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ABSTRACT 

The DASH project at UC Berkeley is studying problems arising in the design of large, 

high-performance distributed systems, and is building an experimental system. The 

system's major design goals are centered in three areas: 1) IPC performance, 2) global 

architecture, and 3) local architecture. In each of these areas, vertically integrated 

mechanisms are used to achieve design goals, while an open system structure is main­

tained where possible. This report describes the motivation and principles of the DASH 

project, and sketches the current design of the DASH system. 
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1. INTRODUCTION 

The name DASH1 refers to: 

(1) A research project studying the design principles of future distributed systems. 

(2) A new distributed system architecture embodying the results of this research. 

(3) An operating system kernel implementing the distributed system architecture. 

This report is an overview of all three of these aspects of DASH. We describe first the 

motivation and goals of the project, then the distributed architecture and the kernel. An 

earlier report, Issues in the Design of Very Large Distributed Systems [4], expands on the 

motivation and principles of DASH. The DASH system design is described in more 

detail in three companion reports: The DASH Communication Architecture [33], The 

DASH Vinual Memory System [35], and The DASH Local System Architecture [34]. 

1.1. Motivation, Assumptions and Goals 

Much current research in operating systems is focused on high-level mechanisms such as 

distributed transactions, support for replicated data, object-oriented programming sys­

tems, user interfaces, and facilities for parallel distributed computation. Low-level 

mechanisms such as virtual memory, process control, kernel structure, naming, local IPC, 

and network communication have not kept pace with the progress in high-level mechan­

isms. Many of the current research projects are based on outdated operating systems 

(such as UNIX2) and are crippled by the inappropriate low-level mechanisms provided 

by these systems. 

The main research objective of DASH is the development of optimal low-level mechan­

isms for the next generation of distributed computer systems. We have taken the follow­

ing steps towards this goal: 

1) Extrapolate trends in computer and communication technology into the middle­

to-distant future (5-20 years). 

The dominant host type will be the workstation; many will be shared-memory mul­

tiprocessors with a small number (10-100) of processors [13, 15]. Communication 

networks based on fiber optics will allow low-delay (30 to 50 milliseconds coast­

to-coast) and high-bandwidth (.01 to 1 Gigabit/second) communication between 

most pairs of hosts in the U.S., and eventual! y in the world [ 17, 26, 31]. 

2) Propose functions and facilities of future computer systems based on this tech­

nology. 

We use the term very large distributed system (VLDS) [4] to refer to a hypothetical 

system running on the hardware base described earlier. A VLDS will link 

thousands or millions of hosts under diverse ownership. Its main function will be to 

provide secure, well-integrated access to logical services. These services might pro­

vide access to public databases (such as encyclopedias and archives), news media, 

sales, advertising, banking, interpersonal communication (mail, telephone, fac­

simile, and video conferencing), and entertainment (including distribution of audio 

1 DASH was originally an acronym for Distribution, Autonomy, Security 111d Heterogeneity, attributes we viewed as desirable 

in an operating system. This list kept growing, and rather than lengthen the name we kept it and removed its acronym swus. 

2 UNIX is a trademark of Bell Laboratories. 
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and video). 

The processing power of VLDS hosts (and perhaps of specialized compute servers) 

is another type of remotely-accessible resource. A VLDS must support load balanc­

ing and large-scale parallel computation; in the latter case, thousands or millions of 

processors might be involved in a single computation. 

3) Identify the basic system-level requirements of these functions and facilities. 

These requirements fall into three main groups: 1) IPC performance, 2) global sys­

tem architecture, and 3) local system architecture. The groups are discussed in Sec­

tions 3, 4 and 5 respectively. 

4) Propose designs and mechanisms for satisfying these requirements. 

The DASH project is developing a design for a VLDS. Our current design is 

sketched in the remainder of this report, and is described in more detail in the com­

panion reports ([33-35]). 

5) Study these mechanisms by implementing them and evaluating the resulting sys­

tem. 
The DASH project is currently building an operating system kernel (the DASH ker­

nel) that implements our distributed system design and will be used to evaluate and 

refine it. The kernel is being implemented on Sun 3 workstations, and will soon be 

ported to a Sequent Symmetry shared-memory multiprocessor. 

In summary, the DASH project is building a foundation for very large distributed sys­

tems. Because of the synergy that may arise from combining communication, service 

access, and processing in a single unified system, VLDS design is an important direction 

in computer systems research. A VLDS will subsume the proposed functions of 

Integrated Services Digital Networks (ISDN) [14]. The use of a VLDS for high­

performance computing will augment (and often replace) the use of specialized hardware 

[12], general-purpose parallel hardware [16], and supercomputers to address the process­

ing requirements of graphics, artificial intelligence, simulation and scientific applications. 

