
THE DASH PROJECT: AN OVERVIEW

David P. Anderson
Domenico Ferrari

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

February 29, 1988

ABSTRACT

The DASH project at UC Berkeley is studying problems arising in the design of large,

high-performance distributed systems, and is building an experimental system. The

system's major design goals are centered in three areas: 1) IPC performance, 2) global

architecture, and 3) local architecture. In each of these areas, vertically integrated

mechanisms are used to achieve design goals, while an open system structure is main­

tained where possible. This report describes the motivation and principles of the DASH

project, and sketches the current design of the DASH system.

Sponsored by the California MICRO program, AT&T Bell lAboratories, Digital Equipment Corporation, ffiM Corporatioo,

Oliveui S.p.A, md the Defense Advanced Research Projects Agency (DoD) Arpa Order No. 4871. Monitored by Navll Electronic

Systems Command under Contract No. N00039-84-C-0089

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
29 FEB 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
The DASH Project: An Overview

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The DASH project at UC Berkeley is studying problems arising in the design of large, high-performance
distributed systems, and is building an experimental system. The system’s major design goals are centered
in three areas: 1) IPC performance, 2) global architecture, and 3) local architecture. In each of these areas,
vertically integrated mechanisms are used to achieve design goals, while an open system structure is
maintained where possible. This report describes the motivation and principles of the DASH project, and
sketches the current design of the DASH system.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

23

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1. INTRODUCTION

The name DASH1 refers to:

(1) A research project studying the design principles of future distributed systems.

(2) A new distributed system architecture embodying the results of this research.

(3) An operating system kernel implementing the distributed system architecture.

This report is an overview of all three of these aspects of DASH. We describe first the

motivation and goals of the project, then the distributed architecture and the kernel. An

earlier report, Issues in the Design of Very Large Distributed Systems [4], expands on the

motivation and principles of DASH. The DASH system design is described in more

detail in three companion reports: The DASH Communication Architecture [33], The

DASH Vinual Memory System [35], and The DASH Local System Architecture [34].

1.1. Motivation, Assumptions and Goals

Much current research in operating systems is focused on high-level mechanisms such as

distributed transactions, support for replicated data, object-oriented programming sys­

tems, user interfaces, and facilities for parallel distributed computation. Low-level

mechanisms such as virtual memory, process control, kernel structure, naming, local IPC,

and network communication have not kept pace with the progress in high-level mechan­

isms. Many of the current research projects are based on outdated operating systems

(such as UNIX2) and are crippled by the inappropriate low-level mechanisms provided

by these systems.

The main research objective of DASH is the development of optimal low-level mechan­

isms for the next generation of distributed computer systems. We have taken the follow­

ing steps towards this goal:

1) Extrapolate trends in computer and communication technology into the middle­

to-distant future (5-20 years).

The dominant host type will be the workstation; many will be shared-memory mul­

tiprocessors with a small number (10-100) of processors [13, 15]. Communication

networks based on fiber optics will allow low-delay (30 to 50 milliseconds coast­

to-coast) and high-bandwidth (.01 to 1 Gigabit/second) communication between

most pairs of hosts in the U.S., and eventual! y in the world [17, 26, 31].

2) Propose functions and facilities of future computer systems based on this tech­

nology.

We use the term very large distributed system (VLDS) [4] to refer to a hypothetical

system running on the hardware base described earlier. A VLDS will link

thousands or millions of hosts under diverse ownership. Its main function will be to

provide secure, well-integrated access to logical services. These services might pro­

vide access to public databases (such as encyclopedias and archives), news media,

sales, advertising, banking, interpersonal communication (mail, telephone, fac­

simile, and video conferencing), and entertainment (including distribution of audio

1 DASH was originally an acronym for Distribution, Autonomy, Security 111d Heterogeneity, attributes we viewed as desirable

in an operating system. This list kept growing, and rather than lengthen the name we kept it and removed its acronym swus.

2 UNIX is a trademark of Bell Laboratories.

2

and video).

The processing power of VLDS hosts (and perhaps of specialized compute servers)

is another type of remotely-accessible resource. A VLDS must support load balanc­

ing and large-scale parallel computation; in the latter case, thousands or millions of

processors might be involved in a single computation.

3) Identify the basic system-level requirements of these functions and facilities.

These requirements fall into three main groups: 1) IPC performance, 2) global sys­

tem architecture, and 3) local system architecture. The groups are discussed in Sec­

tions 3, 4 and 5 respectively.

4) Propose designs and mechanisms for satisfying these requirements.

The DASH project is developing a design for a VLDS. Our current design is

sketched in the remainder of this report, and is described in more detail in the com­

panion reports ([33-35]).

5) Study these mechanisms by implementing them and evaluating the resulting sys­

tem.
The DASH project is currently building an operating system kernel (the DASH ker­

nel) that implements our distributed system design and will be used to evaluate and

refine it. The kernel is being implemented on Sun 3 workstations, and will soon be

ported to a Sequent Symmetry shared-memory multiprocessor.

In summary, the DASH project is building a foundation for very large distributed sys­

tems. Because of the synergy that may arise from combining communication, service

access, and processing in a single unified system, VLDS design is an important direction

in computer systems research. A VLDS will subsume the proposed functions of

Integrated Services Digital Networks (ISDN) [14]. The use of a VLDS for high­

performance computing will augment (and often replace) the use of specialized hardware

[12], general-purpose parallel hardware [16], and supercomputers to address the process­

ing requirements of graphics, artificial intelligence, simulation and scientific applications.

2. DASH DESIGN PRINCIPLES

The design of computer systems, and especially distributed systems, is often described in

terms of modules i.e., logical components that interact only through abstract interfaces.

