is Lor The next sec

tion explores some consequences of using a general recognizable set as input. 

5.5. Influence of the Input Set 

The general REACHABILITY problem involves a rewrite system, R, a set of input trees, Lin, 

and a set of output trees, Low. The previous sections have studied only some special cases of Lin 

and Low. The limitation on Low is not significant for the applications explored in this disserta

tion, but that on Lin could be. For example, Chapter 6 presents methods to solve the C

REACHABILITY problem and to use this solution for code generation of expression trees. In this 

case Lin represents the set of expression trees that can reach the code ge-nerator. This set should 

be used in determining if the rewrite system is in finite BURS: it could be that the rewrite system 

fails in a class of input trees outside of Lin. Hence it is desirable to solve the problems of the pre

vious sections relative to a general class of input trees. The obvious candidate for this class are 

the recognizable sets. 
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Thus, it would be ideal to solve the problems attacked in the previous sections for the case 

when Lin belongs to RECOG. For completeness, it would also be nice to solve the problem for 

Low in RECOG. This general problem will be the subject of future research but is not explored in 

this section. Instead this section assumes that <RLop ,{goal}> is in finite BURS and then solves 

some problems relative to to some recognizable set Lin. 

The three problems considered are: determining if there exists a tree in Lin for which the 

rewrite system will block; determining which states (LR graphs or UI LR graphs) are useful in 

solving REACHABillTY for trees in Lin; and, determining which nodes in the state (LR graph or 

UI LR graph) are useful to solve REACHABILITY for trees in Lin . 

The first problem is very easy: 

Proposition 5.20 Let <RL0 p,{G )>be infinite BURS. Let L be a recognizable set. There exists 

an algorithm that will determine if there is a tree T e L on which R blocks. 

Proof Let A 1 be the B-fsa that computes LR graphs for <R,L0 P,{G )>. Let A 2 be the B-fsa 

obtained from A 1 that accepts a tree if and only if it blocks for <RL0 P' { G }>. Intersect A 2 with 

the B-fsa that recognizes L obtaining a new automaton A 3. Finally, determine whether A 3 if 

empty or not. 0 
The second problem uses the general construction of Proposition 3.15. 

Proposition 5.21 Let R be a rewrite system over Op, and let G be a nullary operator in Op. Let 

<RL0P'{G )>be infinite BURS, and let AR be the Bjsa that computes the LR (Ul LR) graphs for 

it. Let L be a recognizable set. There exists an algorithm that will determine which states in AR 

will be assigned to some subtree of a tree T e L. 

Proof Without loss of generality, we can assume that the B-fsa recognizing L contains only one 

state streject that will not lead into an accepting state (in AL). Compute, using Proposition 3.15, 

for each node stL in AL the set B of all those states stR in AR such that there is a tree T with state 

stR in AR that would have state stL in AL. After computing it, a state in AR will be • 'useful'' if it 

belongs to the set B labeling a non-rejecting state in AL. 0 

Note that the construction of the previous proof can also be used to solve the • 'blocking'' 

problem above: check if any of the rejecting states of AR is in the set B labeling a non-rejecting 

state of AL. Also note that we could not simply construct the intersection of AR and AL because 

AR has more information than a simple B-fsa (that is the internals of the LR graphs are impor

tant). 

The third problem is straightforward. 

Proposition 5.22 Let R be a rewrite system over Op, and let G be a nullary operator in Op. Let 

<R LoP' { G } > be in finite BURS. Let L be a recognizable set. Let AR be the B-fsa computing the 

(U/) LR graphs for R. There exists an algorithm that will determine for each (Ul) LR graph 

which nodes (patterns) can be used when solving the REACHABILnY problem for <RL,{G )>. 

Proof First construct, using the previous propositions, a B-fsa that will compute the (UI) LR 

graphs and will have no useless states. Then apply the algorithm to compute useless nodes of 

Figure 5.12 0 

5.6. Representation Issues 

There are several ways of implementing the algorithm of Figure 5.8. This section explores 

briefly the alternatives that depend on the representation used in the UI LR graphs. 
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5.6.1. Implicit Representation 

The most important case is when the rewrite system is in finite BURS. In this case the UI LR 

graphs, the local rewrite sequences, and the input and output patterns, can all be represented by an 

index into an adequate set. The computation of the UI LR graphs (the line marked (2) in Figure 

5.8) can be encoded in a B-fsa. Finding, given a UI LR graph and an output goal, a local rewrite 

and an input goal (the line marked (1) in Figure 5.8) can be precomputed for all possible values, 

stored in a table, and then accessed through table lookups. 

The implementation of the line marked (1) in Figure 5.8 requires some comment. If the 

goal pattern p is X, any path will satisfy the condition indicated in the line marked (1) and, in 

particular, a valid alternative is to simply stop the recursion at this point in the input tree. For the 

general case, the search for the T0 at which p matches can be done at table construction time and 

encoded in the tables as described in the next paragraph. 

The representation of the B-fsa is similar to the one used for the computation of match sets. 

(The reader can see Chapter 3 for details). The representation of the paths in the LR graphs can 

be done in several ways. The fastest possible representation is directly as one !-dimensional 

table per UI LR graph, with an entry for each output node giving the index of a rewrite sequence 

't. Another alternative is to represent each individual edge in the UI LR graph in a similar form. 

In either case the !-dimensional tables have many empty slots. In the execution of 

reachability (Tin ,Tow) in Figure 5.8, these empty slots are only accessed at the top level, when 

asking if T0 ur belongs to the state. In fixed goal REACHABILITY, this information can be con

sidered separatedly, encoding the single bit per state of whether a state reaches goal or not by 

renumbering states, using a bit-vector, or simply detecting and reporting their existence at solver 

construction time as a specification error. If one of these encodings is used, the empty slots can 

be considered don't care entries, and a cheap and efficient encoding is to overlay the rows using a 

base and displacement scheme like the one used in YACC [Joh78] (see Figure 5.13). Given a 

state number corresponding to a UI LR graph and a tree corresponding to an output node in it, the 

BASE array is accessed with the state number and the result value is then added to the index 

characterizing the tree to obtain an entry into GOAL. The obtained value is either the desired local 

rewrite sequence or just one rewrite rule of it depending on what is encoded. 
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GOAL Table 

Output 

5.6.2. Explicit Representation 

~R. ewnte 

(Input -> Output) 

Layout of Rows 

Figure 5.13 

Another alternative is to represent the UI LR graphs explicitly. Such an approach would 

require much smaller tables. The only information that needs to be encoded is the individual 

rewrite rules. Their applicability can then be investigated at solving time. The disadvantage is 

that the effort spent at solving time will be increased substantially. This approach is not explored 

further in this dissertation. 

5.7. Related Work 

Chronologically, this chapter grew from an attempt to generalize the results used in the 

chapter on code generation (Chapter 6) to the context of tree languages (Chapter 7). This 

explains the emphasis on fixed-goal REACHABr.ITY. 

The closest research related to that presented in this chapter is in the area of code genera

tion. Hatcher [HaC] was particularly instrumental in starting the research. Recently, the author 

has learned of several researchers that have developed techniques for code generation that are 

special cases of BURS theory [HeD87, WeW86]. Using this chapter's notation, their techniques 

involve implicit representation of some type of states for rewrite systems that are strict subclasses 

of reduction systems. Their work is discussed in Section 6.4. 

The theory introduced in this chapter is used successfully in Chapter 6 to attack the problem 

of code generation, and in Chapter 7 for pattern matching and special types of tree transforma

tions. 



CHAPTER6 

Instruction Selection for Expression Trees 

Infinite riches 
in a little room 

[Christopher Marlowe [1564-1593]] 
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In this chapter we investigate the optimal selection of instructions and addressing modes for 

expression trees. This problem can be modeled as a REACHABILITY problem extended with a cost 

metric on the rewrite sequences; the technique used in this chapter to solve this problem is based 

on extensions to the results of Chapter 5. The algorithms presented here are used in Chapter 8 to 

implement a code generator generator. 

An expression can be represented as a "low level" computational dag: a dag showing com

mon sub-expressions explicitly as subdags with more than one parent, and with nodes represent

ing low level operations, including explicit memory assignment. (In other words, references to 

locations in arrays are described as indirections through displacements from a base location). 

Several simplifications must be made to this model before being able to map the problem of gen

erating code into something similar to REACHABILITY. 

The presence of common subexpressions substantially increases the complexity of generat

ing optimal code. A traditional solution [Hen84, WJW75] is to generate code for dags by "pul

ling out'' the parts of the input expression with more than one use and replacing them by a single 

node. The sub-expression then can be evaluated independently and computed into a temporary 

which is represented by the new node. In general this simplification will produce non-optimal 

code (for example, it could have been cheaper to recompute the sub-expression instead of com

puting it into a register) but it works reasonably well in practice. Hence, the first simplification 

imposed in this chapter is to assume that there are no common subexpressions; that is, that the 

computation dag is actually a tree. 

Generating code for the expression tree can be phrased as a problem involving a rewrite 

system describing the target machine architecture and some properties of the operators present in 

the expression tree. Tile effect of an instruction can be modeled as a rewrite rule by which some 

subtree representing the action of the instruction can be replaced by another representing its 

result. For example, the rewrite rule 

A ~reg 

reg reg 

could represent a 3-address, register-to-register, ''Add'' instruction. Here, the nullary operator 

reg models a whole class of registers, not one particular member of the class. Rewrite rules can 

also be used to facilitate the description of the target machine by providing some type of 

"abstraction" facility, as in: 
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+ ~ biOp 
1\ 1\ 
XY XY 

or to model such algebraic properties as commutative operators: 

+ ~ + 
1\ 1\ 
XY YX 

and other algebraic properties such as: 

+ ~X 
1\ 
xo 

The completion of the computation is represented by a distinguished nullary operator, G, 

generated by rewrite rules such as register -:,G. The instructions described through the rewrite 

system are "virtual" instructions: they need not be implemented directly by any one instruction 

in the physical hardware and can be implemented as an in-line sequence of physical instructions 

or by a call to run-time support routines. A rewrite sequence from an expression tree into G 

corresponds to an instruction sequence implementing the expression tree. 

The operators of the expression tree and intermediate trees manipulated by the rewrite sys

tem have associated attributes. Following [Hen84], these attributes can be classified into three 

groups depending on how their values affect the instruction sequences for an expression tree. 

Mandatory attributes are those whose value influences whether the shape of an instruction 

sequence is correct or not. A typical example is the data type of the operators; the correct instruc

tion sequence for +(register ,register) will depend on the relationship between the types of'+' 

and the two register symbols. Incidental attributes are those whose value is only used in the 

details, not the shape of the instruction sequence. An example is a nullary symbol constant: it 

models any constant17; which one is not important to determine the correct shape of the instruc

tion sequence. Optional attributes are those whose value is important to determine the best 

instruction sequence, but discarding them still produces correct sequences. 

Attributes with a finite domain set can be encoded syntactically into the names of the sym

bols. For exa.'Tlple, if the data type has three possible values, byte, word, and long, the encoding 

of the data type attribute of the operator register produces the operators register _b, register_ w, 

and register_!. One advantage of encoding mandatory attributes syntactically is that the correct

ness of the instruction sequences emitted can be enforced through syntactic means. If optional 

attributes are also encoded syntactically then the optimality of the sequence can be treated identi

cally. [AGH84] contains a discussion of the advantages (and disadvantages) of encoding the 

mandatory attributes syntactically. Since this chapter and Chapter 8 model the selection of 

instructions exclusively through the use of a rewrite system with linear N-pattems, all mandatory 

and some optional attributes are encoded syntactically. 

It may be impossible, or impractical, to encode some attributes syntactically. This may be 

the case if the register set of the target architecture is not "uniform" with "even-odd" 

17 If the target machine distinguished between constants of different size then the ranges of the constants would 

be either mandatory or incidental attributes depending on the architecture. 
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constraints on register pairs, special registers, or similar things. This problem can be alleviated, 

at some cost in the quality of the generated code, by modifying the "virtual" target architecture. 

[Hen84] discusses in detail a successful code generator generator based on this purely syntactic 

approach. 

If a target machine architecture is described as suggested above, a rewrite sequence for an 

expression tree into goal corresponds to a valid instruction sequence for the expression tree. Any 

such instruction sequence can be provided with a cost, and a resource usage. The cost quantifies 

the ''goodness'' of the sequence. Examples can be the number of bytes required to represent the 

sequence and the number of cycles required to execute it. The resource usage describes how 

many resources the sequence needs for its evaluation. The prototypical example of a resource is a 

register. The problem of obtaining optimal code for an expression tree T using a machine 

description can now be phrased as finding a rewrite sequence of the machine description that will 

transform T into goal with minimum cost and with resource usage within the maximum number 

of resources available. This problem resembles the REACHABILITY problem, except for the two 

additional requirements: minimal cost, and limited number of resources. 

Dealing optimally with a limited number of registers is a difficult problem. There are two 

major difficulties. One is that it is no longer possible to restrict our attention to rewrite sequences 

in bottom-up normal form: if the number of resources employed to hold a computation value is 

not always constant (as is the case with a value of type double requiring twice the number of 

registers than one of type single) there are non-bottom-up rewrite sequences that have lower 

resource usage, and equal cost, than any bottom-up normal form rewrite sequence [AJU77]. 

As an example of this difficulty consider an architecture having 6 identical registers and 

consider the expression tree sketched in Figure 6.1. Further, assume that the architecture is such 

that the number of resources to compute the lower two subtrees is 5, while those for the two 

upper subtrees is 3, and that the number of registers required to hold the value of the two lower 

subtrees is 1, while the two upper subtrees require 3. Then, there is a rewrite sequence that com

putes the tree using only the 6 available registers, but there is no rewrite sequence in hottom-up 

normal that does so. The desired sequence first computes the lower left subtree anc saves the 

value using a single register, then computes the complete right subtree using the remaining 5 free 

registers, saves the value in 3 registers and finally completes the evaluation of the top left subtree 

using the saved value and the 2 free registers. 
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Example of a Optimal Sequence not in Normal Form 

Figure 6.1 

The second difficulty is that the resource usage of a rewrite sequence is not the sum of the 

resource usages of its components, as the example above also showed. As we will see later in 

this chapter, this characteristic would inhibit using fast techniques to fmd the optimal rewrite 

sequence, even if we were willing to restrict our attention only to bottom-up normal form 

sequences. 

If, as in many target machine architectures, there is a finite number of resources, the limita

tion must be removed somehow. A common simplification is to assume an infinite number of 

registers. Code generation is then done using ''virtual'' registers which are later mapped 

somehow into "physical" registers. Two ways of doing this mapping are "on-the-fly", and 

"globally". On-the-fly register allocation is easy and computationally cheap. Global register 

allocation is "global" to some program unit, for example, expressions, basic blocks, procedures, 

separately compilable units, or the complete load module. A recent technique is based on the 

notion of "interference graphs" and "graph coloring" [ Cha82 ]. The computational cost of using 

this technique is related to the size of the program unit, and to the "complexity" of the unit itself. 

The C-REACHABILITY problem is, given a rewrite system R and two trees T and 1 , to deter

mine whether there is a rewrite sequence in R from T to 1 and, if so, to find the one with 

minimum cost. This chapter extends the techniques of Chapter 5 for REACHABILITY to C

REACHABILITY. C-REACHABILITY provides a solution to code generation with no constraints on 

the number of registers used. This later problem is frequently also called instruction selection. 

The notion of blocking (Definition 2.28) applies well to this simplified model of code generation: 

a block corresponds to an input tree for which no code could be generated. Since this is a code 

generator error, it should be corrected by modifying either the set of input trees or the set of 

rewrite rules available. Sometimes [Hen84] blocking is called intrinsic blocJ...ing to differentiate 

it from algorithm-induced blocking in which code cannot be generated for some input tree due to 

an inadequacy of a code generation algorithm. 

The next section defines formally a cost metric for rewrite sequences, C-REACHABILITY, and 

the notion of an instruction description. Section 6.2 defines an extension of the LR graphs intro

duced in Chapter 5, called the o-LR graphs, and presents a sufficient condition for the existence 

of a finite number of them. Then, Section 6.3 discusses the modifications that are needed to 

apply the algorithms for REACHABILITY to solve C-REACHABILITY. The two last sections discuss 
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related work and present some conclusions. Chapter 8 shows how the theory and techniques 

developed in this chapter are used to implement a code-generator generator. 

6.1. Basic Definitions 

"Optimal" code only makes sense in the presence of some cost metric. Since our approach 

to code generation is based strictly on rewrite systems, this metric is defined on rewrite 

sequences. The resulting notion is that of an extended rewrite system: a rewrite system where a 

non-negative cost is associated with each rewrite rule. 

Definition 6.1 An extended rewrite system Rc is a pair <.R,cost>, where R is a rewrite system, 

and cost is a function associating with each rewrite rule r in R a non-negative integer. Rc is 

said to be an extension of R. 

If 't is a rewrite sequence in R, the cost of 't is the sum of the costs of all the rewrite rules in 

't. 

Restricting the cost of a sequence to be linear on the cost of its composing rewrite rules is 

intrinsic to the approach presented in this chapter. It is possible to relax the linearity constraint to 

be a linear combination (this would require some redefinitions) but non-linear combinations are 

outside our approach. The reason will be apparent after defining the notion of a o-LR graph. 

The main problem investigated in this chapter is: 

Definition 6.2 Let Rc be an extended rewrite system over Op, and let Li and L0 be two sets of 

trees over Op. The minimum cost REACHABIUIT problem for Rc, Li, and L 0 , denoted by C

REACHABIUIT, consists in determining, given T e Li and 1 e L 0 , whether there is a rewrite 

sequence 't from Rc, such that -r(T) = 1, and if so to produce one such 't with cost minimum over 

all rewrite sequences in Rc rewriting T to 1 . 

If L0 is a singleton { G}, then the C-REACHABIUIT problem is said to be fixed-goal C

REACHABIUIT, and G is called the goal. 

Fixed goal C-REACHABILITY provides a solution to instruction selection. Instruction selec

tion uses a special class of extended rewrite systems, the instruction set descriptions. These 

extended rewrite systems are given a "semantics" by associating with each rewrite rule an unin

terpreted string. 

Definition 6.3 Let Op, OpC, and JfC be three mutually disjoint sets of operators, called the 

input operators, the generic operators, and the instruction fragment symbols, with all the opera

tors in JfC being nullary, and one of them being a distinguished member G. An instruction set 

description over Op, OpC, and IJC is an extended rewrite system where the rewrite system is a 

reduction system Rc over Op E9 OpC E9JfC together with a function assigning to each rewrite 

rule its semantic action, a (maybe null) string word in some alphabet. 

Three types of rewrite rules are given special names: 

An instruction fragment is a reduction rule of the form p --7 cl where cl e lfC and p is a 

pattern without variables. 

A generic operator rewrite is a rename rule of the form 

op (X I• ... ,Xn) --7 op' (X 1, ... ,Xn ), where op E Op and op' E OpC. 

A commutative operator rewrite is a rename rule of the form 

op (X 1, ... ,Xn) --7 op (X rt,• ... ,X rt.), where rc is a permutation of l..n. 

An instruction set description is fiat if IJC is a singleton, otherwise it is factored. An 

instruction set description has operator classes if OpC-:;:. 0. 
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An instruction set descriPtion is a simple machine grammar if it has only instruction frag

ment and generic operator rf!Y. rites. 

The original article introducing the Graham-Glanville technique [G1G78) used only instruc

tion fragment rewrites. [Hen84) used factored machine descriptions with operator classes, but 

handled commutative operators through transformations on the machine description itself. Later 

we will see that erasing reduction rules arc difficult to handle with our approach. 

An application of a rewrite rule transforms a tree T into another tree T'; the semantic 

actions extend the mapping to attributed trees. By extension, the sequence of semantic actions 

associated with a rewrite sequence from an input tree T into T' defines the value of the attributes 

ofT'. In practice, the semantic actions also have side-effects which are used to emit instructions 

as they are found. The instruction selection problem can be solved by first solving the fixed-goal 

C-REACHABILITY problem for the rewrite system, thus obtaining a rewrite sequence for the input 

tree T into the goal G, and then using this rewrite sequence to rewrite T into G while using the 

semantic actions associated with each rewrite rule in the rewrite sequence to fmd the attributes of 

the intermediate trees. 

We will not discuss how to write the semantic actions (see [Hen84) for details), but we 

explain how some of them can be null. A simple example is a rename rule corresponding to an 

abstraction like amode _index ~amode where amode and amode _index have exactly the same: 

attributes. Formally, the semantic action would copy all the attributes of amode_index into the 

corresponding attributes of amode, but it may be possible to do better. For instance, assume that 

the attributes are represented independently of the intermediate tree as objects pointed to by a 

scm:mtic stack. Then a null semantic action, leaving the stack undisturbed, would have the 

desired effect. A similar situation would happen if a node in an intermediate tree is represented 

by an object and the rewrite application only changes its "label" field, leaving the "attribute" 

fields unchanged. Even more, if no later semantic action refers to the label of the node, the origi

nal label could be left unchanged; this works correctly because we do not use the label of the 

intermediate tree to determine what rewrite rules are applicable: that decision was made when 

solving the C-REACHABILITY problem. 

A more complicated example is a generic operator rewrite rule like +(X .Y)~biOp (X ,Y). 

One possible semantic action would change the node + into biOp and update an attribute, class, 

of biOp to i:1dicate that that biOp is an abstraction of a+; later semantic actions would then use 

the class au:ibute. Another possibility is to lc;1ve the + node unmodified, and to write the later 

semantic actions so that they use the label of the node instead of the class attribute. In the 

second case the semantic action can be null. 

As an example of a situation where a semantic action cannot be null consider the commuta

tive rewrite rule +(X .Y)~+(Y ,X). Although no "new" attributes arc computed in this rewrite 

application, some action will be necessary so that references later in the rewrite sequence to posi

tions in the right subtree of+ (the X) wi:. find the values that previously were in the left subtree 

of+. \Vhat spec1.ic computation is done depends on how the intermediate trees and their attri

butes are stored. A simil~r situation occurs with the rewrite rule +(X ,O)~X. 

