
l

PUP: An Architecture to Exploit Parallel Unification in
Prolog

Chien Chen
Ashok Singhal

Yale N. Patt

Computer Science Division
University of California, Berkeley

ABSTRACT

The architecture described in this paper achieves high performance

execution of Prolog programs by exploiting fine grain parallelism. Fine

grain parallelism includes unification parallelism as well as parallelism

among the arithmetic and _bookkeeping operations. Our implementation of

the architecture has multiple functional units, each tailored to a specific

task, that operate in parallel. Unification and arithmetic operations are

allowed to execute out of order and are dynamically scheduled on several

unification units. Simulation results for the implementation are presented

and analyzed.

1. Introduction

The increasing popularity of logic programming languages, most notably Prolog [7],

has resulted in a large number of research projects, including the Aquarius project [9] at

Berkeley which supported this research, that are attempting to build high performance Pro­

log systems by exploiting parallelism at various granularities. Most of the current work

attempts to exploit parallelism at the level of parallel processes executing on multiple pro­

cessors. However, since each processor has only a short pipeline, the amount of overlapped

execution of instructions within a process is quite limited. The architecture described in

this paper, the PUP (Parallel Unification Processor), overcomes this limitation of short

pipelines and overlaps the execution of several instructions of a Pro log program. We

describe the architecture and an implementation of the PUP and present simulation meas­

urements and analysis to demonstrate its effectiveness.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
PUP: An Architecture to Exploit Parallel Unification in Prolog

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The architecture described in this paper achieves high performance execution of Prolog programs by
exploiting fine grain parallelism. Fine grain parallelism includes unification parallelism as well as
parallelism among the arithmetic and bookkeeping operations. Our implementation of the architecture has
multiple functional units, each tailored to a specific task, that operate in parallel. Unification and
arithmetic operations are allowed to execute out of order and are dynamically scheduled on several
unification units. Simulation results for the implementation are presented and analyzed.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

52

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

- 2 -

1.1. Parallelism in Prolog

In this section we briefly describe the Prolog language and the main forms of parallel­

ism in Prolog programs (see [20] for more details). Prolog is based on the resolution of

Horn clauses using a top-down, left-to-right ordering. Programs consist of a query (pro­

cedure call) and a collection of terms. Terms can be either simple (a variable or a constant),

or complex (a structure). Variables in Prolog begin with a capital letter. Constants are

numbers and atoms. Atoms begin with a lower case letter. A structure has a functor

(name of the structure and its arity) and arguments. The arguments are themselves terms.

Terms represent programs and data. A procedure contains one or more clauses. When a

procedure is called, its clauses are tried in sequence until one of them succeeds. A pro­

cedure succeeds when one of its clauses succeeds. If none of the clauses of a procedure

succeed, the procedure fails. A clause is a term that bas a head and could also have a body.

The head of a clause is term. The functor of the term (name and arity) uniquely identifies

the procedure of which the clause is a part. The arguments, if any, define the formal

parameters of the procedure. The body of a clause contains goals (procedure calls). A

clause succeeds when the arguments of the clause head unify with the respective input

arguments and all the goals in the body execute successfully. Unification is the process by

which a set of substitutions or bindings of the variables in the two expressions being

unified result in identical expressions. If no such set of bindings is found, the unification

fails. Backtracking is the process by which the system restores the state in order to try an

alternative clause when the previous clause fails. Thus, backtracking implements the

depth first search of the tree of possible solutions to a query.

Parallelism can be exploited in Prolog at different levels. Several clauses of a pro­

cedure can be tried in parallel, resulting in OR parallelism. When several goals of a clause

are executed in parallel, AND parallelism is exploited. Most research projects that attempt

to exploit parallelism in Prolog, for example [4,8,12-14,17], target AND and OR parallel­

ism at the level of processes executing on multiple processors. In unification parallelism,

the various components of the two expressions being unified (the arguments of the clause

head and the input arguments) are unified in parallel. Clearly, unification operations have

a finer granularity than AND and OR processes and must be exploited at a lower level than

a process. Other forms of parallelism include stream parallelism (where subgoals are exe­

cuted in a pipelined fashion) and search parallelism (where the heads of several clauses are

unified in parallel with input arguments). However, these forms of parallelism can be con­

sidered special cases of AND, OR and unification parallelism. The PUP is designed to

exploit unification parallelism (a multiprocessor based on the PUP could exploit AND and

OR parallelism as well).

- 3 -

Although most of the "useful work" of a Prolog program is done by unification opera­

tions, several bookkeeping operations must also be performed to control execution. The

type of bookkeeping operations required depends on the abstract model for Prolog execu­

tion. In this project we use a register based, environment stacking model similar to the

Warren Abstract Machine [23] since it has been shown to be superior to other known

models (see [21]). The storage model consists of a heap on which the various data struc­

tures required by the program are created, a stack that contains environments and

choicepoints, a trail stack, and a push down list that is used in the unification of nested lists

and structures. The processor contains stack pointers and argument registers.

Choicepoints are used to save the state of the machine before trying a clause of a procedure

so that the state can be restored if the clause fails and another clause must be tried. The

trail stores addresses of variables that are bound during the execution of the clause so that

these bindings can be undone (by a de-trail operation) if the clause fails. Environments are

used to save some registers before calling a goal since these registers may be overwritten

by the goal but are required for subsequent goals in the body of the clause.

Bookkeeping operations in this model include creation of choicepoints, trail opera­

tions, restoration of state from a choicepoint, de-trail operations, and saving and restoring

environments. Table 1 shows the percentage of the number of cycles spent on categories of

instructions for some benchmarks running on the VLSI-PLM simulator [10]. The instruc­

tion categories will be explained later in the paper. The benchmarks are part of a collec­

tion maintained at Berkeley. The "boyer" and "browse" benchmarks are part of the Gabriel

Lisp benchmarks coded in Prolog. The other benchmarks are smaller and have been used

in several earlier studies [6, 10, 12]. The unification category (includes "get", "put" and

"unify" instruction types) takes from 36% to 83% of the total execution time. Mulder and

Tick [18] assign weights to instructions based on the number of memory references made

by the instruction on another set of benchmarks. They claim that unification instructions

(get, put and unify) have a total weight of only 20% to 25%. Note that their weights do not

necessarily correspond to execution time. The conclusion in either case is that unification

parallelism alone cannot consistently result in sufficiently large speedups. If parallel

unification is to be effective in speeding up execution, the time spent on the other opera­

tions must also be reduced. In the PUP we do this by overlapping bookkeeping operations

and buffering the stacks. Therefore, unification parallelism is exploited along with paral­

lelism among the bookkeeping and arithmetic operations. We refer to this as fine grain

parallelism.

- 4 -

1.2. Previous Work

As mentioned earlier, only a few research projects try to exploit fine grain parallelism

beyond the limited overlap allowed by short processor pipelines, and we review these in this

section. Papers dealing with other forms of parallelism in Prolog are not included.

Theoretical results about unification are discouraging at first glance. The results of

Dwork et al [11] and Yasuura [25] indicate that it is very unlikely that "good" (polynomial

logarithmic time using polynomial number of processors) parallel algorithms can be found

for unification. However, although unification of all term pairs cannot be performed in

parallel, there are also many term pairs that can exploit parallel hardware. Citrin [6] has

studied techniques for determining schedules for parallel unification. He uses static data

dependency analysis [5] to identify independent unification operations and schedules them

at compile time. However, his work has limited practical applicability for several reasons.

First, he only considers parallel unification. Without speeding up other operations as well ,

very limited speedup can be achieved. Second, in his scheme, parallel unifications execute

in groups of independent operations. Unifications belonging to different groups may not

overlap. Also unification operations belonging to the next goal may not overlap with those

of the current goal. Third, static analysis results in worst case schedules that may be too

pessimistic especially when clauses are "asserted" (added to the program) or "retracted"

(deleted from the program) during program execution.

Several data flow models for execution of logic programs have been proposed. Ito et al

[16] describe one such architecture for Parallel Prolog and Concurrent Prolog. The

machine is designed to exploit AND, OR and unification parailelism. Several processing

elements access structure memories over an interconnection network. Data flow nodes are

provided for primitive operators (for example, the unification operator, check-consistency

operator and substitute operator). The unify operator has two input ports for the terms

being unified, and two output ports, the I port and the E port. The I port supplies an

instance of the two unified terms and the E port supplies the set of bindings for variables in

the two input terms. The check-consistency operator checks for consistency between two

binding environments that may share variables. The check-consistency operator tries to

unify the two sets of bindings to produce a single binding environment. The substitute

operator performs substitutions from a given environment to a given term. Arcs of the

data flow graph also connect the clauses of a procedure and goals of a clause so that AND

and OR parallelism can also be exploited. Although such an execution mechanism could

potentially exploit parallelism extensively, no performance results were presented and no

details of practical considerations regarding the construction of such a machine were

described. Practical data flow machines of this type have yet to be demonstrated.