Some of the modules are part of the protocol hierarchy; others are added by the local sys­

tem architecture.

Likewise, the desired properties of the system are described by a set of design goals. In

DASH, these properties fall mainly into the three areas mentioned earlier: IPC perfor­

mance, global system architecture, and local system architecture. Each of these areas

involves several of the modules, so we may represent the system design as a two­

dimensional system of interactions, with modules on one axis and design goals on

another (see Figure 1). We identify the following design principles arising from these

multi-layer interactions:

Vertical Integration of Mechanisms:

Mechanisms must often span multiple system modules to achieve VLDS design

goals. For example, high-performance IPC may be possible only by integrating

mechanisms at the levels of virtual memory, process scheduling, and network

3

system goal areas

global local IPC

architecture architecture performance

local IPC

virtual memory

process scheduling

service access

naming

transport protocols

subttansport layer

network protocols

Figure 1: Interactions Between Design Levels.

communication.

Open Architecture:

A VLDS will encompass hosts with different hardware architectures, different

application areas, and different computing paradigms. Therefore, the portions of

the system that are standardized (i.e., those portions that a host must implement in

order to take part in resource sharing) should be minimal. Basically, the standard­

ized part of the system must provide naming, a way to move bytes securely and

efficiently, and not much beyond that.

These two principles are not followed in some approaches to building distributed sys­

tems. For pragmatic reasons, most current systems are built on top of existing general­

purpose protocol hierarchies (the V system [11] is a notable exception). Such hierarchies

usually export a simple interface that precludes vertical integration. In addition, both

principles dictate against building a VLDS as an extension of an existing centralized sys­

tem (the approach of Mach [22]), or as an "interconnection" layer on top of existing

4

operating systems (as is done in Cronus [23]).

3. HIGH-PERFORMANCE REMOTE INTERPROCESS COMMUNICATION

A VLDS will provide a mechanism for clients to communicate with services. Some ser·

vices (such as those based on digital audio and video) will require high-performance

remote interprocess communication (IPC). The general-purpose communication

mechanism of a VLDS must suppon such communication. This mechanism consists of

several components:

(1) The movement of data across networks.

(2) Protocol flow control and reliability mechanisms.

(3) The movement of data between device interfaces (including network interfaces) and

main memory.

(4) Scheduling, synchronization and processing time of the communicating processes,

and of intermediate protocols.

(5) The movement of data between virtual address spaces on a single host. Services

may run in separate address spaces. Access to a local service requires data move­

ment between two user spaces, and access to a remote service requires data move­

ment between user and kernel spaces at both ends.

To maximize performance, the remote IPC mechanism of a VLDS must address each of

the above components, and their interactions. In particular, the following goals can be

identified:

• To reduce the overhead of host processing, currently the bottleneck in most IPC sys­

tems. In particular, to minimize software copying, and to avoid software encryption

and checksumming where possible.

• To provide real-time performance guarantees. Scheduling of communication

resources (transmission queues in hosts and switches, and processing in clients and

protocols) must be done on the basis of real-time deadlines.

• To suppon configurable stream protocols. Request/reply communication is inade­

quate for many high-performance applications over long distances. In addition, the

reliability, flow control, network capacity, and integrity functions of stream-oriented

IPC must be separated, allowing clients to use only the functions they need.

• To provide a high-performance security mechanism that 1) allows the user to

specify the level of security desired, and 2) allows the presence of secure hosts and

secure local networks to be exploited.

• To accommodate a variety of network architectures.

3.1. The DASH IPC Design

3.1.1. Real-Time Message Streams

In existing distributed systems, the network-dependent communication interface typically

provides a simple abstraction such as unreliable, insecure datagrams. Higher software

layers use this facility to provide higher-level abstractions such as reliable request/reply

message-passing [10], reliable secure typed message streams [22], or reliable byte

5

streams [20]. This approach simplifies the task of porting the system to different network

types. However, the simple nature of the basic abstraction (such as datagrams) does not

allow communication clients to express their performance, reliability and security needs,

or their workload parameters, to the communication provider. This makes it impossible

for the provider to use the most efficient mechanisms or to provide real-time performance

guarantees. It also makes congestion control in large networks difficult.

In an attempt to solve these problems, the DASH network communication system is

based on an abstraction called real-time message streams (RMS) [5]. An RMS is a sim­

plex communication channel between a sender and a receiver. Message boundaries are

preserved and messages are delivered in sequence. In addition, an RMS has various

parameters reflecting its performance and security properties. Specifically, it has the fol­

lowing Boolean parameters:

Authentication: if true, then impersonation (delivery of a message with incorrect

source label) is impossible.

Privacy: if true, then eavesdropping (access to a message by a host or process other

than that specified by the target label) is impossible.

An RMS has the following performance parameters:

Capacity: an upper bound (enforced by the sender) on the amount of data outstand­

ing within the RMS at any point (i.e., sent but not yet delivered).

Maximum message size: an upper bound (enforced by the sender) on the size of

individual messages.

Delay bound: message delay is the elapsed real time between the start of the send

operation and the moment of delivery. An RMS has an upper bound (guaranteed by

the RMS provider) on message delay. The components of the delay may include

network transmission delay, queueing and processing delays at the sender and at

intermediate switches, and processing at the receiver. This bound may be deter­

ministic, statistical, or best-effort.

Average bit error rate: this parameter reflects the combination of 1) the error rate

of the underlying transmission medium, and 2) the effectiveness of the checksum­

ming algorithm. It is guaranteed by the RMS provider.

Average loss rate: this reflects the expected rate of packet discarding from buffer

overrun and checksum failures.