The formalization of the instruction selection problem is as follows: 

Definition 6.4 Let L be a set of trees over Op, and let lSD be an instruction set description over 

Op (and OpC and IJC) with G its goal symbol. The unconstrained code generation problem, 

UCOD£18
, consists in determining, for each input tree T in L, whether there is a rewrite sequence 

18 The U stands for "unconstrained". The constrained code generation problem, CCODE, not defined here, is the 

corresponding problem where the number of resources used by the sequence of semantic actions is constrained to be 

smaller than some value. 
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't from ISD, such that 't(T) = G, and if so to produce the sequence of semantic actions of such a 't 

with the additional property of having a cost minimum over all rewrite sequences reducing T to 

G. 
Oearly, solving C-REACHABILITY provides a solution to UCODE, but the converse is not 

necessarily true due to the presence of null semantic actions (see section 6.3). 

Since the rewrite system underlying an instruction set description is a reduction system, we 

have: 

Proposition 6.1 Let R be the rewrite system of an instruction set description over Op with goal 

G. Then <.R,L0 P'{G }>is infinite-BURS. 

Figure 6.2 gives an example of an instruction set description. The underlying rewrite sys

tem is the same as that of Figure 5.1. In the figure, Op = ( O,Const ,Reg,+,-} , OpC = { biOp } , 

and ljC = {reg ,amode } . The rewrite rules correspond to a 2-address operation, a load, two 

rename rules, three addressing modes, one commutative operator, two operator class rewrite 

rules, and a simple reduction rule corresponding to an algebraic law. The first column indicates 

the type of the rewrite rule (Frag = instruction fragment, GenOp = generic operator, Comm = 
commutative operator, Red = non-erasing reduction), the second column the rewrite rule itself, 

and the last two columns its cost and an indication of the whether the semantic action is null or 

not. 
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In Figure 6.2 the cost of a rewrite rule is 1 if the rewrite rule corresponds to an instruction 

and 0 otherwise. Other examples of cost functions are the number of bytes used to represent an 

instruction sequence, the number of bytes of memory data touched by the execution of an instruc

tion sequence, and the number of cycles needed to execute an instruction sequence. Note that the 

last two cost functions cannot be modeled accurately in our framework in the presence of several 

important architecture features such as pipelines, cache memory, and page faults. As in the case 

of a finite number of registers, the solution is to ignore the limitation of the model, generating as 

good a code a~ possible and later using an instruction scheduling algorithm to improve the 

obtained instruction sequence. 

6.2. 8-LR Graphs 

Chapter 5 gives two notions of state for solving REACHABIUTY: LR graph and UI LR graph. 

This chapter shows how to enrich these notions with cost information. The new notions are 

called 8-LR graphs, discussed in this section, and 8-UI LR graphs, which are discussed in the 

next one. Although not all extensions of a finite-BURS rewrite system will have a finite number 

of 8-LR graphs, extended rewrite systems that model real instructions set~ have a finite number of 

8-LR graphs. This observation leads to a code generator generator system described in Chapter 8. 

Since the cost of a rewrite sequence does not depend on the particular order of its com

ponents, the rewrite sequence of minimum cost in a rewrite system can be found by considering 

only rewrite sequences in bottom-up normal foim. Hence, it is meaningful to try to extend the 

notion of an LR graph by simply extending the meaning of its nodes. In a first approach, which 

we call full cost LR graph, the nodes of the graph for a tree T represent the pairs <p, c (p)>, 

where c (p) is the minimum cost required to rewrite T into a pattern of interest p, while the paths 

would represent local rewrite sequences with minimum cost. This definition leads to a notion 

that can be used to solve C-REACHABILITY in a manner very similar to that used to solve fixed

goal REACHABil.lTY: a first pass, bottom-up, computing the state information; a second pass, top

down, selecting minimum cost local rewrite sequences; and a third pass, bottom-up, collecting 

these local rewrite sequences. 

Unfortunately, full cost LR graphs do not lead to an efficient implementation. The main 

problem is that only a few trivial extended rewrite systems will have a finite number of full cost 

LR graphs. Most interesting systems have unbounded sets of trees for which the minimum cost 

of rewriting a tree into a given pattern p is a function that grows with the height of the tree (an 

example is the system of Figure 6.2). This unboundness precludes the use of a fully implicit 

representation of the states and the implementation of the phases as simple table lookups. And, if 

the costs are carried explicitly at C-REACHABILITY solving time, the computation of the 

minimum cost requires additions and comparisons in the first, bottom-up, computation phase. 

The notion of 8-LR graphs is an elaboration of the one presented above based on the obser

vation that there are only two main requirements for the information kept in the states, similar to 

those required of states in Chapter 5: 

(C-STATE-1) The collection of states associated with the nodes contains enough information to 

characterize the minimum-cost rewrite sequence applicable to the input cost reach

ing the goal tree. 

(C-STA TE-2) The states can be computed in a bottom-up pass over the input tree. 

Note that neither (C-STATE-1) nor (C-STATE-2) indicate that the states need to encode the 

cost of the minimum cost rewrite sequence. The notion of a full cost LR graph satisfies both (C

STA TE-l) and (STA TE-2), but it is too expensive. A first attempt at a new notion of state would 

record not the costs themselves, but only their relative ordering. This certainly satisfies (C

STATE-1), but, as the reader can verify, does not satisfy (C-STATE-2). The correct notion of 

state is somewhere in between these two notions: it stores the differc~ce between the costs associ

ated with the patterns in the state. We call this notion a 8-LR graph, and it can be obtained from 
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the notion of a full cost LR graph by finding the smallest of all the costs associated with nodes in 

the full cost LR graph and then subtracting this value from all of the costs. Figure 6.3 is the ana

log of Figure 5.6 but showing 8-LR graphs instead of LR graphs. The 8 costs are shown to 

immediately to the right of the patterns in bold font, and the full costs to their right in italics. 
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+ ... 

/~\ )~ 
am ode amode.i am ode am ode 

........ .............. 

Example of a 8 LR Graph 

Figure 6.3 

1 2 

There are two differences between the 8-LR graphs and the LR graphs in Figure 6.3 and 

Figure 5.6. One is the addition of the cost information, the other is that the edge between amode 

and reg has been removed because it does not belong to a rewrite sequence with minimum cost 

o-LR graphs (and 8-UI LR graphs) are used to solve C-REACHABILITY in a slightly different 

way than the way in which LR graphs are used to solve REACHABILITY. If the cost information is 

removed from the o-LR graphs the result is a restriction of the corresponding LR and UI LR 

graphs. This restriction is enough to satisfy (C-ST A TE-l). The cost information in the o graphs 

is present only to satisfy (C-ST A TE-2), to be able to compute the states in a bottom-up pass. 

This situation was formalized in the notion of LB-fsa of Section 2.4.1, and is explored in Section 

6.3. 

The formal definition of a 8-LR graph is: 
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Definition 6.5 Let R be a rewrite system over Op, let G be a nullary operator in Op, let 

<R ,cost> be an extended rewrite system, and let <R Lop• { G } > be in BURS. The 8-LR graph asso

ciated with a tree T over Op is(: graph G =(V ,E) defined as follows. 

Let (V 0,£ 0) be the LR graph ofT for R and G. Define, for a pattern p e E 0, its cost, c (p ), 

to be the cost of the minimum cost rewrite sequence in Rc from T into p. Let C min be the 

minimum value of c (p) for all p in E 0. The members of V are pairs <p ,c (p )-C min> where 

p e V 0. The members of E are those labeled edges <p 1,p2> in E 0 with label 't 1 for which 

c (p 1)=c (p:z)+cost ('t 1). 

It follows that for any tree T, the graph that contains the same edges as the 8-LR graph ofT 

but whose vertices are only the patterns is a restriction (Def. 5.10) of the LR graph ofT. 

The fonnalization of (C-STA TE-l) and (C-STA TE-2) are Propositions 6.2 and 6.3 respec

tively. Their proofs follow in an straightforward way from the corresponding propositions for LR 

graphs. 

Proposition 6.2 Let R be a rewrite system over Op, and let G be a nullary operator in Op, such 

that <RLin ,{G }>is in BURS. Let <R,cost> be an extended rewrite system. Let (1) and (2) be the 

statements described below. If Lin is Lop then (I) and (2) are true. 

( 1) For every tree A in Lin , every position p in A , and every efficient minimum-cost normal 

form rewrite sequence 't with 't(A )=G with local rewrite sequence 'to at p of length m, let 

1t be the normal form rewrite sequence assigned by 't below p. There is a path in the 8-LR 

graph of A@p of length m and such that the j -th pattern in the path matches 

pre ('t0,j )(1t(A@p )) for 0<.5,) <.5,m. 

(2) For every tree T, and for every non-looping path Po· · · Pm from an input node to an output 

node in the 8-LR graph for T there is a tree A e Lin , a position p in A with A@p = T, and 

an efficient minimum-cost normal form rewrite sequence 't with 't(A ) = G , local rewrite 

sequence 'to at p, and with normal form rewn'te sequence 1t assigned below p, such that 'to 

has length m and for 0<.5,) <.5,m, p 1 matches at pre ('t,j )(1t(A@p )) 

Proposition 6.3 Let R be a rewrite system over Op, let G be a nullary operator in Op, let 

<R,cost> be an extended rewrite system, and let <R,L0P,{G }> be in finite BURS. Let Gr(T) 

denote the 0-LR graph associated with the tree T. There is a function f such that 

Gr (op (T 1, ... , Tn)) = f (op ,Gr (T l), ... ,Gr (Tn )). 

The following example shows that in general, LR graphs do not provide enough infonna

tion to solve C-REACHABILITY. Consider the rewrite system in Figure 6.4, where the integer on 

the right is the cost of the rewrite rule to its left. 
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+(reg ,amode )-'tamode 0 
+(amode ,reg )-'tamode 0 

amode -'treg 1 
Const -'tamode 0 

reg -'tamode 0 

Example of Different o-LR graphs per LR graph 

Figure 6.4 

There are input trees with the same LR graph but with different o-LR graphs. The o-LR 

graph for the tree +( Const ,reg) would be: 

0 

0 1 
amode -reg 

+ 1 

1\ 
reg amode 

while the o-LR graph for the tree +(reg ,Const) would be: 

+ 1 

/\ 
amode reg 0 1 

+ 
0 

/amode -reg 

/\ 
reg amode 

Both trees have the same LR graph. 

Finite Number of o-LR Graphs 

The definition of o-LR graph does not guarantee a finite number of states, even if the under

lying rewrite system is finite BURS. The top of Figure 6.5 shows such a rewrite system. To 

show that it is necessary to track an unbounded number of states, consider the class of trees 

represented at the bottom of the figure. There :ire two possible disjoint rewrite sequences rewrit

ing this tree into goal : one using amode, the other using imode . Which one yields the lowest 

cost depends on whether there are more or fewer nodes labeled with '+' than labeled with Fetch . 

It is important to note that the lack of finiteness is not a deficiency of the definition of o-LR 

graphs: any definition that is based on the bottom-up traversal paradigm that we use in Chapter 5 

and in this chapter, requires an unbounded number of states to count the sizes of each tree and 
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Figure 6.5 
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Determining whether there will be a finite number of o-LR graphs for some extension of a 

rewrite system is semi-decidable if we already know that the rewrite system is in finite BURS. 

Proposition 6.4 Let R be a rewrite system over Op, and let G be a nullary operator in Op, with 

<.R,L0P ,{ G }> in finite BURS. Let <.R,cost> be an extension of R. There is a procedure that wi!l 

generate all the o-LR graphs for <.R ,cost> and G and will stop if there is a finite number of them. 

Proof A closure algorithm that generates keeps generating o-LR graphs while necessary will stop 

if and only if there is a finite number of o-LR graphs. 0 

Although Figure 6.5 generates an unbounded number of o-LR graphs, a simple modification 

guarantees a bounded number of states. If reg is added, together with the rewrite ruless 

amode ~ reg , imode ~ reg , and reg ~ imode , and reg ~ amode, then, the two rewrite 

sequences cease to be disjoint, since it is possible to switch from one to the other. This implies 
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that the difference between the minimum cost in one sequence and the other is never larger than 

the cost required to switch from one sequence to the other. Fortunately, the new rewrite system is 

more representative of ''real'' machine architectures. 

The remainder of this section gives a sufficient condition for the existence of a finite 

number of 8-LR graphs. An intuitive discussion of the situation is given using a graphical 

representation introduced in [Hen84]: the cost diagrams. Such a diagram is an exact description 

of the situation only for trees with a unique rewrite ''thread'', as with trees that contain only 

unary and nullary operators, but hopefully it will help the intuition of the reader. 

The horizontal axis of a cost diagram corresponds to the size of the tree along its only 

thread. The vertical axis indicates the cost associated with a rewritten tree. A rewrite sequence is 

described through a path: a connected sequence of straight segments, one for each rewrite rule in 

the sequence. Several rewrite sequences will show as several paths. Paths may split, join, and 

cross, according to the behavior of their associated rewrite sequences. The optimal code is that 

associated with the lowest path that reaches the end of the thread (that is, it does not block). 

In this graphical presentation, the 8-LR graph associated with a subtree corresponds to a 

vertical slice of the cost diagram, with a horizontal coordinate corresponding to the subtree. The 

paths in the slice correspond to the paths in the 8-LR graph; since the absolute cost is the vertical 

coordinate of the diagram, the relative cost is related to the distance between the paths. Asserting 

that the number of 8-LR graph is finite is equivalent to saying that the distances between paths 

are bounded. 

Figure 6.6 shows a tree thread where there are two possible reduction sequences. If both 

were to reach the end of the thread, the lower one would be the one to choose. 

red-seq 2 

delta. -cost 
cost 

red-seq 1 

tree thread 

Two Valid Rewrite Sequences 

Figure 6.6 

As illustrated in Figure 6. 7, the case where the cost difference is bounded corresponds to 

those cases where after separation there is a fast "join", or those where the paths stay separated 

but approximately "parallel". 
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tree path 

If the paths diverge, there may be an infinite number of states. Fortunately this is 

unrepresentative of real machine architectures. Consider a typical register-oriented instruction set 

without memory-to-memory instructions. Every tree can be evaluated into a register, since regis

ter is always a good target for an instruction. In addition, every ''long enough'' rewrite sequence 

for an expression has to load values into registers (in order to continue the rewriting). Intuitively 

this implies that two paths in a cost diagram cannot diverge very much: given two rewrite 

sequences for the same input tree, but with different output trees, register can be used to 

• 'bridge'' from one rewrite sequence to the other, thus insuring that, if they are both of minimal 

cost (for the given output trees), t~e difference in their costs is "small" (i.e. bounded). This 

observation can be formalized in U1e next proposition, where register is generalized to a set of 

"key" symbols S (in part to deal with the memory-to-memory instructions). 

Proposition 6.5 Let R be a rewrite system over Op, and let G be a nullary operator in Op, with 

<RL0p,{G }>infinite BURS. Let <R,cost> be an extension of R. LetS be a subset of EFR,G 

such that there are positive integers k 1 and k 2: 

( 1) For any pattern p in EF R ,G and any s E S , p can be rewritten into s with a sequence hav

ing cost at most k 1. 

(2) There is an integer k 2 such that for any tree T and any normal form rewrite sequence y for 

T there is a permutation of y of the form "{(f2 with y2 of cost at most k 2, and such that the 

frontier of y1 (T) contains only members of S . 

Then the set of different possible o-LR graphs is bounded. 

Proof Since R is finite BURS, the only way to have an unbounded number of o-LR graphs 

is to have an unbounded delta cost in the graph. LetT be an input tree, and a and ~be two nor

mal form rewrite sequences leading to Pa and PI)• in EF R ,G. Without loss of generality assume 

that cost (a)5,cost (~). Then, we want to show that there is a constant K, independent ofT, a, and 

~ such that there is a rewrite sequence W applicable to T and leading to p~ and such that 

cost CW)5,cost ( a)+K. W is constructed from ~ and a. The proof proceeds by structural induction. 
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From (2) applied to ~ and T, ~ is of the form ~ 1 ~. with ~ 1 (T)=T and ~2(~ 1 (T))=p~. The 

new P' is obtained by replacing ~ 1 by an equivalent rewrite sequence. By normal form and by 

structural induction hypothesis on (1), there is a permutation of ~ 1 of the form y1 · · · Ym, where y1 

applies to ti, a subtree of T, and Yi (ti) is si e S. Let a.i be the restriction of a. to ti. Consider 

now the application of a.i to ti, and call it Tai. Ta; is a member of EF R .c because 

a.(T) = Pa e EF R ,G. Hence, by (1 ), there is a rewrite sequence ei with cost at most k 1 such that 

8;(Tai)=si. The new P' 1 is a.18 1 · · · a.mem. The cost of this sequence is bound by 

m xk 1+cosr (a.). Hence, the cost of W is bound by m xk 1+k 2+cost (a.). 0 

The condition of Proposition 6.5 is not a necessary condition; there are many ways to 

strengthen it and still have a finite number of &-LR graphs. For example, there will still be a 

finite number of &-LR graphs if the rewrite rules can be divided into two disjoint sets correspond

ing to floating and integer expressions, with each one satisfying the conditions of the proposition. 

The proposition is provided here to give a flavor for the type of conditions that produce a finite 

number of &-LR graphs. 

Erasing reduction rules almost always lead to an unbounded number of &-LR graphs. Con

sider a rewrite system with rewrite rules Mul (X ,0)~0. o~const, and Mul (reg ,canst )~reg, and 

an input tree such as Mul (T 1 ,0) where T 1 can be rewrinen into reg in K rewrite applications. 

Define the cost of the rewrite system to be the number of rewrite applications. The &-LR graph 

associated with such an input tree will have an output panern "0" with cost 1, and an output pat

tern "reg" with cost K +2. If there is one such T 1 for each positive integer K, the number of&

LR graphs will be unbounded. 

Alternatives to & Costs 

Some extended rewrite systems with an unbounded number of &-LR graphs can be handled 

by approximating "large" differences between costs as infinite. Using ordinal numbers one 

could have a sequence, for example, 

<e 1,0>,<e 2,ro>,<e 3,c:o+ l>,<e 4,2* ro> 

This would be interpreted as meaning that the difference in cost between e 1 and e1 is "unsur

mountable" as is that between e 3 and e4, but that e 3 is only one unit more expensive than e2. 

The difference between the two alternatives reaches an "infinite" value when the alternative with 

higher cost will be used only if the other one blocks. Cost differences can increase from being 

finite to being infinite, but not otherwise. 

An example of the situation could be an target architecture where it is possible to choose 

between two different banks of registers but, once a bank is selected it is not possible to change 

between banks. In addition, the costs of instructions in one bank must be uniformly larger than 

those in the other. To generate optimal code it is necessary to track the potential costs of each 

register bank selection, but orJy up to the point where it is obvious which selection was the best 

one. 

It is not always possible to use an approximation to infinite ordinals to solve the problem. 

In some cases the two paths first diverge an unbounded distance, and then can slowly get back to 

a middle ground, as shown in Figure 6. 8. Related to the previous example, this corresponds to 

the case where the advantage of using one register bank over the other is not ''uniform''. 
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In the rest of this chapter it is assumed that it is possible to characterize the cost information 

using 8-costs, either using finite ordinals or the modified infinite ordinals suggested above. 

6.3. Solving C-REACHABILITY and UCODE 

The previous section showed how to characterize minimal-cost rewrite sequences through 

8-LR graphs. C-REACHABILITY can now be solved by solving a fixed-goal REACHABll.XfY prob

lem using the algorithm of Figure 5.8 on any uniquely invenible subgraph of the 8-LR graphs. 

Section 5.4 discussed how to select the UI LR graphs for the case of LR graphs. The same con

siderations apply here with one difference. It has already been pointed out that the purpose of the 

B-fsa computing the 8-LR graphs is not to compute them but to eventually obtain the restriction 

of the LR graphs equivalent to the 8-LR graphs. Because of this, the whole process is best 

described as the application of an LB-fsa, with the B-fsa computing the 8-LR graphs and with 

labeling function the one that -informally put- strips the costs away from the 8-LR graphs. 

This difference is apparent when minimizing the bottom-up tree automaton. Since in 

REACHABll.XfY all the state obtained by the automaton is used (i.e. the labeling function is the 

identity), removing identical states guarantees a minimum LB-fsa. In C-REACHABIT..ITY the label

ing function changes the situation since it ignores cost information. As an example, Figure 6.9 

shows the nodes of two 8-LR graphs, St 1 and St 2 from an instruction set description for the Vax-

11 [DEC81] with the number of bytes referenced as the cost function. St 1 and St 2 have the same 

underlying LR graph restriction. Moreover, the nodes can be split into two pans (shown in the 

figure) so that each subset in both graphs, when considered in itself, contains the same 8 cost 

information, and in all contexts only one of the parts is used. Hence, St 1 and St 2, although being 

different 8-LR graphs, are equivalent for solving C-REACHABll.XfY, and would be found so using 

the algorithm of Proposition 2.27. 
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St1 

Pattern cost 

compute_trees 4 
rval_b 4 
rval_w 7 
rval_l 7 
register_! 6 
register_b 3 
register_w 6 
(And_b rval_b constant_!) 1 
tree 4 
amodes_uncon 7 
bvte r addr 7 
(And b Icon 1 rval b) 0 

Two Equivalent o-LR graphs 

Figure 6.9 
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A similar situation appears when solving UCODE. UCODE can be solved by ~dving C

REACHABILITY and using the rewrite sequence to obtain a sequence of instructions, or, more 

accurately, a sequence of calls to semantic routines that will generate the instructions. Instead, 

the information can be extracted directly from the 8-UI LR graphs, leading to a situation as 

before, except that now the labeling is into a graph where the edges are semantic calls. Some 

states in the B-fsa may be equivalent when there are different rewrite rules with the same seman

tic calls. Again, we have an LB-fsa that can be minimized using the algorithm of Proposition 

2.27. 