...

- 5 -

The POPE [2] is a novel pipelined architecture for Prolog. The pipeline consists of a

series of WAM based processors arranged in a ring. Adjacent processors communicate

through a pipeline buffer. All the processors share a common data memory but have local

copies of code. The pipelining in the POPE can be viewed as pipelining at the procedure

level. In standard sequential execution, the arguments of a procedure (goal) are loaded

before the procedure is called. In the POPE, the address of the procedure is first loaded

into the next pipeline buffer (so that the next processor can fetch and execute instructions)

and then the arguments are loaded into the buffer. The next processor can unify argu­

ments as soon as they are loaded into the buffer. When all the code for the procedure has

been executed, the processor picks up the address for another procedure call from its input

pipeline buffer. This allows the overlap of both unification operations as well as bookkeep­

ing operations. The pipeline buffers also serve as a single choicepoint buffer. Stack

pointers are used as tokens for synchronization (for example, a processor cannot allocate

space on the heap unless it has the heap pointer and the previous processor will only relin­

quish the heap pointer when it is sure that it does not need it any more for the current pro­

cedure). The POPE does achieve overlapped execution of unifications and bookkeeping

operations but only operations belonging to different goals may be overlapped.

1.3. Organization of the Paper

In Section 2 we describe our design philosophy and justify our design choices. In sec­

tion 3, we specify the PUP architecture and its implementation. Our simulation measure­

ments are presented and analyzed in Section 4. In Section 5, we offer some concluding

remarks.

2. Design Philosophy

In the previous section we introduced fine grain parallelism (which includes

unification parallelism) that the PUP exploits. In this section we describe and justify the

principles used in the design of the PUP. The main principles are the use of multiple func­

tional units, each tailored to a specific task and operating in parallel, out of order execution

of instructions, and dynamic scheduling of operations to the functional units.

2.1. Multiple Specialized Functional Units

Prolog, like most other languages, has certain distinctive characteristics. Special

hardware support that caters to these characteristics can result in a high performance Pro­

lag system. In addition, tasks that are independent of each other can be executed on paral­

lel hardware units, each tailored to the specific tasks that it performs. For example,

- 6 -

independent unification operations can execute in parallel on unification units while

another type of unit copies a buffered choicepoint into the choicepoint stack in memory.

Our implementation of the PUP uses this approach to execute instructions in parallel.

The instructions of the PUP must be of sufficiently coarse grain for multiple func­

tional units to be effective. Otherwise, the scheduling overhead will eliminate all the

benefits of parallel execution. We chose an instruction set based on the WAM since the

instructions have a sufficiently coarse granularity.

2.2. Out of Order Execution

Several operations execute concurrently in the PUP. However, some of these opera­

tions, for example unification, can take a varying number of cycles to complete. Therefore,

it is quite possible that operations can complete before those that occur earlier in the

instruction stream. Also, some operations may have to stall for data from previous opera­

tions, while other operations that follow may be ready to execute. In order to take advan­

tage of the available parallelism, the PUP allows out of order execution. Instructions may

execute when all their input data are available.

2.3. Dynamic Scheduling

In general, it is not possible to determine the execution time of unification operations

at compile time. Static analysis and scheduling as proposed by Citrin [6] results in worst

case schedules and low utilization of unification units (since all parallel operations on the

unification units must complete before any of the units can start executing the next group

of parallel operations). Extensive static analysis of programs is required and the analysis

is ineffective when the program or data are modified by asserts or retracts. To overcome

these problems, the PUP schedules operations dynamically among unification units. An

operation that is ready to execute is dispatched to the first free unification unit. This

scheduling policy is not optimal but is simple to implement (see Section 3) and produces

near-optimal schedules most of the time [1]. Optimal schedules cannot be computed since

we do not know the execution time of all the operations.

Static schedules proposed by Citrin ensure that only one parallel unification operation

will try to bind an unbound variable. With out of order execution and dynamic scheduling,

however, we have to provide synchronization mechanisms to ensure that unbound variables

that are ~hared among several unification operations will be bound by only one of the

operations. The reasons for this synchronization requirement will be explained in Section

3.

....

- 7 -

3. Description of the PUP

The instruction set architecture of the PUP is based on the W AM [23] and the Berke­

ley PLM [10]. New features have been included to enable parallel execution by an imple­

mentation based on the design principles outlined in Section 2. In this section, we describe

the architecture and an implementation. An example to illustrate the operation of the

PUP is also presented.

3.1. Instruction Set Architecture

3.1.1. Data Types

Data elements of the PUP are organized as 32-bit words. Each word is made up of 4

fields (see figure 1): a 3-bit tag, a cdr bit, a 27-bit value field, and a bit for garbage collec­

tion (currently unused). The tag field specifies the type of the words. Possible data types

are bound variable, unbound variable, structure, list, constant integer, constant floating

point, and nil (a special constant). The value field of a bound variable contains a pointer

to the data to which it is bound. Value fields of structures and lists contain pointers to the

first element of the structure or list. Lists are cdr-coded as in the PLM. If the cdr bit of a

word is set, the word represents the last element of the list. Cdr-coded lists require less

storage space than traditional linked lists that require two words for every element of the

list (one for the element itself and one for the link). Figure 2 explains how lists are coded

using the cdr bits.

3.1.2. Processor State

The PUP registers are summarized in table 2. The argument registers XO - X7 are

used to hold the arguments to procedure calls. The write-once registers WO-W7 contain

variables that appear in more than one argument (shared variables), as well as variables

that appear within complex arguments (list or structure arguments). As the name sug­

gests, write-once registers are only written once during the unification of the head of a

clause. They are used to synchronize access to shared variables and to enable unification

units to unify elements of complex arguments. The function and operation of write-once

registers will be described later in greater detail. The continuation pointer (CPJ stores the

return address of a procedure call and points to code that must be executed after the

current clause succeeds. The environment pointer (E) points to the location of the previous

environment on the stack. The backtrack pointer (B) points to the location of the previous

choicepoint. The trail pointer (TR) points to the top of the trail stack and the heap pointer

(HP) points to the top of the heap. The stack pointer (T) points to the top of the stack that

- 8 -

contains environments and choicepoints. Readers familiar with the WAM or PLM architec­

tures will notice that there is no structure pointer (used to point to elements of lists or

structures on the heap during unification). This is because the unification of a list or struc­

ture is treated as a single instruction in the PUP. The W AM and PLM have separate

"unify" instructions for each element of the list or structure. The structure pointer is,

therefore, not specified in the instruction set architecture (although the implementation

may have structure pointers to implement list and structure unifications).

3.1.3. Memory Organization

Data memory in the PUP is divided into a stack for environments and choicepoints, a

heap, and a trail. The push down list is not specified in the instruction set architecture

since list and structure unifications are treated as single instructions. Sublists or substruc­

tures that are pushed on to the push down list during unification are not visible to the pro­

grammer at the instruction set level. The implementation may provide memory or

separate storage for the push down list.

3.1.4. Instructions

A complete description of all the instructions of the PUP is inappropriate for this

paper. In this section we describe the instructions very briefly to illustrate the operation of

the PUP. The simulator described in Section 4 does not implement all the instructions that

a real machine would have, but only those required to run the benchmark suite and demon­

strate the feasibility of such an architecture.

The instruction set consists of six groups of instructions: indexing, clause control, pro­

cedure control, get, put and miscellaneous instructions. These groups are summarized in

table 3.

3.1.4.1. Indexing Instructions

Indexing instructions are used to filter a set of clauses that are candidates for

unification. They eliminate clauses that cannot possibly unify with the current goal since

there is a mismatch in at least one argument. The switch-on-term (swot) instruction

branches to one of four destinations based on the type of the argument. Separate destina­

tion addresses are provided for unbound variable, constant, list and structure types. For

example, if the argument is a list, all clauses that require a structure or constant in that

argument position can be eliminated. If the argument is an unbound variable, it could pos­

sibly unify with all the clauses. Code at the destination for unbound variables must, there­

fore, attempt all the clauses. The switch-on-constant and switch-on-structure instructions

- 9 -

use hash tables to filter clauses even further if the arguments are constants or structures

respectively.

·3.1.4.2. Procedure Control Instructions

Procedure control instructions create, modify and delete choicepoints on the stack.

The tryelse instruction creates a choicepoint and transfers control to the first clause to be

tried (specified by the first address in the instruction). The second address points to the

code that must be executed if the first clause fails. The retryelse instruction is used to try

the next clause and modify the choicepoint to point to the code that must be executed if the

the clause fails. It is used for all clauses except the first and the last. The trust instruction

deletes the choicepoint and tries the last clause. The fail instruction causes the clause to

fail and backtrack to the last choicepoint.