An RMS creation request includes desired and acceptable parameter sets. The actual

parameters of the resulting RMS are returned to the client. These parameters must be

compatible with the request's acceptable parameters; the request is rejected if this is not

possible. The RMS provider tries to match the desired parameters as closely as possible.

3.1.2. The DASH Network Communication Structure

In DASH, the RMS abstraction appears in the interface to the network-dependent part,

and at higher levels of the system as well. RMS is the basis for a request/reply communi­

cation facility in which the RMS features serve to optimize request/reply performance.

The structure of the DASH network communication system is shown in Figure 2.

A DASH system can encompass many networks. Each network has a set of protocols for

implementing RMS between any two of its nodes. Note that, in this discussion, the term

stream
protocols

0 I RKOM

6

RKOM

::::····· ···· RKOM channel····· :::~

stream
protocols

Figure 2: The DASH Network Communication Structure.

network refers to an abstract entity, not necessarily to a physical network. For example,

the DARPA Internet (with the addition of RMS support) and a local Ethernet could be

separate DASH networks, although they might share the same host interfaces and net­

work media. The DASH network layer encapsulates everything below the network RMS

abstraction: network-specific protocols for establishing RMS 's, routing protocols, address

resolution protocols, and so on.

The subtransport (ST) layer provides authentication and privacy, caching and multiplex­

ing of network-level RMS's, piggybacking of messages, and other services [33]. The ST

protocol must be implemented by all DASH hosts.

The ST module on a host maintains a set of secure channels to other hosts. These secure

channels may be implemented in different ways, depending on the security properties of

the intervening network [7]. In general, they use data encryption or cryptographic check­

sums. On Ethernet-like networks, a more efficient scheme that avoids cryptographic

checksumming of data can be used. If the network is assumed by both hosts to be physi­

cally secure and free of eavesdroppers, no encryption is used. For each secure channel,

ST maintains lists of owners authenticated to and from the remote host (see Figure 3).

This authentication uses public key encryption (PKE)-based certificates. It is done only

the first time a user communicates with a particular remote host, thus reducing encryption

overhead.

The transpon layer consists of a set of protocols that use the ST facilities. One of these,

the Remote Kernel Operation Mechanism (RKOM), is used for all request/reply com­

munication, and is mandatory for all DASH hosts. The other transport protocols are

7

host A hostB

local owners Joe local owners Alice

Mary Bob

authentication cache for host B authentication cache for host A

incoming outgoing incoming outgoing

Bob Joe Joe Bob
Mary Mary , ,

secure channel

Figure 3: Authentication Caching in the Subtransport Layer.

stream-oriented. They are implemented as separate processes that can be dynamically

configured, in the style of Ritchie Streams [21]. These protocols provide functions such

as reliability, RMS capacity enforcement, and flow control.

DASH allows the RMS abstraction to span processes. A subuser RMS spans protocol

processes. Its delay bound includes protocol processing time. A user-level RMS spans

user processes. Its delay bound includes end-process CPU time as well. In both cases,

the enforcement of the delay bound uses deadline-based scheduling of protocol or user

processes.

3.1.3. RMS Examples

To see the importance of RMS parameters, suppose that a client (say a transport protocol

serving a user program) requires data privacy. The protocol requests an RMS from the

subtransport layer. The desired and acceptable parameter sets both have the privacy flag

set. Depending on the network, the following cases are possible:

(1) Privacy is provided by data encryption in the subtransport layer.

(2) The network has link-level encryption hardware; the subtransport layer learns this

(it is a property of network-level RMS's) and does no data encryption.

(3) The network is considered secure, so no data encryption is done.

In any case, the RMS parameters allow the subtransport layer to use the optimal mechan­

ism for privacy. If a client does not require privacy, no mechanism is used (which is

again optimal). Without the RMS security parameters, this optimization would not be

possible. The situation is similar for data integrity. Based on the values of RMS parame­

ters, the optimal checksumming mechanism can be determined.

The following examples illustrate the uses of the RMS capacity and performance param­

eters:

8

• Initial request and reply messages in a request/reply protocol use an RMS with low

delay bound. The RMS capacity may be large, unless it is known that request or

reply messages will be small and infrequent.

• A stream protocol for bulk data transfer uses a high capacity, high delay RMS for

data. Reliability acknowledgements uses low capacity, high delay RMS's. Flow

control acknowledgements uses a low delay, low capacity RMS.

• Digitized voice uses a high capacity, low delay RMS, perhaps with a statistical

delay bound. A high bit error rate may be acceptable.

• Communication involving human user interface traffic (such as for network window

systems [24]) can tolerate a moderate amount of delay because of human perceptual

limitations. The RMS from user to application carries mouse and keyboard events,

and can have low capacity; the RMS in the opposite direction carries graphic infor­

mation, and requires higher capacity.

In all these cases the explicit specification of client needs increases the likelihood that the

provider can accommodate them. For example, if packet queueing in an internetwork

gateway is done using RMS-specified deadlines, then a low-delay packet can be sent

before high-delay packets that would otherwise cause it to be delivered late. A network

may be capable of providing low delay or high capacity, but not both. The RMS parame­

ters allow the client to choose.

The use of RMS in DASH is based on anticipated needs and on projections of future net­

work technology; the RMS abstraction is not supported on current networks, and cannot

be built on top of simpler abstractions such as datagrams or virtual ciruits. However, we

feel that our approach is necessary for exploiting the advances in communication tech­

nology that will occur in the near- and long-term future.

