
-

Modeling and Implementation of Visibility

in Programming Languages

Phillip Edward Garrison

Computer Science Division

University of California, Berkeley

Berkeley, CA 94720

December 1987

Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy in Computer Science

in the Graduate Division of

the University of California, Berkeley

Copyright © 1987 by Phillip Edward Garrison

Report No. UCB/CSD 88/400

This research was supported in part by a National Science Foundation Fellowship, by the Defense

Advanced Research Projects Agency (DoD), ARPA Order No. 4871 (monitored by Naval Elec­

tronics System Command under Contract No. N00039-84-C-0089), and by a State of California

Micro Fellowship.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1987 2. REPORT TYPE

3. DATES COVERED
 00-00-1987 to 00-00-1987

4. TITLE AND SUBTITLE
Modeling and Implementation of Visibility in Programming Languages

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The term visibility control refers to the use of names in programming languages. A binding of a name and
an entity results from a declaration. A binding is visible where the name can be used to reference the
entity. The visibility rules of a language define how names may be used in that language, how to determine
which declaration is denoted by a reference anywhere in a program, and the meaning of multiple
declarations of the same name. Existing approaches to modeling visibility rules are not powerful enough to
model the wide variety of visibility features present in modern programming languages. The Inheritance
Graph Model, presented in this dissertation, is a natural and general model of visibility that embodies the
fundamental concepts of visibility. Because the Inheritance Graph Model is based on fundamental
concepts, it is easy to represent the visibility structure of a wide variety of languages and visibility features
in a straightforward manner. These fundamental concepts were developed on the basis of a comprehensive
survey and analysis of the visibility features used in programming languages. The visibility structure of a
program is represented by an inheritance graph. A vertex in the graph represents a uniform referencing
environment (a contour). Multiple visibility classes can be used to explicitly represent different kinds of
visibility in the graph. An edge in the graph represents inheritance of visibility of bindings with a specific
visibility class from one vertex to another. Inheritance of visibility of bindings via an edge can be restricted
depending on attributes of each binding or on the program construct represented by the edge. A general
mechanism for detecting errors and specifying shadowing of bindings declared in enclosing scopes is also
provided. An implementation based on data flow analysis techniques can be generated automatically from
a specification of the inheritance graph for a language. The study of visibility features and their precise
meanings exposed several subtle complexities in the visibility rules of popular languages. Among these is
the requirement in Pascal that a declaration precede all references to the declaration. This requirement
provides few benefits, and results in visibility rules that are difficult to understand, specify, and implement
correctly.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

212

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

!-

Modeling and Implementation of Visibility
in Programming Languages

Phillip Edward Ganison

Abstract

The tenn visibility control refers to the use of names in programming languages. A binding

of a name and an entity results from a declaration. A binding is visible where the name can be

used to reference the entity. The visibility rules of a language define how names may be used in

that language, how to detennine which declaration is denoted by a reference anywhere in a pro­

gram, and the meaning of multiple declarations of the same name.

Existing approaches to modeling visibility rules are not powerful enough to model the wide

variety of visibility features present in modem programming languages. The Inheritance Graph

Model, presented in this dissertation, is a natural and general model of visibility that embodies

the fundamental concepts of visibility. Because the Inheritance Graph Model is based on funda­

mental concepts, it is easy to represent the visibility structure of a wide variety of languages and

visibility features in a straightforward manner. These fundamental concepts were developed on

the basis of a comprehensive survey and analysis of the visibility features used in programming

languages.

The visibility structure of a program is represented by an inheritance graph. A vertex in the

graph represents a unifonn referencing environment (a contour). Multiple visibility classes can

be used to explicitly represent different kinds of visibility in the graph. An edge in the graph

represents inheritance of visibility of bindings with a specific visibility class from one vertex to

another. Inheritance of visibility of bindings via an edge can be restricted depending on attributes

of each binding or on the program construct represented by the edge. A general mechanism for

detecting errors and specifying shadowing of bindings declared in enclosing scopes is also pro­

vided. An implementation based on data flow analysis techniques can be generated automatically

from a specification of the inheritance graph for a language.

The study of visibility features and their precise meanings exposed several subtle complexi­

ties in the visibility rules of popular languages. Among these is the requirement in Pascal that a

declaration precede all references to the declaration. This requirement provides few benefits, and

results in visibility rules that are difficult to understand, specify, and implement correctly.

Table of Contents

Table of Contents

List of Figures vi

List of Tables vii

Acknowledgements ... viii

Chapter 1 Introduction ... 1

1.1 The Inheritance Graph Model 2

1.2 Previous Work .. 3

Formal Language Specification Methods ... 3

Reiss's Models of Visibility Control .. 3

Wolf's Model of Visibility Control .. 3

1. 3 Plan of the Dissertation 3

Chapter 2 Survey of Visibility Control in Programming Languages 5

2.1 Introduction to the Use of Names in Programming 5

2.1.1 FORTRAN.. 5

2.1.2 ALGOL 60 and Block Structure ... 7

2.1.3 An Ada Example... 9

2.2 Binding Names to Entities .. 10

2.2.1 Declarations .. 13

2.3 Scopes ... 14

2.3.1 Scope Disciplines other than Static Nesting ... 16

2.4 Visibility Rules and Declarations ... 17

2.4.1 Locations of Declarations... 17

2.4 .2 Adding Bindings to Contours 17

2.4 .3 Order of Declarations and References 19

2.4.4 Static vs. Dynamic Name Creation... 20

2.4.5 Static vs. Dynamic Creation of Bindings ... 21

2.5 Visibility Rules: Resolving References .. 22

2.5.1 Closures .. 23

2.5.2 Lexical vs. Dynamic Inheritance .. 23

2.5.3 Dynamic Type Binding .. 27

2.6 Explicit Visibility Control .. 27

2.6.1 Named Scopes .. 28

2.6.2 Qualified References ... 28

2.6.3 Modules .. 29

2.6.4 Named Inheritance and Smalltalk-80 ... 29

2.6.5 Multiple Inheritance ... 31

2.6.6 Open and Closed Scopes .. 32

2.6.7 Imports and Exports.. 33

2.6.8 Opening of Scopes .. 35

2.6.9 Visibility Control in SETL ... 36

2.6.10 Rebinding Entities .. 37

2.6.11 Summary of Explicit Visibility Control ... 39

2. 7 Miscellaneous Features 39

2. 7.1 Separate Compilation 39

2. 7.2 Standard Environments 39

2.7.3 More General Binding Mechanisms ... 39

2.7.4 Persistent Storage .. 39

2. 8 Summary 40

ii

Chapter 3 Models of Visibility Control ... 43
3.1 Definitions ... 43
3.2 The Search Model of Visibility Control ... 43
3.3 The Visible Set Model of Visibility Control .. 44
3.4 The Range Model ... 45
3.5 Reiss's Model of Visibility Control.. 46
3.5.1 Standard Functions ... 47
3.5.2 Definitions... 48
3.5.3 Extensions ... 48
3.5.4 Summary of Reiss's Model .. 48
3.5.5 Reiss's Fonnal Model... 49
3.6 Wolf's Model of Visibility Control .. 49

Chapter 4 Requirements for a Model of Visibility Control .. 51
4.1 General Requirements .. 51
4.2 Visibility Features and Their Requirements ... 52
4.2.1 Names, Entities, and Bindings .. 52
4.2.2 Scopes and Contours... 52
4.2.3 Declarations ... :........ 52

Order of Declarations and References 54
Dynamic and Static Name and Binding Creation..................................... 54

4.2.4 Variable Attributes .. 54
4.2.5 Resolving References ... 55
4.2.6 Explicit Visibility Control .. 56

Open and Oosed Scopes .. 56
Imports and Exports .. 56
Import/Export Statements that Create Declarations 57
Opening of Scopes .. 58
Multiple Inheritance ... 58

4.2.7 Miscellaneous Language Features.. 58
Separate Compilation ... 58
Standard Environments 58

4.3 Declaration-Before-Use and Grouping of Bindings 58
4.4 Contours: Design Decisions and Tenninology ... oo.. 60
4.5 Correspondence of Scopes, Contours, and Visibility Regions 61
4.6 Summary of Requirements ... 62

ChapterS Choices in Designing a Model of Visibility Control 65
5.1 The Flow and Database Models of Infonnation Maintenance 65
5 .1.1 The Flow Model 66
5.1.2 The Database Model ... 66
5.1.3 Static vs. Changing Subject Program ... 67
5.1.4 Implicit vs. Explicit Source Positions .. 67
5.1.5 Model of Subject Program Structure .. 68
5.1.6 Flow Model and Database Model as Design Choices 68
5.2 Specification Burden on Definition vs. Use .. 69
5.3 Where is Binding Visible vs. What is Visible Here 71

The Visible Set Model 71
The Range Model ... 72
Equivalence of the Two Approaches 72
The Search Model 73
Reiss's Model ... 74
Differences in the Where Visible and What Visible Approaches 74

iii

5.4 Relationships Between Design Choices ... 74

Chapter 6 The Inheritance Graph 77

6.1 Introduction to the Inheritance Graph Model 77

6.1.1 ALGOL 60 Visibility Rules Example .. 77

6.1.2 Pascal Visibility Rules Example .. 79

6.1. 3 Dynamic Inheritance 82

6.2 Definition of the Inheritance Graph 82

6.2.1 Inheritance Graph Vertices ... 83

6.2.2 Inheritance Graph Edges 84

6.2.3 The Cash Function and Oash Table 84

6.2.4 Definition of Lookup .. 85

6.2.5 - Error Conditions 87

6.2.6 Redefinitions ... 87

6.2.7 Restriction Functions .. :....................................... 88

6.3 Meaning of the Inheritance Graph.. 88

6.4 Error Handling 89

6.5 Handling of Requirements 89

6.5.1 The Basics ... 89

6.5.2 Definition of Cash, and Effect of Oashing Bindings 89

6.5.3 Variable Attributes .. 90

6.5 .4 General Concept of Visibility Regions and Scopes 91

Simple Open Scope... 91

Pascal-Style Record Types and Qualified References 92

Scope with Nested Qualified References 94

6.5.5 Defining Bindings in Arbitrary Contours ... 96

6.5.6 Visibility Infonnation Independent from Source Program....................... 98

6.6 Examples ... 98

6.6.1 Cosed Scopes ... 98

6.6.2 Named Inheritance .. 98

6.6.3 Import and Export ... 99

6.6.4 Opening of Scopes .. 101

6.6.5 Wolf's Provide and Request Operations... 102

6.6.6 Separate Compilation ... 102

6.6.7 Overloading .. 102

6.6.8 PL/1 and COBOL Structures... 103

6.6.9 Ada Use Clause ... "" 103

6.6.10 Flavors .. 106

Shadowing Based on Priorities ... 108

6.7 Building the Inheritance Graph .. 108

6.8 Well-Definedness of an Inheritance Graph ... 111

6.8.1 Shadowing and Ambiguity ... :..................... 111

6.8.2 Cyclical Inheritance Graph Descriptions .. 112

Oscillating Inheritance Graph Edges 113

Dynamic Definitions and Ambiguity .. 117

6.8.3 Avoiding Oscillating Inheritance Graph Evaluations............................... 118

Analyzing Inheritance Graph Descriptions 118

Causes of Oscillations 118

Halting an Oscillating Evaluation .. 119

Writing Descriptions to Avoid Oscillation ... 119

Language Design to Avoid Oscillation .. 120

6.9 Summary of the Inheritance Graph Model ... 120

iv

Chapter 7 A Modula-2 Example.. 121

7.1 Summary of Visibility Control Rules ofModula-2 121

7.2 Design of the Inheritance Graph for Modula-2 .. 122

7.3 Clash Function and Clash Table for Modula-2 .. 123

7.4 Subgraph Schema forModula-2 ... 123

7.5 Introduction to the Inheritance Graph Description....................................... 123

7.5.1 The Attribute Grammar-Like Formalism ... 123

7.5.2 Notation .. 124

7.6 The Inheritance Graph Description .. 125

7.6.1 Types and Functions Used in the Inheritance Graph Description 125

7.6.2 Attributes of Tree Nodes .. 129

7.6.3 The Grammar.. 130

7.7 Modula-2 Description: Summary and Conclusions...................................... 159

The Attribute Grammar Descriptive Method ... 159

Complexity of the Description ... 159

Ambiguities in Modula-2 .. 160

Chapter 8 Evaluating the Inheritance Graph .. 161

8.1 Search Model Evaluation of the Inheritance Graph 161

Clash Resolution with the Search Model ... 162

Error Handling with the Search Model... 163

Handling of Priorities Using the Search Model.. 164

Summary of Search Model Evaluation Method ... 164

8.2 Evaluation Using Data Flow Analysis.. 164

8.2.1 Formulation of Data Flow Problem.. 164

Vertices Corresponding to Inheritance Edges .. 166

Definition/Redefinition Vertices 166

Clash Resolution Vertices 167

Data Flow Equations 167

8.2.2 Computation of KILL and DEF for Each Node 168

Clash Resolution 168

Inheritance Restriction Functions ... 169

8.2.3 Conventional Data Flow and the Inheritance Flow Graph 170

8.2.4 Graham-Wegman Global DFA ... 171

Suitability of GWDF A 172

Composition and Union of Functions 173

Reduction and Expansion of the Graph 173

8.2.5 Error and Other Actions in the Clash Table ... 176

8.2.6 Cyclical Inheritance Graph Descriptions .. 176

8.2.7 Efficiency Considerations... 177

8.3 Non-Automatic Implementation ... 177

8.4 Summary of Evaluation Methods .. :........ 178

Chapter 9 Discussion and Conclusions ... 179

9.1 Applications of the Inheritance Graph Model 179

9.1.1 Language Study, Understanding, Comparison, and Design..................... 179

9.1.2 Implementation Using the Inheritance Graph Model 180

9.2 Relation to Other Work 181

9.2.1 Reiss's Model ... 181

Reiss's Formal Model of Visibility Control ... 182

9.2.2 Wolfs Model .. 182

9.2.3 Denotational Semantics .. 183

9.2.4 Attribute Grammars .. 183

'
v

9.2.5 Plotkin's Operational Semantics .. 184

9.3 Language Design Issues.. 184

9.3.1 Declaration-Before-Use Requirements... 184

Declaration-Before-Use: History and Rationale....................................... 184

Specification Problems with Declaration-Before-Use.............................. 185

Shadowing and Declaration-Before-Use .. 186

Declaration-Before-Use: Summary .. 186

9.4 Avenues for Future Research.. 187

Improvements to the Inheritance Graph Model.. 187

Specification Languages 187

Analysis of Inheritance Graph Descriptions ... 188

Incremental Data Flow Analysis .. 188

9.4.1 Multiple Inheritance and Cashes ... 188

9.5 Summary ... 189

Bibliography ... 191

Index ... 198

vi

List of Figures

2.1 A Simple FORTRAN Program .. 6
2.2 Block Structure in ALGOL 60 7
2.3 Use of Nanles in Ada ... 9
2.4 Pascal Record Type and Variable Declarations 16
2.5 Example of Different Possible Actions for a Declaration ... 18
2.6 Shadowing of Outer Bindings .. 19
2.7 Mutually Recursive Types in Pascal.. 20
2.8 Dynamic Nanle Creation ... 21
2.9 Lexical vs. Dynamic Inheritance ... 24
2.10 Dynamic Inheritance and Modular Programs 26
2.11 Named Inheritance in Smalltalk-80 ... 30
2.12 Open and Closed Scopes .. 32
2.13 Import and Export Statements ... 34
2.14 Scope Opening ... 37
6.1 Nested Blocks Program Fragiilent ... 78
6.2 Inheritance Graph for Nested Blocks Exanlple: ALGOL 60 Semantics 78
6.3 Nested Blocks Program Fragiilent: Pascal Semantics 80
6.4 Inheritance Graph for Nested Blocks Example: Pascal Semantics 82
6.5 Three Steps of Inheritance Graph Vertex .. 83
6.6 Procedure define_error_check .. 87
6.7 Procedure redefine_ vis ... 87
6.8 Inheritance Graph for Open Scope... 92
6.9 Pascal Record Type Inheritance Graph .. 93
6.10 Inheritance Graph for Scope with Nested Qualified References 95
6.11 Function resolve_qualified_ref .. 97
6.12 Function containing_lookup .. 98
6.13 Import from Named Module .. 100
6.14 Import from Enclosing Scope .. 101
6.15 Inheritance Graph for Ada use Statement .. 105
6.16 Inheritance Graph for Flavors Example ... 107
6.17 Inheritance Graph with Prioritized Inheritance in Flavors .. 109
6.18 Algorithm build_inheritance_graph ... 110
6.19 Ambiguous Inheritance Graph ... 112
6.20 Oscillating Edge in an Inheritance Graph.. 114
6.21 Simple Import Exanlple (Oscillating Edge) .. 114
6.22 Import Example (Oscillating Edge) ... 115
6.23 illegal Forward Reference in Pascal 117
8.1 Inheritance Graph to Flow Graph Transformation ... -....... 165
8.2 Compute KILL for Clash Resolution Vertices 169
8.3 Nested While-Loop Graph... 171
8.4 Irreducible Inheritance Graph.. 171
8.5 Reduction Computations for Graham-Wegiilan DFA ... 174
8.6 Expansion Computations forGraham-WegiilanDFA ... 175

List of Tables

2.1 Languages Included in This Survey .. .

2.2 Visibility Control Features of Common Programming Languages

4.1 Comparison of Grouped and Ungrouped Bindings .. .

4.2 Requirements of a Model of Visibility Control .. .

5.1 Coordinates for Visibility Control Models

6.1 Evaluation States for Module R .. .

vii

11
41
60
63
75

115

viii

Acknowledgements

I would like, first and foremost, to thank my wife, Vickie Blakeslee, for her patience,

encouragement, and support throughout the development of the ideas presented in this disserta­

tion. I would also like to thank my parents for their financial support, for always giving me the

freedom to choose my own directions and goals, and for having confidence in my abilities to

reach those goals.

Susan Graham was my research advisor for this dissertation. Her suggestions and insights

have significantly improved the quality of this research.

Thanks are also due to Paul Hilfinger, who served on my dissertation committee and read

my dissertation, and provided many useful comments on both the technical content and presenta­

tion of. the dissertation. Lucien LeCam also served on my dissertation committee, for which I am

grateful.

The following people provided assistance in the preparation of this dissertation, either by

reading and commenting on parts or all of the dissertation or by participating in discussions on

the topics discussed in the paper: Peter Kessler, Robert Henry, Kirk McKusick, and the members

of the PIPER group at Berkeley -Eduardo Pelegri-Llopart, Bob Ballance, Michael VanDe V anter,

Chris Black, Dain Samples, Charles Farnum, Bill Maddox, and Jacob Butcher. Their assistance

is gratefully acknowledged. Eduardo Pelegri-Llopart and Bob Ballance deserve special thanks

for their participation in many discussions with me.

This research was supported in part by a National Science Foundation Fellowship, by the

Defense Advanced Research Projects Agency (DoD), ARPA Order No. 4871 (monitored by

Naval Electronics System Command under Contract No, N00039-84-C-0089), and by a State of

California Micro Fellowship.

1

CHAPTER!

Introduction

'The term visibility control refers to the use of names in programming languages. The noun

"name" is used to denote many different things, but is used in this dissenation with a specific

meaning. A name is a unique representation of an identifier, label, or other character string used

in a program to denote some entity 1, such that all identifiers, etc., considered equivalent in a

language map to the same name. The actual representation of names is unimportant

A declaration is visible where the name introduced by the declaration can be used to denote

the entity created by the declaration. The rules for visibility control in each language define:

• how names may be used in that language, including what constitutes a legal name.

• what any name means in any possible context.

• the significance of a declaration of an entity and its effect on the use of names.

• how entities may be named (referenced).

These rules are sometimes called scoping rules. To avoid any possible confusion of terminology

later in the dissenation, we refer to these rules as visibility control rules, or simply visibility rules.

The visibility control rules are a significant part of a language. They affect the style in

which a programmer writes a program, particularly the modularity of a program. They determine

to some extent how difficult it will be to express a concept or problem solution in a particular

programming language. Poorly-designed visibility rules can make programming clumsy and

error-prone, while well-designed visibility rules make building a correct program easier.

A language designer must define the visibility control rules of his or her language, either

formally or informally. A language implementor must have a good grasp of the language's visi­

bility rules in order to implement them correctly. Overly complex visibility rules can make the

task of both language designers and implementors much more difficult

A good understanding of the fundamental concepts of visibility control would be of value to

language designers, implementors, and users. However, very little work has been done with the

goal of improving this understanding. Most efforts at description of visibility rules have been ad

hoc, varying from one language to another and from one·specification to another. Several dif­

ferent models of visibility control have been used, but most have been implicit, with little under­

standing of the ramifications of the use of each model. The primary goal of this dissertation is to

improve this situation, presenting a better understanding of the fundamental concepts of visibility

control.

Visibility rules in programming languages have perhaps not been studied much for several

reasons:

• The visibility control issues in a language usually do not appear very complex, although closer

examination would reveal otherwise.

• Programming language users can usually get by quite well with a simplified mental model of

the visibility rules of a language, avoiding needing to know all of the ramifications and

1 Precisely what is meant by "entity" will be defined later.

2

subtleties of the rules, or even that such subtleties exist. So, they often can ignore these issues

(until a problem arises).

• Language designers are often more concerned with how various visibility control features can

be used than with the underlying concepts or with ease of understanding. Language designers

have also been known to place more emphasis on implementation details than clean language

design, negatively affecting the visibility rules of their languages.

Although the visibility control rules of a language may seem simple, they often contain

complexities and subtleties that only become apparent through close examination. Language

features for visibility control that appear the same are often subtly different. Such differences

may be easy to overlook, but significant enough to result in an illegal program, or worse, a legal

program that produces unintended results. For each such language feature, there are probably as

many different versions as there are languages that include the feature. Many of these subtleties

were not discovered until this research was well underway.

Differences in a specific visibility control feature from language to language also make visi­

bility rules much more difficult to specify, because it is difficult to define a set of primitives that

will suffice for all languages. This usually results in high-level specification methods that are

incomplete, or very low-level specification methods that provide little help for the specific prob­

lem of specifying visibility rules.

1.1. The Inheritance Graph Model

The Inheritance Graph Model was developed by the author to specify visibility control

rules and improve the understanding of visibility control in programming languages. The Inheri­

tance Graph Model is a natural and general model of visibility control that is useful for a wide

variety of purposes. It pennits the direct representation of the actual structure of visibility in a

program, free from implementation or other details that might detract from the expression and

understanding of the fundamental concepts of the visibility control features of a language. The

greatest asset of the Inheritance Graph Model is its construction from a few very general basic

concepts:

• name-entity bindings.

• visibility regions: a visibility region is an area of a program over which visibility is constant; it

may or may not coincide with a "scope." A visibility region is represented by a vertex in an

inheritance graph

• multiple visibility classes: used to distinguish different visibility of a binding for different

kinds of references. The most common kind of reference is an ordinary reference in an expres­

sion. Another kind of reference occurs when prc;>eessing a declaration in Pascal: one must look

for another declaration of the same name in the same scope to detennine if the declaration is

legal. This reference is restricted to finding only declarations in the same scope.

• inheritance of visibility of a binding, with specified visibility classes, from. one visibility

region to another via inheritance edges in the inheritance graph.

• clash resolution: a general mechanism for specifying the result when two clashing bindings are

inherited by the same visibility region. In most languages, two bindings clash if they have the

same name, but the test may be more complex. Oash resolution is a general mechanism for

specifying shadowing and error checking.

The Inheritance Graph Model is very general: All visibility features considered can be

described using the basic Inheritance Graph Model. The Inheritance Graph Model can be used to

represent both lexical and dynamic inheritance of visibility from enclosing scopes.

The Inheritance Graph Model can also be used as a basis for implementation. A reasonably

efficient implementation of the visibility rules for a language can be generated from a

§1 Introduction

3

specification of the inheritance graph for the language. Data flow analysis is used to compute the

set of bindings visible at each vertex of the inheritance graph for a program. The Inheritance

Graph Model can also be used as a guide to hand-written implementations of visibility rules.

1.2. Previous Work

This discussion briefly discusses previous related work. More comprehensive discussions

appear at appropriate places in later chapters, and particularly in Chapter 9.

Formal Language Specification Methods

A number of specification methods applicable to programming languages have been

developed, including denotational semantics [Stoy 1977], various kinds of operational semantics

[Plotkin 1981; Wegner 1972], and attribute grammars [Knuth 1968].

The standard technique for defining visibility in all of these specification methods is to pass

around a large "environment" attribute in the grammar or rules used to describe the language.

The environment is manipulated in a procedural manner, although the manipulation may be

specified in a functional notation, as in denotational semantics. The semantics of the visibility

control rules of a language are embedded in these auxiliary environment manipulation pro­

cedures, which are not an embedded part of the specification. It is also often difficult to localize

the meaning of a visibility control construct in a single place: the effects of the construct may

affect many parts of the language specification.

Reiss's Models of Visibility Control

Reiss developed a formal model of visibility control, and a model of visibility control

embodied in a specification language used as a basis for the automatic generation of symbol

tables [Reiss 1983]. The specification language contains features that allow the description of a

fairly wide variety of visibility features, but the specification is declarative, with specific key­

words corresponding to specific choices in the visibility rules. If there is no combination of key­

words that corresponds exactly to the desired visibility rules, then those visibility rules will be

difficult or impossible to define using the specification language.

Reiss's models will be described in §3.5, and discussed more completely in §9.2.1.

Wolf's Model of Visibility Control

Wolf's work [Wolf 1985; Wolf et al. 1986a; Wolf et al. 1987] is more concerned with

language features for precise control of visibility of bindings than a general model of visibility

control suitable for easily describing a wide range of language features. However, his visibility

graph model does handle the constructs he was most concerned with (the provide and request

operations in particular).

Only a very simple example was given, but it appears that the descriptions of many visibil­

ity control features using Wolf's model will be very complex. The visibility graph model

requires that the global effect of each visibility construct be described, by creating edges between

declarations of bindings and scopes where those bindings may be used. In contrast, the Inheri­

tance Graph Model allows the effects of most visibility constructs to be described locally, with

respect to the immediate context of the visibility construct.

Wolf's models will be described in §3.6, and discussed more completely in §9.2.2.

1.3. Plan of the Dissertation

This dissertation is organized in rough correspondence to the historical development of the

ideas discussed in the chapters. This has been done in order to help the reader understand the rea­

soning behind the important ideas, instead of presenting them as if they had miraculously sprung

The Inheritance Graph Model §1.1

4

from some fount of knowledge. New ideas seldom develop this way; they usually result from a

long process of exploration that hopefully matures into a proper understanding of the concepts of

the problem at hand. Only then is a good solution usually possible. I have attempted to show a

little of this process, although of course the presentation is of necessity much idealized. This goal

is most apparent in Chapters 3, 4, and 5, which concern the factors affecting the design of a

model of visibility control Some earlier versions of models of visibility control and some blind

alleys followed are omitted due to the need for some coherence, and a desire to keep the disserta­

tion to a reasonable length.

An extensive and comprehensive survey of the visibility control features available in pro­

gramming languages is presented in Chapter 2, with the goal of understanding what is required of

a model of visibility control, and what the fundamental concepts of visibility control are.

Chapter 3 presents several models of visibility control, including models which have been

implicitly used by programmers and language designers without ever having been formally

stated, and formal models of visibility control that have been developed by others.

Chapter 4 presents the requirements for a general and natural model of visibility control,

based on the fundamental concepts of visibility control derived from an analysis of the language

features surveyed in Chapter 2. The available choices in the design of a model of visibility con­

trol are evaluated in Chapter 5, with the goal of determining what choices are important, what

choices should be abstracted out, and what the effects of the various choices are.

The Inheritance Graph Model is presented in Chapter 6. This chapter also includes exam­

ples of descriptions of most of the visibility control concepts described in Chapters 2 and 4.

Chapter 7 consists of an extensive example of the application of the Inheritance Graph Model to

the description of the visibility control rules of Modula-2.

Chapter 8 presents a method of automatically computing an assignment to an inheritance

graph, allowing resolution of references, based on data tlow analysis. It also discusses other

methods of implementation of visibility control rules, both automatic implementations from

inheritance graph descriptions, and hand-written implementations using the Inheritance Graph

Model as a guide.

The final chapter pulls together all of the main ideas discussed elsewhere in the dissertation,

and discusses some other important issues that do not merit an entire chapter. It describes several

potential uses of the Inheritance Graph Model. Chapter 9 also contains a more extensive com­

parison of work related to the research presented in this dissertation. Several language design

issues are described, along with some suggestions for making the visibility control rules of

languages easier to specify, implement, and understand. A venues for further research in this area

are also described.

§1.3
Plan of the Dissertation

5

CHAPTER2

Survey of Visibility Control in Programming Languages

Programming language designs exhibit a wide variety of choices of visibility control rules.

These choices are important not only because they greatly affect how a programmer uses a partic­

ular language, but also because they affect the implementation of translators (i.e., compilers and

interpreters) for the language, in particular the implementation of the name-resolution mechanism

in the translator (often called the symbol table).

The purpose of this chapter is to describe the various visibility control features found in a

variety of programming languages, especially those that concern the declaration and referencing

of entities. Two different models of visibility control are introduced, and one of them is used

throughout the chapter to help explain each visibility control feature as it is presented.

This is intended to be a comprehensive survey, covering some fairly complex visibility con­

trol features. However, in order to ensure a common base of knowledge with our readers, we2

will take a somewhat historical approach, first presenting a few simple examples illustrating the

progression from very basic visibility control capabilities to more complex and powerful ones.

We will then carefully define our terminology to avoid potential confusion. Only then will we be

able to explore some of the interesting but complicated visibility features found in more recent

languages.

2.1. Introduction to the Use of Names in Programming

A name is a unique representation of an identifier, label, or other character string used in a

program to denote some entity3, such that all identifiers, etc., considered equivalent by a language

map to the same name. The actual representation of names is unimportant.

A string of the form "A.B.C" does not normally correspond to a single name: rather, "A",

"B", and "C" correspond to separate names that together form a qualified reference, which will

be discussed in §2.6.2.

For the sake of exposition, identifiers will be used in examples in place of the corresponding

names, with the translation from identifier to name explicit. We use double quotes when we are

referring to an identifier (e.g. "ColorArray"). When referring to the entity denoted by that

identifier (or the name corresponding to the identifier), we use italics (e.g. ColorArray).

2.1.1. FORTRAN

We begin our discussion using fairly common, though imprecise terms. Once we have

presented a basic introduction of visibility control rules, we will move toward more precise,

though less familiar terms. A sequence of examples is used to illustrate the fundamental concepts

of visibility control.

2 A slightly different version of this chapter was co-authored by me and my research advisor, Susan Graham.

Thus, "we" in this chapter refers to the two authors, or is used in the all-inclusive sense. In other chapters, "we" is

used only in the all-inclusive sense.

3 Precisely what is meant by "entity" will be defined later.

6

Figure 2.1 contains a simple FORTRAN [ANSI 1966] program. The example reads a

number, computes its square and cube, and prints the resulL

Names are used primarily in two distinct ways in programs, illustrated by the uses of the

identifier "answer" in the main program in this example. The first use is in the declaration of the

real variable answer. This is called a defining occurrence of a name, or simply a definition,

because it is defining the meaning of the identifier "answer". The other kind of use is in the

write statement, where the value of answer is printed. This is called a reference occurrence of a

name, or simply a reference, because the identifier "answer" is being used to refer to the variable

defined earlier.

Names can sometimes be treated as objects themselves. In LISP [Clark and Weis­

man 1967], names can be manipulated just as any other value; for instance, they can be com­

pared to one another. However, this kind of usage is the exception rather than the rule in pro­

gramming languages, and we are most concerned with defining and reference occurrences of

names.

FORTRAN has very simple visibility control rules. There are only two kinds of declara­

tions: global declarations, visible or meaningful in the entire program (for instance square in the

example above), and local declarations, such as arg, visible only in the function or subroutine

where they are declared. Functions square and cube have distinct local variables, both named

"arg".

For historical reasons, identifiers in FORTRAN consist of at most six alphabetic or numeric

characters, the first of which must be alphabetic. Although the syntax of identifiers is not the cen­

tral issue in this paper, it is a factor in how the naming and visibility control features of a

real x, answer
read (5, 10) x

10 format (flO)
answer = square (x)
write (6, 20) answer
answer= cube (x)
write (6, 20) answer

20 format (lx, flO)
stop
end

function square (arg)
real arg
square = arg * arg
return
end

function cube (arg)
real arg
cube = arg * arg * arg
return
end

§2.1.1

Figure 2.1: A Simple FORTRAN Program

FORTRAN

7

programming language affect the user. In particular, the restricted identifier construction rule

visibility control rules for FORTRAN may limit the ability of the user to write understandable

and modular programs. All names in FORTRAN designate variables or subroutines. Variable

declarations are optional. The defining occurrence of a name may be the first reference to that

name. In that case, the type of the named variable is determined by the spelling of the name's

identifier.

2.1.2. ALGOL 60 and Block Structure

ALGOL 60 [Backus et al. 1960] was the first widely-known language to provide mechan­

isms for more precise control over the visibility of names. The concept of block structure was

introduced in ALGOL 60 to permit more modularity in the use of names. Block structure allows

finer control over the visibility of named objects than is possible in (say) FORTRAN. The

ALGOL 60 example in Figure 2.2 illustrates block structure.

This example illustrates again that names can be used to designate more than one kind of

object In this case, ''BlockStructureExample'' and "print" denote operations (both procedures),

and "varl ", "var2", and "var3" denote variables. "Bl" and "B2" name the blocks that fol­

low them.

Each block in this ALGOL 60 program is introduced by the keyword begin, and ended by

the keyword end. The defining occurrence of each variable is a declaration and the scope of the

variable name is the block in which it is declared. As this program illustrates, blocks may occur

inside one another in ALGOL 60. This is called nesting of blocks. A block is just another form

of statement, and may occur anywhere a statement may occur, so in principle blocks can be

procedure BlockStructureExample
begin

integer varl, var2; comment declarations of varl and var2;

varl := 0; var2 := 0;

Bl:begin
Boolean varl, var3;

varl :=false; comment reference to inner varl;

var2 := 1;
var3 := false;

end Bl;

print (varl); comment prints "0", not false:

print (var2); comment prints "1";
print (var3); comment illegal reference to var3 here;

B2:begin
integer var4, var5:

endB2
end

FORTRAN

Figure 2.2: Block Structure in ALGOL 60

§2.1.1

8

nested to an unlimited depth4• Nesting is the fundamental concept of block structure, because it

is the syntactic structure that makes possible the name control discussed below.

The example in Figure 2.2 illustrates how block structure makes it possible for a name to

denote different things in different parts of a program. There are two separate variables with

identifier ''varl'' in the procedure BlockStructureExample, an integer variable in the outer begin

... end block, and a boolean variable in the inner block B1. Within the inner block, a reference to

"varl" denotes the boolean variable, while outside the B1 (but still within the outer block),

''varl '' denotes the integer var 1. We say that the inner declaration of ''varl '' shadows or hides

the outer declaration of' 'varl'', and we call this process shadowing or hiding.

An inner block inherits visibility of all declarations visible in the block enclosing the inner

block, except those declarations shadowed by a declaration in the inner block. So, the assignment

"var2 := 1" in the inner block B1 modifies the variable var2 declared in the outer block, because

there is no (re)declaration of "var2" in B1.

Block structure provides several advantages. When writing a block or a procedure, a pro­

grammer is free to create local variables without concern that the new names are identical to

names used elsewhere in the program - they may be identical, but that is not relevant to the

correct foiiDation of the program. The other variables with the same name either will not be visi­

ble, or will be hidden by the new local declaration. Because of the automatic inheritance of non­

shadowed variables, the programmer can still reference non-local variables (this has disadvan­

tages also, to be discussed later). The use of local declarations also helps programmers to under­

stand a program - they can find the declarations of local variables more easily than those of glo­

bal variables, saving time and page-turning. If the procedure references no global variables -

only local variables and parameters - then the entire behavior of the procedure can be understood

by looking at the procedure alone.

Block structure also controls access to names. The variables declared within a block cannot

be referenced outside that block, so the programmer can be confident that changes to the values of

local variables of a block can occur only due to references within that block or by explicit passing

of variables as parameters to procedures or functions outside the block.

One of the early motivations for block structure in ALGOL 60 was the storage sharing it

provided [Baumann et al. 1964]. Storage for the local variables of a block can be allocated on a

run-time stack when the block is entered (activated), and deallocated when the block is exited.

Storage is allocated only for those blocks that are currently active. The stack storage area is

shared among the different blocks in a program. In Figure 2.2, the variables declared in block B 1

can share storage with the variables declared in block B2.

Despite its advantages over a "flat" name space with no locality, block structure has a

number of shortcomings. The most important one is a result of its unrestricted visibility- a name

declared local to a particular scope is visible at any point within all blocks nested within that

scope, no matter how deeply nested, unless a redeclaration of that name intervenes. Thus, a glo­

bal variable is visible in the entire program, even though its original intended use might be to

share data among only a limited set of procedures. The programmer has no way of preventing

other procedures from using or modifying the variable, and therefore must search the entire pro­

gram to understand completely how the variable is used. This and other disadvantages are dis­

cussed more thoroughly in [Clarke et al. 1980; Hanson 1981; Wolf et aL 1987].

Block structure also affects the efficiency of program execution. Block entry and exit may

require extra operations to maintain the state of the stack on which local variables are stored. On

4 Implementations of block-strucwred languages often limit the maximum nesting depth for ease or efficiency of

implementation.

§2.1.2 ALGOL 60 and Block Structure

' -...

....

9

the other hand, since local variables are usually referenced heavily [Shirnasaki et al. 1980], an

implementation can attempt to take advantage of this locality of reference by treating local vari­

ables specially.

2.1.3. An Ada Example

Our final introductory example (Figure 2.3) is part of an Ada5 program. Ada has block

structure also. Unlike ALGOL 60 blocks, however, the beginning of the (optional) declarations

section of an Ada inner block is marked by the declare keyword, before the begin keyword that

marks the beginning of the body of the block. In the example, the identifiers "A", "B", "C",

and "D" are used in similar fashion to the way they might be used in ALGOL 60.

Two new uses of names are illustrated in Figure 2.3. The identifiers "green", "amber",

''red'', ''blue'', etc. are called enumeration constants; they designate values rather than variables

or subroutines. They are members of the two enumeration types stoplight and color. In addition

the identifiers "stoplight" and "color" designate user-defined types.

block_1_1:
declare

A :integer,
type stoplight is (green, amber, red);
type color is (red, green, blue, yellow, orange);

ColorArray : array [1..10] of color,

begin
A:= 1;
ColorArray [A] := green;
block_2_1:

declare
B :integer,

begin
block_3_1:

declare
C :integer,

begin
A:= 1;
c :=2;

end block_3_1;
end block_2_1;

block_2_2:
declare

D :integer,
begin

D:=A;
end block_2_2;

end block_1_1;
Figure 2.3: Use of Names in Ada

5 Ada is a trademark of the United States Department of Defense.

ALGOL 60 and Block Structure §2.1.2

10

Another facet of this example is the multiple use of a single name in the same block. For

example, the identifier "red" is declared both in the type stoplight and in the type color. In

many languages (ALGOL 60, for one), this would be an error. It is not an error in Ada, however.

Ada permits overloading; a name can denote more than one object at a single place in a program

(as distinguished from the ALGOL 60 example, where a single name could denote different

objects, but only in different parts of the program). The context of the name's use determines

which object is being referenced by the name. For example, since the elements of the array are of

type color, the occurrence of green in the assignment to ColorArray[A] designates a color value

rather than a stoplight value.

The final item of note in this example is the declaration of the array variable Color Array.

In this declaration, an array type is created without an explicit declaration of that type, and

without giving that type a name. That is the only way that arrays can be created in FORTRAN or

in ALGOL 60. However, this is called an anonymous type in Ada, since the possibility also

exists that types can be named. The example illustrates that not all objects of a language need

have names.

The examples given so far illustrate only a small selection of the variety of naming and visi­

bility control rules introduced by language designers. In fact, we have not even summarized

completely the visibility control rules of FORTRAN, Ada, or ALGOL 60. However, in order to

continue, we need to introduce more precision and detail.

§2.2 describes bindings: the association of names with entities upon declaration. §2.3

describes scopes, and how they are used. In §2.4, we discuss declarations and how they affect

visibility. §2.5 discusses visibility, and how the entity referred to by a name is determined.

Some of the various forms of explicit scope control are discussed in §2.6. §2.7 discusses miscel­

laneous language features which are concerned with visibility control.

Examples are presented in Ada or Pascal when possible. Examples not expressible in Ada

or Pascal are presented in extensions to these languages or in a pseudo-language whose semantics

either are obvious or are explained in the text

This paper does not attempt to discuss language features other than those directly related to

visibility control rules. Sources of collected, more general information about other aspects of

programming languages include [DeRemer et al. 1979], [Wexelblat 1981], [Pratt 1984],

[Tucker 1977], [Higman 1977], [Barron 1977], and [Feuer and Gehani 1984].

Languages considered in compiling this discussion of features include those listed in Table

2.1 (in alphabetical order), though the discussion is not explicitly limited to these languages.

When we mention LISP without mentioning a specific dialect, we are referring to a traditional,

interpreted LISP such as LISP 1.5 [Clark and Weisman 1967].

2.2. Binding Names to Entities

At any instant of time, an executing program is in a certain state, consisting of the current

values of its variables and other objects in its executing environment. An executing program

changes and accesses its state explicitly by assigning values to and reading values from variables,

and implicitly by evaluating control statements and expressions6.

A name may be used in a program in order to denote the value of a corresponding variable,

providing access to the program state. It may be used by the programmer to change the program

state by assigning values to variables. As discussed earlier, names are also used to reference

6 Some languages, for instance FP, have no notion of programmer defined variables [Backus 1978]. Neverthe­

less, executing programs in these languages do have execution state, but this state is only changed implicitly by actions

such as expression evaluation, and can neither be accessed nor changed by the programmer.

§2.1.3 An Ada Example

Langua~e

Ada
ALGOL60

ALGOL68
Alp hard
APL
Basic
Bliss
c
CLU
COBOL
Common Lisp
EL/1
Euclid
FORTRAN
Icon
L
LISP
LISP Machine LISP

Mesa
Modula
Modula-2
Pascal
Plain
PL/1
PROLOG
Rigel
Scheme
SETL

Simula 67

Small talk
SNOBOL
T

TEMPO

Reference(s)

[USDoD 1983]
[Backus et al. 1960]
[Baumann et al. 1964]
[Van Wijngaarden 1976]
[Wulf et al. 1976]
[Iverson 1962]
[Kemeny and Kurtz 1964]
[Wulf et al. 1971]
[Kernighan and Ritchie 1978]
[Liskov et al. 1981]
[USDoD 1961]
[Steele Jr. 1984]
[Wegbreit 1971]
[Lampson et al. 1981]
[ANSI 1966]
[Griswold and Griswold 1983]
[Connack 1983]
[Clark. and Weisman 1967; Fox 1960]
[Weinreb and Moon 1981]
[Symbolics, Inc. 1986]
[Mitchell et al. 1979]
[Wirth 1977]
[Wirth 1982]
[ANSI 1983; Jensen and Wirth 1974]
[Wassennanetal. 1981]
[ANSI 1967]
[Clocksin and Mellish 1981; Roussel 1975]
[Rowe et al. 1981]
[Steele Jr. and Sussman 1978a]
[Dewar 1979; Schwartz 1971; Schwartz 1973]

[Schwanz et al. 1986]
[Dahl and Nygaard 1967; Dahl and Hoare 1972]

[Birtwistle et al. 1973]
[Goldberg and Robson 1983]
[Maurer 1976]
[Rees et al. 1984]
[Rees and Adams IV 1982]
[Jones and Muchnick 1978]

Table 2.1: Languages Included in This Survey

11

entities that may have no run-time representation, such as types, to denote operators or other

computational objects such as procedures and functions, or to denote values, as in defined con­

stants.

The use of symbolic names to denote variables is not absolutely necessary; the programmer

could use memory addresses on the underlying machine. Symbolic names are for the

programmer's convenience, and date back to the first interpreters and symbolic assembly

languages. Their use frees the programmer from many low level programming details. If well

chosen, the names also provide a modicum of abstraction and self-documentation.

Binding Names to Entities §2.2

12

An entity is any conceptually separate program object, or a descriptor thereof, that may pos­

sess attributes that affect the semantic correctness of a program - for example, a type, a constant,

a variable, a field in a record, or a routine. Most importantly, an entity can be bound to a name,

which can then be used to reference the entity. Whether an entity is better considered as an

object or a descriptor depends on whether the process of resolving a name to an entity is dynamic,

where a name is usually resolved to a specific storage location, or static, where a name is resolved

to a descriptor, which may represent a compile-time concept such as a type, or an object such as a

variable declared within a recursive routine which may have many instances active in any partic­

ular program state. In the latter case, the entity represents a class of run-time objects. There must

be a separate mechanism to map correctly from the entity to the appropriate instance of that

entity. In the case of the local variable of a recursive routine, each new instance of the variable is

allocated on a stack, and a run-time access method must find the correct instance on the stack.

In a compiled implementation of a language, each entity is usually described by a separate

entry in the symbol table, which records its attributes. For example, if a record type is declared,

the corresponding symbol table entry includes the names and types of its fields (or pointers to the

separate entries for the fields), information about variant parts, if present, and default values, if

any. The definition of an entity is of necessity somewhat vague, because slightly different

definitions of an entity may be desirable in different contexts, for instance for use in describing

different languages.