The cut instruction implements the cut operator (!) of Prolog. It discards all the

choicepoints of the current procedure and its goals. The cuts is a special case of the cut

instruction and is used as an optimization when it is known that the current clause has not

called any goals. The cutd is used to correctly implement disjunctions in Prolog. Explana­

tion of the cutd instruction is rather involved and interested readers may refer to [10] for

more details.

3.1.4.3. Clause Control Instructions

This group of instructions is responsible for control transfer and environment alloca­

tion associated with procedure calls and returns. The allocate and dealloc instructions allo­

cate and deallocate environments. The call is used to call a goal that is not the last goal in

the body of the clause, whereas the execute instruction is used to call the last goal of the

clause. The call instruction saves the return address in the CP register. The proceed

instruction is a return from a procedure call. If the procedure was called using the call

instruction, control returns to the caller so that the next goal can be executed. However, if

the procedure was invoked using the execute instruction, control is transferred to the return

address in the last environment on the stack.

3.1.4.4. Get Instructions

The get instructions are used to unify the input arguments of a procedure with the

arguments of the head of the clause currently being executed. The getconst instruction

tries to unify the argument register with a constant and is used when for constant argu­

ments in the clause head. The getvalx tries to unify the two argument registers specified.

The getvaly tries to unify the specified permanent variable (a variable that is stored in the

- 10 -

environment) with the specified argument register. The getwx tries to unify the specified

write-once register and argument register, and the getwy tries to unify the specified write­

once register and permanent variable. The getvarx instruction is used for variables in the

clause head and copies the first argument register to the second. Similarly, the getvary

instruction transfers the contents of the argument register to the permanent variable. The

getlist and getstruct instructions are used when the argument in the clause head is a list or

structure respectively. In the PLM and WAM, these instructions are followed by a series of

unify instructions for each element of the list or structure. In the PUP, however, the

instructions contain pointers to a description of the list or structure, and the unification of

the entire list or structure is treated as one instruction. The description could contain sub­

lists and substructures. They may also unify elements with write-once registers. If the

argument register that is being unified with the list or structure is an unbound variable,

the instruction first constructs the list or structure on the heap and then binds the variable

to it. The description also contains a field that specifies the size of storage that is required

on the heap so that the instruction can request a chunk of heap space of the appropriate

size. This is not necessary in sequential execution since heap space cannot be requested for

more than one list or structure at a time so there is no danger of elements of two or more

lists or structures being interleaved on the heap. For parallel execution, allocation of

shared heap space requires synchronization and it would be expensive to allocate space for

each element separately. In addition, if space for each element were allocated separately,

structures and lists could be interleaved with each other and explicit linking of structures

and lists would be required.

3.1.4.5. Put Instructions

The put instructions are used to move data into the argument registers before calling

or executing a goal. The putconst instruction loads a constant into an argument register.

The putvarx instruction creates an unbound variable on the heap loads a pointer to this

variable in the argument registers. The putvary instruction creates an unbound variable in

the environment. The putlist and putstruct instructions create lists and structures on the

heap and load pointers to them into an argument register. As with the corresponding get

instructions, the putlist and putstruct instructions contain pointers to a description of a list

or structure. The putval instructions are identical to the corresponding getvar instructions.

The putwx and putwy instructions are used to copy the contents of a write-once register into

an argument register or permanent variable.

\,.

..

- 11-

3.1.4.6. Miscellaneous Instructions

Other instructions of the PUP include instructions for magnitude comparison, arith­

metic and evaluation of expressions. The list of miscellaneous instructions shown is by no

means complete. Floating point instructions are an example of further additions to the

instruction set. However, the instructions shown suffice to run the benchmark suite and

evaluate the architecture.

The synch instruction is used to reset the write-once registers so that they may be

used by the next procedure call. It will be discussed in greater detail along with synchroni­

zation issues.

3.1.5. Synchronization for Shared Variables

3.1.5.1. Write-Once Registers

Consider the goal and clause ,hown below. In the head of the clause for the "concat"

procedure, the first and third arguments are lists that would be unified in parallel on the

PUP with the input arguments of the procedure. The variable X in these lists is shared by

the two unifications operations.

?-concat([a,b,c,], 1, [d,e,f]).

concat([XI11], 12, EXI13]):- concat(11, 12, 13).

Clearly, the clause head shown. should not unify with the goal arguments. However,

if the unification operations for the two lists try to unify the variable X at the same time,

the first would try to bind X to a while the second tries to bind X to d. If both perform the

binding, they would both succeed producing incorrect results. To solve this problem, we

need to synchronize bindings of shared variables. In the PUP, each shared variable in a

clause is allocated a write-once register. The architecture guarantees that a write-once

register is written at most once and by a single unification operation (until the register is

reset by a synch instruction). All other unification operations unify with the value written

into the write-once register and do not try to write it. The write-once register can then be

copied into an argument register using the putwx instruction if it is required as an argu­

ment for another goal.

The synch instruction is executed before the first use of a write-once register in a

clause. It causes the processor to wait for all previous unifications to complete and then

resets the write-once registers so that they can be reused .

- 12 -

Write-once registers are also used for other variables (even if they are not shared)

that occur in lists and structures. In the example above, Ll and L3 in the clause head

would be allocated a write-once register each. This is because descriptions of lists and

structures for the getlist, putlist, getstruct and putstruct instructions are not allowed to refer

to argument registers. This decision was made so that data dependencies between instruc­

tions could be handled based on the argument registers and permanent variables they

write, without reading descriptions of lists and structures. The reasons will be clearer

when the algorithm that is used to satisfy data dependencies (the Tomasulo algorithm [22])

is discussed.

3.1.5.2. Shared Variables in Memory

Write-once registers are used to synchronize binding of shared variables that appear

explicitly in the code. However, two or more unification units may also try to bind the

same unbound variable on the hea~. This situation is illustrated in the following example.

?- a([X, Ll], [X, 12]).

a([1, 2], [3, 4]).

From clause a it does not appear that there are any shared variables being bound.

However, one unification operation tries to bind variable X to the constant 1, while the

other tries to bind it to the constant 3. The architecture must guarantee that only one

unification operation binds the variable and all others unify with the value of the bound

variable. Several methods can be used to ensure synchronization and the method is not

part of the specification of the PUP architecture (since the method is not visible at the

instruction set level). Our implementation of the PUP uses dereference locks for synchroni­

zation of shared variables in memory and will be explained later.

3.2. An Implementation of the PUP

Figure 3 shows a block diagram of the system. It consists of a prefetch unit (PFU), a

control unit (CU), a node table and global push-down list (NTPDL) and several unification

units(UUs). The PFU, CU and each of the UUs may access shared memory over the

memory bus. The the CU, NTPDL and the UUs communicate over a synchronous bus

called the distribution bus. All units that require the distribution bus during a particular

cycle must arbitrate for it in the previous cycle. A single bus arbiter is used. The PFU

fetches instructions from the memory, and ships their partially decoded form to the CU on

demand over a dedicated, synchronous prefetch bus. The CU executes some instructions

and dispatches others (those involving integer arithmetic and unification are executed on

\. - 13 -

UU s) to the node table in the NTPDL over the distribution bus. The node table facilitates

out of order execution and dynamic scheduling of operations for the unification units. The

Tomasulo algorithm [22] is used to implement out of order execution. The algorithm was

first used in the ftoating point unit of the IBM 360/91 and is currently being used for the

entire execution unit in the HPS project at Berkeley [19].

Instructions are dispatched from the CU even if their arguments are not valid. (since

the arguments are the results of previous operations that have not yet completed). The

destination registers of instructions are marked as invalid and are assigned tags (the

hardware has a special valid bit and tag field for each register). These instructions wait in

the node table until their arguments become valid (are computed and distributed over the

distribution bus by previous operations). Once the arguments of an instruction in the node

table are valid, the instruction may be dispatched to the next unification unit that requests

another instruction. When the results of that instruction are ready the UU distributes the

result, along with the tag associated with the destination, over the distribution bus. All

invalid registers and arguments i:ri the node table that match the tag are then loaded with·

the value on the distribution bus and marked valid.

The Tomasulo algorithm is not applied to the write-once registers in the PUP. This is

because the write-once registers may be specified as destinations within list or structure

descriptions. These descriptions are not seen by the CU, which assigns tags for the

Tomasulo algorithm. Operations that use write-once registers as a source wait in a

unification unit until the register is written.

Each of the unification units has a local push-down list that is used to store sub-lists

or sub-structures encountered during unification of a list or structure. The local push-down

lists overftow into the global push-down list in the NTPDL. Sublists or sub-structures in

the global PDL may be unified by any UU, not necessarily the UU that overftowed. By this

mechanism we achieve a simple form of load balancing.