3.2. Movement of Data Between Local Address Spaces

The efficiency of moving a large amount of data between virtual address spaces (both

user spaces and kernel space) on a single machine is a major component of IPC perfor­

mance. Software memory copying is the straightforward way to move data between

spaces. However, memory bandwidth is improving at a slower rate than processor and

network speeds. Thus, memory copying is likely to be an IPC bandwidth bottleneck and

a major source of IPC delay. In addition, the bus traffic generated by memory copying

will degrade system performance on shared-memory multiprocessors. Virtual memory

(VM) remapping, as opposed to memory copying, is an attractive approach to moving

data. However, remapping in shared-memory multiprocessors can be costly because of

the problem of translation lookaside buffer (1LB) inconsistency.

The DASH mechanism for local data movement [32] eliminates many of the overheads

that would otherwise arise from VM remapping in shared-memory multiprocessors. Put

simply, we reduce the need for synchronous unmapping, and, when such remapping is

necessary, we do it efficiently.

The DASH VM system has an /PC region that is shared (although with different levels of

protection) among all address spaces. All data to be moved between spaces are placed in

the IPC region. The local user IPC system involves the following layers (see Figure 4):

9

USER SPACE

1 User Program 1

!
~--~-~--~···························MESSAGE OWNERSHIP
1 Message-Passing Library

/ '"
t/' '\&

System Calls User Message-Passing
(explicit ~rations) (implicit operations)

Figure 4: Logical Levels of Page Ownership and Mapping.

• A message-passing (MP) system providing operations to allocate, access, send,

receive and deallocate messages. It is implemented by a user-level library that han­

dles some operations itself and traps to the kernel for others.

• The facility for protected shared memory provided by the VM systems's IPC

region. This facility defines a notion of ownership of pages in the IPC region, and is

used by the MP system for data movement. The facility can also be used directly by

user processes via system calls (which are themselves implemented as MP opera­

tions).

• The Logical VM mapping interface of the VM system, whose operations include 1)

mapping IPC pages on a single CPU, and 2) unmapping IPC pages on a set of

CPU's. The unmapping operation (which on some architectures may require inter­

processor interrupts) may be either synchronous or asynchronous. The latter type is

slower but has less total overhead since multiple operations can be hatched.

• The Physical VM mapping function of the VM system; this is the machine­

dependent implementation of the logical VM mapping operations.

In the DASH message-passing system, the semantics of send() are that the sender's own­

ership of the IPC pages in the message is transferred to the receiver. The sender may

10

have multiple ownerships of a page; when the last ownership is relinquished, the IPC

page is unmapped from the sender's address space. The send() and receive() operations

have parameters that can be used by the implementation to reduce work:

• The sender may specify whether it believes that the receiver trusts it. If so (and if

the sender is correct), the unmap operation on send() can be deferred, and may

never be done.

• The receiver may specify whether it trusts the sender or not (e.g., the kernel owner

is always trusted). If the sender is not trusted, the receiver must wait until the

operation of unmapping the page from the sender is completed (otherwise the

sender could modify the data after it has been received). If the sender is trusted, it is

not necessary to wait for a previous asynchronous unmap operation to complete.

• The receiver may specify whether to physically map in message pages immediately,

or to map them in on demand. In the second case, a page is mapped in by the page

fault handler when the receiver first accesses the page. No mapping is done if the

page is not accessed. This optimization may be significant for applications that for­

ward messages (e.g., a file service that receives a block from a disk device and

sends it to the network without accessing it). Message forwarding is a common

communication paradigm when services offered by the system execute at the user

leveL

The above optimizations can eliminate operations. When operations are necessary, our

design allows them to be done efficiently. Synchronous unmapping is more expensive

than asynchronous unmapping, and we avoid it when possible. For both types of unmap­

ping operations, the VM system maintains a list of processors on which a page has been

mapped, and only unmaps it from those processors.

3.3. DASH IPC: Summary

The DASH IPC design is vertical integrated in the following ways:

(1) The RMS abstraction spans all levels (network and local) of the IPC system, making

real-time communication between user processes possible.

(2) The elimination of software copying in network communication involves a combi­

nation of message-passing semantics, protocols, kernel architecture, and virtual

memory.

(3) Although authentication and security mechanism are defined at a high level (see the

discussion of global naming in Section 4), they are enforced at a low level of the

protocol hierarchy. This can substantially reduce the expense of these functions [6].

The DASH IPC facility is also an open system:

(1) The RMS interface allows different network types to make their nonstandard func­

tions (e.g., encryption in hardware) visible to upper layers, and to implement RMS

in a network-specific way.

(2) The framework for stream protocols allows new protocols to be added to the kernel,

and combined with other protocols, in a standard way. Clients can use protocols

that provide the exact combination of functions (capacity enforcement, flow control,

and reliability) that they need.

11

The DASH IPC design has numerous advantages over those of current distributed sys­

tems. In systems such as V [11] designed for local-area networks, IPC is often limited to

reliable request/reply communication. This is inadequate for VLDS. In systems such as

Mach [1], IPC is forced to pass through a user-level "network server", and this further

limits potential performance. IPC performance can be hampered by the basic semantics.

For example, the semantics of the UNIX write operation (shared by Mach and most other

systems) are that the sender retains a (logical) copy of the data sent. In DASH, the

semantics are that the sender loses the data from its space. This eliminates the work of

creating a logical or physical copy of the data.

4. GLOBAL SYSTEM ARCHITECTURE

The global architecture of a distributed system is centered in its naming mechanisms.

There often are naming mechanisms at multiple levels; they differ in the nature of the

named entities, and the means of assigning and resolving names. Some of these mechan­

isms may also involve authentication and security.

The global architecture for a VLDS has the following requirements:

• There must be a global naming system on which security functions are based.

• The naming system must support organizational autonomy in the senses of 1)

hierarchical delegation of authority for name assignment, and 2) lack of central

trusted agents in name resolution.