The specification of a programming language must define how names are bound (mapped)

to the corresponding entities and their values. This binding process may be conceptually factored

into one or more steps. What these steps are vary according to personal taste, the language under

consideration, and even the implementation of that language.

We use the Ada example in Figure 2.3 to illustrate the meanings of the different steps in

mapping from a name to a value: Consider the assignment of the value 1 to the variable A in

block_l_l in Figure 2.3. The first step binds the name corresponding to ''A'' to the entity for the

variable A. That entity has the attribute that its values are integers.

Another attribute associated with the entity is an access method that defines how to find the

correct storage location at run-time. The access method may simply return a storage address, for

statically allocated variables, or a stack offset for local variables in a simple block-structured

language. The access method may be a more complicated search procedure. The second step

uses the access method to find the storage location. The third and final step binds the storage

location to a value (i.e. a memory access).

For the reference to the type color in the declaration of ColorA"ay, the first step is the

same: the name "color" is bound to the entity for the type color. However, the similarity ends

there- the type color has no access method, run-time storage location, or run-time value associ­

ated with iL For a function, its code segment could be regarded as its value.

In general, this binding process varies for different classes of entities, languages, and imple­

mentations. In a compiled implementation of a language, the binding steps described above for

the variable A would usually be appropriate for variables. The first step of variable binding

would occur at compile time, the access method to storage location binding at load time or run­

time, and the final step - producing a value - at run-time. For constants, all steps can often be

done at compile time. In some languages and implementations, it is more convenient to identify

an entity with a single storage location, so the first two binding steps described above are col­

lapsed into a single run-time step.

This dissertation is primarily concerned with the first step of the binding process: that from

names to entities. This is the step with which visibility control rules of programming languages

are concerned. Programming language users must understand this step in order to understand the

meaning of their programs. This is the step handled by symbol tables (also known as declaration

§2.2 Binding Names to Entities

13

tables or name tables) in many conventional implementations of translators.

We will not discuss the issues of run-time organization and entity-object binding further. In

their example language TEMPO [Jones and Muchnick 1978], Jones and Muchnick give a good

presentation of the different stages of binding that occur, when they can occur, and how they

affect a language implementation. Schwanke [Schwanke 1978] also discusses entity-object

binding.

2.2.1. Declarations

In many languages, the association between a name and an entity is established by a

declaration. The declaration of a named entity within a program can itself be divided into two

major steps:

(1) Entity Definition: an entity is created, with attributes describing its characteristics.

(2) Binding: a name is associated with the entity. For instance, in a type declaration the name

of the type is bound to the entity describing the type. A binding is a pairing of a name with

an associated entity. This step is omitted if the entity is anonymous (unnamed). For exam­

ple, in Ada or Pascal, an array type may be described as an attribute of a variable or another

type and never associated with a name. Note that the word "binding" is used both as a

verb and as a noun. From this point on, the noun "binding" will only be used to mean a

name-entity binding, unless otherwise noted.

When these steps occur depends on the precise definition of an entity in a language. If an entity

is a descriptor for a compile-time object or for a class of run-time objects, and the effects of a

declaration on visibility can be determined statically, then the two steps of a declaration can be

done statically at compile time. If an entity is a run-time object, then the two steps must be done

dynamically at run time.

We use the Ada example in Figure 2.3 to illustrate the two steps of a declaration: For the

first declaration in Figure 2.3, the new entity (call it e 1) has attributes stating that it is a variable

with values of the predefined type integer. The binding step associates the identifier "A" with

the new entity e 1• For the declaration of stoplight, several entities are involved. First, entities are

established for each of the enumeration constants (green, amber, and red), and the appropriate

name (for example ''green'') is bound to each entity. After all of the bindings for the constants

are established, an entity that refers to the bindings of green, amber, and red as its member con­

stants is created for the enumeration type and bound to the name ''stoplight''.

Tile declaration of the enumeration type color is handled the same way. Remember, how­

ever, that this declaration causes the names corresponding to "red" and "green" to be over­

loaded. This fact does not affect the entity creation step - new entities are created for the con­

stants red and green, and the names "red" and "green" are bound to these new entities.

For the more complex array declaration, more than one entity is involved. The first entity

(call it e~ is the subtype of integer with a range from 1 to 10. This is an anonymous type

(remember that an anonymous entity is one having no name), so there is no binding step for e2.

The second entity (call it e 3) associated with the array type declaration defines the array type

itself. Its attributes state that it is an array with elements of type integer, and with index type

described by entity e2• Finally an entity (call it e.J defining the variable whose type is described

by e 3 is created, and the name corresponding to ''ColorArray'' is bound to e4•

An entity definition usually results from a programmer-written declaration, although that is

not always the case, as with implicit declarations in FORTRAN. Tile two stages in entity

declaration may occur at different times, depending on the language or the language translator,

and such concerns as ease of implementation and the efficiency of the resulting implementation.

Binding Names to Entities §2.2

14

Most languages predefine some entities, which are predeclared by the translator before

beginning compilation of a program. An example is the predefined type integer in Pascal and in

many other languages. Language-defined mathematical function libraries are another example.

In languages such as ALGOL 60, ALGOL 68, Pascal, and Ada, all other programmer-referable

entities must be explicitly declared by the programmer. In FORTRAN and PL/1, an attempt to

reference an unbound name as a variable will result in an implicit declaration of an entity with

default characteristics, and the binding of the name to that entity.

Programming language implementations usually define entities at the earliest possible

stage, for efficiency. For ALGOL-family languages, entities are usually statically defined,

because the rules of the languages are defined so that all entities depend only on information that

can be computed at compile time. Thus, all processing of declarations and resolving of refer­

ences can be done at compile-time. The processing of declarations and references could be done

at run-time, but there is little reason to do so, and the programs would run much more slowly. In

languages that are traditionally interpreted, such as SNOBOL and LISP, run-time creation of

identifiers (and thus names) is permitted, so at least the binding step must be done at run-time in

some cases.

2.3. Scopes

The word "scope" has multiple meanings in the computing literature. The "scope" of a

binding usually refers to the range of program text over which the bound name has a certain

meaning. In contrast, the word ''scope'' is also used to refer to a syntactic unit. such as a block, a

procedure, a record, or a module. As discussed in the introduction, the term '' scoping rules'' is

often used instead of visibility control rules. Fortunately, the meaning is usually clear from the

context. To avoid confusion, we will use the term range for the former meaning of scope: the

range of a binding encompasses all points in a source program where the name component of the

binding can refer to the entity component of the binding. We will use the term scope to denote

syntactic units as described above. Our choice of terminology is different from that in

[Schwanke 1978], another paper what discusses some of the same issues. ALGOL 68's usage of

the terms "scope" and "range" is the reverse of our usage. We feel that our definitions of scope

and range are more intuitive.

In this section, we define precisely the meaning of scope, along with the associated termi­

nology.

Scopes provide environments for declaring and referencing bindings. Programs in some

languages (for example Basic) consist of only a single scope, and thus have only a single name

space. FORTRAN programs have two levels of scopes: local and global. All variables are

declared in local scopes, and all common-block names and subprogram names are in the global

scope. Entities declared in a local scope can only be referenced within the same subprogram,

while entities declared in the global scope can be referenced within any subprogram. No nesting

of scopes is allowed. Most modem programming languages permit the programmer to define any

number of scopes, using the above-mentioned syntactic structures, as well as others. As illus­

trated in the ALGOL 60 and Ada examples, a scope may be nested within other scopes.

We illustrate some of the terminology of scopes with the Ada example in Figure 2.3:

• Given a scopeS, an inner scope is any scope R textually contained entirely between the delim­

iting brackets ("begin ... end", "procedure ... end", etc.) of S. R is said to be contained

within S or nested within S. In the example, block_2_1, block_2_2, and block_3_1 are inner

scopes of block_ I_!, and block_3 _I is also an inner scope of block_2_1. An inner scope is

sometimes called a subordinate or inferior scope.

• An outer (enclosing) scope of Sis any scope R whose delimiting brackets surroundS. R is said

to contain S. In the example, block_I_J is an outer scope of block_2_1, block_2_2, and

§2.2.1
Declarations

15

block_3_1.

• A directly enclosing scope of Sis the scope which encloses S, but which does not enclose any

other scope which encloses S. block_1_1 directly encloses block_2_1 and block_2_2, but not

block_3 _1. An outer scope is sometimes called a dominant or superior scope.

• A scope R is directly contained within S if S contains R, and S does not contain any scope

which also contains R. block_3_1 is directly contained within block_2_1.

• A declaration local to a scopeS is a declaration located within S, but not within any scope con­

tained within S. A scope directly contained within Sis also said to be local to S. In the exam­

ple, B and block_3 _1 are local to block_2_1. Declarations global to S are declarations in

scopes enclosing S. All names except C and D are global to block_3_1, assuming there are no

other declarations of C.

• The global scope is the outennost scope of a program, and the global declarations of that pro­

gram are those occurring in the global scope. Note that these uses differ from the previous use

of the tenn "global", in that "global scope" and "global declarations" are absolute tenns,

and ''the declarations global to a scope S'' is relative. The uses are related, but different in an

important way.

• Two scopes are parallel to each other if they are directly contained within the same scope.

block_2_J and block_2_2 are parallel scopes.

Scopes perfonn a number of functions:

• Scopes provide the basis for grouping declarations and the associated bindings. A declaration

local to a scope S (sometimes called a local declaration) is associated with S. A scope S intro-

duces a contour Cs that is the local environment associated with and defined by S 7
• Associ­

ated with Cs is a set of bindings corresponding to declarations local to S, and other bindings

explicitly made visible within S (to be discussed in later sections). This set of bindings is the

primary component of the local environment of S. We use much of the same tenninology for

contours as for scopes, such as inner and outer contours, parallel contours, etc. Contours were

introduced by Johnston [Johnston 1971] in a model for run-time storage allocation in block

structured languages. Our use of the tenn ''contour'' is similar to his; his contours contained

name-storage cell bindings, ours contain name-entity bindings. The difference is that we

extend our use of contours to cover scoping disciplines other than block structure, and we are

less concerned with run-time issues.

• Scopes provide the basis for name resolution - that is, for detennining which entity is bound to

a name. Name lookup can usually be done (conceptually) by searching the contours of one or

more scopes for a binding of that name. This issue will be discussed in §2.5.

• Scopes limit visibility for local bindings. Entities may be declared close to the point of use,

and the limited visibility helps prevent interference with other uses of the same name.

• Scopes provide the basis for block-structured storage allocation. A simple block-structured

language is one having nested scopes which can contain local variable and ·routine declarations.

In an implementation of such a language, entry of a scope at run-time causes allocation of all

entities declared within it, and exit of the scope causes deallocation of those entities. The

stacking of scopes leads naturally to a simple and efficient storage allocation method. As illus­

trated in §2.1.2, the storage sharing between parallel blocks was one of the justifications for

7 This is actually a simplification: a scope may have several contours associated with it. In a language where de­

clarations must precede references, the visibility control rules are described most easily by associating each declaration

with a new contour, with that contour containing only the bindings resulting from that declaration, and inheriting visi­

bility from the contour associated with the preceding declaration.

Scopes §2.3

16

nested blocks in ALGOL 60 [Baumann et al. 1964]. Run-time allocation (the lifetimes of

run-time entities) is related to compile-time naming and and the ranges of names, but there are

different issues involved. This dissertation is primarily concerned with ranges and scope, not

with run-time allocation, so the latter will not be discussed further.

• In many languages scopes can be named. For example, in Figure 2.3, block_l_l names the

outermost scope. In certain cases, named scopes provide an access path to the declarations

immediately within a particular scope. The most common manifestation of this kind of expli­

cit access is with records, as in Pascal. For example, given the Pascal declarations in Figure

2.4, one can reference the day field of today with the notation "today.day", even though the

name "day" is not visible outside the record scope. Using the name "today" to name the

record causes the current referencing environment to be that described by the record type

today. In Modula, one can refer to bindings within modules in the same manner one refers to

bindings (fields) within records. Bindings created in a subprogram in Ada can be referenced

with this ''dot'' notation also, though the reference has to be contained within that subprogram

scope. When calling a subprogram in Ada, the parameter names can be used within the

environment of the call (within the actual parameter list), though they are not otherwise visible

outside the subprogram scope.

Block-structured scoping was one of the first major language features intended to aid in

structured programming [Dijkstra 1972a; Dijkstra 1972b]. The locality of reference it provides

allows programmers to choose distinct names for logically separate variables, and yet to reuse the

same meaningful names in different parts of a large program. More recently, some researchers

have questioned whether nesting of scopes is needed if named scopes exist [Clarke et

al. 1980; Hanson 1981; LeBlanc and Fisher 1979; Wolf 1985]. While block structure is histori­

cally very important, and still a very important feature of many languages heavily used today, it

has not been included in some of the newer languages. Other more powerful constructs (dis­

cussed later) that make block structure unnecessary are available.

In summary, scopes are (possibly named) syntactic entities, (possibly) containing the

declarations of other entities, and providing access to those entities.

2.3.1. Scope Disciplines other than Static Nesting

The previous discussion has been limited to nested scopes. A more general alternative

would be overlapping scopes. However, we know of no programming language that permits

overlapping scopes. The apparent consensus among language designers is that overlapping

scopes are neither necessary nor natural, so such scope usage will not be discussed further,

though overlapping scopes are covered by the model of declaration and naming considered in this

paper.

type Date=
record

end;

var today:

§2.3

day
month
year

Date;

:integer;
: 1..12;
:integer;

Figure 2.4: Pascal Record Type and Variable Declarations

Scopes

17

One could consider a macro processor such as the one defined for the C language [Ker­

nighan and Ritchie 1978] to have overlapping scopes. A macro may be defined at any point in a

source file, and then undefined at any later point, so the range of any particular macro may be

viewed as defining a new scope, possibly overlapping the scopes defined by other macros. How­

ever, one may also view the entire source file as a single scope for which macro definitions may

be both added and removed. SETL has a similar capability, though with an important difference:

The macro language for C is actually quite separate from the language C itself, and simply allows

the programmer to substitute arl:>itrary chunks of (parameterized) text for each macro call. How­

ever, the macro language for SETL is very closely tied to the rest of the language- macro bind­

ings obey the same scoping rules as any other entity, except that a macro binding can be removed

at arbitrary points in the source program.

2.4. Visibility Rules and Declarations

The visibility rules of a language define which name-entity bindings are visible - that is,

can be referenced- at a particular point in a program. Alternatively, one can say that they define

the range of each binding. Visibility rules may be quite complicated; they vary greatly from

language to language. But, before discussing how to find entities corresponding to a name, we

must describe how names and the entities to which they are bound are made visible.

2.4.1. Locations of Declarations

An important determinant of the visibility of a binding is the location of its declaration in

the text of a program. An attempt to declare an entity occurs at a particular point in a program.

That point may in general be within one or more nested scopes, and there may be other scopes

that do not contain the point of declaration. It was stated in §2.3 that the declarations contained

within a given scope can be viewed as creating a set of bindings associated with that scope's con­

tour. However, things are not quite as simple as they seem, because the contour to which a

declaration should be added may not be the innermost enclosing contour, though this is usually

the case. For instance, in PL/1, implicit declarations are added to the outermost contour. In Ada,

labels are implicitly declared in the contour associated with the innermost enclosing subprogram

package, or task body, although there may be other declaration scopes (blocks) intervening.

In general, a language specifies rules for deciding to which contour a binding should be

added. In all the languages considered, the rules can be written in the form:

"Add the binding to the innennost enclosing contour (starting with the current contour) satisfy­

ing predicate P."

P is usually the constant (trivial) predicate "true". That is, declarations are usually added to the

current (most local) contour. In PL/1 the predicate for implicit declarations is "contour for bind­

ing = global contour," meaning that all implicit declarations occur in the outermost scope. P

may depend on some property of the entity being declared.

2.4.2. Adding Bindings to Contours

Once the proper contour is found, the binding must be added to the contour's set of bind­

ings. For each language there are rules describing what happens when an attempt is made to add

a new binding to the set of bindings of a given scope. Four different actions are possible when an

attempt is made to add a binding to the set of visible bindings in a scope, and the new binding's

name is already visible in that scope:

Shadowing
The new binding shadows any other potentially visible binding of the same name, and

becomes the only visible one.

Scope Disciplines other than Static Nesting §2.3.1

18

Overloading
The new binding overloads another binding (or bindings) of the same name. Overloading

occurs when one name is bound to more than one entity, and more than one of these bind­

ings is visible at the same point in the program. When overloading occurs, additional

semantic information must be used to distinguish among the bindings. Ada is one language

that permits overloading.

Reference
The new declaration is only a completion of an earlier declaration, and the new declaration

is a reference to the old one. An example is the completion of a forward routine declaration

in Pascal.

Error
A binding already exists that cannot be hidden, overloaded, or referenced by the new bind­

ing, so the new binding is not legal. This situation occurs most commonly when an attempt

is made to declare the same name twice in the same scope in a language which does not

support overloading, for example in ALGOL 60 or Pascal.

Shadowing was illustrated by the ALGOL 60 example in Figure 2.2. The Ada example in that

section introduced the notion of overloading. The following example further illustrates these four

possible actions.

The example in Figure 2.5 is standard Pascal, except for the presence of multiple declara­

tions of the function times, which will be discussed shortly. The reader should assume that the

declarations shown are the only declarations, except for the declarations of the types Array and

Vector. Then, the first function declaration is a new declaration. Note also the presence of the

forward keyword, denoting in Pascal that this is an incomplete declaration. The next function

declaration has the same name. so two different actions are possible here, depending on the rules

of the language: If overloading of functions is allowed, which is not legal in Pascal, then the new

declaration of ''times'' overloads the previous one, because its formal parameters have a different

type from those of the first declaration. If overloading is not allowed, as in standard Pascal, then

the new declaration is not legal, and causes an error.

The third declaration of "times" has a function heading identical to the first declaration, so

by convention it is a completion of the first declaration of "times". The new declaration is a

reference to the old one.

function times (a 1, a2 : Array) : Array; forward;

function times (v 1, v2 : Vector) : integer;
begin

-- body of function to compute dot -product of two integer vectors

end;

function times (al, a2: Array): Array;
begin

- body of function to multiply two square arrays
end;

Figure 2.5: Example of Different Possible Actions for a Declaration

§2.4.2 Adding Bindings to Contours

19

If the name is not visible already and the declaration is otherwise legal, the binding is nor­

mally added to that contour.

The visibility control rules of a language determine into which of the above four cases a

new binding falls. Deciding into which of the four declaration classes a new binding falls may

involve only examining the current scope, or it may involve a full search for bindings of the same

name. In Pascal and ALGOL 60, we need only examine the current scope, since a new declara­

tion will hide any binding with the same name in an outer scope. In Euclid and in some other

languages, an attempt to redefine (shadow) a visible binding is an error, so it is necessary to

search for other bindings of a name when attempting to add a new binding of that name to a

scope. For example, the scope structure in Figure 2.6 would be legal in Pascal, but illegal in

Euclid.

2.4.3. Order of Declarations and References

Many more recently designed languages which require explicit declarations also require

that a declaration of a name textually precede any reference to that name. Standard Pascal is an

example of such a language. Originally, Pascal did not have this restriction. For example, nei­

ther the technical report describing revised Pascal [Wirth 1972] nor the Pascal report published

by Jensen and Wirth [Jensen and Wirth 1974] require declaration-before-use. However, it

appears as an implementation restriction for the CDC6000 compiler [Wirth 1972, p. 40] and as

part of the Pascal User Manual [Jensen and Wirth 1974, pp. 8,18] and came to be incorporated in

the language definition [ANSI 1983; ISO 1980]. The visibility rules for ANSI/ISO Standard Pas­

cal will be assumed in all further discussions of Pascal unless otherwise noted.

Pascal and some other languages ease this restriction slightly to allow for mutually recur­

sive types. The example in Figure 2.7 illustrates two such types, intended to define alternating

elements of a list: a NodeOne, then a NodeTwo, then a NodeOne, and so on. Since each type

must contain a reference to the other type, each must follow the declaration of the other according

to the declaration-before-use rule, which is impossible. This dilemma is avoided by allowing

pointer declarations to reference types not yet declared, as shown in the example.

The same problem arises with mutually recursive routines. The usual solution is to separate

the declaration of the routine heading (i.e., its interface information) from the presentation of its

body. In Pascal, this separation is done by means of a forward declaration, as shown in Figure

2.5.

Another option for the allowable order of declarations and references is illustrated by PL/1:

In PL/1, a declaration can appear anywhere within the body of the program, even after references

declare
a: integer,

begin
declare

a: integer;
begin

end;

end;
Figure 2.6: Shadowing of Outer Bindings

Adding Bindings to Contours §2.4.2

20

type NodeOnePtr = iNodeOne;
NodeTwoPtr = iNodeTwo;

NodeOne=
record

end;

NodeTwo=
record

end;

{ ... data fields . . . }
next : NodeTwoPtr,

{ ... data fields .. . }
next : NodeOnePtr,

Figure 2.7: Mutually Recursive Types in Pascal

to that declaration. The impact of this feature upon language processors is to force all declara­

tions in a scope and all enclosing scopes to be processed before any references in that scope can

be processed. The declaration-before-use restriction helps to make one-pass semantic analysis

possible - this was one of the major reasons for its introduction (note the progression of the

declaration-before-use restriction in Pascal from an implementation restriction to a part of the

language definition). An advantage of declaration-before-use is that sequential reading of a pro­

gram is easier, since declarations are encountered before uses. Unfonunately, this restriction also

forces the main body of a program to be at the end of the program text, which has disadvantages

for readability. Such programs tend to appear in "reverse order", with the highest level pro­

cedures occurring last. The underlying problem is that requiring declaration-before-use results in

overspecification: an order is required that has no real meaning to the programmer.

There is a subtle interaction between declaration-before-use and shadowing (hiding) in a

language. Since a local binding binMr is visible only after the point of its declaration, it is not

obvious at what point an outer binding bouter of a name ''N'' shadowed by another binding binner

of "N" becomes shadowed. One possibility is that bouter is visible up to the point of binner 's

declaration, either to where binMr becomes visible, or to the beginning of binMr's declaration, as is

the case in Ada. The other possibility is that bouter is only visible up to the beginning of the

scope in which binmr is introduced. The latter choice is the one made in Pascal. Thus, even

though a declaration is not visible until after its declaration, it has an effect throughout the entire

scope: shadowing bindings in an outer scope.

This issue illustrates another disadvantage of declaration-before-use: continuing the same

Pascal example, a reference to "N" occurring in binMr 's declaration scope, but prior to binMr 's

declaration, is illegal, but can't be detected by a one-pass compiler until the declaration of binMr

is encountered.

2.4.4. Static vs. Dynamic Name Creation

Identifiers (and thus names) are most commonly created statically by the programmer (by

writing them in a program). In SNOBOL, they can be created dynamically (at run-time), using

the language's string operators, and then used to declare or reference entities. This can also be

done in LISP, because symbol table operations are accessible from within LISP programs.

§2.4.3 Order of Declarations and References

-
declare

foobar : integer,
sl, s2, s3: String; --type String declared in an outer scope

begin
sl := 'foo';
s2 :='bar';
s3 := sl catenate s2;
$s3 := 5; --assignment to foobar (using SNOBOL syntax for indirect reference)

end;
Figure 2.8: Dynamic Name Creation

21

Figure 2.8 illustrates how dynamic name creation might appear in a program. The advan­

tage of dynamic name creation is the additional flexibility and power it provides. A general facil­

ity for run-time creation and modification of programs requires it. One obvious disadvantage is

efficiency, because all binding of such names must be delayed until run-time. Some improve­

ment in efficiency can be gained by determining bindings at compile-time where possible, and

delaying until run-time where it is not possible. Of course, in some cases, run-time creation of

visible bindings may invalidate previously visible bindings. Another important disadvantage of

dynamic name creation, which applies also to other forms of run-time binding creation, is that it

becomes impossible to do complete compile-time type-checking and some other semantic check­

ing. A new class of run-time errors is thereby introduced. It is possible to encounter references

to unbound names, type mismatches, and other errors at run-time. Of course, many programmers

would rather live with these potential problems than give up the expressive power that makes

them possible.

Dynamic name creation is most often found in languages that traditionally have been imple­

mented with interpreters. The causality runs in both directions: dynamic name creation is easier

to handle in an interpretive system, because all of the necessary information is already present at

run-time. Thus, designers and implementors are more likely to add this feature to an interpretive

system, because it is easy to add and doesn't degrade performance significantly, whereas this

does not hold for a traditional compiled language system. In the other direction, the dynamic

name creation requires the a lot of information and analysis at run-time that otherwise would only

be necessary during semantic analysis, so it is usually easier to implement in an interpretive sys­

tem. Dynamic name creation seems to be more "consistent" with interpretive systems. How­

ever, a great deal of LISP work is now done using compiled code, but the dynamic name creation

facilities and other dynamic facilities are retained for use when needed. Good LISP compilers

can usually avoid the cost penalty introduced by the dynamic facilities except in the instances

where these facilities are actually used.

2.4.5. Static vs. Dynamic Creation of Bindings

Names can be bound to entities either statically or dynamically. In the extreme case all pro­

gram analysis can be intermixed with program execution. The motive for deferring binding to

run-time is so that it can vary depending on the execution of the program. LISP is the most popu­

lar language in which binding is typically deferred. Programs can add bindings to scopes or

remove them. Languages with dynamic name creation usually also have dynamic binding crea­

tion, and vice-versa, but this is not necessarily true. Some versions of PROLOG [Oocksin and

Mellish 1981;Roussel 1975] allow the programmer to add a binding ("assert a clause") and

Static vs. Dynamic Name Creation §2.4.4

22

remove a binding ("retract a clause") at run-time and to dynamically create names8.

2.5. Visibility Rules: Resolving References

The ultimate purpose of creating entities and binding names to entities is of course to be

able to reference those entities. We now describe, given an name reference occurrence at a par­

ticular program point, some of the ways of detennining to which entity that name refers.

A reference (an occurrence of a name "D") occurs at a particular point in a program,

immediately within some scopeS. Either a binding of "D" exists in the contour Cs associated

with S ("D" is bound in Cs), or no binding exists in C5 , in which case we say "D" is unbound

or free in C s , and we must look elsewhere to find a binding of '' D' '9.

We have previously defined the tenn "visible": A binding is visible where the name bound

by the binding can be used to denote the entity bound by the binding. Following Reiss's tenni­

nology [Reiss 1983], we say that a binding is directly visible where the bound name can always

refer to the bound entity, regardless of other bindings. Usually, a binding is directly visible in the

contour corresponding to the scope where it was declared.

The attempt to find bindings of a name "D" can be described in tenns of searching the con­

tours defined by a program's scopes one at a time, examining each contour's set of bindings in

tum for a binding of "D". We call this model of binding resolution the Search Model. The

scope rules of each language define the order in which the contours must be searched. With this

model of name resolution, we don't need to know a priori in which scopes each binding is visi­

ble; rather, we just need to know where bindings are declared and which contours must be

searched when resolving a reference.

Each language imposes constraints on the order in which scopes must be searched for a

binding of the name (though order may be irrelevant in some cases). As stated earlier, a language

(for example Basic) may have a "flat" structure- that is, there is only one scope in which all

bindings exist, so that there is only one contour in which to look for bindings. The most common

underlying scheme is block structure: the contours containing the point of reference are searched

from innennost to outennost, and the innennost binding of the name is selected. If declaration of

the same name exists in two or more nested contours, then nonnally the inner declaration sha­

dows the outer one(s) for the range of the inner binding. A simple example can be found in the

innennost block (block block_3_1) in the Ada program in Figure 2.3 The name "C" in the

assignment "C := 2;" refers to the variable C declared in the local scope, and so a binding is

found in the local contour. The name "A" in the assignment "A:= 1;", however, has no bind­

ing in the local contour or in the immediately enclosing contour (block_2_1), but a binding is

found in the outennost contour (block_l_l). This is, in essence, the scheme adopted by ALGOL

60 and its derivative languages. However, the rules may require other contours to be searched

first10, instead of, or in addition to the enclosing contours.

An alternate point of view to doing name resolution by searching contours for one contain­

ing a binding of the desired name is to change the association of infonnation with contours.

8 Clauses in PROLOG are not quite the same as bindings as we have defined them in this paper. However, bind­

ings and clauses are related. A full discussion of the relationship is beyond the scope of this paper.

9 In most languages, if a binding exists in Cs for a reference of "0" immediately within S, then we need not

look for other bindings of "D" in other contours. This is not always true, however; in Ada it is sometimes necessary to

find all bindings of a name that could possibly be visible at the point of reference.

10 In Ada, when processing a package body, if a referenced name is not declared within that body, the package

specification's contour (a parallel contour) must be searched before the contour enclosing the body's contour.

Modula-2 has a similar rule for definition and implementation modules.

§2.4.5 Static vs. Dynamic Creation of Bindings

23

Instead of just containing bindings for local declarations, let each contour contain the set of all

bindings visible within that contour. We can call this set of visible bindings the visible set, and

the resulting model of visibility control the Visible Set Model. So, in a simple block structured

language, the visible set for an inner contour would contain bindings for all local declarations

plus all bindings from outer scopes, except those bindings that are hidden by some binding in an

inner contour. Describing the visibility rules for a language using this model largely reduces to

defining the visible set for any contour11• It is still necessary to know the local bindings of a con­

tour in order to check for multiple declarations and to handle some other language features. The

Visible Set Model is better for describing certain types of visibility control features, but the

Search Model is simpler and probably easier to understand for most features, because it breaks

the name resolution process into two separate parts:

(1) Declaring entities and adding their bindings to contours.

(2) Searching contours for bindings of names.

Thus, for simplicity's sake, we use the Search Model in this chapter to describe visibility

control features. Fuller descriptions and discussions of these and other models of visibility con­

trol are in later chapters.

2.5.1. Closures

A closure is a function or procedure together with an associated environment - in the

Search Model, the environment consists of the contours that must be searched for bindings, the

order in which they should be searched, and any other necessary binding infonnation. Usually,

the environment is defined implicitly by the location of the function's declaration in a program

text. References to a functionfcan usually only occur in places where the environment in which

/is to be executed is still in existence. In this case, an explicit closure isn't necessary.

However, in languages in which functions are so-called "first-class citizens" -in which

their computation entities are values that can be assigned to variables and passed as parameters -

references to a function f can occur anywhere, possibly outside the textual scope in which f is

declared. In this case we must bundle fs environment along with f, sometimes at run-time, so

that whenfis called, its free references will be properly bound. An example is given in the next

section.

2.5.2. Lexical vs. Dynamic Inheritance

The order in which contours are searched nonnally is tied closely to a program's structure­

either its syntactic structure or its run-time structure. The fonner case is called static inheritance

or lexical inheritance12, because name resolution is done solely on the basis of the program's

unchanging (thus the word "static") lexical and syntactic structure. The latter case is called

dynamic inheritance13, because it is based on the changing (thus the word "dynamic") run-time

environment of a program.

The most common fonn of static inheritance is conventional block structure as described

earlier, the search is from inner to outer scopes based on the program's syntactic structure.

11 More precisely, one must define the visible set for any point in a program where a reference may occur.

12 These are usually called static or lexical scoping, but we have chosen not to use the term • 'scoping'' because it

is yet another use of "scope", and because it conveys little meaning in this case. The term binding is also used in this

context, as in "static binding".
13 or sometimes dyfli1111ic scoping or dyfli1111ic binding.

Visibility Rules: Resolving References §2.5

24

Dynamic inheritance is best illustrated by LISP [Clark and Weisman 1967]. In LISP, bind­

ing of variables is based on the order of function activations - contours for all functions activated

but not terminated are searched in reverse order of invocation until either a binding is found, or

all contours have been searched. Multiple activations of a function declaring a particular name

"D" may exist, but a reference "D" will always get the binding from the most recent activation.

Free references in a function f will not in general bind to the same instance of an entity on dif­

ferent invocations off

Other forms of run-time environment-based binding are possible, but this call-order based

binding is what is conventionally meant by "dynamic binding" or "dynamic scoping." When a

reference is resolved using dynamic inheritance, we say that the name is "dynamically bound."

If the reference is resolved using lexical inheritance, we say that the name is ''lexically bound.''

We illustrate this notion with the example in Figure 2.9. If static inheritance is used, then

the reference to A in procedure P will bind to the first declaration of A, in the textually enclosing

block. With dynamic inheritance, the reference to A in procedure P will bind to the declaration of

A in the most recently activated scope (at run time) containing a declaration of A. Since the order

of execution is: entry to the main program, followed by a call to Q, followed by a (nested) call to

P at label L2, the first time P is invoked the reference to A in procedure P will be bound to the

declaration of A in Q. After the return from Q, there is a call to procedure P from the main pro­

gram (at label Ll). On this invocation (the second) of P, the reference to A in procedure P is

bound dynamically to the first declaration of A. Although the sequence of bindings in this exam­

ple can be determined by static analysis of the program, that is not true in general.

Lexical and dynamic inheritance both have advantages, but lexical inheritance is now gen­

erally preferred in most cases. Some compiled versions of LISP have used a single level of lexi­

cal inheritance in some cases for many years, even at the expense of causing compiled and inter­

preted versions of the same program to have different semantics: a reference can bind to different

declare
A :integer,

procedure P is
begin

A:= 1;
end;

procedure Q is
declare

A :integer,
begin

L2:P();
end;

begin
LO:Q();
Ll:P();

end;

§2.5.2

-- first declaration of A

-- second declaration of A

--call P

--call Q
--call P

Figure 2.9: Lexical vs. Dynamic Inheritance

Lexical vs. Dynamic Inheritance

25

entities depending on whether the reference occurs in interpreted or compiled code. Recent

dialects of LISP, such as Scheme [Steele Jr. and Sussman 1978a], T [Rees et al. 1984], and

Common LISP [Steele Jr. 1984], primarily use lexical inheritance. Most recent dialects also

guarantee that the choice between dynamic and lexical inheritance does not depend on whether

the program is interpreted or compiled, so that the interpreted and compiled versions of a pro­

gram have identical semantics, except for time considerations.

The reason for this acceptance of lexical inheritance is that it provides better referential

transparency. This term was first used by Whitehead and Russell [Whitehead and Russell 1927]

and later by Quine [Quine 1960] with different (but related) meanings, but Stoy [Stoy 1977]

used it with the meaning we intend here. In Stoy's words, we have referential transparency if:

The only thing that matters about an expression is its value, and any subexpression can be

replaced by any other equal in value. Moreover, the value of an expression is, within cer­

tain limits, the same whenever it occurs.

Steele and Sussman [Steele Jr. and Sussman 1978b] give a definition that is more useful in the

context of programs and programming (although the definitions are essentially identical).

Referential transparency requires that:

the meanings of parts of a program be apparent and not change, so that such meanings can

be reliably depended upon · · · the external behavior of a module should be independent of

the choice of names for its local identifiers.

Dynamic inheritance destroys referential transparency, because the meanings of free references,

and thus the meanings of the functions in which they occur, are dependent on the calling environ­

ment. The variable to which a name within a function f is bound will vary from one call off to

another, so the meaning off will vary from one call to another.

Dynamic inheritance does have a part to play in developing modular programs, as the

example in Figure 2.9 illustrates. The example is based on a Scheme example from Steele and

Sussman [Steele Jr. and Sussman 1976, p. 18], but is written in an extended Pascal syntax so that

it will be easier for readers unfamiliar with LISP to understand. The first extension is the ability

to have a function as the return value of a parameter, creating a closure (as discussed above) in

the process. The other extension is dynamic inheritance, which can be forced by preceding a

reference by the keyword dynamic. Any such reference is resolved using dynamic inheritance,

while all other references are resolved using lexical inheritance, as in standard Pascal.

In the example, the function sqn is defined elsewhere, and computes the square root of its

argument to a given tolerance epsilon. epsilon is normally defined in the global scope of the pro­

gram. sqrt references epsilon using the dynamic keyword, so that it always gets the dynamically

innermost binding of epsilon. The purpose of the function GenerateSqnOjGivenExtraTolerance

is to produce a new version of the sqrt function that uses a different tolerance, factorxepsilon,

without modifying the definition of sqrt used elsewhere in the program, and without modifying or

copying the value of the global definition of epsilon, which could affect other parts of the pro­

gram.

GenerateSqrtO.fGivenExtraTolerance defines two auxiliary functions. DoRebind takes two

arguments: x, which is passed to sqrt, and the new value of epsilon. When sqrt is called within

the body of DoRebind, the epsilon which is the formal parameter of DoRebind is the epsilon

bound to the dynamic reference to "epsilon" within sqrt. NewSqn calls DoRebind, passing it the

value of x and the new value of epsilon, computed as the product of the dynamically inherited

epsilon and factor (the argument to GenerateSqrtO.fGivenExtraTolerance). GenerateSqrtOf­

GivenExtraTolerance simply returns the closure of NewSqn, as in the calls defining sqrtl and

sqrt2. When a closure of NewSqrt is invoked, for instance sqrtl, it will compute the new epsilon

using: (1) the factor passed to GenerateSqnOjGivenExtraTolerance at the definition of the value

of sqrtl, and (2) the dynamically inherited epsilon at the point of the call to sqrt, and sqrtl will

Lexical vs. Dynamic Inheritance §2.5.2

26

type RealToReal.Function = function (real) : real;

{ return type of this function is a real function that takes one real argument }

function GenerateSqrtOfGivenExtraTolerance (factor : real) : RealToReal.Function;

begin

end;

function DoRebind (x, epsilon : real) : real;
begin

DoRebind := sqrt (x)
end;

function NewSqrt (x : real) : real;
begin

NewSqrt := DoRebind (x, dynamic epsilon * factor)

end;

GenerateSqrtOfGivenExtraTolerance := NewSqrt

procedure CreateNewSqrts;
var

begin

end;

sqrt1, sqrt2 : RealToReal.Function;
answer1, answer2: real;

sqrtl := GenerateSqrtOfGivenExtraTolerance (0.1);

sqrt2 := GenerateSqrtOfGivenExtraTolerance (0.01);
answer1 := sqrtl (2);
answer2 := sqrt2 (2);

Figure 2.10: Dynamic Inheritance and Modular Programs

compute the square root (via DoRebind) using the new value of epsilon. The effect is to tem­

porarily change the binding of epsilon seen by the old function sqrt.

Since sqrt uses epsilon as a free variable, with lexical inheritance, sqrt will always use the

lexically global definition of epsilon. However, with dynamic inheritance, sqrt uses the tem­

porary binding of epsilon created by the call to DoRebind from the closure of NewSqrt. So, the

reference to "epsilon" must be dynamically bound in sqrt, or the new square root function will

not work as desired. One alternative way to describe the same computation would be to modify

the lexically global value of epsilon, and to change it back after computing the squa·re root. This

works, but is clumsy. Another alternative would be to pass epsilon everywhere as an argument,

requiring that epsilon be passed through functions that otherwise had no use for epsilon, with an

obvious decrease in readability.

Different meanings also occur dependent on whether the reference to ''epsilon'' in N ewSqrt

is resolved using dynamic or lexical inheritance. With dynamic inheritance, as shown in the

example, the value of epsilon seen by sqrt depends on the value of the dynamically inherited

epsilon at the point of a call to sqrtl or sqrt2. That is, the value of epsilon used by sqrtl and

sqrt2 is computed relative to the value of epsilon at the point of call. If lexical inheritance is used

for the reference to ''epsilon'' in NewSqrt, then the reference will bind to the global binding of

§25.2 Lexical vs. Dynamic Inheritance

27

"epsilon," regardless of any other bindings of "epsilon." The value of epsilon computed in

sqrtl and sqrt2 will depend on the value of the global epsilon at the point of a call. Since the

reference to "epsilon" in sqrt must be dynamically bound, the most consistent choice is the

former, using dynamic inheritance for all references to "epsilon."

On the other hand,factor must be lexically bound~ in order for the reference to "factor" in

sqrtl to bind correctly to the factor parameter in the instantiation of GenerateSqrtOjGivenExtra­

Tolerance active when sqrtl was created as a closure of NewSqrt. Remember that a call to sqrtl

will occur both lexically and dynamically independent of GenerateSqrtOjGivenExtraTolerance,

so the only way to find the appropriate factor is using lexical inheritance at the point where the

reference to "factor" is written: inside the body of NewSqrt. So, we need both lexical and

dynamic inheritance in order to implement this function cleanly.

Dynamic inheritance is also sometimes used for changing standard input and output files

temporarily, for exception handling, and for situations in which bindings are determined by run­

time searches, such as in data bases. For such reasons, modem LISP dialects [Rees et

al. 1984; Steele Jr. and Sussman 1978a; Steele Jr. 1984; Weinreb and Moon 1981] have pro­

vided some mechanism for using dynamic inheritance to resolve references when desired.

Dynamically bound variables in most such dialects are called "special" variables. EL/1 [Weg­

breit 1971], though primarily statically bound, also has a feature that allows the programmer to

force dynamic inheritance.

Lexical and dynamic inheritance also have their respective efficiency advantages, depend­

ing on the particular program and the hardware on which it is run.

Steele claims [Steele Jr. 1976, p. 12] that the primary reason for the use of dynamic binding

in LISP was the introduction of stack hardware about the time of early LISP development, though

this was not pure cause and effect; rather, each phenomenon influenced the other14.

2.5.3. Dynamic Type Binding

In addition to the diversity of situations in which name-entity binding occurs, there can be

variations in the ways in which various attributes of an entity are bound to the entity (and thereby

to the name). As discussed in §2.2 the binding of an object to an entity often occurs separately

from the binding of entity to name. It is also possible that the binding of type to an entity denot­

ing type values can occur separately from the binding of name to entity.

As an example, both EL/1 and ALGOL 68 allow entities of type pointer, where the type of

the object indirectly referenced is not determined until run-time. In ALGOL 68 the set of possi­

ble object types is given, perhaps by using a union; in EL/1 the set of possibilities need not be

given explicitly. Thus, even though some of the benefits of static visibility rules are realized, oth­

ers, such as compile-time type checking, are not

2.6. Explicit Visibility Control

The simple block-structured paradigm is extended in a number of ways, in order to provide

more controlled access to names in programs. The ways in which access is explicitly controlled

are summarized in the following sections. We call this explicit visibility control.

The various forms of explicit scope control were introduced in languages to improve the

programmer's control over the use of names -to make them visible only where they are needed,

14 1ndeed, McCarthy states that, early in the development of USP, a USP function definition was brought to him

that didn't work right because lexical inheritance was needed, while USP provided dynamic inheritance. McCarthy

considered this a bug, but the bug was fixed by adding FUNARGs, which allowed one to obtain lexical inheritance

when needed, but did not alter the basic dynamic inheritance discipline of USP [McCarthy 1981].

Lexical vs. Dynamic Inheritance §2.5.2

28

and to allow logical grouping of related declarations.

2.6.1. Named Scopes

In most of the examples presented thus far, scopes were either un-named, or were pro­

cedures or functions whose names were used solely as a means to call them. Blocks can have

names in some programming languages, but these names usually have limited use, for instance to

assist in the alteration of flow of control, as with an exit statement.

Named scopes can also be used to provide controlled visibility of bindings, in addition to

the usual grouping function of scopes. Recall the example of the Pascal record of type Date in

Figure 2.4. The record is a scope that groups together the related entities day, month, and year.

Record values can be manipulated as a single object when the programmer is not concerned with

the individual fields. Alternatively, the fields can be accessed individually. In Pascal, objects of

record type are always variables, and the fields are also always variables. However, in Mesa and

in Ada the entire record object (but not individual fields) can be a constant. In Euclid, either the

entire record object or individual fields can be constants.

2.6.2. Qualified References

Qualified references are used to access the individual fields of named scopes. A qualified

reference (for example the reference today.day using the declarations in Figure 2.4) is constructed

by composing a scope name with the name of an entity bound within that scope. The use of

qualified references is a form of explicit scope control, and is one of the ways in which named

scopes are used. A field within a record only becomes visible within the context of an explicit

reference to the record itself.

So, there are two forms of named access or reference. They are:

Simple
Only the name of the binding being referenced need be -given. The appropriate binding is

determined by the scope rules of the language.

Qualified
The name of the scope along with the name of a binding directly visible within that scope's

contour15 must be given. The reference to the scope is first resolved. Then, the reference to

the entity declared within the scope is resolved by looking for a binding within the scope's

contour. Whether this type of reference is possible depends on the language under con­

sideration, and on the nature of the scope (for example procedure, block, module, etc.).

Also, some entities within a particular scope may be accessed in this manner while others

may not16•

Qualified references allow the hierarchical organization of names, while permitting access

to names on a lower, more deeply nested level. For example, the fields of a record are not nor­

mally directly visible. Thus, the names of those fields do not clutter the name space where the

record is declared, but the fields still can be accessed with a qualified reference.· In addition,

several record variables with the same type may be visible at the same point The names of their

fields would clash if they were not hidden from direct access. In Ada, one can use a qualified

15 For PUI and COBOL records, the entity being named need not be directly contained within the named scope's

contour, but rather can be nested one or more levels within it The only requirement is that the reference be unambigu­

ous. This is a fairly difficult feature to implement, though several algorithms exist [Busam 1972; Gates and Po­

plawski 1973].
16 In Ada package specifications, all entities declared before the keyword private are visible via qualified refer­

ence, while all entities after it are "private" to the package. and not visible.