Each of the functional units will be described in greater detail in the next few sec-

tions.

3.2.1. The Prefetch Unit

The prefetch unit not only prefetches PUP instructions and aligns operands, but also

executes unconditional branch operations. The program counter of the PUP system is

maintained by the PFU. When the PFU encounters an execute instruction, it resets the

program counter (P register) to the destination address and starts prefetching from the new

target. For a call instruction, the PFU passes the continuation pointer (the return address)

to the CU and starts prefetching from the target address. The CU stores the continuation

- 14 -

pointer in the CP register and sends it back to the PFU when it executes a proceed

instruction. The PFU then resets the P register to point to the return address that it

receives from the CU. Similarly, for the tryelse instruction, the PFU passes the else

address (the second argument of the instruction) to the CU which tben stores it in the

choice point. The PFU resets the P register to point to the target address (the try address)

and starts prefetching from there. When backtracking is necessary the CU returns the else

address to the PFU which then loads the P register with this value. When the PFU

encounters a switch-on-term instruction, it passes the argument register number to the

CU. The CU dereference& the register and returns the type of the dereferenced result to

the PFU over the prefetch bus. The PFU then loads the P register with the target address

corresponding to the type of the argument and starts prefetching from there.

Two versions of the PFU were designed. In the first version instructions were stored

in a circular prefetch queue. After each instruction was sent to the CU, the instruction

bytes were removed from the head of the queue. Whenever free memory cycles were avail­

able, new instructions were loaded.into the tail of the queue. On a branch the queue was

emptied and reloaded with the new target byte at the head. This version of the PFU

worked well for sequential instructions but the penalty for branches was too high since the

buffer had to be refilled with data from the memory on every branch. The memory traffic

was also at least as high as the number of instruction bytes executed.

In order to reduce the penalty for branches and the memory traffic due to instruction

fetches, we added a target instruction cache (TIC) to the PFU. The current version of the

PFU has a target instruction cache as well as the circular prefetch buffer as shown in

figure 4. Each line of the TIC contains the first 16 bytes following a branch. On a branch,

if there is a hit on the TIC, the circular buffer gets loaded with the bytes in the TIC and

instruction dispatch can begin right away instead of waiting for memory access to fill the

buffer. Memory accesses then only have to fill the rest of the buffer. If there is a miss on

the TIC the circular buffer is reset. A line of the TIC is then filled along with the circular

buffer so that it will be available the next time there is a branch.

At present the TIC is two-way set-associative and each set consists of 32 lines, each of

which is 16 bytes long. The circular buffer is 32 bytes long. The length of a TIC line, the

number of lines in a set, and the size of the circular buffer may be varied in the simulator.

3.2.2. The Control Unit

The control unit performs two basic functions: bookkeeping and instruction issuing.

Bookkeeping operations consist of trailing variable bindings, creating choice points and

environments, and backtracking on failure. The data path of the CU is shown in figure 5.

- 15 -

3.2.2.1. Instruction Issuing

The CU gets zero to two arguments and an opcode from the PFU for each PUP

instruction. The two arguments are latched and the opcode is used to set the microprogram

counter in the microsequencer. The get, put and arithmetic instructions are dispatched to

the node table and bookkeeping instructions are executed by the CU. The CU issues

instructions to the node table sequentially but since data dependencies are resolved by the

node table and the unification units, out of order execution can occur. If an instruction

modifies an argument register, the CU marks that register as invalid and assigns a result

tag to it. This result tag is then shipped to the node table in place of the destination regis­

ter number. The unification unit that produces the result distributes it along with the

result tag and the CU loads the register with the value from the distribution bus.

3.2.2.2. Trail Buffer

The CU also contains a buffer for the trail stack. Trail requests are made by the UU's

over the distribution bus when they bind variables. Instead of writing to the trail stack,

the CU writes to the trail buffer. If the memory bus is available, the buffer is also copied

to the trail stack in memory. Thus, when the buffer gets full, the bindings that have

already been copied into memory can be overwritten to accommodate new trail requests. If

a clause fails, all bindings that were trailed by the clause must be undone. Instead of read­

ing from the trail stack in memory, the CU can pop entries from the trail buffer. However,

if the buffer is empty, entries are copied back into the buffer from memory.

3.2.2.3. Choice Point Buffer

There are two sets of argument registers in the register file of the CU. One set is visi­

ble to the programmer. The other, a back-up set, is used for choice point buffering. At

failure the back-up set is made the current set. Thus backtracking is fast. To create a

choice point, all pending writes to the register file are completed and then the current set is

made the back-up set. All subsequent writes are directed to the other set, which is the new

current set, and the corresponding registers are marked dirty. A read from a register will

return the register value in the back-up set if the corresponding register in the current set

is clean. Otherwise the register value is read from the current set. Whenever the memory

bus is not being used, registers in the back-up set are copied to the memory allocated to the

choice point. Thus choice point creation and shallow backtracking are fast. If we have to

backtrack through two or more choice points, the registers are copied from the choice points

in memory.

- 16-

3.2.3. The Unification Unit

Special hardware unification units have been proposed elsewhere, for example [3,24].

These units, however, do not perform parallel unification with synchronization for shared

variables. Special nodes for unification have also been proposed for dataflow machines [16],

where shared variables are handled by check consistency operators. We use a different

approach to synchronization of shared variables, and our unification units execute WAM

based unification instructions. Figure 6 shows our unification unit data path. The UU s

execute all put, get and integer arithmetic instructions. Whenever a UU is free, it

requests instructions from the NTPOL. The arguments and result tag are latched and the

opcode sets the microprogram counter in the microsequencer. When the instruction is com­

pleted, the result, if any, is latched into the distribution latch and distributed over the dis­

tribution bus.

3.2.3.1. List and Structure Unification

The getlist and putlist instructions require the unification units to obtain chunks of

heap space of the size of the list or structure being unified. This size is available from the

size field in the descriptions of lists or structures in code space. In order to obtain the heap

space, the UU maintains a heap pointer, H. It tries to distribute the value of the present

heap pointer added to the size of heap space required. At the same time it watches the dis­

tribution bus for a new value of the heap pointer. If it can distribute its new H value then

it has succeeded in obtaining the required heap space. If it sees a new H value being distri­

buted before it has a chance to distribute it, the H must be updated to the value seen on

the distribution bus and the new H value must be recomputed before retrying.

Nested lists and structures are unified using the push down list. When a sublist or

substructure is encountered, the addresses of the rest of the list or structure are pushed

onto the push down list and the sublists or substructures are unified. After this is com­

pleted, the addresses are popped off the POL and the rest of the list or structure is unified.

The unification unit uses a small local POL. When this overflows, the top of the POL

is popped and pushed into the global POL in the NTPOL over the distribution bus. Entries

in the global POL may be unified by any unification unit and this allows simple load

balancing if deep lists or structures are used. It should be noted that a stack discipline for

the POL is not necessary. It is convenient for the case when no overflow occurs but it is not

necessary to unload the bottom of the local POL onto the global. POL when overflow occurs.

It is simpler to pop the top of the local POL and push it onto the glob~l POL.

l

- 17 -

3.2.3.2. Write-once Registers

As explained in earlier, the write-once registers are an important architectural inno­

vation. They allow unification instructions that share variables to be dynamically

scheduled in parallel. Elements of lists and structures are fetched by the unification units

directly from memory. The control unit cannot assign tags and resolve data dependencies

caused by variables shared by two or more lists or structures. The write-once registers

resolve these dependencies. Each unification unit has a shadow copy of the write-once

registers. These registers must be written using the distribution bus so that other units

can update their write-once register sets.

The first implementation of the unification unit bad a single set of write-once regis­

ters. The CU stopped dispatching instructions when a synch instruction was received.

After all pending instructions had completed, the CU reset the write-once registers and

resumed dispatching instructions. The synch instruction thus stalled the pipeline and

degraded the performance of the PUP.

In order to reduce the number of pipeline stalls due to the syncb instruction, the

current version of the unification unit bas two sets of write-once registers. In this imple­

mentation each instruction dispatched by the CU bas a set number (1 or 0) indicating the

set of write-once registers associated with that instruction. Suppose the CU bas been issu­

ing instructions marked with set 0. When a synch instruction arrives, the CU waits until

all pending instructions marked with either set 1 or set 0 are completed. The CU then

resets the write-once registers for the set that is completed and issues instructions marked

with that set. Now if another synch instruction arrives, the CU will have to wait for all

the instructions marked with set 0 to complete before issuing new instructions. Separate

signal lines for set 0 and set 1 from the CU and the UUs indicate when there are no

instructions pending.