As an example of this new situation, assume that there are rewrite rules 

+(X ,Y) ~ biOp (X ,Y), and Xor(X ,Y) ~ biOp (X ,Y), where X and Y are variables. Further 

assume that both + and Xor are not used anywhere but in this generic operator rewrite, and that 

the two rewrite rules have the same semantic action routine (this could be true, for instance, if 

later semantic actions consult the label of the input tree to distinguish between the two cases). 

Two 8-UI LR graphs that have identical input sets except that all the patterns in one are labeled 

with + and in the other with Xor, will behave the same, will produce the same semantic actions, 

and will be equivalent for UCODE, as shown in Figure 6.10. But the two 8-UI LR graphs are dif

ferent forC-REACHABILITY. 
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A~~ ~reg~src 

reg reg reg reg 

Xor ~ biOp ~ reg ~ src 
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reg reg reg reg 

An Example of two LR graphs Equivalent for UCODE 

Figure 6.10 

Recent years have seen a considerable amount of work in code generation algorithms. This 

section briefly covers those that relate to the work presented in this chapter. As in many research 

contributions, sometimes it is difficult to determine the exact chronology and authorship of the 

different techniques. 

Graham-Glanville 

The Graham-Glanville (GG) code generation algorithm [GlG78], [AGH84], [Hen84] is a 

code generator based on SLR(l) technology. It maps trees into strings through their preorder 

traversal, and has a left-to-right bias (due to the mapping mentioned above) and a "greedy" 

approach to choose among different alternatives (the so-c;:tlled "maximum munching" heuristic). 

This makes the code generator potentially non-optimal. Under the mapping from trees to strings, 

the transformation rules correspond to grammar rules, instruction fragment class symbols to non

terminals, and IR operators to terminals. This is the origin of the term machine grammar for

malized in Def. 6.3. The sentential forms in the grammar correspond to the elements of the 

extended panem set. 

GG has been used to construct practical code generator generators, including CODEGEN 

[AGH84]. CODEGEN follows closely the model presented in this chapter19 using a purely syntac

tic approach and an "on-the-fly" register manager. Thus, it essentially tries to solve an approxi

mation to the UCODE problem. 

The main advantage of GG is the re-use of a well known technology, SLR(l), for panem 

matching and rewrite rule application. The main disadvantage of GG is that it cannot guarantee 

optimality. It is possible to perform analysis at table construction time [Hen84] that will provide 

the user of the system with information on those cases where the system will not perform as 

desired, and, in some cases. to provide automatic corrections. But, in general, the user of the 

technique requires some understanding of its fundamentals to write descriptions that will work 

: 9 Or the other way around. 
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properly. Despite its limitations GG has been quite successful and has been a very influential 

milestone. 

Dynamic Programming 

In its simplest form dynamic programming is a tabular technique used to compute the 

value of certain recursive functions [AHU75]. That is, if P (n) is a problem of size n, and f is a 

function on the problem that can be provided with a recursive decomposition into subproblems 

f (P 1(n-1)) , ... ,f (P m (n-1)), then a table is used to "save" the evaluation of each subproblem as 

it is solved and thus avoid re-evaluation. 

The term dynamic programming is also used to mean a more specific optimization tech

nique in mathematical programming for problems involving a multistage decision process 

[RND77): a process in which a sequence of decisions is made, the choices available being depen

dent on the current state of the system - that is, on the previous decisions. The optimization 

problem is to find a sequence of decisions that minimizes some objective function. The key pro

perty required of the problem is the principle of optimality: 

An optimal sequence of decisions has the property that whatever the initial state and initial 

decisions are, the remaining decisions must be an optimal sequence of decisions with regard to 

the state resulting from the first decision 

The principle of optimality leads to a recursive formulation of the minimum cost of the 

objective function. This value can then be computed using the tabular technique mentioned 

above. A sequence of decisions for it can then be extracted by following the decomposition 

"backwards" (maybe with the help of additional information kept in the table) and combining it 

"forwards". 

Aho and Johnson 

The notion of dynamic programming is used by Aho and Johnson in [AhJ76) to obtain an 

algorithm for code generation for expression trees. There is a finite number, N, of identical regis

ters (denoted by r ), and an infinite number of memory locations (m ). There are only two types of 

instructions: register operations of the form T (r ,m) ~ r, where T (r ,m) is a tree with operators 

including r and m , and memory stores of the form r ~ m . The cost of a rewrite sequence is 

defined to be its length, and its resource usage is the maximum number of registers it uses at any 

given moment. (A rewrite rule of the form r ~ m frees registers). The optimization problem is 

to determine the sequence of rewrite rules that will rewrite the original input tree into r with a 

resource usage of less than N registers. 

Aho and Johnson first show that it is possible to consider only bottom-up normal rewrite 

sequences20. Then they define a notion of state at a subtree that describes, for each i with 

O~i ~, the minimum number of rewrite rules needed to rewrite the subtree to r or m, with a 

register usage at most i. Applying the dynamic programming technique, this leads to a three pass 

algorithm. The first pass does a bottom-up traversal of the tree to compute the states. The second 

pass does a top-down traversal to extract the rewrite sequences which are then reordered in a final 

bottom-up pass. 

The algorithm of Aho and Johnson has many similarities to our algorithm for solving fixed 

goal C-REACHABILITY. The main disadvantages of the algorithm when compared with our own 

are: 

20 Tiris requires assuming only one class of registers 
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(D.l)The state in [AhJ76] does not contain any information that can be used by a pattern 

matcher. Thus the decomposition of the problem is done by trying all the possible rewrite 

rules and, for each one, reaching ''down'' the tree at different depths depending on the 

shape of the rewrite rule being used. In contrast 8-LR graphs allow a direct decomposition. 

(D.2) The rewrite rules accepted by [AhJ76] are more restricted than those accepted by BURS 

theory. 

(D.3) Explicit cost information needs to be stored in the states of [AhJ76]. 8-LR graphs do not 

contain explicit cost information. 

The algorithm of Aho and Johnson has some advantages over our algorithm: 

(A.l) The theory described in this chapter assumes an infinite number of registers, while [AhJ76] 

can deal with the additional restriction of a finite number of registers as long as there is a 

single class of registers. 

(A.2) The cost function of Aho and Johnson can be more complex than ours, using the full power 

of the dynamic programming method. 

PCC2 

The original algorithm of [AhJ76] was implemented in PCC2 [Hen82], a research version 

of the portable C compiler code generator. The implementation assumed an infinite number of 

registers available (thus simplifying the notion of state and removing advantage (A. I)) but still 

used an ad-hoc technique for recognizing the applicability of instructions. 

Top-Down Pattern Matchers 

A significant performance improvement in the above techniques was obtained in [AGT86] 

by using a top-down pattern matcher. Similar approaches have also been developed by Wilhelm 

and Weisgerber [WeW86] and by Henry and Damron [HeD87]. In these implementations it is 

still necessary to represent the states by explicitly mentioning both their (sub)pattems and their 

costs. This leads to slow code generation algorithms. 

Bottom-Up Pattern Matchers 

Top-down pattern matchers are slower than bottom-up pattern matchers. The recent work 

of Henry and Damron [HeD87], of Wilhelm and Weisgerber (a preliminary description is in 

[WeW86]), and of Moencke [Moe87f1 are modifications to the states mentioned above to use 

bottom-up pattern matching. The rewrite systems accepted by the system reponed in [HeD87] 

can only contain instruction fragment rewrite rules. Their states are similar to the LR graphs of 

Chapter 5 for that class of rewrite systems, but UI LR graphs are not contemplated. The states 

can be precomputed at table generation time and then computed at code generation time using a 

B-fsa because there is a finite number of states. Cost information is encoded essentially as in the 

full cost LR graphs mentioned elsewhere in this chapter. This forces the implementation of the 

state to describe the cost information explicitly and to compute it at problem solving time. 

Chapter 8 quantifies the time penalty involved. 

Henry and Damron observe, in [HeD87], that, for a given cost function, it is possible to 

determine that some paths of the LR graphs will never be useful. They use this analysis to 

remove some of the edges and nodes from the LR graphs. One advantage of the use of o-UI LR 

graphs over this technique is the larger amount of information available statically which leads to 

a much better job in removing unneeded alternatives and produces smaller and fewer states . 

21 That work has been done independently of the research presented in this dissertation. 
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Hatcher and Christopher 

Hatcher and Christopher claim in [HaC] that it is possible to perform optimal unconstrained 

code generation with an algorithm that would work in time linear in the size of the input operator 

tree with a small and instruction set-independent constant of proportionality. The article starts 

with a description of the (solving-time) code generation algorithm, which is similar to the one 

used in fixed goal REACHABll.JTY. But the article's (solver-generation time) code generator gen

eration algorithm is quite confusing. Actually, the research on BlJRS systems in thi~ dissertation 

started as an answer to the puzzle created by their code generator generation algorithm. 

The main problem with [HaC] is that it tries to get along with too little in its states. The 

author's current understanding of the notion of state in [HaC] is that of a UI LR graph with 

"locally optimal" edges; that is, whose paths correspond to the minimum-cost local rewrite 

sequences. In addition [HaC] has additional constraints that relate to the computation of the 

encoding of the B-fsa as a row and column folding. The example of Figure 6.4 shows that, even 

for simple machine grammars, it is necessary to encoding some type of cost information. Hence, 

the approach of [HaC] is doomed for many machine grammars. [HaC] contains an pessimistic 

algorithm that is supposed to determine at table construction time when non-optimal code may be 

generated. [HaC] contains examples where optimal code cannot be generated using this tech

nique, but where new rewrite rules can be added to alleviate the problem, but neither [HaC] nor 

[Hat85] characterize under what circumstances this can be done. 



CHAPTER 7 

X-Patterns and Projection Systems 

Use it up, wear it out; 

Make it do, or do without. 

[New England maxim] 
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This chapter collects two different applications of REACHABILITY. The first application 

(Section 7.1) is PATIERN MATCHING for typed X-patterns. The second application is in a new 

type of tree transducer called a projection system; the transducer and its properties are developed 

in Section 7.2. 

PATTERJ\' MATCHING 

A pattern defines a set of trees: those at which the pattern matches. Chapters 3 and 4 study 

PATIERN MATCHING for linear and non-linear N-panerns. The patterns of those chapters are 

untyped patterns, that is, patterns in which the values to be assigned to the variables are not con

strained in any way. This limits the expressiveness of the patterns. For instance, there is no 

untyped pattern that matches at all trees, and only at those, of the form: 

not 

I 
Even number of "not"s not 

not 

I 
X 

In contrast, typed patterns are expressive enough for the task. The above set of trees can be 

described by an N-panern "X" where the type of X is a recognizable set L of trees whose top 

part contains chains of nots of even length. It can also be described by the X-pattern "X (Y)", 

where the type of X is a recognizable set L' of trees that are chains of nots of even length. The 

two patterns will be denoted by "X :L" and "X :L' (Y)" respectively. 

Any recognizable set of trees L can be trivially described as the set of trees matching the 

pattern "X :L ". This fact suggests dispensing completely with patterns and using, instead, B-fsa 

specifying recognizable sets. Yet, there are two differences between using a (perhaps typed) pat

tern and using a B-fsa. 

The first difference is that a pattern specifies not only the set of trees at which it matches, 

but also one or more variable assignments for each of these trees. These assignments ''separate'' 

the trees into named components that can be used by the application containing PATIERN MATCH-
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lNG as a subproblem. For instance, if L' is as above, the removal of useless operator chains22 

could be specified as "X :L' (Y) ~ Y ". 

The second difference is that patterns are much more concise and readily grasped by the 

human reader. In some real sense, patterns can be seen as a higher specification that is imple

mented as a B-fsa (or, more precisely, a LB-fsa). 

The simplest extension to untyped N-patterns are typed N-patterns. This chapter will only 

consider linear typed N-patterns: PATIERN MATCHING for non-linear typed N-patterns can then be 

solved using the approach described in Chapter 4. PATIERN MATCHING for typed N-patterns can 

be solved by constructing an LB-fsa that will label a node in a subject tree accordingly to whether 

the pattern matches at the node or not. The LB-fsa can be found by taking the LB-fsa of the 

untyped version of the pattern and "pasting" into it the B-fsa representing the types of its vari

ables. Section 7 .1.1 shows how this is done. 

The general idea for solving PATIERN MATCHING for untyped X-patterns is still to use 

some algorithm based on a bottom-up traversal of the subject tree to find match sets. but the 

situation is more complex because it is non-trivial to find a variable assignment; indeed, there 

may be more than one assignment valid at a given node. 

Forgetting for a moment the variable assignment, PATIERN MATCHING could be solved by 

pasting together LB-fsa "solving" portions of the pattern. For instance, Figure 7.1 shows a non

deterministic LB-fsa that recognizes the set of trees matched by the pattern 

"X(Minus(4),Plus(Y))". That figure uses a slight extension to the notation used in previous 

chapters to describe LB-fsa. The symbols "NullOp", "UnOp", and "BiOp" are used to 

represent any nullary, unary, and binary operators: "e-moves" indicate transitions that can occur 

independently of the input; and those transfers that are symmetric are indicated by a short stroke 

in a thicker pen across the transfer edges. The figure is split into 3 different portions. The lower 

two correspond to the LB-fsa that recognize Minus(4) and Plus (Y), and the upper one represents 

the X-variable. The LB-fsa shown is non-deterministic, but the algorithms of Section 2.4.1 show 

how to obtain from it a deterministic LB-fsa. 

22 "Useless", of course, depends on the semantics of the operators. For instance, C hackers will promptly point 

out that ! ' ~~ is not equal to e . 
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UnOp 

UnOp 

NullOp 

A LB-fsa for Untyped X-Pattem Matching 

Figure 7.1 

One could construct a LB-fsa for any untyped X-pattem following the same approach of 

''pasting together'' portions of patterns, but this would not solve the problem of finding the vari

able assignment. One possible solution to this problem would be to extend the state associated 

with each node in the tree with some repr:!sentation of the (partial) variable assignments. Instead, 

the solution used in this chapter is to rei..:) ..:lethe techniques of previous chapters and use the solu

tion to REACHABILITY or, more precisely, UCODE, to solve this problem. 

A rewrite system and a goal tree describe a set of trees: those that the rewrite system can 

rewrite into the goal. Any recognizable set can be described using this mechanism by construct

ing a rewrite system in finite-BURS emulating the B-fsa of the recognizable set. Rewrite systems 

can describe non-recognizable sets, but, if the rewrite system belongs to finite-BURS, the two 

mechanisms have the same descriptive power. Despite this equivalence, rewrite systems are 
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more convenient than B-fsa because they are descriptions at a higher level (in the same sense in 

which patterns are at a higher level than B-fsa) and because they provide convenient· 'hooks'' for 

the placement of semantic actions. 

The idea to solve PA'J:""ERN MATCHING for untyped X-patterns. is to define a rewrite system 

that performs in a way similar to the LB-fsa hinted in Figure 7.1. This rewrite system contains 

some rewrite ruks whose semantic routines are used to store information that is used to record 

the root and the i:ontier of the subtrees in the subject tree that are associated with the X-variables 

in the pattern. The algorithm for PATIERN MATCHING now follows the three-pass algorithm for 

UCODE: the first, bottom-up, pass assigns an LR graph to each node of the subject tree from which 

we can extract the collection of patterns matching at the node. The second pass, top-down, can 

now be done for each pattern in the collection to find the root and frontier of the subtrees associ

ated with the X-variables. Finally, the third pass, bottom-up, can be seen as actually collecting 

the root and frontier information into the variable assignment. Repeated applications of passes 

two and three could produce the variable assignments of all the patterns, but typical applications 

will require the assignment for only one pattern. 

The approach sketched above and formalized further in Section 7 .1.2 has the obvious 

advantage of recycling the technology developed for UCODE. It also has the advantage that, since 

most applications of pattern matching do not require the variable assignments of all the patterns, 

it will run substantially faster than an approach that tracks the variable assignment as it traverses 

the tree bottom-up. Finally, it can be extended :o deal with typed X-pattems, as is shown in Sec

tion 7.1.3. 

Projection Systems 

The intuitive notion of "projecting" a input tree is to "split" the tree into parts and to con

sistently replace these parts by new tree fragments which, when "pasted" together, will produce 

an output tree. The simplest instance of this no~ion of projection is the relabeling of Def. 2.17. 

Relabelings can be used to describe simple tree transformations, and can also be used to describe 

RECOG sets as relabelings of local sets (Proposition 2.10). As an example of this last proposition, 

the tree language composed of the trees of the form: is not the set of derivation trees for any con

text free grammar. but can be obtained as the relabeling of one such set. I~: particular, it is the 

result of the relabeling of e 1 by e and e 2 by e in the jerivation trc:-s of the context-free grammar 

having the rewrite rules: 

e 1 -7e 2 pepe 
e2 ---7 e2 foo 
e 2 -7bar 

There are many tree transformations that correspond to our intuitive notion of a ''projec

tion" but cannot be described using a relabeling. Linear homomorphisms (Def. 2.18) are one 

generalization of relabelings in which an operator in the input tree can be replaced by a subtree. 

Still, neither relabelings nor linear homomorphisms can describe a transformation that requires 

"context" information. For instance, one would want to be able to rewrite a tree like: 
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strnt 
I 

if stmt 
~ 

~ 
else pan 
/\ 

if E then Sl else S2 

into 

if stmt 
~ 

E Sl S2 

where E, S 1, and S 2 are variables that will match trees representing expressions and statement 

lists. 

The notion required to describe such types of "projection" is t.r.:lt of a projection system. 

A projection system is a rewrite system that is applied in a different way. The key concept is the 

idea of a "cover", a non-overlapping collection of matchings of the input patterns in the system 

completely covering the input tree. Given a cover for a tree, its projection is obtained by replac

ing each input pattern by its associated output pattern. 

Finding the cover can be done by solving a REACHABTI...ITY problem, thus providing an algo

rithm to compute the projection. Similarly, the results of Chapter 5 can be used to determine if 

any tree in a recognizable set can be covered. Moreover, the function defined by the projection 

system can be ''inverted'', that is, given an output tree it is also possible to use the solution to 

another instance of REACHABll..ITY to obtain an input tree belonging to a recognizable set that 

projects into the output tree. 

One application of projection systems is to describe the transformation between concrete 

and abstract syntax trees. The concrete syntax of a programming language is the syntax used by 

the programmer, normally described by a context-free grammar. The concrete syntax tree for a 

program is the derivation tree for the program. Since the concrete syntax grammar is used to 

direct the compilation process, it may contain several constructs (new non-terminals, additional 

productions) that are irrelevant to characterize the "deep structure", or meaning, of the program. 

The abstract syntax of the language only reflects this deep structure, making it a more convenient 

representation for semantics, both "static" and "dynamic". 

Some tree mappings between concrete and abstract syntax trees can be described using a 

projection system. The application of the projection defines the mapping from concrete to 

abstract trees, while the application of the inversion algorithm provides an mapping between 

abstract and concrete trees. An application of these mappings could be in a language-based editor 

like PAN [BVG87], where the abstract syntax tree is used internally to save space but the con

crete syntax tree is required for incremental parsing or for pretty-printing; see [BBG87] for 

another approach to this problem. 

Another application of the "inversion" algorithm is to allow more flexible ways to define 

recognizable sets: as images of local sets under projection systems instead of only under relabel

ings. 

7 .1. Typed Patterns 

The goal of this section is to show how to solve PATIERN MATCHING for typed X-patterns. 

Before attacking the general case (Section 7.1.3), the section first solves two useful 
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simplifications: typed N -patterns (Section 7 .1.1) and untyped X -patterns (Section 7 .1.2). The 

simpler cases serve as an introduction to the more complex one as well as being useful in their 

own right 

7 .1.1. Typed N-patterns 

As indicated in the introduction, the idea used here is quite simple: graft the B-fsa describ

ing the types of the variables into the B-fsa describing the untyped N-pattern. The key proposi

tion is: 

Proposition 7.1 Let p be a typed linear N-pattern over Op, with the types in p being described 

by B-fsa over Op. There is an algorithm that will generate a (deterministic and minimal) LB-fsa 

<AL> such that for every subject tree T over Op a node in T is labeled with { p} zf p matches at 

the subtree rooted by the node, and is labeled with 0 otherwise. 

Proof We first produce a non-deterministic LB-fsa with the desired properties. The LB-fsa can 

then be converted into a deterministic one and minimized using the appropriate algorithms of 

Section 2.4.1. 

Denote the typed variables in p by X 1, ... ,Xn, and let p' be Px 1
+-a 1 

•• ·X.+-a. where 

a 1, ... , an are new nullary operators not in Op. Clearly, there is a correspondence between trees 

over Op matched by p and trees over Opu{a 1, ... ,an} matched by p'. Now construct a match 

set LB-fsa for p', B. Let B 1, ... ,En be the n B-fsa that recognize the types associated with 

X 1, ... ,Xn. Assume that B 1, ... , Bn have a single final state and that the states in B, 

B 1, ... ,Bn are all mutually disjoint. We construct a new (non-deterministic) LB-fsa B' from B, 

B 1, •.. , Bn. The states in B' are all the states in the B-fsa except for the states in B correspond

ing to the nullary operators a 1, ... , an . The transfer function in B' is the union of those in the 

B-fsa, except that those transfers that used to come from a state ai, now come from the final state 

of Bi. The labeling function forB' assigns p to the states in B' that correspond to states in B that 

are labeled p, and 0 to the remaining states. D 

The situation discussed in the proof of Proposition 7.1 is sketched in Figure 7 .2. 
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An LB-fsa for Typed N-pattems 

Figure 7.2 

Given a collection of typed N-pattems, we can construct an LB-fsa for each one of them 

and then collect them into a non-deterministic LB-fsa that will recognize the collection. If 

desired the LB-fsa can then be converted into deterministic form and minimized. Thus: 

Proposition 7.2 Let F be a collection of typed linear N -patterns over Op with the types given as 

B-fsa over Op. There is an algorithm that will generate a (deterministic and minimal) LB-fsa 

<A.L> such that the label of a node in a tree contains p e F if and only if p matches at the sub

tree rooted by the node. 