• Naming must be source- and target-location independent. This reduces the

location-dependence of program execution, thus simplifying large-scale distributed

programming [2].

• The naming system must be scalable so that performance does not decline with

increasing system size, even when remote references are frequent [29].

4.1. The DASH Global System Architecture

4.1.1. Naming and Authentication

DASH global names are symbolic pathnames in a single tree-structured name space.

There are four types of named entities in the DASH global name space: hosts, owners,

services, and name services. The internal nodes of the tree represent name services, and

the leaves of the tree represent the other entity types (see Figure 5). The different entity

types, and their associated attributes, are as follows:

• An owner is an individual human user or "role". Its attributes include two public

keys: a user key and a kernel key.

• A host is a network-level communication endpoint. Its attributes include a list of its

network addresses and the name of its owner.

• A service is a logical resource provided by set of programs or processes. Its attri­

butes include 1) a list of (host name, instance ID) pairs, each specifying an instance

of the service, and 2) the name of the owner of the service.

• A name service is a special type of service that manages the names of other entities.

A name service maintains a single directory in which each entry has a name (a path­

name component), a type, and a set of attributes.

usa

uk

uc_berkeley
general_motors

D name service

0 service

infonnation
computer _science
administration ernie

~ owner

0 host

Figure 5: The DASH Global Name Space.

The DASH service access mechanism allows services to extend the global name space

below their own name. Hence they can provide global names for the objects they

manage. For example, a file service might provide hierarchical naming of its files, so that

a reference to lusa/ucblcs/fslandersonlfoo might map to the file landersonlfoo within the

file service lusalucblcs/fs. This removes the need to distinguish the two levels of naming,

and makes it possible for a service to serve as a manager of named "objects" or to pro­

vide logical "sub-services".

The DASH kernel maintains a cache of name resolutions. Even with this caching, the

work involved in component-by-component resolution of long pathnames may be exces­

sive, particularly if it must be done for frequently-accessed objects such as disk files. To

avoid this problem, the DASH kernels allows user programs to obtain name tokens, each

of which represents a pathname and its cached resolution. In further name references the

client provides the token and a symbolic name extension; the kernel can begin resolution

starting from the object represented by the token. (An analogous mechanism for refer­

ences to names within services is described in the next section.)

4.1.2. Service Access

In the DASH distributed system architecture, services are a class of logical resources. A

DASH service is a set of instances that together provide a logical resource. Each

instance resides on a single host, and may consist of a process, a set of processes, or a

''registration'' with the host kernel that causes a process to be created as needed.

The intent of the DASH global architecture is that services, where possible, should be

globally accessible. The service access facility described in this section makes remote

13

access, for both the client and server, as convenient as local access.

The DASH service access mechanism (SAM) allows clients to name and communicate

with services in a uniform way. It provides:

Replication transparency: a client need not know which instance handles a partic­

ular request or session.

Location transparency: service names do not specify or limit the location of the

servers.

Failure transparency: if a service instance fails, SAM may locate another instance

of the service and connect the client to it automatically.

Protocol flexibility: services may provide interfaces that have real-time communi­

cation performance requirements, or that need special-purpose stream protocols.

A replicated service may provide a consistent data abstraction, in which case it needs to

ensure data consistency between instances. DASH does not supply or dictate any method

for this, or for ensuring the atomicity or permanence of operations on services. Such

mechanisms must be supplied by the services themselves, perhaps in cooperation with a

higher-level transaction manager.

Services can be accessed in two basic modes. In Request/reply mode, the operation is

conveyed to the server via RKO; two reliability types (maybe and exactly once) are avail­

able. In Session mode, SAM locates an instance of the service and sets up a communica­

tion channel (or bundle) between the client and server.

A client may request a service token representing an object within the service. The token

can thereafter be supplied in lieu of a name in operations on the service. A token has an

associated set of operations, specified (by a bitmask) when the token is requested; the

token provides the right to perform these operations on the object to which it refers,

bypassing any underlying protection mechanism. A token may have no access rights, in

which case it serves simply as a name abbreviation that can be used in forming other

names.

The token scheme can improve performance in two ways: 1) it eliminates the need for

the service to check authorization on every operation; 2) it eliminates the need for SAM

and the service to do name translation on each operation.

Service tokens may be discarded at any time by a service. This may be done either to

limit table size, or to force periodic reauthorization in support of an ''eventual revoca­

tion" policy. The client (or the client kernel) must remember the name and operation

set, and be prepared to issue another token request. A token does not represent a ''ses­

sion"; two tokens representing the same name and having the same rights are inter­

changeable. Tokens are usable only during a crash-free period for both the client and the

service instance.

4.2. DASH Global Architecture: Summary

The DASH global architecture defines a structure for global naming of permanent entities

(hosts, owners and services), and for local naming of temporary entities (service tokens).

The use of service tokens and distributed name caching are vertically integrated mechan­

isms in the sense that they involve both distributed and local architectures. The DASH

global architecture is an open system in that it facilitates the addition of new services by

14

users. At a lower level, it is an open system in that 1) it provides an open framework for

stream-oriented service protocols; 2) it supports inter-service naming; 3) authentication is

factored from authorization.

The DASH global architecture compares favorably with those of other systems as a basis

for VLDS. The V system [11] is a global system architecture intended for small distri­

buted systems. It is not scalable; for example, it requires broadcast for service location.

The Xerox Grapevine system [25] is a nameserver with poor scalability because of its

nonhierarchical design. Other large-scale system architectures have used hierarchical

naming for scalability and autonomy [9, 28]. These are designed for limited purposes,

such as host naming, and are not integrated with other types naming (such as the naming

of files). Efforts at large-scale integration of existing centralized systems are described in

[30] and [23]. These projects, for the most part, address restricted problems or develop

solutions based on technology that will soon be outdated. In contrast, the DASH project

is taking a unified approach to VLDS design, and is seeking solutions that will not be

made obsolete by foreseeable technology advances.