3.2.3.3. Dereference Locks

Write-once registers are used to ensure that only one UU binds a register. We

described an example earlier that demonstrated the need for a mechanism to synchronize

bindings of shared variables in memory. The architecture does not specify the mechanism

to be used. In this implementation of the PUP we use dereference locks to ensure that

only one UU binds an unbound variable in memory.

Dereference locks are a set of associative registers. There are shadow copies of this

set in each of the UUs. Whenever a UU finds that a variable dereferences to an unbound

va.riable, it first does an associative search in its copy of the dereference locks for the

address of the unbound variable. If the search succeeds some other UU is in the process of

- 18 -

binding the variable and the UU must wait until the lock is released by the other UU.

Then it must dereference the variable again since there may be a new binding. If the asso­

ciative search does not succeed, the UU tries to distribute the address of the unbound vari­

able to lock it. If it does not get the distribution bus it must monitor the bus to see if some

other UU distributes the address of the same unbound variable. After acquiring the lock

the UU may bind the variable. The dereference lock is released when the trail request is

distributed. At present there are four dereference locks.

3.2.4. The Node Table and Global Push Down List

The node table stores instructions dispatched by the CU. Some of these instructions

do not have valid operands. Such operands are marked as invalid and an operand tag is

stored in place of the operand itself. An instruction may have two operands. An opcode,

result tag and write-once register set number are also stored with each instruction. The

node table monitors the distribution bus continuously. If the distribution bus cycle is used

to distribute a result of a previous ·operation, the node table associatively compares the tag

of the result to the operand tags of all the invalid operands. If any tags match the result is

loaded into the operand and the operand is marked as valid. If an instruction has all its

operands valid, it can be dispatched to a UU that requests an instruction. The current ver­

sion of the node table contains 16 entries.

When the local PDL in a UU overflows, the UU pushes the top of the local PDL onto

the global PDL by distributing the data and requesting a push operation. When a UU is

free it requests the distribution bus for an instruction fetch cycle. If this request is

granted, the NTPDL uses the cycle to output (fire) an instruction. If the global PDL is not

empty the PDL is popped and the instruction on the top is output. If the global PDL is

empty the next instruction that has its operands valid is dispatched from the node table.

The cycle is unused if no instruction is ready. The global PDL is rarely used since lists and

structures are usually not very deep and at present it has 64 entries.

3.3. An Example

In this section we describe the flow of instructions through the system for a single

iteration of a simple program. The instruction trace does not correspond to an actual

cycle-by-cycle flow and is only meant to illustrate the interaction between the various com­

ponents of the hardware and the function performed by each of them.

The Prolog program described appends the list [d,e] to the list [a,b,c] to give the list

[a,b,c,d,e]. The Prolog code is as follows.

main :- concat([a,b,c],[d,e],X).

conca t([] ,1,1).

- 19 -

concat([XI11],12,[XI13]) :- concat(11 ,12,13).

The PUP code corresponding to the main call, which involves setting up the argu­

ments and calling the concat procedure is as follows. Alphanumeric arguments are used for

readability. For simplicity only one set of write-once registers are used.

main: putlist Ol,x1)

putlist (12,x2)

put van (x3,x3)

call (concat)

ret: quit

11: list (size 4)

const (a,cdr 0)

const (b,cdr 0)

const (c,cdr 0)

nil (cdr 1)

12: list (size 3)

const (d,cdr 0)

const (e,cdr 0)

nil (cdr 1)

The prefetch unit fetches the instructions and passes them on to the CU. The first

instruction, putlist(ll ,xl), has X1 as the destination register. The CU assigns a unique tag,

a to X1 and marks it invalid. The instruction putlist(ll ,a) is then dispatched to the node

table. There are two unification units, UU1 and UU2, in this example, and both are ini­

tially idle. Since the instruction putlist(ll,a) is ready, the NTPDL dispatches it to the first

UU that requests it, say UUl. Similarly, the next instruction is dispatched via the node

table to the second unification unit, UU2. The CU also assigns a tag to the destination

register of the third instruction, X3, and dispatches the instruction to the node table. Since

both the UUs are now busy, however, this instruction waits in the node table until one of

the UUs finishes an instruction and requests another. This state of the PUP is shown in

figure 7(a).

The PFU then decodes the call(concat) instruction and starts prefetching instructions

starting at the address concat. The continuation pointer, CP, in the CU gets loaded with

the return pointer, ret, when the CU executes the call instruction. This address is supplied

- 20 -

by the PFU along with the call instruction. UUl requests 4 words of heap space by adding

4 to its copy of the heap pointer, HP, and distributing the result. On seeing the distributed

HP value, all the other units with HP copies (the CU and UU2) update their copies. UUl

then creates a list on the heap and distributes a pointer to the beginning of that list with a

type tag of list. The distribution result is identified with tag a and the CU loads Xl with

the pointer and type tag being distributed since Xl has the result tag a. UUl then

requests a new instruction from the NTPDL and gets the instruction putvarx(c). Figure

7(b) illustrates the state of the PUP at this point. All the arguments are now ready for the

concat procedure.

Similarly, UU2 creates a list on the heap as well and distributes a pointer to it as a

result and this pointer gets loaded into X2. UUl also creates an unbound variable on the

heap and distributes a pointer to it. This gets loaded into X3. Meanwhile, the PFU decodes

the first instruction at address concat. The code for the procedure concat is given below.

con cat: awot (l,lv ,lc,ll,ls)

lv: tryelse (lc,f)

lc: getval:r. (:r.2,:r.3)

getconst (nil,:r.l)

proceed

f: trust (11)

11: synch

getlist (13,:r.l)

getlist (14,:r.3)

putw:r. (wl ,:r.l)

putw:r. (w3,:r.3)

e:r.ecute (con cat)

ls: fail

13: list (size 2)

bvar (cdr O,w4)

bvar (cdr l,wl)

14: list (size 2)

bvar (cdr O,w4)

bvar (cdr l,w3)

The first instruction of the concat procedure is swot(l ,lv,lc,ll,ls). The PFU decodes this

instruction and passes the argument register number, 1, to the CU. The CU dereferences

- 21 -

the argument and passes back the result type, in this case list, to the PFU. The PFU then

starts to prefetch instructions starting at the address ll. The first instruction at this

address is synch. This instruction causes the CU to wait until all the previous instructions

are done and then reset the write-once registers. The state at this stage is shown in figure

7(c).

The next two instructions, getlist(l3,listl) and getlist(l4,bdvar8) are dispatched by the

CU to the node table in place of the instructions getlist(l3,xl) and getlist(l4,x3) since X1

contains the pointer to the list starting at address 1 and a type tag of list, and X3 contains

a type tag bdvar (bound variable) with an address 8. These two instructions are dispatched

to the UUs. In figure 7(d), the CU has also dispatched the instruction putwx(wl ,xl) to the

node table as putwx(wl,a) and assigned X1 the tag a. It has just fetched the instruction

putwx(w3,x3) from the PFU.

The PFU decodes the execute(concat) instruction and starts prefetching from the con­

cat address while UU1 unifies the list at 1 with the list at l3 and UU2 unifies the bound

variable at 8 with the list at 14. Figure 7(e) shows the state of the PUP after UU1 has

completed the getlist(l3,listl) instruction. Write-once register W 4 gets loaded with the first

element of the list at 1, a constant a. Write-once register W1 gets loaded with a list tag

and a pointer to the rest of the list.

The argument of the getlist instruction in UU2 is a bound variable that dereferences

to an unbound variable at address 8 on the heap. This is unified by UU2 to the list at 14.

Two heap space locations are requested since the size field at 14 is 2. Then the location 8 is

written with a list tag and a pointer to the first of the 2 heap locations just allocated.

Since W 4 has already been written, it is copied into the first element of the list on the

heap. The second element is marked as a cdr element (its cdr bit is set) and and written

with tag of unbound variable. This state is shown in figure 7(f).

The subsequent putwx instructions load the X1 register with a list tag and an address

2, and the X3 register with a list tag and an address 10. The arguments for the next itera­

tion of the concat procedure are now ready and the state is shown in figure (g).

4. Measurements and Analysis

Like most complex systems, optimization of the PUP architecture is a problem involv­

ing several variables that interact in ways that are difficult to model. We have developed a

register transfer level simulator to verify the correctness of the architecture and to measure

the results of our design choices. This section describes the simulator and reports the

measurements taken on a set of standard Prolog benchmarks running on the simulator.

- 22 -

4.1. The Simulator

A register transfer level simulator is required to verify the implementation of the

architecture and to get detailed traces and measurements. We used a design environment

provided by Endot Inc. called N.2. This includes a compiler and simulator for the ISP

hardware description language and tools to write an assembler and linking loader. The

simulator includes an interactive command set, tracing facilities and tools to aid in collect­

ing statistics.

The PUP simulator includes mechanisms to vary memory access time and arbitration

policy, number of unification units (1 to 4) and number of write-once register sets (1 or 2).