7 .1.2. Untyped X-patterns 

This subsection deals with linear untyped X-patterns. The introduction of types is studied 

in the next subsection. Again, we restrict ourselves to linear patterns since solving PATIERN 

MATCHING for X-patterns where an X-variable appears more than once is quite difficult. In par

ticular, solving this problem would require comparing two internal portions of the subject tree 

which, unlike the situation for N-pattems, cannot be solved by simple pointer equality in a com

putation dag. 

This section solves PATIERN MATCHING by solving a particular class of REACHABILITY 

problems. The idea is to construct for each X-pattern a rewrite system that contains symbols to 

indicate that certain parts of the pattern have been recognized, including one for the complete pat

tern. The rewrite rules encode the conditions under which the given pans are recognized, and a 

147 



148 

tree can be rewritten into a symbol representing a pattern if and only if the pattern matches at the 

tree. 

If p is a match of an X-pattem at a subject tree, p assigns to each n-ary variable in the X

panern a linear N-pattern with n variables. This N-panern can be characterized by n+l pointers 

tC' nodes in the subject tree: one corresponding to the root of th~ N-pattcrn, the others to the loca

tion of its n variables. The root pointer does not need to be represented explicitly: saying that the 

X-pattern matches at some subtree is equivalent to saying tha the root pointer points to the root of 

that subtree. This is why we have not mentioned any explicit pointers when discussing pattern 

matching for N-patterns. But for X-panerns, the remaining n -pointers arc required to uniquely 

determine the assignment to the variable. Figure 7.3 sketches the situation for an assignment p 

that is a matching for the X-pattern (shown at the right of the figure) at the subject tree (shown at 

the left of the figure). In the figure, Ti stand for fixed trees, Xi for variables, and cr(X 1), cr(X ~. 

and cr(X 3) are the trees (N-patterns) assigned to X 1, X 2, and X 3 by the matching. 

Representing a Variable Assignment 

Figure 7.3 

The assignment of the matching can be found by associating a semantic action with the 

rewrite rules "outlining" the lower boundary of the X-variables. These semantic actions save the 
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pointer to the node in the subject tree currently being visited at matching time. 

Proposition 7.3 Let p be an untyped (linear) X-pattern over Op. There is a rewrite system RP 

and a goal symbol GP such that a tree T can be rewritten by R P into G P zf and only zf p matches 

atT. 

In addition, RP has r; distinguished rewrite rules for each n-ary variable in p. If p matches 

at T, then any normal form rewrite sequence in Rpfrom T toG P contains exactly one of each of 

these distinguished rewrite rules. The input nodes at which the rewrite rules are applied define a 

variable assignment for p, and any variable assignment corresponds to some normal form rewrite 

sequence in Rp· 
Proof The construction of the rewrite system is given. It is left to the reader to show, using struc

tural induction on the patterns, that it satisfies the proposition. The description only contains the 

cases of 0, 1,2 operators. Larger arities can be obtained either by describing them using the lower 

arities (e.g. X (p 1,p2,p3) becomes X (p 1,X (p2,p3)), or by direct extension of the technique). Nul-

lOp, UnOp, and BiOp should be replaced by all nullary, unary, and binary operators in Op23• 

There is a symbol "original" that will represent a portion of the subject tree on which no 

interesting rewrite rules can be applied. The rewrite rules associated with it are: 

NullOp ~ original 

UnOp ~ original 
I 

original 

BiOp ~ original 
~ 

original original 

None of the remaining rewrite rules will introduce either original or an operator in Op. Thus, a 

tree can be rewritten into original only if no other rewrite rule is used. 

The next rewrite rules recognize portions of the subpattem. They use several symbols for 

each variable X in p: X-found indicates that the subpattem of p rooted by X matches at the sub

tree, and, if X is a binary variable of the form X (p 1,pz), X-left and X-right respectively mean that 

the patterns X (p 1) and X (pz) match. 

If X is a subpattem (that is, X has arity 0), then there is a rewrite rule of the form 

original ~ X-found 

If X(p 1) is a subpattem, and p1 is of the form ')'(81, ... , Dn) where"{ has no variables in it 

and, for l$;i $;n, 8i has a variable Xi at its root, then 

23 An alternative is to make them symbols and use a generic operator rewrite. 
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~ X-found 

This rewrite rule is distinguished and will have a semantic action associated with it. 

If X(p1'p2) is a subpattem, p1 is of the fonn "z-l(o1
1, ... ,o\), p2 is of the fonn 

y(o2
1, ..• , o n) where y1 and -( have no variables, and &i i (lSi Sn) each has a variable Xi i at its 

root, then 

~ X-left 

1 X 1-found 

~ X-right 

2 ... 2 
X 1-found X n -found 

These two rewrite rules are distinguished and have a semantic action associated with them to 

record the tree position at which they are invoked. In addition there are also rewrite rules of the 

fonn 

BiQp ~ X-left BiOp ~ X-right 

~ ~ 
X-left original X-right original 

BiQp ~ X-left BiOp ~ X-right 

~ ~ 
original X-left original X-right 

UnOp 
I 

~ X-left UnOp 
I 

~ X-right 

X-left X-right 

And, finally, for any X -variable, we have 



BiQp 
~ 

X-left X-right 

BiQp 
~ 

X-found original 

BiQp 
~ 

original X-found 

--+ X-found 

--+ X-found 

--+ X-found 

UnOp --+ X-found 
I 

X-found 
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The definitions guarantee that a tree can be rewritten into X-found if and only if the subtree of p 

rooted by X matches at the tree. 

The rewrite system can be completed with a final rewrite rule corresponding to the top of 

the original pattern p. If p can be decomposed as )'(81, ... , 811 ) where 8i is rooted by a variable 

Xi. then there is a rewrite rule of the form: · 

--+ p 

where p is a symbol representing the matching of the pattern p. 

Note that the distinguished rewrite rules detect the variable assignments. 0 

The rewrite system can now be used to solve PATTERN MATCHING by associating with all 

the rewrite rules the null semantic function except for the distinguished rewrite rules finding the 

variable assignment and solving UCODE. The algorithm for UCODE can be specialized further: the 

second, top-down, phase can be modified so that whenever original is a goal, the traversal is 

stopped. Solving UCODE instead of REACHABILITY has the advantage of yielding substantially 

smaller tables. 

There is no problem in dealing with a collection of patterns: just add new rewrite rules for 

the new subpatterns. Subpatterns that appear in more than one pattern produce only one set of 

rewrite rules. Consequently: 

Proposition 7.4 Let F be a collection of untyped X-patterns. There exists an algorithm that will 

solve PATTERN MATCHING (except for finding the variable assignment) for F in time linear in the 

size of the subject tree. If the variable assignment is wanted, the extra time required is linear in 

the size of the subject tree for each desired pattern. 

The technique shown above also allows a simple, but probably useful, modification. When 

constructing the UI LR graphs one can prefer, whenever possible, some rewrite rules instead of 

others. Thus, if 
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BiQp ~ X-left 
~ 

X-left original 

is selected always before 

BiOp ~ X-left 
~ 

original X-left 

the left subtree of a binary X-pattem is chosen "as farto the left" as possible. This might be use

ful to reduce some of the ambiguity inherent in X-pattcms. The next stage after this is to require 

that the subtree associated with X must have some panicular shape, that is, typed X-pattems. 

7 .1.3. Typed X-patterns 

This section, finally, deals with the more complex case. The idea is simply to take the 

rewrite system used in the proof of Proposition 7.3 and encode the transitions of the B-fsa 

describing the types into it. 

The types of the nullary variables can be dealt with pretty easily. Assume that the B-fsa for 

these types have disjoint states and are deterministic. The rewrite rules for original are replaced 

by collections of rewrite rules of the fonn 

NullOp ~ state-0 

UnOp ~ state-2 
I 

state-1 

BiOp ~ state-5 
~ 

state-3 State-4 

where NullOp, UnOp, and BiOp are instantiated to be specific nullary, unary, and binary opera

tors, and state-0 , ... , state-S are new symbols corresponding to the states in the B-fsa of the types 

related by stat e-O = f( nullop ), state-2 = f(unop ,state-]), and state-S = f(biop ,state-3 ,state-4 ). 

Then, if state is a state in a B-fsa B, a tree can be rewritten into state if and only if B associates 

state with the tree. 

Dealing with the types of the X-variables is similar. Recall (Def. 2.3) that the type of an 

n-ary X-variable is a recognizable set of trees using the operator set extended with n nullary 

operators, child 1, ... , child" representing the "slots" for the children of the X-variable. Thus, 

for each typed X-variable we can assume the existence of a deterministic B-fsa over 

Opu{child 1, ... , child"}. The types of these B-fsa are then encoded into the rewrite rules that 

are associated with each X-variable. 

Only the case for binary X-variables is shown; tmary X-variables are similar. For each 

typed binary X-variable X and each state st in its B-fsa, there will exist symbols X-lefr-st, X

right-st, X-found-st, and X-found. The first three encode the fact that the tree can be rewritten into 
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the X-left, X-right, and X-found, of untyped X-panerns where the subtree assigned to the X

variable has state st under the B-fsa. The symbol X -found encodes the fact that the tree can be 

rewrinen into the untyped Xjound with a final state. These states are computed by simulating the 

transitions of the B-fsa with the rewrite rules. Thus, if the type is described by a B-fsa B with 

transfer function f, one would have: 

--+ X-left-StL 

--+ X-left-StR 

2 ... 2 
X 1-found X n -found 

where StL=f (child 1) and StR =!(child 1). The values are then propagated by rewrite rules like 

the ones below, where the states satisfy St 3=! (biop, St l,St2) and St 2=! (unop, St 1). 

BiOp --+ X-left-St3 BiOp --+ X-right-St3 

~ ~ 
X-left-Stl St2 X-right-Stl St2 

BiOp --+ X-left-St3 BiOp --+ X-right-St3 

/----..... /""---_ 
Stl X-left-St2 Stl X-right-St2 

Un()p --+ X-left-St2 UnOp --+ X-right-St2 

I I 
X-left-Stl X-right-Stl 

And: 
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BiOp ~ X-found-St3 ______.....__ 
X-left-Stl X-right-St2 

BipP ~ X-found-St3 

~ 
X-found-Stl St2 

BiOp ~ X-found-St3 
/'---_ 

Stl X-found-St2 

UnOp ~ X-found-St2 
I 

X-found-Stl 

And, if St is the final state in B, finally used as follows: 

X-found-StF ~ X-found 

The approach to solving PATTERN MATCHING is identical to the one used in untyped X

pattems: solving a UCODE problem for this rewrite system, although many rewrite rules will be 

frequently found useless if the LB-fsa computing the UI LR graphs is minimized. Thus, we have: 

Proposition 7.5 Let F be a collection of typed X-patterns, with the types of the variables pro

vided by a collection of Bjsa. There exists an algorithm that will solve PATTERN MATCHING 

(except for finding the variable assignment) for F in time linear in the size of the subject tree. If 

the variable assignment is wanted, the extra time required is linear in the size of the subject tree 

for each desired pattern. 

Applications to Rewrite Systems 

The pattern matching algorithms presented in this section can be used in an algorithm deal

ing with rewrite systems. In particular, they could be used in a rewrite system for which REACHA

BILITY is being solved. Postponing a deeper analysis of the implications for future work, it seems 

that typed N-pattems and both untyped and typed X-pattems can be used as input patterns in 

rewrite rules without interfering with the basic principles behind the theory used in Chapter 5 to 

solve REACHABILITY. In any case, output patterns are still restricted to be untyped N-panerns: 

adding types to the variables is meaningless. and dealing with X-patterns seems to easily lead to 

rewrite systems outside BURS. 

7 .2. Projection Systems 

Projection systems are tree transducers that are a generalization of linear homomorphisms 

and relabelings. The generalization allows the system to use context information in determining 

how to "project" a portion of the input tree. Formally, a projection system is identical to a 

rewrite system, but it is applied in a different way. 
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An example of a use of a projection system is the one shown at the beginning of this chapter 

involving "if-then-else" statements. Another application could be the specification of the map

ping between concrete and abstract representations of expression trees. For example the rewrite 

system of Figure 7.4 describes how portions of a parse tree for the context-free grammar of Fig

ure 7.5 would be modified. The rewrite rule expr (X 1 ,X 2,X 3)~expr (X 1 ,X 2,X 3) reflects the fact 

that this case for expr is left unmodified. This rewrite rule should be used only if no other rerwite 

rule applies and, in particular, if expr( "(" ,X,")" )~X does not apply. This constraint on the 

application of the rewrite rules is formalized below as the "more coarser than" notion. The 

rewrite rule is required to satisfy that the input patterns of the projection system cover (Definition 

7. 1) the input tree. 

exrr ~x factor ~x 
I 

X X 

t.enn ~x t.erm ~x 

/1"-. I 
( X ) X 

term ~ 

~ ~ 
~ 

~ 

xl x2 x3 xl x2 x3 xl x2 x3 

addOp ~ + multop 
I I 
+ * 

id ~ id 

Example of a Projection System 

Figure 7.4 

~ 
xl ~x3 

~ * 
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expr ~term addop expr 
expr ~term 

term ~factor mulop term 
term ~factor 

factor ~id 
factor~"(" expr ")" 
addop~"+" 

mulop~"*" 

Example of a Context-Free Grammar 

Figure 7.5 

The application of the projection system to an input tree first finds a ''partition'' of the 

input tree using the input patterns of the rewrite rules in the projection system, and then replaces 

them by the output patterns. The formal notion involved is called a cover. 

Definition 7.1 Let F be a set of N-patterns over Op, and letT be a tree over Op. A cover forT 

using F is a function assigning to each position p in T either the distinguished value nil or a pair 

<p,cr> where cr is a match for the pattern pin Fat the subtree T @p, and such that: 

( 1) The cover assigns a non-nil value to the root ofT; 

(2) If the cover assigns <p,cr> to position p, and the positions of the variables in p are 

p 1, ... ,p,., then the cover assigns non-nil values to the positions p /ip 1, ... ,p f.lp,.; and 

( 3) The only positions to which the cover assigns non-nil values are those indicated by (1) 

and (2) above. 

For example, Figure 7.6 shows a cover of a tree in the local set induced by the grammar in 

Figure 7.5 using the input patterns of Figure 7 .4. 
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Example of a Cover 
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Definition 7.2 Let F be a set of patterns over Op, letT be a tree over Op, and let C1 and C2 be 

two covers forT on F. C1 is immediately coarser than C2 if there is a position p in T such that, 

for every position q different from p . if C 1 assigns a non-nil value to q . then the pair assigned is 

identical to the one assigned to q by C2, The relation coarser, denoted >c • is the transitive clo

sure of' 'immediately coarser than''. 

A cover for T is a maximal cover if it is maximal over > c . 

Note that, since both C1 and C2 in Definition 7.2 are covers, the pair assigned by C1 to the 

position p is, in some sense, "covering" the same portion of the input tree covered by the 

remaining non-nil values of C2. 

Maximal covers are useful because larger patterns in a projection system indicate a more 

precise specification. 

Definition 7.3 A projection system P over Op is a rewrite system with rewrite rules a~~ 

where (I) a and~ are both linear patterns with exactly the same variables, and (2)for every tree 

T, there is a cover forT on {a I a~~ e P}. 

The result of applying P to T is a new tree h (P,T) defined recursively as follows: if P 

assigns to a(T 1, ... ,Tn) a pattern a(X 1, ... ,Xn), h(P,a(T 1, ... ,Tn)) is defined to be 

~X t~h (P ,Tt) · · · x.~h(P ,T.) 

A good projection system for some recognizable set Lis one such that each T e Lhasa sin

gle maximal cover. 

The cover in Figure 7.6 is a maximal cover for the set of input patterns in Figure 7.4. As 

such, it defines a projection of the input tree, namely, the one shown below: 
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Finding a maximal cover is more complex for some projection systems than for others. 

Using the same example of the mapping between concrete and abstract syntax trees, one might 

want to add the rewrite rules in Figure 7.7 to those of Figure 7.4. As always, X and Y are vari

ables. 

loop ~ while stmt 
I ~ 

stmt list while X do Y 
~ 

if stmt y 

~ 
if X then sit 

exit 
loop ~ loop 
I I 
X X 

if stmt ~ if stmt 
~ A 
if X then Y X y 

Second Example of Projection System 

Figure 7.7 

In this case, there is more than one possible cover for the tree of Figure 7.8. Following the 

definition of projection system, a maximal cover should be used. 



stmt list 
~ 

if stmt stmt 
~I 
if exrr then stmt null 

I 
term exit 

I 
factor 

I 
id 

Sample Tree 

Figure 7.8 

The projection system containing the rewrite rules of Figure 7.4 together wih the rewrite 

rules of Figure 7.7 still satisfies the property that there is a single maximal cover for every input 

tree. Determining whether this and other properties involving projection systems hold can be 

answered using results and teclmiques from REACHABILITY theory. The first question is how to 

compute covers. 

Proposition 7.6 Given a set F of patterns over Op, and a tree T over Op, there is an algorithm 

that finds all the covers on T by Op. 
Proof For any panern a with n variables X 1, ... , X n, we will use a(J..) to denote the replacement 

of all the variables with J.., that is, ax
1
+-J..·. ·X.+-J... For any set of (linear) patterns F, F(J..) will 

be used to denote the rewrite system over Op EB {..l..}, where the rewrite rules are of the form 

a(J..) --t..l... F(J..) is a simple reduction system, and, thus, in BURS. Moreover, a reduction 

corresponds to finding a cover. An invocation of fixed _goal (T ,..1..) will find all the covers of T 

overF. 0 
The above algorithm can be modified to find good covers. 

Proposition 7.7 Given a set F of patterns over Op, and a tree T over Op, there is an algorithm 

that will compute a maximal cover for T over F. 
Proof The algorithm is a variation of the one used for the previous proposition. As before we 

solve fixed-goal REACHABll.lTY for F(J..), but now we replace LR graphs by an appropriate res

triction. If G is an LR graph of F(J..), associate with it a restricted LR graph G' where there is an 

edge between a(.L) and J.. only if a is maximal under subsumes over all those patterns ~ such that 

~(J..)___,J.. is in G. Using these restricted LR graphs, a solution to fixed-goal REACHABll..ITY with 

goal ..1.. over tree T produces a cover for T. In addition, it is a maximal cover: otherwise there 

would be a highest node in T at which a pattern ~ was chosen when some other pattern W, with 

W ~ ~. should have been chosen, contradicting the construction of the restricted LR graphs. 0 

The above algorithm also provides information on whether the maximal cover is unique or 

not 
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Proposition 7.8 Given a set F of patterns over Op, and a tree T over Op, there is an algorithm 

that will determine whether T has a unique maximal cover over F. 

Proof There is a unique cover if and only if all nodes encountered during the solving of the 

fixed-goal REACHABILITY problem using the restricted LR graphs defined in Proposition 7.7 have 

a single incoming edge. 0 
The questions addressed in the propositions above can also be asked relative to a recogniz

able set described through a B-fsa. 

Proposition 7.9 Let F be a pattern set and let L be a recognizable set over Op. Further assume 

that L is given as a B-fsa. ( 1) There is an algorithm that will determine whether every tree in L 

has a cover over F. (2) There is an algorithm that will determine whether every tree in Lhasa 

unique maximal cover over F. 
Proof (1) can be solved by solving the blocking problem for F(J..) and L (Proposition 5.20). (2) 

can be solved by removing useless nodes in the restriction of the LR graphs defined in the proof 

of Proposition 7.7, removing useless nodes in them for L using Proposition 5.22, and then check

ing whether there is any restricted LR graph where J.. has more than one incoming edge. 0 

Computing projections is a direct corollary of the definition of projection and Proposition 

7.7. 

Corollary 7.1 Given a projection system P over Op and a tree T over Op, there is an algorithm 

that will compute all the applications of P to T. 

If there is a unique maximal cover, Proposition 7.7 and the previous corollary show: 

Corollary 7.2 RECOG is closed under inverse projections. 

Finally, one can determine the shape of the output trees: 

Proposition 7.10 Given a projection system P over Op and two Bjsa B 1 and B 2, there is an 

algorithm that will determine whether there is any tree t over Op accepted by B 1 such that its 

projection under Pis not accepted by B 2. 

Proof We construct a new rewrite system R from the projection system and from B 2. Assume, 

without loss of generality, that B 2 has a single final state Stfuull· R will be defined over Op 

extended with nullary symbols representing the states in B 2. For every rewrite rule in the projec

tion system of the form a(X 1• ...• xn) --t ~(X I• ... 'xn) where the variables in a and ~ are 

X J. ... ,Xn, there are rewrite rules in R of the form ax,.-s1, .. ·X • .-sr. --t St 0 where St 0, ... , Stn 

are symbols corresponding to states in B 2, and St 0 is the state that would be assigned by B 2 to a 

tree of the form a(X I• ...• xn) if, for l$i $n' the subtree rooted by xi had state Sti. 

Oearly there are finitely many rewrite rules in R, and they can be computed. The reduc

tions in R track both covers and the state information. By structural induction one can easily 

prove that there is a rewrite sequence in R from T to St if and only if a projection T' ofT under 

Pis assigned state St by B 2. Moreover, R is a reduction system and a member of finite-BURS. 

The question in the body of the proposition is equivalent to determining if there is a block

ing tree in B 1 for R and goal Stftnal· 0 
Inverting a Projection 

A useful question involving projection systems is the following: given a projection system 

P and a tree T, determine if there is a tree T that yields T under P. The answer is very simple if 

there are no constraints on T: 
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Proposition 7.11 Let P be a projection system over Op. There is an algorithm that will deter

mine for a tree T' over Op whether there is another tree T over Op such that the projection ofT 

over P is T and, if so, will provide one such tree T. 