2. DASH DESIGN PRINCIPLES 

The design of computer systems, and especially distributed systems, is often described in 

terms of modules i.e., logical components that interact only through abstract interfaces. 

Some of the modules are part of the protocol hierarchy; others are added by the local sys­

tem architecture. 

Likewise, the desired properties of the system are described by a set of design goals. In 

DASH, these properties fall mainly into the three areas mentioned earlier: IPC perfor­

mance, global system architecture, and local system architecture. Each of these areas 

involves several of the modules, so we may represent the system design as a two­

dimensional system of interactions, with modules on one axis and design goals on 

another (see Figure 1). We identify the following design principles arising from these 

multi-layer interactions: 

Vertical Integration of Mechanisms: 

Mechanisms must often span multiple system modules to achieve VLDS design 

goals. For example, high-performance IPC may be possible only by integrating 

mechanisms at the levels of virtual memory, process scheduling, and network 
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system goal areas 
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architecture architecture performance 

local IPC 
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network protocols 

Figure 1: Interactions Between Design Levels. 

communication. 

Open Architecture: 

A VLDS will encompass hosts with different hardware architectures, different 

application areas, and different computing paradigms. Therefore, the portions of 

the system that are standardized (i.e., those portions that a host must implement in 

order to take part in resource sharing) should be minimal. Basically, the standard­

ized part of the system must provide naming, a way to move bytes securely and 

efficiently, and not much beyond that. 

These two principles are not followed in some approaches to building distributed sys­

tems. For pragmatic reasons, most current systems are built on top of existing general­

purpose protocol hierarchies (the V system [11] is a notable exception). Such hierarchies 

usually export a simple interface that precludes vertical integration. In addition, both 

principles dictate against building a VLDS as an extension of an existing centralized sys­

tem (the approach of Mach [22]), or as an "interconnection" layer on top of existing 
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operating systems (as is done in Cronus [23]). 

3. HIGH-PERFORMANCE REMOTE INTERPROCESS COMMUNICATION 

A VLDS will provide a mechanism for clients to communicate with services. Some ser· 

vices (such as those based on digital audio and video) will require high-performance 

remote interprocess communication (IPC). The general-purpose communication 

mechanism of a VLDS must suppon such communication. This mechanism consists of 

several components: 

(1) The movement of data across networks. 

(2) Protocol flow control and reliability mechanisms. 

(3) The movement of data between device interfaces (including network interfaces) and 

main memory. 

(4) Scheduling, synchronization and processing time of the communicating processes, 

and of intermediate protocols. 

(5) The movement of data between virtual address spaces on a single host. Services 

may run in separate address spaces. Access to a local service requires data move­

ment between two user spaces, and access to a remote service requires data move­

ment between user and kernel spaces at both ends. 

To maximize performance, the remote IPC mechanism of a VLDS must address each of 

the above components, and their interactions. In particular, the following goals can be 

identified: 

• To reduce the overhead of host processing, currently the bottleneck in most IPC sys­

tems. In particular, to minimize software copying, and to avoid software encryption 

and checksumming where possible. 

• To provide real-time performance guarantees. Scheduling of communication 

resources (transmission queues in hosts and switches, and processing in clients and 

protocols) must be done on the basis of real-time deadlines. 

• To suppon configurable stream protocols. Request/reply communication is inade­

quate for many high-performance applications over long distances. In addition, the 

reliability, flow control, network capacity, and integrity functions of stream-oriented 

IPC must be separated, allowing clients to use only the functions they need. 

• To provide a high-performance security mechanism that 1) allows the user to 

specify the level of security desired, and 2) allows the presence of secure hosts and 

secure local networks to be exploited. 

• To accommodate a variety of network architectures. 

3.1. The DASH IPC Design 

3.1.1. Real-Time Message Streams 

In existing distributed systems, the network-dependent communication interface typically 

provides a simple abstraction such as unreliable, insecure datagrams. Higher software 

layers use this facility to provide higher-level abstractions such as reliable request/reply 

message-passing [10], reliable secure typed message streams [22], or reliable byte 
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streams [20]. This approach simplifies the task of porting the system to different network 

types. However, the simple nature of the basic abstraction (such as datagrams) does not 

allow communication clients to express their performance, reliability and security needs, 

or their workload parameters, to the communication provider. This makes it impossible 

for the provider to use the most efficient mechanisms or to provide real-time performance 

guarantees. It also makes congestion control in large networks difficult. 

In an attempt to solve these problems, the DASH network communication system is 

based on an abstraction called real-time message streams (RMS) [5]. An RMS is a sim­

plex communication channel between a sender and a receiver. Message boundaries are 

preserved and messages are delivered in sequence. In addition, an RMS has various 

parameters reflecting its performance and security properties. Specifically, it has the fol­

lowing Boolean parameters: 

Authentication: if true, then impersonation (delivery of a message with incorrect 

source label) is impossible. 