The target instruction cache in the PFU can also be enabled or disabled. These mechan­

isms allow us to observe the effects of changing system parameters on the performance and

identify bottlenecks.

4.2. Benchmarks and Assumptions

Our measurements were obtained by running benchmarks from the Warren and

Berkeley Benchmark sets. It is important to note that all goals that perform input and

output have been deleted from these benchmarks, since these goals require interaction with

the operating system. Most of these benchmarks are rather small. The conl benchmark

concatenates a list of two elements to a list of three elements. The con6 program finds all

pairs of lists which, when concatenated, result in a given list of five elements. The nrevl

benchmark reverses a list of 30 elements and hanoi solves the Towers of Hanoi problem for

8 discs. The qs4 program sorts a list of 50 elements using the quicksort algorithm and

queens solves the queens problem for 4 queens on a 4 x 4 chess board. The palin25 bench­

mark detects a palindrome that is 25 characters long.

While we believe that execution time is the primary metric that should be used to

measure performance, we also include the equivalent LIPS (logical inferences per second)

rate because it has unfortunately become customary to do so. Figures in parenthesis are

KLIPS rates in all the performance tables. Execution time is presented in cycles. We

expect a 1.6 micron CMOS implementation to easily achieve a clock rate of less than SOns.

In our LIPS measures, however, we use a lOOns clock which is the same as that used for

the PLM.

It should be noted that all PUP measurements include the effects of bus contention

and stalls due to the PFU buffer being empty or a miss in the target instruction cache.

The PLM measurements are for single cycle memory and do not inc.lude delays due to an

empty prefetch buffer.

l
- 23-

In the performance tables and figures the following notation is used. PUP(2fis) is the

PUP with 2 unification units, :fixed priority scheme (UUs get :first priority, the CU is next

and PFU gets the memory bus only if no other unit requests it), 1 cycle memory access and

pipelined synch instructions (2 write-once register sets). PUP(4r3n) is the PUP with 4

UUs, round-robin memory arbitration, 3 cycle memory access, one set of write-once regis­

ters and no target instruction cache in the PFU.

4.3. Number of Unification Units

Figure 8 shows the performance of the PUP as a function of the number of unification

units for different memory access times. Two write-once register sets and a TIC (target

instruction cache) are assumed for all measurements. The performance :figures are relative

to the PUP(4fis) which is the fastest configuration for the benchmark set as a whole. The

total execution time is the sum of the execution times in cycles for each of the benchmarks.

We make two important observations from figure 8. The first is that the performance

increases dramatically when the n\unber of unification units is increased from one to two

but less significantly when the number of unification units is increased from two to three

and negligibly when a fourth UU is added. The second observation is that the performance

increase when a unification unit is added is greater at higher memory speeds. This occurs

because contention for the memory bus is greater for slower memories and therefore addi­

tional UUs are less effective. Memory contention can also explain the first observation,

although there are other important reasons as well. Contention for the distribution bus,

the limited parallelism available due to inherent dependencies iii the program, and the lim­

ited capacity of the CU to dispatch instructions are other reasons.

In some cases the performance may degrade slightly rather than improve when more

UUs are added. This occurs because the sequence of instructions can change when more

UUs are added and the execution path at the microinstruction level may be different. This

phenomenon occurs rarely and is observed only if the memory is slow.

4.3.1. Utilization of CU and UUs

Table 4 shows the utilization (fraction of time the unit is busy) of the CU and each of

the UUs for different configurations with varying numbers of unification units and memory

speeds. Two write-once register sets and a TIC are assumed for all systems. Idle time for

each of the units is measured by counting the number of cycles during which the unit is

waiting for an instruction. The CU waits for instructions from the PFU, and the UUs wait

for instructions from the NTPDL. Utilization is computed as the fraction of the total

number of cycles that the unit is not idle. Time spent waiting for a memory access to

- 24 -

complete is not considered idle time since the unit is not free to do other useful work while

it it is waiting. The cycle counts used are the sum of the cycle counts for each of the bench­

marks. From table 4 it is apparent that only two unification units can be utilized more

than 30% of the time.

4.4. Effect of Memory Access Time

Table 5 shows the relative performance (PUP(4fis) = 1.0) of various PUP

configurations and memory speeds. All PUP configurations in this table have two write­

once register sets and a TIC. The performance of the PUP with 2 cycle memory is around

80% of that with 1 cycle memory irrespective of the number of UUs. Performance degrada­

tion is almost the same when 2 cycle memory is replaced with 3 cycle memory.

4.5. Effect of Memory Arbitration Algorithm

Memory arbitration algorithm has very little effect on the performance of the PUP as

can be seen from table 6. Relative performance (PUP(4fis) = 1.0) of systems with four·

UUs and one set of write-once registers are shown for fi:r.ed priorities and round-robin arbi­

tration. In the fi:r.ed priority scheme, the UUs have the highest priority followed by the CU

and then the PFU.

4.6. Effect of the Target Instruction Cache

As shown in table 7, the target instruction cache results in a substantial improvement

in performance. Further tests need to be run on larger benchmarks and for a wider range

of memory speeds in order to optimize the number of lines per set and the number of bytes

in each line. The choice of a TIC and prefetch buffer in preference to an instruction cache

also needs to be justified by a separate study. Some of the tradeoff's involved are presented

in [15] for a single chip RISC processor. However, the tradeoff's may be different for a mul­

tiple chip implementation.

I! --M

....

- 25-

4.7. Effect o(Multiple Write-Once Register Sets

The measured performance improvement due to a second set of write-once registers is

surprisingly small. Table 8 compares relative performance (PUP(4fls) = 1.0) of systems

with one and two write-once register sets and lists the performance improvement due to the

additional set. The performance improvement is less than 3% and is higher when more

UUs are used. We conclude that the stalls caused by the synch instructions do not degrade

performance significantly.

4.8. Comparison With the Berkeley PLM

Table 9 compares the performance of the PUP with that of the Berkeley VLSI-PLM

and the TTL-PLM. The PUP consistently outperforms the TTL-PLM by factors ranging

from 1.39 to 2.44 and the VLSI-PLM by factors ranging from 1.26 to 2.22. The TI'L-PLM

requires the host to execute numerical computations. These computations are called

escapes. The VLSI-PLM is an improved version of the TTL-PLM and it executes several

numerical computations in microcode.

The PLM figures for both the TTL and VLSI versions were taken from simulation

measurements that assume single cycle memory and no stalls due to instructions not being

available in the prefetch unit. The PUP simulator takes into account stalls due to instruc­

tions not being available in the PFU. This is especially important for the smaller bench­

marks like concat and nconcat since the PUP incurs misses in the target instruction cache

initially and the time taken to handle the misses is a substantial fraction of the total exe­

cution time. KLIPS figures are given in parentheses and assume a 100 ns clock for all pro­

cessors although we believe that a faster clock cycle is possible for the PUP using a 1.6

micron CMOS implementation.

5. Conclusions

The TTL-PLM was the first special purpose Prolog machine of the Aquarius project at

Berkeley. The VLSI-PLM evolved from the TTL version and the PUP is based on what we

learned from these earlier machines. The PUP exploits fine grain parallelism (which

includes unification parallelism and parallelism among arithmetic and bookkeeping opera­

tions). Since it is not possible in general to predict how long a unification operation will

take at compile time, we believe that dynamic scheduling of unification operations and out

of order execution can result in greater speedup than static scheduling. The speedup

achieved by the PUP is a lower bound on what can be achieved with dynamic scheduling of

parallel unification and arithmetic operations and overlapped bookkeeping operations. The

node table, write-once registers and dereference locks are the hardware structures used by

- 26-

the PUP to resolve data dependencies while allowing dynamic scheduling and out of order

execution. We have shown that these structures allow us to achieve substantial speedup.

The goal of the Aquarius project is a Prolog system that exploits parallelism at all

levels in the execution hierarchy. The PUP effectively exploits fine grain parallelism.

Eventually, we will incorporate suitable extensions and modifications to the PUP so that it

can be used to exploit AND and OR parallelism as well.

Acknowledgements

This project evolved out of discussions with our colleagues in the Aquarius project and

we thank them for their suggestions and criticisms. We would also like to thank Endot

Inc. for the use of their N.2 design environment.

This work was partially sponsored by Defense Advanced Research Projects Agency

(DoD) Arpa Order No. 4871, Monitored by Space & Naval Warfare Systems Command

under Contract No. N00039-84-C-Q089.

References

1. T. L. Adam, K. Chandy and J. R. Dickson, A Comparison of List Schedules for

Parallel Processing Systems, Communications of the ACM, December, 1974, 685-690.

2. J. Beer, Concepts, Design, and Performance Analysis of a Parallel Prolog Machine,

PhD thesis, Technical University, Berlin, .