Proof There will be such a tree if and only if there exists a cover ofT using the output patterns 

of P. An application of the rewrite rules of P, "in reverse" will produce T. 0 

A more useful version of inversion is when the input tree is required to belong to a recog

nizable set. 

Proposition 7.12 Let L be a recognizable set described using a B-fsa B. Let P be a projection 

system over Op. There exists an algorithm that will determine, given a tree T' over Op whether 

there is a tree T accepted by B such that the projection ofT over Pis T' and, if so, will provide 

one such tree T. 
Proof The proof is similar to the proof of Proposition 7 .10. We construct a new rewrite system R 

from the projection system and from the B-fsa. Assume, without loss of generality, that B has a 

single final state Stftnal· R will be over Op extended with nullary symbols representing the states 

in B. For every rewrite rule in the projection system of the form 

a(X 1, ... ,Xn) ~~(X I> ... ,Xn) where the variables in a and~ are X 1, ... ,Xn, there are rewrite 

rules in R of the form ~X 1+-s11 •. ·X.+-St. ~ St 0 where St 0, ... , Stn are symbols corresponding to 

states in B, and St 0 is the state that would be assigned by B to a tree of the form ~(X 1, ... , Xn) if, 

for l::;i ::;;n, the subtree rooted by X; had state Sti. 

Oearly there are finitely many rewrite rules in R, and they can be computed. The reduc

tions in R track both covers and the state information. By structural induction one can easily 

prove that there is a rewrite sequence in R from T' to St if and only if there is a tree T such that 

its projection under Pis T and its state under B is St. 

Since R is clearly a member of finite-BURS, we can construct the UI LR graphs for R and, 

for any given output tree T', solve the fixed-goal REACHABILITY problem for R with goal Stftnal· 

A desired T will exist if and only if T' rewrites into Stfina1, and if so, it can be extracted from the 

rewrite sequence. D 
The above proposition shows that the projection of any recognizable set is a recognizable 

set In particular, it provides an answer to the question raised in Chapter 2 regarding the 

"inverse" of Proposition 2.1 0. 

Corollary 7.3 RECOG is closed under forward applications of projection systems. In particu

lar, if G is any context free grammar, and P be any projection system, then the set of the projec

tions of L (G) is a recogni::able set. 

Extensions 

Up to this point this section has assumed that the input patterns in the rewrite rules of the 

projection systems were untyped linear N-patterns. A first extension to the notion of projection 

system is to allow typed linear N-patterns to restrict the applicability of some projection transfor

mation. This can be done using the techniques presented in Section 7.1. We leave the details for 

the reader. 

Adding non-linearity is complex because of the same reasons that forbade its use in BURS 

theory, but it is feasible to consider allowing X-panerns, both typed and untyped as input pat

terns. This extension requires redefining the notion of a cover. The key point is what to do with 

the ponions of the input tree that are assigned to an X-variable. Two obvious alternatives are to 

copy them directly, and to recursively transform them using the projection system. In most cases 

the second alternative is the more useful one. For example, that would be the case if we wanted 

to extend the projection system of Figure 7.7 to include detecting repeat statements. The 

transformation could be described as: 
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loop 
I 
X 
I 

stmt list 
~ 

if sunt null 
~ 
if Y then sunt 

I 
exit 

-t repeat stmt 
~ 

repeat Y until X 
I 

null 

A Third Example of a Projection System 

Figure 7.9 

Either approach to X-patterns can be incorporated in projection systems using the tech

niques described in Section 7 .1. The details of this approach will be discussed in a future docu

ment, which will, hopefully also include reports on the use of the technique. 

7.3. Previous and Related Work 

The techniques used for typed N-panems are described by Engelfriet in [Eng75] in the con

text of finite state tree transducers. The author is not aware of any work done in the context of 

X-panerns. 

The major previous work related to that presented in Section 7.2 are the tree transformation 

grammars (IT-grammars) of Keller et al. [KMP84]. IT-grammars are used to describe the map

ping between two local sets. The description contains the input and output context-free gram

mars, associations between subgrammars of them, and associations between individual symbols 

in productions of the subgrammars. The input subgrammars are used to tile the input tree in a 

way similar to projection systems. The associations are then used to construct output tree frag

ments which are then put together to construct the output tree. TT -grammars can be seen as a 

cross between our projection systems and an attribute grammar [Knu68]: they are attribute gram

mars in which the domains of the attributes are always fragments of derivation trees of the 0utput 

grammar, and the semantic functions are either simple "pasting" of the tree components, o:- just 

copies of tree-values, but they are extended so that the unit of locality (at which the semantic 

actions are chosen) is an input subgrammar instead of a production. 

The main emphasis in TT -grammars is in being able to determine the shape of the sets of 

input and output trees while increasing the context information used to choose th·.:- transformation 

of a portion of the input tree. [KMP84] contains three subclasses of IT-grammars of varying 

degree of complexity. The simplest class, called dual grammar translation scheme (DGTS). 

corresponds to a projection system where the input patterns represent single productions in the 

input grammar (which can be described using typed variables where the type indicates that the 

derivation tree is rooted by a given non-terminal) while the output patterns may represent larger 

pieces of derivation trees. 



163 

The second class of IT-grammars, called single input production - explicitly qualified 
(SIPEQ), is an extension of the first class that shows more the AG relation of IT -grammars. In 
this class the input subgrammars still correspond to single productions, but the output subgram
mars can be several, possibly disconnected, output parse subtrees. In addition it is possible to 
select between several output subgrammars based on some semantic attribute. Transformations 
described with this type of IT-grammar can "move" output tree values up and down the input 
tree and may not be describable using projection systems, as expressing such a transformation 
using a rewrite-based system seems to require iterated rewrite rule invocation. 

The final class of TT -grammars discussed in [K.Nll'84] is the multiple input production IT
grammars, that is, unrestricted IT -grammars. Unlike the first two classes, this one has not been 
implemented and its definition in [K.Nll'84] has some obscure points: especially with the associa
tion of symbols when both the input and the output subgrammars have recursive non-terminal:. 
As in SIPEQ IT -grammars, this class is implemented using an attribute grammar. Moreover, 
understanding the meaning of an specification using the full power of these two classes of IT
grammars requires the same kind of reasoning used with attribute grammars. 

IT-grammars are more powerful than projection systems in the sense mentioned above. In 
a different direction, projection systems allow descriptions of transformations between any two 
sets of trees, and, given the propenies proved in this section, the sets of trees can be restricted to 
be any recognizable sets, not just derivation trees. Tlli.s would be useful in transformations like 
those dealing with abstract syntax trees. A disadvantage of the more general IT -grammars is that 
they have to rely on attribute grammars for their implementation and to reason about their seman

tics, while projection systems have a simpler and more natural semantic model. An additional 
advantage of projection systems is that they can be inverted; [K.NrP84] explicitly mentions this 
question as an open one for IT -grammars. 

[KMP84] mentions that DGTS and SIPEQ IT -grammars have been used to specify and 
implement transformations from Ada to DIANA abstract syntax trees, from DIANA abstract syn
tax trees to C trees, and from FORTRAN 77 format statement to an intermediate representation, 
and to implement the front end of a m:mipulation system. Many of these applications seem 
describable using projection systems extended with typed patterns and X-pattems in the ways 
indicated at the end of the previous section. Funher research will investigate the correctness of 
this hypothesis. 
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CHAPTERS 

A Code Generator Generator Using BURS 

Now! Now! cried the Queen, 
Faster! Faster! 

[Lewis Carroll [1832- 1898]] 

Th~ proof of the pudding 
is in the eating. 

[Miguel de Cervantes Saavedra [1547- 1616]] 

Chapter 6 presents an algorithm for UCODE but leaves open a major question: will a finite 

number of o-UI LR graphs suffice to generate code for real target machines, and, if so, will the 

required tables be competitive with other code generation techniques? This chapter describes an 

implementation of a code generator generator based on BURS and the results of experiments with 

several machine descriptions that allow '..!S to answer the question affirmatively. 

The implementation of the code generator generator follows the theory of Chapter 6 with 

two main limitations: only factored machine grammars [Hen84] are accepted, and the input 

language is assumed to be the set of all trees over the given operator set. The first limitation does 

not impair the applicability of the implementation to code generation, but the second limitation 

should be removed in a production-quality code generator as it affects the detection of blocks and 

produces tables that are larger than necessary. 

The machine descriptions used for the experiments describe three different target machines: 

VAX-11 [DEC81], a popular CISC (complex instruction set computer) architecture with a quite 

orthogonal instruction set; Mc68000 [Mot82], a popular micro-processor with a moderate number 

of addressing modes and a (relatively) small number of irregularities; and, RISC-II [KSP83], an 

experimental RISC (reduced instruction set computer) machine. Some target machines have 

more than one description. 

All the machine descriptions come from the CODEGEN research effort, led at the University 

of California, Berkeley, by Susan L. Graham, and its successor at the University of Washington, 

UW-CODEGEN, under the direction of Robert R. Henry. While CODEGEN contains only a code 

generator based on Graham-Glanville technology, UW-CODEGEN is designed to compare different 

code generation techniques and also contains two techniques that generate locally optimal code 

based on dynamic programming: one using top-down pattern matching and the other using 

bottom-up pattern matching. The experiment reported in this chapter consisted of adding to UW

CODEGEN a new table-driven code generator and table generator based on BURS theory and 

measuring their behavior for several machine descriptions 

The experiment used two groups of descriptions, summarized in Figure 8.1. The first group 

contains descriptions developed at UCB for a Graham-Glanville-based code generator (see 

[AGH84] for a report of that experiment). The second group are simplifications of these descrip

tions done at UW. 
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Kevword Description Tvoes used in the description 

vax.bwl VAX-11 Byte, Word, Long 

vax.bwlfd VAX-11 Byte, Word, Long, Float, Double 

vax.bwlfdgh VAX-11 Byte, Word, Long, Float, Double, Giant, Huge 

mot.bwl 
risc.bwl 
vax.ng 
vax.ng.ne 
mot.ng 

Mc68000 Byte, Word, Long, some Float, some Double 

RISC-H Bvte. Word Lon!! 

VAX-11, no generics Byte, Word, Long 

v AX -11, no generics, no exceptions Byte, Word, Long 

Mc68000,nogenerics Bvte, Word, Long 

Machine Descriptions 

Figure 8.1 

The first group comprises three v AX-11 descriptions using different data types, and one 

description each of Mc68000 and RISC-II. The machine descriptions in this group include gen

eric operator rewrite rules since they are supported by the Graham-Glanville technology. The 

second group comprises three descriptions, one for the Mc68000, two for the v AX-11. These 

descriptions do not have generic operator rewrite rules because some of the techniques used in 

UW-CODEGEN do not allow them. In addition some rewrite rules that are useless for the input tree 

language actually reaching the code generator are removed. Removing these rules manually 

allows some more meaningful comparison between rechniques when, as in our case, only some of 

them can benefit from specifying the input set. 'Vax.ng.ne is a modification of vax.ng where 

some rewrite rules have been dropped. The dropped rules are the ones that produce poor code in 

the Graham-Glanville technique. 

All the machine descriptions produce a finite number of 8-LR graphs. Henry explains the 

structure of this type of machine descriptions [Hen84]. The main symbols are register, rval, and 

lval, describing values computed into a register, values that can be used in the right-hand side of 

an assignment, and values referring to locations that can be used in the left-hand side of an 

assignment, respectively. In addition there are a number of other symbols to describe individual 

addressing modes and classes of them, different types of constants, and other features of the tar

get machine. 

The v AX-11 machine descriptions are reasonably complex, due mainly to the large number 

of addressing modes present in that machine. The descriptions satisfy the conditions of Proposi

tion 6.5 (on the finite number of 8-LR graphs) with S = { rval ,register}; rval is needed in addi

tion to register because there are unbounded rewrite sequences of the form 

lval ~ rval ~ lval · · · if the memory-to-memory operations of the v AX-11 architecture are 

used. Since v AX-11 is a CISC architecture its machine description allows many valid rewrite 

sequences rewriting an input tree into the goal. The RISC-H machine descriptions are very sim

ple. Since RISC-II is a load/store architecture, Proposition 6.5 is satisfied directly with 

S ={register } , and there are few alternative ways to implement a given input tree. The Mc68000 

machine descriptions are not as large as the v AX-11 descriptions because they do not have as 

many addressing modes or instructions, but they are more complex due to the non-uniformity of 

the register set of the Mc68000. This non-uniformity is handled using the techniques of "syntax 

for semantics" [Hen84], with different instruction fragment classes to track two sets of attributes: 
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dedicated and temporary registers, and address and data registers. Despite the complexity, Propo

sition 6.5 applies directly with S={rval }. 

All the machine descriptions associate with each rewrite rule a 4-tuple of positive integers. 

With these four values there are 6 cost functions of principal interest: each of the 4 projections, 

the lexicographic order on the tuple, and a constant cost function (effectively ignoring all the 

costs). The cost tuples for the different machine descriptions are shown in Figure 8.2. The com

bination of a machine description m and a cost function c is frequently denoted in this chapter as 

m.c 

Key 
K 
I 
M 
c 
B 
0 
s 

IL 

Machine Cost tuple 

vax.bwl (MIS 0) 
vax.bwlfd (MIS 0) 
vax.bwlfdgh (MIS 0) 
motbwl (C S I M) 
risc.bwl (C B I M) 

vax.ng (MIS 0) 
vax.ng.ne (MIS 0) 
motng (M Is 0) I 

Meaning 

Constant cost for all fragments 
Number of instructions of the fragment 
Number of memory bytes referenced by the fragment 

Number of CPU cycles of the fragment 
Number of bus cycles of the fragment 
Number of operands in the fragment 
Number of operands with hardware side effects in the fragment 

Lexicographic ordering on the cost-tuple 

Cost Functions 

Figure 8.2 

Although the finiteness of the number of 8-LR graphs can be inferred from the rewrite sys

tem underlying the machine descriptions, the actual number of states needed depends strongly on 

the cost function used. The experimental results of Section 8.1.2 show that the differences in the 

number of states required for each of the different cost functions can be substantial. For instance, 

the number of states for vax.bwlM is 1249, while that for vax.bwl.J is 422, and vax.bwl.K is only 

91. This difference stems from the different behavior of the cost functions. 

Some cost functions lead to 8-UI LR graphs with small 8-costs and, thus, small total 

number of graphs. These cost functions are described as "shallow". The opposite situation is a 

·'deep'' cost function. In the v AX-11 description, the number of instructions is a shallow func

tion because the v A.X-11 has very powerful instructions and addressing modes and most of the 

time an input tree can be covered with a very small number of instructions, while the number of 

memory references is a deep cost function since different addressing modes may vary widely in 
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the number of memory references used. The "shallowest" cost function is the constant function; 

the "deepest" is the lexicographic order on the 4-tuple. The implementation reponed here can

not deal gracefully with lexicographic order; see Section 8.4 for further comments. 

The experiment involved implementing a a table generator and a code generator. The table 

generator, BURS-TG, is a stand-alone program that generates tables in the form of initialized C 

structures; its implementation details and experimental results are discussed in Section 8.1. The 

implementation details of the code generator, BURS-CG, are discussed in Section 8.2, with most of 

the experimental results being described in Section 8.3 where BURS-CG is compared with three 

other code generators integrated in UW-CODEGEN. The figures in that sec:ion show that the tables 

generated by BURS-CG are competitive with those generated by the other techniques and that the 

time spent solving UCODE in BURS-CG is much smaller than that spent in the other locally optimal 

code generators in UW-CODEGEN, and, indeed, even significantly faster than the one based on 

Graham-Glanville technology. 

Section 8.4 presents the conclusions and lists the areas for further work. 

8.1. Implementation of BURS-TG 

The general organization of BURS-TG is essentially the one described in Chapter 6: first the 

(1-LR graphs are generated, then o-UI LR graphs are chosen to minimize the number of required 

states, finally the resulting transfer tables are packed with some reasonable efficiency and are 

printed out as C initialization structures, to be used in BURS-CG. 

8.1.1. Generating o-LR Graphs 

The o-LR graphs are generated using a modified version of David Chase's algorithm for 

generating match sets in linear pattern sets (Section 3.5). 

The central pan of Chase's original algorithm is a generation of match sets from the combi

nation of previous match sets. This is done in the procedure add 0 of Figure 3.9. This procedure 

has to be modified to generate new o-LR graphs from previous o-LR graphs, or, more exactly, the 

set of input nodes of the new o-LR graph is computed from the set of output nodes of the previ

ous o-LR graphs. To suppon this computation the representation of a o-LR graph includes a 

description of its set of output nodes and add 0 is actually invoked with a set of input nodes, 

which will then generate a o-LR graph (and then will be considered for new combinations and so 

on, as in the generation of match sets). 

Sets of nodes are sets of pairs <p,c > where p is a subpattern, and c is its cost. For o-LR 

graphs, the only imponant sets are those that are normalized, i.e. those where the minimum cost 

in the set is 0. The modified algorithm uses sets of nodes whenever the original algorithm used 

sets of subpatterns. The key data structures involved are: 

• C,-LR graph. In addition to a straightforward representation of the graph, the implementa

tion keeps two copies of the set of output nodes. Tnc first copy is just an optimization for 

speed, and always corresponds to the information in the graph. The second value is initially 

a copy of the first, but it will never be changed, even when the o-LR graph is later modified 

to reflect restrictions. This second value is used to retrieve the folding information. 

• Pop ,i. This data structure is identical to the one used by Chase (see Section 3 .5); namely, it 

is a set of trees, stored as a bit vector. 

• Rc ,op ,i. For pattern matching, R a,op ,i is an indexed set of match sets, but for solving C

REACHABILITY Rc ,op ,i is an indexed set of normalized cost -pattern pairs: the normalized set 

of the nodes of the o-LR graph G appearing in Pop ,i . 

The other data structures are mostly unchanged. The modified version of add() is shown in 

Figure 8.3. 
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procedure add(IS) 
I let IS be a set of input nodes; 

if IS is not new then 

=> 

=> 

I return index of IS in the set of all input sets; 

compute the o-LR graph G associated with IS; 

compute the output set from G , and normalize it 

store IS into the set of all input sets, 
and associate G with it; 

comment now we update Rc ,op ,i; 

or each op e OP do 
let n be the arity of op 

r

or each i, l~i ~n do 
compute Rc ,op ,i; 

if Rc ,op ,i is new then 
store it; I mark it with last_iteration (a global variable); 

return the index of IS into the set of all input sets; 

Adding a o-LR Graph 

Figure 8.3 

The implementation of this routine is quite straightforward, the only issue is in the specific 

data structures used. In this implementation, sets of <pattern ,cost> pairs are represented as bit 

vectors plus explicit index+cost arrays, which allows the algorithms to select the fastest represen

tation for a given operation, but it is quite expensive in memory. A production-quality imple

mentation should be very careful in the selection of the data structures. 

The above version of add 0 maintains a one-to-one mapping between input sets and o-LR 

gra!)hS. The next subsection explains that this is not always the case; the changes are done by 

inserting code at the places indicated by the =>. 

The basic algorithm described above is modified slightly to deal with generic operator 

rewrite rules. For simplicity, most generic operator rewrite rules are transformed into normal 

reduction rules "before" generating the o-LR graphs. This is done by considering the contexts 

where the rules could be applied and generating new rewrite rules that correspond to ''instantia

tions'' of the generic rewrite :-ales to those contexts. 

An exception to the "instantiating" process described above are those generic operator 

rewrite rules, Op (X 1, ... , X" )~Op' (X 1, ... , X"), such that Op appears only in this rewrite rule, 

and where the semantic action does not refer to any of L'1e attributes associated with X 1, ... , X" . 

In this case, the application of the rewrite rule could have been done in a previous phase. Recog

nizing these patterns may reduce the number of patterns to consider at table generation time by 

ignoring the operators Op and using only Op' . This technique is particularly useful for the 

machine descriptions that were designed for Graham-Glanville technology, where generic opera

tor rewrite rules are frequently used just as an abbreviation mechanism. A typical example are 

the rewrite rules abstracting the comparison operators (for example, Ne l ~Cmp ). The 
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recognition of these rewrite rules by BURS-TG does not imply that BURS-CG needs to split its 

behavior into these two phases. A single phase is used in BURS-CG since it yields smaller tables 

and runs faster. The two-phase approach is slower because of the presence of the additional 

phase, and has larger tables because in the one-phase implementation the tables of all the opera

tors that are abstracted into the same generic operator can be fully shared, while a two-phase 

implementation would (normally) require many entries to describe identity transformations in the 

first phase. 

8.1.2. Selecting the o-UI LR graphs 

The next stage after generating the o-LR graphs is to select uniquely invertible subgraphs 

that contain no useless nodes, contain enough information for solving UCODE, and are as small as 

possible. Proposition 5.17 showed that there is little hope for solving this problem optimally. 

Fortunately, the heuristic algorithm described in this section does an adequate job. 

The general idea is to intermix the removal of useless nodes with the selection of increas

ingly more restricted o-LR graphs until obtaining the o-UI LR graphs. At each stage, the restric

tion of the o-LR graphs is selected in a "first-fit" manner: two partially restricted LR graphs are 

compared and, if possible, are replaced by a common restriction. After a few iteratio:1s, 2 or 3 for 

our machine descriptions, this process converges to a set of, probably not uniquely invertible, res

tricted o-LR graphs. At this stage o-UI LR graphs are chosen. We provide two different mechan

isms to do this. One algorithm tries to reduce the total number of o-UI LR graphs, the other tries 

to reduce the "diameter" of the 8-UI LR graphs, that is, the length of the longest local rewrite 

sequence of the graphs. Then the LB-fsa that computes the 8-UI LR graphs is minimized using 

the algorithm described in Section 2.4.1. The overall organization24 is shown in Figure 8.4; the 

rest of this subsection explains the most interesting details and then provides experimental 

results. The actual implementation follows quite closely this description except for some speed

ups, of which the most important one is the use of the folded representation of the LB-fsa in steps 

3 and 6. 