Privacy: if true, then eavesdropping (access to a message by a host or process other 

than that specified by the target label) is impossible. 

An RMS has the following performance parameters: 

Capacity: an upper bound (enforced by the sender) on the amount of data outstand­

ing within the RMS at any point (i.e., sent but not yet delivered). 

Maximum message size: an upper bound (enforced by the sender) on the size of 

individual messages. 

Delay bound: message delay is the elapsed real time between the start of the send 

operation and the moment of delivery. An RMS has an upper bound (guaranteed by 

the RMS provider) on message delay. The components of the delay may include 

network transmission delay, queueing and processing delays at the sender and at 

intermediate switches, and processing at the receiver. This bound may be deter­

ministic, statistical, or best-effort. 

Average bit error rate: this parameter reflects the combination of 1) the error rate 

of the underlying transmission medium, and 2) the effectiveness of the checksum­

ming algorithm. It is guaranteed by the RMS provider. 

Average loss rate: this reflects the expected rate of packet discarding from buffer 

overrun and checksum failures. 

An RMS creation request includes desired and acceptable parameter sets. The actual 

parameters of the resulting RMS are returned to the client. These parameters must be 

compatible with the request's acceptable parameters; the request is rejected if this is not 

possible. The RMS provider tries to match the desired parameters as closely as possible. 

3.1.2. The DASH Network Communication Structure 

In DASH, the RMS abstraction appears in the interface to the network-dependent part, 

and at higher levels of the system as well. RMS is the basis for a request/reply communi­

cation facility in which the RMS features serve to optimize request/reply performance. 

The structure of the DASH network communication system is shown in Figure 2. 

A DASH system can encompass many networks. Each network has a set of protocols for 

implementing RMS between any two of its nodes. Note that, in this discussion, the term 
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Figure 2: The DASH Network Communication Structure. 

network refers to an abstract entity, not necessarily to a physical network. For example, 

the DARPA Internet (with the addition of RMS support) and a local Ethernet could be 

separate DASH networks, although they might share the same host interfaces and net­

work media. The DASH network layer encapsulates everything below the network RMS 

abstraction: network-specific protocols for establishing RMS 's, routing protocols, address 

resolution protocols, and so on. 

The subtransport (ST) layer provides authentication and privacy, caching and multiplex­

ing of network-level RMS's, piggybacking of messages, and other services [33]. The ST 

protocol must be implemented by all DASH hosts. 

The ST module on a host maintains a set of secure channels to other hosts. These secure 

channels may be implemented in different ways, depending on the security properties of 

the intervening network [7]. In general, they use data encryption or cryptographic check­

sums. On Ethernet-like networks, a more efficient scheme that avoids cryptographic 

checksumming of data can be used. If the network is assumed by both hosts to be physi­

cally secure and free of eavesdroppers, no encryption is used. For each secure channel, 

ST maintains lists of owners authenticated to and from the remote host (see Figure 3). 

This authentication uses public key encryption (PKE)-based certificates. It is done only 

the first time a user communicates with a particular remote host, thus reducing encryption 

overhead. 

The transpon layer consists of a set of protocols that use the ST facilities. One of these, 

the Remote Kernel Operation Mechanism (RKOM), is used for all request/reply com­

munication, and is mandatory for all DASH hosts. The other transport protocols are 
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Figure 3: Authentication Caching in the Subtransport Layer. 

stream-oriented. They are implemented as separate processes that can be dynamically 

configured, in the style of Ritchie Streams [21]. These protocols provide functions such 

as reliability, RMS capacity enforcement, and flow control. 

DASH allows the RMS abstraction to span processes. A subuser RMS spans protocol 

processes. Its delay bound includes protocol processing time. A user-level RMS spans 

user processes. Its delay bound includes end-process CPU time as well. In both cases, 

the enforcement of the delay bound uses deadline-based scheduling of protocol or user 

processes. 

3.1.3. RMS Examples 

To see the importance of RMS parameters, suppose that a client (say a transport protocol 

serving a user program) requires data privacy. The protocol requests an RMS from the 

subtransport layer. The desired and acceptable parameter sets both have the privacy flag 

set. Depending on the network, the following cases are possible: 

(1) Privacy is provided by data encryption in the subtransport layer. 

(2) The network has link-level encryption hardware; the subtransport layer learns this 

(it is a property of network-level RMS's) and does no data encryption. 

(3) The network is considered secure, so no data encryption is done. 

In any case, the RMS parameters allow the subtransport layer to use the optimal mechan­

ism for privacy. If a client does not require privacy, no mechanism is used (which is 

again optimal). Without the RMS security parameters, this optimization would not be 

possible. The situation is similar for data integrity. Based on the values of RMS parame­

ters, the optimal checksumming mechanism can be determined. 