§2.6 Explicit Visibility Control

29

reference to refer to a binding in a named outer scope when that binding would otherwise be hid­

den by a simple reference to an intervening redefinition.

2.6.3. Modules

A generalization of the notion of a record is to allow components (that is, fields) other than

variables or constants. This idea leads to the concepts of modules, packages, and classes, which

are discussed in this section, and which we will refer to generically as modules, unless we are

talking about a feature of a specific language (for example, packages are Ada's version of

modules).

A module is very closely related to a record. The primary distinction is that the word

"module" is usually used to mean something more general - a module is typically a named

scope that may contain types, functions, variables, other modules, or (usually) any entity

definable in a particular language, all defined within that scope.

In Modula-2, there is only a single instance of each module, although the module may

define a Pascal-like type used in the creation of multiple entities, as will be illustrated in §2.6.7.

A language feature more similar to record types is to treat a collection of entities, including vari­

ables, types, functions, etc. as a type, and to allow the programmer to create instances of that

type. In Smalltalk, instances can be created dynamically. However, in some other languages, for

example Euclid, instances are statically declared as variables of that type.

Modules often have special operations associated with them for controlling visibility.

These will also be discussed in §2.6.7.

2.6.4. Named Inheritance and Smalltalk-80

In all examples presented so far, the search for bindings of a name has been based solely on

the program's syntactic structure or its run-time structure (the run-time environment). For exam­

ple, with lexical inheritance, if no binding of a name is found in the current scope, the next lexi­

cally enclosing contour is searched, and so on. Dynamic inheritance is similar except that the

next dynamically enclosing contour is searched next.

An alternative is for the programmer to state explicitly within the body of a scope what

scope should be searched next, by specifying the name of that scope. We call this alternative the

use of named inheritance. An example of a language in which this concept is heavily used is

Smalltalk-80 [Goldberg and Robson 1983].

Before we give an example from Smalltalk-80, we must give a brief introduction to the ter­

minology of Smalltalk so that the reader can understand the example.

The primary notion in Smalltalk corresponding to a type is a class. A typical class consists

of a collection of variables, which can be thought of as record fields, together with operations,

called methods, defined within the range of those variables. An object of a given class, called an

instance, is analogous to a record variable with associated local functions. A method is invoked

by sending a message naming that method to a class instance. This corresponds closely to calling

a procedure in other languages. A class can be named, providing a named scope.

Named scopes are particularly useful in Smalltalk, because a new class can be defined as an

extension of an old one called its superclass by means of named inheritance. The new class is

called a subclass of its superclass. A superclass plays the role of an outer scope in the sense that

all variables in methods defined in the superclass become variables and methods in the new class

except those that are locally redefined. The user creates instances of a class, just as a user creates

variables of a given type. Named inheritance is, in essence, an extension of block structure in

which bindings can be inherited from an arbitrary named scope instead of from only the textually

enclosing scope.

Qualified References §2.6.2

30

The search to resolve a reference by a class instance always begins in the instance's class.

If a class c redefines a variable v defined in its superclass, a method defined in the superclass will

use the v defined local to c when invoked from within an instance of c . Thus the binding is

determined by the class of the invoking instance, rather than by the context of the method

definition. This convention should not be confused with dynamic inheritance, because the chain

of inheritance is determined by the chain of superclasses, not by a call stack. However, it is also

different from conventional lexical inheritance, because the point of search is determined by the

instance's class, not by the class where the referencing method is defined.

The classes in Figure 2.11 illustrate named inheritance in Smalltalk-80. These are skeletons

of actual classes in the Smalltalk-80 system. Streams are ordered collections that have a current

position associated with them. PositionableStream is assumed to be a subclass of Stream. Hence

WriteStream is an indirect subclass of class Stream (via PositionableStream). The intention is

that instances of WriteStream are ordered character collections that can be written to, but not read

from. ReadWriteStream's instances can be read from as well as written to. The class WriteS­

tream defines (among others) the method nextPut, which takes a character argument and adds it

to the collection. Qass ReadWriteStream defines the method next, which returns the next charac­

ter from its collection. If an instance of ReadWriteStream receives the message ''next'', it simply

invokes the method next defined in its class description.

However, suppose that instance receives the message "nextPut: a". Since class ReadWri­

teStream does not define that message, the class's superclass in searched, then the superclass's

superclass, and so on. In this case, the method nextPut: is defined in ReadWriteStream's super­

class (WriteStream), so that method is invoked.

This is what we call named inheritance - the search for a binding of a name is specified by

giving a named scope as the next to search. In Smalltalk, these scopes are class descriptions. A

class may either implicitly pass a message on to its superclass (simply by not handling the

class name WriteStream
superclass PositionableStream

instance methods

nextPut: aCharacter
--adds argument aCharacter to instance's collection

--at current position

class name ReadWriteStream
superclass Write Stream

instance methods

next
--returns next character in instance's collection

Figure 2.11: Named Inheritance in Smalltalk-80

§2.6.4 Named Inheritance and Smalltalk-80

31

message locally) or explicitly specify that the immediate superclass's method is to be used

instead of a method in the current class. Remember that block structure results in inheritance

also. Named inheritance is just an extension of block structure.

2.6.5. Multiple Inheritance

In all previously discussed methods of visibility control, a contour could have only a single

parent contour, which was the next contour to be searched. A scope inherited bindings only from

a single parent scope, whether this scope was defined lexically, by the dynamic environment, or

by a name (as in Smalltalk-80). A generalization of this situation is to allow a scope to inherit

bindings from more than one parent. This generalization is called multiple inheritance.

Language designers have considered a variety of forms of multiple inheritance, differing in

the meaning of a program in which a name is bound in more than one of the inherited scopes.

One possible extension of Smalltalk-80 is described by Borning and Ingalls [Borning and

Ingalls 1983]. In that proposal, a class can specify several superclasses instead of just one, inher­

iting the methods of all the superclasses. All superclasses of a class may have to be searched in

order to find a method. Smalltalk-80 has a class ReadStream in addition to the classes WriteS­

tream and ReadWriteStream defined above. An instance of ReadStream can be read from, but not

written to. ReadStream defines the method next, as does ReadWriteStream. With multiple inher­

itance, Borning and Ingalls suggest defining ReadWriteStream as follows:

class ReadWriteStream
superclass ReadStream, WriteStream

instance methods

--no definition of "next" required here
--"next" inherited from ReadStream
-- "nextPut:" inherited from WriteStream

The method next no longer must be defined in ReadWriteStream because it is inherited from

ReadStream. nextPut is still inherited from WriteStream. This is not possible without multiple

inheritance, because neither ReadStream nor WriteStream can properly be a subclass of the other.

In addition to this implicit search mechanism, Smalltalk-80 extended with multiple inheri­

tance allows the programmer to select a method in a particular class using a qualified reference:

class-name .method-name.

The multiple inheritance scheme is more complicated than that in the ALGOL languages,

but it still fits within the search model of visibility, because binding resolution can still be done

by a well-defined search through scopes (the class definitions). If there is more than one binding

matching a reference, the search rules must specify which one to select, usually by defining a

specific order for searching parent contours and using the first matching binding found.

LISP Machine LISP [Weinreb and Moon 1981] provides another example of multiple

inheritance. Its multiple inheritance feature is called Flavors, and is more general than the pro­

posed definition of multiple inheritance for Smalltalk-8017• Other systems [Bobrow and

Stefik 1982; Curry et al. 1982; Moon 1986; Schaffert et al. 1986] have also included multiple

inheritance.

17 A more recent version of USP Machine USP contains a significantly revised version of Flavors

[Moon 1986; Symbolics, Inc. 1986].

Named Inheritance and Smalltalk-80 §2.6.4

32

2.6.6. Open and Closed Scopes

Nonnally, the declarations in the scopes either statically or dynamically enclosing a given

scope are visible within that scope (except possibly for those hidden by more local declarations).

That scope is known as an open scope, and is the only kind present in (for example) Pascal, Algol

60, and LISP.

A closed scope is one in which declarations appearing outside the scope are not nonnally

visible within the scope. Modules in Modula [Wirth 1977] and Euclid [Lampson et al. 1981]

are examples of closed scopes. Both of these languages also have open scopes.

The following example illustrates open and closed scopes. The syntax belongs to no partic­

ular language. In the example, modules (delimited by module ... end) are closed scopes and

blocks (delimited by declare ... begin ... end) are open scopes. The comments in Figure 2.12

illustrate which references are legal, and which are not, because of the presence of nesting and

open and closed scopes.

A scope may be closed relative to some declarations, and open for others. In Euclid, one

can declare a binding to be pervasive, which causes that binding to be visible within all closed

scopes (in addition to open scopes) textually contained within the scope where the binding is

declared.

In general, a language may contain any number of scope classifications and entity

classifications, and each scope classification may have different rules concerning to which entity

classifications it is closed, and to which it is open. However, no existing language approaches

moduleM1
A :integer,

module M2
B :integer;

declare
C :integer;

begin
C := 1; --legal, C declared locally
B := 1; -- legal, B visible since a block is an open scope

A := 1; -- illegal, since M2 is a closed scope
end

c := 1;
B := 1;
A:= 1;

endM2;

C:= 1;
B := 1;
A:= 1;

endM1;

§2.6.5

-- illegal, C is declared in an inner scope
-- legal, B declared locally
-- illegal, since M2 is a closed scope

-- illegal, C is declared in an inner scope
-- illegal, B is declared in an inner scope
--legal, A declared locally

Figure 2.12: Open and Closed Scopes

Multiple Inheritance

33

this level of generality.

When the concept of nested scopes was first introduced, and for a long time afterwards,

only open scopes were included in languages. Oosed scopes eliminate the unrestricted accessi­

bility of global bindings. However, closed scopes alone are not very useful, because some visibil­

ity across the boundary of the closed scope is necessary to provide for communication between

the interior and the exterior of the closed scope. The import and export statements, discussed in

the next section, are used with closed scopes to provide controlled visibility across this boundary.

2.6.7. Imports and Exports

An import18 statement causes a binding or bindings visible in another scope to become

visible in the scope immediately containing the import statement. The effect of an import is

sometimes to add the binding to the set of bindings associated with the current scope's contour.

Usually, an import applies to a name visible in the immediately enclosing scope. An example

illustrating the effect of the addition of an import statement to the example in Figure 2.12 is

given at the end of this section.

Alternatively, an import statement might name a scope, and cause the import of all the

bindings local to that named scope into the current scope. This kind of import statement is dis­

cussed in the next section.

The primary purpose of the import statement, used along with closed scopes, is to allow (or

require, depending on the circumstances and viewpoint) the programmer to state exactly what

bindings are needed within a particular scope, instead of having all global bindings visible. Wulf

and Shaw [Wulf and Shaw 1973] argue that the automatic visibility of all globals can make pro­

gramming more error-prone. The degree of visibility control in conventional block structure is

insufficient, so bindings sometimes must be visible to procedures in which they are not needed.

Readability of block-structured programs can also suffer, because procedure headers can be

separated from their bodies by a large distance. The features of block structured access can cause

these and other problems [Qarke et al. 1980; Hanson 1981; LeBlanc and Fisher 1979].

The export19 statement is the converse of the import. It causes a binding in the current

scope to be made visible in the enclosing scope, nonnally without the use of a qualified reference,

although in some languages that option is under programmer control. The exported binding must

either have been declared in the current scope, or exported to the current scope from an inner

scope. This feature is used in Modula, Euclid, and other languages to allow packages to make

locally defined variables and procedures visible, and thus useful, to the enclosing environment.

Figure 2.13 is a modification of Figure 2.12, with the addition of an import of A and an

export of B. The statement "import A" causes all references to A inside M2 (including inside

the block) to become legal (following the semantics of Euclid and Modula). The statement

"export B" causes B to be visible within the body of Ml (the statements following M2).

One of the primary uses of the export mechanism is to facilitate encapsulation for the pur­

pose of information-hiding [Pamas 1972]. For example, if a type can be a class-like collection

of variables, local types, functions, etc., then by exporting selected functions only and allowing

those functions to operate on variables of the type, abstract data types [Liskov and Zilles 1974]

can be described. Bindings not explicitly exported are normally not visible outside the module

where they are declared. This encourages the use of infonnation-hiding by enabling the program­

mer to distinguish explicitly between operations, variables, and other entities available outside

the module, and those only intended to be used locally within the module. The representation of

18 The keyword use is used in Modula, though Modula-2 uses the more commonly adopted keyword Import.

19 The keyword define is used in Modula, though Modula-2 uses export.

Open and Closed Scopes
§2.6.6

34

moduleM1
A :integer;

moduleM2
import A;
export B;
B :integer;

declare
C :integer;

begin
C := 1; --legal, C declared locally
B := 1; --legal, B visible since a block is an open scope
A:= 1; --now legal, because of "import A"

end

c := 1;
B := 1;
A:= 1;

endM2;

c := 1;
B := 1;
A:= 1;

endMl;

-- illegal, C is declared in an inner scope
--legal, B declared locally
-- now legal, because of "import A"

-- illegal, C is declared in an inner scope
--now legal, because of "export B"
-- legal, A declared locally

Figure 2.13: Import and Export Statements

the abstract objects and the implementation of the abstract operations via function definitions can

be hidden from the users of that type. Parts of the program outside that module can be restricted

to using the operations defined by the abstract data type, so the integrity of objects of that type is

protected.

A similar capability is provided in Ada, without an explicit export construct, by a conven­

tion that package specifications export all bindings except those declared to be private. Private

bindings are visible only within the defining package. Visibility of the non-private bindings of a

package can be achieved with a use statement, discussed in the next section.

A more general form of export was introduced in the language L [Cormack 1983]. In L,

one is permitted to define the visibility of a name to be either local, containing, intermediate, glo­

bal, or permanent when the name is declared. The visibility choice determines how far out from

the current scope the new binding is visible. Local visibility corresponds to the normal case in

other languages: the declaration is visible in the current scope, and possibly in scopes enclosed by

the current scope. Containing visibility corresponds to a conventional export, making the bind­

ing visible in the immediately enclosing scope. The name of an enclosing scope must be given

when declaring a binding with intermediate visibility -·the binding is then visible as far outward

as that scope. If a binding has global visibility, it is visible in all scopes between the global scope

and the current scope, inclusive. Permanent visibility means that the binding is visible outside of

the nrogram, and corresponds to a file name.

§2.6.7 Imports and Exports

I~
!

35

Alexander Wolf [Wolf 1985; Wolf et al. 1986b] presents a model for controlling visibility

based on the provision and requisition of access. Using this model, for a binding b to be visible

within a scope S, b must provide access to S, and S must request access from b. This provision

and requisition may be either explicit or implicit, depending on the particular programming

language. An open scope, as in ALGOL 60, requests everything visible in the scope enclosing it.

A binding in ALGOL 60 is provided to the scope where that binding is declared and to all scopes

nested within that scope. An import statement in conjunction with a closed scope requests

specific bindings while not requesting others. An export statement provides specific bindings to

the parent scope and all scopes enclosing the scope containing the export. The problem with

import and export is that they are not precise enough to represent all possible provision and

requisition relationships desirable in a program. One can define statements, based on the con­

cepts of provision and requisition, that allow the required level of precision. For example, one

can define a provide statement that provides access of a particular binding to a specific named

scope or scopes. Likewise, one can define a request statement that requests access only to

specific bindings. With such a fine level of control, one can express any desired provision and

requisition relationship. Wolf defines an extension of Ada called Ada/PIC that includes such

statements.

As with import statements, export statements could be used in languages with dynamic

inheritance, but we know of no example of a language where this is done.

2.6.8. Opening of Scopes

The import statements discussed in the previous section only imported individual bindings,

requiring that each binding to be imported had to be explicitly named. This section describes a

form of import that makes all of a named scope's bindings visible in the scope where the import

occurs.

Usually, the import statement names a module (or package or record, etc.), and the bind­

ings local to the named module become visible by means of a simple reference in the scope of the

import, where otherwise the bindings in question would either not be visible at all, or visible

only by means of a qualified reference. We call the process of importing all the bindings of a

scope opening a scope, because the barrier to visibility formed by the scope boundary is being

opened. Note that an "open scope", which was defined earlier, is not the same as a scope that

has been ''opened'', in the sense of the current discussion.

Since such an import statement involves an indiscriminate importation of bindings, the

chance of a clash between a locally declared binding and an imported one is not insignificant.

Defining such a clash to be an error results in two problems:

(1) The user of a module must be aware of all of the bindings exported by a module (and thus

imported by opening that module), and avoid using any clashing names, even if the user

does not use some of the exported bindings.

(2) The implementor of a module can not add to the interface of the module (the bindings

exported by the module) without fear that programs that use the module will become

incorrect because of name clashes. One can argue that such an addition to a module inter­

face should not affect any programs that use the module.

One solution to this problem is to define a rule for resolving such clashes between locally

declared bindings and imported bindings, usually in favor of the locally declared binding.

The Ada use statement is an example of a scope-opening import statement. An Ada scope

can ''use'' one or more packages, importing the non-private bindings from the named packages.

When two or more bindings clash, the following rule determines which bindings are visible in a

scope S affected by use clauses:

Imports and Exports §2.6.7

36

(1) The set of "potentially visible" bindings consists of all non-private bindings of all pack­

ages appearing in use statements affecting S .

(2) A potentially visible binding b 1 is not visible if another binding b 2 clashes with b 1, and b 2

is visible within S in the absence of any use clauses.

(3) If two potentially visible bindings clash, then all potentially visible bindings with the same

name are not visible. That is, all potentially visible bindings of a name are visible if they

are all overloadable, and none of them are visible otherwise (assuming part (2) does not

apply).

(4) All other potentially visible bindings are visible.

This type of import statement eliminates the need for specifying long lists of names in an

import, but discourages the programmer from naming exactly what bindings are needed in the

current scope.

Opening a scope has at least two purposes. The first is to allow a temporary shorthand nota­

tion for a set of entities that will be referenced often over some bounded region of a program.

The second purpose is efficiency: in the absence of optimization, computing the address of a

record field involves first computing the address of the record, and then augmenting that address

by the offset of the field. When a record scope is opened, the implementation can factor out the

access to the record rather than computing it for each field reference.

When a modl,lle is used to implement an abstract data type, an import statement that

imports all bindings from that named module also fails to protect the details of the representation

of the abstract data type. The use statement in Ada does not have this problem because private

declarations are not visible outside of the package under any circumstances. The use statement in

Ada causes only non-private declarations in a named package to become visible.in the scope of

the use statement Usually, this problem is avoided by making only explicitly exported bindings

visible outside a module, whether or not those bindings must be explicitly imported to be used.

There are two ways to view scope opening as thus far described. One is as an expanded

fonn of the basic import statement, where the imported bindings are copied into the importing

scope. Scope opening can also be viewed as a fonn of named inheritance, since it makes the

bindings of some other, named scope directly visible. One view may be more suitable for

describing and understanding a particular language or language construct, while the other view

may be more suitable for another language or construct.

Pascal has a different way of avoiding errors when opening a scope. Pascal's version of

scope opening is the with statement, which is used to open a record scope. When a record scope

is opened in Pascal, a new local scope is created in which all bindings declared in the opened

scope are visible without qualification. Since the bindings of the opened scope are the only bind­

ings in the new scope, there is no possibility of an error due to clashing bindings. Another point

of view is that the opened scope is added as a new scope at the current location, nested within the

current scope. For instance, (using the same declarations of the record type Date and the variable

today as in Figure 2.4), the example in Figure 2.14 would be a valid Pascal code segment. The

begin ... end comprises the body of the with statement, defining the scope in which the fields of

today can be referenced.

The open statement in Mesa can be used to open both records and modules.

2.6.9. Visibility Control in SETL

An early version of the language SETL [Schwartz 1973] had visibility control rules which

were probably more general than any other existing language. One feature of the 1973 version

was the use of scope level numbers, which could be explicitly attached both to scopes and to vari­

ables. A scope number attached to a variable declaration meant ·mat the variable was visible in

§2.6.8 Opening of Scopes

type Date=
record

end;

day
month
year

var today : Date;

begin
today.day := 3;

: integer,
: 1..12;
: integer,

{ "day" by itself cannot be referenced here- it must be preceded }

{ by the scope name "today." (unless another declaration of "day" exists, of course }

with today do
begin

day:= day+ 1;
{ "month" and "year" can also be referenced here without qualification }

end;

end;
Figure 2.14: Scope Opening

37

all inner scopes whose level numbers (assigned to each scope by the programmer) were no

greater than the level number of the variable. The effect was that a scope could be closed to cer­

tain variables, and open to others, determined by the level number of the scope and the level

numbers of the variables. This feature is a generalization of the closed scope features discussed

earlier, where the number of scope classifications is program-dependent, rather than just

language-dependent, since it is determined by how many different level numbers are used. Also,

the ''classification'' of an entity, where its visibility is concerned, is determined by its associated

scope level number. This feature can be handled in the Search Model by attaching a search

predicate to a search, which represents a condition that must be satisfied by any binding found,

and which may be augmented with additional conditions at each step in the search. The predicate

in this case requires that the level number of any binding found be greater than or equal to the

level number of all scopes encountered in the search.

That version of SE1L also had a very general import-like statement, that could make bind­

ings in parallel scopes and even more deeply nested scopes visible, as long as the imported name

was in the same procedure as the "import" statement Precise details about this and other SETL

features are beyond the scope of this dissertation. SE1L now has more conventional visibility

control rules [Dewar 1979; Schwartz et al. 1986]

2.6.10. Rebinding Entities

In all of our previous discussion, each entity has only had one name bound to it In other

words, there has been only one binding of each entity. However, it is possible for more than one

binding of a particular entity to exist.

If more than one binding of an entity is visible at the same point in a program, one says that

the entity is aliased. Often, aliasing is confusing and undesirable, because a programmer usually

expects different names to refer to different objects.

Visibility Control in SETL §2.6.9

38

Aliasing can also occur at different steps in the process of mapping a name to a storage

location For example, a global variable g and a fonnal parameter f of a procedure P are separate

entities, but they will both refer to the same storage location if g is passed to fin P, and g is visi­

ble within P.

Lower-level versions of aliasing are possible in FORTRAN and PL/1. The COMMON

statement in FORTRAN pennits the programmer to cause different blocks of variables (with pos­

sibly different names and types) to overlay the same storage area, resulting in aliasing at the

storage level. The PL/1 defined clause causes a new variable to occupy the same storage area as a

preceding variable. However, since this dissertation is not concerned with the steps of the name­

value binding that introduce this type of aliasing, it will not be discussed further.

A comprehensive discussion of aliasing, particularly as it relates to visibility control issues,

is contained in [Schwanke 1978].

So, we return now to multiple bindings of entities. The usual method is to bind a new name

to an entity by referencing an old name already bound to that entity. Euclid is used to illustrate

this method: In Euclid, an entity can be re-named using a bind statement. Within the effective

range of the bind statement, the old binding of the entity may not be referenced, and the entity

must be referenced by the new name. Referencing the old binding is forbidden in order to elim­

inate the aliasing that otherwise could be introduced. Euclid was designed so that all fonns of

aliasing could be detected and flagged as errors20.

For example, in Euclid one could create the capability of referencing the record field

today.day with the simple name day as within the with statement in Figure 2.14 by including

bind var day to today.day

in the declarations section of the scope in which the shortened reference fonn is desired. The

difference from Pascal is that today.day is still a legal reference within the with statement in Fig­

ure 2.14, but today.day is not a legal reference within the range of the above bind statement in

Euclid.

Other forms of the Euclid bind statement include:

bind sixthEntry to a(6) -- a(6) is an array reference

bind t to today

Ada and ALGOL 68 each have rebinding constructs that provide a similar capability. As in

Euclid, renaming can introduce aliasing.

Another version of re-binding is the bind statement in Bliss [Wulf et al. 1971], which sim­

ply binds a name to the value of an expression at block entry. The Bliss bind defines a named

constant whose value is recomputed each time the block is entered. The expression can designate

an address- e.g. a(6) as above, or the address of any other storage entity, so the Bliss bind state­

ment can be used for the same purposes as the Euclid bind statement. The Bliss version simply

operates on a lower level (storage addresses) when used to refer to entities.

The reasons for giving an entity a new name are similar to those for opening a scope. A

new name is created in order to create a temporary shorthand notation for an entity that will be

referenced often. The new binding may also be introduced for efficiency: if referencing an entity

involves a non-trivial computation (such as in array referencing or field selection), then the com­

putation will only be done once if the entity being referenced is given a new, simple name.

20 In Euclid terminology, the old binding is still known (visible) although it may not be referenced. It is Icnown so

that it can't be redeclared (as discussed earlier, a Icnown (visible) Euclid declaration can't be hidden by redeclaring a

name; any attempt to do so is an error).

§2.6.10 Rebinding Entities

....

39

2.6.11. Summary of Explicit Visibility Control

All the different operations for explicit scope control actually consist of only a few basic

mechanisms, described here in terms of the Search Model. The first is copying bindings from one

contour to another. The effect of imports and exports can be represented by copying bindings,

or by adding an explicit search predicate that restricts the search to find only bindings that have

been imported or exported. Another mechanism is removing bindings from a contour. Scope

opening is simply a change in contour search order- the opened scope becomes the first scope to

be searched in the Search Model. Closed scopes are also a modification of contour search order.

2. 7. Miscellaneous Features

Features concerned with naming that were not covered in the above major categories are

discussed in this section.

2. 7 .1. Separate Compilation

In languages such as Ada and Mesa, package specifications, their bodies, and references to

those packages and their contained declarations can exist in separately compiled source files.

Resolving references while compiling one source file can require knowledge of the declarations

in another source file. One of the motives for the provision of named scopes is to facilitate the

use of module libraries that can be configured and maintained using separate compilation. A

language must define which bindings in another compilation unit are visible.

2.7 .2. Standard Environments

Many languages (for example Algol 68 and Ada) have ''standard environments,'' which are

composed of all declarations implicitly defined before the compilation of any program. The stan­

dard environment includes predefined types, procedures, and operators. Ada's standard environ­

ment contains, among other things, the functions and procedures for input and output. The scope

of these declarations is often an implicit scope containing the outermost scope of the program.

Alternatively the scope may be the outermost program scope itself.

2. 7 .3. More General Binding Mechanisms

Our discussion has concerned the use of names to introduce and to reference entities. As

mentioned previously, multiple instances of an entity may be bound to a name during program

execution in the presence of recursion. A more general way to reference entities is by means of

indirection, through the use of pointers or reference types.

Some programming languages introduce yet more powerful mechanisms, through the use of

pattern matching or associative search. Examples of such languages are Planner [Hewitt 1969],

Conniver [McDermott and Sussman 1973], LEAP [Feldman and Rovner 1969], or the various

dialects of PROLOG [Clocksin and Mellish 1981].

2.7.4. Persistent Storage

As a practical matter, programs must deal with persistent objects - objects with lifetimes

greater than the programs that manipulate them. The most common examples of persistent

objects are files, but any program object may be persistent.

If the concept of a persistent object is well integrated into a programming language, then

name-entity binding for references to persistent objects can be handled just like any other refer­

ence. In the language L [Cormack 1983], the lifetime of an entity is defined separately from its

scope, so entities with persistent lifetimes can be declared within an L program just like other

entities.

Rebinding Entities §2.6.10

40

Things are not always so clean, however. The most common case is that persistent objects

such as files are not really handled within the programming language, and must be handled by

giving a reference to the file system, which binds the reference and returns a descriptor to a file.

More recently, research on object-oriented databases and programming environments has

motivated increased attention to these issues. Most of the underlying binding ideas have already

been introduced, such as the encapsulation, inheritance, and closure mechanisms discussed in

§2.6. The interested reader could look at PS-ALGOL [Atkinson and Morrison 1985] for more

information.

2.8. Summary

We have presented a comprehensive survey of the language features currently existing

which are concerned with declaration and naming. A tabular view of these features appears in

Table 2.2. We have also presented the general principles underlying these features, in order to

develop useful and simple models of scoping in programming languages. It is hoped that these

ideas will help in the understanding of programming languages by making their differences and

similarities more apparent.

§2.7.4
Persistent Storage

41

Dyrwnic Dyrwnic Viaibility Control Feauua Inner

or or ~ Rebind Bindings

Language Static Static Local Open& Import Scope Mul- Types Entities Shadow

Inhe:ritance Binding Bindings C!Oied Export Open tiple Outer

Czeatioo Scopel Inh. Bindings

Ada
4 s s • • • • NO BFR~ NO •

Algol60 ss s • NO NO NO NO BF NO •
Algol68 s s • NO NO NO NO BF NO •
API.. D s • NO NO NO NO cw3E NO •
Basic N/A Fixed NO NO NO NO NO G NO N/A

Bliss s s • NO NO NO NO GBFE NO NO

c s s • NO NO NO NO GBpJE· NO •
CLU s s • NO export NO NO GBFR NO illegal

COBOL N/A s NO NO NO NO NO GR NO N/A

CommonUSP S+D D • NO • • • BFRM NO •
ElJl s6 s • NO NO NO NO GBF NO •
Euclid s s • .7 • NO NO GBFM • illegal

FORTRAN s s NO NO NO NO NO op3 .s NO

L S+D s • NO NO NO NO BGFP NO •
USP S+D9 D • NO NO NO NO GBpJ NO •
LMUSP S+D9 D • NO NO NO • GBpJ NO •
Mesa s s • • • • NO GBFM NO •
Modula s s • • • • NO GBFRM NO •
Modula-2 s s

7 NO GBFRM NO • • • • •
Pascal s s • NO NO • NO GFR NO •
Plain s s • • • NO NO GFRM NO •
PLJI s s • NO NO NO NO GBFRE NO •
PROLOG D 0 10 • NO .n NO NO op3 .u N/A

SIITL73 s s • • import • NO GBF • illegal

SIITL79 s s • NO • • NO GF NO illegal

Simula 67 s s • NO NO • NO GBFM12 NO •
Smalltalk s s • NO NO NO .13 GBFM12 NO •
SNOBOL D D • NO NO NO NO ~ NO •
TEMPO 0 14 D • NO NO NO NO GB NO •
1 G-Global (distinguished level, such as Pascal proaram - end, B•Blocks, F•Functions or Procedures, RzRecords, M=Modules (or Pack-

ages), E=Extemal Scope (visible outside of compil.ation unit), P•Pc:rmanc:nt (permanent visibility -visible to other programs)

21Jindings in enclosing subprograms may be refc:rcnced using selected notation also.

3Restrict.ed to one leveL
40verloading of designstms allowed.
5 A full implementation of Algol 60 requitea dynamic inheritance for integer labels passed as integer arguments, but most implementations

ue not complete, and use strictly static inheritance.

~ut has a feawre to force dynamic inheritance when desired.

7Has pervasive identifiers also.

~valence statement gives a limited form of n:mming of nm-time objects, but not of entities.

9Usually static in compiled USP, except for "special" variables.

10can add and n::uact clauaca at nm-time.
110n1y in some versions.

12Actually classes, which areTeiated to modules.

13m vc:rsioo described in [Borning and Ingalls 1983].

14 An alternate version with static inheritance is described.

Table 2.2: Visibility Control Features of Common Programming Languages

Summary §2.8

42

43

CHAPTER3

Models of Visibility Control

This chapter summarizes and discusses the Search Model of visibility control introduced in

Chapter 2. It also expands on the Visible Set Model. The Range Model, a model of visibility

control closely related to the Visible Set Model, is introduced.

Other models of visibility control which have appeared in the literature are also discussed.

All of these models are presented as examples of ways of describing the visibility control rules of

programming languages. Various basic concepts of these models have appeared in language

definitions in the past, as will be discussed in Chapter 5. This is a prelude to formalizing the

requirements of a model of visibility control, and presenting a better model of visibility control.

3.1. Definitions

We first present a few basic definitions which are needed in this and following chapters:

Definition 3.1. Binding Set

A binding set is a set of name-entity bindings. It is a set, as opposed to a multiset21 , ·

because there must exist some equality test for potential elements of a binding set, and

two "equal" bindings may not be members of the same binding set.

Definition 3.2. Visibility Construct

A visibility construct is a language construct that affects the visibility of names over

some region of a program. Declarations and scopes are the most common examples of

visibility constructs. An occurrence of a visibility construct in a program is an instance

of the visibility construct.

Definition 3.3. Visibility Region

A visibility region is a region of a program that necessarily has the same set of visible

bindings throughout, by virtue of the programming language's semantics. A visibility

region might not be textually contiguous, as will be demonstrated later. Boundaries of a

visibility region are normally demarcated by visibility constructs. Two program loca­

tions may have visible sets containing the same bindings without belonging to the same

visibility region.

In a specification, if the program is represented by an abstract syntax tree, then a

visibility region will correspond closely to a set of nodes in the ·abstract syntax tree

representing the subject program.

3.2. The Search Model of Visibility Control

This section defines the Search Model, a model of visibility control, in which references are

resolved by searching contours for a binding of the referenced name.

21 Also known as a "bag."

44

A binding is a narne-+entity association. Its meaning is that in cenain contexts, the name

may be used to denote the associated entity. Bindings are created by implicit or explicit declara­

tions.

A scope is a program unit used for defining a group of declarations and program statements.

Each scope may be viewed as defining a contour, which contains the bindings associated with

that scope.

The range of a binding is the region of source text in which the binding's name may be

used to reference the entity bound to it by this binding. The range of a binding is defined by two

sets of rules:

(1) The binding placement rules define for each declaration (implicit or explicit), to which con­

tours the resulting bindings should be added. They also define the effect of import and

export statements, scope opening, and related constructs.

(2) The contour search rules define which contours to search and in what order, when attempt­

ing to find a binding of a given name.

Each step in the search may restrict which bindings are valid results of the search. In

Euclid, when continuing a search outside of a module (which is closed to all bindings except per­

vasive bindings), a restriction to the search is added which specifies that only pervasive bindings

are valid results of the search. A search predicate is associated with each search. The search

predicate initially consists of the restriction that any binding found match the referenced name.

The search predicate may be augmented with additional restrictions at each step of the search by

conjunction of the new restrictions with the old search predicate.

There are two types of references: simple references and qualified references:

(1) A simple reference consists simply of a name. The name is bound to a binding whose range

includes the current source position. The contour search rules (and possibly overloading

rules) are used to find the appropriate binding.

(2) A qualified reference consists of two parts: a left-part whose associated entity e is found

using the contour search rules of the language, and a right-part which is a name. e must be

a scope, and the desired binding is found by searching for the right-part name in the set of

bindings associated with e's contou~. Note that this is a recursive definition, since the

left-part may itself be a qualified reference.

This definition of the Search Model is not complete: for example, it does not describe how

ordering of declarations and references in a language that requires declaration-before-use is han­

dled. These issues will be discussed in later chapters. Until then, this description of the Search

Model should suffice - the important point is the style in which things are described using the

Search Model.

The implementation of the visibility control rules for Ada described by Blower

[Blower 1984] is an excellent example of the use of the Search Model.

3.3. The Visible Set Model of Visibility Control

The philosophy of the Visible Set Model could be stated as, "Have information easily

accessible when and where needed, as opposed to computing it at the point of demand.'' The

Visible Set Model defines the visibility control problem as determining what set of bindings are

visible at any point in the program where a reference may occur. We call this binding set the visi­

ble set at that point. If the visible set for a point is well defined, then it is easy to find the

~e rules for resolving qualified references in COBOL and PL/1 are more complicated, and do not fit into this

model for qualified references. However, qualified references in all more modem languages do.

§3.2 The Search Model of Visibility Control

-

45

appropriate binding of a name at that point. In the absence of overloading, there will only be a

single binding of a given name in that visible set, and the set defines a function from names to

entities. In the presence of overloading, the overloading algorithm must be used to select among

multiple bindings of the same name visible at a point.

Simple and qualified references:

(1) A simple reference consists simply of a name. The reference is resolved by looking in the

visible set associated with the point of reference for a binding of the referenced name. The

visible set represents a function from names to entities in a language without overloading.

In the presence of overloading, the visible set represents a one-to-many mapping from

names to entities. If a name is overloaded, then the language's overloading algorithm must

be used to select among the entities bound to that name at a given point

(2) A qualified reference consists of two parts: a left-part whose associated entity e is found

using the visibility control rules of the language, and a right-part which is a name. e must

be a scope, and the desired binding is found by searching for the right-part name in the set

of local bindings associated with e. This is a recursive definition, just as in the Search

Model. However, in the Visible Set Model, when the left-part is just a name, its binding is

found using the Visible Set Model method for resolving simple references.

Defining lookup in the Visible Set Model is very straightforward. The more difficult part in

defining the visibility control rules of a language is defining the visible set associated with any

contour. In a block-structured language, the visible set for a contour c is defined in terms of its

set of local bindings and the visible set for the immediately enclosing contour c '. c 's visible set

is obtained by computing the union of c 's local bindings and c''s visible set, omitting from the

result any bindings from c ''s visible set that are hidden by c 's local bindings. If c is partially

closed, then the bindings visible in c' are inherited by c only if they satisfy some predicate asso­

ciated with c. Other visibility control disciplines can be defined by similar operations.

The bootstrap Ada compiler described by Blower [Blower 1984] uses the Visible Set

Model to implement visibility rules.

3.4. The Range Model

The Range Model defines the visibility control problem as determining where each binding

is visible, as opposed to the Visible Set Model, where the set of bindings visible at each point

must be defined. The visibility range of a binding is the region of the program in which the

binding's name may be used to reference the entity bound to it by this binding. The range may

be defined in terms of contours or some other suitable unit.

One method of describing the visibility range of a binding is by propagation. We propagate

the visibility of a binding in a step-wise manner from the point of its introduction to all contours

where it is visible.

We define the propagation in terms of contours and dependencies between contours. Each

binding is already visible in the contour corresponding to the contour where it is declared. The

following procedure Make _Visible assumes visibility of the binding in that contour, and does the

propagation. A dependence of a contour cinh on contour c is denoted by the pair (c ,cinh). clash

returns true if two bindings clash, as described in Chapter 2. inherits returns true if the depen­

dence between the contours allows the binding to be visible in the dependent contour.

The Visible Set Model of Visibility Control §3.3

46

rocedure Make_ Visible (
b11ew : Binding ,
c : Contour);
'V contours cinh s.t. 3 dependency D=(c ,c;nh)

if 3b :Binding in Cinh s.t clash (b ,bnew) or inherits (bnew .D)= false then

I return /*stop propagating visibility along dependencies*/

else

I
add c to bnew 's visibility range

Make _Visible (bnew ,cinh)

For a given binding bnew and a contour c, Make_ Visible propagates the visibility along

dependencies from c. Visibility of bnew is only propagated if the dependence causes bnew to be

inherited and bnew isn't shadowed by some binding in the dependent contour. Make_ Visible must

be iterated over all bindings to define the entire visibility of a program.

The procedure Make_Visible is fairly simplistic, and not complete. However, this

Make_Visible does handle general forms of restricted inheritance, including (partial) closed

scopes and inheritance-style import/export

The effect of Make_Visible is to define a mapping from bindings to contours. Lookup in

the Range Model is straightforward. It involves finding bindings matching the referenced name

that have the current contour in their visibility range. Make_Visible will vary greatly from

language to language, while the definition of lookup should be standard for all languages.

The definitions of Make_ Visible and Lookup (defined more precisely in §5.3) together

define the visibility control rules of the language being defined. Make _Visible will vary greatly

from language to language, while Lookup should be standard for all languages.

Another way to describe the visibility range of a binding is to treat each dependence

between contours along with the inherits function as a constraint to be satisfied.

We explain the technique by means of a simple example: Let the visibility construct VC be

a simple declaration of a variable foo in a language with declaration-before-use. VC is related to

two contours, cP immediately preceding it textually, and c1 immediately following it. The

dependence attached to VC and inherits together form the constraint that if a binding is visible in

cP and does not clash with the new binding of foo, then it is visible in c 1 .

Each such constraint is called a propagation constraint. The propagation constraints of all

the visibility constructs of a subject program form a set of constraints that must be satisfied,

where each variable is the visibility range of a binding. The basis constraints are that each bind­

ing is visible at the point where it is declared (or whatever the language specifies). The con­

straints formed by the propagation constraints are satisfied only when each binding is visible

everywhere it should be.

To define the visibility control rules of a language using this model, we define a propaga­

tion constraint for each type of visibility construct (and thus for each type of dependence between

contours), which defines the propagation of bindings at an instance of the visibility construct

based on the specific attributes of that instance.

3.5. Reiss's Model of Visibility Control

This is a summary of Reiss's models of visibility control [Reiss 1983]. Reiss defined two

separate, but related, models of visibility control. The first was manifested in a specification

language intended for use in generation of symbol table modules, while the second was a formal

model of visibility control. His emphasis was on the former, and we will follow that emphasis.

His formal model will be discussed in §3.5.5. Any reference to his model of visibility control

means the specification language unless otherwise specified. His model is important to us for two

§3.4 The Range Model

47

reasons:

(1) It is one of only two other attempts to define a formal model of visibility control in pro­

gramming languages that we know of.

(2) The model contains features different from any of the models we have independently

developed, so its relationship to our models is interesting.

This summary is not comprehensive; we concentrate particularly on features of the model that are

relevant to this research.

Reiss provides for multiple classes of entities and names. Names represent the lexical

tokens associated with entities. Different entity classes have different information associated

with them, and may require different scoping rules.

He describes scope in terms of three attributes of entities:

extent scope
The smallest (textual) scope containing all portions of the source program in which the

name can refer to the entity.

direct visibility scope
A scope in which a name refers to a particular entity regardless of other definitions of the

name in other scopes. There may be more than one direct visibility scope per entity. The

most common example of this is the scope in which an entity is declared.

lifetime scope
The outermost scope of the source program for which the entity will exist at run time.

Lifetime scope is not a major concern of the research described in this dissertation; however it is

discussed some in later chapters.

The three primary domains for symbol processing are: NAME, OBJECT (entities), and

SCOPE. Secondary domains exist for representing attributes of elements of the primary

domains, and other information.

3.5.1. Standard Functions

The model defines standard functions for performing symbol processing operations.

The functions for creating elements of the primary domains and setting attribute values are

NEWOBJECf and SETV ALUE. DEFINE creates a binding of a name and an object.

The access functions are:

FIND
takes a source token and returns the appropriate name.

LOOK_ UP
maps from a name to the set of all objects that can be associated with that name (anywhere

in the program).

RESTRICf _VISIBILITY
restricts a set of objects according to rules defining the relationship between where an object

is visible and where it is declared. The form of these rules will be discussed later.

RESTRICf _CLASS
restricts a set of objects according to an expected class.

RESTRICf _SIGNATURE
restricts a set of objects according to the signatures of the objects. The signature and the

equality test for signatures are user-provided.

Reiss's Model of Visibility Control §3.5

48

RESTRICf_USER
restricts a set of objects according to an arbitrary user-supplied Boolean function.

RESOLVE
checks that a final object set contains a single element, and returns that element or an error

value.

VALUE_OF
Used to obtain values of attributes.

3.5.2. Definitions

Declarative rules define what the result of a declaration is- i.e., whether the declaration is

legal and where the binding is visible.

Object class, scope class, and scope attributes are used to select one of the following four

choices for the proper extent, visibility, and lifetime scopes for the resulting binding:

(1) the current scope is chosen.

(2) the parent of the current scope is chosen.

(3) the parent of the current scope is tested recursively with the current object.

(4) the association is illegal (error).

These rules also define what happens when a new declaration has the same name as a previ­

ously defined binding, based on the classes of the old and new objects, and on whether the old

object is directly visible in the current scope. The four possible actions are redefinition, refer­

ence, overloading, and error.

3.5.3. Extensions

Reiss provides extensions to the model for more complete handling of symbol processing.

One of the most important of these is the IMPORT function, which allows a scope to be

added to the set of visibility scopes for a given object. A DEPORT function is also provided for

removing a scope from the visibility set for an object.

The RESTRICf function can be used to assign a new scope class to a scope, in order to

assign new properties to the scope. This is useful, for example, in Ada where the effect of

declarations in a package depend on whether they occur in the public or private parts of the pack­

age specification, or in the package body.

Other, mostly implementation-oriented extensions are also available.

3.5.4. Summary of Reiss's Model

The general approach to name resolution is as follows: declarations create associations

between names and objects (what we call bindings). Declarative rules define where bindings are

directly visible, how the visibility of bindings is propagated through nested scopes23, and what

happens in the event of duplicate declarations. FIND and LOOK_ UP are used to find all bindings

of an identifier, after which RESTRICf functions are used to successively restrict the set of bind­

ings with various conditions.

This model is the basis of a system for generating a symbol processing module from a

declarative specification. The interface between the the symbol processing module and the rest of

23 Whether a particular scope is open or closed to a particular object is detennined by the OPEN_SCOPE map­

ping, which contains all pairs <.s :SCOPE_ CLASS, o :OBJECT_ CLASS> such that scopes of class s are open to ob­

jects of class o .

§3.5.1 Standard Functions

49

the language processing system is via the function and procedure calls discussed above (plus oth­

ers)24. It is up to the remainder of the compiler to determine when and where symbol processing

functions are applied. Order is implicit in the scoping model. However, there is an operation to

set the current scope, so there is at least some provision for moving around in a program indepen­

dent of textual order.

In the case of scope class restriction, this temporal ordering of scoping operations is particu­

larly important, because the order of declarations and class restriction is critical to which declara­

tions are exported in Ada packages. Problems with Reiss's model will be discussed in §9.2.1,

after the issues involved in designing a model of visibility control are discussed in detail.