Some distributed systems use capabilities for low-level naming and protection. Exam­

ples include Amoeba [18], Mach [22], and Eden [3]. Typically, a symbolic naming

(directory) service is built on top of the capability mechanism. Arguments against the

use of capabilities as a basis for identifying permanent objects are given in [4].

5. LOCAL SYSTEM ARCHITECTURE

By the local system architecture of an OS kernel we mean 1) the user-level abstractions

provided for process control, system calls, and so on; 2) the dynamic (process and inter­

rupt) structure of the kernel, and 3) the software engineering (programming) structure of

the kernel. VLDS local system architecture has the following requirements:

• Support for user-level services: efficient IPC and control transfer between user-level

processes, and support for user-level caching.

• Support for parallelism on shared-memory multiprocessors, both in the facilities

provided to user programs and in the implementation of the kernel itself.

• Incorporation of modem software engineering ideas; the kernel must be maintain­

able, extensible, and portable across a range of architectures.

5.1. The DASH Local System Architecture

The DASH kernel is structured as a set of processes that share a single address space,

communicating via message-passing and synchronized operations on shared data objects.

The kernel uses multiple processes wherever possible. Communication protocols,

RKOM servers, device drivers, system calls and other kernel functions execute as

separate processes that can run in parallel on a multiprocessor. Work is done in

processes that might be done in hardware or software interrupt handlers on other systems.

The kernel provides user virtual address spaces, each occupied by zero or more user

processes. Each user address space has a set of protected object references to objects in

the kernel.

15

5.1.1. Message-Passing

Message-passing (MP) is used for many purposes in DASH:

(1) Interprocess communication (IPC) between processes on a single host: user

processes, communication protocols (which are implemented as processes), and

other kernel-level processes.

(2) Control transfer between address spaces. For example, system calls (during which a

process switches from user to kernel space and back) use MP.

(3) Allocation, buffering and queueing of data buffers: for example, network interface

queues and virtual memory page pools.

(4) Implementation of other synchronization mechanisms such as timers, multiple wait,

semaphores, and read/write locks.

Because of this wide range of uses, the MP system must provide many semantic features,

described below. The MP system allows clients to use (and pay for) exactly the features

they need.

The MP system consists of two major parts:

• Message representation: A message is a logical array of bytes, implemented by a

data structure consisting of a header and a set of not necessarily contiguous data

areas. The interface to messages is a set of operations for creating, manipulating

and accessing messages. Message headers contain space for parameters to

message-passing operations.

• MP operations (some of which are described below). This part is extensible;

instead of having a single object type (pon, mailbox, and so on) as the target of MP

operations, there are several such types. It is simple to add new types as the kernel

is developed. The various MP object types provide a variety of message-passing

operation semantics. These operations have four binary degrees of freedom, yield­

ing 16 logical combinations; all are possible and potentially useful, but only a sub­

set are currently supported in DASH.

Stream vs. request/reply: in stream mode, message flow is unidirectional, while in

request/reply mode, message exchanges occur in synchronized pairs.

Uniprocess vs. dual-process: a stream-mode message, or the request message in a

request/reply operation, may be processed in the context of the sending process, or

by separate process.

Mode of sender: kernel processes invoke MP operations by making procedure

calls. MP operations can also be invoked from user-level processes. The semantics

are essentially the same as for kernel processes, but user-level MP operations are

initiated via a trap instruction; the kernel trap handler completes the operation.

Mode of receiver: receive processing may be done in a different mode than that of

the sender. For example, DASH system calls are implemented as uniprocess MP

operations t.'lat are initiated in user mode and processed in kernel mode.

An MP object supports either stream mode or request/reply mode operations. Each mode

is represented by a base class whose virtual functions are the generic operations on MP

objects of that mode. Derived classes implement these functions. Clients, in general, do

not have to know the exact type of MP object, only its base class. This object-oriented

16

MP system was motivated by the following considerations:

• System calls: these are message-passing operations directed to system call MP
objects. By default, the system call object is uniprocess, and system calls are exe­
cuted by the calling process in kernel mode (no process switch is done). By substi­
tuting a dual-process system-call object, system calls can be redirected to other

processes (e.g., for debugging purposes) transparently to the user process.

• The DASH network communication architecture allows stream protocols to be
dynamically configured. Each protocol is a process, and communication between

protocols is via stream-mode MP objects, but the ST layer allows network messages

to be sent by procedure call. Hence, if the MP system had been designed dif­
ferently, it would have been necessary for a protocol process to know whether it

was connected directly to the subtransport layer, or to an intervening protocol.

Some MP objects may provide additional features:

• Messages may convey scheduling deadlines between processes.

• Certain MP objects (of both modes) serve as the means of accessing a "pool of
servers''. It is often desirable to have multiple server processes, so that multiple
requests can be executed in parallel. The optimal number of servers may not be

known in advance. Such MP objects may use a feature called automatic receiver

creation. If a message is sent to such an MP object and there is no process waiting

to receive it, a process will automatically be created.

• Dual-process stream MP objects act as buffers between producer and consumer

processes. Operations on such objects can be subjected to flow control. Flow con­
trol may be based either on the number of queued messages, or the amount of data
in the queue. It is also possible to use hysteresis for both the sender and the
receiver. This can reduce the number of context switches, since a process can han­

dle a batch of messages in one context switch.