The following examples illustrate the uses of the RMS capacity and performance param­

eters: 
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• Initial request and reply messages in a request/reply protocol use an RMS with low 

delay bound. The RMS capacity may be large, unless it is known that request or 

reply messages will be small and infrequent. 

• A stream protocol for bulk data transfer uses a high capacity, high delay RMS for 

data. Reliability acknowledgements uses low capacity, high delay RMS's. Flow 

control acknowledgements uses a low delay, low capacity RMS. 

• Digitized voice uses a high capacity, low delay RMS, perhaps with a statistical 

delay bound. A high bit error rate may be acceptable. 

• Communication involving human user interface traffic (such as for network window 

systems [24]) can tolerate a moderate amount of delay because of human perceptual 

limitations. The RMS from user to application carries mouse and keyboard events, 

and can have low capacity; the RMS in the opposite direction carries graphic infor­

mation, and requires higher capacity. 

In all these cases the explicit specification of client needs increases the likelihood that the 

provider can accommodate them. For example, if packet queueing in an internetwork 

gateway is done using RMS-specified deadlines, then a low-delay packet can be sent 

before high-delay packets that would otherwise cause it to be delivered late. A network 

may be capable of providing low delay or high capacity, but not both. The RMS parame­

ters allow the client to choose. 

The use of RMS in DASH is based on anticipated needs and on projections of future net­

work technology; the RMS abstraction is not supported on current networks, and cannot 

be built on top of simpler abstractions such as datagrams or virtual ciruits. However, we 

feel that our approach is necessary for exploiting the advances in communication tech­

nology that will occur in the near- and long-term future. 

3.2. Movement of Data Between Local Address Spaces 

The efficiency of moving a large amount of data between virtual address spaces (both 

user spaces and kernel space) on a single machine is a major component of IPC perfor­

mance. Software memory copying is the straightforward way to move data between 

spaces. However, memory bandwidth is improving at a slower rate than processor and 

network speeds. Thus, memory copying is likely to be an IPC bandwidth bottleneck and 

a major source of IPC delay. In addition, the bus traffic generated by memory copying 

will degrade system performance on shared-memory multiprocessors. Virtual memory 

(VM) remapping, as opposed to memory copying, is an attractive approach to moving 

data. However, remapping in shared-memory multiprocessors can be costly because of 

the problem of translation lookaside buffer (1LB) inconsistency. 

The DASH mechanism for local data movement [32] eliminates many of the overheads 

that would otherwise arise from VM remapping in shared-memory multiprocessors. Put 

simply, we reduce the need for synchronous unmapping, and, when such remapping is 

necessary, we do it efficiently. 

The DASH VM system has an /PC region that is shared (although with different levels of 

protection) among all address spaces. All data to be moved between spaces are placed in 

the IPC region. The local user IPC system involves the following layers (see Figure 4): 
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Figure 4: Logical Levels of Page Ownership and Mapping. 

• A message-passing (MP) system providing operations to allocate, access, send, 

receive and deallocate messages. It is implemented by a user-level library that han­

dles some operations itself and traps to the kernel for others. 

• The facility for protected shared memory provided by the VM systems's IPC 

region. This facility defines a notion of ownership of pages in the IPC region, and is 

used by the MP system for data movement. The facility can also be used directly by 

user processes via system calls (which are themselves implemented as MP opera­

tions). 

• The Logical VM mapping interface of the VM system, whose operations include 1) 

mapping IPC pages on a single CPU, and 2) unmapping IPC pages on a set of 

CPU's. The unmapping operation (which on some architectures may require inter­

processor interrupts) may be either synchronous or asynchronous. The latter type is 

slower but has less total overhead since multiple operations can be hatched. 

• The Physical VM mapping function of the VM system; this is the machine­

dependent implementation of the logical VM mapping operations. 

In the DASH message-passing system, the semantics of send() are that the sender's own­

ership of the IPC pages in the message is transferred to the receiver. The sender may 
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have multiple ownerships of a page; when the last ownership is relinquished, the IPC 

page is unmapped from the sender's address space. The send() and receive() operations 

have parameters that can be used by the implementation to reduce work: 

• The sender may specify whether it believes that the receiver trusts it. If so (and if 

the sender is correct), the unmap operation on send() can be deferred, and may 

never be done. 

• The receiver may specify whether it trusts the sender or not (e.g., the kernel owner 

is always trusted). If the sender is not trusted, the receiver must wait until the 

operation of unmapping the page from the sender is completed (otherwise the 

sender could modify the data after it has been received). If the sender is trusted, it is 

not necessary to wait for a previous asynchronous unmap operation to complete. 