3.5.5. Reiss's Formal Model

Reiss's formal model of visibility control is composed of several basic relations, along with

functions that access and/or modify the relations. The basic relations include

DIRECTLY_ VISIBLE, NESTED_IN, and EXTENT (the extent scope of an object), among others.

These relations represent the visibility structure of a program. The functions include LOOKUP,

which accesses the basic relations, DEFINE, which modifies the relations, and others. The basic

definitions used in this model, such as the meaning of "directly visible," are the same as those

used in the specification language.

Ordering of declarations and uses is still implicit in the formal model, so the meaning of

redefinitions is still dependent on this implicit ordering.

3.6. Wolrs Model of Visibility Control

As discussed in §2.6.7, Wolf, Oarke, and Wileden [Wolf 1985; Wolf et al. 1987] intro­

duced a model for visibility control based on the provision and requisition of access, and pro­

posed language constructs (provide and request operations) that make provision and requisition

of access as precise as desired. All access (visibility) is described in terms of separate provision

and requisition of access. In general, access is provided by any type of entity, while access is

requested by scope entities. An entity E is normally visible in scope S only if E provides access

to itself to S , and S requests access to E .

Provision and requisition of access within a program are described in terms of a directed

visibility graph g = (N, Ar, AP) which can be split into a requisition graph gr = (N, Ar, 0) and a

provision graph gP = (N, 0, Ap), where the A's are the edge sets. A provision edge (ni, n1)

means that ni provides access to itself to n1. Requisition edges go from the requestor to the

~uestee. Correctness of a program normally requires that A: r;;;Ap, where

Ar = { (ni, nj)l(nj, ni)e Ar}.

A visibility function v is a function that maps a program representation x to a visibility

graph g. For each visibility mechanism m 25 there is a visibility function vm, where

vm (x) = r m (x) u Pm (x). r m and Pm respectively produce the requisition and provision graphs for

x. r and p are in turn composed of functions operating on different kinds of.entities Ei:

rm(x)=rm,E1(x)U · · · Urm,E,.Cx)

114 Actually, two different levels of interface are provided. We have discussed the higher-level interface, as the

lower-level interface is less interesting for our purposes of comparison.

25 This seems to correspond closely to a visibility construct, as defined in the introduction to this chapter.

Summary of Reiss's Model §3.5.4

50

Wolf also defines a nesting graph, which is used to represent the nesting structure of an

ALGOL 60 program. Nodes in the graph corresponds to scopes, with an edge from a scope to

each immediately contained scope. For ALGOL 60, the graph is a tree. In the example Wolf

gives, only subprograms are considered, and the visibility function defines the visibility graph

edges in terms of "parent", "sibling", and "ancestors" relations on the nesting graph.

The only example given by Wolf is a very simple one, and it is unclear how language

features such as declaration-before-use and shadowing would be handled, both in the nesting

graph and in the visibility functions which must translate the nesting graph into the corresponding

visibility graph.

§3.6 Wolrs Model of Visibility Control

51

CHAPTER4

Requirements for a Model of Visibility Control

A primary goal of this research is the definition of the visibility control rules of program­

ming languages. To do this, one must define the meaning of any name reference in a program -

that is, to which binding the name refers.

The first step in developing a method of defining visibility control rules is to develop a

model of visibility control - a way of talking about visibility control rules and the constructs that

affect the visibility of names in programs. Once we have an acceptable model of visibility con­

trol, we can base a specification method on the model.

Chapter 2 described most of the visibility control features present in programming

languages today, and introduced two basic models of visibility control (the Search Model and the

Visible Set Model) that can be used to describe these features. Chapter 3 summarized these two

models and presented other models for describing visibility control rules. This chapter describes

in more depth the requirements a satisfactory model of visibility control must fulfill, beginning

with a few general requirements, and continuing with specific requirements due to the presence of

the visibility control features discussed in Chapter 2 and the influence of these requirements on

our designs of models of visibility control. Each specific requirement is typeset in italics, while

discussion and elaboration of each requirement is typeset in the normal roman font A table sum­

marizing these requirements is presented at the end of the chapter.

As a result of our investigations into the requirements of visibility control features, I have

formed some opinions about the desirability of some of these visibility control features, and dis­

cuss these opinions in this chapter.

4.1. General Requirements

This section discusses the general requirements of a model of visibility control. Such a

model of visibility control should be natural, corresponding closely to the way a person thinks

about the visibility control rules of a language. If the model is natural then language descriptions

are more likely to be easy to understand.

The model should be complete. It should be general enough to describe all (or at least most)

visibility control features used in programming languages with reasonable ease. Ideally, the

model should be general enough so that it is likely to capture new notions of visibility control

that may arise later. It is difficult to judge whether a model has this generality, since it is impos­

sible to predict what visibility control concepts will be developed. However, a model that con­

sists of a few general concepts that cover a wide range of visibility control features is more likely

to meet the test of time than a more complex model that contains specific features to model

specific visibility control features.

Difficulty in describing arcane features that are not included in newer languages should not

be considered a significant drawback. Indeed, a correspondence between difficulty in describing

a visibility control feature and difficulty in understanding or implementing that feature should be

considered a plus, because the model could help a language designer to identify potentially trou­

blesome visibility control features.

The model should be useful for reasoning about the visibility control rules of a language.

This is useful to the language designer also.

52

Finally, the model should be suitable as the basis for a formal specification method from

which an implementation can be generated. It should be possible to generate an acceptably

efficient implementation so that the fonnal specification method can be used to develop produc­

tion language processing systems. The required generation process should not be excessively

complex, or implementors will be unlikely to implement it

4.2. Visibility Features and Their Requirements

This section discusses the visibility control features described in Chapter 2 along with the

resulting requirements on a model of visibility control. The structure of this section roughly

parallels the structure of Chapter 2, in the order in which the language features are presented.

4.2.1. Names, Entities, and Bindings

A model of visibility control should support the three basic objects: names, entities, and

bindings, as defined in Chapter 2.

There is a fair amount of latitude in precisely how the model defines an entity, but there

must be a mechanism for defining and retrieving attributes of an entity.

The concept of a binding in the model must support the fact that the relation between names

and entities in a programming language may be a general n:m mapping, since there may be more

than one name per entity, and more than one entity per name.

4.2.2. Scopes and Contours

The model of visibility control should support a general concept of a scope, including the

notions of blocks, subprograms, records, modules, etc., as defined in §2.3. As also defined in

§2.3, a contour defines the local environment introduced by a scope. For the moment, I will con­

tinue to use the definition of a contour in which a single contour corresponds to a single scope.

This definition will be extended and made more precise in §4.4.

The grouping provided by scopes also fonns the basis for qualified references, such as refer­

ences to fields of records, subprograms (Ada [USDoD 1983]), or modules. For a qualified refer­

ence s.f , one must be able to perform a lookup restricted to the fields of scope s, in order to find

the binding off local to s. That is, the lookup is restricted to the bindings directly visible ins.

One way to satisfy this requirement is to make it possible to reference the set of bindings local to

any contour. Another, more general method is described in the next section.

4.2.3. Declarations

A declaration causes the creation of entities, and possibly the binding of one or more names

to one or more entities. These bindings may be local to the contour where the declaration

occurred, or they may belong to some other contour. A binding "belongs to a contour" if the

binding's apparent point of declaration is within that contour. The most common fonn of a bind­

ing belonging to a non-local contour is when the binding belongs to an enclosing s~pe. such as

with PL/1 implicit declarations. In general, it must be possible to declare a binding in an arbi­

trary contour in a program.

The model of visibility control must provide a general mechanism for detecting multiple

declarations of a name, and for performing appropriate actions when multiple declarations are

detected.

Two bindings clash according to the naming rules of a language iff both bindings cannot be

directly visible at the same point. In most languages, two bindings clash iff their names are ident­

ical. However, deciding whether two bindings clash can be more complex, especially in the pres­

ence of overloading. The model of visibility control must provide a mechanism for defining

whether two bindings clash.

§4.1
General Requirements

53

As discussed in §2.4.2 there are four possible conditions when two bindings clash: shadow­

ing, overloading, reference, and error. The model must allow the describer (the person describing

the visibility rules of a language) to select one of these conditions and define the meaning of

clashing bindings for each condition. Part of this may be subsumed into determining whether

two bindings clash: for example, one may be able to define the meaning of ''clash'' such that two

bindings that overload one another do not clash. Then, if two bindings clash, only three condi­

tions are possible: shadowing, reference, and error. Henceforth, the discussion will assume that

overloaded bindings do not clash with one another.

Since a declaration may cause a binding to be added to an arbitrary contour in the program,

the mechanism for detecting multiple declarations must be capable of operating on an arbitrary

contour. There are a number of commonly used methods for detecting multiple declarations

(conventional block structure with shadowing is presumed here):

(1) Look, using the normal visibility rules, for a visible (not necessarily directly visible) bind­

ing that clashes with the new binding. If the existing binding was declared in the current

contour, then the new binding either references the old one or is erroneous. One must be

able to determine a binding's declaration contour in order to use this method.

(2) Look for an existing binding b 1 declared in the contour to which the new binding is to be

added, where b 1 clashes with the new binding b 2. In other words, look for a directly visible

binding that clashes with b 2. If such a binding b 1 exists, then the new binding b2 either

references b 1 or is erroneous. One must be able to determine the set of bindings declared in

any given contour in order to use this method.

A more general way to look at the multiple declaration problem is to define a separate set of

visibility rules that define which bindings are visible when determining, given a particular bind­

ing b 1 occurring in a particular place in a program, whether another binding b2 exists such that

b 1 and b2 clash.

If a particular binding b 3 can be proven not to clash with b 1 by virtue of its location in the

program (its contour) or some other property not dependent on the attributes of b 3 itself, then

there is no reason for b 3 to be visible when checking for multiple declaration. The simplest

example of this occurs in a block-structured language with shadowing: a binding b 1 will shadow

any binding b 2 in an outer scope that clashes with it, so no outer binding can cause the reference

or error actions. Thus, it is only necessary to examine the local bindings to check for multiple

declaration. This is what method (2) above is doing, reflecting that only bindings in the current

scope need be considered when looking for illegal multiple declarations. Method (1) achieves the

same result in a round-about way, by first doing a normal lookup and then restricting the results

of the lookup to the current scope, if appropriate. However, both methods (1) and (2) are just res­

trictive operational descriptions of methods for finding illegal multiple declarations, each assum­

ing that the visibility rules require that only the current scope need be examined when checking

for multiple declarations. The ability to define a different set of visibility rules for this purpose

permits us to eliminate this assumption.

The model of visibility control must provide the ability to define more than one class of visi­

bility ,for use in different contexts, (such as normal reference as opposed to checking for clashing

bindings).

This ability also makes it possible to restrict a lookup to the bindings declared local to a

given scope, as is required for a qualified reference (§4.2.2).

We must be able to describe the appropriate action (shadowing, reference, or error) once

Declarations §4.2.3

54

multiple declarations (clashing bindings) have been detected26. The error action merely requires

the ability to report a message to the user and a method of gracefully preventing a cascade of

error messages due to a single error. Shadowing has more to do with resolving references, and

will be discussed in §4.2.5. The reference action is more complicated, and is sometimes an

example of a more general feature called a variable attribute, which is discussed in §4.2.4.

Order of Declarations and References

In order to handle declaration-before-use, the model of visibility control must be able to

represent the order of visibility constructs and the order of references with respect to visibility

constructs.

The model of visibility control must also be able to handle both forms of shadowing, as

described in §2.4.3. In the first form of shadowing, an outer binding of a name ''N'' is visible up

to the point where a new declaration of ''N'' occurs, as in Ada (the outer binding may either be

shadowed at the beginning of the new declaration, or just prior to the point where the new bind­

ing becomes visible). In the second form (as in Pascal), an outer binding of "N" is visible only

up to the beginning of a scope that contains a local declaration of "N". From the beginning of

the scope to the local declaration of ''N'', neither the local binding of ''N'' nor any outer binding

of "N" may be referenced. Following the terminology used for Euclid [Lampson et al. 1981],

one can say that the local binding of "N" is known but not visible in this region of text

The generalization of known but not visible bindings is just a form of allowing more than

one kind of visibility, as introduced in the previous section.

Dynamic and Static Name and Binding Creation

The model of visibility control should be able to handle both dynamic and static creation of

names and bindings. Indeed, this should not affect the model of visibility control significantly, as

these operations should be similar in the static and dynamic cases.

4.2.4. Variable Attributes

A variable attribute is an attribute of an entity or binding whose value varies over the range

of visibility of a binding. This section discusses language constructs that cause modifications to

attribute values, and how to describe them.

§4.2.3 stated that the model of visibility control must allow the expression of the reference

action when bindings clash. The essential language concept that results in the reference action is

the use of two separate visibility constructs (usually declarations) to define a single entity. In

Pascal, a ''forward'' declaration defines the interface of a procedure, while the completion of the

declaration of the procedure defines the execution semantics of the procedure (the code attribute).

In Modula-2 [Winh 1982], declaration of an opaque type consists of a declaration of the type

name only in the definition module, with a complete declaration of the type in the corresponding

implementation module.

In the Pascal example, the entity corresponding to the procedure can be created when the

forward declaration is processed, and modified to contain the code attribute when the body of the

procedure decaration is processed. This approach works in this case because the code attribute

isn't needed in the binding resolution or type checking processes.

The opaque export in Modula-2 does not satisfy this condition. When a name-only type

declaration occurs in a definition module, resulting in an opaque export of that type, the details of

the type are not available in the definition module or in its clients. So the entity and the binding

26 Remember that, according to the definition of "clash", overloaded bindings do not clash.

§4.2.3 Declarations

55

of that entity visible in the definition module and its clients differ from the entity and binding

visible in the implementation module.

A related example is the read-only export in Modula [Wirth 1977]. A variable exported

with the readonly attribute may be referenced but not assigned to in the scope to which it is

exported.

These three different constructs are discussed together because their syntactic representa­

tions in programs are similar - in two separate parts, with one part modifying or qualifying the

meaning of the other part. For the read-only export, the second part is the export statement But,

there are two different concepts represented by these constructs. The opaque and read-only

exports create different views of an entity (from the programmer's viewpoint), while the Pascal

forward declaration is simply a two-part declaration of an entity, with a uniform meaning

throughout its range. Indeed, it is simply a notational convention introduced to make mutually

recursive procedures possible when declaration-before-use is required.

Thus, the Pascal forward declaration and similar constructs can be handled with the ability

to change the value of an attribute of an already existing entity. The value of this attribute is uni­

form throughout the range of the binding of the entity. So, the only additional requirement is that

the value of the attribute not be used until its final value is assigned. In this case, it simply means

that the code attribute can't be used in the binding resolution process. There is no reason to do

so, so there is no problem. The Pascal forward declaration does not result in a variable attribute,

as defined at the beginning of this section, because the value of the code attribute does not vary

over the range of the procedure binding.

The opaque and read-only exports differ from the Pascal forward declaration because they

result in an entity that has an attribute whose value varies over the range of the entity's binding.

One approach to this is to add contextual tests to determine the attribute's value at a given pro­

gram point Another approach is to consider the variants of the entity as separate (but dependent)

entities bound to the same name, with the resulting bindings having disjoint ranges. This is the

approach used in this dissertation.

Another instance of a variable attribute occurs in languages that require declaration-before­

use, and allow qualified references nested within the object whose fields are being referenced.

This can occur in Ada, because a binding in an enclosing subprogram S can be referenced, even

if the binding is shadowed at the point of reference, by qualifying the reference with the name of

the subprogram.

A variable attribute must be used because there may be many declarations local to S , and

thus many visibility regions. The attribute ref_env of the entity describing S defines the referenc­

ing environment for a qualified reference to a field of S , but the proper referencing environment

_depends on where within S the reference occurs, just as for a simple reference local to S. This

referencing environment is the visibility region immediately preceding the scope nested inS that

(directly or indirectly) contains the qualified reference. Thus a new binding of "S" must be pro­

duced with each new declaration in S, with the ref_env attribute modified to reflect each new

binding. The appropriate binding of "S" must be visible at each place where a qualified refer­

ence may occur.

In summary, the model of visibility control must support variable attributes.

4.2.5. Resolving References

Different languages have widely varying rules for resolving references, so any model of

visibility control must have a general and powerful method of representing these rules. In the

Search Model introduced in §2.5, this requirement is met in part by allowing arbitrary search

order of contours. In the Visible Set Model also introduced in that section, the same goal is

achieved by providing powerful primitives for the definition of the visible set for each program

Variable Attributes §4.2.4

56

region. A model of visibility control must be able to represent arbitrary order of inheritance of

visibility of bindings from one scope to another, whether this inheritance order is due to nesting,

named inheritance, or other visibility constructs. As discussed in §4.2.3, a model of visibility

control must support more than one class ofvisibility, so, for the generality and orthogonality, a

model of visibility control must suppon a different inheritance ordering for each class of visibil­

ity.

Suppose we are using the Search Model, with the means for specifying any search order of

contours. The remainder of this section demonstrates that a wide variety of visibility control

features can be handled with only the capabilities already described in this chapter.

Lexical and dynamic inheritance introduce no special requirements for this model of visibil­

ity control. They both require arbitrary search order of contours. The only difference is that the

search is based on dynamic structure with dynamic inheritance, instead of lexical structure. The

model of visibility control can remain the same in both cases - the application is just slightly dif­

ferent.

Oosures also introduce no special problems for a model of visibility control. Arbitrary

order of inheritance (handled by arbitrary search order in the Search Model) is what is needed to

handle closures. The difficulties lie more in the implementation - the contours that may be

required by the invocation of a closure must be kept until they are no longer needed.

Named inheritance and multiple inheritance can also be handled by arbitrary order of inher­

itance. The programmer defines this order explicitly by naming the scopes instead of defining the

order by the lexical structure of the program.

4.2.6. Explicit Visibility Control

Open and Closed Scopes

Open scopes are the most common case. Oosed scopes restrict the visibility of bindings

across scope boundaries, and the model of visibility control must provide some mechanism for

defining this restriction. A closed scope generally creates a barrier to the visibility of all bindings

global to it. Pervasive bindings are an exception to this: they are visible across the barrier created

by closed scopes. The first step in generalizing pervasive bindings is to allow different

classifications of scopes SC 1, · • · .SC," and different classifications of bindings BC 1, · · • .BCm,

along with a specification of a door function

door: binding class x scope class~ {open, closed}

that, for any binding class BCi and scope class SCi, defines whether scopes of class SCi are open

or closed to bindings of class BCi. The classification of a binding may be determined by the

classification of the bound entity.

Imports and Exports

Import and export statements cause explicit changes to the normal visibility of one or more

bindings. However, one must be very careful in the definition of the meaning of import and

export statements27, because there are many subtleties. For example, when a binding b is

imported from scope S 1 into scope S 2, there are two significantly different meanings possible:

(1) The result is equivalent to creating a new declaration within S 2, where the new declaration

is similar or identical to the declaration that resulted in binding b .

n The most common form of import (export) is intended here: a single binding is imported (exported) from one

scope to another.

§4.25 Resolving References

'

57

(2) The result is equivalent to making scope S inherit visibility of b, thereby making b visible

within S , just as in the usual inheritance due to nesting of open scopes.

Language definitions often do not explicitly define which of these two meanings an import

(export) has. Rather, the meaning of an import (export) of b is implicitly defined by what opera­

tions are allowed on b once it has been imported (exported), and by what action results from an

imported (exported) binding clashing with another binding.

Which of these forms of import (export) is chosen determines how import (export) must be

handled in the model of visibility control. (1) can be handled with the capability of adding a

binding to any contour of a program, or with appropriate use of different visibility classes. (2) is

a form of inheritance, but the capabilities thus far described are insufficient. Indeed, when we

import a binding from scope S 1 to S 2 (with the inheritance form of import), we are creating a path

of inheritance that is closed to all bindings but the specific binding being imported. This is a

further generalization of the door function described above: The decision whether S 2 is open to

bindings from S 1 is based not only on the S 2's scope classification and the classifications of the

bindings visible inS 1, but also on whether each binding is named in an import statement in S 2.

Other factors can affect the decision: the set of bindings available for import may include all

bindings visible inS 1, or it may include only those bindings declared inS 1. The final generaliza­

tion of inheritance, which is capable of handling all forms of inheritance discussed, is now

presented.

Definition 4.1. Inheritance Link

Inheritance between two scopes is defined by an inheritance link (S 1 ,S z) from the

providing scope S 1, from which bindings are inherited, to the inheriting scope S 2, which

inherits bindings. Whether a binding visible in S 1 is visible in S 2 is defined by a revised

door function, as first introduced at the beginning of this section. This is called the inher­

itance restriction function:

inherits : binding x link ~ { true,false }

inherits determines whether a link is open or closed to a binding based on properties of

the binding and properties of the link. Iff inherits returns true, the binding is inherited

via the link if it is visible in the providing scope. Possible properties of the binding used

by the inheritance restriction function are whether it is pervasive or not, whether it is a

type or a variable binding, and so on. Possible properties of the inheritance link used by

the inheritance restriction function include the visibility construct that caused the link (an

open or closed scope, an import or export, etc.). In addition, the inheritance restriction

function may specify that certain instances of links are open only to particular bindings,

as in an import statement that only causes inheritance of specific, named bindings.

Given this definition of an inheritance link, the visbility control structure of a program can

be represented by a graph, with nodes representing visibility regions, and inheritance links for

edges. This idea will be discussed in more depth in Chapter 6.

A model of visibility control should support a general form of inheritance, allowing non­

local inheritance, and providing precise control over which bindings are inherited from a provid­

ing scope to an inheriting scope.

Import/Export Statements that Create Declarations

A form of import (export) statement was discussed earlier that was similar to creating a

declaration in the scope inheriting the new bindings. The actual requirement is that the exported

binding must have the same apparent affect in the inheriting scope as a binding declared in the

inheriting scope. This requirement is satisfied by the use of different visibility classes and control

Imports and Exports §4.2.6

58

over inheritance. In any visibility region vr in a program where a binding b behaves as if it were

declared in the scope to which vr is local, b must be visible with the visibility class assigned to

local declarations.

Opening of Scopes

The first fonn of scope opening (§2.6.8) is a bulk import, and can be handled with the same

mechanisms as a simple impon. The Ada use must, in addition, decide which bindings are actu­

ally to be imported.

The other fonn of scope opening is exemplified by the with statement in Pascal. This fonn

of scope opening is a special case of the first fonn, and so can be handled by the same mechan­

ism. A new contour is created, which inherits visibility of all bindings corresponding to fields of

the record being opened.

Multiple Inheritance

The requirements thus far described are sufficient for describing multiple inheritance,

except for one issue: the discrimination between inherited bindings based on ordering. This issue

arises in LISP Machine Aavors [Weinreb and Moon 1981], where each scope (flavor) can

specify a list of scopes (other flavors) from which bindings are to be inherited. Each of these

scopes in tum can specify a list of scopes to inherit bindings and so on. The rules of the language

specify that the appropriate binding referenced by a name is the one found by performing a top­

down, depth-first walk of the tree of scopes fonned by the inheritance structure. For example, if a

scopeS 1 imports the bindings from two other scopes S 2 and S 3, in that order, and both S 2 and S 3

declare bindings of ''N' ', then a reference to ''N'' in S 1 should be bound to the binding declared

inS 2.

Describing this feature requires the ability to select among the bindings inherited by a con­

tour based upon some ordering.

4.2. 7. Miscellaneous Language Features

Separate Compilation

The visibility control infonnation for one source file may be needed in order to process

another source file. This doesn't really affect the model of visibility control; however, the imple­

mentation must provide a mechanism for saving and retrieving visibility control infonnation.

Standard Environments

The only requirement caused by standard environments is that it must be possible to

represent visibility control information independent of the processing of any specific source code.

This is because the entities defined in the standard environment are often not defined in the source

language for which the standard environment is defined. Rather, they are often defined or imple­

mented in another language, and the standard environment provides bindings to these "foreign"

entities.

4.3. Declaration-Before-Use and Grouping of Bindings

As discussed in §2.4.3, most recent languages that require explicit declarations also require

that a declaration of a name precede any reference to that name, with certain limited exceptions.

The primary original motivation for this requirement was to make one-pass semantic analysis

possible by forcing all declarations to precede any references, as in the User Manual for Pascal

[Jensen and Wirth 1974] and in ANSI/ISO Standard Pascal. The impact of declaration-before­

use on a model of visibility control is the requirement that the model be able to represent the

§4.2.6 Import/Export Statements that Create Declarations

59

order of declarations within a scope, in addition to the order caused by the nesting of scopes.

In the Search Model described in Chapter 2, all bindings resulting from declarations local to

a single scope are grouped together in the single contour associated with that scope, even when

the language requires declaration-before-use. In this model of visibility control, resolving a refer­

ence consists of searching contours sequentially until a contour containing a binding of the refer­

enced name is found. The granularity of the search is the contour, and the group of bindings

associated with each contour. Little was said about how the order of declarations is represented,

or what the implications of declaration-before-use on a model of visibility control are. Obvi­

ously, the order must be represented somehow, and a name reference within a scope is only legal

if the declaration precedes the reference.

Another approach is to keep all bindings separate, as opposed to grouping them together by

contour. The only exception is the case where more than one binding becomes visible at the

same point. One example where this happens is in languages where uses may precede declara­

tions, such as in PL/1. All bindings declared in the the same scope become visible at the begin­

ning of the scope, at precisely the same point.

Each method has advantages and disadvantages. This section compares the two methods,

with the goal of selecting the better method and understanding how to overcome the disadvan­

tages of the chosen method. Table 4.1 contains a comparison of the two methods, listing their

advantages(+) and disadvantages(-).

1be table comparing the two different approaches (grouped versus ungrouped bindings)

illustrates two major tasks that a model of visibility control must handle well. The first task is the

representation of ordering present in programs, on two levels: the sequence of declarations, one

after another, and the nesting of scopes, one inside another. The need for this ordering is obvious.

The other task is the representation of grouping of bindings. This grouping is necessary for look­

ups limited to a single scope, and for retrieving the bindings of a single scope.

The two opposing approaches represent different priorities on the two tasks. Grouping the

bindings into contours places a higher priority on the grouping task. However, this forces a two­

level ordering: the ordering of contours, and the ordering of bindings within contours.

Keeping the bindings ungrouped places a higher priority on the ordering task: all ordering

can be handled by a single, simple mechanism - the ordering of declarations with declaration­

before-use can be handled by treating declarations similarly to new scopes. However, this

requires a separate mechanism for describing the set of bindings associated with a particular

scope.

The single biggest problem with either approach is with grouped bindings. The Visible Set

Model and Range Model are very difficult to apply with grouped bindings. The Search Model

works well with either grouped or ungrouped bindings. It seems wise not to eliminate any useful

models at this point, so it is best not to group bindings. Also, the complexity required by the

separate mechanism for describing a contour's bindings is less than that of the two-leveled order­

ing required with grouping. Our task then is how to overcome the drawbac~ of ungrouped bind­

ings.

One method is to add an auxiliary mapping:

Contour ~Binding Set

that gives the set of bindings associated with each scope. Each time a declaration is added or

removed, this mapping must be updated.

Another possibility is to define a visibility class visi such that, for a scope S, only bindings

local to S are visible with visibility class visi. This provides an immediate solution to the first

Declaration-Before-Use and Grouping of Bindings §4.3

60

Grouped Bindings

(+) Easy to check whether a
binding of a name exists within
an arbitrary scope. Necessary
for import, export, selected
reference.
(+) Easy to get all bindings de­
clared in a given scope: Needed
for scope open
(+) Easy to check whether a binding of a
name exists in the current scope. Neces­
sary for check for redeclaration.

(-) Maintaining proper order of declara­
tions in declaration-before-use requires
a separate mechanism. Bindings must
be ordered within a scope, in addition to
the ordering of the scopes.
(-) Doesn't correspond well to the Visi­
ble Set Model. The two levels of order­
ing make it more difficult to describe the
correspondence between visibility re­
gions and visible sets. They also make
it more difficult to compute visible sets.
(+)Works well with Search Model.
(-) Doesn't correspond well to the
Range Model. The two levels of order­
ing make it more difficult to define the
visibility range of a binding.

S~arate Bindings
(-) Difficult

(-) Difficult

(-) Difficult. (+) But can use level
numbers to detennine what scope a
binding was declared in, and thus check
for re-declaration.
(+) Can treat a new declaration with
declaration-before-use as a new scope
entry. Both types of ordering (scope­
level and declaration-level) can be han­
dled by the same mechanism.
(+) Corresponds well to the Visible Set
Model. Ordering of declarations
corresponds (usually) to an ordering of
transfonnations on visible sets.

(+)Works well with Search Model.
(+) Corresponds well to the Range
Model. Ordering of declarations
corresponds (usually) to an ordering of
visibility regions, and thus an order for
propagation of visibility of a bindim.1;.

Table 4.1: Comparison of Grouped and Ungrouped Bindings

problem with separate bindings in Table 4.1. It provides a very inefficient solution to the second

problem. However, a more efficient solution will be made apparent in later chapters.

The grouping of bindings can be viewed as an optimization, particularly in the Search

Model. The grouping in the model facilitates grouping in the implementation. A group of bind­

ings can be implemented as a hash table, so the search has fewer steps than if all bindings are

ungrouped.

4.4. Contours: Design Decisions and Terminology

This chapter has discussed many language feawres and the resulting requirements on a

satisfactory model of visibility control. Some of the limitations of the models of visibility con­

trol, as presented in Chapter 3, have also been discussed. This section presents some design deci­

sions resulting from these considerations, along with some definitions that will be useful later.

The decisions described here will apply throughout the remainder of this dissertation, except

where stated otherwise.

Ungrouped bindings have two main advantages:

(1) All of the models considered thus far can be easily handled.

§4.3 Declaration-Before-Use and Grouping of Bindings

61

(2) Both the order of scopes and the order of declarations within scopes can be represented with

a single, simple mechanism.

Tilerefore, ungrouped bindings will be assumed from this point on. Grouped bindings will

be considered again as an implementation optimization. Contours are now defined, based on this

decision.

Definition 4.2. Scope Contour

Each scope in a program has a corresponding contour: the referencing environment

created by entering that scope. The contour corresponding to a program scope is called a

scope contour.

Definition 4.3. Declaration Contour

When a language requires declaration-before-use, each new declaration creates a

new contour which is the referencing environment after that declaration takes effect The

contour corresponding to a declaration is called a declaration contour.

This view of declarations is not common - however, it is not without precedent. In the definition

of Euclid [Lampson et al. 1981], which has declaration-before-use, the meaning of each declara­

tion is described in terms of that declaration creating a new scope in which the new declaration is

visible.

Most of the terminology for scopes and declarations in §2.3 also applies to· scope and

declaration contours. The declaration contours associated with the declarations local to scope S

are said to be local to S 's contour. One contour C 1 is global to another contour C 2 if C 2 depends

on C 1• In a language with declaration-before-use, the order of nesting of declaration contours

corresponds closely to textual order of declarations.

There is no fundamental difference between a scope contour and a declaration contour, but

it is useful in practice to· distinguish between the two because there are several differences in the

way they are handled in most languages. One difference involves the shadowing of bindings.

The two kinds of contours have different effects on shadowing.

Suppose we have a language that allows shadowing and declaration-before-use. (Euclid is

one of the few languages with block structure and declaration-before-use that does not allow sha­

dowing). A binding of a name in one scope can shadow bindings of the same name in outer

scopes, but not bindings of the same name declared in the same "normal" scope. The difference

is easily explained in terms of scope and declaration contours. A binding b 1 of the name "N"

introduced within scopeS's contour or within a declaration contour local to S can shadow bind­

ing b 2 of N global to S. However, b 1 cannot shadow binding b 3 of N also within scopeS but

introduced in a contour outside the one in which b 1 is introduced. The area immediately local to

a scope is usually a single name space in which multiple declaration of a single name is an error.

There are also two forms of shadowing, as discussed in §4.2.3. In the first form, b2 is visi­

ble up to the declaration of b 1, where it becomes shadowed by b 1. This is called declaration

contour-relative shadowing. In the second form, b 2 is visible only up to the beginning of the

scopeS containing b 1. This is called scope contour-relative shadowing.

Scope and declaration contours differ in other ways also, but these other differences tend to

vary more from language to language, and the shadowing example illustrates the kind of differ­

ence that may occur.

4.5. Correspondence of Scopes, Contours, and Visibility Regions

This section reviews these three kinds of objects in order to eliminate any confusion about

their correspondence. A scope is a syntactic unit, such as a block, a procedure, a module, or a

Contours: Design Decisions and Terminology §4.4

62

record, that can have declarations associated with it that can create bindings. The contour associ­

ated with a scope defines the referencing environment associated with that scope. By definition, a

visibility region is a region of a program that has the same referencing environment throughout.

Thus, each contour C has a visibility region vr associated with it, where C defines the referenc­

ing environment within vr .

The difference between a scope and a visibility region is a matter of precision: a scope is a

syntactic unit normally bounded by enclosing markers (such as begin · · · end), containing an

arbitrarily large amount of program text, often including nested scopes. Using terminology such

as "the referencing environment within scope S" is only meaningful if we define the precise

locations within S where that referencing environment is valid, taking into consideration nested

scopes and so on. The concept of a visibility region is the step to achieve the necessary precision.

Another complication arises with the definition of a scope in a language with declaration­

before-use. Euclid is such a language, and each new declaration creates a new scope starting

immediately after the declaration and ending at the end of the current "regular" scope (a pro­

cedure, a module, etc.). The distinction between the two kinds of scopes is important in a

language that allows shadowing, as discussed in the preceding section. So, the term ''scope'' is

reseiVed to refer to a "regular" scope. In a language with declaration-before-use, a scope may

have many contours associated with it: each new declaration results in a new contour, and a new

visibility region corresponds to that contour.

4.6. Summary of Requirements

The general and specific requirements of a model of visibility control are listed in Table 4 .2.

Some of the individual requirements discussed are coalesced in the table where appropriate.

§4.5 Correspondence of Scopes, Contours, and Visibility Regions

• The model should be natural.
•The model should be complete.

General Requirements

• The model should be useful for reasoning about the visibility control rules of a

language.
• The model should be suitable as the basis for a formal specification method from which

an implementation can be generated.
Specific Requirements

• A model of visibility control should support names, entities, and bindings.

• There must be a mechanism for defining and retrieving attributes of an entity.

• The concept of a binding in the model must support a general n:m mapping

between names and entities.
• The model of visibility control should support a general concept of a visibility

region, including visibility regions corresponding to both scope contours and de­

claration contours. Different kinds of scopes, containing one or more visibility

regions, must be representable.

• It must be possible to declare a binding in an arbitrary contour in a program.

• The model of visibility control must provide a mechanism for defining whether

two bindings clash.
• The model of visibility control must provide the ability to define more than one

visibility class, for use in different contexts.

• The model of visibility control must be able to represent the order of visibility

constructs and the order of references with respect to visibility constructs.

• A model of visibility control must support variable attributes.

• A model of visibility control must be able to support a general form of inheri­

tance, including: (1) arbitrary order of inheritance of visibility of bindings from

one contour (the providing contour) to another (the inheriting contour), with po­

tentially a different inheritance ordering for each class of visibility, (2) non-local

inheritance, (3) precise control over which bindings are inherited from a provid­

ing contour to an inheriting contour. and (4) the ability to select among the bind­

ings inherited by a contour based upon some ordering.

• It must be possible to represent visibility control information independent of the

processing of any specific source code.

Table 4.2: Requirements of a Model of Visibility Control

63

Summary of Requirements §4.6

64

65

CHAPTERS

Choices in Designing a Model of Visibility Control

The purpose of this chapter is to discuss the possible decisions in designing a model of visi­

bility control. Some of the decisions are specific to models of visibility control, while some are

more general, and apply to any specification or modeling effort We seek the answers to the fol­

lowing questions for each possible design choice:

• Is this really an important conceptual design parameter, or is it really just an implementation

issue that can be largely or completely hidden from the person specifying the visibility control

rules of a language? Is there some other related design parameter that is better? Issues to be

considered here are how the design parameter affects the style of a specification: how does the

style affect the thinking of a language designer, for example?

• Is this design parameter independent from the other design parameters, or is it dependent on

some other decision?

• What is the model of visibility control resulting from each possible combination of decisions?

Is the model reasonable, and what are its advantages and disadvantages?

• How do these models relate to Reiss's and Wolfs models of visibility control, and the other

existing models of visibility control? Do the choices suggest models that are better than any of

these existing models? Are there other models more representative of the possible design

parameters?

5.1. The Flow and Database Models oflnformation Maintenance

There are two primary models of maintaining infonnation about a program being processed

(the subject program), corresponding closely to the two primary methods (batch and interactive)

of doing the processing. These models of infonnation maintenance are called the flow model and

the database model, respectively. These two models are of interest in a discussion of visibility

control because visibility control rules are commonly implemented using both models. We must

understand the models to be able to understand the range of choices available for the implementa­

tion of a visibility control rules specification for a language.

These models and their differences are described in depth in the following sections. These

models are presented at this point because an eventual goal is a specification language that can be

translated into a practical implementation, and therefore it is necessary at times to consider

implementation issues when designing and discussing models of visibility control. There is a

natural tendency to consider these issues only implicitly, sometimes making invalid assumptions

based on "folldore" or other factors, often resulting in a model that depends too much on these

assumptions about implementation issues. It is preferable to expose any assumptions about

implementation at the beginning, so that their validity can be checked, and the influence of any

invalid or unnecessary assumptions can be eliminated. Indeed, this analysis can aid in discover­

ing the proper level of abstraction for the problem under consideration.

I make the preceding observation with the benefit of hindsight. Early in the progress of this

research, use of the flow model was assumed, when the emphasis was more on implementation

techniques. This assumption resulted in many difficulties in the development of a good model of

visibility control, and these difficulties weren't resolved until I realized that an unnecessary and

restrictive assumption was being made.

66

5.1.1. The Flow Model

The flow model receives its name from the way batch processing of a program works. The

most common example of the flow model is found in a conventional compiler. We can view the

subject program as "flowing" through the compiler, with the compiler maintaining information

about the subject; in particular the compiler's information at any given time is accurate only at

the location in the program currently being processed. This is how symbol tables traditionally

have been implemented - with a monolithic information structure that is modified each time a

declaration is processed, a scope is entered or exited, and so on. This is sometimes called single­

threading [Schmidt 1985].

Alternatively, we can view the information about the subject as flowing through the subject,

being updated as necessary so that at any point in the subject program, the information at that

point is accurate. This alternative view may seem more natural for some attribute grammar

implementations of programming languages, which do not on the surface describe a batch com­

putation, but which use compilation techniques similar to those used by a batch compiler, and are

indeed often implemented as batch processors.

The primary distinguishing characteristic of the flow model is that the value of the informa­

tion structure is defined for any point in the subject program as a modification of the value of the

information structure prior to the last construct in the subject that required a change in the infor­

mation structure. In other words, a stream of changes to the information structure (caused in a

symbol table by declarations; scope entry and exit, etc.) defines a stream of information structures

(symbol tables), each valid after the program construct (visibility construct) that caused the pro­

duction of that information structure.

In the implementation of the visibility control rules in a conventional compiler, the ~tream

of resulting symbol tables is only conceptual. Each successive symbol table is defined in terms of

a modification of the previous one, but is produced in the implementation by destructively modi­

fying the previous one. This optimization is possible because the previous table is no longer

needed after the modification.

5.1.2. The Database Model

When editing or viewing a program with an interactive system, the user can access the ele­

ments of the just-described conceptual stream of information structures in any order. For the sake

of efficiency, it is prudent to maintain information about the entire program, using information

about various parts of the program as necessary, so that we need not entirely recompute each ele­

ment when it is needed. A good example of such a language processor is a language-oriented

program editor such as PAN [Ballance et al. 1987]: the user is free to move about the subject

program, making changes, and the editor must obtain the correct information in any location to

determine whether the changes are legal. I call this type of information management the database

model because the language processor must maintain a database of information about the entire

subject program, accessing and updating information in that database according to the current

location in the subject program. The database may be monolithic, or it may be highly distributed,

as in some attribute grammar implementations [Reps and Teitelbaum 1985]. In this case, the

database consists of the attributes spread throughout the program tree. Interactive programming

systems do not have to use the database model, but they usually do because of the advantages of

the database model for incremental update.

An easy way to determine whether the flow model or the database model is being used for a

model of visibility control is to look at the operations: the flow model will have operations like

Enter _Scope, Exit_Scope, and won't use explicit subject program positions. However, it is possi­

ble to have a Set_Cu"ent_Position operation. The database model will have operations like

Create_Scope, but not Enter _Scope and Exit_Scope, and will use explicit subject program

§5.1 The Flow and Database Models of Information Maintenance

'

67

positions (either with each update or access operation, or in a Set_Current_Position operation).

5.1.3. Static vs. Changing Subject Program

Tile flow model is traditionally used only in batch processing, with a static, unchanging

subject program. The use of the flow model actually arose out of the nature of sequential batch

processing of a program. In sequential batch processing, it is only necessary to keep the informa­

tion necessary for the current point in the computation, so it is natural to destructively modify the

information structure as the computation progresses. In other words, the stream of input is pro­

cessed, producing a (conceptual) stream of information structures, each one corresponding to a

particular point in the input stream.

However, using the flow model is usually not efficient when processing the subject program

interactively, because a change at any point can affect the value of the information structure at

any later point, possibly causing much recomputation. It may be possible in some cases to avoid

most of this recomputation through the use of clever data structures [Driscoll et

al. 1986; Hoover 1987].

Since an efficient implementation of an interactive system is difficult using the flow model,

the database model is usually used when interactive processing is required. All necessary infor­

mation is always present in the database, and context (e.g., the user's position in the program

being edited) is used to determine which information in the database is currently relevant (such as

the current set of visible bindings).

The flow model style of implementation is actually an optimization of the database model

intended for batch processing- the optimization is to keep only the information that is necessary

at any given point in the sequential processing of a program. The database model is very general,

allowing a wide range of operations and processing styles (wholly batch or interactive, or any­

thing in between). However, this generality is achieved at the cost of some efficiency.

Several optimizations are commonly used in the flow model. The most important space

optimization is the destructive modification of an old version of the information structure to pro­

duce a new version, because the old version is no longer needed. The database model must, in

some form, maintain all of the information from all of the sequence of symbol tables as defined

by the flow model.

One optimization of the flow model as compared to the database model is that it can throw

away information that is no longer needed as it processes a program. On exiting a scope, all

information about that scope's bindings can be deleted from the symbol table if the language

requires declaration-before-use (except in cases such as exports). It may be possible to imple­

ment a symbol table as a stack. One common implementation method for symbol tables in the

flow model is to compress the above stack into a single hash table.

5.1.4. Implicit vs. Explicit Source Positions

In the flow model, the current position within the subject program for which the information

structure is accurate is implicit, embodied within the state of the information structure. For

example, with a flow-style symbol table, when a lookup is performed, the position of the lookup

in the subject program is determined solely by the current state of the symbol table at the time of

the lookup.

In the database model, it is possible to access information about any location of the subject

program by moving around in the subject. When a new variable reference is added to the subject

program, the symbol table database is examined to determine whether the variable is visible in

the visibility region containing the reference. That is, we need to know what bindings are visible

at any point in the subject program. Since it must be possible to reference information about the

program at any point in the program, we must explicitly tell the database what source position. we

The Database Model
§5.1.2

68

want information for. This can be done by supplying a source position for every database opera­

tion, or by having the database assume the source position is unchanged until told otherwise.

5.15. Model of Subject Program Structure

An information structure based on the flow model need only maintain information about the

subject program that is currently relevant, and thus may only need to understand a particular view

of the program. A flow model symbol table (in the usual case) is only concerned with the

currently visible nested scopes, and thus its view of the program can simply be a list of contours

corresponding to those scopes.

With the database model, the information structure must be capable of handling the struc­

ture of an entire program. In the symbol table example again, a block structured program consists

of a tree of scopes, so the symbol table's view of the program will have to be tree structured. In

the presence of import/export and named scoping, the tree becomes a DAG. In more complicated

examples, such as an early version of LISP Machine LISP [Weinreb and Moon 1981], the DAG

may have to be replaced by a more general graph.

5.1.6. Flow Model and Database Model as Design Choices

This section considers whether this (flow model vs. database model) is an important design

parameter for models of visibility control.

The flow model is first analyzed with respect to the normal flow of visibility control infor­

mation and dependencies in a program of a given programming language. Some visibility con­

structs have no affect on any name resolution or other visibility control-related language con­

structs following that visibility construct. For example, an ALGOL 60 block may contain

declarations, but those declarations have no affect on visibility past the end of the block. The

visibility at the point immediately following the block is precisely the same as at the point

immediately prior to the block. 1be proper way to model the visibility control rules of

ALGOL 60 using the ''one visibility region Hone symbol table'' paradigm is as a tree of symbol

tables, not as a simple sequence. The traditional flow model where a single sequential thread of

symbol tables is produced is an optimization: each element of the sequence is produced by des­

tructively modifying the previous element, so that only one symbol table is kept at any time. The

sequence is obtained by a pre-order traversal of the tree of symbol tables just mentioned. In tradi­

tional symbol table implementations [Graham et al. 1979], when returning after traversing a

branch of the tree, the information added to the symbol table by that branch is deleted, restoring

the symbol table to an earlier state. This necessitates that the symbol table be structured so that

this deletion of information is easy. Some degree of abstraction must be given up for the sake of

efficiency in order to do this linearization.