5.1.2. Kernel Memory Management

The DASH kernel dynamically creates objects. Pointers to these objects may be distri­

buted throughout the kernel, so it is not always safe to deallocate their memory. This

creates a potential problem of unbounded memory usage. This problem is dealt with in

two ways.

First, the kernel executes in a virtual address space, part of which is pageable. The con­

structor for each object class specifies whether memory is to be allocated from the page­
able or nonpageable part. Objects that are cache entries (such as objects in the name ser­

vice cache) are kept in the pageable part. Therefore the VM page replacement scheme

(e.g., an LRU approximation) is inherited by all kernel caches.

Second, certain types of objects (such as ports) have the properties that 1) many refer­

ences to the object can exist, and it is not feasible to keep track of them; 2) the object can
be deleted at any time, and this must be detected on any future reference to the object. In

DASH, these objects are allocated using a pseudo-permanent object facility. Memory

blocks allocated for such objects are preceded by a unique ID field that is cleared when
the object is freed. A memory block allocated for this purpose can be reused for other

pseudo-permanent objects, but not for other purposes. A reference to a pseudo-

17

permanent object consists of a pointer to the memory block and a UID value; if this value

does not match, then the object has been deleted.

Together, these two techniques eliminate the need for general-purpose garbage collection

in the DASH kernel.

5.1.3. Kernel Software Engineering

The DASH kernel is being implemented in an object-oriented language, C++ [27]. The

kernel is structured as a set of classes (abstract types), of which some have multiple

dynamically-created instances. In keeping with the principles of object-oriented pro­

gramming, the class/object structure encapsulates design decisions and machine depen­

dencies. Our intent is to produce a maintainable, extensible and portable kernel. We

view the DASH project as an important test case in the application of object-oriented

techniques to OS kernel implementation.

5.2. The DASH Local Architecture: Summary

The DASH local architecture is vertically integrated in several ways:

• The dynamic structure of the kernel is a set of processes that communicate through

a versatile message-passing facility. The same structure is available at the user

level, and the system call interface uses message-passing.

• The static structure of the kernel is a set of objects, some of which are pseudo­

permanent. The same structure is presented at the user level using protected object

references, and is presented remotely via remote object references.

The DASH local architecture provides considerable "openness". The kernel process

model and the object-oriented message-passing system simplify the task of experiment­

ing with kernel parallelism. In addition, several mechanisms that are entangled in the

kernel of other systems are moved to the user level in DASH:

• Process control and exception handling.

• Current directory or other context mechanisms.

• Transaction management.

The themes of the DASH local architecture are related to those of many existing operat­

ing systems. Other systems [8, 19] use message-passing in their kernel implementation

for increased parallelism. Message-passing for exceptions, system calls and process con­

trol is used in V [11].

6. CONCLUSION

The DASH project at UC Berkeley is studying the design principles of future distributed

systems. Based on technological trends, we predict the development of very large distri­

buted systems (VLDS) based on high-performance wide-area networks and providing

global access to a variety of data and computing resources. We have made the following

general conclusions:

(1) The requirements of the performance and flexibility of low-level mechanisms (vir­

tual memory, process control, kernel structure, naming, local IPC, and network

communication) in a VLDS are not met by the low-level mechanisms of current dis­

tributed systems. New designs and experimentation are needed in these areas.

18

(2) The optimal low-level mechanisms for a VLDS often involve 1) the venical

integration of components at different system levels, and 2) an open system design

in which the standardized portions of the system are minimal.

At this point (February 1988) much of the DASH design is in place, and the implementa­

tion of the kernel is proceeding. We plan on completing the basic design, completing

uniprocessor and multiprocessor implementations of the kernel, and evaluating the basic

design. Once this is done, the DASH system can serve as a testbed for research and

development in many new and unexplored areas of distributed systems, especially those

involving real-time communication and very large-scale replication and distributed pro­

cessing.

There are also many areas for research within the design areas discussed in this report:

• In the IPC area, several issues involving RMS remain to be investigated. How can

RMS be implemented on current networks and internetworks? What are appropri­

ate stream transport protocols? What new types of applications does RMS make

possible? How can multicast be implemented on top of RMS? Others problems

involve the VM-based data movement system; these will be explored when DASH

is ported to shared-memory multiprocessors.

• In the global architecture, the performance of the global naming system must be

investigated. Other problems include the design of protection mechanisms in a

VLDS, the design of highly replicated data servers, and the formal analysis of trust

relationships in naming.

• In the local architecture, research problems involve 1) multiprocessor synchroniza­

tion (both the mechanisms themselves, and their integration in programming

languages), 2) process control for remote debugging, 3) process scheduling for mul­

tiprocessors, and 4) support for caching in user-level services.

7. ACKNOWLEDGEMENT

We would like to thank the following people for their contributions to the DASH project:

Brian Bershad, G.D. Giuseppe Facchetti, Kevin Fall, G. Scott Graham, Ellen Nelson, P.

Venkat Rangan, Bruno Sartirana, Shin-Yuan Tzou, Raj Vaswani, and Robert Wahbe.

19

REFERENCES

1. M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian and M.

Young, ''Mach: A New Kernel Foundation for UNIX Development'', Proceedings

of the 1986 Summer USENIX Conference, Atlanta, Georgia, June 9-13, 1986, 81-

92.

2. R Agrawal, "Location Independent Remote Execution in NEST", IEEE Trans. on

Software Eng. 13, 8 (August 1987), 905-912.

3. G. T. Almes, A. P. Black, E. Lazowska and J. Noe, "The Eden System: A

Technical Review", IEEE Transactions on Software Engineering 11, 1 (January

1985), 43-59.

4. D. P. Anderson, D. Ferrari, P. Y Rangan and S. Tzou, "The DASH Project: Issues

in the Design of Very Large Distributed Systems", Technical Report No.