• The receiver may specify whether to physically map in message pages immediately, 

or to map them in on demand. In the second case, a page is mapped in by the page 

fault handler when the receiver first accesses the page. No mapping is done if the 

page is not accessed. This optimization may be significant for applications that for­

ward messages (e.g., a file service that receives a block from a disk device and 

sends it to the network without accessing it). Message forwarding is a common 

communication paradigm when services offered by the system execute at the user 

leveL 

The above optimizations can eliminate operations. When operations are necessary, our 

design allows them to be done efficiently. Synchronous unmapping is more expensive 

than asynchronous unmapping, and we avoid it when possible. For both types of unmap­

ping operations, the VM system maintains a list of processors on which a page has been 

mapped, and only unmaps it from those processors. 

3.3. DASH IPC: Summary 

The DASH IPC design is vertical integrated in the following ways: 

( 1) The RMS abstraction spans all levels (network and local) of the IPC system, making 

real-time communication between user processes possible. 

(2) The elimination of software copying in network communication involves a combi­

nation of message-passing semantics, protocols, kernel architecture, and virtual 

memory. 

(3) Although authentication and security mechanism are defined at a high level (see the 

discussion of global naming in Section 4), they are enforced at a low level of the 

protocol hierarchy. This can substantially reduce the expense of these functions [6]. 

The DASH IPC facility is also an open system: 

(1) The RMS interface allows different network types to make their nonstandard func­

tions (e.g., encryption in hardware) visible to upper layers, and to implement RMS 

in a network-specific way. 

(2) The framework for stream protocols allows new protocols to be added to the kernel, 

and combined with other protocols, in a standard way. Clients can use protocols 

that provide the exact combination of functions (capacity enforcement, flow control, 

and reliability) that they need. 



11 

The DASH IPC design has numerous advantages over those of current distributed sys­

tems. In systems such as V [11] designed for local-area networks, IPC is often limited to 

reliable request/reply communication. This is inadequate for VLDS. In systems such as 

Mach [1], IPC is forced to pass through a user-level "network server", and this further 

limits potential performance. IPC performance can be hampered by the basic semantics. 

For example, the semantics of the UNIX write operation (shared by Mach and most other 

systems) are that the sender retains a (logical) copy of the data sent. In DASH, the 

semantics are that the sender loses the data from its space. This eliminates the work of 

creating a logical or physical copy of the data. 

4. GLOBAL SYSTEM ARCHITECTURE 

The global architecture of a distributed system is centered in its naming mechanisms. 

There often are naming mechanisms at multiple levels; they differ in the nature of the 

named entities, and the means of assigning and resolving names. Some of these mechan­

isms may also involve authentication and security. 

The global architecture for a VLDS has the following requirements: 

• There must be a global naming system on which security functions are based. 

• The naming system must support organizational autonomy in the senses of 1) 

hierarchical delegation of authority for name assignment, and 2) lack of central 

trusted agents in name resolution. 

• Naming must be source- and target-location independent. This reduces the 

location-dependence of program execution, thus simplifying large-scale distributed 

programming [2]. 

• The naming system must be scalable so that performance does not decline with 

increasing system size, even when remote references are frequent [29]. 

4.1. The DASH Global System Architecture 

4.1.1. Naming and Authentication 

DASH global names are symbolic pathnames in a single tree-structured name space. 

There are four types of named entities in the DASH global name space: hosts, owners, 

services, and name services. The internal nodes of the tree represent name services, and 

the leaves of the tree represent the other entity types (see Figure 5). The different entity 

types, and their associated attributes, are as follows: 

• An owner is an individual human user or "role". Its attributes include two public 

keys: a user key and a kernel key. 

• A host is a network-level communication endpoint. Its attributes include a list of its 

network addresses and the name of its owner. 

• A service is a logical resource provided by set of programs or processes. Its attri­

butes include 1) a list of (host name, instance ID) pairs, each specifying an instance 

of the service, and 2) the name of the owner of the service. 

• A name service is a special type of service that manages the names of other entities. 

A name service maintains a single directory in which each entry has a name (a path­

name component), a type, and a set of attributes. 
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Figure 5: The DASH Global Name Space. 

The DASH service access mechanism allows services to extend the global name space 

below their own name. Hence they can provide global names for the objects they 

manage. For example, a file service might provide hierarchical naming of its files, so that 

a reference to lusa/ucblcs/fslandersonlfoo might map to the file landersonlfoo within the 

file service lusalucblcs/fs. This removes the need to distinguish the two levels of naming, 

and makes it possible for a service to serve as a manager of named "objects" or to pro­

vide logical "sub-services". 

The DASH kernel maintains a cache of name resolutions. Even with this caching, the 

work involved in component-by-component resolution of long pathnames may be exces­

sive, particularly if it must be done for frequently-accessed objects such as disk files. To 

avoid this problem, the DASH kernels allows user programs to obtain name tokens, each 

of which represents a pathname and its cached resolution. In further name references the 

client provides the token and a symbolic name extension; the kernel can begin resolution 

starting from the object represented by the token. (An analogous mechanism for refer­

ences to names within services is described in the next section.) 