The concept of a tree of symbol tables (before it becomes corrupted by linearization for

efficiency) is very useful. Each node in the tree represents the visibility control information (the

symbol table) for a particular visibility region of the subject program, and that visibility region

alone. Each node may be related to other nodes, but only a visibility region's node is needed in

order to perform any visibility control operation within that visibility region. Each node is a view

of a specific visibility region of the subject program, a view concerning only visibility control

information. If one can define each such view, and the relationships between views, then the goal

of defining visibility control rules has been reached.

The database model is now considered with respect to these ideas. Instead of many symbol

tables, we have a single database that contains all visibility control information for the entire sub­

ject program. To perform a visibility control operation, we specify the operation and where the

operation occurs. The database model must provide a view of the visibility control information,

and the operation must be performed with respect to that view, possibly altering the view. The

§5.1.4 Implicit vs. Explicit Source Positions

.....

69

view is determined by the state of the database and the position in the subject program.

This ''view'' seems to be the proper level of abstraction. At this level, the database model

and the flow model are identical, because they can both provide the same view, and all visibility

control operations can be performed with respect to that view. To define the meaning of the visi­

bility control rules of a language, one must define this view for any visibility region of a subject

program. It may be useful to define the relationships between views, because:

• It may be easier (less work, better abstraction, etc.) to define each view in terms of other views

rather than from scratch.

• It may help in producing an efficient implementation. The implementation may be able to

maintain differences between views, instead of maintaining each view separately. Traditional

operations such as Enter _Scope and Exit_Scope just define the relationship between two views

(at an implementation level), and can be implemented efficiently because they define one view

as a transformation of another.

If the model of visibility control can be defined at this level of abstraction, we can push the

distinctions between the flow model and the database model entirely into the implementation. It

is then the responsibility of any such implementation to provide the necessary efficiency.

5.2. Specification Burden on Definition vs. Use

This design coordinate was discovered by examining the differences between the Search

Model and the Visible Set Model. In the Search Model, the result of a declaration or some other

visibility construct is usually very simple: a binding is added to a contour, or another action of the

same level of complexity. Specifying the meaning of each visibility construct is correspondingly

simple. However, this is only a partial definition of the visibility control rules of a language. In

the Search Model, a large part of the specification is in the definition of how references are

resolved, both when resolving a reference and when checking for duplicate declarations.

In the Visible Set Model, resolving a reference is trivial. All of the specification effort goes

into defining the meaning of each visibility construct. This is also true in the Range Model.

The difference arises because of a fundamental difference between definition (correspond­

ing to· a visibility construct) and use (lookup). The different models here arise from different

emphasis on the two operations. In the Visible Set Model, definition is the operation of interest.

In the Search Model, use is emphasized, although definition is still of interest. This is obviously

not a binary choice, but a continuum, and though the Visible Set Model is at one extreme, it is

unclear whether the Search Model is at the other extreme. So, what is at the other extreme is of

interest The location of the Search Model on the continuum is also of interest.

At one end of the continuum (emphasis on use), definition is trivial, and the entire

specification burden is on defining the meaning of a use (lookup). The Search Model fulfills this

requirement at least in the basic case of simple declaration and lookup in a block structured

language. Declaration consists of three operations: entity definition, binding of the entity to a

name, and association of the binding with a contour.

The first two steps are simple and completely local, not dependent on other parts of the sub­

ject program. The third step is simple in a block-structured language: The binding is added to the

current contour after checking for duplicate declaration. The check for duplicate declaration is

done with a lookup using special search rules, reflecting the different visibility for ''knownness''

(§4.2.3). The only apparent way to simplify this would be to eliminate the check for duplicate

declaration, and to do this check somehow at the point of lookup. However, this only makes

sense if duplicate declaration is never an error in a language. The only languages I am aware of

with this property are macro languages, which usually have very simple visibility rules, and thus

aren't of much interest.

Flow Model and Database Model as Design Choices §5.1.6

70

More complex language constructs are now considered. One example that illustrates some

of the issues involved is the Ada use statement The public pans of one or more packages may be

''opened'', importing the public bindings into another package. The rules for resolving the clash­

ing of bindings in two or more packages were presented in §2.6.8, and are repeated here for ease

of reference:

(1) The set of "potentially visible" bindings consists of all non-private bindings of all pack­

ages appearing in use statements affecting S .

(2) A potentially visible binding b 1 is not visible if another binding b 2 clashes with b 1, and b 2

is visible within S in the absence of any use clauses.

(3) If two potentially visible bindings clash, then all potentially visible bindings with the same

name are not visible. That is, all potentially visible bindings of a name are visible if they

are all overloadable, and none of them are visible otherwise (assuming part (2) does not

apply).

(4) All other potentially visible bindings are visible.

This description corresponds closely to the description of the effect of use statements in the

Ada reference manual [USDoD 1983]. Another, easier-to-understand method of describing their

effect exists which is unrelated to the method of description in the manual:

(1) For a given scope, collect all packages opened by use clauses affecting that scope. This

includes all use clauses in that scope and in all enclosing scopes. If any of these scopes is a

package body, then use clauses in the corresponding package specification are also

included.

(2) Collect all public bindings in the packages opened by the use clauses in step (1). For each

name in this set of bindings, if two or more bindings of that name clash (are homographs),

then all bindings of that name are not visible.

(3) Place all bindings not eliminated in step (2) in a scope enclosing the package STANDARD.

Package STANDARD is a scope containing predefined types and operations enclosing

every library unit, and consequently the main program. The scope enclosing STANDARD

can be called the ''external'' scope. ·Note that there is potentially a different external scope

for each scope, because nested scopes can contain use clauses, and thus each scope can

potentially be affected by a different set of use clauses (in step (1) above).

(4) Given this external scope, bindings in the given scope can be resolved using the normal

visibility control rules, without-regard for use clauses.

There are three options for representing the result of the use statement in the visibility control

structure of the subject program:

(a) Add the bindings made visible by the use to the current contour, using the first method

described above for determining these bindings.

(b) Compute the contents of the "external" scope for each scope, and make tP.ese external

scopes enclose the main body of the program. The bindings in these external scopes are

then made visible by the normal inheritance rules. Since each of these external scopes

appears to enclose the global scope of the program, there must be a way to select the

appropriate external scope for a lookup occurring in a particular scope.

(c) Modify lookup to search the packages opened by use clauses and to resolve the effect of

clashing bindings in these use clauses.

(a) is more similar to the way other (simpler) imports are handled in the Search Model (as previ­

ously described), and is the method presented in §2.6.8. (c) is more in keeping with the philoso­

phy of placing the burden of specification on the definition of lookup. Unfortunately, it is more

difficult to describe the above rules in terms of a search, because all imported packages must be

§5.2 Specification Burden on Definition vs. Use

L

71

searched before deciding whether a binding found by the search is visible (this is possible, of

course, but it's not very clean). (b) is a compromise: part of the effect of use clauses on each

scope is computed in advance by computing the contents of the external scope for that scope, but

the effects of shadowing are not determined, as they are in (a). By making choices such as this

one, we move in one direction or another along the continuum of emphasis on definition or use.

Another language feature is the presence of open and closed scopes. In the Visible Set

Model, the closed scope serves as a barrier to all bindings whose class the scope is closed to. All

other bindings in the visible set for the region immediately outside of the closed scope are in the

visible set for the region immediately after entering the closed scope. The specification of lookup

is unaffected, because the visible set inside the closed scope reflects properly the set of bindings

visible there.

In the Search Model, a closed scope is handled by terminating the search when reaching a

closed scope, if the scope is closed to all classes of bindings that are valid results of the search.

The presence of a more general form of inheritance, where an inheritance restriction function

determines whether a given inheritance link is open to a specific binding or class of bindings (as

discussed in the Imports and Exports sub-section of §4.2.6), illustrates a slight weakness of the

Search Model as thus far described. The search for a binding of a name may cross a partially

closed inheritance link (a scope boundary). Unless it is known that the scope is closed to all pos­

sible valid results of the lookup, then the search must continue, even though the scope may tum

out to be closed to any bindings found on the search. One must continue the search, and screen

any bindings found. A simple and general method of doing the screening is to add a predicate to

a search- in addition to matching the referenced name, the binding must satisfy the predicate.

This is called the search predicate. Each time a partially restricted inheritance link (such as a

partially closed scope) is encountered, the predicate is augmented to further restrict the predicate

as required. The search predicate is simply the conjunction of all inheritance restriction functions

of inheritance links on the path from the reference to the point where the binding is found. The

search may halt when the search predicate becomes identically false.

5.3. Where is Binding Visible vs. What is Visible Here

Tilis discussion arose out of one of the major distinguishing characteristics in the models

discussed thus far. The Visible Set Model defines what bindings are visible in any visibility

region of a program. The Range Model defines in which visibility regions any given binding is

visible. I call these the What Visible and the Where Visible approaches, respectively. There is a

very strong equivalence between these two ways of looking things, and this section explores their

similarities and differences. section. The Search Model and Reiss's model of visibility control

[Reiss 1983] are also discussed.

Each of these models of visibility control is first defined:

The Visible Set Model

The Visible Set Model defines which bindings are visible in a visibility region by defining a

binding set containing the visible bindings (the visible set) for each visibility region of a program.

That is, it defines for any program of a given language, a function

What_ Visible : Region -+ Set of Binding

Lookup is done simply by examining the visible set The function

Lookup: Name xRegion -+Set of Binding

is defined as

Specification Burden on Definition vs. Use §5.2

72

Lookup(n:Name,r:Region)= {b:Binding I be What_Visible(r)Ab.name=n }.

One can define each visible set in tenns of another visible set (or sets), where declarations

or other visibility constructs are responsible for the differences between visible sets for different

visibility regions.

The Range Model

The fundamental characteristic of the Range Model is that it defines the visibility control

rules of a language, and thus the visibility in a program, by defining the visibility range of each

binding. That is, it defines where each binding is visible in tenns of the visibility regions in

which the binding is visible. What I call the visibility range is sometimes referred to as the

"scope" of a binding, as in the definition of ALGOL 68 [Van Wijngaarden 1976]. More for­

mally, the Range Model defines a mapping:

Where_ Visible : Binding --+ Set of Region

which provides enough information to resolve references, though not in the most convenient

fonn. What is needed is a mapping

Lookup: Name ><Region --+ Set of Bindings.

To bridge the gap from the Where_ Visible mapping to the Lookup mapping, the mapping

All_Bindings: Name --+Set of Bindings

is defined, which gives all bindings of a given name. This is a standard mapping for the model of

visibility controL

The mapping

Restrict _Region : Region ><Set of Bindings --+ Set of Bindings

restricts a set of bindings to those bindings that are visible in the given visibility region.

Restrict _Region is defined by

Restrict _Region (r :Region, sb :Set of Bindings) =

{ b :Binding I b e sb " r e Where_ Visible (b) }

Lookup (n :Name, r :Region) = Restrict _Region (r, AII_Bindings (n))

The definition of how to compute Where_Visible for any program of a given language,

together with this definition of Lookup , define the visibility control rules for that language.

In the Range Model, each visibility construct determines whether a binding visible in a

region adjacent to that visibility construct is visible in another adjacent region. There is more

than one way to describe the meaning of each visibility construct, but these details ~ omitted for

now.

The What Visible approach is represented by the Visible Set Model, while the Where Visi­

ble philosophy is represented by the Range Model.

Equivalence of the Two Approaches

There is a strong equivalence between these two approaches. The What Visible approach

defines the visible set for each visibility region. The Where Visible approach defines, for each

binding, a set of visibility regions where that binding is visible. The information content is the

same in both cases, though the form is different: given the information defined by either model,

the definition of lookup is trivial (and can be standardized across languages). This equivalence is

§5.3
The Visible Set Model

73

proven by demonstrating a one-to-one mapping between the mappings defined by each model.

The demonstration is not entirely rigorous, but the validity of the demonstration should be clear.

The essential function defined by the Visible Set Model is

What _Visible: Region ~Set of Binding,

where (r ,sb) e What_ Visible <=> (b e sb <=> b visible in region r). This function is

equivalent to (in the sense that they contain precisely the same information) the mapping

Has _Visible _Binding: Region ~Binding

where

(What_ Visible (r)=sb and b e sb) <=> ((r ,b) e Has_ Visible _Binding).

This is simply a distribution of the domain of What_Visible over the elements of each domain

element's image. The fact that What _Visible is a function is important, because otherwise

What_ Visible would contain more information than Has_ Visible _Binding , and the implication

would be true only in the forward direction.

Has_ Visible _Binding is equivalent to the mapping

Visible _In: Binding ~Region

where (r ,b) e Has _Visible _Binding <=> (b ,r) e Visible _In. The equivalence here is obvious.

The essential function defined by the Range Model is

Where _Visible: Binding ~Set of Region.

where

(b ,sr) e Where_ Visible <=> (b visible in region r <=> r e sr).

Visible _In is equivalent to Where _Visible, where

(b ,r) e Visible _In <=> Where _Visible (b)=sr s.t. r e sr.

Another way of stating the equivalence is to define Where_ Visible in terms of Visible_/ n by

Where _Visible = { (b, { r I (b ,r) e Visible _In }) I 3(b ,r') e Visible _In } ,

or Visible _In in terms ofWhere_Visible by

Visible _In= { (b,r) Ire Where_Visible(b)}.

Therefore, Where_ Visible and What_ Visible are equivalent, by associativity of

equivalence.

The Search Model

The Search Model is hard to classify here. What is defined is what a reference means,

which in a sense defines what is visible at any given point, but only indirectly. More accurately,

the Search Model defines a binding as being visible where it is declared, and also where it is

explicitly made visible (e.g., by an import or export that is equivalent to creating a declaration in

the receiving scope). The Search Model also describes where to look for valid bindings when

doing a lookup by following inheritance links. Much of the work is done at lookup, as opposed

to the Visible Set Model or the Range Model, where the bulk of the specification is in the mean­

ing of a declaration, and lookup is trivial. The Search Model is an "on-demand" type of

specification - whether a binding is visible at a given point is only determined if there is actually

a reference to that binding's name at that point. The only way to determine the "visible set" for

Equivalence of the Two Approaches §5.3

74

a region would be to perform a lookup on every name used anywhere in the program, with the

resulting bindings comprising the desired visible set. However, it seems reasonable to say that

the Search Model defines the set of bindings visible within any visibility region.

Reiss's Model

Reiss's model of visibility control is also difficult to classify. His method defines where an

object is directly visible, and where it is visible using rules that specify how the visibility pro­

pagates through nested scopes. This is similar to the Range Model in that it defines where each

binding is visible, except that the restriction by visibility is delayed until lookup.

Differences in the Where Visible and What Visible Approaches

Equivalence of information content of visibility control specifications certainly does not

make them identical. Indeed, any two visibility control specifications should be equivalent at

some level. The equivalence between the two approaches discussed in this section is just more

clear than usual. The style of specification induced by a visibility control model is also of

interest, as discussed in the introduction.

The What Visible approach places the emphasis on what is visible at any point in a pro­

gram, and how that is modified by various visibility constructs. What is visible is Specified in

terms of what regions each visibility construct can affect, and the effect each visibility construct

has on the set of visible bindings (the visible set) of each such region. This information is avail­

able as a mapping from each region to the visible set for that region.

The Where Visible approach places the emphasis on the meaning of a declaration: where

the binding resulting from the declaration is visible. Where bindings are visible must be specified

in terms of what bindings each visibility construct can affect, and the effect each visibility con­

struct has on the visibility of each such binding. This information is available in the most

straightforward form: a mapping from a binding to the visibility regions where the binding is visi­

ble.

On one hand, there is an emphasis on the net effect of all declarations and other visibility

constructs on individual visibility regions, while on the other there is an emphasis on individual

declarations and bindings.

It is my opinion that this distinction between methods of specifying visibility control rules

is a valid and useful design parameter, defining a visible set for each region vs. defining the visi­

bility range of each binding. They are significantly different ways of describing the visibility

control rules of a language, regardless of their equivalence, and regardless of possible implemen­

tations. Both methods have been used to describe real languages, though not in exactly the way

described, and certainly not with the same terminology. The Where Visible approach was used in

the definition of Modula-2 [Wirth 1982], while the What Visible approach was used to define

ALGOL 60 [Backus et al. 1960].

5.4. Relationships Between Design Choices

The discussion of the Row Model vs. the Database Model resulted in the conclusion that

the distinction isn't a proper one at the level of description which is the aim of this research.

However, it also resulted in the conclusion that the proper level of abstraction for a model of visi­

bility control should show no distinction between the Flow Model and the Database Model, and

should provide ''views'' of the visibility control information.

Table 5.1 illustrates the results of combinations of decisions in the two remaining design

coordinates. This table describes the model of visibility control resulting from each pair of

choices. The two choices are emphasis on definition versus emphasis on use, and definition of

§5.3 The Search Model

-

What Visible Where Visible

Definition The Visible Set Model The Range Model

Use The Search Model Reiss's Model

Table 5.1: Coordinates for Visibility Control Models

what is visible in each region versus where each binding is visible.

75

Two interesting observations resulted from the creation of this table. The first was that each

position in the table could be filled with either one of the models formalized in this dissertation or

with Reiss's model, though this was certainly not intentional.

The second was a much better understanding of Reiss's model by itself and in relation to

our models. Reiss's model filled in a missing point in the coordinate space which I was aware of

but was unable to characterize properly. This helped to demonstrate that these design coordinates

were indeed orthogonal.

All of these models appear to be reasonable, after a less-than-complete examination. Some

of their relative advantages and disadvantages will be discussed in later chapters.

One should not infer from this discussion that these are the only four major choices possible

when designing models of visibility control. Indeed, three models introduced in this dissertation

(the Search Model, Visible Set Model, and Range Model) are only rough sketches, with emphasis

on selecting basic principles and applying those basic principles to all requirements of a model of

visibility control. Reiss's model was designed independent of and prior to this research, and

presumably with ease of use in mind instead of an emphasis on basic concepts, so it doesn't fit as

cleanly into the coordinate space as the other three models. A designer of a model of visibility

control may choose to mix some of the features of the models ofvisibility control discussed, blur­

ring the distinctions between the different choices.

Relationships Between Design Choices §5.4

76

77

CHAPTER6

The Inheritance Graph

In this chapter, all of the discussion in previous chapters is put to use to design a natural

and powerful model of visibility control based on the inheritance graph, called the Inheritance

Graph Model. Tile goal in designing this model is to satisfy the requirements presented in

Chapter 4 in the most straightforward manner possible, concentrating on basic concepts. The

intent is not a complete specification language that can be directly used in a programming system

(such as a compiler or a language-oriented editor) to define the visibility control rules of

languages. Thus, implementation details and embellishments are avoided as much as possible in

this chapter, because much of the character of a specification language intended for translation

depends on the details of the programming system being developed.

Likewise, commitment to any of the choices discussed in Chapter 5 is delayed or avoided as

much as possible, to avoid confusing the basic concepts with other issues.

The first section informally introduces the concepts of the Inheritance Graph Model using

examples. §6.2 defines each of the features of the Inheritance Graph Model more precisely.

1be precise meaning of an inheritance graph is defined in §6.3, and error handling is

described in §6.4. The next two sections describe in detail how the requirements of a model of

visibility control are satisfied by the Inheritance Graph Model, and how many complex visibility

features, including closed scopes, import and export, and the Pascal with statement, can be

described using the Inheritance Graph Model.

§6. 7 describes how an inheritance graph can be constructed if par of the construction of the

graph depends on the resolution of references using the graph. Ambiguities and inconsistencies

that can result from such dependencies are discussed in §6.8.

The final section is a summary of the Inheritance Graph Model.

6.1. Introduction to the Inheritance Graph Model

This section presents an introduction to the Inheritance Graph Model by means of two

examples. Each of the features of the Inheritance Graph Model mentioned in this section is

described more precisely and in greater detail in §6.2.

6.1.1. ALGOL 60 Visibility Rules Example

An inheritance graph consists of vertices representing visibility regions, and directed edges

representing inheritance of visibility between visibility regions (corresponding to the inheritance

links defined in §4.2.6). A vertex corresponds directly to a visibility region, so the two terms are

used interchangeably depending on the desired emphasis. Both vertices and edges are labeled

with semantic information.

A program fragment consisting of a block containing two nested blocks is illustrated in Fig­

ure 6.1. Assume ALGOL 60 visibility rules: all bindings resulting from declarations local to a

scope are visible throughout the scope, so each scope is composed of a single visibility region.

Each block in the program is labeled with an identifier of the form vr11 , denoting the visibility

region corresponding to that block.

78

vr 0
begin blockl vr 1

A: Integer
B: Integer

end

begin block2 vr 2
C: Integer

end
begin block3 vr 3

A: Boolean
end

Figure 6.1: Nested Blocks Program Fragment

enclosing environment

define-vis (v 1, [A,Int], referable,known)
define-vis (v 1, [B,Int], referable,known)

2 define-vis (v 2, [C,Int], rejerable,known)

3 define-vis (v 3, [A,Bool], referable,known)

Figure 6.2: Inheritance Graph for Nested Blocks Example: ALGOL 60 Semantics

The inheritance graph corresponding to the program fragment in Figure 6.1 is illustrated in

Figure 6.2. Each vertex in the graph is labeled with the number i of the visibility region vri

corresponding to the vertex.

The describer (the person describing the visibility control rules of a language using this

model) may define one or more visibility classes, which are used to satisfy the requirement for

more than one class of visibility. For example, a binding is "visible" (following the usual

definition) where it can be referenced in a program, and this visibility class can be assigned the

§6.1.1 ALGOL 60 Visibility Rules Example

'

79

name referabte28• Similarly, we may say that a binding is "known" in all visibility regions

where no clashing binding may be declared, and assign this visibility class the name known.

Since there may be more than one visibility class, and these visibility classes are independent, it

no longer makes sense to say simply that a binding b is ''visible'' in visibility region vr - one

must specify the visibility class. One says that b has visibility vis_cltlss in vr. As a short-hand

notation, one may say that <b, vis_cltlsS> is visible in vr (or visible at the vertex corresponding

to vr), orb is vis_cltlss in vr. For example, one may say that b is known at vr;. The total visi­

bility in a visibility region can be represented by a set of binding/visibility-class pairs, following

the style of the Visible Set ModeL The names of the visibility classes have no inherent meaning,

but rather are given their meanings by how they are used by the describer. The describer is free

to use and name as many visibility classes as he/she desires.

Visibility of a binding b is initially defined at a particular vertex, usually the vertex

corresponding to the visibility region resulting from the declaration that produced b. The Inheri­

tance Graph Model primitive define_ vis is used to define a particular class (or classes) of visibil­

ity at a certain vertex. For instance, the binding [A Jnt] is defined with referable and known

visibility at vertex v 1 in Figure 6.2. [A J nt] is defined to be referable and known at v 1, so

<[AJnt],referable> and <[AJnt],known> are visible at v 1• Different classes of visibility of a

binding may be defined at different vertices.

Visibility of a binding/visibility-class pair <b, vis_cltlsS> is inherited from the vertex where

initial visibility of b is defined to other vertices via edges of class vis_cltlss. Each edge

represents inheritance of a single visibility class. In the example, <[AJnt],referable> is inherited

via the edges from v 1 to v2 and v3. These edges are labeled with "r" in the figure to denote that

they represent inheritance of referable visibility, and are called referable edges. The edges

correspond to the nesting of block2 and block3 within blockl, where the binding [A Jnt] is

declared. There are no known edges in this graph because in ALGOL 60's visibility rules, a

binding is known only in the scope containing the binding's declaration: in the example graph,

<[AJnt],known> is only visible at the vertex where known visibility of [A Jnt] is defined.

Edges (also known as inheritance edges) may correspond not only to inheritance due to

nesting of block-structured scopes, but also to inheritance between contours resulting from a list

of declarations in a language with a declaration-before-use requirement, or inheritance resulting

from an import or export statement. Different edges, corresponding to inheritance of different

visibility classes, can flow in different directions in the graph. This is illustrated in the next

example.

6.1.2. Pascal Visibility Rules Example

Figure 6.4 contains the inheritance graph corresponding to the same program fragment (Fig­

ure 6.1), but assuming Pascal visibility rules. The graph is significantly more complex than the

graph which assumed ALGOL 60 rules, because of Pascal's declaration-before-use requirement

and the use of scope contour-relative shadowing. Because a reference to a binding cannot pre­

cede its declaration, each declaration introduces a new visibility region. Visibility region vri fol­

lows the corresponding declaration, as shown in Figure 6.3. Figure 6.3 is identical to Figure 6.1

except for the visibility region annotations. Visibility region vr; is represented by vertex v; in the

inheritance graph. Vertices corresponding to visibility regions local to the same syntactic scope

are arranged vertically in a straight line; the vertex for a nested scope is below and to the right of

the enclosing scope.

28 The bold italic font will be used solely for names of visibility classes.

ALGOL 60 Visibility Rules Example §6.1.1

80

vr 0
begin blockl vr 1

end

A : Integer vr2

B :Integer vr3
begin block2 vr 4

C : Integer vr 5
end
begin block3 vr6

A : Boolean vr 7

end

Figure 6.3: Nested Blocks Program Fragment: Pascal Semantics

The graph representing the Pascal-semantics version of the example program contains both

referable and known edges (annotated with a "k" in the graph). To reduce clutter in the figure,

when two edges (corresponding to different visibility classes) go from vi to vj, they are

represented by a single edge in the figure, annotated with both visibility classes.

Several characteristics of Pascal visibility control semantics are apparent from the inheri­

tance graph in Figure 6.4.

(1) In a sequence of declarations, known edges go in both directions: in sequential text order,

and in the opposite direction, meaning that known visibility of a binding is inherited from

the vertex where the binding is defined forward and backward to all visibility regions in the

scope (excepting nested scopes). Thus, a name may not be redeclared in the same scope.

However, a nested scope does not inherit known bindings, so a nested scope is free to rede­

clare bindings declared in outer scopes.

(2) referable edges go only forward in text order, meaning that references to bindings may only

occur after their declarations. An exception must be made for a forward reference in a

pointer type declaration to a type declaration in the same scope, so it is legal to reference a

known binding in that case even if it is not referable.

(3) referable edges also go into nested scopes, meaning that bindings declared in outer scopes

may be referenced.

Thus far, the fact that the binding of the Boolean A declared in block3 shadows the binding

of the Integer A declared in blockl has been ignored in the discussion of inheritance of visibility

of bindings. The Inheritance Graph Model provides a mechanism called clash resolution which

allows actions such as shadowing to be specified by the describer. In the example, both

<[A,bool],known> and <[AJnt],referable> are inherited at vertex v6. The specification of clash

resolution for Pascal states that a known binding shadows a referable binding of the same name,

so <[A,bool],known> shadows <[AJnt],referable> at v6, and <[AJnt],referable> doesn't actually

become visible at v 6.

In Pascal, the set of vertices where a binding b is known (i.e., b.name can't be redeclared)

is a subset of the vertices where b is referable. This is true in most languages. The exception is

Euclid, where a binding's name b.name can't be redeclared even in some places where b can't be

referenced.

Inheritance of visibility of bindings can be further restricted by annotating an edge (vi ,vj)

with an inheritance restriction function rf (or simply a restriction function). rf is applied to each

pair <b, vis_cltzss> visible at vi, and each pair for which rf returns true is inherited by vj.

§6.1.2 Pascal Visibility Rules Example

81

0 enclosing environment

r enter block 1

define-vis (v 2, [A,Int], rejerable,known)

define-vis (v 3, [B,lnt], rejerable,known)

enter block 2

k

define-vis (v 4, [C,Int], rejerable,known)

k

define-vis (v 7, [A,Bool], rejerable,known)

Figure 6.4: Inheritance Graph for Nested Blocks Example: Pascal Semantics

Pascal Visibility Rules Example §6.1.2

82

Given the above definitions, a binding/visibility-class pair is visible at all vertices where it

is inherited and not shadowed. The meaning of a reference in a visibility region can be defined

by the describer in terms of the binding/visibility-class pairs visible in the visibility region by

defining a "lookup function." The meaning of references in different contexts (e.g., a reference

in an expression as compared to checking for another declaration of the same name in a scope)

can be defined by defining several lookup functions.

6.1.3. Dynamic Inheritance

Both inheritance graph examples have assumed lexical (static) inheritance. However, the

Inheritance Graph Model is not restricted to languages with lexical inheritance. In a language

with dynamic inheritance, visibility regions still represent contours, but the structure of the inher­

itance graph varies dynamically with the execution of the program. The structure of inheritance

graphs corresponding to dynamic inheritance is typically quite simple.

6.2. Definition of the Inheritance Graph

The Inheritance Graph Model consists of a few simple primitives, listed here:

Names, Entities, and Bindings
As previously defined.

Visibility Classes
Describer-defined classes of visibility.

Vertices
A vertex corresponds to a single visibility region.

Edges
An edge is labeled with a particular visibility class, and represents inheritance of visibility

of bindings with that visibility class.

define_vis (v:Vertex, b:Binding, vc:VisibilityClass)
Defines initial visibility of binding b with visibility class vc at vertex v.

redefine_vis (v:Vertex, old_b, new_b:Binding, vc:VisibilityClass)

Defines initial visibility of binding new_b with visibility class vc at vertex v, simultaneously

shadowing inheritance of binding old_b.

visible (n:Name, v:Vertex, vc:VisibilityClass)
Returns all bindings b of name n inherited at vertex v with visibility class vc.

clash (bl, b2: Binding)
Describer-definable function that returns true iff bFand b2 clash according to the visibility

rules of the language.

Clash Table
Describer-definable table that defines the meaning of the function clash _resolve. Describes

the meaning of two clashing bindings visible at the same vertex (such as shadowing one of

the bindings, or an error).

define_error _check (v: Vertex, error _check: procedure (Vertex))

Associates the describer-defined error-checking function error _check with vertex v.

There are no other primitives in the Inheritance Graph Model. The following sub-sections define

these primitives in more detaiL All other functions appearing in this chapter are describer­

defined functions which use the primitives of the Inheritance Graph Model to describe the seman­

tics of a particular visibility construct.

§6.1.2 Pascal Visibility Rules Example

83

6.2.1. Inheritance Graph Vertices

Each vertex in the inheritance graph corresponds to a single visibility region. The net visi­

bility at a vertex is a set of binding/visibility-class pairs that defines what bindings are visible

with what visibility classes at the vertex. The visibility at a vertex may be broken down into

three parts, representing steps in defining the net visibility of the vertex. Figure 6.5 shows an

expanded version of a vertex v , illustrating the three steps.

The first step collects all binding/visibility-class pairs inherited by v via edges from other

vertices, taking into account inheritance restrictions on the edges.

The second step adds the effect of definitions and redefinitions of binding/visibility-class

pairs. A definition simply adds a binding/visibility-class pair to the visibility of the vertex. A

definition can be created by the define _vis primitive:

define_ vis (v:IGVertex, b:Binding, vis_class:VisibilityOass)

which defines visibility class vis _class of b at vertex v.

Redefinitions, which define visibility of a binding/visibility-class pair while shadowing visi­

bility of another binding/visibility-class pair, will be discussed in §6.2.6.

Adding the effect of definitions and redefinitions produces an intermediate visibility for the

vertex. The third step is to do the clash processing: to check for any clashing bindings and per­

form any actions specified by clash resolution. These actions may include shadowing some

Figure 6.5: Three Steps oflnheritance Graph Vertex

Definition of the Inheritance Graph §6.2

84

binding/visibility-class pairs, resulting in a restricted net visibility. The details of the clash func­

tion and clash table, which together specify the clash resolution process, will be given in §6.2.3

and §6.2.3. This net visibility is what is visible to normal lookups performed in the visibility

region corresponding to the vertex, and is available for inheritance to other vertices. The inter­

mediate steps in defining the net visibility for a vertex can be accessed if desired, as will be dis­

cussed in section §6.2.4.

6.2.2. Inheritance Graph Edges

Inheritance graph edges correspond to the inheritance links defined in §4.2.6. They provide

a way of describing restricted or unrestricted inheritance of binding/visibility-class pairs between

visibility regions. Each edge ei is labeled with a visibility class vci , indicating which pairs may

potentially be inherited via that edge. ei is also labeled with a restriction function rfi. The form

and effects of restriction functions will be defined in §6.2.7, but the restriction functions for the

examples prior to that section do not affect the meaning of the inheritance graphs, and can be

ignored.

6.2.3. The Clash Function and Clash Table

The clash function clash is describer-defined, and determines whether two bindings clash.

It takes two bindings as argmnents, and returns true if the bindings clash, and false otherwise.

By the definition of clashing bindings, a binding does not clash with itself, so the two actual

parameters to clash will never denote the same binding. Furthermore, two bindings are defined to

clash only if their names are equal. This does restrict what the describer can define clash to

mean, but it corresponds to the fact that names are the most important attribute of bindings used

in resolving references. Thus, clash 's parameters will always have the same name, so it does not

need to test the names for equality. The following procedure is the default clash function, and is

appropriate for Pascal and for all languages where clashing is determined solely by equality of

names:

procedure clash (b 1, b2 : Binding) : boolean

I return (true)

In a language with overloading, such as Ada, some bindings with the same name do not

clash, and clash must be written appropriately.

clash is required to be commutative and associative. The order in which a pair of bindings

is passed to clash is not defined, so a non-commutative clash would not make sense. Associa­

tivity is required so that clash defines an easily-computed partition on a set of bindings.

All pairs of bindings visible at a vertex are tested for clashes, regardless of the visibility

class associated with each binding. The visibility classes of the binding/visibility-class pairs are

used by the clash table.

The clash table defines a function clash-resolve that determines how a clash between two

bindings visible in the same visibility region is resolved. The resulting action depends primarily

on the visibility classes. The following table is the clash table for Pascal, and specifies the clash

resolution process as discussed in the introductory examples:

Pascal Visibility Class for b 2

Clash Table referable known

Vis Class referable error(" description error") shadow b 1

for b_t known shadow b 2 error("clashing declarations")29

§6.2.1 Inheritance Graph Vertices

85

This clash table should be interpreted as follows: If b 1 is known and b 2 is referable, then b 1

shadows b 2, and inheritance of <b 2, referable> is halted by the clash processing. The clash table

is required to be symmetric across the main diagonal, meaning that clash resolution is commuta­

tive. Clash resolution is also required to be transitive with respect to shadowing, in the sense that

if

and

then

clash-resolve ({ < b 1 , vc 1 >,< b3 , vc 3 > } =shadow b3 .

If both bindings are known, there is an error, because this means that both bindings were declared

in the same scope. The only other possibility is that both bindings are referable- this should

never occur in the inheritance graph for Pascal. If if does, it indicates that there is an error in the

description of the inheritance graph for Pascal.

The clash table for ALGOL 60 is identical to the clash table for Pascal, except that two

referable bindings visible in the same visibility region do not signify an error in the description,

an are therefore ignored.

Each clash table entry may also be a conditional statement, if the visibility classes of the

bindings alone is insufficient information for selecting the appropriate action.

Clash processing is used to define a general form of shadowing. In previous chapters, sha­

dowing was described as the result of the interaction between visible bindings. The concept of

shadowing has been extended to include multiple visibility classes. The clash table describes the

meaning of interactions between various visibility constructs of clashing bindings, and shadow­

ing of one of the bindings is just one of the possible results.

6.2.4. Definition of Lookup

Lookup is defined by the describer in terms of the basic visibility classes used in the

definition of the visibility control rules of the language. The primitive function visible is pro­

vided for use in defining the meaning of lookup. Unless otherwise stated, in any mention of what

is visible at a vertex, the net visibility is intended. The describer may define more than one

lookup function in different contexts: visible is defined as follows:

function ~isible (
v : IGVertex,
n :Name,
vis_class: VisibilityClass) : Set of Binding;

return ({b:Binding I b.name = n,
<V,vis_class> inherited by v,
taking into account definitions and redefinitions,
inheritance of visibility via inheritance graph edges,
restriction functions, and clash resolution})

29 This entry ignores the possibility of forward declarations, and will signal an error for a legal forward declara­

tion. A revised version of this table entry will be given in §6.5.2.

The Clash Function and Clash Table §6.2.3

86

Note that this does not define how this set of bindings is computed, or even a precise

definition of the set. Tilese issues will be discussed in later sections on the precise meaning of an

inheritance graph.

Pascal requires two separate lookup functions - one for normal references, and one for use

in the special case of reference while defining a pointer type, since forward references in the

definition of a pointer type in Pascal are legal, as in

type
StackPtr = "Stack;

Stack= ...

The lookup function for normal references is

function standard_lookup (
n :Name;
v : IGVertex) : Binding;

return (restrict_unique (visible (n, v, referable), n, v))

The lookup function for references occurring in pointer type definitions is:

function pointer_type_lookup (
n :Name;
v : IGVertex) : Binding;

return (restrict_unique (visible (n, v, referable) u visible (n, v, known), n, v))

restrict_unique is a describer-defined function to test that the set returned by visible contains a

single element If so, restrict_unique returns that element; otherwise it creates an error message

and returns e"or _binding, a special describer-defined binding used as a place-holder to reduce

error-checking in other places.

function restrict_unique (
bindings : Set of Binding;
name: Name;
object : IGObject;
) :Binding;

num_bindings : Integer;

num_bindings =size (bindings);
if num_bindings = 1 then
I return (select b:Binding from bindings);

elseif num_bindings = 0 then

I
error (object, "'%s' referenced but not visible", name_to_ident(name));

return (error_binding);

else

I
error (object, "More than one declaration of '%s' visible", name_to_ident(name));

return (error_binding);

In the Pascal inheritance graph, if more than one binding is found, then there are clashing

declarations which will be detected by the clash processing, and it may not be desirable to report

errors in both the clash table and in restrict_unique.

§6.2.4 Definition of Lookup

87

In addition to visible, inherited_visible and intermediate_visible are defined so that the

intennediate visibility steps at an inheritance graph vertex can be accessed. These primitives

should not be needed often.

6.2.5. Error Conditions

It is possible to add error checks to a vertex, which are evaluated after the visibility at the

node is computed. The arguments to define_error _check, shown in Figure 6.6, are a vertex and a

procedure that perfonns the necessary checks, and calls error if necessary.

6.2.6. Redefinitions

A redefinition is the replacement of a visible binding by another binding. The new binding

binds the same name, but the entity is different. The new entity usually depends on the old

entity, and is often just a slight modification of the old entity. Redefinitions are used to represent

variable attributes (§4.2.4). Their usage will be discussed further in later sections.

The following algorithm represents the steps involved in detennining the effect of a

redefinition: A redefinition can be created by the redefine _vis primitive in Figure 6.7.

redefine _vis redefines the visibility of an old binding by replacing it with a new binding.

The two bindings are required to be identical as far as inheritance and clashing are concerned,

rocedure define_error_check (
v: IGVertex,
error_check: procedure (IGVertex));

add "error_check" to the error conditions at vertex v,

to be executed after visibility at v is computed

Figure 6.6: Procedure define_error _check

rocedure redefine_ vis (
v : IGVertex,
old_binding : Binding,
new _binding : Binding,
vis_class: VisibilityOass)

i
rocedure check_redefine_closure (v : IGVertex);

if (old_binding e inherited_ visible (v, old_binding.name, vis_class)) then

I error("old binding not visible at redefinition point");

if clash (old_binding, new _binding) then

I halt inheritance of visibility of old_binding

define visibility (new_binding, vis_class)

else
I error(" Improper redefinition of old binding: bindings don't clash");

define_error_check (v, check_redefine_closure);

Figure 6.7: Procedure redefine_ vis

Definition of Lookup
§6.2.4

88

meaning that they must clash.

check_redefine_closure must be a closure, because it depends on the value of the lexically

bound old_binding. The desired effect could be achieved in a language without first-class func­

tions by making define_error _check and the other inheritance graph operators language primi­

tives. Then, the argument to define_error _check could be the code to be executed, such as a

function call with arbitrary arguments, instead of a function with standardized arguments.

6.2. 7. Restriction Functions

Each edge (vi ,vi) with some visibility class vis_class is annotated with a restriction function

rf. rf is applied to each pair <b, vis_clasS> visible at v;, and each pair for which rf returns true

is inherited by vi. Each edge has a restriction function associated with it, but the default is the

null restriction function which returns true for all bindings. The restriction may depend on the

visibility construct corresponding to the edge, the class of the binding or entity being tested for

inheritance, or other details of the binding or entity, such as the binding's name.

Restriction functions are used to alter ''normal'' inheritance of visibility in programs. For

example, in Euclid a closed scopeS inherits only those bindings declared with the keyword per­

vasive. All other bindings declared outside of S are not visible within S. The restriction func­

tion for the edge from the visibility region prior to a closed scope to the first visibility region in

the closed scope is:

function restrict_pervasive_only (
b : Binding) : Boolean;

return (b.entity.pervasive =true);

6.3. Meaning of the Inheritance Graph

Given the preceding definitions of inheritance graph vertices, definitions and redefinitions

of binding visibility, edges and restriction functions, the clash function and clash table, and

describer-defined lookup functions, the meaning of an inheritance graph can be reduced to a sin­

gle issue: determining the set of binding/visibility-class pairs inherited by (visible at) each vertex

of the inheritance graph.

The meaning can also be defined using the Search Model approach, defining how to find

any binding/visibility-class pairs visible at a vertex matching a given name. However, this

approach has some problems, and will be discussed later.

Each vertex defines three visible sets30 (as illustrated in Figure 6.5), where the elements of

each visible set are binding/visibility-class pairs. Each visible set is defined by a function depen­

dent on other visible sets. The first step computes the inherited visibility, which is the union of

all pairs inherited via inheritance edges. The second step adds definitions or redefinitions, com­

puting the intermediate visibility - redefinitions replace old pairs. The third step ~liminates any

bindings shadowed as a result of the clash function and clash table, giving the net visibility.

There may be cycles in the inheritance graph, so determining a node listing giving an order

to evaluate the functions to compute the visible sets is not, in general, straightforward. Determin­

ing the meaning of a particular inheritance graph involves finding a least fixed point assignment

to all visible sets in the inheritance graph. If there is more than one fixed point, none of which is

least, the description of the inheritance graph is ambiguous. If there is no fixed point, the descrip­

tion of the inheritance graph is inconsistent. Either of these problems can result from the actual

30 In the context of multiple visibility classes, a visible set is a set of binding/visibility-class pairs.

§6.2.6 Redefinitions

89

visibility control rules of the language being described, or from an improper description of those

rules in terms of an inheritance graph. §6.8 will discuss these issues in more detail.

6.4. Error Handling

An error message is produced at each vertex where two clashing bindings reach, and the

clash table entry for the visibility classes associated with the bindings indicates an error. This

may result in many error messages for a single program error, for example in Pascal where

known edges go in both directions. If two clashing declarations occur in the same scope S , an

error will be noted at every vertex corresponding to a visibility region in S.

One possible solution is to alter the result of a clash to prevent visibility of a binding from

being inherited past the point of an error. This is viable, but it complicates descriptions enough

to make them noticeably more difficult to understand.

Another, cleaner solution is to produce the duplicate error messages and require the error

reporting mechanism to eliminate the duplicates. This requires a global error management pack­

age. The only additional requirement is that each error must define an object (such as a vertex, a

binding, or an entity) with which it is associated. It is then easy to cull all errors associated with

an object for duplicates. The language system of which this is a part must define where and how

an error message is reported for each class of object. A multiple-declaration error would be asso­

ciated with one or both bindings, and could be printed with the binding's declaration.

6.5. Handling of Requirements

This section describes how each of the requirements outlined in Chapter 4 is met by the

Inheritance Graph model of visibility control. The general requirements will be discussed later.

For the moment, the discussion will be restricted to the specific requirements of a model of visi­

bility control.

6.5.1. The Basics

Names, entities, and bindings are included as basic objects of the model. The handling of

attributes is not explicitly defined, but is straightforward. Bindings and entities can be defined as

records, with extra fields as needed to define the class of a binding or entity, or other attributes.

The n :m mapping between names and entities is supported, because there is no restriction on the

association of names to entities in bindings. The meaning of associating more than one entity

with a single name or vice-versa depends on the structure of the inheritance graph, the clash func­

tion and table, and so on.

Direct support for different classes of visibility is provided by two mechanisms: multiple

describer-defined visibility classes, and multiple describer-defined lookup functions for use in dif­

ferent contexts.

Ordering of visibility constructs and ordering of references with respect to visibility con­

structs is represented directly with directed edges in the inheritance graph. A very powerful form

of inheritance is provided by allowing inheritance edges from any vertex to any other vertex, and

by allowing describer-defined functions for restricting inheritance of bindings via edges.

6.5.2. Definition of Clash, and Effect of Clashing Bindings

The describer defines the meaning of clash by defining the function clash. The clash table

allows the describer to select the appropriate action when bindings clash. The shadow and error

actions are straightforward. The different kinds of reference action can be described using the

inheritance graph as follows:

If the new declaration is simply a completion of the old declaration (as in a Pascal forward

declaration), the handling of the new declaration depends on whether it is possible to tell solely

Meaning of the Inheritance Graph §6.3

90

by examination of a declaration whether it is a completion of a forward declaration. In Pascal,

the declaration that completes an earlier forward procedure declaration looks just like a declara­

tion of a parameterless procedure, so this isn't possible.

If it is possible to tell by examination that a declaration is the completion of a forward

declaration, then the modification of the attribute can be separated completely from the binding

resolution process. The completing declaration does not create a new binding: rather, the

appropriate course of action is to wait until all visibility information is available, find the binding

created by the forward declaration, and modify the appropriate attribute.