24 The actual implementation allows some other heuristics. The figure only reports the most successful ones. 
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1 

H 
4~3 

1 
T 
4 

Sa Sb 

I 

7 

1 Original o-LR graphs 
2 On-the-fly Restriction of o-LR Graphs 

3 Find Useless: Nodes and 
identical o-LR graphs 

4 Restriction of o-LR Graphs 
Sa Select o-UI LR Graphs (small) 

5b Select o-UI LR Graphs (fast) 
6 LB-fsa minimization for UCODE 

7 Final o-UI LR graphs. 

Computing Equivalent States 

Figure 8.4 

On-the-fly Restriction (Step 2) 

The first (optional) restriction is on-the-fly, done inside the add() procedure of Figure 8.3. 

This is done by inserting code at the points indicated by ~ in Figure 8.3. As described in that 

figure, add 0. maintains a one-to-one mapping between input sets and o-LR graphs. When the 

on-the-fly restriction is used, the mapping becomes many-to-one, reflecting the fact that different 

input sets may have been found to generate different o-LR graphs with a common restriction. If 

the mapping is called inputs_to_graphs, the code to be inserted at the two~ would look like: 

if IS is in the domain of inputs to graphs then 

I return the index of inputs=to =graphs (IS); 

and 



search for a previous state that can be merged with the current state 

if there is one such G' then 

I 
add (IS ,G') to inputs _to _graphs 
return the index of G' ; 
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This restriction is very effective in reducing the number of o-LR graphs that have to be con

sidered, as it is done while the graphs are being generated. 

Removal of Useless Nodes in the Graphs (Step 3) 

The o-LR graphs generated by the modification to Chase's algorithm assume that any out

put node is useful. Detecting and removing the useless nodes allows for further graphs to have 

common restrictions (and also leads to smaller representations for the graphs themselves). In 

addition, whenever an o-LR graph is inverted, more nodes may be found useless. Thus, there is a 

need for the detection of useless nodes. 

In the current implementation useless nodes are found by constructing a summary version 

of the LB-fsa computing the o-LR graphs, and propagating useful nodes through it. The data 

representation used to represent the summary is quite simple and uses the fact that, in the stages 

before LB-fsa minimization, there is a single operator in the input language labeling the root of 

all the patterns in the set of input nodes of each LR graph. Since the constructed transition graph 

is going to be used only to propagate information backwards, all that is needed is to store, f :Jr 

each graph and for every position of a tree as a child of the operator associated with the graph, a 

list of all the graphs that, when characterizing a tree in that position, may transfer to the current 

graph. The transformation is shown in Figure 8.5. The list of states is implemented using a bit 

vector representation. This algorithm is simple but it is also moderately expensive in space and 

time. 

Summary Transfer Graph 

Figure 8.5 

After removing useless nodes in the o-LR graphs, identical states can be found, for exam

ple, by comparing the set of nodes of the graphs. 

Restricting the o-LR Graphs (Step 4) 

Detection and removal of useless nodes shows new opportunities for the presence of com

mon restrictions in the o-LR graphs. Thus, each application of the previous algorithm is followed 

by an attempt to further restrict the graphs. This is done in a way identical to the application of 
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the "on-the-fly" restriction, using the updated information. 

Repeated stages will further restrict the graphs until they are very "thin", almost uniquely 

invertible, and no further restrictions are possible. 

Selecting the o-UI LR Graphs (Steps Sa and Sb) 

At some point the panially restricted o-LR graphs are restricted completely to obtain the o

UI LR graphs. This is normally done using a "global" heuristic that attempts to make the result

ing o-UI LR graphs as similar as possible. Since the previous stages were stopped at a point 

where no two graphs had a common restriction, this stage will not succeed in making any two 

graphs identical, but, if the graphs are similar, they may become identical after removing the 

nodes that became useless after this stage. If two or more edges reach a node in a graph, the 

heuristic tries to select an edge that corresponds to a rewrite rule used previously in another 

uniquely invened graph. This makes graphs similar after the inversion. and reduces the number 

of different rewrite rules used (and therefore reduces table size). Tilis heuristic is related to the 

heuristic used above for restricting the o-LR graphs and, in some cases, its effects can subsume 

those of the previous stages. These "first-fit" heuristics yield tables with reasonable sizes. The 

real performance of the heuristic is difficult to estimate since the problems are large enough to 

preclude computing the optimal solution to the NP-problems exhaustively. 

The previous paragraphs have assumed the goal is to minimize the number of non

equivalent states, that is, to generate small tables. BURS-TO can also try to generate a "faster" 

code generator at the expense of larger tables. This could be done optimally by defining a new 

cost function that would be a lexicographic ordering on a pair where the first component would 

be the (normal) cost function to minimize, and the second would represent the (code generation 

time) cost associated with generating the instruction fragmenr25. This approach has not been 

explored in BURS-TO for implementation reasons but seems likely to generate large tables. 

Instead BURS-TO computes an approximation: it avoids performinf any of the restriction opera

tions on the o-LR graphs, and then uses a modified global heuristic for selecting the o-UI LR 

graphs, trying to select always the shonest possible path in the o-LR graphs. A later section 

repons on the results of these changes. 

LB-fsa Minimization (Step 6) 

This step is an straightforward implementation of the algorithm to minimize a LB-fsa using 

the considerations of Section 6.3. 

Exper' mental Results 

Figure 8.4 contains many possible sequences of actions to compute a final set of o-UI LR 

graphs. A first collection of runs of the table generator provides some information on the value, 

and cost, of the most interesting sequences. Figure R.6 contains two tables. The first table con

tains the number of states of vax.bwl.I at positions in 5 sequences; the second table docs the same 

for vax.bwl.M except that the last sequence is not shown. The first table also shows the time 

required to create the tables. Each entry contains two numbers: real (elapsed time) and user time, 

as provided by the UNIX 4.3 system call getrusage. These times are in seconds in a Vax-

11/8600. 

25 Note that it is an additive function. 



Sequence 

States 
States 
States 
States 
States 
States 

Sequence 

States 
States 
States 
States 

vax.bwl.I 

1 2 3 4 3 4 5a-3 6-7 

1298 798 525 473 441 441 441 422 
1298 798 525 473 - - 441 422 

1298 - 962 655 512 463 441 422 

1298 798 525 - - - 489 470 

1298 798 - - - - 492 470 

1298 - - - - - 603 561 

vax.bwl.M 

1 2 3 4 3 4 5a-3 

8619 4006 1726 1626 1596 1596 1596 

8619 4006 1726 1626 - - 1596 
8619 4006 1726 - - - 1685 

8619 4006 - - - - 1738 

Computing Equivalent States for Vax.bwl.{MJ} 

Figure 8.6 

Time(R/U) 
(seconds) 

470/424 
369/361 
629/597 
371/366 
296(292 
606/424 

6-7 
1249 
1249 
1309 
1318 

Recall that step 2 is an on-the-fty application of step 4. The tables in Figure 8.6 suggest that 

it is normally useless to repeat step 4 more than twice. In fact, only one of the description-cost 

cases shows any change with three applications of step 4, and in that case the difference disap

pears after step Sa -3. Since an additional application of these steps is expensive in time, we 

limit ourselves to two applications of step 4. These are chosen as steps 2 and 4, since the on-the

fly application is substantially faster, and cuts the memory requirements significantly. 

The experiments also show that the deeper the cost function the larger the reduction 

obtained by the LB-fsa minimization. But, the benefits of the LB-fsa minimization are indepen

dent, to a certain extent, of the benefits of a careful selection of the 8-UI LR graphs. Trying to 

save time by doing a too hasty selection of the 8-UI LR graphs back11res since step 6 is a very 

significant part of the total time and it depends heavily on the number of states given. That is 

why the last row in the first table has such large times. Even worse, the same combination is 

missing from the second table because that sequence of steps would exceed the memory limits of 

the machine where it was run, in this case about -28Mb. 

It is necessary to explain where to apply step 3, detection and removal of useless nodes in 

the 8-LR graphs. Step 3 has to be performed between restrictions (steps 2 or 4) to allow the later 

restrictions to proceed. It is not applied between the last application of step 4 and steps Sa-3 

because the heuristic done in step Sa acts globally and pays no attention to the presence or 

absence of the nodes26• Finally, it is done between steps Sa and 6 because step Sa may introduce 

26 One could make a good argument for changing the global heuristic in Sa, but this has not yet been done. 
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new useless nodes and step 6 will not detect them. 

Because of the above considerations, the path 1-2-3-4-Sa-3-6-7 is the one used by 

default in BURS-TG; we will call it the "preferred path". Figure 8.7 now shows the effect of this 

path on all the machine descriptions and cost functions. 



• 
Machine 1 2 3 4 Sa-3 

vax.bwl.K 645 304 171 109 95 

vax.bwl.M 8619 4006 1726 1626 1596 

vax.bwl.I 1298 798 525 473 441 

vax.bwl.S 1286 753 442 390 371 

vax.bwl.O 651 304 168 109 95 

vax.bwlfd.K 809 380 230 146 127 

vax.bwlfd.M 12330 5777 2753 2635 2483 

vax.bwlfdJ 1677 1060 736 674 626 

vax.bwlfd.S 1674 1013 643 585 552 

vax.bwlfd.O 818 380 226 146 127 

vax.bwlfdgh.K 1010 472 301 187 161 

vax.bwlfdgh.M - - - - -
vax.bwlfdgh.I 2123 1373 988 916 848 

vax.bwlfdgh.S 2132 1333 894 830 779 

vax.bwlfdgh.O 1022 472 296 187 161 

risc.bwl.K 136 80 75 66 66 

risc.bwl.C 227 151 143 142 142 

risc.bwl.B 227 151 143 142 142 

risc.bwl.I 222 151 145 144 144 

risc.bwl.M 222 151 145 144 144 

mot.bwl.K 362 200 192 187 158 

mot.bwl.C 4509 1154 768 666 662 

mot.bwl.B 362 200 192 187 158 

mot.bw!J 392 228 221 215 188 

mot.bwl.M 1751 634 517 441 436 

vax.ng.K 416 149 149 112 100 

vax.ng.M 7482 2972 1228 1120 1120 

vax.ngJ 933 430 366 310 302 

vax.ng.S 859 435 382 303 291 

vax.ng.O 419 149 143 111 100 

vax.ng.ne.K 379 182 182 115 100 

vax.ng.ne.M 3049 1733 816 731 731 

vax.ng.neJ 754 417 328 276 276 

vax.ng.ne.S 660 417 348 283 273 

vax.ng.ne.O 381 182 143 111 100 

mot.ng.K 293 190 185 182 182 

mot.ng.:\1 3914 1089 787 643 637 

mot.ngJ 293 190 185 182 182 

mot.ng.S 309 213 211 209 209 

mot.ng.O 1160 537 489 408 408 

Preferred Path to Compute Equivalent States 

Figure 8.7 

6-7 

91 
1249 

422 
352 

91 

121 
1835 
605 
531 

121 

153 

-
825 

756 
153 

56 

132 
132 

134 
134 

147 
583 
147 
178 
392 

95 
1045 
296 
286 

95 

95 
652 

270 
268 

95 

167 
576 
167 
194 

374 

The entry for vax.bwlfdghM could not be computed because, due to the space-hungry 

implementation of BURS-TG, the program runs out of swap space (28M). We expect the final 

table size to be in line with the results for vax.bwl.M and vax.bwlfdM, but the final numbers will 
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have to wait for more swap space or better table-generation algorithms (more on this later). The 

space problem is even worse for the lexicographic cost functions. The only one that can be com

puted with the current algorithm and the available hardware is the one for RISC-H, where it is 

134. This value is not very interesting because the RISC-H description is so simple and different 

from the other machine descriptions. 

There is a large reduction in the number of states for vax.ngM to vax.ng.neM, especially 

considering that the difference between the two machine descriptions is only the removal of 9 

rewrite rules. These are the rules that make Graham-Glanville produce poor code for some input 

trees. Tracking the effect of these rules almost doubles the number of states required (but, as we 

will see, the table size increase is not as pronounced). 

The entries in the table above show much the number of o-UI LR graphs depends on the 

depth of the cost function, and also on the details of the underlying rewrite system, including the 

number of attributes that are encoded syntactically. It also reminds the reader of the potential 

effects of incorporating non-orthogonal input sets. The number of states in vax.bwl and mot.bwl 

are larger than those in vax.ng and mot.ng; although some of the difference is due to slightly dif

ferent cost functions, most of the difference probably follows from the manual removal of rules 

that are known to be useless for the actual input language. A more controlled experiment will 

have to wait until BURS-TG is extended to allow for the description of the input set as a recogniz

able set. 

The preferred path analyzed in the tables above tries to minimize the number of final states. 

Two other useful goals are to generate tables corresponding to code generators that obtain shorter 

final rewrite sequences, and to generate the tables fast. The first goal can be seen as an approxi

mation to lexicographic order; it is called the "good code generation" (good-cg), and it is 

obtained by avoiding any of the restrictions and applying a heuristic that tries to obtain o-UI LR 

graphs that have short diameter: the path 1-Sb-3-6-7. The second approach is called the "fast 

table generator" (fast-tg) and it is obtained by generating the o-LR graphs using step 2 to speed 

up the generation, and then applying the global heuristic: the path 1-2-5a-7. Section 8.1.4 sum

marizes results using these two paths and the preferred one. 

8.1.3. Packing Tables 

The output of the generation of the o-UI LR graphs are tables organized as in Figure 8.827 . 

The top pan of the figure, the TRANSFER tables, represent the LB-fsa computing the o-UI LR 

graphs. The lower pan represents the o-UI LR graphs themselves. 

27 The two parts of this figure have appeared before in Chapters 3 and 5. 
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TRANSFER Tables 

I 
binary Op 

RESTRICT OR 

GOAL Table 
State no 
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_{ _l_,c=: 

Output Rewrite 
(Input -> Output) 

Data Structures of the Code Generator 

Figure 8.8 

8.13.1. Representing the 8-UI LR Graph LB-fsa 

RESTRICT OR 

Most of the size reduction in the tables representing the LB-fsa is the result of the row and 

column folding obtained using the improvements to Chase's generative algorithms, including 

sharing identical restrictor arrays shown in Section 3.5, and the state equivalence techniques men

tioned in Section 8.1.2. A final table compression mechanism is to represent the restrictor arrays 

using a variable number of bits (1, 2, 4, 8, or 16). This does not substantially slow the code gen

erator but reduces considerably the table requirements. Figure 8.9 shows the influence of the 

encoding used for the restrictor arrays for one machine description; the other ma;;hine descrip

tions should be similar. Section 8.1.4 contains additional information on table measurements. 
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Mode 
No sharing/Full Size 
Sharing/Full Size 

Sharing/Bit-encoded 
No sharing/Bit-encoded 

Restrictor Size 
123084 
55186 
26010 
37196 

Total LB-fsa Size 
146404 
78506 
4823028 

59416 

Influence of the Representation of the Restrictors for vax.bwl.M 

Figure 8.9 

The part of the LB-fsa that corresponds to Plus _l is always a large percentage of the total, 

because Plus_l appears in the patterns corresponding to the addressing modes. This is especially 

true for the v AX-11 descriptions. For instance, in vax.bwl.M, Plus_l has 14.6KB out of 65KB of 

total table size, and in vax.bwlfd.M, 18KB out of 106KB. Several unsuccessful approaches were 

attempted to try to find a more compact, but still fast, representation. 

The most interesting attempt notices that several rows (respectively, columns) differ in just 

a few columns (resp. rows). Hence it is possible to represent a column (row) by a "default" 

representative and a collection of "differences" relative to that representative. The columns 

(rows) and the number of entries in which they disagree can be modeled by vertices in a graph 

and weighted edges between them. If one allows multiple indirections (that is, the "default" of 

some column can be, in itself, represented by a default and a list, and so on) the smallest 

representation corresponds to finding a minimum-cost spanning forest of the graph. Each con

nected component is represented by a single column listed in ''full'' and as many difference lists 

as edges in the component. Access to the values of a given column requires consulting the lists 

associated with the edges until it is found, or the fully described column is reached. 

This approach was implemented but the results were disappointing. The new tables had a 

size similar to the initial table, and much slower access time. The problem is that the columns are 

not similar enough, the difference lists are too big, and too many representatives are needed. 

8.1.3.2. Packing the o-UI LR Graphs 

The representation used for the o-UI LR graphs is the one discussed in Section 5.6.1. A o

UI LR graph can be seen as a sparse row, with one entry per possible pattern appearing in the 

extended pattern set of the rewrite system. An entry will either be a don't-care entry if the 

represented pattern does not appear at all in the graph, or contain an indication of the rewrite rule 

representing the edge leading to the node in the graph. A collection of states can be stored 

together by superimposing the rows into a single 1-dirnensional array, GOAL, with rows starting at 

different positions in the array indicated by another array BASE. 

Finding the packing with the smallest GOAL is complex. The problem can be split into two 

different stages motivated by the observation that given an entry value, there is a single position 

in a row where it can appear: the one corresponding to the output pattern of the transformation 

28 The table that encodes whether a state includes the goal symbol or not can also be bit-encoded 
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whose number is the entry value. In the first stage, we determine what rows will share the same 

"base", that is, what rows are overlapped one directly on top of the other. This problem can be 

described as a clique detection problem, which is NP-complcte [GaJ801. (Construct a graph 

where each node corresponds to a row, and there is an edge between two ··odes if they can be 

overlaid at the same BASE position. An overlapping arrangement is done by :;electing a collection 

of disjoint cliques covering the graph. The best arrangement is one that minimizes the number of 

cliques). The second stage tries to find how to place the resulting (denser) rows into GOAL so that 

the number of "empty" slots is minimized. 

The implementation follows these two stages, applying a first-fit approach to each problem. 

In the first stage, rows are overlapped as much as possible. In the second stage, each possible 

open position in GOAL is tried. The resulting layouts seem quite reasonable. 

The representation of the o-UI LR graphs described above does not specify how to detect 

that an input node has been reached. One possibility is to associate with those nodes an edge 

looping from the node to itself. A bener approach is based on the observation that a node is an 

"input node" depending only on its associated pattern. Thus one can mark patterns as being an 

"input" or not. Furthermore, this information can be encoded into the pattern by a simple 

renumbering of the pattern's index. This has the additional advantage that it produces slightly 

better pac1dng for the GOAL tables. 

GOAL and BASE contribute to about half of the space requirements of the representation of 

the graphs, the rest being used to represent the rewrite rules themselves. For a large table like 

vax.bwlfd.M, GOAL is 7.6KB, and BASE is 3.6KB. The typical density (that is, the number of 

non-zero entries) of GOAL is about 60%, which places an upper limit on how much smaller it can 

become. Of course this limit can be unobtainable. One problem in obtaining higher densities are 

rows (corresponding to a o-UI LR graph) that are very dense in some region, and impede any 

other row from being laid out crossing that region. If two of the dense regions are separated by a 

sparse region, that area may have trouble being filled in. A heuristic that tries to correct this 

situation removes the dense areas by "expanding" the rows by a factor k. This corresponds to 

changing the external numbering of the output trees. Unfortunately, this heuristic has not been 

effective for our machine descriptions, and it is clearly not effective for large values of k because 

the increase in the spread of the rows dominates whatever gains could be done with a better lay

out. Overall it seems to do little and it is not used unless explicitly requested by the user of the 

table generator. 

The above paragraphs represent the graph one edge at a time. Another possibility is to pro

vide, for each pattern in the output set of the state, the full local rewrite sequence (or, actually, the 

sequence of associated semantic actions). This approach increases the table space requirements 

(a "back-of-the-envelope" analysis of the va:x.bwl.I machine description indicated a 4 to 5-fold 

increase in the space requirements for representing the graphs), but might produce slightly faster 

code generators (or it may not due to factors such as cache thrashing). Overall, this approach is 

not promising, and it is not used in our system. 

8.1.4. Summary of Table Sizes 

This section collects the results of several experiments showing the behavior ofBURS-TG for 

different machine descriptions, cost functions, and the three heuristics mentioned previously (pre

ferred, good code generation, fast table generation). 

The table of Figure 8.7 indicates, for each machine description and each cost function, the 

number of o-UI LR graphs generated initially, the number generated with the restriction on-the

fly, and the final number of non-UCODE-equivalent 8-UI LR graphs obtained using the "preferred 

path" of Figure 8.4. Figure 8.10 is just a summary of that of Figure 8.7. 
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Machine I K I M I i s 0 

vax.bwl 645 304 91 8619 4006 1249 1298 798 422 1286 753 352 651 304 91 

vax.bwlfd 809 380 121 12330 5777 18:5 1677 1060 605 1674 1013 531 818 380 121 

vax.bwlfdgh 1010 472 153 - - - 2123 1373 825 2132 1333 756 1022 472 153 

vax.ng 
vax.ng.ne 

mot.ng 

Machine 

mot 

rise 

416 149 95 7482 2972 1045 933 430 296 859 435 286 

379 182 95 3049 1733 652 754 417 270 660 417 268 

293 190 167 3914 1089 576 293 190 167 309 213 194 

K c n I 

362 200 147 4509 1154 583 362 200 147 392 228 178 

136 80 56 I 227 151 132 227 151 132 222 151 134 

States for Preferred Path (Original Generated Final) 

Figure 8.10 

I 419 149 95 
381 182 95 

1160 537 374 

M 

1751 634 392 

222 151 134 

Figure 8.11 presents infmmation on the table sizes, distinguishing between the contribution 

from the LB-fsa computing the 8-UI LR graphs and the contribution from the encoding of the 

graphs themselves. For each machine description ai1d each cost function, it provides the size of 

the LB-fsa, the size for representing the graphs, and the total size. 