4.1.2. Service Access 

In the DASH distributed system architecture, services are a class of logical resources. A 

DASH service is a set of instances that together provide a logical resource. Each 

instance resides on a single host, and may consist of a process, a set of processes, or a 

''registration'' with the host kernel that causes a process to be created as needed. 

The intent of the DASH global architecture is that services, where possible, should be 

globally accessible. The service access facility described in this section makes remote 
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access, for both the client and server, as convenient as local access. 

The DASH service access mechanism (SAM) allows clients to name and communicate 

with services in a uniform way. It provides: 

Replication transparency: a client need not know which instance handles a partic­

ular request or session. 

Location transparency: service names do not specify or limit the location of the 

servers. 

Failure transparency: if a service instance fails, SAM may locate another instance 

of the service and connect the client to it automatically. 

Protocol flexibility: services may provide interfaces that have real-time communi­

cation performance requirements, or that need special-purpose stream protocols. 

A replicated service may provide a consistent data abstraction, in which case it needs to 

ensure data consistency between instances. DASH does not supply or dictate any method 

for this, or for ensuring the atomicity or permanence of operations on services. Such 

mechanisms must be supplied by the services themselves, perhaps in cooperation with a 

higher-level transaction manager. 

Services can be accessed in two basic modes. In Request/reply mode, the operation is 

conveyed to the server via RKO; two reliability types (maybe and exactly once) are avail­

able. In Session mode, SAM locates an instance of the service and sets up a communica­

tion channel (or bundle) between the client and server. 

A client may request a service token representing an object within the service. The token 

can thereafter be supplied in lieu of a name in operations on the service. A token has an 

associated set of operations, specified (by a bitmask) when the token is requested; the 

token provides the right to perform these operations on the object to which it refers, 

bypassing any underlying protection mechanism. A token may have no access rights, in 

which case it serves simply as a name abbreviation that can be used in forming other 

names. 

The token scheme can improve performance in two ways: 1) it eliminates the need for 

the service to check authorization on every operation; 2) it eliminates the need for SAM 

and the service to do name translation on each operation. 

Service tokens may be discarded at any time by a service. This may be done either to 

limit table size, or to force periodic reauthorization in support of an ''eventual revoca­

tion" policy. The client (or the client kernel) must remember the name and operation 

set, and be prepared to issue another token request. A token does not represent a ''ses­

sion"; two tokens representing the same name and having the same rights are inter­

changeable. Tokens are usable only during a crash-free period for both the client and the 

service instance. 

4.2. DASH Global Architecture: Summary 

The DASH global architecture defines a structure for global naming of permanent entities 

(hosts, owners and services), and for local naming of temporary entities (service tokens). 

The use of service tokens and distributed name caching are vertically integrated mechan­

isms in the sense that they involve both distributed and local architectures. The DASH 

global architecture is an open system in that it facilitates the addition of new services by 
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users. At a lower level, it is an open system in that 1) it provides an open framework for 

stream-oriented service protocols; 2) it supports inter-service naming; 3) authentication is 

factored from authorization. 

The DASH global architecture compares favorably with those of other systems as a basis 

for VLDS. The V system [11] is a global system architecture intended for small distri­

buted systems. It is not scalable; for example, it requires broadcast for service location. 

The Xerox Grapevine system [25] is a nameserver with poor scalability because of its 

nonhierarchical design. Other large-scale system architectures have used hierarchical 

naming for scalability and autonomy [9, 28]. These are designed for limited purposes, 

such as host naming, and are not integrated with other types naming (such as the naming 

of files). Efforts at large-scale integration of existing centralized systems are described in 

[30] and [23]. These projects, for the most part, address restricted problems or develop 

solutions based on technology that will soon be outdated. In contrast, the DASH project 

is taking a unified approach to VLDS design, and is seeking solutions that will not be 

made obsolete by foreseeable technology advances. 

Some distributed systems use capabilities for low-level naming and protection. Exam­

ples include Amoeba [18], Mach [22], and Eden [3]. Typically, a symbolic naming 

(directory) service is built on top of the capability mechanism. Arguments against the 

use of capabilities as a basis for identifying permanent objects are given in [ 4]. 

5. LOCAL SYSTEM ARCHITECTURE 

By the local system architecture of an OS kernel we mean 1) the user-level abstractions 

provided for process control, system calls, and so on; 2) the dynamic (process and inter­

rupt) structure of the kernel, and 3) the software engineering (programming) structure of 

the kernel. VLDS local system architecture has the following requirements: 

• Support for user-level services: efficient IPC and control transfer between user-level 

processes, and support for user-level caching. 

• Support for parallelism on shared-memory multiprocessors, both in the facilities 

provided to user programs and in the implementation of the kernel itself. 