If it is not possible to tell by examination of a declaration whether it is a completion of a

forward declaration, then we must handle it as if it is a completely new declaration, and check for

the presence of a forward declaration if a clash occurs. Thus, the declaration creates a new bind­

ing bMw. If there is no prior forward declaration of the same name, then the declaration is a new

one, and bMw becomes visible according to the usual rules. If there is a prior forward declaration,

its binding brorward clashes with bMw. The resulting action is to shadow all visibility classes of

bMw and to modify brOII'Ward with the new information from bMW.

The Pascal clash table given in §6.2.3 did not handle forward declarations properly. The

entry for a known/known clash should be replaced by a call on the following procedure:

rocedure resolve_clash (b 1 , b'J)
b 1,b 2 : Binding;

-- determine if one of the bindings is a forward declaration

-- isJorward_ref is describer-defined
if is_forward_ref (b 1) then

I bold ::_ b 1;.
bMW.- b2,

else if is_forward_ref (bv then
--We assume a pointer implementation here, so modifying bold modifies b 2

bold := b2;
bMW ,"= b1;

else -- not a completion of a forward declaration

I
error ("clashing declarations")
return

-- shadow all visibility classes of bMw
shadow_all (bMw);

-- updateJorward_refis describer-defined,
-- and modifies attributes of bold with new information

-- may include additional error checking
updateJorward_ref(bold• bMw);

The final possibility for a reference action is if the new declaration results in a binding of a

modified version of the old entity. This must be handled as a variable attribute, as defined in

§4.2.4. Variable attributes are discussed in the next section.

6.5.3. Variable Attributes

Variable attributes require the ability to create a new, modified binding b,.w that depends

on another binding bold such that clash (bold ,b,.w). bMW shadows bold at the point of definition

of bMw. This is done using redefinitions, as defined in §6.2.1.

§6.5.2 Definition of Clash, and Effect of Clashing Bindings

-

91

Redefinitions should be done only in contexts where it is known that an old binding must

already exist; otherwise there is an error. If it is not known a priori whether or not an old binding

already exists31
, a check that an old binding is visible should be done before doing a redefinition.

A redefinition doesn't involve use of the clash table; it is placed with the definitions, and

replaces the old binding with the same name. An example of the use of variable attributes in an

inheritance graph will be presented in the next section.

6.5.4. General Concept of Visibility Regions and Scopes

A visibility region can be created corresponding to any visibility construct. A particular

kind of scope is characterized by a pattern of visibility regions (vertices) and edges in a subgraph

of an inheritance graph. Different forms of scope (records, modules, procedures) and variations

in these in different languages are reflected in the form of the subgraph:

• What vertices are used, and where definitions are placed on the vertices.

• What visibility classes are used.

• What the connectivity of the subgraph is, both internal edges, and edges between vertices in

the subgraph and other vertices in the inheritance graph. More specifically, a subgraph for a

scope is partially characterized by what visibility classes are inherited from one vertex to

another, in what direction(s) each visibility class is inherited, and what inheritance restrictions

are on the inheritance edges.

This section illustrates how several common kinds of scopes and related features may be

described using an inheritance graph. The task of designing the form of inheritance graphs for a

programming language consists primarily of designing a few subgraph-schemata of this form, as

well as the clash function and clash table.

The following examples illustrate the schemata for several kinds of scopes. These schemata

may be used as a guide for designing inheritance graphs for languages that include these kinds of

scopes.

Simple Open Scope

This example illustrates the prototypical subgraph for a simple open scope. The language

illustrated by the example requires declaration-before-use, but unlike Pascal, a binding from an

outer scope isn't shadowed until the declaration of a clashing binding in an inner scope. The

graph is in Figure 6.8. "dv" edges in the graph correspond to the directly_visible visibility class.

"r" edges continue to denote the referable visibility class, with the same meaning. To aid under­

standing of the graph, the nodes of the graph are arranged so that edges between visibility regions

local to the same scope are vertical on the page, while edges from outer to inner scopes go from

left to right. as in the earlier examples.

A binding b is directly_visible in each visibility region vr such that: (1) vr is local to the

scope containing b 's declaration, and (2) b may be referenced in vr without qualification.

According to the semantics described for this graph, directly_visible edges connect the vertices

corresponding to the local visibility regions of a scope in text order. There is a referable edge

corresponding to each directly _visible edge, and in addition, a referable edge from the visibility

region immediately preceding scope entry to the first visibility region in the scope.

31 In a Modula-2 implementation module, one doem 't know whether or not a type definition is a completion of an

opaque type declared in the corresponding definition module.

Variable Attributes
§6.5.3

92

r,dv

definition immediately prior to scope entry

r,dv

0

0

0

first definition in scope

second definition in scope

3 last definition in scope

4 first definition following nested scope

Figure 6.8: Inheritance Graph for Open Scope

Pascal-Style Record Types and Qualified References

A Pascal record type consists of a list of field declarations, each of which may in tum be

another record type declaration, nested to an arbitrary depth. A record is a form of scope; the

interesting characteristic of a record is that qualified references may be made to the fields of the

scope. In Pascal, no qualified references to the fields of the record may be made within the nested

scopes comprising the record declaration. Figure 6.9 illustrates the inheritance graph structure

for a Pascal record. To avoid unnecessary detail, the fields of the record are namedf-J throughf­

n, the fields of a nested record type at field /-m are numbered f-m-1 through f-m-n, and so on.

Also, to save space in the figure, referabk and known are abbreviated by "r" and "k," respec­

tively. The name of the record is "R".

Any record-type entity, whether a named record type or a nested anonymous record type

declared as the type of a record field, has a ref _env (reference environment) field used for

qualified references. To resolve the reference "R.f-3" in visibility region vrciU'Tel'll• a binding b of

§6.5.4 Simple Open Scope

Visibility region resulting from previous declaration

r,k k
0

0

0

r,k

define-vis(v 1, f-1, r,k)

k

define-vis(v 2, f-2, r,k)

k

define-vis(v 3, f-3, r ,k)

ref-env of field f-3 is v 6

k

k

define-vis(v 4, f-n, r,k)

r,k

r,k

define-vis(v 5, f-3-1, r,k)

k

0

0

0

k

define-vis(v 6, f-3-n, r,k)

7 define-vis ([R, · · ·], r,k): ref-env attribute of R is pointer to v 4

Figure 6.9: Pascal Record Type Inheritance Graph

93

"R" is found using the normal lookup function, standard _lookup (R,vcWTTefll),
32 where '~~current is

the vertex corresponding to vrcurrefll· The example assumes that b exists, is unique, and is a bind­

ing of a record variable. Then b.entity.type.ref _env is a pointer to the vertex "R (v 4 in the figure)

in the inheritance graph that is the visibility region in which the lookup up "f-2" should take

32 such as the standard _/oo/aqJ defined in §6.2.4.

Pascal-Style Record Types and Qualified References §6.5.4

94

place. A different lookup function, directly _visible _lookup must be used here: only the fields

immediately local to R may be referenced qualified by "R". Using the visibility classes intro­

duced in the Pascal semantics example, a binding is directly visible if it is referable and known.

The function is:

n :Name;
v : IGVertex) : Set of Binding;

r
rocedure directly_visible_lookup (

return (visible (n, v, referable) n visible (n, v, known))

The appropriate call is: directly _visible _lookup (ident _to _name (N2), v N
1
). This process may

be continued for any depth of qualified references.

A separate visibility class dtrectly_visible could be used for Pascal, but it is simpler to

check for the conjunction of referable and known visibility than to deal with the extra edges and

interaction between visibility classes.

Scope with Nested Qualified References

As discussed in §4.2.4, a scope S with declaration-before-use in which nested qualified

references are possible results in a new binding of "S" for each visibility region inS. This is in

contrast to a Pascal record, where the binding of the scope can be created after the last visibility

region local to the scope. A prototypical inheritance graph for a scope S with nested qualified

references is given in Figure 6.10. This example is similar to the example in Figure 6.9, but with

the necessary changes to handle nested qualified references. The explanation of the visibility

classes used in Figure 6.10 follows.

The semantics of qualified references in a language that requires declaration-before-use and

allows nested qualified references are significantly more complicated than they would be in the

same language without nested qualified references. At each step in resolving a qualified reference

"N1.N2. · · · .Nn"• we must detennine the proper environment- the proper visibility region- in

which to resolve the reference to name ''Ni' '. The reference to ''N 1 '' is resolved using the stan­

dard lookup. The reference to "Ni" must be resolved locally to the scope denoted by "Ni-l".

More precisely, the proper binding of "Ntis one which is directly_visible33 in the last visibility

region local to "Ni-l" prior to the point of the reference "N 1.N2• • • • .Nn". The reference may

be nested several levels within the scope denoted by "Ni-l". Also, declarations local to "Ni-l"

but textually following the point of reference may not be legally referenced in the fonn

"N 1• • • • .Ni" because of the declaration-before-use requirement. It is possible that

"N1" · · · "Ni" for some i denote scopes that contain the point of reference, while

"Ni+1" · · · "Nn" do not.

Resolving qualified references requires the use of another visibility class, called the con­

taining visibility class. containing edges in the figure are labeled with a ''c''. The referable and

known visibility classes of a binding of a scope entity S are initially defined in-line with the other

declarations at the same level, then redefined once at the same level to reflect the re/_env at the

end of the declarations local to S. The containing visibility class of S is defined at the first visi­

bility region local to S, and is redefined at each visibility region local to S (i.e., resulting from a

local declaration of S). The ref _env for the redefined binding points to the new visibility region

resulting from the local declaration.

33 Continuing as in Pascal, directly_visibk is the same as the conjunction of referable and known, and

direcdy_~isibk is used instead of the conjunction of the other two visibility classes as a convenience.

§6.5.4 Pascal-Style Record Types and Qualified References

r,k,c k 0

0

0

r,k,c

define-vis([f-1, · · ·], referable,known)
define-vis (bR=[R, ref-env=v 1, · · ·],containing)

define-vis([f-2, · · ·], referable,known)

k

fine-vis (bR ,[R, ref-env=v 2, · · ·],containing)

0

0

0

r,k,c

define-vis([f-2-1, · · ·], referable,known)
define-vis (b1_2=[f-2, ref-env=v 4, ···],containing)

k

k

define-vis([f-2-n, · · ·], referable,known)
redefine-vis (b .r-2;..[f-2, ref-env=v 5, · · ·], containing)

define-vis([f-n, · · ·], referable ,known)
redefine-vis (bR ,[R, ref-env=v 3, · · ·],containing)

6 redefine-vis ([R, ref-env=v 3, · · ·] referable,known)

This is precisely the same binding and entity as at v 3

but with visibility types known and referable

Figure 6.10: Inheritance Graph for Scope with Nested Qualified References

95

The clash table states that a clash between a containing binding and any other binding

(including another containing binding) is to be ignored. Thus, even if referable visibility of a

binding b 1 becomes shadowed by another binding b 2 that clashes with b 1, the containing visibil­

ity of b 1 is not shadowed: in any visibility region in a program, bindings for all scopes containing

the visibility region are visible with visibility class containing.

Scope with Nested Qualified References §6.5.4

96

The containing visibility class is used to determine whether a name ''Ni'' in a qualified

reference denotes a scope containing the point of reference, and if so, to get the appropriate bind­

ing definition or redefinition of the scope. The binding found with a containing lookup will have

as the value of its ref _env attribute the visibility region in which the next name "Ni+l" of the

qualified reference should be looked up using the directly _visible visibility class.

If no containing binding of "Ni" is found that corresponds to the proper scope, then the

reference is not nested within "Ni". Either "Ni" is not local to "Ni-l", which is an error, or the

point of reference follows the end of ''Ni", in which case the ref _env attribute of the binding of

"Ni-l" found in the previous step of resolving the qualified reference gives the proper visibility

region for doing the directly _visible lookup of ''Ni' '.

Figure 6.11 contains the definition of resolve _qualified _ref, and Figure 6.12 contains the

definition of the auxiliary function containing _lookup. The resolve _qualified _ref function

shown is for resolving qualified references in declarations in Modula-2, though its general outline

is valid for any language with nested qualified references and declaration-before-use. The

features specific to Modula-2 are the check requiring fields of a module referenced by

qualification to be exported, and the use of pointer _type _lookup for a reference in a pointer type

declaration. resolve_qualified_refis also used in Modula-2 for simple references in declarations,

which are a special case of qualified references.

Note that two lookups are performed for each name in the qualified reference. The first is

either a standard lookup (for ''N 1' ') or a directly _visible lookup, to find the correct scope or field.

The second is a containing lookup, to find the correct version of the binding found in the previ­

ous step, so that we have the correct ref _env for the lookup of the next name.

The function resolve _qualified _ref is somewhat complex, but this is simply due to the

complexity of the semantics of a nested qualified reference. Some of the complexity is due to

additional "features" of Modula-2.

6.5.5. Defining Bindings in Arbitrary Contours

A binding can be defined in any accessible scope: a definition of the binding is associated

with the vertex corresponding to the appropriate visibility region of the scope. There are two

forms of accessible scopes other than the local scope at the point of creation of the binding.

The first form is a named scope. Depending on the semantics, the appropriate visibility

region for the definition of visibility of the binding can be found by simply looking up the named

scope, or by the more complex mechanism described in the section on nested qualified references.

The second form consists of a scope implicitly defined by its relationship to the scope caus­

ing the creation of the binding. PL/1 implicit declarations are a good example of this: the binding

is to be added to the global scope. In other words, the binding is to be added to the outermost

scope enclosing the current scope. This result can be accomplished quite easily by defining upon

entry to each scope a special name "#enclosing_scope#'' that is bound to the entity denoting the

enclosing scope. At any point in the program, the enclosing scope can be found by looking up

the name "#enclosing_scope#". The global scope can be found by iterating this process, using

the ref _env of each successive enclosing scope for successive lookups.

The name "#enclosing_scope#" is selected so that it cannot clash with any language- or

describer-defined names. However, we want the different bindings of ''#enclosing_scope#''

within a program to clash with one another, so that the binding of "#enclosing_scope#" defined

in a scope S will shadow the binding of "#enclosing_scope#" defined in the scope enclosing S.

In a language that allows shadowing, the same visibility classes used for describer-defined bind­

ings can be used for ''#enclosing_scope#''. If the language does not allow shadowing, additional

visibility classes, along with appropriate clash table entries, will be needed so that bindings of

"#enclosing_scope#" are shadowed properly.

§6.5.4 Scope with Nested Qualified References

function resolve_qualified_ref (
N : list of Name;
current_vertex: IGVertex): Binding;
old_binding, current_binding, containing_binding : Binding;

old_name, current_name : Name;
containing_ bindings : Set of Binding;

is_nested : Boolean;

old_name := head (N); N := tail (N);

if pointer_type_decl then
I old_binding := pointer_type_lookup (old_name, current_ vertex);

else old_binding := standard_lookup (old_name, current_ vertex);

if old_ binding = error_binding then

I
error ("illegal reference to '%s': not visible", name_to_ident(old_name))

return (error _binding)

while N * null
current_name = head (N); N := tail (N);

if not (qualifiable_kind (old_binding.ldnd)) then

I
error ("%s may not be qualified", old_binding.name)

return (error_binding)

-- find most recent redefinition of (old_binding, containing)

containing_ bindings := containing_ lookup (old_binding.name, current_ vertex)

containing_binding := select b:Binding from containing_bindings

such that b.entity.unique_id = old_binding.entity.unique_id

is_nested := containing_binding * null.
if is_nested then

current_binding :=
directly_visible_lookup (name_to_ident (current_name),

containing_binding.entity .ref_env)

else current_binding := directly_visible_lookup (current_name,

old_binding.entity.ref_env)

if current_ binding= error_binding then
error ("No %s declared local to %s", name_to_ident(current_name),

name_to_ident(old_name))

return (error_binding)

if old_binding.entity.kind = module_decl then

if current_binding.exported =false then

97

error(" Attempt to reference non-exported field %s of module %s qualified",

name_to_ident(current_name), name_to_ident(old_name))

-- Continue processing qualified ref to find more errors, if any

old_name := current_name; old_binding := current_binding

Figure 6.11: Function resolve_qualified_ref

Defining Bindings in Arbitrary Contours §6.5.5

98

function containing_lookup (
n :Name;
v : IGVertex
pointer_type_decl : Boolean
) :Set of Binding;

return (visible (n, v, containing))

Figure 6.12: Function containing_lookup

6.5.6. Visibility Information Independent from Source Program

Visibility infonnation independent of any source program being processed can be

represented by defining an inheritance graph or part of an inheritance graph with the visibility

regions, inheritance edges, and binding definitions as desired. The visibility infonnation result­

ing from a standard environment can easily be described in this manner. The first node of the

inheritance graph corresponding to a user's program inherits the appropriate visibility from the

last node of the subgraph corresponding to the standard environment.

6.6. Examples

This section describes how some common visibility construct features may be described

using an inheritance graph.

6.6.1. Closed Scopes

A completely closed scope inherits nothing from the enclosing scope, so there is no inheri­

tance edge from the enclosing scope to the closed scope. A partially closed scope inherits only

certain bindings from the enclosing scope. In Euclid, where only petvasive bindings are inherited

into closed scopes, the edge from the visibility region of the enclosing scope to the first visibility

region of the closed scope is labeled with the function restrict yervasive _only given in § 6.2. 7.

6.6.2. Named Inheritance

Named inheritance, as described in §2.6.4, allows the inheritance of visibility of bindings

from a scope specified by name. Suppose we have a visibility construct • 'inherit M;'' that

specifies that visibility is inherited from a module with name • 'M' ', the first step is to find the

providing scope M, and the vertex vproviding corresponding to the appropriate visibility region

local toM. This can be done by looking up "M" at the point of the inherit statement34
, and

using the value of the ref _env attribute of M as the source of the inheritance edge for the

inherit. Then, an inheritance edge is added from vproviding to the vertex resulting from inherit.

This edge is called a dynamic edge, because it does not depend on the static structure of the pro­

gram, but rather on the visibility in some visibility region, which must be detennined by (par­

tially) evaluating the inheritance graph. The semantics of the inherit statement detennine what

visibility classes are inherited, and what restriction function is associated with the edge.

An import from a named module is an example of named inheritance. An example of an

inheritance graph resulting from named inheritance is given in the next section.

34 There is a chicken-and-egg problem apparent here, because it is necessary to resolve a reference before com­

pleting the construction of the inheritance graph. The solution to this problem will be discussed in §6.7.

§6.5.5 Defining Bindings in Arbitrary Contours

99

6.6.3. Import and Export

1be import and export constructs cause bindings to be inherited from one visibility region

to another, in addition to any other inheritance. There are many forms of import/export con­

structs, as described in previous chapters. The first form is a form of named inheritance, and

causes specific, named bindings to be inherited from the providing scope to the inheriting scope.

Consider a Modula-2 import statement of the form

from M import A,B;

As described in the previous section, the providing scope M is found, and then the appropriate

visibility region local to M. Fmally, inheritance edges corresponding to the import statement

added. Both referable and known edges are added, because the imported bindings be reference­

able (thus referable) in the importing scope, and they must not be redeclared in the importing

scope (thus known)35•

The restriction function for the inheritance edges only returns true for bindings of the

names listed in the import statement: ''A'' and ''B' '. A directly _visible lookup of ''A'' and '' B''

must be performed at the visibility region being imported from, with appropriate error checks, to

ensure that they are declared in the scope being imported from. The part of the inheritance graph

corresponding to the above import statement is given in Figure 6.13.

The most common import statement is of the form

import A,B;

where "A" and "B" are imported from the scope enclosing the current scope. We must locate

the proper visibility region in the enclosing scope for the source vertex of the import's inheritance

edge. As in §6.5.5, a binding of "#enclosing_scope#" is defined, which has as one of its attri­

butes (ref _env) the most recent visibility region of the enclosing scope. To find the correct visi­

bility region to import from, we find the binding b bound to ''#enclosing_scope#'' and add an

edge from b.entity.ref _env to the current visibility region. The inheritance graph corresponding

to this form of import statement is given in Figure 6.14. Note that since the import is from the

enclosing scope, there is the normal referable inheritance edge from the enclosing scope into the

current scope in addition to the edge caused by the import.

The precise effect of an import statement on the inheritance graph depends on the

language's definition of the effect of importing bindings. As discussed in sub-section "Imports

and Exports" of §4.2.6, the importatiOJ! of visibility of a binding may only make that binding

visible (as in the referable visibility class), or it may be equivalent to creating a new declaration

of the binding in the inheriting scope. The latter corresponds to the imported binding being

known in the inheriting scope. Both cases can be handled by varying the inheritance from the

providing scope. In the former case, only referable visibility is inherited. In the latter case, both

referable and known visibility are inherited, as illustrated in Figure 6.14.

More generally, the designer of the inheritance graph description for a language must con­

sider the possibilities of clashes between imported bindings, locally declared bindings, and refer­

able bindings automatically inherited from the enclosing scope.

1be export statement is handled similarly to the import statement, except that the providing

visibility region is the current visibility region, and the inheriting visibility region is a visibility

region in the inheriting scope.

35 The Modula-2 reference manual [Wirth 1982] does not actually state that imported bindings may not be rede­

clared in the importing scope, but this seems to be the most reasonable semantics. This and other ambiguities in

Modula-2 are discussed further in Chapter 7.

Named Inheritance §6.6.2

100

Visibility Regions local to module M

define-vis (v 0, [A, · · ·], rejerable,known)

r,k

define-vis (v 1, [B, · · ·], referable ,known)

r,k

restriction func: inherit only bindings of "A" and "B"

Visibility Regions for scope containing import

3

k

visibility region resulting from import

Figure 6.13: Import from Named Module

§6.6.3 Import and Export

101

Visibility Regions local to enclosing scope

define-vis ([A, · · ·], rejerable,known)

define-vis ([B, · · ·],referable ,known)

restriction function: restrict _pervasive_ only

Visibility Regions for nested closed scope

3

k

r,k k
' visibility region resulting from import

: restriction function: inherit only bindings of'' A'' and ''B''

Visibility Region following nested scope

Figure 6.14: Import from Enclosing Scope

The other major form of import is the bulk import, as described in §2.6.8. This is discussed

in the following section on opening of scopes.

6.6.4. Opening of Scopes

The Ada use is a very complex form of scope opening and is discussed separately in §6.6.9.

This section describes how the Pascal with statement is represented in an inheritance graph. The

Pascal statement

with R begin statement-list end

creates a new scope in which the fields of record R are directly visible and shadow any clashing

bindings visible at the point of the with statement. In the terminology used thus far for Pascal,

the bindings declared local toR must be referable and known in the scope created by the with

statement.

Import and Export §6.6.3

102

We begin by creating a new visibility region vr with corresponding to the new scope, with a

referable edge from the visibility region prior to the with statement to vr with. We then find the

binding bR of R , which must have a ref _env attribute containing a pointer to the visibility

region vr~as1 corresponding to its last field. referable and known edges are added from vr~as1 to

vr with , with the following restriction function on the referable edge:

function restrict_locals_only (
b : Binding) : Boolean;

return (b.entity.declaring_record = bR .entity);

The declaring _record attribute of each field of a record points to the entity of that record. This

restriction is necessary because bindings defined outside the record are referable inside the

record, and thus would be inherited into vr with in the absence of the restriction. No restriction

function is needed on the known edge, because only the bindings defined local toR are known

withinR.

6.6.5c Wolf's Provide and Request Operations

Wolfs provide and request operations (described in §2.6.7) provide more precise control

over visibility than any of the other visibility control features described. A binding b is visible in

a visibility region vr only if b provides access to vr and vr requests access from b. Normally, a

scope requests access to a binding, which is equivalent to a request from all visibility regions in

the scope.

An inheritance graph edge from vr 1 to vr2 corresponds to a request by vr2 for access to

everything visible at vr 1 , and provision of access by everything visible at vr 1 to vr 2 . Explicit

requisition and provision of access can be modeled in the Inheritance Graph Model as follows:

Each visibility region or scope distinguishable by a provide statement has a distinguished vertex

vprovuud. An edge is added from all visibility regions providing access (with inheritance res­

tricted to the bindings actually provided) to vprovuud. This edge represents a provide operation.

An edge from vprovided to the first actual visibility region of the scope, with inheritance restricted

to the bindings actually requested, represents a request operation. Thus, binding b will only be

visible in scopeS only if S requests access to b and b provides access to S.

6.6.6. Separate Compilation

A separate inheritance graph can be created for each separately compiled program unit, and

stored for later use. If the inheritance graph ig 1 for a previously processed unit U 1 is needed for

processing the current program unit U 2, the inheritance graph ig 2 for U 2 can be created by

retrieving ig 1 and joining it to the newly created inheritance graph with appropriate inheritance

edges, and recomputing the visible sets at all of the new vertices.

In Modula-2, the inheritance graph for a definition module is needed for processing the

corresponding implementation module. Edges from the last visibility region of the definition

module to the first visibility region of the implementation module are added so that declarations

in the definition module have the same status in the implementation module as declarations local

to the implementation module. The exact visibility classes used will be given in the complete

Modula-2 example.

6.6.7. Overloading

The meaning of clashing bindings, and thus the clash function, has been defined such that

overloaded bindings do not clash. Thus, overloaded bindings do not shadow one another, and an

overloaded binding b of name "N" will be visible (with the appropriate visibility classes) in all

visibility regions where a reference "N" can possibly refer to b. When a reference "N" occurs

§6.6.4 Opening of Scopes

103

in visibility region vr, all bindings of "N" whose visibility reaches vr will be found by a call to

visible . It is then up to the overloading resolution algorithm to select the correct binding. Over­

loading resolution is a type-resolution issue, not a visibility issue.

6.6.8. PL/1 and COBOL Structures

Resolution of qualified references for structures in PL/1 and COBOL can be defined using

the Inheritance Graph Model. A qualified reference N1.N2. · · · .N11 _ 1.N11 must be resolved from

right to left because of the possibility of partially qualified references. A special visibility class

qualijied_visible is used, where a binding is qualijied_visible in any visibility region in which it

can be used as the last (perhaps only) component of a qualified reference. qualijied_visible visi­

bility of a structure field's binding is inherited from the visibility region containing the field

declaration to all more deeply nested structures, and to the block containing the structure declara­

tion.

After finding the binding b11 of "N11 " corresponding to the last component of a qualified

reference N1.N2. · · · .N11 _ 1.N11 (using qualijied_visible visibility), the reference to the preceding

component is resolved in the visibility region where b11 was defined. In that visibility region,

only bindings of enclosing structures are qualijied_visible, so a lookup of qualijied_visible bind­

ings will only find bindings that can precede a reference to b in a qualified reference.

This process must be repeated, for each name in a qualified reference from n to 1. The

result of step i (counting down from n) is a set of bindings bs that the qualified reference

"Ni. · · · .N11 " can be a reference to. If bs becomes empty at any stage, the reference is errone­

ous. If bs contains more than one binding, then the reference is valid if it is an exact reference to

one of the bindings.

6.6.9. Ada Use Clause

In all previous examples, define_vis calls were static, independent of any other information

in an inheritance graph. In a straightforward representation of Ada use clauses in an inheritance

graph, this is no longer so. Rather, the presence of some define_vis calls will depend on the visi­

bility at some vertex. Such a define_ vis call is called a dynmnic definition.

The semantics of Ada use clauses is given in §5.2. Let us say that a binding in Ada is

directly_visible in all visibility regions local to the scope containing the binding's declaration and

after the point of the declaration. A binding is potentilllly _visible where ever it is "potentially

visible", as also described in § 5 .2.

The effect of a use clause ''use Pl;'' in terms of an inheritance graph can be described as

follows: any binding that is directly _visible at the inheritance graph vertex v1as1 resulting from the

last non-private declaration in P 1 becomes potentilllly _visible at the vertex v use resulting from

the use clause, and is inherited with potentillUy _visible visibility into all scopes nested within the

scope containing the use clause. Because a binding is not normally potentilllly _visible where it is

directly_visible, it is not possible to simply inherit potentilllly _visible visibility from "Last·

Rather, it is necessary to add a call ·

define_ vis (v use , b , pote ntilllly _visible)

for each binding b such that b e visible (b.nmne , v~as1 , directly_visible). Precisely which bind­

ings have potentillUy_visible visibility defined at Vuse using define_vis calls depends on which

bindings are inherited with directly_visible visibility at V~as1 , so some information about inheri­

tance of visibility in the graph must be available before the potentilllly_visible define_vis calls

can be added. This is similar to the problem of adding an edge which depends on a reference, as

for named inheritance (§6.6.2).

Overloading
§6.6.7

104

Figure 6.15 shows a fragment of an inheritance graph resulting from a use statement that

imports the contents of two packages:

use P1, P2;

where P 1 contains a binding of'' A,'' and P2 contains a binding of' 'B.''

The clash table for Ada is36:

Ada Visibility_ Class for b

Oash Table directly_ visible reftrable

Vis Class directly_ visible error(" description error")_ shadowb~

for b1 referable shadow b1 - 37

potentially_ visible - -

_lHJJentiallJ. visible
-
-
-

The directly _visibk visibility class is used to keep track of local declarations of a scope.

directly _visible arcs flow in text order direction, but not from outer to inner scopes, as illustrated

by edge (v 0,v 1) in Figure 6.15. potentiillly_visibk arcs flow in the direction of text order, and

also from outer to inner scopes. Inheritance of potentiillly _visible bindings is never halted by res­

triction functions or by shadow entries in Ada's clash table, so any potentially_ visibk binding is

potentially _visibk anywhere following its initial definition, including in nested scopes. This

corresponds to the Ada rules for use statements that state that all non-private bindings of all pack­

ages appearing in use statements affecting a scope are potentially visible in that scope.

Given these basic visibility classes for Ada, it is possible to define a lookup function. Any

referable bindings take precedence over any potentially_visibk bindings, and if any two

potentiillly _visibk bindings b 1 and b2 clash at the point of reference, then any potentiillly _visible

binding with the same name as b 1
38 is not visible, and should not be returned by the lookup func­

tion. direct _lookup , for regular references in Ada, follows.

function direct_lookup (
n :Name;
v : IGVertex): Set of Binding;

referable_bindings,
potentially_ visible_bindings : Set of Binding;

referable_bindings :=visible (n, v, rejerabk);

potentially_ visible_bindings :=visible (n, v, potentiillly _visibk);

return (referable_bindings u
{ b I b e potentially_ visible_bindings

" ('lr;f b 1 e referable_bindings such that b * b I, clash (b ,b ')=false)

" ('lr;f b 1 e potentially_visible_bindings such that b * b', clash (b ,b 1)=false)

})

direct _lookup is somewhat complicated, and has time complexity of O(m xn + n 2), where

m is the size of referable _bindings and n is the size of potentially _visible _bindings. However,

36 Note that I haven't attempted to do a complete description of the visibility control rules of Ada, so it is possible

that other visibility classes are needed to handle other visibility control constructs.

37 This is an error, but it is ignored because the error will also be detected by a direcdy_visibk/dincdy_visible

clash, and there is no reason to produce extra error messages.

38 equivalently b1, since only bindings with the same name clash, by definition of clash.

§6.6.9
Ada Use Clause

dv,r,pv

Visibility region in enclosing scope

enter scope

Visibility region prior to use stmt

define-vis (v 4, [A], direc!IY _visible)

Visibility region from last non-private dec/ in P 1

Visibility region from last non-private dec/ in P2

Visibility region resulting from "use Pl, P2;"

define-vis (v 4, [A], potentially_visible)
define-vis (v 4, [B],potentially_visible)

Visibility region resulting from decl following use stmt

Figure 6.15: Inheritance Graph for Ada use Statement

m and n are both likely to very small (less than 2) in most cases.

Ada Use Clause

105

§6.6.9

106

6.6.10. Flavors

One requirement for a model of visibility control is the ability to select among the bindings

inherited by a contour based on some ordering, as in multiple inheritance in Flavors (Multiple

Inheritance sub-section of §4.2.6). This can be done by ordering the visibility classes and using

the clash resolution process to shadow all bindings but the one with the lowest numbered visibil­

ity class.

The expression

(defftavor S1 () (S2 S3))

defines a flavor S 1 which inherits visibility from S 2 and S 3. Suppose reference ''A'' occurs in the

body of S 1• If "A" is bound in S 1, then that binding overrides, or shadows, any binding of "A"

in S 2 or S 3. If "A" is not bound in S 1, then we look for a binding of "A" visible in S 2, and

finally in S j if no binding of ''A'' is visible in S 2.

This semantics of shadowing can be represtented in the Inheritance Graph Model using two

visibility classes, referable and inherited. A binding b is referable in the scope in which it is

declared, and in all scopes in which b becomes visible (in the ordinary sense of "visible") by

inheritance. A binding b is inherited in the visibility region which inherits visibility of b ,

whether b actually becomes referable in the inheriting scope or is shadowed by another binding

of the same name. referable edges are labeled with ''r.'' There are no inherited edges. The need

for any other visibility classes is ignored for the purposes of this example.

Part of the inheritance graph corresponding to the above call to defjlavor is illustrated in

Figure 6.16, where S 2 contains a binding of" A" to an Integer variable, and S 3 contains a bind­

ing of ''A'' to a Boolean variable. According to the ordering rules for inheritance in Flavors,

only the [AJnt] binding should become referable inS 1•

Calls to define_vis are added in three distinct stages, and the calls to define_vis are num­

bered in the graph to show these three stages:

(1) First, the definitions of referable visibility corresponding to the creation of the bindings of

"A" inS 2 and S 3 are associated with v 4 and v 6, respectively.

(2) Second, inherited visibility of [AJnt] is defined at v 1 , reflecting the inheritance from v 5 in

S 2. inherited visibility of [A ,Boo[] is defined at v2 , reflecting the inheritance from v7 in

s3.
(3) For each call "define_vis (b, v, inherited)", if be visible (b.name, v, inherited) and

b evisible (b.name, v, referable), then add a call "define _vis (b, v, referable)".

At this point, [AJnt] is defined to be referable at v1 , and [A,Bool] is defined to be referable at

v 2 . Visibility of both of these bindings is propagated via the referable edges. The clash resolu­

tion process specifies that referable bindings shadow inherited bindings:

Flavors Visibility Oass for b 2

Oash Table referable inherited

Vis Oass referable error ("clashing declarations") shadow b 2

forb 1 inherited shadow bt error ("description error")

<[AJnt],referable> will be inherited at v2 , causing <[A,Bool],inherited> to be shadowed at

v2 . Because the definition of referable visibility at v2 depends on <[A,Bool],inherlted> to be

visible at v2 after clash resolution, the define_vis call that defines referable visibility of [A,Bool]

at v2 is no longer valid, and must be removed.

§6.6.9 Ada Use Clause

Visibility Region resulting from inheritance from S 2 (v s)

(2) define-vis (v 1, [A,Int], inherited)
(3) define-vis (v 1, [A,Int], referable)

Visibility Region resulting from inheritance from S 3 (v 7)

(2) define-vis (v 2, [A,Bool], inherited)
(3) define-vis (v 2, [A,Bool], referable)

Visibility region from first local decl inS 1

Last visibility region inS 2

Last visibility region inS 3

Figure 6.16: Inheritance Graph for Flavors Example

107

Note that referable edges only flow downward in the graph, so inherited visibility of [AJnt]

at v 1 is not affected by the definition of referable visibility at v 2 • Thus bindings inherited from

a flavor named in the inheritance list in a call to defftavor override bindings of the same name

inherited from a flavor later in the inheritance list.

After the define_vis call that defines referable visibility of [A.Bool] at v2 is removed, the

propagation of visibility and the clash resolution process must be repeated. The total number of

iterations required is proportional to the number of levels of inheritance, where each flavor that

Flavors
§6.6.10

108

inherits visibility from other flavors represents a single level of inheritance, although a clever

algorithm for evaluating the inheritance graph might be able to avoid re-evaluating the inheri­

tance graph each time, particularly because these inheritance graphs will have no cycles.

Shadowing Based on Priorities

A simpler description of shadowing based on ordering can achieved by allowing numbered

priorities on edges. The priority of an edge decreases with increasing numerical value. Priorities

are a possible extension to the basic Inheritance Graph Model, although all visibility features

encountered can be described using the primitives of the basic Inheritance Graph Model. Priori­

ties just make the description of ordering simpler.

If clashing bindings (of any visibility class) are inherited via more than one incoming edge

of a vertex, then the binding(s) inherited via the edge with highest (lowest numbered) priority

actually becomes visible at the vertex, and all other clashing bindings are shadowed. The inheri­

tance graph in Figure 6.17 illustrates how the importation of the bindings of scopes S 2 and S 3

into S 1 could be represented. Each edge is labeled not only with a visibility class, but with a

priority.

In the figure, a "main" stream of inheritance edges has priority 1, and inheritance edges

from the scopes being inherited· from have priority 2. At v 1 , a binding of ''A'' declared local to

S 1 would have priority over a binding inherited from S 2• There is no binding of ''A'' declared in

S 1o so [AJnt] declared inS 2 becomes visible (referable) at v 1 • <[AJnt],referable> is inherited

via the priority 1 edge (v 1, v2) to v2 and thus has priority over any clashing binding inherited

via the priority 2 edge (v 7, v2) from S3• The prioritize primitive is used to select among bind­

ings based on priorities, as illustrated in the following clash table:

flavors Visibili_ty Class for b 2

Oash Table (w/Priorities) referable known

Vis Oass I referable _prioritize shadow b_t

forb 1 I known shadow b 2 error ("clashing declarations")

the known visibility class is needed in this version of the inheritance graph for flavors to detect

duplicate declarations of a name local to a scope, because it is not an error for two bindings to be

referable at the same vertex in this version.

The power of edge priorities is limited: it is certainly possible to invent ordering schemes

that cannot be defined using only edge priorities. However, such ordering schemes are likely to

be so complex as to have questionable value in a programming language.

6.7. Building the Inheritance Graph

Previous sections have defined the inheritance graph, and the meaning of resolving refer­

ences using the inheritance graph. The correspondence between various language ~nstructs and

structures in an inheritance graph has also been illustrated. However, actually building the inheri­

tance graph corresponding to a particular program may be more difficult than designing the

subgraph-schema for a particular visibility construct, because the definition of the inheritance

graph for many languages will be circular. Constructs such as import and export that create

dynamic edges in the inheritance graph are the source of the problem.

There are two classes of operations on an inheritance graph: construction operations, which

build and modify the inheritance graph (create_vertex, create_edge, define_vis, etc.), and refer­

ence operations, which examine the inheritance graph (visible). In a language with simple visi­

bility control rules, construction operations do not depend on reference operations. Visibility

§6.6.10 Flavors

109

S 1 before inheritance from S 1 and S 2

Visibility Region resulting from inheritance from S 2 (v s)

Visibility Region resulting from inheritance from S 3 (v 7)

Visibility region from first local decl inS 1

define-vis (v 4, [A,lnt], known,rejerable)

Last visibility region in S 2

define-vis (v 6, [A.Bool], known,rejerable)

Last visibility region in S 3

Figure 6.17: Inheritance Graph with Prioritized Inheritance in Flavors

constructs that create dynamic edges usually do depend on reference operations, particularly

those operations that create an edge from or to a named scope (named import and export, and

named inheritance), or those that create dynamic definitions. Sufficient infotmation to compute

the result of calls on visible must be available for the inheritance graph. If this is done by com­

puting the visible set at each vertex in the inheritance graph, the inheritance graph must be built

and each visible set computed before the necessary lookups can be done to find the appropriate

vertices for the dynamic edges. Visibility must then be recomputed, because other references

Building the Inheritance Graph §6.7

110

may depend on inheritance of visibility due to the new edges. We call a description that results in

such inheritance graphs a cyclical inheritance graph description.

In the general case, the process of building the inheritance graph is iterative, because each

new edge may allow new references to be resolved, adding yet more edges. A new edge can also

cause a previously resolved reference to be invalidated, either by making a different binding visi­

ble at the point of reference, or by causing no binding to be visible. Therefore, the iteration must

continue until there is no change in the inheritance graph or in references that can affect the

inheritance graph. Figure 6.18 contains an outline of an algorithm to construct an inheritance

graph.

rocedure build_inheritance_graph

§6.7

-- reference operations that construction operations depend on

d_reference := {r:reference operation I inheritance graph depends on r}

-- all other reference operations
o_reference := {r:reference operation in inheritance graph l r i:. d_reference}

-- construction operations that depend on a reference operation

d_construction := { c:construction operation l c depends on d_reference u o_reference}

-- all other construction operations
o_construction := {c:construction operation in inheritance graph I c i:. d_construction}

all_ops = d_reference u o_reference u d_construction u o_construction

-- mapping from a construction op to the reference operations that it depends on

constr_op_refs (d_constructioni) = { r e d_reference I d_constructioni depends on r}

for ope all_ops
I new_value(op) :=null
for c e o construction
I new.=-value(c),errors(c) = execute(c)
changed := true
while changed = true

changed := false
evaluate inheritance graph
foreach c e d_construction

foreach r e constr _ op _refs(c)

I
new_value(r),errors(r) := execute(r)
if new_ value(r) -:1: old_ value(r) then changed := true

new_value(c),errors(c) := execute(c)
if new_value(c) -:1: old_value(c) then changed:= true

old_ value := new_ value
foreach r e o reference
I new_value(r),errors(r) := execute(r)
all_errors := u errors(op)

opE all_ops

Figure 6.18: Algorithm build_inheritance_graph

Building the Inheritance Graph

111

Each operation produces a value and a (possibly empty) set of error messages. errors is a

tuple indexed by the operation, containing the set of errors resulting from each operation. Each

time an operation is re-evaluated, the new errors replace the old errors, so only errors produced

the last time an operation is executed are final errors, as opposed to intermediate errors, which

result from intermediate executions of an operation and can be discarded when the operation is

executed again. all_errors collects all of the error messages together.

new _value and old_value are also tuples indexed by operations, and are used to detect

changes in the result values of operations. The assignment of new _value to old_value at the

bottom of the while loop is a value copy, not a pointer assignment. A more efficient implemen­

tation using pointers is obvious. At the end of build_inheritanceJraph, new_value contains the

correct values (perhaps special error values) of all operations.

A possible optimization would be to evaluate only operations in d_construction whose

references have just been successfully evaluated for the first time, re-evaluating them again after

all operations in d_construction have been evaluated, to check for changes. This is likely to be

useful in languages and programs where operations in d_construction depend heavily on one

another (directly or indirectly), resulting in many iterations of the while loop. This occurs only

in programs with deep nesting and multi-level imports or exports, or multi-step named inheri­

tance.

However, most programs have no more than one level of edges resulting from named inher­

itance, resulting in at most three iterations. The initial iteration is needed so that references for

dynamic edges can be resolved, the second iteration propagates the effects of the dynamic edges,

and the third iteration is needed to check that the evaluation has stabilized. One more iteration is

needed for each additional level of indirection in references for dynamic edges. For languages in

which a newly resolved reference or new edge cannot change or invalidate a previously resolved

reference, the last iteration can be omitted.

If the inheritance graph description includes dynamic definitions, as for Flavors, the number

of iterations required will be proportional to the number of levels of inheritance. There may be

several levels of inheritance, due to the style in which this inheritance mechanism is used.

6.8. Well-Definedness of an Inheritance Graph

Very few restrictions have thus far been placed on a description of an inheritance graph. It

is certainly possible to create an ambiguous inheritance graph. This section describes how ambi­

guous inheritance graphs may arise, restrictions on inheritance graphs that preclude various kinds

of ambiguities, and different classes of inheritance graphs based on these restrictions.

The first example is very simple; it is based on an actual example that occurred during the

early stages of design of the inheritance graph formalism, while experimenting with ways to

describe the meaning of clashing-binding errors:

6.8.1. Shadowing and Ambiguity

Assume we have the following clash table and the inheritance graph in Figure 6.19.

Cash Visibility Type for b 2

Table referable

Vis Type I referable shadow b 1, shadow b 2

forb 1

For the example, clash (b 1,b-z) =true. There are two valid assignments (two fixed points)

to the visible sets in the inheritance graph, depending on the order of computation of the visible

Building the Inheritance Graph §6.7

112

0 define-vis (b 1, referable) 1 define-vis (b 2, referable)

r r

r

r

Figure 6.19: Ambiguous Inheritance Graph

sets of the graph. In both assignments, <b 1,referable> is visible at v0, and <b2,rejerable> is visi­

ble at v 1. In one valid assignment, <b 1 ,referable> is visible at v 2, while nothing is visible at v 3.

In the other valid assignment, <b 2,rejerable> is visible at v3, while nothing is visible at v2. If the

net visibility of v 2 is computed before the visibility sets at v 3, then b 1 will be inherited by v 3,

resulting in a clash between b 1 and b 2. The clash table states then that both bindings are sha­

dowed there, resulting in no further inheritance, and thus the first valid assignment. The compu­

tation of the second valid assignment is symmetric.

This ambiguity results because of the different possible orders of application of clash reso­

lution, resulting in shadowing actions in different places.

Definition 6.1. Ordered Inheritance Graph

An inheritance graph is defined to be ordered if shadowing is restricted to use as an

action resulting from clashes between bindings with different visibility classes, and visi­

bility classes are strictly ordered. vci can only shadow vcj , for 1!5:i <j !5:n, where n is

the number of visibility classes used in the inheritance graph description. In addition,

any dynamicaly created define_vis calls defining visibility of bindings with visibility

class vcj can only depend on bindings with visibility class vci , i <j.