UCB/Computer Science Opt. 87/338, Computer Science Division, EECS, UCB,

Berkeley, CA, Jan. 1987.

5. D. P. Anderson, "A Software Architecture for Network Communication",

Technical Report No. UCB/Computer Science Opt. 87/386, Computer Science

Division, EECS, UCB, Berkeley, CA, December 1987.

6. D. P. Anderson, D. Ferrari and P. V. Rangan, "Subtransport Level: The Right

Place for End-to-End Security Mechanisms", Technical Report No.

UCB/Computer Science Opt. 87/346, Computer Science Division, EECS, UCB,

Berkeley, CA, March 1987.

7. 0, P. Anderson and P. V. Rangan, "A Basis for Secure Communication in Large

Distributed Systems .. , IEEE Symposium on Security and Privacy, April 1987.

8. E. Basart, "The Ridge Operating System: High Performance through Message­

Passing and Virtual Memory", Proc. of the IEEE 1st International Conf. on

Computer Workstations, San Jose, California, Nov. 11-14, 1985, 134-143.

9. A. D. Birrell, B. W. Lampson, R. M. Needham and M. D. Schroeder, "A Global

Authentication Service without Global Trust'', IEEE Symposium on Security and

Privacy, 1986.

10. D. R. Cheriton and W. Zwaenepoel, "The Distributed V Kernel and its

Performance for Diskless Workstations", Proc. of the 9th ACM Symp. on

Operating System Prin., Bretton Woods, New Hampshire, Oct. 10-13, 1983, 128-

140.

11. D. R. Cheriton, "The V Kernel: a Software Base for Distributed Systems", IEEE

Software 1, 2 (Apri11984), 19-43.

12. T. P. Dobry, A. M. Despain and Y. N. Patt, "Performance Studies of a Prolog

Machine Architecture", 12th International Symposium on Computer Architecture,

1985.

13. D. D. Gajski and J. Peir, "Essential Issues in Multiprocessor Systems", IEEE

Computer, June, 1985, 9-28.

20

14. G. Gawrys, P. Marino, G. Ryva and H. Shulman, "ISDN: Integrated

Network/Premises Solutions for Customer Needs", IEEE Int. Comm. Conf., June

1986, 2-6.

15. M. Hill, "Design Decisions in SPUR", IEEE Computer, November 1986, 8-22.

16. W. D. Hillis, "The Connection Machine", MIT Press, Cambridge, Mass., 1985.

17. M. Liu, D. Messerschmitt and D. Hodges, "An Approach to Fiber Optic

Data/VoiceNideo LAN", IEEE INFOCOM 86, 1986, 516-523.

18. S. Mullender and A. Tanenbaum, "Protection and Resource Control in Distributed

Operating Systems", Computer Networks 8, 5,6 (1984), 421-432.

19. R. Olson, "Parallel Processing in a Message-Based Operating System", IEEE

Software, July 1985, 39-49.

20. J. Postel, "Transmission Control Protocol", DARPA Internet RFC 793, September

1981.

21. D. M. Ritchie, "A Stream Input-Output System", Bell System Tech. J. 63, 8

(October 1984), 1897-1910.

22. R. D. Sansom, D. P. Julin and R. F. Rashid, "Extending a Capability Based

System into a Network Environment", 1986 SIGCOMM Symposium,, 265-274.

23. R. E. Schantz, R. H. Thomas and G. Bono, "The Architecture of the Cronus

Distributed Operating System", Proc. 6th Int. Conf on Distributed Computing

Systems, May 1986, 250-259.

24. R. W. Scheifter and J. Gettys, "The X Window System", ACM Transactions on

Graphics 5, 2 (Apri11986), 79-109.

25. M.D. Schroeder, A. D. Birrell and R. M. Needham, "Experience with Grapevine:

the Growth of a Distributed System", ACM Transactions on Computer Systems 2,

1 (February 1984), 3-23.

26. S. Shimada, K. Nakagawa and I. Takeshi, "Gigabit/s Optical Fiber Transmission

Systems- Today and Tomorrow", IEEE Int. Conf. on Comm., June 1986, 1538-

1542.

27. B. Stroustrup, "The C++ Programming Language", Addison-Wesley, 1986.

28. D. B. Terry, M. Painter, D. W. Riggle and S. Zhou, "The Berkeley Internet

Domain Server", Proceedings of the 1984 Summer USENIX. Conference, Salt Lake

City, Utah, June 12-15, 1984, 23-31.

29. D. B. Terry, "Distributed Name Servers: Naming and Caching in Large

Distributed Computing Environments", Technical Report No. UCB/Computer

Science Dpt. 85/228, Computer Science Division, U.C. Berkeley, March 1985.

30. T. Truscott, B. Warren and K. Moat, "A State-Wide UNIX Distributed Computing

System'', Proceedings of the 1986 Summer USENIX. Conference, Atlanta, Georgia,

June 9-13, 1986, 499-513.

31. J. Turner, "Design of a Broadcast Packet Network", IEEE INFOCOM 86,, 667-

675.

32. S. Tzou, D. P. Anderson and G. S. Graham, ''Efficient Local Data Movement in

Shared-Memory Multiprocessor Systems", Technical Report No. UCB!Computer

21

Science Dpt. 871385, Berkeley, CA, December 1987.

33. "The DASH Communication Architecture", UCB/Computer Science Opt.

Technical Repon, in preparation, Feb. 1988.

34. "The DASH Local System Architecture", UCB/Computer Science Opt. Technical

Repon, in preparation, Feb. 1988.

35. "The DASH Virtual Memory System", UCB/Computer Science Opt. Technical

Repon, in preparation, Feb. 1988.