• Incorporation of modem software engineering ideas; the kernel must be maintain­

able, extensible, and portable across a range of architectures. 

5.1. The DASH Local System Architecture 

The DASH kernel is structured as a set of processes that share a single address space, 

communicating via message-passing and synchronized operations on shared data objects. 

The kernel uses multiple processes wherever possible. Communication protocols, 

RKOM servers, device drivers, system calls and other kernel functions execute as 

separate processes that can run in parallel on a multiprocessor. Work is done in 

processes that might be done in hardware or software interrupt handlers on other systems. 

The kernel provides user virtual address spaces, each occupied by zero or more user 

processes. Each user address space has a set of protected object references to objects in 

the kernel. 
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5.1.1. Message-Passing 

Message-passing (MP) is used for many purposes in DASH: 

( 1) Interprocess communication (IPC) between processes on a single host: user 

processes, communication protocols (which are implemented as processes), and 

other kernel-level processes. 

(2) Control transfer between address spaces. For example, system calls (during which a 

process switches from user to kernel space and back) use MP. 

(3) Allocation, buffering and queueing of data buffers: for example, network interface 

queues and virtual memory page pools. 

(4) Implementation of other synchronization mechanisms such as timers, multiple wait, 

semaphores, and read/write locks. 

Because of this wide range of uses, the MP system must provide many semantic features, 

described below. The MP system allows clients to use (and pay for) exactly the features 

they need. 

The MP system consists of two major parts: 

• Message representation: A message is a logical array of bytes, implemented by a 

data structure consisting of a header and a set of not necessarily contiguous data 

areas. The interface to messages is a set of operations for creating, manipulating 

and accessing messages. Message headers contain space for parameters to 

message-passing operations. 

• MP operations (some of which are described below). This part is extensible; 

instead of having a single object type (pon, mailbox, and so on) as the target of MP 

operations, there are several such types. It is simple to add new types as the kernel 

is developed. The various MP object types provide a variety of message-passing 

operation semantics. These operations have four binary degrees of freedom, yield­

ing 16 logical combinations; all are possible and potentially useful, but only a sub­

set are currently supported in DASH. 

Stream vs. request/reply: in stream mode, message flow is unidirectional, while in 

request/reply mode, message exchanges occur in synchronized pairs. 

Uniprocess vs. dual-process: a stream-mode message, or the request message in a 

request/reply operation, may be processed in the context of the sending process, or 

by separate process. 

Mode of sender: kernel processes invoke MP operations by making procedure 

calls. MP operations can also be invoked from user-level processes. The semantics 

are essentially the same as for kernel processes, but user-level MP operations are 

initiated via a trap instruction; the kernel trap handler completes the operation. 

Mode of receiver: receive processing may be done in a different mode than that of 

the sender. For example, DASH system calls are implemented as uniprocess MP 

operations t.'lat are initiated in user mode and processed in kernel mode. 

An MP object supports either stream mode or request/reply mode operations. Each mode 

is represented by a base class whose virtual functions are the generic operations on MP 

objects of that mode. Derived classes implement these functions. Clients, in general, do 

not have to know the exact type of MP object, only its base class. This object-oriented 
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MP system was motivated by the following considerations: 

• System calls: these are message-passing operations directed to system call MP 
objects. By default, the system call object is uniprocess, and system calls are exe­
cuted by the calling process in kernel mode (no process switch is done). By substi­
tuting a dual-process system-call object, system calls can be redirected to other 

processes (e.g., for debugging purposes) transparently to the user process. 

• The DASH network communication architecture allows stream protocols to be 
dynamically configured. Each protocol is a process, and communication between 

protocols is via stream-mode MP objects, but the ST layer allows network messages 

to be sent by procedure call. Hence, if the MP system had been designed dif­
ferently, it would have been necessary for a protocol process to know whether it 

was connected directly to the subtransport layer, or to an intervening protocol. 

Some MP objects may provide additional features: 

• Messages may convey scheduling deadlines between processes. 

• Certain MP objects (of both modes) serve as the means of accessing a "pool of 
servers''. It is often desirable to have multiple server processes, so that multiple 
requests can be executed in parallel. The optimal number of servers may not be 

known in advance. Such MP objects may use a feature called automatic receiver 

creation. If a message is sent to such an MP object and there is no process waiting 

to receive it, a process will automatically be created. 

• Dual-process stream MP objects act as buffers between producer and consumer 

processes. Operations on such objects can be subjected to flow control. Flow con­
trol may be based either on the number of queued messages, or the amount of data 
in the queue. It is also possible to use hysteresis for both the sender and the 
receiver. This can reduce the number of context switches, since a process can han­

dle a batch of messages in one context switch. 