3. G. Boriello, A. Cherenson, P. B. Danzig and M. Nelson, RISCs or CISCs for Prolog: A

Case Study, Second International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS 11), October, 1987.

4. M. Carlton and P. V. Roy, A Distributed Prolog System with AND-Parallelism,

Proceedings of Hawaii International Conference on System Science 88, Honolulu,

Hawaii, January, 1988.

5. J. H. Chang, A. M. Despain and D. DeGroot, AND - Parallelism of Logic Programs

Based on a Static Data Data Dependency Analysis, Digest of Papers, Spring

COMPCON 85, February 25 - 28, 1985, 218 - 226.

6. W. Citrin, Parallel Unification Scheduling in Prolog, PhD thesis, University of

California, Berkeley (expected 1988), Berkeley, California, 1988.

7. W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer-Verlag, New

York, 1981.

...

....

- 27 -

8. J. S. Conery, The AND/OR Model for Parallel Interpretation of Logic Programs, PhD

thesis, Dept. of Informatian and Computer Science, University of California, Irvine,

1983.

9. A. M. Despain and Y. N. Patt, The Aquarius Project, Digest of Papers, COMPCON,

Spring 1984, 364-367 .

10. T. Dobry, A High Performance Architecture for Prolog, PhD thesis, University of

California, Berkeley, Berkeley, California, 1987.

11. C. Dwork, P. C. Kanellakis and J. C. Mitchell, On the Sequential Nature of

Unification, The Journal of Logic Programming 1 (June 1984), 35-50.

12. B. S. Fagin, A Parallel Execution Model for Prolog, PhD thesis, Computer Science

Division, Univ. of California, Berkeley, November, 1987. Available as Tech. Report

UCB/Computer Science Dpt./87/380.

13. R. Hasegawa and M. Amamiya, Parallel Execution of Logic Programs based on

Datafiow Concept, Proceedings of the International Conference on Fifth Generation

Computer Systems, 1984, 1984, 507-516.

14. M. V. Hermenegildo, An Abstract Machine for the Restricted AND-Parallelism of

Logic Programs, Third International Conference on Logic Programming, July, 1986,

25-39.

15. M. D. Hill, Aspects of Cache Memory and Instruction Buffer Performance, PhD thesis,

University of California, Berkeley, Berkeley, California, November, 1987. Also

available as Report No. UCB/Computer Science Dpt. 87/381.

16. N. Ito, H. Shimizu, M. Kishi, E. Kuno and K. Rokusawa, Data-fiow Based Execution

Mechanisms of Parallel and Concurrent Prolog, New Generation Computing 3 (1985),

15-41, OHMSHA, LTD and Springer-Verlag .

17. T. Moto-oka, H. Tanaka, H. Aida, K. Hirata and T. Maruyama, The Architecture of a

Parallel Inference Engine - PIE. Proceedings of the International Conference on Fifth

Generation Computer Systems, 1984, 1984, 479-488.

18. H. Mulder and E. Tick, A Performance Comparison Between PLM and an MC68020

Prolog Processor, Technical Note no. CSL-86-302, Computer Systems Laboratory,

Stanford University, Stanford, California, September, 1986.

19. Y. N. Patt, W. Hwu and M. C. Shebanow, HPS, A New Microarchitecture: Rationale

and Introduction, Proceedings of the 18th International Microprogramming Workshop,

Asilomar, California, December, 1985.

- 28-

20. J. Syre and H. Westphal, A Review of Parallel Models for Logic Programming

Languages, Technical Report CA-07, European Computer Industry Research Centre,

GmbH, Arabellastr, 17, D-8000 Muenchen 81, West Germany, 10 June 1985.

21. E. Tick, Studies in Prolog Architectures, Phd thesis (also Technical Report No. CSL­

Tech. Rep.-87 -329, Computer Systems Laboratory, Stanford University), Stanford,

California, June, 1987.

22. R. M. Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic Units,

IBM Journal of Research and Development 11 (1967).

23. D. H. D. Warren, An Abstract Prolog Instruction Set, Technical Report 309, Artificial

Intelligence Center, SRI International, 1983.

24. N. S. Woo, The Architecture of the Hardware Unification Unit and an

Implementation, Proceedings of the 18th Annual Workshop on Microprogramming,

December 3-6, 1985, 89-98.

25. H. Yasuura, On Parallel Computational Complexity of Unification, Proceedings of the

International Conference on Fifth Generation Computer Systems, 1984.

- 29-

Percent of Time by Instruction Class

Benchmark u I p c 0

boyer 36.37 16.37 14.64 9.05 23.57

browse 65.47 3.06 13.39 10.46 7.62

con1 62.88 7.81 0 10.54 18.77

con6 42.81 4.84 10.14 14.90 27.31

hanoi 42.36 3.24 22.34 19.42 12.64

mumath 65.98 7.32 14.85 10.29 1.56

nrev1 83.04 11.7 0 4.73 0.53

palin25 70.58 2.8 7.75 11.36 7.51

qs4 55.78 4.4 12.4 17.01 10.41

queens 58.69 0.78 16.03 13.60 10.9

U = (unification) get, put and unify

I = (indexing) switch-on -term, -constant, -structure

P = (procedure control) try, retry, trust, cut, cutd

C = (clause control) allocate, deallocate, call, execute, proceed, fail

0 = (others) escape, arithmetic, etc

Table 1: Time spent by the VLSI-PLM on various instruction types

..

- 30-

PUP Register Set

XO-X7 argument registers

WO-W7 write once registers

p program counter

CP continuation pointer

E environment pointer

B backtrack pointer

TR trail pointer

H heap pointer

T top of stack pointer

Table 2: PUP Registers

\...
- 31 -

get put

getvan:(x,a) putvarx(x,a)

getvary(y ,a) putvary(y,a)

getvalx(x,a) putvalx(x,a)

getvaly(y ,a) putvaly(y ,a)

getconst(c,a) putconst(c,a)

getwx(w,a) putwx(w,a)

getwy(y,w) putwy(y,w)

getlist(l,a) putlist(l,a)

getstruct(s,a) putstruct(s,a)

clause control procedure control

allocate(n) tryelse(t,e)

dealloc retry else(t,e)

call(p) trust(t)

execute(p) cut

.. proceed cuts

fail cutd(l)

indexing arithmetic and miscellaneous

'\.,.
switch-on-term(x,v ,c,l,s) synch

switch-on-const(h,n) is(xl,x2)

switch-on-struct(h,n) eval(xl,x2)

add(xl,x2)

sub(xl,x2)

gt(xl,x2)

lt(xl ,x2)

gte(xl,x2)

lte(xl,x2)

escape(n)

Table 3: Partial List of Instructions

- 32 -

Utilization of CU and UUs

Memory Speed (cycles)

No. ofUUs Unit 1 2 3

1 cu 0.8935 0.8844 0.8802

uuo 0.6409 0.6629 0.6570

2 cu 0.8510 0.8404 0.8240

uuo 0.4257 0.4660 0.4633

UU1 0.5040 0.5025 0.4995

3 cu 0.8748 0.8132 0.7501

uuo 0.1863 0.2131 0.2733

UU1 0.3637 0.4185 0.3901

UU2 0.4797 0.4753 0.4762

4 cu 0.8865 0.8143 0.7114

uuo 0.1078 0.1530 0.1696

UU1 0.1516 0.2062 0.2977

UU2 0.3952 0.4098 0.3741

UU3 0.4198 0.4212 0.3977

Table 4: Utilization of CU and UUs

- 33 -

Relative performance vs. Memory access time (PUP(4lfs) = 1.0)

Memory access time (cycles)

No. ofUUs 1 2 3 2cy/1cy perf. 3cy /2cy perf.