; Machine 

vax.bwl 

vax.bwlfd 
vax.bwlfdgh 

vax.ng 
vax.ng.ne 

mot.ng 

Machine 

mot 

rise 

K I M I s 0 I 

I 

1336 7560 8896 48230 16782 65012 11010 14546 255561 8572 13180 21752 1336 7560 8896 

1982 10470 12452 80146 25918 106064 18158 21934 40092 15292 20880 36172 1982 10470 12452 

2634 13682 16316 - - - 27198 31022 58220\24332 29932 54264 2634 13682 16316i 

1722 7582 9304136690 17338 54028 6362 12778 19140 6812 12896 19708 1722 7638 936o I 
1722 7698 9420 26388 15980 42360 5760 12320 18080 6390 12294 18684 1722 7682 9404 

\3652 12588 16240,22500 20788 43288[ 3652 12588 16240 4542 13978 18520\10320 18692 29012 

K I c B I I 

12630 12290 14920\24944 20316 45260 2630 12290 14920\ 3634 13858 17492\12298 

\1196 4376 5572 2396 7228 96241 2396 7228 9624\ 2412 7412 9824\ 2412 

Table Sizes in bytes for Preferred Path (LB-fsa Graphs Total) 

Figure 8.11 

M 

17942 30240 

7412 9824\ 



Machine 

vax.bwl 

vax.bwlfd 

vax.bwlfdgh 

vax.ng 

vax.ng.ne 

mot.ng 

Machine 

mot 

rise 

... 
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This figure can be combined with the previous one to obtain the table size (in bytes) per 

state. The table shows a very strong regularity; on closer examination, a similar regularity 

appears in the previous two tables. Using this data, one can make an "educated guess" to the 

values of vax.bwlfdgh.M: a bit over 60 bytes per state, about 2500 states, and about 150K. Test

ing this hypothesis will wait for larger computing resources or for better algorithms. 

K I 
184.48 182.42 1.56 

362.79 360.14 1.82 

677.65 673.56 2.74 

126.57 124.64 1.34 

132.6 129.2 1.7 

282.8 279.2 1.74 

K 

Machine 

bwl 
bwlfd 
bwlfdgh 
vax.ng 
vax.ng.ne 
mot.ng 

Machine 

mot 
rise 

M 

K M I s 
97.75 52.05 60.55 61.79 

102.90 57.80 66.26 68.12 

106.64 - 70.56 71.77 

97.93 51.70 64.66 68.90 

99.15 64.98 66.96 69.71 

97.24 75.15 97.24 95.46 

K c B I 

101.49 77.63 101.49 %.26 

99.50 72.90 72.90 73.31 

Total Table Size (in bytes) per State 

Figure 8.12 

I 

8514.76 7841.16 235.32 691.38 687.34 2.52 613.28 

0 

97.75 
102.90 
106.64 
98.52 
98.98 
77.57 

M 

77.14 
73.31 

s 
610.38 

36791.3 18953.2 4843.42 1456.94 1449.98 4.64 1336.63 1331.16 
2.14 
3.74 

. - - 2900.34 2864.36 15.96 2737.53 2696.84 16.7 

5699.23 5552.36 67.78 399.2 396.62 1.8 379.72 377.4 1.58 

2361.3 2264.6 14.7 398.8 337.7 2.3 368.4 339.5 3.7 

2582.22 2573.64 5. 281.54 279.34 1.4 324.74 321.58 1.9 

c B I 

0 

185.12 182.76 1.74 

364.36 361.64 1.96 

679.81 675.78 3.2 

130.36 128.36 1.32 

148.1 134.4 1.4 

841.16 836.32 2.92 

M 

I 

23 7.64 234.78 2.8 2324.84 2317.6 4.781 237.68 235.4 1.64 278.98 275.76 2.4 1929.93 924.6 3.321 

39.18 33.12 o.8sl 72.1 67.12 1.3 67.9 65.52 1.4 66.9 65.48 1. 

Table Generation Times for the Preferred Path (Real User System) (in seconds) 

Figure 8.13 

1 67.12 65.36 1. 
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Finally, Figure 8.13 lists the time spent generating the tables. The values are on a Sun 

3/175 with 12M of memory and no local disk. It must be re-emphasized that the implementation 

of BURS-TG can be called "exploratory programming", and that these numbers should be con

sidered only rough upper bounds. 

The numbers in Figure 8.13 correspond to the preferred execution path in BURS-TG. The 

next tables compare this path to the "good code generator" and the "fast table generator" paths 

discussed at the end of Section 8.1.2. Only the values for vax.ng, vax.ng.ne, and mot.ng arc 

shown here. 

vax.ng K 

Preferred 416 149 95 

Fast-tg 416 149 149 

Good-cg 416 416 139 

vax.ng.ne K 

Preferred 379 182 95 

Fast-tg 379 82 182 
Good-cg 379 379 139 

mot.ng K 

Preferred 293 190 167 

Fast-tg 293 190 190 

Good-cg 293 293 185 

States (Original Generated Final) 

M I I s 
7482 2972 1045 933 430 296 859 435 286 

7482 2972 2972 933 430 430 859 435 435 

- - - 933 933 369 859 859 390 

M I s 

3049 1733 652 754 417 270 660 417 268 

3049 1733 1733 754 417 417 660 417 417 

30493049 739 754 754 326 660 660 368 

M I s 

3914 1089 576 293 190 167 309 213 194 

3914 1089 1089 293 190 190 309 213 213 

3914 3914 705 293 293 185 309 309 207 

Comparing States for Alternate Paths 

Figure 8.14 

0 

419 149 95 
419 149 149 
419 419 130 

0 

381 182 95 
381 182 182 
381 381 130 

0 

1i 60 537 374 
1160 537 537 
1160 1160 481 

Figures 8.14, 8.15, and 8.16 provide some preliminary information on the tradeoffs avail

able at table generation time. The "preferred" path yields the smallest number of states and the 

smallest tables. The table generation time can be (in some cases) reduced by more than a factor 

of 2 from that of the preferred path by using the "fast-tg" path. This reduction may be coupled 

to a table size increase that may be up to a factor of 2 relative to the ''preferred'' path. in some 

cases. The "good-cg" path is a first attempt to get some i::formation on the table requirements 

for minimizing lexicographic cost ordering. The figures indicate that, for this approximation to 

kxicograph1c cost, the table size is increased over the ''preferred'' values, but without reaching 

the values for the "fast-tg" path. The table generation time for "good-cg" is increased 

significantly from that for ''preferred'', and so is the memory usage (not shown), which leads to a 

rapid deterioration of the behavior of the table generator in the case of mot.ng.M and reaches an 

extreme with vax.ng.M, for which the table generator cannot complete. 



vax.ng K I 
Preferred 1722 7582 9304 

1 Fast-tg 2582 8570 11152 

Good-cg 2514 10810 13324 

vax.ng.ne K i 
Preferred 1722 7698 9420 

Fast-tg 2924 8729 11652 
Good-cg 2514 10786 13300 

mot.ng K 

Preferred 3652 12588 16240 
Fast-tg 4102 13446 17548 

Good-cg 4210 14598 18808 

Table Sizes (in bytes) (fsa states total) 

M 1 s 
36690 17338 54028 6362 12778 19140 6812 12896 19708 

79588 22872 102460 9146 13926 23072 9250 14438 23688 

- - - 7956 13892 21848 8862 14590 23452 

M I s 
26388 15980 42368 5760 12320 18080 6390 12294 18684 

46924 18576 65500 8452 13324 :1776 8772 13564 22336 

29114 15858 44972 7090 19686 20776 8450 1428::' 22732 

M I s 
22500 20788 43288 3652 12588 16240 4542 13978 18520 

35354 23538 58892 4102 13446 17548 4818 14402 19220 

26964 22360 49324 4210 14598 18808 4906 15194 20100 

Comparing Table Sizes for Alternate Paths 

Figure 8.15 

18? 

i 

I 0 

1722 7638 9360 I 
2582 8570 111521 
2256 10548 12804) 

I 0 

17:22 7682 9404 
2924 8728 11652 
2256 10452 12708 

0 

10320 18692 29012 
13454 20674 34128 
13734 20842 34567 
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Vax.ng 

Preferred 
Fast-tg 

, Good-cg 

Vax.ng.ne 

Preferred 
Fast-tg 
Good-cg 

mot.ng 

Preferred 
Fast-tg 
Good-cg 

Table Generation Times (in seconds) (Real User System) 

K M I I s 

126.5 124.6 1.3 5699.2 5552.3 67.7 399.2 396.6 1.8 379.7 377.4 l.5 

87.1 85.1 1.4 2313.5 2263.4 23.8 223.7 221.2 1.6 224.8 2223 1.4 

193.6 190.7 1.5 - - - 568.3 563.6 2.6 505.9 499.7 2.8 

K M I s 

132.6 129.2 1.7 2361.3 2264.6 14.7 398.8 337.7 2.3 368.4 339.5 3.7 

94.1 83.6 1.4 921.3 867.4 6.8 207.7 181.1 2.2 196.5 180.7 2.5 

204.7 174.2 2.4 4016.3 3671.4 89.9 451.2 423.8 3.5 391.5 371.1 2.3 

K M I s 

282.8 279.2 1.74 2582.2 2573.6 5.,281.5 279.3 1.41324.7 321.5 1.9 

172.4 168 .2 2.2 1757.9 1748.3 5.6 170.7 168.1 1.6 194.6 192.2 1.6 

216.7 214.2 2.4 19984.3 7671.3 2564.2 217.6 213.9 2.31236.4 231.8 2.1 

Comparing Table Generation Times for Alternate Paths 

Figure 8.16 

0 

130.3 128.3 1.3 
87.5 85.9 0.9 

177.3 175.1 1.5 

0 

148.1 134.4 1.4 

111.7 84.6 1.6 
178.2 158.8 2.1 

0 

841.1 836.3 2.9 

518.9 515.2 2.2 

1158.3 1132.4 6.381 

Vax.ng.M does not show any values for "good-cg" because BURS-TG runs out of swap 

space on it. 

8.2. Implementation ofBURS-CG 

The tables of Figure 8.8 are used at solving time by BURS-CG following the ideas presented 

in Section 5.6.1, and in the context ofUW-CODEGEN. 

UW-CODEGEN implements a plug-in compatible replacement for the code generation phase 

of the portable C compiler PCC [Johes]. As such it accepts as input PCC-IR, a collection of 

expression trees, and produces as output assembly code. Register allocation is done on-the-fly, 

one expression tree at-a-time. The internal organization ofUW-CODEGEN is shown in Figure 8.17; 

see [Hen84] for more details. 
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;:::::: TD !:::::, 

l ... _ ........... -........ =-~:::::::T:::::~-=---........... _ ................... : 

TABLES 

Organization of UW -CO DEGEN 

Figure 8.17 

The kernel of the code generator is what Robert Henry calls a tree pattern match select 

replacer (abbreviated TPMSR) [HeD87], which is, in fact, a module that will solve UCODE, or an 

approximation to it The TPMSR are all generated automatically from the machine description, are 

mostly table-driven, and all have three main interfaces with the rest of the code generator: toplR

codeout, recur/Rcodeout, and test/Rcodeout. In each case the TPMSR is given an input tree, and 

the output is the cost, maybe infinite, needed to rewrite it into the goal, plus, in some cases, a 

side-effect. UW-CODEGEN contains implementations for several TPMSRs. Section 8.3 below com

pares their performance with the BURS-based TPMSR described in this chapter. 

The ''principal'' interface to all the TPMSR is top/Rcodeout; as a side-effect it will invoke 

the sequence of semantic actions associated with a rewrite sequence for the expression tree that is 

its input This expression tree is the output of an IR transformer, currently a simple type of tree 

transformer. The IR transformer generates a sequence of trees for each of the original PCC-IR 

trees. The transformation process sometimes requires measuring the complexity of the subtrees. 

This is done by querying the machine description via the testiRcodeout interface to the TPMSR. 

In this interface only the cost is computed and no semantic functions are evaluated. 

The instruction-building actions and the IR transformer also interact through the temporary 

and register manager, which does the on-the-fly register allocation and assigns temporaries. The 

result of the instruction-building actions is a sequence of assembly instructions. In some cases 
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the cleanest way to generate code for some construct is to build an instruction tree and then gen

erate code for it. This is done with a recursive invocation of the TPMSR, now using the recuriR

codeout interface. 

The internal implementation of each interface of BURS-CG is very simple. There are two 

main recursive routines. The first routine is invoked once per node to compute the o-UI LR 

graphs; it implements the first, bottom-up pass of UCODE. The second routine is conceptually 

invoked once per rewrite rule application; when going down the tree it finds the local rewrite 

sequences, when unraveling it can be used to invoke the semantic functions. The actual imple

mentation preallocates enough space per node for all the possible rewrite rules and performs only 

one recursive call per node. topiRcodeout is identical to recuriRcodeout. TestiRcodeout 

varies in that the semantic functions are not invoked. 

8.3. Comparison with Related Work 

Chapter 6 mentions several other approaches to UCODE, and compares them against the 

BURS-based techniques from a theoretical perspective. This section measures the performance 

of three of these techniques, denoted by GG, TD, and BU, and compares them against our own, 

denoted by BURS. all in the framework ofUW-CODEGEN. 

GG b the "classical" Graharn-Glanville technique, in its "pure syntax" mode. It only 

solves an approximation to C-REACHABILITY. [AGH84] is still the best reference for this method. 

TD and BU both solve C-REACHABILITY exactly, using representations of the full-cost LR graphs. 

TD uses a top-down pattern matcher and represents the full-cost LR graphs explicitly. TD is 

related to the proposal of Aho, Ganapathi, and Tjiang [AGT86], except that in that proposal, the 

tree transformation phase is mixed with the solving of reachability, while in UW-CODEGEN the 

two phases are done sequentially. [AGT86] does not provide many details on the interaction 

between the tree transformer and the reachability phase, but it seems to be quite similar to the one 

in UW-CODEGEN. It is cast in a better formalism but it has the disadvant:::ge of describing many 

actions purely semantically, thus not providing much informati~'!l. at table constructior. time. BU 

uses a bottom-up pattern matcher and uses a mixed representation of the full-cost LR graphs. 

The LR graph is represented implicitly with an index value, while the cost information is 

represented explicitly. Reinhard Wilhelm and Beatrix Weisgerber in [MWW84] propose two 

methods that are similar to TD and BU. [HeD87] contains a detailed description of the implemen

tation ofUW-CODEGEN and measurements ofGG, TD, and BU. 

Since all the TPMSRs in UW-CODEGEN are plug-in compatible, it is possible to make mean

ingful comparisons in table size and code generation speed. This is the intention of this section. 

The UCB machine descriptions cannot be integrated fully into UW-CODEGEN and the only 

descriptions used for comparing the different approaches are the UW descriptions, vax.ng.ne and 

mot.ng. 

The comparison uses the BURS tables obtained with the 3 alternate paths of the previous sec

tion; in this section they are named BURS-p for the preferred path, BURS-tg for the fast table gen

eration path, and BURS-cg for the "good" code generation path. The three tables lead to code 

generators that run at very similar speeds; based on the length of the rewrite sequences that they 

find, BURS-cg should be faster than BURS-p which, in tum, should be faster than BURS-tg but the 

difference is small enough it cannot be detected reliably using the profile tools available (and 

given the variation due to the presence of architectural features like caches). 

For measuring the dynamic performance of the algorithms to solve C-REACHABILITY, the 

same benchmarks are used as in [AGH84j, [Hen84] and [HeD87]. There are 6 benchmark pro

grams, all written in C, shown in the table of Figure 8.18. 



Table Size 

Name 
grep 
reader 
knuth 
puzzle 
dh 
mark 

Size in Lines 

466 
1013 
118 
125 
1266 
509 

Description 

find instances of regular expressions in a file 
tree manipulation routines from the front end of PCC 

with many complex expressions and array indices 

Forest Baskett's bin packing program 

terminal driver 
one module of a VLSI circuit simulator (Crystal) 

Benchmark Programs 

Figure 8.18 

Figure 8.19 gives information on table size. The size information is split into two 

categories: the representation for the automaton used (which particular automaton is used varies 

depending on the method) and the representation of the states themselves. 

Target 
vax.ng.ne fsa 

states 
total 

mot.ng fsa 
states 
total 

GG TD BU BURS-p BURS-cg 

33.7 20.1 56.4 26.3 29.1 
8.8 18.2 18.6 15.9 15.8 
42.5 38.3 75.0 42.3 44.9 

33.0 18.6 50.2 22.5 26.9 
8.7 18.2 18.2 20.7 22.3 

41.7 36.8 68.4 43.2 49.3 

Table Size for several TPMSR (in KBytes) 

Figure 8.19 

BURS-tg 
46.9 
18.5 
65.5 
35.3 
23.5 
58.8 

The values for GG, TD, and BU are from [HeD87]; all the BURS values correspond to the 1st 

cost component (M) and were measured directly. Vax.ng.ne is used because it is the value used 

in GG, m, and BU. A comparison of the values of TD and BU (both implemented by Henry and 

Damron) show a substantial difference in the table sizes of the top-down and bottom-up auto

mata. Chase reports in [Cha87] that the vax.ng generated tables ranging from 78.7KB for no 

fancy encoding at all, to 22.9KB for a bit-encoding similar to the one used in our own implemen

tation, to 12.4KB for a run-length encoding. The middle alternative, which is the one used in 

BURS-CG, causes little loss of solving time speed and would produce tables very comparable to 

the top-down pattern matching ones. In addition, recall that Chase's original implementation did 

not share identical "restrictor" arrays. Most likely, with that additional optimization, the 
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bottom-up tables would be smaller than the top-down tables. 

The encoding of the 652 states in BURS-p takes 15.9KB while the 380 states in BU use 

18.6KB. The reason is that the BURS states, being 8-UI LR graphs, encode only one alternative 

per useful output node, while the BU states need to encode all the possibly useful alternatives. 

The comparison between BURS-p, BURS-cg, and BURS-tg is as expected: the smallest table 

corresponds to BURS-p, and the largest to BURS-tg, where no effort was made to generate small 

tables. Most of the increase in table size comes from the LB-fsa, since the representation of the 

states depends substantially on the rewrite rules being used, which stay constant. 

Speed Solving UCODE 

The time spent solving UCODE was measured by using a profiler, gprof, [GKM83] to meas

ure the time spent in the routines solving the problem, and by compensating for the time spent 

measuring the routines themselves. Currently UW-CODEGEN runs on Vax-11. Two implementa

tions of the architecture were available for the experiments: a Vax-11/8600 and a Vax-11{750. 

The 8600 was chosen because it has a more rational cache architecture. Despite this precaution 

and running the programs only on unloaded machines, individual measurements fluctuate quite a 

bit, so the actual values used were the average of 6 compilations of each benchmark program. 

Figures 8.20 and 8.21 give information on the time required to solve the UCODE by the dif

ferent TPMSRs. The time includes the three code interfaces to the TPMSRs. There was no 

significant difference between the d~fferent versions ofBURS, and a single column (forBURS-p) is 

shown. The interface between UW-CODEGEN and BURS-CG is slightly less efficient than it should 

be, so the numbers for BURS could actually be slightly better. 



vax.m!.ne GG TD BU BURS 

Time in UCODE Normalized to GG 

grep 1.00 3.79 3.39 0.83 

reader 1.00 3.29 2.88 0.61 

knuth 1.00 4.60 3.72 0.56 
puzzle 1.00 3.01 2.55 0.51 

dh 1.00 3.37 3.04 0.63 

mark 1.00 3.55 3.06 0.65 

Percentage of Code Generation Time in UCODE 

grep 12.02 34.96 32.24 9.52 

reader 15.10 35.63 33.40 8.84 

knuth 13.67 22.10 21.51 8.73 

puzzle 16.02 33.98 32.27 7.93 

dh 13.35 34.06 33.16 8.26 

mark 14.09 37.10 34.25 9.16 

Total Code Generation Time (User System) (in seconds) 

grep 
reader 
knuth 
puzzle 

dh 
mark 

7.67 0.79 9.69 0.95 9.35 0.96 
22.24 2.46 29.36 2.79 28.15 2.51 

3.20 0.18 6.69 0.67 5.67 0.64 
4.97 0.57 6.39 0.67 6.04 0.69 

11.08 1.17 14.29 1.83 13.53 1.23 
7.81 0.92 10.33 0.90 9.90 0.91 

Code Generation Time for vax.ng.ne 

Figure 8.20 

7.10 0.89 
20.88 2.52 

2.88 0.18 
4.63 0.61 

10.46 1.05 
7.25 0.85 
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mot. no GG TD BU BURS 

Time in UCODE Normalized to GG 

grep 1.00 3.50 2.92 0.53 

reader 1.00 3.65 3.13 0.52 

knuth 1.00 4.53 3.78 0.60 
puzzle 1.00 3.67 3.23 0.53 

dh 1.00 3.72 3.10 0.59 
mark 1.00 3.85 3.18 0.53 

Percentage of Code Generation Time in U CODE 

grep 15.97 41.55 37.05 8.31 

reader 17.68 46.17 41.94 8.73 

knuth 16.27 24.33 25.23 9.60 

puzzle i 15.93 41.55 38.12 8.01 

dh 
I 

16.48 45.03 40.00 9.31 

mark 17.36 46.04 41.45 8.93 

Total Code Generation Time (User Svstem) (in seconds) 

grep 
reader 
knuth 
puzzle 

dh 
mark 

9.16 0.90 12.07 0.99 11.63 0.85 
25.90 2.39 35.24 2.52 33.19 2.61 

9.11 0.67 20.51 1.53 17.57 1.47 
7.56 0.73 10.28 0.86 9.87 0.84 

14.81 1.27 19.76 1.40 18.83 1.32 
8.97 0.82 12.17 0.94 11.57 0.93 

Code Generation Time for mot.ng 

Figure 8.21 

8.67 0.86 
24.43 2.54 
8.49 0.65 
7.50 0.75 

14.04 1.26 
8.49 0.81 

BURS is substantially faster than any other TPMSR. It easily outperforms BU and TD because 

it avoids handling costs explicitly. It is more surprising that BURS is even faster than GG. A care

ful comparison of the respective portions of code implementing UCODE showed several causes for 

the difference in speeds. Probably the biggest contribution lies in the representation of the auto

maton: GG uses a tight encoding and a cache, which loses in speed against the more efficient table 

folding. In addition, GG uses the normal technique (for parsinf technology) of default transitions, 

which is slower than a simple lookup. Another contributor is that the relationship between the 

parser used in GG and the traversal of the tree providing the prefix traversal is not as simple as the 

tree traversal used by BURS. Finally, GG stores states and other information in a stack (the parse 

stack), while BURS uses (pre-allocated) slots associated with the tree; the stack requires extra 

checks for overflow and the like. GG also uses a few more indirect routine calls than BURS. 