5.1.2. Kernel Memory Management 

The DASH kernel dynamically creates objects. Pointers to these objects may be distri­

buted throughout the kernel, so it is not always safe to deallocate their memory. This 

creates a potential problem of unbounded memory usage. This problem is dealt with in 

two ways. 

First, the kernel executes in a virtual address space, part of which is pageable. The con­

structor for each object class specifies whether memory is to be allocated from the page­
able or nonpageable part. Objects that are cache entries (such as objects in the name ser­

vice cache) are kept in the pageable part. Therefore the VM page replacement scheme 

(e.g., an LRU approximation) is inherited by all kernel caches. 

Second, certain types of objects (such as ports) have the properties that 1) many refer­

ences to the object can exist, and it is not feasible to keep track of them; 2) the object can 
be deleted at any time, and this must be detected on any future reference to the object. In 

DASH, these objects are allocated using a pseudo-permanent object facility. Memory 

blocks allocated for such objects are preceded by a unique ID field that is cleared when 
the object is freed. A memory block allocated for this purpose can be reused for other 

pseudo-permanent objects, but not for other purposes. A reference to a pseudo-
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permanent object consists of a pointer to the memory block and a UID value; if this value 

does not match, then the object has been deleted. 

Together, these two techniques eliminate the need for general-purpose garbage collection 

in the DASH kernel. 

5.1.3. Kernel Software Engineering 

The DASH kernel is being implemented in an object-oriented language, C++ [27]. The 

kernel is structured as a set of classes (abstract types), of which some have multiple 

dynamically-created instances. In keeping with the principles of object-oriented pro­

gramming, the class/object structure encapsulates design decisions and machine depen­

dencies. Our intent is to produce a maintainable, extensible and portable kernel. We 

view the DASH project as an important test case in the application of object-oriented 

techniques to OS kernel implementation. 

5.2. The DASH Local Architecture: Summary 

The DASH local architecture is vertically integrated in several ways: 

• The dynamic structure of the kernel is a set of processes that communicate through 

a versatile message-passing facility. The same structure is available at the user 

level, and the system call interface uses message-passing. 

• The static structure of the kernel is a set of objects, some of which are pseudo­

permanent. The same structure is presented at the user level using protected object 

references, and is presented remotely via remote object references. 

The DASH local architecture provides considerable "openness". The kernel process 

model and the object-oriented message-passing system simplify the task of experiment­

ing with kernel parallelism. In addition, several mechanisms that are entangled in the 

kernel of other systems are moved to the user level in DASH: 

• Process control and exception handling. 

• Current directory or other context mechanisms. 

• Transaction management. 

The themes of the DASH local architecture are related to those of many existing operat­

ing systems. Other systems [8, 19] use message-passing in their kernel implementation 

for increased parallelism. Message-passing for exceptions, system calls and process con­

trol is used in V [11]. 

6. CONCLUSION 

The DASH project at UC Berkeley is studying the design principles of future distributed 

systems. Based on technological trends, we predict the development of very large distri­

buted systems (VLDS) based on high-performance wide-area networks and providing 

global access to a variety of data and computing resources. We have made the following 

general conclusions: 

(1) The requirements of the performance and flexibility of low-level mechanisms (vir­

tual memory, process control, kernel structure, naming, local IPC, and network 

communication) in a VLDS are not met by the low-level mechanisms of current dis­

tributed systems. New designs and experimentation are needed in these areas. 



18 

(2) The optimal low-level mechanisms for a VLDS often involve 1) the venical 

integration of components at different system levels, and 2) an open system design 

in which the standardized portions of the system are minimal. 

At this point (February 1988) much of the DASH design is in place, and the implementa­

tion of the kernel is proceeding. We plan on completing the basic design, completing 

uniprocessor and multiprocessor implementations of the kernel, and evaluating the basic 

design. Once this is done, the DASH system can serve as a testbed for research and 

development in many new and unexplored areas of distributed systems, especially those 

involving real-time communication and very large-scale replication and distributed pro­

cessing. 

There are also many areas for research within the design areas discussed in this report: 

• In the IPC area, several issues involving RMS remain to be investigated. How can 

RMS be implemented on current networks and internetworks? What are appropri­

ate stream transport protocols? What new types of applications does RMS make 

possible? How can multicast be implemented on top of RMS? Others problems 

involve the VM-based data movement system; these will be explored when DASH 

is ported to shared-memory multiprocessors. 

• In the global architecture, the performance of the global naming system must be 

investigated. Other problems include the design of protection mechanisms in a 

VLDS, the design of highly replicated data servers, and the formal analysis of trust 

relationships in naming. 

• In the local architecture, research problems involve 1) multiprocessor synchroniza­

tion (both the mechanisms themselves, and their integration in programming 

languages), 2) process control for remote debugging, 3) process scheduling for mul­

tiprocessors, and 4) support for caching in user-level services. 
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