If the inheritance graph is ordered, then the kind of ambiguity illustrated in Figure 6.19 can­

not occur. An ordered inheritance graph /G can be split into separate graphs /G 1o • • • , IG,..

Each /Gi has the same vertices as /G, but has only edges of visibility class vci.

Because of the ordering restriction on shadowing, shadowing in /Gj is determined solely by

IGi, i <j. That is, whether a particular binding/visibility-class pair <b, vci > whose visibility

reaches a vertex v in /Gj is shadowed at v depends only on the binding/visibility-class pairs visi­

ble at v in /Gi, i <j. This condition not only makes the ambiguity illustrated in Figure 6.19

impossible, but it makes possible the definition of sufficient conditions for well-definedness of

each /Gj. These sufficient conditions can be easily tested by the inheritance graph designer. The

sufficient conditions arise from data flow analysis techniques, and will be discussed in Chapter 8.

6.8.2. Cyclical Inheritance Graph Descriptions

Let us assume that we have an inheritance graph description that results in well-defined

inheritance graphs, with the exception that some inheritance graph construction operations may

depend on reference operations, as described in §6.7 and §6.6.9. An ordered inheritance graph

description that in addition satisfies the sufficient conditions for well-definedness mentioned at

§6.8.1 Shadowing and Ambiguity

•

'

113

the end of the previous section satisfies this condition. Our discussion in this section is restricted

to ordered inheritance graphs. An inheritance graph description may be well-defined even though

it is not ordered, although detennining well-definedness for non-ordered inheritance graph

descriptions is in general very difficult. Most of the results of this section can be extended to

non-ordered, but well-defined inheritance graphs.

Oscillating Inheritance Graph Edges

Even if an inheritance graph is ordered, and each partition of the inheritance graph is well­

defined, the meaning of the inheritance graph can be ambiguous if edges of the graph depend on

references,39 requiring iterative evaluation of the inheritance graph. This can occur if the edge­

adding operation e _op depends on a reference r _op that returns a binding/visibility-class pair

<b, vc; >used to detennine where to add the edge, which in tum causes <b, vci >to be sha­

dowed at the vertex where r _op is executed, invalidating the edge. This is called an edget-"'ref

dependency This situation will oscillate with each iteration of the evaluation of the inheritance

graph, resulting in a non-tenninating iteration.

Figure 6.20 contains an inheritance graph that illustrates this situation. Attached to v 1 is the

definition of binding bN ,1 with visibility class vc; , where bN ,1 is used to denote the first binding

of "N". Attached to v s is the definition of binding bN). with visibility class vc j , i <j. The

meaning of the graph is as follows: e_op makes a call visible (v 3, ident _to _name ("N"), vc;),

perfonning a lookup of "N" at v3• There is a path p 1 from v 1 to v3 along which bN ,1 is inher­

ited, and all such paths pass through v2. bN,1 is found by the call to visible, and e_op adds a vcj

edge from v s to v 4, which is a vertex accessible via an attribute of bN ,1• There is a path p 4 from

v 4 to vertex v2 composed of vcj edges that do not restrict inheritance of bN).·

For the example, the clash table specifies that a binding with visibility class vcj shadows a

clashing binding with visibility class vc; . On the next iteration of evaluation of the inheritance

graph, bN). will have visibility class vc j at v 2, and will shadow bN ,1 at v 2, resulting in bN ,1 no

longer being visible at v 3• Thus, the reference r _op that found bN ,1 at v 3 will be unsuccessful,

and the edge (v 5,v 4) created by e_op is no longer valid and must be removed.

Since no valid assignment to the inheritance graph has yet been found, the iteration of

evaluation of the graph must continue, but the graph will oscillate: if the edge (v 5, v 4) exists, then

the reference used to create the edge will be invalid after the effect of the edge on the inheritance

is propagated. If the edge is removed, the reference is made valid, causing the edge to be added

again on the next iteration.

The following examples illustrate how an edge t-"1 ref dependency can occur in real pro­

grams. The example in Figure 6.21 contains two modules, P and Q: Modula-2 semantics are

assumed: an imported binding is equivalent to a locally declared binding, and will result in a mul-

tiple declaration error if a clashing binding is imported or locally declared40• We will assume use

of only two visibility classes, known and referable, with the same meanings they have in Pascal.

Module P , denoted by P 1 , contains a local declaration of ''P'' as· an integer variable,

denoted by P 2 . Q contains two import statements. The first imports P 1 • The second imports

P 2 from within P 1 . However, this results in two known bindings of ''P'' being inherited into

Q . Since a known shadows a referable binding, the known binding of P 1 shadows the referable

binding of P 2 , and the known binding of P 2 shadows the referable binding of P 1 . Because

39 d_construction in Figure 6.18 contains operations that add edges to the inheritance graph .

.a Modula-2 does not actually define this [Wirth 1982]. However, this seems to be the most reasonable interpre­

tation of the meaning of import and export in Modula-2, and is the interpretation used by (at least some) implementa­

tions. The issue of poorly defined visibility control rules in Modula-2 is discussed in more detail in §7 .1.

Cyclical Inheritance Graph Descriptions §6.8.2

114

vc, J

VC;

VC;

0

0

0

0

0

0

define-vis (bN ,to vc;)

0

0

0

VC· I
' ct (reference vertex)

4

VCj

VCj

(added edge)

5 define-vis (bN ,2• VCj)

Figure 6.20: Oscillating Edge in an Inheritance Graph

module P -- P 1

P : integer; -- P 2

end P;

module Q
import P;
from P import P;

end Q;

Figure 6.21: Simple Import Example (Oscillating Edge)

P 1 is no longer referable in Q , the second import statement cannot find the P to import from, so

P 2 is no longer imported, removing the clash. Once the clash is gone, P 1 is visible again at the

second import, and the cycle is established: the edge corresponding to the second import depends

on itself, by causing the reference to P 1 to be be invalidated.

§6.8.2 Oscillating Inheritance Graph Edges

115

The example in Figure 6.22 is more complex, and illustrates a different cause of edge­

oscillation. Only the relevant visibility regions in the example are labeled. The state after each

iteration of the evaluation is illustrated in Table 6.1. The bindings visible with each visibility

class at visibility regions vr5 , vr6 and, vr1 are given for each step. The table shows the bind­

ings visible both before and after clash resolution are considered, in order to help the reader

understand the transition from one iteration step to the next. The dynamic edges in the graph

after each iteration are shown as
<(from-visibility region, to-visibility region), binding imported by edge>.

The visibility rules assumed in this example are like those of Pascal, with modules (closed

scopes), user-defined pervasive bindings, and import statements added. In the example, a

pervasive module N -- N 1

module M -- M 1

N : integer; -- N 2

end M
vr 1

end N;
vr2
pervasive module M

module N
end M

end M;
vr4

vr 3

module S
vr5

-- M2
-- N3

from N import M;
vr 6
from M import N;

endS;
Figure 6.22: Import Example (Oscillating Edge)

blown njei'Gbk non-local edges

Step vr 5,vr6 ,vr7 vr5 vr6 vr 1 from N Import M from Mimport N

1 - Nt,Mz Nt,Mz Nt,Mz

clash-resolved - Nt,M2 Nt,M2 Nt,M2 <(vrl, vr6),M t> no "N" in M2

2 Mt Nt,M2 Nt,Mt,Ml Nt,Mt,M2

clash-resolved Mt N! Nt,Mt Nt,Mt <(vrl, vr6),M 1> <(vr0, vr7).Ni>

3 Mt,Nz N 1 ,M2 Nt,Mt,Mz Nt,Nz,Mt,M2

clash-resolved Ml,N2 - Ml N2,Ml no "N" visible <(vr0, vr7),N 2>

4 Nz Nt,Mz N 1 ,M2 N 1 ,N2 ,M2

clash-resolved N,_ M,_ M,_ N 2 ,M2 no "N" visible no"N" in M2

s - Nt,Mz Nt,Ml Nl,M2

clash-resolved - N ,M2 N ,M2 N 1 ,M2 <(vr ,vr6),M > no"N" in M2

Table 6.1: Evaluation States for Module R

Oscillating Inheritance Graph Edges §6.8.2

116

pervasive binding is inherited into all nested scopes with referable visibility, but not known visi­

bility. An import statement makes the imported binding referable and known in the importing

scope. A known binding shadows a clashing referable binding. The actions taken in each itera­

tion of the evaluation are as follows:

Step 1 N 1 and M 2 are referable in S , and the first import statement causes an edge to be

added from within the body of N 1 (visibility region vr 1) to the visibility region vr 6

following the import, importing M 1 • No binding of "N" is visible in M 2 , so the

second import fails due to an unresolved reference, and can't add an edge.

Step 2 M 1 is known throughout S, and referable in vr6 and vr 7 because of the edge added in

the previous step. <M 1 , known> shadows <M 2 , referable>, so M 2 is no longer refer­

able in S . N 1 is still visible in S , so the edge resulting from the first import is still

valid. N 2 is visible in M 1 , so the second import succeeds on this iteration, adding an

edge from vr0 to vr7 , importing N 2 •

Step 3 N 2 is now referable in vr7 , and known throughout S, shadowing visibility of N 1 inS.

Since N 2 is not referable in vr 6 , the edge corresponding to the first import is no longer

valid, because no binding of ''N'' is visible there. Thus, the edge from vr 1 to vr 6 is

removed. The edge corresponding to the second import is still valid.

Step 4 Because the edge importing M 1 was removed, M 1 is no longer known in S , and thus

M 2 is not shadowed and is again referable in all visibility regions in R . There is still

no binding of "N" visible in vr 5 , so the first import still fails. As in Step 1, there is no

binding of ''N'' visible in M 2 , so the second import fails, and the corresponding edge

must be removed.

Step 5 The state at this step is identical to Step 1, so a cycle has been established that will not

terminate without external intervention.

The example in Figure 6.22 is clearly an illegal program, because there can be no set of visible

bindings of "N" and "M" in S such that both import statements can be satisfied. The first

import statement requires that M be contained within N, while the second import requires that N

be contained within M.

Traditional implementations of symbol tables do not have problems of the sort illustrated in

the two examples because they use a strict left-to-right implementation. Once a reference has

been bound, it is never changed. This is made possible by language designers by requiring order­

ing of visibility constructs so that one-pass, left-to-right evaluation, with some back-patching, is

sufficient The key is in the need for back-patching. The more general Inheritance Graph Model

avoi~s the concept of back-patching by directly representing the language features that result in

back-patching, using edges that flow in the direction opposite to text order. The Pascal program

fritgment in Figure 6.23 illustrates the need for back-patching in Pascal.

A naive implementation of Pascal's visibility rules will bind the reference ''T1'' in P to the

first declaration of ''T1 '', when in fact the correct interpretation is that the referen(!e ''T1'' is an

illegal forward reference. This is a common bug in Pascal compilers. In a strictly left-to-right

pass over the program, an illegal forward reference in this situation is not detectable. Some form

of back-patching must be added to detect if a name declared in a scope was referenced earlier in

the scope. Dependencies of this sort are hard to understand, and non-obvious cases are easily

overlooked, as the case where a T 1 is declared both in the same scope as T2 and in the enclosing

scope.

The Inheritance Graph Model does not depend on strict left-to-right evaluation, but rather

can be considered as a system of constraints, to be solved by any appropriate means. An oscillat­

ing evaluation occurs because satisfying one constraint causes another constraint to become

unsatisfied, and vice-versa. The key in avoiding problems with oscillating inheritance graphs is

§6.8.2 Oscillating Inheritance Graph Edges

....

type Tl = · · · ; { first declaration of Tl }

procedure P (· · ·);
begin

type T2 = Tl;
type Tl = · · ·; { second declaration ofTl }

end
Figure 6.23: Illegal Forward Reference in Pascal

detecting when they occur (or when they can occur).

117

Ideally, we would like to be able to analyze an inheritance graph description to detect the

possibility of edge H ref dependencies. Any inheritance graph description in which this can

occur can result in oscillation, and should be modified to avoid or at least detect edge H ref

dependencies. §6.8.3 will discuss methods of avoiding oscillating edges in an inheritance graph,

as well as methods of detecting and halting an oscillating evaluation.

Dynamic Definitions and Ambiguity

Dynamic definitions are those created by define_vis calls that depend on visibility in an

inheritance graph. The dynamic definitions described in §6.6.9 can easily cause ambiguities

because of their power. If the inheritance graph description is ordered and not cyclical, dynamic

definitions can cause no problems: IG1 can have definitions added that depend on /Gi, i <j, but

there are no circularities to cause problems. The Ada use statement falls into this category:

potentitzlly_visible depends on directly_visible, but not the other way around, so the set of

potentitzlly_visible definitions is well-defined.

If the inheritance graph description is cyclical, the set of dynamic definitions can depend

(indirectly) on itself, possibly causing an oscillation. One way this can occur is through an

interaction with the creation of dynamic edges, resulting in a situation similar to that shown in the

example in Figure 6.20. Details of such an example are left for the reader.

The second situation does not involve oscillating edges, but does involve an oscillation in

the set of dynamic definitions in an inheritance graph. Assuming an ordered inheritance graph

IG and a fixed edge set, this can occur only if there is a dependency of a define_vis call defining

vci visibility on vcj visibility, for i <j, at some vertex Vt. Thus, the set of definitions in /Gi

depends on IGJ. The definitions added to /Gi can affect shadowing in /Gi+l• · · · JGJ, reducing

the set of bindings with visibility class vcj visible at Vt. This can in tum reduce the set of

dynamic vci definitions added, affecting shadowing in /Gi+l• · · · , /Gj, increasing the set of

bindings with visibility class vc J visible at Vt. This oscillation can continue, with no fixed point.

If the inheritance graph description is ordered, there are no forward dependencies of

dynamic definitions (dynamic definitions dependent on later visibility classes), and the inheri­

tance graph is not cyclical (no construction operations dependent on reference operations), then

the inheritance graph description is well-defined, and each inheritance graph generated from the

description will have a single valid assignment If there are forward dependencies, then the inher­

itance graph description must be carefully analyzed to detennine whether the inheritance graph

description is well-defined. A forward dependence between visibility classes due to a dynamic

definition may not actually produce a circularity in an inheritance graph produced from the

description, or may produce an inheritance graph with a circularity with a well-defined least fixed

point.

Oscillating Inheritance Graph Edges §6.8.2

118

6.8.3. A voiding Oscillating Inheritance Graph Evaluations

This section considers methods of avoiding oscillating inheritance graph evaluations. Only

oscillating edges are considered, because dynamic edges are more common in language descrip­

tions than dynamic definitions, and because the problems involved are very similar in the two

cases.

Analyzing Inheritance Graph Descriptions

Analyzing an inheritance graph description to detect the possibility of edge H ref depen­

dencies is very difficult. Suppose the inheritance graph for a language is described using an attri­

bute grammar, as in Chapter 7. One possible approach to analysis is to compute bottom-up

and/or top-down summary information at each production about potential paths in occurring in

inheritance graphs described by the attribute grammar. For • 'local'' edges, this is not difficult:

methods similar to those for computing characteristic graphs apply

[Farrow 1984; Farrow 1986; Knuth 1968].

However, the presence of dynamic inheritance edges throws the proverbial ''monkey

wrench" into the works. The location of a dynamic inheritance edge cannot be determined until

evaluation time, because the location of the edge depends on program-specific information such

as what bindings are declared and where bindings are shadowed. Thus, the analysis must be very

pessimistic, with the result that little useful information will be obtained. The situation is even

worse when multi-step addition of dynamic edges is considered.

Causes of Oscillations

The oscillation of edges in the inheritance graphs corresponding to the examples in Figure

6.21 and Figure 6.22 was due to real errors in the programs. The error in Figure 6.21 is • 'clashing

declarations," using the definition that two bindings known in the same scope is an error. The

problem that causes the oscillation is the fact that a known binding shadows any referable bind­

ing of the same name throughout the scope, so if two bindings of the same name are known in the

same scope, each known binding shadows the referable visibility of the other binding with the

same name. In the example in Figure 6.21, this occurs, and causes the reference depended on by

the second import statement to be invalidated. Preventing this shadowing in the event of a clash­

ing declaration error would solve the oscillation problem in this case, but I have been unable to

develop a clean method of achieving the desired effect. This is a problem for future considera­

tion.

The oscillation in the example in Figure 6.22 is due to an illegal forward reference, which

can be detected in Step 3, where N 2 is known but not referable at vr 5 , where the lookup for the

first import is performed. The first import was successful in Step 1 only because N 1 is pervasive

and automatically inherited into S, resulting in N 1 being referable at vr5 •

A hypothesis is that all oscillating inheritance graph evaluations result from program errors.

It is important to distinguish between "true" errors, such as clashing declarations and illegal for­

ward references, and ''unresolved reference'' errors. The latter are a normal part of an intermedi­

ate evaluation step (for example, resulting from a multi-step import), while the former are not. If

the hypothesis is true (considering only "true" errors), the inheritance graph description contains

checks for all visibility-related errors, and we halt evaluation after completing the iteration in

which the first ''true'' error is detected, then all iterative inheritance graph evaluations based on

that description will terminate. The edge-oscillation in both example programs can be prevented

by this method. Two disadvantages to this approach exist:

(1) The hypothesis has not been proven.

(2) The onus of checking for all visibility errors is placed on the person writing the inheritance

graph description. The omission of such an error check can result in an oscillating

§6.8.2 Dynamic Definitions and Ambiguity

119

evaluation when some user attempts to compile a program. An oscillating evaluation can

be detected and halted, as will be discussed in the next section, but the user will see a

"compiler error," which is undesirable. Of course, the conesponding situation in a tradi­

tional implementation where the implementor has omitted an error check must be con­

sidered: an illegal program will be compiled without complaint by the compiler, resulting in

unpredictable results.

Another (unproven) hypothesis is that a reference depended on by a dynamic edge, once

resolved, will never become unresolved in a legal program, resulting in the removal of the edge.

All examples considered satisfy this hypothesis. This hypothesis is related to the previous

hypothesis, because this hypothesis states that any removal of an edge results from a program

error, even if the evaluation eventually becomes stable and halts. If we hold this hypothesis to be

true, then the evaluation iteration can be halted if an edge is removed. This must be reported to

the user as a compiler error.

Halting an Oscillating Evaluation

None of the methods discussed thus far are guaranteed to detect all oscillating evaluations.

The writer of the inheritance graph description may simply leave out some necessary error

checks, as in the illegal forward reference problem, resulting in oscillation for some programs

(however unlikely it is that anyone may write such programs). A fail-safe method for detecting

an oscillating evaluation is a necessity.

An evaluation of an inheritance graph oscillates if the state at iteration i is identical to the

state at iteration j, j >i + 1 (if j =i + 1. then the iteration has stabilized and the evaluation is com­

plete). Discovering an oscillating evaluation using this test is expensive if the entire state at itera­

tion j must be compared to the entire state at iteration i, for 1 <i <j. This complete comparison

can be avoided because the visibility in each iteration of the evaluation of the inheritance graph

can be completelyf characterized by the set of edges and definitions in the inheritance graph:

more precisely, the set of dynamic edges and definitions (those dependent on references). This is

so because the set of other edges and the set of definitions in the inheritance graph are fixed.

Since the number of dynamic edges will normally be small in comparison to the size of the inher­

itance graph, the cost for testing equality of evaluation states can be kept quite small. A hash

function on the dynamic edges in each iteration can be used to further speed comparisons. Of

course, this comparison can be very slow in the worst case (many dynamic edges in comparison

to the size of the graph, with many states mapping to the same hash value), but worst-case or

near-worst-case examples are extremely unlikely.

Writing Descriptions to A void Oscillation

Oscillating evaluations can be avoided by writing inheritance graph descriptions such that

oscillations clearly can not occur. The general idea is to prevent cycles where the reference

depended on by a dynamic edge can depend on the edge itself. This may be very difficult or

impossible for some languages, and it is probably preferable to use other methods to prevent or

halt oscillation if avoiding cycles will significantly complicate the inheritance graph description.

An important method of preventing oscillation is by adding appropriate error checks, for

example for multiple declaration and forward reference, and halting when a "true" error is

detected. These two error checks are specific instances of checks for interference of a

binding/visibility-class pair <b, vci > inherited via a dynamic edge e with the visibility of a pair

<b', vcj >depended on bye.

Causes of Oscillations §6.8.3

120

Language Design to A void Oscillation

A language designer can help the language implementor avoid the problem of oscillation

inheritance graph evaluations, while at the same time making the language easier to understand,

by making edge H ref dependencies impossible to create. A language that requires declaration­

before-use and doesn't allow exports of the form "export M to N; ", while avoiding the need for

back-patching, satisfies this condition. The back-patching requirement in the example in Figure

6.22 can be avoided by using declaration contour-relative shadowing, instead of scope contour­

relative shadowing (§4.4). Using declaration contour-relative shadowing, N 1 will still be refer­

able in vr 5 at Step 3 in Table 6.1, and the iteration will stabilize with a valid assignment.

Unfortunately, satisfying this condition in a language design may be overly restrictive,

outlawing visibility constructs that are useful and non-problematic when applied legally. A

weaker and more practical restriction is to require that any actual edge H ref dependency be ille­

gal, and easily detectable by an inheritance graph description, so that the implementation can

check for any such dependency and signal an error to halt the iteration.

6.9. Summary of the Inheritance Graph Model

The Inheritance Graph Model is a natural and general model of visibility control that is use­

ful for a wide variety of purposes. It permits the direct representation of the actual structure of

visibility in a program, free from implementation or other details that might detract from the

expression and understanding of the fundamental visibility control features of a language. Its

greatest asset is its construction from a few very general basic concepts: visibility regions, multi­

ple visibility constructs, definitions (of visibility of binding/visibility-class pairs), inheritance,

and clash resolution. All of the Inheritance Graph Model's descriptive capabilities arise from

these few concepts.

The Inheritance Graph Model is very general: all visibility features considered can be

described using its basic primitives.

§6.8.3 Writing Descriptions to A void Oscillation

121

CHAPTER7

A Modula-2 Example

This chapter presents a description of the inheritance graph for a complete language:

Modula-2 [Wirth 1982]. Modula-2 was chosen as the example for several reasons:

(1) It has fairly complex visibility rules, so describing them was expected to be a reasonable

test of the descriptive power of the inheritance graph.

(2) I was not extremely familiar with Modula-2 prior to the description effort, so the experience

was expected to be helpful in detennining whether the Inheritance Graph Model is useful in

increasing understanding of a language.

(3) Wirth's most popular earlier language, Pascal [Jensen and Wirth 1974] had a number of

ambiguities [Welsh et al. 1977]. I hoped that describing the inheritance graph for

Modula-2 would assist in uncovering any ambiguities.

An attribute-grammar-like method is used for describing the inheritance graph for Modula-

2. This method was chosen only because the author is familiar with attribute grammars. How­

ever, it is important that the reader keep in mind that the choice of an attribute grammar is not

very important - it is merely a means for describing the correspondence between an abstract syn­

tax tree and an inheritance graph. The inheritance graph is applicable to almost any descriptive

fonnalism used for programming languages.

The description is not intended for input as-is into a system for building inheritance graph­

generators. Rather, it is intended as an exercise in describing the relation between programs of a

real language and the corresponding inheritance graphs. For this reason, some infonnation that

would be necessary input to an inheritance graph-generator system is omitted. Other liberties are

also taken in the description, as will be described in later sections.

Following the grammar describing Modula-2, §7.7 discusses the experience of developing

the inheritance graph description for Modula-2, covering both the utility of the Inheritance Graph

Model in describing the visibility rules of Modula-2, and the use of the attribute grammar fonnal­

ism for describing inheritance graphs.

7.1. Summary of Visibility Control Rules ofModula-2

Modula-2 is an extension of Pascal in most aspects, including the visibility control rules. It

has block structure, records, and with statements as in Pascal. A declaration local to a scopeS

shadows clashing bindings at the beginning of S , not at the point of declaration.

A declaration of a binding must precede any reference to that binding. in a declaration, but

unlike Pascal, a reference to a binding in a statement can precede the declaration of the binding.

This distinction apparently has no real purpose other than to match the intended implementation:

declarations are processed sequentially in the first pass, making declaration-before-use necessary,

while references in statements are processed in a later pass, where it is easier to eliminate the

declaration-before-use requirement

As in Pascal, the declaration-before-use requirement is relaxed for references to types in

pointer-type declarations, to make mutually recursive data types possible.

In addition to procedures, functions, and blocks, Modula-2 has modules. Modules are

closed scopes to all bindings except bindings of standard identifiers, which are pervasive. All

122

other scopes are open scopes.

Modula-2 provides several forms of import and export statements for modifying the visibil­

ity of bindings across module boundaries. The import statement makes some or all of the bind­

ings in the enclosing scope or in a named scope visible in the importing module. An export in

module M 1 makes directly visible bindings visible in the scope enclosing M 1 , or in a module

that imports M 1 • Import and export are symmetric; an exported binding can be imported by the

module inheriting visibility of the binding or vice-versa.

Several ambiguities in the visibility control rules of Modula-2 were discovered while

describing the inheritance graph. The ambiguities are presented here along with the chosen

interpretations used in the inheritance graph description for Modula-2.

(1) Are two declarations of the same identifier in the same scope an error? For our description

ofModula-2, this is defined to be an error.

(2) Are imported/exported bindings the same as locally declared bindings for the purpose of

checking for clashing local bindings? Yes.

(3) Do imported/exported bindings have the same visibility as locally declared bindings? In

particular are bindings imported into a definitions module also visible in the corresponding

implementation module? Yes.

(4) Given a module M with a local declaration A, must A be exported from M for a qualified

reference "M.A" nested within M to be legal? Yes, although there are strong arguments on

both sides.

(5) Are the lookup rules for import/export the same as the rules for references in declarations,

or in statements? Tile export statement only makes sense if all bindings declared local to a

scope are visible, since the export precedes any declarations in a scope. The meaning of an

import isn't clear: in the inheritance graph description, only prior declarations are visible.

(6) What is the scope of an enumeration constant (particularly those declared in an anonymous

type nested in a record declaration)? In the inheritance graph description, it is the innermost

enclosing block, procedure, function, or module.

Other points of Modula-2's visibility control rules will be discussed where relevant in the

description of the inheritance graph.

7 .2. Design of the Inheritance Graph for Modula-2

Four visibility classes are used to describe the visibility control rules of Modula-2:

A binding is known in visibility regions where no clashing binding may be declared. In the

description, a binding is known in the visibility regions local to the declaring scope, and in any

visibility region that receives the ability tl:H"eference a binding because of an import or export

statement Imported bindings are known because they are equivalent to local declarations for

error detection41 • The bindings made visible in the scope of a with statement are also known,

because they must shadow clashing bindings visible in the scope enclosing the with statement.

known visibility flows both forward and backward in text order in the graph.

A binding is decl_rejerabll! in all visibility regions where it may be referenced in a declara­

tion. decl_referabll! visibility flows forward in text order in the graph, and inward into nested

scopes.

A binding is stmt_referable in all visibility regions where it may be referenced in a state­

ment. stmt_rejerable visibility flows forward and backward in text order in the graph, and

41 That is, I have chosen to treat them this way. As stated earlier, the language manual is not clear on this point

§7.1 Summary of Visibility Control Rules of Modula-2

123

inward into nested scopes. Both decl_referabu and stmt_referable visibility classes are needed

because of the declaration-before-use requirement on references in declarations, but not refer­

ences in statements.

The containing visibility class is used for bindings corresponding to modules. containing

visibility of a binding of module M is defined at the first visibility region local to M, and is

inherited forward in text order and into all nested scopes, with no shadowing. Thus, the binding

of M is containing visible at all visibility regions contained within M, even visibility regions

local to scopes nested within M. The containing visibility class is used to resolve nested

qualified references, which may occur within modules, but not in records. The method for han­

dling nested qualified references was described in the Nested Qualified References sub-section of

§6.5.4, along with the appropriate subgraph schema.

7 .3. Clash Function and Clash Table for Modula-2

The clash function for Modula-2 simply returns true for any pair of bindings, since clash is

called with a pair of bindings only if their name fields are the same. and there is no overloading

in Modula-2.

The clash table for Modula-2 is:

Modula-2 Visibility Class for b 2

Clash Table bww11 IUcl_nf~rab/4 1tm1 referab/4 COIIIDining

Vis Class know11 error(" clashing decls ") sbadowb2 shadow b_1 -
forb 1 decl_rejerable shadow b error(" de scrip. error") error(" descrij>. error") -

stmt refemb/4 shadow b error(" descrip. error") error(" descrip. error") -
contDininK - - - -

The important points of the clash table are that known shadows decl_referable and

stmt_referable bindings, and nothing shadows containing bindings. The entries filled with

''descrip. error'' should only be activated if there is an error in the description, and are included

as an extra check on the correcmess of the description.

Several lookup functions are required for use in different contexts. They are given in

§7.6.1.

7 .4. Subgraph Schema for Modula-2

All of the visibility control constructs in Modula-2 are very similar to the examples given in

Chapter 6. Instead of repeating those schemata with minor modifications, the differences

between Modula-2 and those examples will be described at relevant points in the inheritance

graph description itself.

7 .5. Introduction to the Inheritance Graph Description

7.5.1. The Attribute Grammar-Like Formalism

The inheritance graph description looks like an attribute grammar, and borrows many

features from attribute grammars. The discussion assumes the reader is somewhat familiar with

attribute grammars. For an introduction to attribute grammars, see [Farrow 1983], [Waite and

Goos 1984], or [Aho et al. 1986]. Like a true attribute grammar, the description uses inherited

and synthesized attributes42 associated with nodes of the tree corresponding to a program, where

the values of inherited attributes are computed from above the attribute's node in the tree, and the

42 It is important not to confuse attributes of tree nodes in the attribute grammar and attributes of entities and

bindings. Which is meant should be clear from the context of a use of the word ''attribute''.

Design of the Inheritance Graph for Modula-2 §7.2

124

values of synthesized attributes are computed from below. Semantic functions associated with

each production define the values of synthesized attributes on the LHS of the production, and the

values of inherited attributes on the RHS of the production.

However, the inheritance graph description is neither a complete nor valid attribute gram­

mar. It is not complete because some (hopefully) obvious details are omitted, such as complete

definitions of all attributes for all tree nodes. The description builds only as much type informa­

tion as is needed for name resolution. A complete language description would include more type

information, as required for type checking. Some simple functions are just described instead of

being written in full.

The description is not a valid attribute grammar because some operations cause side-effects,

which are banned in a true attribute grammar, and also because there are circular dependencies in

the description. These circularities arise because of the ordering problem discussed in §6.7.

The side-effects result from the calls on create_edge, create_vertex, de.fine_vis, and

redefine_ vis. This problem could be eliminated by adding additional attributes and dependencies,

such that:

(1) A single, synthesized "IG" attribute depends (directly or indirectly) on all inheritance

graph construction operations, and whose evaluation involves re-evaluating the inheritance

graph.

(2) All reference operations depend on the "IG" attribute, so that all construction operations

must be executed before any reference operations.

The circularity problem could then be handled by the iterative algorithm described in §6.7,

with additional ordering resulting from the attribute dependencies.

7 .5.2. Notation

Common attribute grammar notation is used for the most pan, though not entirely. Multiple

assignment and conditional assignment are used.

Two types of extensions to attribute grammars are used to shorten and simplify the gram­

mar. The first is the INCLUDING operator, where an occurrence of

INCLUDING attribute-name

occurring in an expression returns the value of the first attribute-name attribute found by travers­

ing up the parse tree from the point of reference to the root. This is used for attributes that are

defined once for each scope, and used in many subtrees of the scope. The INCLUDING operator

was introduced in the GAG system [Kastens et al. 1981].

The other extensions are based on constructs proposed in [Jiillig and DeRemer 1984] for

describing attribute flow in regular right-pan attribute grammars. The Modula-2 description uses

a different notation, however. The notation is needed for productions of the form:

definition_seq
definition+

&SEMANTICS

§7.5.1

definition'FIRST.first_ vr = definition_seq.first_ vr.

create_edge (definition'I.last_ vr, definition'!+ l.first_ vr,
{known, containing, stmt_rejerable, decl_referable}, rf_null);

create_edge (definition'l+l.first_vr, definition'l.last_vr,
{known, stmt_rejerable}, rf_null);

definition_seq.last_ vr = definition 'LAST .last_ vr,

The Attribute Grammar-Like Formalism

-

-

125

Productions with regular right parts (such as this one) are not allowed in conventional attribute

grammars, because there is an instance of each attribute of definition for each definition in a

definition_seq, and each attribute instance may receive a different value. Conventional attribute

grammars avoid this problem by disallowing regular right parts - forcing sequences to be written

as recursions, which tend to be long and tedious in an attribute grammar. The extensions (of

which some are illustrated in the above example) are:

FIRST
node' FIRST.attr denotes the attr attribute of the first node in the sequence.

LAST
node' IAST.attr denotes the attr attribute of the last node in the sequence.

Iandl+l
Semantic functions containing references of the form node' l.attr and node' I+ J.attr are (in

effect) replicated for lg' Sn -1, where n is the length of the sequence. This permits an ele­

ment of the sequence to depend on either neighbor.

ALL Semantic functions containing references of the form node' AU.attr and node' I+ l.attr are

(in effect) replicated for 1g Sn. This allows all attributes in a sequence to receive the same

value.

CONCATENATE
A reference of the form node'CONCATENATE.attr on the RHS of a semantic function has

as its result a list whose elements are the values of attr for each element of the regular right

part.

7.6. The Inheritance Graph Description

7 .6.1. Types and Functions Used in the Inheritance Graph Description

The type Name will be used to represent names. The standard techniques for implementing

a string table [Abo et al. 1986, p. 431] can be used to translate objects of type /dent to type

Name and vice-versa. The functions ident _to _name and name _to _ident are used for this pur­

pose.

The describer-defined types for bindings and entities follow: The choice of whether an attri­

bute should be part of a binding or an entity depends on whether different bindings of an entity

can have different attribute values. The question is moot if only one binding of each entity can

exist.

Notation
§7.5.2

126

Binding= "BindingRecord;
Entity = 'EntityRecord;

BindingRecord =
record

name :Name;
entity : Entity;
exported : Boolean; -- true if binding is exported qualified

end;

EntityRecord =
record

end;

name : Name; -- for mapping from entity to identifier
pervasive : Boolean; -- standard bindings are pervasive
read Only : Boolean; -- for bindings exported readonly
declaringScope : Entity; -- Module or scope containing a decl

kind : EntityKind; -- module_decl, procedure_decl, etc.

· · · other semantic information · · ·

Pointers are used for bindings and entities so that equality of bindings can be defined to be

equality of pointers. "@" is used as the address operator. In an implementation, sequential

indices would most likely be used instead of pointers so that sets of bindings could be more easily

represented.

The types IGVertex and IGEdge represent vertices and edges in the inheritance graph, and

are presumed to be predefined.

Procedures define _vis and redefine _vis, and function visible are as defined in Chapter 6.

Function create _vertex creates and returns a new inheritance graph vertex. Function

create _edge creates, as a side effect, an edge from v 1 to v2 for each visibility class vis-classi

in visTypeSet, with visibility class vis-classi and restriction function restrictionFunction.

In the grammar, all procedures, for example define _vis, that normally take a single visibil­

ity class as an argument will be called with a set of visibility classes. This is done in order to

avoid a lot of redundancy. Each of these calls can be considered to be a macro call that expands

to a separate call for each visibility class, with the condition that all other parameters to the macro

call are only evaluated once.

function create_ vertex : IGVertex;

procedure create_edge (
vl, v2: IGVertex;
visType: set of VisibilityType;
restrictionFunction: function (Binding) : Boolean);

Several lookup functions are needed for use in different contexts: statement_lookup is used

for references occurring in statements. restrict_unique checks that a unique binding is returned

by the call on visible in statement_lookup. If not, restrict_unique produces an appropriate error

message and returns error _binding, which is a standard error value used to avoid much error

checking in other places. restrict_unique is as defined in §6.2.4.

§7.6.1 Types and Functions Used in the Inheritance Graph Description

function statement_lookup (
name :Name,
v : IGVertex) : Binding;

bindings : Set of Binding;

bindings:= (visible (name, v, stmt_referable));
return restrict_unique (bindings, name, v);

127

declaration_lookup is used for references occurring in declarations. An illegal forward

reference to a binding occurs if the binding is known but not dec/ _referable.

function declaration_lookup (
name :Name,
v : IGVertex) : Binding;

bindings : Set of Binding;

bindings := visible (name, v, decl_referable);
num_bindings = size (bindings);
if num_bindings = 0 then

known_bindings :=visible (name, v, known);
if size (known_bindings) > 0 then
I error (v, "illegal forward reference to '%s'" name_to_ident(name),

else
I error (v, '"%s' referenced but not visible", name_to_ident(name));

return (error_binding);
else if num_bindings = 1 then
I return (select b:Binding from bindings);
else

I
error (v, "More than one declaration of '%s' visible", name_to_ident(name));

return (error_binding);
return restrict_unique (bindings, name, v);

The lookup function for references occurring in pointer type definitions is

pointer _rype_lookup. A binding b is found by pointer _rype_lookup if it is either decl_referable

(regular visibility for declarations) or it is known. A binding is known throughout its local scope,

so bindings declared later in the same scope will be found, as is appropriate in Modula-2.

function pointer_type_lookup (
name :Name,
v : IGVertex) : Binding;

bindings: Set of Binding;

bindings:= visible (name, v, known) u visible (name, v, decl_referable);

return restrict_unique (bindings, name, v);

check_import_visible is used to verify that bindings being imported actually exist. This

must be done in addition to creating the edge along which visibility of the bindings can be inher­

ited. There is no need to check whether the imported binding clashes with a local declaration,

because clash resolution will detect this.

Types and Functions Used in the Inheritance Graph Description §7.6.1

128

rocedure check_import_ visible (
name_list : list of Name;
from_ vr, --visibility region being imported from

import_vr: IGVertex --visibility region at import statement

);
b: Binding;

foreach name:Name e name_list do

-- An error message will be produced at the providing visibility region if the lookup fails

b := declaration_lookup (name, v)
if b = error_binding then
I error ("Imported binding %s not visible", name_to_ident(name))

check_export_visible is used to check that bindings being exported are known in the export­

ing scope.

rocedure check_ export_ visible (
name_list :list of Name;
from_vr : IGVertex --visibility region being exported from

);
b: Binding;

foreach name:Name e name_list do

b := restrict_unique (visible (name, from_vr, known))

if b = error_binding then
I error ("Exported binding %s not directly visible", name_to_ident(name))

Several restriction functions are used on inheritance edges in the Modula-2 description.

rf_null is the default restriction function. It places no restriction on inheritance, returning true

for all bindings. rj_closed_scope is used on the edge connecting the visibility region prior to the

declaration of a module to the first visibility region local to the module. Only pervasive bindings

are inherited by a closed scope.

function rf_closed_scope (
b: Binding
) :Boolean;

return (b.entity.pervasive);

Function rj_local_decls creates and returns a closure that returns true only for bindings that

are local to the scope represented by the binding passed to rf_local_decls. A closure is needed

because the restriction function depends not only on the class of the visibility construct, but also

on the specifics of the instance of the visibility construct (i.e., which bindings are declared local

to the scope in question). rf_local_decls is used for the inheritance edge from a definition module

to the corresponding implementation module, and for the edge from the last field of a record to

the scope of a with statement opening the record.

§7.6.1 Types and Functions Used in the Inheritance Graph Description

function rf_local_decls (
declaring_scope : Binding
) function (Binding) : Boolean;

function rf_local_decls_closure (b: Binding) :Boolean;

return (b.declaring_scope = declaring_ scope)

return (rf_local_decls_closure);

129

redefine_declaring_scope is called for each declaration, and is used to redefine the ref_env

attribute of the scope containing the declaration. This is needed when the declaring scope is a

module, because of the possibility of nested qualified references.

rocedure redefine_declaring_scope (vr: IGVertex, binding: Binding);

new_binding = @BindingRecord(binding.name,

@EntityRecord(binding.name,
pervasive = binding.pervasive,
readOnly = binding.readOnly,
declaring_scope = binding.declaring_scope,

kind = binding.kind,
ref_env = vr,
descriptor= binding.descriptor,
...))

redefine_ vis (vr, binding, new_binding, containing);

Errors are handled by calls to error. As discussed in §6.4, errors must be associated with

some object (a binding, entity, or inheritance graph vertex) in order to avoid duplicate error mes­

sages, and so that errors can be printed in meaningful places. However, this extra argument to

calls on error will be omitted, because it doesn't add much to the understanding of the inheri­

tance graph description.

7 .6.2. Attributes of Tree Nodes

in_vr is the visibility region in which references should be resolved, and is inherited by all

tree nodes where references may occur.

in_vr : inh: IGVertex;

first _vr and last _vr are used to keep track of the first and last visibility regions resulting

from a subtree rooted at a particular node: for example the first and last visibility regions result­

ing from a list of declarations. They are used primarily to allow the vertices corresponding to dif­

ferent parts of a production to be joined by edges. For example, in a list of declarations, each

declaration has its own first _vr and last _vr, which are connected together in a chain with inheri­

tance edges. In some cases where a production may produce an empty list, a dummy vertex

vrdummy is created so thatfirst_vr and last_vr have valid values, and the creation of edges higher

in the tree can ignore the possibility of empty sequences. This can actually result in a single visi­

bility region corresponding to more than one vertex in the inheritance graph, but the meaning of

references is unaffected, so we can ignore the extra vertices.

first_ vr: synth : IGVertex;
last_vr : synth: IGVertex;

declaring _scope is defined at each scope that can contain local declarations. Instead of

propagating it step-by-step through the production, it is accessed where needed by the

"INCLUDING" construct, which finds the closest occurrence of a declaring _scope attribute

Types and Functions Used in the Inheritance Graph Description §7.6.1

130

above the reference in the attributed tree.

declaring_scope: Entity;

following _vr in a module_declaration is the visibility region following the visibility region

where visibility of the module is defined. It is used as the target for visibility resulting from an

export statement.

following_vr: IGVertex; --following visibility region in enclosing scope

enclosing _decl_ vr is a, and is set by any declaration immediate! y local to a scope. It is

used by enumeration constants as their definition vertex.

enclosing_decl_vr: IGVertex;

7 .6.3. The Grammar

The attribute grammar describing the inheritance graph for Modula-2 follows. Explanatory

paragraphs are interspersed in the grammar. A discussion of the development of the inheritance

graph description ofModula-2 follows in §7.7.

-- Modula-2 grammar
--context-free grammar (c) Copyright Robert A. Ballance,

-- Jacob Butcher, Michael L. Van De V anter 1987.

--(Work in progress). All rights reserved.

-- Modifications, annotations, and semantic actions by Phillip Garrison

Initialization of global constants

enclosing_scope_name: Name= ident_to_name ("#enclosing_scope#");

The in_vr for a compilation unit is the standard enviromnent, which must be provided by

the person writing the language system. The standard enviromnent is simply a visibility region at

which all the standard bindings are visible, just as if the standard environment enclosed the com­

pilation unit.

compilation_unit
definition_module

&SEMANTICS
definition_module.in_ vr = compilation_unit.in_ vr,

compilation_unitfirst_ vr = definition_module.first_ vr,

compilation_unitlast_ vr = definition_modulelast_ vr,

I program_module
&SEMANTICS

program_module.in_ vr = compilation_unit.in_ vr;

compilation_ unit first_ vr = program_module.first_ vr;

compilation_unitlast_ vr = program_module.last_ vr,

I implementation_module
&SEMANTICS

implementation_module.in_ vr = compilation_unitin_ vr,

compilation_unit.first_ vr = implementation_module.first_ vr,

compilation_unit.last_ vr = implementation_module.last_ vr,

program_module
"MODULE" id opt_priority ";" import_seq block id "."