1 0.7677 0.6053 0.4952 0.788 0.818

2 0.9691 0.7711 0.6171 0.796 0.800

3 0.9933 0.8038 0.6019 0.809 0.749

4 1.0000 0.8062 0.6214 0.806 0.771

Table 5: Effect of Memory Access Time on Performance

-

- 34-

Relative Performance. PUP(4fis) = 1.0

Memory access time (cycles)

arbit. alg. 1 2 3

fixed 0.9740 0.7867 0.5992

round-robin 0.9689 0.8141 0.5925

Table 6: Effect of Memory Arbitration Algorithm

- 35 -

total cycles total cycles percentage

system without TIC with TIC improvement

PUP(1r.2) 166284 142710 14.2%

PUP(2r.2) 141217 114437 19.0%

PUP(3r.2) 135407 109884 18.8%

Table 7: Effect of Target Instruction Cache on Performance

- 36-

Relative Performance. PUP(4fls) = LO

No. ofUUs Mem. Speed (cycles) 1 W-reg set 2 W-reg sets improvement

1 1 0.7668 0,7677 0.0009

2 0.6039 0.6053 0.0014

3 0.4947 0.4952 0.0005

2 1 0.9501 0.9691 0.0190

2 0.7530 0.7711 0.0181

3 0.6005 0.6171 0.0166

3 1 0.9650 0.9933 0.0283

2 0.7842 0.8038 0.0196

3 0.5983 0.6019 0.0036

4 1 0.9740 1.0000 0.0260

2 0.7867 0.8062 0.0195

3 0.5992 0.6214 0.0222

Table 8: Effect of Multiple Write-Once Register Sets on Performance

- 37 -

Performance in cycles (KLIPS)

benchmark TTL-PLM VLSI-PLM PUPC4fls) VLSI-PLM!PUP 'fTL-PLM/PUP

con1 200(200) 180(222) 143(280) 1.26 1.39

con6 1187(50) 872(69) 487(123) 1.79 2.43

nrev1 24124(206) 21130(235) 15554(319) 1.36 1.55

hanoi 64865(118)+ 52334(147) 28122(273) 1.86 2.30

qs4 47224(129)+ 47709(128) 21434(285) 2.22 2.20

queens 50138(77)+ 35435(109) 20521(188) 1.73 2.44

palin25 31296(95)+ 26684(112) 14281(209) 1.86 2.19

total 219034(117) 184344(139) 100055(256) 1.84 2.18

t The TTL-PLM simulator does not count cycles for numerical escapes.

The actual cycle counts would therefore be higher than these ..

In hanoi 6% of the instructions are escapes, in qs4 3.5% are escapes,

queens contains 11% escapes and in palin25 2. 7% of the instructions

are escapes.

Table 9: Comparison with the Berkeley PLM

...

31 29 28 27 26
0

f tag kdr f gel data

tag type cdr

000 unbound variable 0 not end of list

001 bound variable 1 end of list

010 structure

011 I is t gc = garbage collection bit

100 constant atom

, 01 constant integer
{not used)

, , 0 constant {other)

1 1 1 constant nil

Figure 1: Fields of a data word

[a, b, c)

fta, X, Y)

liat 0 :J
~ r, c-atom 0 a

c-atom 0 b

0 r c-atom 0 c

c·atom 0 c·nil l

uvar 0
OR

uvar 0

lilt 0 ;;b --C, c-atom 0 a

c-atom 0 b

liat 1 --~ --c, c-atom 0 c

C•Dil 1

Figure 2: Cdr Coded Repreaentation

node table
global

push down list

distr. bus

prefetch uni
control unit. unit 1 unit. unit 2

unit

addr dataaddr data addr data
addr

data

memory bus

Figure 3: System Overview

memory data .4~ memory address

bus bus

, , pfpc 4 : p

I mdr J 4~ • t t ' .a

\ adder I \ adder 7
..... _j 1 -

~ , ~
, ,,. ~ ,

-ti.c
tic setO

tLc.
-t.i.c set1

tagO tag1

~, ~ r
=? =?

+ +
select ~ r ~ , _y
logic ~ multiplexer I I

~
,

prefetch buffer I

~r

partial decode
instr. length

opcode and new pc from

~r args to CU OJ

p = program counter

pfpc = prefetch program counter

ti.c = taYge.t msb"Uc.ticn cache

Figure 4: Prefetch Unit block diagram

from
PFU

a
.... r ...

..

g
1

a
r

... g

from
PFU

2

f dist. latch I
~~

• 4L
+----" ,,

reg. file

rt~ ,6 X 2

b
m

.._a
r

b
m

= d
r

scratch
pad 4

'

distribution bus<82:0>

Abus<31 :0>

-
m m

alu -. ~~~ ~~
Rbu~

-""""
<31 :0 ~

Bbus<31 :0>

.. ,
address bus<26:0>

to memory

,,
-' I

Figure 5: Control Unit Data Path

,,
t r a i
buff

,,

,,

\.
,,

a
r
g
1

a
r
g
2

Bbus<31 :0>

dereference locks

4~
~, distribution bus<32:0>

W regs
8 X 2

,,
H

,,

• •
local POL dist. latch

Abus<31 :0>

scrat h

pad

.~
alu

2

Rbus<.31 :0>

address bus<26:0>

to memory

data bus<31 :0>

Figure 6: Unification Unit Data Path

r--- ~-

m m
a d

r r

,,

prefetch unit

node table

instruction tag

putvarx c

pu ~~ down list

distr. bus

unit. 2

call concat Reg. tag. type valu instruction tag instruction tag

x1 a
x2 b
x3 c
hp h

Figure 7(a):

putlist 11 a putlist 12 b

Reg. tag. type value Reg. tag. type value

1 hp h 1 l'l> h 1

memory bus

Example

node table

p refetch unit

swot xi

HEAP

I : const a
2 : const b
3 : const c
4 : nil cdr I
5:

control

reg. tag. type value

x1 - list 1

x2 b -
x3 c

hp h
cp

5
ret

push down list

distr. bus

unif. 1 unif. 2

instruction tag

putvarx c

instruction tag

putlist 12 b

reg. tag. type value reg. tag. type value

hp h 5 t'p h

memory bus

cp = continuation pointer

hp = heap pointer

5

Figure 7(b): Example

node table

prefetch unit

getlist 13,x1

HEAP

1 : const a
2 : const b
3 : const c
4: nil cdr 1
5: const d
6 : const e
7 : nil cdr 1

8 : ubd var 8
9:

control

reg. tag. type value

x1 list 1
x2 list 5
x3 bdvar 8
hp h 9

cp - ret

instruction

synch

push down list

distr. bus

unif. 1 unif. 2

reg. tag. type value reg. tag. type value

hp h 9 hp h 9

memory bus

cp = continuation pointer

hp = heap pointer

Figure 7(c) Example

node table push down list

instruction tag

putwx w1 a

distr. bus

prefetch unit co ntro I unif. 1 unif. 2

execute
reg. tag type value reg. tag type value reg. tag type value

con cat

HEAP

1 : const a
2 : const b
3 : const c
4 : nil cdr 1

5 : const d
6 : const e
7 : nil cdr 1

8 : ubd var 8

9:

x1 a
x2 list 5
x3 bdvar 8

hp h 9

cp - ret

instruction

putwx w3,x3

hp h 9 fl:> h

instruction tag instruction

etlist 13,list1 etlist 14,bdv 8

memory bus

cp = continuation pointer

hp = heap pointer

Figure 7(d): Example

9

tag

-

node table

instruction tag

putwx w3 b

prefetch unit control

swot xi
reg. tag type value

HEAP

1 : canst a
2 : canst b
3 : canst c
4 : nil cdr 1
5 : canst d
6 : canst e
7 : nil cdr 1
8 : ubd var 8
9:

x1
x2
x3
hp
cp

a
- list 5

c
h 9

ret

push down list

distr. bus

unit. 1 unit. 2

reg. tag type value reg. tag type value

hp h llJ h

w1 w list 2 w1 w list 2

w2 c - w2 c -
W3 c - W3 c -
w4 w const a w4 w const a

instruction tag instruction tag

p.rtwx w1 a

memory bus

cp = continuation pointer

hp = heap pointer

Figure 7(e): Example

l

node table

prefetch unit

getlist 13,x1

HEAP

1 : const a
2 : const b
3 : const c
4 : nil cdr 1

5 : const d
6 : const e
7 : nil cdr 1

8 : list 9
9 : const a

reg . tag. type valu

X1 list 2

x2 list 5
x3 b
hp h ,,

q:l ret

instruction

synch

10: ubd var 10 cdr 1

11 :

push down list

distr. bus

unif. 1

reg. tag. type value

hp h ,,

w1 w list 2
w2 c
w3 w list 10
w4 w const a

instruction tag

putwx w3 b

unif. 2

reg . tag. type value

l"p h ,,

W1 w list 2

w2 c
w3 w list 10
w4 w const a

memory bus

cp = continuation pointer

hp = heap pointer

Figure 7(f): Example

prefetch unit

getlist 14,x3

node table

x1
x2
x3 -
tl> h
q:>

instruction

ist 2
list 5
list 10

11
ret

getlist 13, x1

HEAP

1 : canst a
2 : canst b
3 : canst c
4 : nil cdr 1

5 : canst d
6 : canst e
7 : nil cdr 1

8 : list 9
9 : canst a
10: ubd var 10 cdr 1

11 :

push down list

distr. bus

unif. 1 unif. 2

type value

hp h 11
w1 c

reg . tag. type value

hp h 11
w1 c

w2 c w2 c
w3 c w3 c
w4 c w4 c

memory bus

cp = continuation pointer

hp = heap pointer

Figure 7(g): Example

L

Relative Performance

l

0.4+---------+---------~------~

1 2 3 4
Number of Unification Unita

Figure 8: Performance vs. number of unification units