Despite the difficulty in comparing the methods in the presence of these differences in implemen

tation strategy, we think that the evidence shows that BURS is, at least, comparable in speed to GG. 

To reduce effects caused by compilation of the algorithms, the values shown in Figures 8.20 and 

8.21 correspond to GG compiled using the peephole optimizer, and BURS without it; the values are 

more favorable to BURS otherwise. 

If BURS is used, the time spent solving UCODE becomes a quite small percentage of the total 

time in the code generator. After achieving this reduction, the next goal is to increase it again, by 
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reducing the time spent in the other parts of the code generator. The main target for "reduction" 

are the IR transformer routines, which are currently quite inefficient. Work is underway by the 

author and other researchers to speed up this phase. 

Quality of the Generated Code 

For the purposes of this section, the "cost" of the generated code is the cost of its associ

ated rewrite sequence as a 4-tuple. GG does "maximum munching" which may lead to non

optimal sequences in all cost components. TD, BU, and BURS are all capable of generating optimal 

code, but, due to the limitations in the current implementation ofBURS-TG, BURS uses tables that 

minimize only the first component of the cost tuple. BURs-cg provides the best approximation to 

the lexicographic cost among BURS-tg, BURS-p, and BURS-cg and BURS-tg provides a slightly 

better value than BURS-p. The costs are shown in Figure 8.22 normalized to 100 as the optimal 

cost; the smaller an entry, the smaller its cost. The abnormality of the founh component of 

BURS-cg in mot.ng is due to a strange bug in BU and TD that misleads the rewrite sequence from 

I con_ w into dreg_temp _I. 

vax.ng.ne I GG BURS-p BURS-cg BURS-tg 

grep 
reader 
knuth 
puzzle 

dh 
mark 

mot.ng 

grep 
reader 
knuth 

puzzle 
dh 

mark 

102.3 108.5 97.4 100.9 100.0 103.4 103.3 100.0 100.0 100.2 101.6 100.0 100.0 103.4 103.3 100.0 

100.6 101.8 99.5 100.8 100.0 102.0 102.7 100.0 100.0 100.0 101.0 100.0 100.0 102.0 102.7 100.0 

117.4 115.5 104.7 100.0 100.0 106.3 104.4 100.0 100.0 100.0 100.3 100.0 100.0 100.0 104.4 100.0 

100.8 101.4 100.0 110.0 100.0 100.0 100.7 100.0 100.0 100.0 100.7 100.0 100.0 100.0 100.7 100.0 

101.9 104.1 98.8 109.5 100.0 103.1 103.2 100.0 100.0 100.8 101.0 100.0 100.0 103.1 103.3 100.0 

100.4 101.0 99.4 100.0 100.0 101.8 106.1 100.0 100.0 100.{1 101.5 100.0 100.0 101.8 106.1 100.0 

GG BURS-p I BURS-cg I BURS-tg 

101.4 100.0 103.1 95.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.8 100.0 100.0 100.0 100.0 

101.3 100.0 104.0 97.6 100.0 100.0 100.0 103.7 100.0 100.0 100.0 99.8 100.0 100.0 100.0 103.7 

102.5 100.0 94.7 100.6 100.0 100.0 100.0 108.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 108.6 

104.5 100.0 112.2 95.7 100.0 100.0 100.0 102.8 100.0 100.0 100.0 99.8 100.0 100.0 100.0 102.8 

103.1 100.0 103.2 100.3 100.0 100.0 100.0 104.1 100.0 100.0 100.0 99.3 100.0 100.0 100.0 104.1 

101.8 100.0 102.5 98.3 100.0 100.0 100.0 102.2 100.0 100.0 100.0 99.8 100.0 100.0 100.0 102.2 

Quality of the Generated Code 

(value of cost tuple (MIS 0) relative to lexicographic optimum (100 100 100 100) 

Figure 8.22 

Table Generation Times 

One of the main disadvantages of the current implementation ofBURS-TG is that it generates 

tables very slowly. Direct comparisons ofBURS-TG against the table generators of GG, TD, and BU 

are not available, but the tables of Figures 8.23 give some relevant information. The top of the 

figure shows times in seconds on a Sun-3ns with 12MB of main memory and no local disk. The 

bottom of the figure reproduces information from [HeD87] comparing the performance of the dif

ferent table generators in UW-CODEGEN; values are in seconds on a DEC Microvax-II. There are 

I 

I 
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two columns for BU: the first column corresponds to the generation of tables without any effort to 

use cost information at table-generation time to reduce the number of alternatives to consider at 

code generation time; the second column corresponds to the tables used in our other comparisons, 

in which some elimination of alternatives is done based on costs. We emphasize again that the 

current implementation ofBURS-TG was written with no special effort to generate tables fast. 

vax.ng.ne K M I s 0 

BURS 132.6 2361.3 398.8 368.4 148.1 

BURS-cg 94.1 921.3 207.7 196.5 111.7 
BURS-tg , 204.7 4016.3 451.2 391.5 178.2 

mot.ng K M I s 0 

BURS 282.84 2582. 281.5 324.7 841.1 

BURS-cg 172.4 1757.9 170.7 194.6 518.9 
BURS-tg 216.7 19984.3 217.6 236.4 1158.3 

(Sun 3n5 seconds) 

Machine GG TD BU BU-cost 

vax.ng.ne 204.7 58.0 242.1 625.7 
mot.ng_ 194.8 61.0 442.9 1753.1 

(J.LVax-II seconds) 

Table Generation Times for several TPMSR 

Figure 8.23 

8.4. Conclusions and Further Work 

BURS-based code generators seem to be the method of choice for generating code in the 

compilation model supported by UW-CODEGEN. They generate code as good as the best methods 

available, namely any of the dynamic programming-based techniques, with tables of competitive 

size and with code generation speed faster than the previously fastest techniques (PCC and GG in 

UW-CODEGEN). The infl~xibility in changing cost functions "on-the-fly" does not seem a real 

disadvantage, but, given the table size, it could be supported, if desired, by changing tables. 

Two other well-known systems that have not been compared directly to BURS are PCC2 and 

twig. We did not have access to the systems for direct measurements, but there are a few pub

lished numbers. [AGT86] indicates that a compiler built using twig had a speed improvement of 

25% over one built using PCC2; PCC2 is normally considered to be twice as slow as PCCl, (see 

[HeD86] which cites a technical report by Aho, Ganapathi, and Tjiang), and we know that GG can 

run as fast as PCCl [Hen84]. Hence, twig is substantially slower than GG and, hence, than BURS. 

The portion of twig that solves a subproblem similar to UCODE is based on the same theory as TD, 

and one would expect their running times to be similar. 
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There are several questions left open after this experiment. Most of the questions are 

related to the current implementation ofBURS-TG. Briefly the approach used now is to generate a 

large number of states and then find and force equivalent states among them. This is both slow 

and, more important, it consumes a large amount of memory, so much so that it has been possil,le 

to generate tables using the lexicographic cost function only for risc.bwl. It is of theoretical 

(although probably not practical) interest to know what will happen with the descriptions for the 

Mc68000 and v AX-11. The current implementation of BURS-TG grew with BURS theory and it is 

very "exploratory"; a better selection of data structures will improve performance significantly, 

but a drastic reduction awaits new approaches to the generation of the states. 

Another question related to the current implementation is what is the effect of the input tree 

language on the table generation time and the size of the generated tables. Comparing vax.bwl 

and vax.ng shows a non-trivial reduction in the number of states and table size. This is, to a large 

extent, due to the removal of useless rewrite rules. Chapter 6 already has the theory required to 

examine this issue. Implementing it would allow quantifying its benefit. 

Finally, is is probable that better heuristics can be found to fmd the best o-UI LR graph and 

to lay out the GOAL array. Such heuristics could further reduce the size of the generated tables. 

Another direction of research includes more experiments with different target machines, 

and also with different descriptions of them, since the ones used for t11is experiment where 

developed considering the idiosyncrasies of the Graham-Glanville techniques. 

8.5. Acknowledgements on this Chapter 

This implementation of BURS-CG and BURS-TG has used previous work from David Chase 

and Robert Henry. 

Chase gracefully made available to us the code implementing his algorithms to build match 

set B-fsa. I had avoiding "bitting the bullet" of implementing my algorithms for solving C

REACHABILITY and UCODE for several months, but the opportUnity provided by the presence of 

his code prompted me to build my table generator in top of it My original approach was to con

struct the first a table representation of the BURS-state B-fsa and then find row and colunm fold

ings of the tables. Gi"en the large initial number of states this approach would have been very 

inefficient, if at all feasible. The timely appearance of Chase's algorithms (late 1986) saved me 

from, at best, having to re-discover them, or, at worst, giving up on the implementation alto

gether. Overall, I increased the original 2700 lines of finely tuned code from Chase to more than 

10000 lines of "exploratory" code, in the process slowing down his code by an order of magni

tude. 

UW-CODEGEN is the result of the effort of many people at UC Berkeley and at UW, and, 

foremost among them is Robert Henry. Its availability was crucial in order to measure the perfor

mance of the code generators. In some sense, my work can be seen as an outgrowth of the CO DE

GEN effort. 
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CHAPTER9 

Conclusions 

I do not think we can hope for any better things now. 

We shall stick it to the end, 

but we are getting weaker, of course, 

and the end cannot be far. 

It seems a pity, but I do not think I can write more. 

Diary of the Terra Nova Expedition to the Antarctic 

March 29, 1912 (last entry) 

[Robert Falcon Scott [1868-1912]] 

In this dissertation, we have studied some tree transformation problems using a descriptive 

mechanism that can be characterized as "natural" extensions of "pure" tree rewrite systems, 

with as little intrusion as possible from other techniques such as attribute grammars. The disser

tation explores two different areas: it contains some foundational work to support the thesis that 

such a descriptive mechanism can be made expressive enough for many applications, and, it 

shows that even simple tree rewrite systems are very useful. The increase to the descriptive 

power of the mechanism is based on extending the notion of pattern. Although the dissertation 

does not provide the "last" word in this aspect, it does show several useful extensions and how 

to implement them efficiently. The usefulness of simple tree rewrite systems is based on varia

tions of the notion ofBURS. 

9.1. Extending Patterns 

"Traditional" tree patterns are what have been called linear N-patterns: patterns where 

variables have arity 0 and are not repeated. They are studied in Chapter 3, where a unified 

description of several pattern matching algorithms based on bottom-up automata is presented. 

The algorithms cover a range of alternatives from fast algorithms with large tables to slower algo

rithms with small tables. Some of the algorithms are well known [Ho082), and others are sim

ple, but useful, improvements to known ones (Section 3.5 improves an algorithm by Chase 

[Cha87]), and yet others, like the crF subpattern B-fsa algorithm (Section 3.4), are new and 

could be of interest for applications requiring small tables and reasonable matching time. The 

exact table and size comparisons are application-dependent and will be the subject of future 

research. Chapter 3 also contains some results providing a better understanding of the notions 

involved in bottom-up pattern marching and shows how to determine which match sets will be 

useful when the input tree belongs to a given recognizable set, which seems a new result and is 

quite useful. 

Linear N-patterns can only describe very local conditions. This dissertation contains 

several ways in which to extend this notion. A first extension are the non-linear N-patterns, in 

which variables are still restricted to have arity 0 but may be repeated. Chapter 4 considers these 

patterns and reports on a family of algorithms that solve non-linear pattern matching by combin

ing linear pattern matching with testing of semantic routines. Linear pattern matching is done 

using the algorithms of Chapter 3; the result of testing semantic routines can be ''folded'' into the 
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states used by these algorithms to avoid recomputing some predicates. This folding allows the 

implementer to trade table size against algorithm speed. The results in this chapter provide a 

practical approach to non-linear pattern matching, but they have not been implemented and it is 

not known how well they perform in practice. None of the algorithms attain the goal of a practi

cal algorithm that does at most as many semantic tests as edges are present in a dag representa

tion of the input tree. 

The algorithms in Chapter 4 can either assume a dag representation of the input tree and 

perform tests for subtree equality by pointer comparison, or do full subtree equality tests. A 

problem with the dag representation is that local changes to the tree may produce global changes 

to its corresponding dag. This might preclude the use of a dag representation in an application 

such as a rewrite system. Performance measurements would be needed to make a final decision 

on this issue. 

The extension to the notion of pattern is a typed N-pattern: a normal N-pattern extended 

with a restriction on the valid values that can be assigned to the variables. Section 7.1 shows how 

to perform pattern matching for linear typed N-patterns by modifying the B-fsa used in Chapter 3. 

The techniques of Chapter 3 can be used to restrict the input set to be a recognizable set. 

The final extension considered in the dissenation are X-pancrns, patterns in which variables 

may have non-zero arity. X-patterns are closely related to some special typed N-panerns, but 

they name and identify portions of the pattern; they can also be typed. Section 7.1 shows how to 

do pattern matching for typed linear X-patterns by using the techniques of Chapter 5 and solving 

a REACHABILITY problem. Recognizable sets as input sets can be taken into account using the 

same techniques. 

The extensions of patterns considered above are necessary to describe non-trivial tree 

transformations, but may not be enough in some cases. For example, a tree transformation such 

as: 

cannot be described in a single transformation with the extensions to patterns proposed here. 

Moreover, a description with several individual transformations requires complicated interactions 

that will reduce the readability of the description. Future research will try to extend the notion 

funher, but note that the above transformation could be described using an input pattern typed so 

as to correspond to the input tree and extended so that one could name an undeterminate number 

of variables, which then would be composed, in a different way, in the output pattern. [Pel84] 

contains a sketch for several possible extensions along these lines. 

9.2. BURS and Reachability 

A major contribution of this dissenation is the definition of the subclass of rewrite systems 

called bottom-up rewrite systems, BURS, and the definition and solving of the REACHABILITY 

problem for them. The rewrite systems in BURS use only linear N-patterns, but they can be used 

to solve several useful problems. 
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Chapter 5 introduced the notion of a BlJRS and the basic algorithms for REACHABillTY for 

them, as well as the faster specialized versions for finite BURS. The idea behind the algorithm 

for REACHABILm· has been around for a while; maybe the earliest references in the context of 

compiler systems are the dynamic programming algorithms of [AUJ77] and [Rip78] for code 

generation. BURS theory differs from these early proposals in that it is based on rewrite systems, 

it can handle a larger class of rewrite systems, and it emphasizes the computability of the states 

by a bonom-up automaton. Also, the emphasis in solving fixed-goal REACHABILITY (as opposed 

to tracking the behavior of some rewrite system as in [Moe87]) produces fast algorithms. 

Chapter 7 contains two direct applications of REACHABILITY problems. Section 7.1 shows 

how to solve panem matching for typed X-panerns. The resulting algorithm seems quite fast, but 

it has not been implemented and measured yet. Another application of the REACHABILITY algo

rithm is in finding "tilings" of trees. This is the basic process underlying solving the forward 

application problems of the projection systems defined in Section 7 .2. Inverse application prob

lems for projection systems can also be solved using REACHABILITY. The application ofREACHA

BILITY explored in most detail in this dissertation is code generation, which is based on solving 

C-REACHABILITY, which is solved in Chapter 6. 

Some questions remain unanswered. The most important are faster algorithms for the gen

eration of the LR graphs and UI-LR graphs, and algorithms for membership in fmite BURS for 

the case that the input set is a general recognizable set. 

9.3. Code Generation· 

The idea of using some type of dynamic programming for code generation has been around 

for a while (see Section 9.2 above), but it is only recently that practical proposals have been made 

based on this approach. Suddenly, a number of researchers independently have proposed similar 

algorithms. This dissertation contains another proposal but with several significant advantages. 

Chapter 6 shows how to modify the algorithms of Chapter 5 for code generation. To test the 

applicability of the theory a code generator generator was implemented, which is described in 

Chapter 8. The results of that chapter show that, in l.he code generation model of uw -CO DEGEN, a 

BURS-based code generator is at least as fast as a non-optimal technique like Graham-Glanville, 

much faster than an optimal technique based on dynamic programming with an explicit manipu

lation of costs, and competitive in table size with all but some substantially slower approaches. 

The results presented in this disserta~ion show the potential for BURS-based fast optimal 

code generation for expression trees. It 1:. important to emphasize that the r:1ain advantage of 

optimality is that it frees the machine description writer from havi:1g to understand the theory 

used to generate the code generator. A non-optimal technique like GG may generate quite good 

code (see Figure 8.22) if the machine description is fine-tuned for that particular technique 

[Hen84]. 

The BURS theory was developed independently of [WeW86], [HeD87]; it differs from 

them in its ability to encoJc cost information into the o-BURS states and in handling a larger 

class of rewrite systems. Tne results obtained are similar to those claimed by Hatcher and Chris

topher [HaC] and [Hat85] but while the Hatcher/Christopher technique requires modifying some 

parts of the machine description to retain optimality, the approach described in Chapter 6 is 

always optimal, provided that a finite number of states exist. It ;s likely that the 

Hatcher/Christopher technique can be explained as a simplification of BURS-theory, but descrip

tions available h<ese been inadequate to do so. 

Probably the best-known implementation for optimal code generation is the one based on 

twig and reported in [AGT86]. The theory behind it is quite similar to the one used in the TD 

code generator reponed in Chapter 8 with two differences. The first difference is that the imple

mentation of twig reported in [AGT86] does more computation at solving time than TD. Thus, 

twig has smaller tables and smaller table generation times, but larger code generation times. The 
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second difference is in the phase organization. Both twig and uw -CO DEGEN perform two types of 

transformations: some transformations do normalization and simplification, as in the mapping of 

short-circuit booleans into compare and jumps, the others are the ones discussed in this article 

and correspond to the machine instructions. Twig deals with both types of transformations 

together in a single mechanism, but the interaction of the machine rewrite rules with the 

simplification routines makes it possible to write looping and non-optimal transformations. UW

CODEGEN first performs the normalization and simplification and then the machine rewrite rules, 

but the simplification routines can query the machine description to make decisions. Although 

there are no specific measures comparing our approach and twig, it is safe to say that BURS-based 

code generation is substantially faster than one based on twig. 

In addition to just solving the code generation problem, the o-LR states contain information 

that could be used to help the design of some parts of the instruction set of target machines. In 

particular, one can determine whether the addition of a feature will affect the quality of the gen

erated code for any valid input tree. 

There are several open questions in this area. One important experiment that we did not 

perform would be to quantify the effect of the input set on table size. This could be done by 

implementing the algorithm presented in Section 5.5. Another experiment of interest would be to 

generate tables to minimize lexicographic cost and compare their size with the ones currently 

generated for the approximation to lexicographic cost; probably the benefits in the cost of the 

generated code are not going to be worth the increase in table size. Finally, it would be very use

ful to have a faster table generator. This would require a better implementation and, most likely, 

new algorithms to generate the states. 

9.4. Bottom-Up and Top-Down Pattern Matching 

At first observation, it is not clear whether top-down or bottom-up pattern matching is the 

better approach. Proponents of top-down pattern matching point out its small table size and its 

table-generation speed, those of bottom-up pattern matching, its solving-time speed. 

The results of [HeD87] suggest that, at least in the context of code generation, the resulting 

table sizes of fast top-down pattern matchers are not significantly smaller than what we can 

obtain for bottom-up pattern matchers using recent technology (such as Chase's algorithm 

[Cha87] as modified in Section 3.5). Similarly, Chase's algorithm to generate bottom-up pattern 

matchers is fast enough for all the applications with which we are familiar. 

Still in the context of code generation, this dissertation has shown how to combine the 

information required for bottom-up pattern matching together with information encoding rewrite 

sequences and cost information into a single state, but we do not know how to do this for top

down pattern matching. Combining all this information into a single state allows for very fast 

code generation solving times. 

If table size is a big concern, it appears certain that an implementation using either subpar

tern B-fsa, or a faster variation like CTF subpattern B-fsa (Chapter 3) will produce very small 

tables, maybe comparable to the sizes of top-down pattern matchers. 

Another significant advantage of bottom-up pattern matchers is that they mix well with 

recognizable sets (Def. 2.5). Chapter 3 showed how to restrict the match set to those that are used 

in trees of a recognizable set. and Chapter 5 did a similar thing for BURS, but it is not clear how a 

top-down pattern matcher could exploit such a restriction on the input set. 

9.5. Compiler Phases 

The dissertation has shown how to describe several problems in compiler systems as a few 

problems involving transformation on trees. It has also shown that some of these tree transforma

tions can be described using BURS and solved very efficiently. The application to code 
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generation has been explored quite extensively in this dissenation. The use of BURS in solving 

application problems in projection systems (Def. 7.3) needs additional work. Currently, the most 

appealing application is to defining the the mapping back and forth between parse trees and 

abstract syntax trees. Projection systems are quite similar to the tree-to-tree grammars of 

[KMP84] but with a cleaner definition and with the ability for inversion. They are not as power

ful, but some of the extensions suggested in Section 7.2 seem to fill the gap. 

Another important open question is how useful are the extensions of patterns introduced 

(typed N-pattems and typed X-pattems) for defining complex tree transformations. A specific 

example for future investigation are the machine independent and machine dependent rewrites of 

ITS in Codegen [AGH84]. It seems likely that a proper description will require the use of 

further extensions to the notion of pattern. 
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Daisy, Daisy, give me your answer, do! 

I'm half crazy, all for the love of you! 

It won't be a stylish marriage, 

I can't afford a carriage, 

But you'lllook sweet upon the seat 

Of a bicycle built for two! 

[Harry Dacre d. 1922] 
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