§7.6.2 Attributes of Tree Nodes

'

-

&SEMANTICS
DECL_ VR: IGVertex =create_ vertex();

program_module.first_ vr = DECL_ VR;

program_module.last_ vr = DECL_ VR;

NAME:Name = ident_to_name(id< 1>);

program_module.name =NAME;

MODULE_BINDING: Binding =
@BindingRecord(NAME,

@EntityRecord(NAME,
pervasive=false,
readOnly=false,
declaring_scope = null_Binding,

kind= program_module_decl,

-- unique_id used by redefine_ vis to check entity equality

unique_id = GetUniqueName(),

ref_env = block.last_vr;
...)),

define_ vis (DECL_ VR, MODULE_BINDING,

{known, stmt_rejerable, dec! _referable})

-- first visibility region local to module, a local temporary

FIRST_LOCAL_ VR:IGVertex =create_ vertex();

opt_priority.in_vr = FIRST_LOCAL_ VR;

-- define containing visibility
define_ vis (FIRST _LOCAL_ VR, MODULE_BINDING, {containing})

-- edge corresponding to scope entry
create_edge (DECL_ VR, FIRST _LOCAL_ VR,

{stmt_rejerable, dec I _referable}, rf_closed_scope);

create_edge (DECL_ VR, FIRST_LOCAL_ VR,

{containing}, rf_null);
create_edge (FIRST_LOCAL_ VR, import_seq.first_vr,

{known, containing, stmt_rejerable, decl_rejerable}, rf_null);

create_edge (import_seq.first_ vr, FIRST_LOCAL_ VR,

{known, stmt_rejerable}, rf_null);

create_edge (import_seq.last_ vr, block. first_ vr,

{known, containing, stmt_rejerable, decl_rejerable}, rf_null);

create_edge (block.first_vr, import_seq.last_vr,

{known, stmt_rejerable}, rf_null);

block. in_ vr = import_seq.last_ vr;

-- define #enclosing_ scope# for use by import

define_ vis (FIRST_LOCAL_ VR,

The Grammar

@Binding Record(enclosing_scope_name,

@Entity Record(enclosing_scope_name,

pervasive=false,
readOnly=false,
declaring_scope = MODULE_BINDING,

kind= special_decl,
ref_env = program_module.in_vr ...)),

131

§7.6.3

132

(known, stmt_rejerable, decl_rejerable})

block.declaring_scope = MODULE_BINDING;

opt _priority
"[" const_expr "]"

&SEMANTICS
const_expr.in_ vr = opt_priority.in_ vr;

I --empty

implementation_ module

&SEMANTICS

"IMPLEMENTATION" "MODULE" id opt_priority ";"

import_seq block id II. II

DUMMY_ VR: IGVertex = create_vertexO;

implementation_module.first_ vr,
implementation_module.last_ vr = DUMMY_ VR;

NAME:Name = ident_to_name(id<l>);

-- add inheritance from last vis region in definitions module

-- to first vis region in body of implementation module

PROVIDING_SCOPE:Binding =
statement_ lookup (NAME, implementation_module.in_ vr);

-- rf_local_decls returns a restriction function that

--permits inheritance only oflocal bindings of the scope entity

-- passed to it as its argument
create_edge (PROVIDING_SCOPE.entity.ref_env, FIRST_LOCAL_ VR,

(known, containing, stmt_rejerable, decl_rejerable},

rf_local_decls(PROVIDING_SCOPE));

§7.6.3

-- first visibility region local to module

FIRST _LOCAL_ VR: IGVertex = create_ vertex();

opt_priority.in_vr= FIRST_LOCAL_ VR;

-- edge corresponding to scope entry
create_edge (import_seq.first_vr, FIRST_LOCAL_ VR,

{known, stmt_rejerable}, rf_null);

create_edge (import_seq.last_ vr, block. first_ vr,

{known, containing, stmt_rejerable, decl_rejerable}, rf_null);

create_edge (block. first_ vr, import_seq.last_ vr,

{known, stmt_rejerable}, rf_null);

block.in_ vr = import_seq.last_ vr;
-- define #enclosing_scope# for use by import

define_ vis (FIRST_LOCAL_ VR,
@ BindingRecord(enclosing_scope_name,

@Entity Record(enclosing_ scope _name,

pervasive=false,
readOnly=false,
declaring_scope = MODULE_BINDING,

kind= special_decl,

The Grammar

....

ref_env = program_module.in_vr ...)),

{known, stmt_rejerable, decl_rejerable})

block.declaring_scope = PROVIDING_SCOPE;

definition_module

&SEMANTICS

"DEFINITION" "MODULE" id ";"

impon_seq definition_seq "END" id "."

DECL_ VR: IGVertex =create_ vertex();

definition_module.first_ vr = DECL_ VR;

definition_module.last_ vr = DECL_ VR;

NAME:Name = ident_to_name(id<l>);

definition_module.name =NAME;

MODULE_BINDING: Binding=
@ BindingRecord(NAME,

@EntityRecord(NAME,
pervasive=false,
readOnly=false,
declaring_scope = null_Binding,

kind= definition_module_decl,

-- unique_id used by redefine_ vis to check entity equality

unique_id = GetUniqueNameO.

ref_env = definition_seq.last_ vr,
...)),

define_ vis (DECL_ VR, MODULE_BINDING,

{known, stmt_rejerable, decl_referable})

-- first visibility region local to module

FIRST_LOCAL_ VR:IGVertex = create_vertexO;

-- define containing visibility
define_ vis (FIRST_LOCAL_ VR, MODULE_BINDING, {containing})

-- edge corresponding to scope entry

create_edge (DECL_ VR, FIRST_LOCAL_ VR,

{ stmt _referable, dec I _referable}, rf_closed_scope);

create_edge (DECL_ VR, FIRST_LOCAL_ VR,

{containing}, rf_null);
create_edge (FIRST_LOCAL_ VR, impon_seq.first_vr,

{known, containing, stmt_referable, dec I _referable}, rf_null);

create_edge (import_seq.first_vr, FIRST_LOCAL_ VR,

{known, stmt_referable}, rf_null);

create_edge (import_seq.last_ vr, definition_seq.first_ vr,

{known, containing, stmt_referable, decl_rejerable}, rf_null);

create_edge (definition_seq.first_ vr, import_seq.last_ vr,

{known, stmt_referable}, rf_null);

definition_seq.in_ vr = import_seq.last_ vr;

definition_seq.declaring_scope = MODULE_BINDING;

The Grammar

133

§7.6.3

134

-- define #enclosing_scope#
define_ vis (FIRST_LOCAL_ VR,

@ BindingRecord(enclosing_scope_name,

@Entity Record(enclosing_ scope _name,

pervasive=false,
readOnly=false,
declaring_scope = MODULE_BINDING,

kind = special_decl,
ref_env = definition_module.in_vr ...)),

{known, stmt_referable, decl_referable})

import_seq
import+

&SEMANTICS
import'FIRST.in_vr = import_seq.in_vr;

-- link vis regions created by each import

create_edge (import'l.last_ vr, import'!+ I. first_ vr,

{known, containing, stmt_referable, tkcl_referable}, rf_null);

create_edge (import'!+ l.first_ vr, import'I.last_ vr,

{known, stmt_referable}. rf_null);

import_seq.first_ vr = import'LAST.first_ vr;

import_seq.last_ vr = import'LAST.last_ vr;

I --empty
&SEMANTICS

DUMMY_ VR: IGVertex = create_vertexO;

import_seq.first_ vr, import_seq.last_ vr = DUMMY_ VR;

--lookup must either always return a valid binding (with a real ref_env)

-- or we must check for errors

import : "FROM" id "IMPORT" id_list ";"

&SEMANTICS
ENCLOSING_SCOPE:Binding =

statement_lookup (enclosing_scope_name, import.in_ vr);

PROVIDING_SCOPE:Binding =
statement_lookup (ident_to _name(id), ENCLOSING _SCOPE. entity .ref_env);

import.first_ vr = import.last_ vr = create_ vertexO;

-- check that imported bindings exist

check_import_ visible (id_list.name_list,
PROVIDING _SCOPE.entity .ref_env, import. first_ vr);

-- rf_name_list is a function that takes a list of names as an argument

-- and returns a restriction function that returns true only for bindings

-- with one of the listed names
create_edge (PROVIDING_SCOPE.entity.ref_env, import.in_vr,

{known, stmt_referable, decl_referable}, rf_name_list(id_list.name_list));

I "IMPORT" id_list ";"

&SEMANTICS
PROVIDING_SCOPE:Binding =

§7.6.3

statement_lookup (enclosing_ scope _name, import. in_ vr);

import.first_vr = import.last_vr = create_vertexO;

The Grammar

,,..

-

-- check that imported bindings exist
check_ import_ visible (id_list, PROVIDING_SCOPE.entity.ref_env);

create_edge (PROVIDING_SCOPE.entity.ref_env, import.in_vr,

{known, stmt_referable, decl_referable}, rf_name_list(id_listname_list));

export "EXPORT" id_list ";"

&SEMANTICS
-- check that exported bindings exist
check_ export_ visible (id_list.name_list, export.in_ vr);

create_edge (export.in_vr, export.following_vr,
{known, stmt_referable, decl_referable}, rf_name_list(id_list.name_list));

I "EXPORT" "QUALIFIED" id_list ";"

&SEMANTICS
--just set "exported" field to true for all bindings referenced

-- in id_list: not shown.

id_list
id+{","}

&SEMANTICS
IDENT_LIST: IdentList = id'CONCATENATE;

-- convert identifiers in list to names
id_listname_list = ident_list_to_name_list (IDENT_LIST);

definition_seq
definition+

&SEMANTICS
definition'FIRST.first_ vr = definition_seq.first_ vr,

create_edge (definition'l.last_ vr, definition'!+ l.first_ vr,

{known, containing, stmt_referable, dec I _referable}, rf_null);

create_edge (definition 'I+ l.first_ vr, definition 'l.last_ vr,

{known, stmt_referable}, rf_null);

definition_seq.last_ vr = definition 'LAST .last_ vr,

&SEMANTICS
DUMMY_ VR: IGVertex = create_vertexO;

definition_seq.first_ vr, definition_seq.last_ vr = DUMMY_ VR;

definition
"CONST" constant_declaration_seq

&SEMANTICS
constant_declaration_seq.in_ vr = definition.in_ vr;

definition. first_ vr = constant_declaration_seq.first_ vr;

definition.last_ vr = constant_declaration_seq.last_ vr,

I "TYPE" type_definition_seq

&SEMANTICS
type_declaration_seq.in_ vr = definition.in_ vr,

definition. first_ vr = type_definition_seq.first_ vr,

definition.last_ vr = type_definition_seq.last_ vr,

135

The Grammar §7.6.3

136

I "V AR" var_declaration_seq

&SEMANfiCS
var_declaration_seq.in_ vr = definition.in_ vr,

definition. first_ vr = var_declaration_seq.first_ vr,

definition.last_ vr = var_declaration_seq.last_ vr;

I pn)Cedure_heading

&SEMANTICS
procedure_heading.in_ vr = definition.in_ vr,

definition. first_ vr = procedure_heading.first_ vr,

definition.last_ vr = procedure_heading.last_ vr,

constant_declaration_seq
constant_declaration+

&SEMANfiCS
constant_declaration'FIRST.in_ vr = constant_declaration_seq.in_ vr,

create_edge (constant_declaration '!.last_ vr, constant_declaration 'I+ l.first_ vr,

{known, containing, stmt_referable, decl_referable}, rf_null);

create_edge (constant_declaration'l+ I. first_ vr, constant_declaration'I.last_ vr,

{known, stmt_referable}, rf_null);

constant_declaration_seq.last_ vr = constant_declaration'LAST.last_ vr;

I --empty

&SEMANfiCS
DUMMY_ VR: IGVertex= create_vertexQ;

constant_declaration_seq.first_ vr, constant_declaration_seq.last_ vr = DUMMY_ VR;

type_definition_seq
type_definition+

&SEMANfiCS
type_definition 'FIRST .in_ vr = type_definition_seq.in_ vr;

create_edge (type_definition'I.last_ vr, type_definition 'I+ I. first_ vr,

{known, containing, stmt_referable, decl_rejerable}, rf_null);

create_edge (type_definition'l+ l.first_ vr, type_definition'I.last_ vr,

{known, stmt_referable}, rf_null);

type_definition_seq.last_ vr = type_definition'LAST.last_vr;

&SEMANfiCS
DUMMY_ VR: IGVertex = create_vertexO;

type_definition_seq.first_ vr, type_definition_seq.last_ vr = DUMMY_ VR;

var_declaration_seq
var_declaration+

&SEMANTICS
var_declaration'FIRST.in_ vr = var_declaration_seq.in_ vr,

create_edge (var_declaration'I.last_ vr, var_declaration'l+ l.first_ vr,

{known, containing, stmt_referable, decl_referable}, rf_null);

create_edge (var_declaration 'I+ I. first_ vr, var_declaration'l.last_ vr,

{known, stmt_rejerable}, rf_null);

var_declaration_seq.last_ vr = var_declaration 'LAST.last_ vr;

&SEMANTICS

§7.6.3
The Grammar

DU11MY_ VR: IGVertex = create_vertexO;

var_declaration_seq.first_ vr, var_declaration_seq.last_ vr = DUMMY_ VR;

declaration
"CONST" constant_declaration_seq

&SEMANTICS
constant_declaration_seq.in_ vr = declaration.in_ vr;

declaration. first_ vr = constant_declaration_seq.first_ vr;

declaration.last_ vr = constant_declaration_seq.last_ vr;

I "TYPE" type_declaration_seq

&SEMANTICS
type_declaration_seq.in_ vr = declaration.in_ vr;

declaration. first_ vr = type_declaration_seq.first_ vr;

declaration.last_ vr = type_declaration_seq.last_ vr;

I "V AR" var_declaration_seq

&SEMANTICS
var_declaration_seq.in_ vr = declaration.in_ vr;

declaration. first_ vr = var_declaration_seq.first_ vr;

declaration.last_ vr = var_declaration_seq.last_ vr;

I procedure_declaration

&SEMANTICS
procedure_declaration.in_vr = declaration.in_vr;

declaration. first_ vr = procedure_declaration.first_ vr;

declaration.last_ vr = procedure_declaration.last_ vr;

I module_declaration
&SEMANTICS

module_declaration.in_ vr = declaration.in_ vr;

declaration.first_vr = module_declaration_seq.first_vr;

declaration.last_ vr = module_declaration.last_ vr;

module_declaration.following_ vr =declaration. following_ vr,

type _declaration_seq
type_declaration+

&SEMANTICS
type_declaration'FIRST.in_vr = type_declaration_seq.in_vr;

-- link vis regions created by each type_declaration

create_edge (type_declaration 'I.last_ vr, type_ declaration'!+ l.first_ vr,

{known, containing, stmt_referable, decl_referable}, rf_null);

create _edge (type_declaration 'I+ l.first_ vr, type_declaration'l.last_ vr,

{known, stmt_referable}, rf_null); ·

type_declaration_seq.first_vr = type_declaration'LAST.first_vr;

type_declaration_seq.last_vr = type_declaration'LAST.last_ vr;

I --empty
&SEMANTICS

DU11MY_ VR: IGVertex = create_vertexO;

type_declaration_seq.first_ vr, type_declaration_seq.last_ vr =DUMMY_ VR;

constant_ declaration

The Grammar

137

§7.6.3

138

id "=" const_expr

&SEMANTICS
LOCAL_ VR: IGVertex =create_ vertex();

constant_ declaration. first_ vr = LOCAL_ VR;

constant_declaration.last_ vr = LOCAL_ VR;

const_expr.in_ vr = constant_declaration.in_ vr;

NAME:Name = ident_to_name(id);

define_ vis (LOCAL_ VR,
@BindingRecord(NAME,

@EntityRecord(NAME,
pervasive=false,
readOnly=false,
declaring_scope = INCLUDING declaring_scope,

kind = constant_decl,
...)),

{known, stmt_referable, decl_referable})

redefine_declaring_scope (LOCAL_ VR, constant_declaration.declaring_scope);

A type_declaration can be a completion of an opaque type declared in the corresponding

definition module. If such an opaque type exists, we must redefine it instead of defining an

entirely new binding.

type _declaration
id "="type

&SEMANTICS
LOCAL_ VR: IGVertex =create_ vertex();

type_declaration.first_ vr = LOCAL_ VR;

type_declaration.last_ vr = LOCAL_ VR;

type.enclosing_decl_ vr = LOCAL_ VR;

type.in_ vr = type_declaration.in_ vr;

NAME:Name = ident_to_name(id);

--use known visibility class, because we want only bindings declared

-- in the definition module, not ones that are just visible

-- (decl_referable or stmt_referable)
old_binding:Binding =visible (NAME, LOCAL_ VR, known);

if old_binding = error_binding then
define_ vis (LOCAL_ VR,

@BindingRecord(NAME,
@EntityRecord(NAME,
pervasive=false,
readOnly=false,
unique_id = GetUniqueNameO;
declaring_scope =INCLUDING declaring_scope,

kind= type_decl,
type_def = type.type_def;
...)),

{known, stmt_referable, decl_referable})

else
redefine_ vis (LOCAL_ VR,

§7.6.3
The Grammar

endif;

old_binding,
@BindingRecord(NAME,

@EntityRecord(NAME,
pervasive=false,
readOnly=false,
unique_id = old_binding.unique_id;

declaring_scope = old_binding.declaring_scope,

kind = type_decl,
type_def = type.type_def;
...)),

{known, stmt_rejerable, decl_referabk})

redefine_declaring_scope (LOCAL_ VR, type_declaration.declaring_scope);

type_definition
type _declaration

&SEMANTICS
type_definition.first_ vr = type_declaration.first_ vr;

type_definition.last_ vr = type_declaration.last_ vr;

I id
--opaque type definition: identifier only, no type information

&SEMANTICS
LOCAL_ VR: IGVertex = create_vertexO;

type_definition.first_ vr =LOCAL_ VR;

type_definition.last_vr =LOCAL_ VR;

type.enclosing_decl_ vr =LOCAL_ VR;

NAME:Name = ident_to_name(id);

define_ vis (LOCAL_ VR,
@BindingRecord(NAME,

@EntityRecord(NAME,
pervasive=false,
readOnl y=false,
declaring_scope =INCLUDING declaring_scope,

kind = opaque_type_decl,
type_def = null;
...)),

{known, stmt_referable, decl_referabk})

redefine_declaring_scope (LOCAL_ VR, type_definition.declaring_scope);

var_declaration
decl_id_list ":"type

&SEMANTICS
decl_id_listin_ vr = var_declaration.in_ vr;

decl_id_list.kind = var_decl;
decl_id_list.type_def = type.type_def;

var_declaration.first_ vr = decl_id_list.first_ vr;

var_declaration.last_ vr = decl_id_list.last_ vr;

type.enclosing_decl_ vr = decl_id_list.last_ vr;

type. in_ vr = var_declaration.in_ vr;

The Grammar

139

§7.6.3

140

-- descriptor for "type" will be created by type checking semantics

--for "type" and propagated down through tree where a descriptor

-- for each variable can be created

decl_id_list
decl_id+ { ","}

&SEMANTICS

decl_id

decl_id.type_def = decl_id_listtype_def;

decl_id.kind = decl_id_list.kind;
decl_id 'FIRST.first_ vr = decl_id_listfirst_ vr;

create_edge (decl_id 'l.last_ vr, decl_id 'I+ l.first_ vr,

{known, containing, stmt_referable, decl_referable}, rf_null);

create_edge (decl_id'l+ l.first_ vr, decl_id'l.last_ vr,

{known, stmt_referable}, rf_null);

decl_id_list.last_vr = decl_id'LAST.last_vr;

: id
&SEMANTICS

LOCAL_ VR: IGVertex =create_ vertex();

decl_id.first_ vr = LOCAL_ VR;
decl_id.last_ vr = LOCAL_ VR;
NAME:Name = ident_to_name(id);

define_ vis (LOCAL_ VR,
@BindingRecord(NAME,

@EntityRecord(NAME,
petvasive=false,
readOnly=false,
declaring_scope = INCLUDING declaring_scope,

kind = decl_id.kind,
type_def = decl_id.type_def;
...)),

{known, stmt_referable, decl_referable})

redefine_declaring .scope (LOCAL_ VR, decl_id.declaring_scope);

procedure_declaration
procedure_heading block id ";"

&SEMANTICS

§7.6.3

procedure_heading.in_ vr = procedure _declaration.in_ vr;

LOCAL_ VR: IGVertex =create_ vertex();

procedure_declaration.first_ vr = procedure_heading.first_ vr;

procedure_declaration.last_ vr = procedure_heading.last_ vr;

create_edge (procedure_heading.last_heading_ vr, block. first_ vr,

{known, containing, stmt_referable, decl_referable}, rf_null);

create_edge (block. first_ vr, procedure_heading.last_heading_ vr,

{known, stmt_referable,}, rf_null);

block.declaring_scope = procedure_heading.procedure_binding;

The Grammar

-

procedure _heading
"PROCEDURE" id opt_fotmal_panns ";"

&SEMANTICS
DECL_ VR: IGVertex = create_vertexO;

procedure_declaration.first_ vr = DECL_ VR;

procedure_declaration.last_ vr = DECL_ VR;

NAME:Name = ident_to_name(id);

procedure_heading.procedure_binding: Binding=

@BindingRecord(NAME,
@EntityRecord(NAME,
pervasive=false,
readOnly=false,
declaring_scope = INCLUDING declaring_scope,

kind = procedure_decl,
...)),

define_ vis (DECL_ VR, procedure_heading.procedure_binding,

{known, stmt_rejerable, dec/ _referable})

-- first visibility region local to procedure

FIRST_LOCAL_ VR: IGVertex = create_vertexO;

-- edge corresponding to scope entry
create_edge (DECL_ VR, FIRST_LOCAL_ VR,

{containing, stmt_referable, decl_referable}, rf_null);

-- last_heading_ vr is the last visibility region in the

-- fotmal parameters section (or FIRST_LOCAL_ VR if no fotmal patms),

-- from which the block in procedure_declaration inherits visibility

procedure_heading.last_heading_ vr =
if opt_fotmal_panns.exists then

opt_fotmal_params.last_ vr

else
FIRST _LOCAL_ VR

elsif;
if opt_fotmal_panns.exists then

end if;

create_edge (FIRST _LOCAL_ VR, opt_fotmal_panns.first_ vr,

{known, containing, stmt_referable, decl_referable}, rf_null);

create_edge (opt_fotmal_panns.first_vr, FIRST_LOCAL_ VR,

{known, stmt_referable}, rf_null);

define_ vis (FIRST_LOCAL_ VR,
@ BindingRecord(NAME,

@EntityRecord(NAME,
pervasive=false,
readOnly=false,
declaring_scope = INCLUDING declaring_scope,

kind = special_decl,
ref_env = block.last_ vr;
...)),

{known, stmt_referable, decl_referable})

opt_fotmal_params.in_vr = FIRST_LOCAL_ VR;

redefine_declaring_scope (DECL_ VR, procedure_heading.declaring_scope);

The Grammar

141

§7.6.3

142

opt_fonnal_panns.declaring_scope = procedure_heading.procedure_binding;

opt_fonnal_panns
"(" fonnal_pann_seq ")" opt_retum_type

&SEMANTICS
opt_fonnal_panns.first_ vr, opt_fonnal_panns.last_ vr,

fonnal_pann_seq.in_ vr = opt_fonnal_panns.in_ vr;

I --empty
&SEMANTICS

DUMMY_ VR: IGVertex = create_vertexO:
opt_fonnal_panns.first_ vr, opt_fonnal_panns.last_ vr = DUMMY_ VR;

formal_parm_seq
fp_section+{ ";"}

&SEMANTICS
fp_section 'FIRST.first_ vr = fonnal_pann_seq.first_ vr;

create _edge (fp _section 'I.last_ vr, fp _section 'I+ l.first_ vr,

{known, containing, stmt_rejerable, decl_referable}, rf_null);

create_edge (fp_section 'I+ Lfirst_ vr, fp_section'I.last_ vr,

{known, stmt_referable}, rf_null);

fonnal_parm_seq.last_ vr = fp_section 'LAST.last_ vr;

fp_section 'FIRST.in_ vr = fonnal_pann_seq.in_ vr;

fp_section'l+ l.in_ vr = fp_section 'l.last_ vr;
I --empty

&SEMANTICS
DUMMY_ VR: IGVertex = create_vertexO;
fonnal_parm_seq.first_ vr, fonnal_parm_seq.last_ vr = DUMMY_ VR;

fp_section
opt_var decl_id_list ":" fonnal_type

&SEMANTICS
fp_section.first_vr = decl_id_list.first_vr;
fp_section.last_ vr = decl_id_list.last_ vr;
formal_type.in_vr = fp_section.in_vr;
--descriptor for "fonnal_type" will be created by type checking semantics

-- for "fonnal_type" and propagated down through tree where a descriptor

-- for each variable can be created

opt_var
["VAR"]

module_declaration
"MODULE" id opt_priority ";" import_seq opt_export block id ";"

&SEMANTICS
DECL_ VR: IGVertex = create_vertexO;

§7.6.3
The Grammar

module_declaration.first_ vr = DECL_ VR;

module_declaration.last_ vr = DECL_ VR;

NAME:Name = ident_to_name(id);

MODULE_BINDING: Binding=
@ BindingRecord(NAME,

@EntityRecord(NAME,
pervasive=false,
readOnly=false,
declaring_scope =INCLUDING declaring_scope,

kind= module_decl,

-- unique_id used by redefine_ vis to check entity equality

unique_id = GetUniqueNameQ,
ref_env = block.last_ vr;
...)),

define_ vis (DECL_ VR, MODULE_BINDING,

{known, stmt_referable, decl_referable})

-- first visibility region local to module
FIRST_LOCAL_ VR: IGVertex = create_vertexO;

-- define containing visibility
define_ vis (FIRST_LOCAL_ VR, MODULE_BINDING, {containing});

-- edge corresponding to scope entry
create_edge (DECL_ VR, FIRST _LOCAL_ VR,

{stmt_referable, decl_referable}, rf_closed_scope);

create_edge (DECL_ VR, FIRST_LOCAL_ VR,

{containing}, rf_null);
-- connect other visibility regions
create_edge (FIRST_LOCAL_ VR, import_seq.first_vr,

{known, containing, stmt_referable, decl_referable}, rf_null);

create_edge (import_seq.first_vr, FIRST_LOCAL_ VR,

{known, stmt_referable}, rf_null);

create_edge (import_seq.last_ vr, block. first_ vr,
{known, containing, stmt_referable, decl_referable}, rf_null);

create_edge (block.first_vr, import_seq.last_ vr,
{known, stmt_referable}, rf_null);

block. in_ vr = import_seq.last_ vr;

-- define #enclosing_scope#
define_ vis (FIRST _LOCAL_ VR,

@ BindingRecord(enclosing_ scope _name,

@EntityRecord(enclosing_scope_name,

pervasive=false,
readOnly=false,
declaring_scope = MODULE_BINDING,

kind = special_decl,
ref_env = module_declaration.in_ vr ...)),

{known, stmt_referable, decl_referable})

-- export can see all declarations, and we want to export both

-- stmt_referable and decl_referable visibility classes, and decl_referable is only

-- inherited forward, so the in_ vr for the export is the last

The Grammar

143

§7.6.3

144

-- visibility region of the module

opt_export.following_ vr = module_declaration.following_ vr;

opt_export.in_ vr = block.last_ vr;

redefine_declaring_scope (DECL_ VR, module_declaration.declaring_scope);

block.declaring_scope = MODULE_BINDING;

opt_export
export

&SEMANTICS
export.in_ vr = opt_export.in_ vr;

export. following_ vr = opt_export.following_ vr;

I --empty

The pointer _type_decl attribute is on type, pointer _type, simple_type and qual_id nodes, and is

used to determine when a name reference is in a pointer-type declaration. If so, then forward

references are legal, and pointer _type_Iookup is used in qual_id to resolve the reference.

type
simple_type

&SEMANTICS
simple_type.in_ vr = type.in_ vr;
type.type_def = simple_type.type_def;

simple_type.pointer_type = type.pointer_type;

I array _type
array_type.in_vr= type.in_vr;

type.type_def = array_type.type_def;

I record_type
record_type.in_ vr = type.in_ vr;
type.type_def = record_type.type_def;

I set_type
set_type.in_ vr = type. in_ vr;
type.type_def = set_type.type_def;

I pointer_type
pointer_type.in_ vr =type. in_ vr;

type.type_def = pointer_type.type_def;

I procedure_type
procedure_type.in_ vr = type.in_ vr;

type.type_def = procedure_type. type_def;

The important synthesized attribute type_def is the entity describing the type in the type

declaration. Where the process of finding/producing this entity involves referencing existing

ones, this is shown. Other aspects of the process are not relevant to visibility control issues

simple_type
qual_id

&SEMANTICS

§7.6.3

qual_id.in_ vr = simple_type.in_ vr;

simple_type.type_def = qual_id.binding.entity;

The Grammar

qual_id.pointer_type = simple_type.pointer_type;

I enumeration
&SEMANTICS

enumeration.in_ vr = simple_type.in_ vr,

-- type_def attribute for enumeration not relevant to visibility

I subrange_type
&SEMANTICS

subrange_type.in_ vr = simple_type.in_ vr,

-- type_def attribute for subrange_type not relevant to visibility

qual_id
id+{"."}

&SEMANTICS
IDENT_LIST: IdentList = id'CONCATENATE;

-- convert identifiers in list to names
NAME_LIST: NameList = ident_list_to_name_list (IDENT_LIST);

-- resolve reference
-- resolve_qualified_ref is as defined in Chapter 6

qual_id.binding = resolve_qualified_ref (

enumeration

enum_id_list

enum_id
: id

&SEMANTICS

NAME_LIST, qual_id.in_ vr, qual_id.pointer_type_decl);

"(" enum_id_list ")"

enum_id+ {" ,"}

NAME:Name = ident_to_name(id);
define_ vis (INCLUDING enclosing_decl_vr,

{known, stmt_referable, dec I _referable})

@ BindingRecord(NAME,
@EntityRecord(NAME,

subrange_type

pervasive=false,
readOnl y=false,
declaring_scope =INCLUDING declaring_scope,

kind = enum_constant,
...)),

{known, stmt_rejerable, dec/ _referable})

opt_qual_id "[" const_expr " .. " const_expr "]"

&SEMANTICS

The Grammar

145

§7.6.3

146

opt_qual_id.in_vr = const_expr<l>.in_vr = const_expr<2>.in_vr

= subrange_type.in_vr,

opt_qual_id
qual_id

-- lookup of qual_id done in qual_id production: what is done with

--binding found is not important to us here

&SEMANTICS
qual_id.in_ vr = opt_qual_id.in_ vr,
I --empty

array_type
"ARRAY" simple_type_list "OF' type

&SEMANTICS
simple_type_list.in_ vr =type .in_ vr =array _type.in_ vr,

type.pointer_type_decl = false;
-- type _def attribute for array _type not relevant to visibility

simple_type_list
simple_type+ { ","}

&SEMANTICS
simple_type.in_vr = sirnple_type_list.in_vr,

record_type
''RECORD" field_list "END"

&SEMANTICS
-- first visibility region local to record
FIRST_LOCAL_ VR: IGVertex =create_ vertex();

-- edge corresponding to scope entry
create_edge (record_type.in_vr, FIRST_LOCAL_ VR,

{containing, stmt_rejerable, decl_rejerable}, rf_null);

field_listin_vr = FIRST_LOCAL_ VR;

record_type.type_def =
@EntityRecord(NAME,

pervasive=false,
readOnly=false,

...),

declaring_scope =INCLUDING declaring_scope,

kind = record_type,
ref_env = field_list.last_ vr;

The production for field _list assumes that each opt _field produces at least one visibility region.

To make this assumption valid, DUMMY _VR is created in the production for opt_field if

opt _field ~E. The assumption is needed because a lack of sufficient notation to link together

only the non-empty opt_fields. The result is the production of some extra inheritance graph ver­

tices, so some visibility regions may correspond to more than one vertex. However, the extra

§7.6.3 The Grammar

vertices don't change the semantics of any references.

field_list
opt_field+{";"}

&SEMANTICS
opt_field 'FIRST.in_ vr = field_list.in_ vr;

-- link vis regions created by each opt_field

create_edge (opt_field 'I.last_ vr, opt_field 'I+ !.first_ vr,

{known, containing, stmt_rejerable, decl_referable}, rf_null);

create_edge (opt_field'l+ I. first_ vr, opt_field'I.last_vr,

{known, stmt_rejerable}, rf_null);

field_list. first_ vr = opt_field 'LAST .first_ vr;

field_list.last_ vr = opt_field 'LAST .last_ vr;

opt_field
field

&SEMANTICS
field.in_ vr = opt_field.in_ vr;
opt_ field. first_ vr = field. first_ vr;
opt_field.last_ vr = field .last_ vr;

I --empty
&SEMANTICS

field

DUMMY_ VR: IGVertex = create_vertexO;

opt_field.first_ vr, opt_field.last_ vr = DUMMY_ VR;

decl_id_list ":"type

&SEMANTICS
field.first_ vr = decl_id_list. first_ vr;

field .last_ vr = decl_id_list.last_ vr;
type. in_ vr = field.in_ vr;
type.pointer_type_decl = false;

decl_id_listtype_def = type.type_def;

decl_id.,_list.kind = var_decl;
I "CASE"":" qual_id "OF' variant_list opt_else_fields "END"

&SEMANTICS
qual_id.in_ vr = field. in_ vr;
variant_list.in_ vr = field.in_ vr;
opt_else_fields.in_ vr = field.in_ vr;

--join together visibility regions

field. first_ vr = variant_list.first_ vr;

if opt_else_fields.exists then

else

The Grammar

field .last_ vr = opt_else_fields.last_ vr;

create_edge (variant_list.last_ vr, opt_else_fields.first_ vr,

{known, containing, stmt_referable, decl_rejerable}, rf_null);

create_edge (opt_else_fields.first_ vr, variant_listlast_ vr,

{known, stmt_referable}, rf_null);

147

§7.6.3

148

field.last_ vr = variant_listlast_ vr,

endif;
I "CASE" id ":" qual_id "OF' variant_list opt_else_fields "END"

&SEMANTICS
qual_id.in_ vr = field.in_ vr,
variant_listin_ vr = field.in_ vr;
opt_else_fields.in_ vr = field .in_ vr,

LOCAL_ VR: IGVertex =create_ vertex();

NAME:Narne = ident_to_narne(id);
define_ vis (LOCAL_ VR,

@BindingRecord(NAME,
@EntityRecord(NAME,
pervasive=false,
readOnly=false,
declaring_scope =INCLUDING declaring_scope,

kind = field_decl,
...)),

{known, stmt_rejerable, dec/ _referable})

--join together visibility regions
field.first_ vr = LOCAL_ VR;
create_edge (LOCAL_ VR.last_ vr, variant_list.first_ vr,

{known, containing, stmt_rejerable, decl_rejerable}, rf_null);

create_edge (variant_list.first_ vr, LOCAL_ VR.last_ vr,

{known, stmt_rejerable}, rf_null);

if opt_else_fields.exists then
field.last_ vr = opt_else_fields.last_ vr,
create_edge (variant_list.last_ vr, opt_else_fields.first_ vr,

{known, containing, stmt_rejerable, dec/ _referable}, rf_null);

create_ edge (opt_ else _fields. first_ vr, v ariant_list.last _ vr,

{known, stmt_rejerable}, rf_null);

else
field.last_ vr = variant_listlast_ vr,

endif;

variant_list
opt_ variant+ {"I"}

&SEMANTICS
opt_ variant'FIRST.in_ vr = variant_list.in_ vr;

--link vis regions created by each opt_ variant

create_edge (opt_variant'I.last_vr, opt_variant'l+l.first_ vr,

{known, containing, stmt_rejerable, decl_rejerable}, rf_null);

create_edge (opt_variant'l+l.first_vr, opt_variant'I.last_vr,

{known, stmt_rejerable}, rf_null);

variant_listfirst_ vr =opt_ variant'LAST.first_ vr,

variant_listlast_vr = opt_variant'LAST.last_vr,

opt_variant

§7.6.3
The Grammar

case_label_list ":" field_list

&SEMANTICS
field_list.in_ vr = opt_ variant. in_ vr;
case_label_listin_ vr = opt_ variant.in_ vr;

opt_variant.first_vr = field_list.first_vr;

opt_ variantlast_ vr = field_list.last_ vr;

I --empty
&SEMANTICS

opt_variantfirst_vr, opt_variantlast_vr =DUMMY_ VR;

case_label_list
case_label+{ ","}

&SEMANTICS
case_label' ALL.in_ vr = case_label_list.in_ vr;

case_label
const_expr

&SEMANTICS
const_expr.in_ vr = case_label.in_ vr;

I const_expr " .. " const_expr

&SEMANTICS
const_expr<l>.in_ vr = case_label.in_ vr;

const_expr<2>.in_ vr = case_label.in_ vr;

opt_else_fields
"ELSE" field_list

&SEMANTICS
field_list.in_ vr = opt_else_fields.in_ vr;

opt_else_fields.first_ vr = field_list.first_ vr;

opt_else_fields.last_ vr = field_list.last_ vr;

opt_else_fields.exists =true;
I --empty

--This illustrates the alternative to creating a dummy visibility region

-- for an empty list. It i.s more complicated, because it requires an

-- extra attribute, and a check whether the field is empty or not.

&SEMANTICS .
opt_else_fields.first_ vr, opt_else_fields.last_ vr = null;

opt_else_fields.exists =false;

set_type
"SET" "OF' simple_type

&SEMANTICS
simple_type.in_ vr = set_type.in_ vr;

simple_type.pointer_type_decl = false;

pointer_type

The Grammar

149

§7.6.3

150

"POINTER" "TO" type
&SEMANTICS

type .in_ vr = pointer_type.in_ vr;
type.pointer_type_decl =true;

procedure_type
"PROCEDURE" opt_fonnal_types

&SEMANTICS
opt_fonnal_types.in_ vr = procedure_type.in_ vr;

opt_fonnal_types
["(" fonnal_var_type_seq ")" opt_retum_type]

&SEMANTICS
fonnal_ var_type_seq.in_ vr = opt_fonnal_types.in_ vr;
opt_retum_type.in_ vr = opt_fonnal_types.in_ vr;

fonnal_ var_type_seq
fonnal_var_type* {";"}

&SEMANTICS
fonnal_var_type'ALL.in_vr= fonnal_var_type_seq.in_vr;

fonnal_ var_type
fonnal_type

&SEMANTICS
fonnal_type.in_ vr = fonnal_ var_type.in_ vr;
I "V AR" fonnal_type

&SEMANTICS
fonnal_type.in_ vr = fonnal_ var_type.in_ vr;

fonnal_type
qual_id

&SEMANTICS .
qual_id.in_ vr = fonnal_type.in_ vr;
I "ARRAY" "OF" qual_id

&SEMANTICS
qual_id.in_ vr = fonnal_type.in_ vr;

opt_retum_type
[":" qual_id]

&SEMANTICS
qual_id.in_ vr = opt_retum_type.in_ vr;

expr
expr "=" expr

§7.6.3
The Grammar

&SEMANTICS
expr<2>.in_ vr = expr<l>.in_ vr;
expr<3>.in_ vr = expr<l>.in_ vr;
I expr "#" expr => ne(expr<l>, "#", expr<2>)

&SEMANTICS
expr<2>.in_vr= expr<l>.in_vr;
expr<3>.in_ vr = expr< 1> .in_ vr,
I expr"<" expr => lt(expr<l>, "<", expr<2>)

&SEMANTICS
expr<2>.in_vr = expr<l>.in_vr;
expr<3>.in_vr= expr<l>.in_vr;
I expr "<=" expr => le(expr<l>, "<=", expr<2>)

&SEMANTICS
expr<2>.in_ vr = expr<l>.in_ vr;
expr<3>.in_ vr = expr<l>.in_ vr;
I expr ">" expr => gt(expr<l>, ">", expr<2>)

&SEMANTICS
expr<2>.in_ vr = expr<l>.in_ vr;
expr<3>.in_ vr = expr<l>.in_ vr;
I expr ">=" expr => ge(expr<l>, ">=", expr<2>)

&SEMANTICS
expr<2>.in_vr = expr<l>.in_vr;
expr<3>.in_vr= expr<l>.in_vr;
I expr "<>" expr => ne(expr<l>, "<>", expr<2>)

&SEMANTICS
expr<2>.in_ vr = expr<l>.in_ vr;
expr<3>.in_vr= expr<l>.in_vr;
I expr "IN" expr => in(expr<l>, "IN", expr<2>)

&SEMANTICS
expr<2>.in_vr= expr<l>.in_vr;
expr<3>.in_ vr = expr<l>.in_ vr;
I "+" expr => u_plus("+", expr)

&SEMANTICS
expr<2>.in_vr = expr<l>.in_vr;
I "-" expr => u_minus("-", expr)

&SEMANTICS
expr<2>.in_vr = expr<l>.in_vr;
I expr "+" expr => plus(expr<l>, "+", expr<2>)

&SEMANTICS
expr<2> .in_ vr = expr< 1 >.in_ vr,
expr<3>.in_vr = expr<l>.in_vr;
I expr "-" expr => minus(expr<l>, "-", expr<2>J

&SEMANTICS
expr<2>.in_vr= expr<l>.in_vr;
expr<3>.in_ vr = expr< 1> .in_ vr;
I expr "OR" expr => or(expr<l>, "OR", expr<2>)

&SEMANTICS
expr<2>.in_ vr = expr<l>.in_ vr;
expr<3>.in_vr= expr<l>.in_vr;
I expr"*" expr => star(expr<l>, "*", expr<2>)

&SEMANTICS

The Grammar

151

§7.6.3

152

expr<2>.in_vr = expr<l>.in_vr;
expr<3>.in_vr = expr<l>.in_vr;
I expr "f' expr => slash(expr<l>, "f', expr<2>)

&SEMANTICS
expr<2> .in_ vr = expr< l>.in_ vr;
expr<3> .in_ vr = expr< 1> .in_ vr;
I expr "DIV" expr

&SEMANTICS
expr<2>.in_vr = expr<l>.in_vr;
expr<3>.in_vr = expr<l>.in_vr;
I expr "MOD" expr

&SEMANTICS
expr<2>.in_vr = expr<l>.in_vr;
expr<3> .in_ vr = expr< 1> .in_ vr;
I expr "AND" expr

&SEMANTICS
expr<2> .in_ vr = expr< 1> .in_ vr;
expr<3>.in_vr = expr<l>.in_vr;
I integer
I real
I string
I set

&SEMANTICS
set .in_ vr = expr .in_ vr;
I designator

&SEMANTICS
designator.in_ vr = expr.in_ vr;
I designator actual_panns

&SEMANTICS
designator .in_ vr = expr.in_ vr;
actual_panns.in_ vr = expr.in_ vr;
I "NOT" expr

&SEMANTICS
expr<2>.in_vr = expr<l>.in_vr;
I "(" expr ")"

&SEMANTICS
expr<2>.in_ vr = expr<l>.in_ vr;

set
designator " {" element_list "}"

&SEMANTICS
designator .in_ vr = set. in_ vr;

element_list.in_vr = setin_vr;
I " {" element_list "}"

&SEMANTICS
element_list.in_ vr = set in_ vr;

element_list
element+ { ","}

§7.6.3

=> div(expr<l>, "DIV", expr<2>)

=> mod(expr<l>, "MOD", expr<2>)

=> and(expr<l>, "AND", expr<2>)

The Grammar

&SEMANTICS
element' ALL.in_ vr = element_listin_ vr;

element
expr

&SEMANTICS
expr.in_ vr = element.in_ vr;
I expr " .. " expr

&SEMANTICS
expr<l>.in_vr = element.in_vr;
expr<2>.in_ vr = element.in_ vr;

153

A "designator" as defined by Modula-2 is a reference in an expression, perhaps qualified,

and perhaps containing array indexing and pointer indirection. The steps in resolving a qualified

reference are much simpler than a reference in a declaration context, because all declarations in

enclosing scopes are visible, not just those preceding the reference. Thus, after the initial lookup,

successive lookups are done in the ref_env of the preceding binding, which is the last visibility

region local to the scope corresponding to that binding.

Finding the proper entities is only part of the process of determining the access path to a

particular storage location. Including the effects of array indexing and pointer indirection is also

necessary, but not part of the visibility control problem, as defined in this dissertation.

designator
id des_seq

&SEMANTICS

des_seq

des_seq.in_ vr = designator.in_ vr;

des_seq.prev _binding=
statement_lookup (ident_to_name(id),designator.in_vr);

designator. binding= des_seq.binding;

des des_seq
&SEMANTICS

des

des .in_ vr, des_seq<2>.in_ vr = des_seq<l>.in_ vr;

des.prev _binding= des_seq<l>.prev _binding;

des_seq<l>.binding = des_seq<2>.binding;

I --empty
des_seq. binding = des_seq. prev _binding;

"." id
&SEMANTICS

des.binding =

The Grammar

if qualifiable_kind (des.prev_binding.entity.kind) then

statement_lookup (ident_to_name(id),
des.prev _binding. entity .ref_env);

else
error_binding;

§7.6.3

154

endif;
if (des.prev _binding.entity.kind = module_decl) &&

(not des.binding.exported) then
error ("Attempt to reference non-exported declaration of module by qualification")

endif
I "[" expr_list "]"

&SEMANTICS
expr_list.in_ vr = des.in_ vr;
I UAtt

actual_parms
"(" opt_expr_list ")"

&SEMANTICS
opt_expr_list.in_ vr = actual_parms.in_ vr;

opt_expr_list
expr_list

&SEMANTICS
expr_list.in_ vr = opt_expr_list.in_ vr;
I --empty

expr_list
expr+{","}

&SEMANTICS
expr' ALL.in_ vr = expr_list.in_ vr;

block
decl_seq "END"

&SEMANTICS
decl_seq.in_ vr = block. in_ vr;
block. first_ vr = decl_seq.first_ vr;
block.last_ vr = decl_seq.last_ vr;
I decl_seq "BEGIN" stmt_list "END"

&SEMANTICS
decl_seq.in_ vr = block. in_ vr;
block. first_ vr = decl_seq.first_ vr;
stmt_list.in_ vr = block.last_ vr = decl_seq.last_ vr;

decl_seq
declaration+

&SEMANTICS

§7.6.3

declaration'FIRST.in_vr = decl_seq.in_vr;
create_edge (declaration'I.last_ vr, declaration'!+ l.last_ vr,

{known, containing, stmt_rejerable, decl_rejerable}, rf_null);

create_edge (declaration'!+ l.last_ vr, declaration'l.last_ vr,

{known, stmt_rejerable}, rf_null);

The Grammar

....

declaration '!.following_ vr = declaration 'I+ l.first_ vr,

-- add an extra vr at the end of the declaration list so that there

--is always a vr following a module_declaration (for exports)

FOLLOWING_ VR: IGVertex =create_ vertex();

declaration'LAST.following_vr =FOLLOWING_ VR;

create _edge (declaration 'LAST .last_ vr, following_ vr,

{known, containing, stmt_rejerable, decl_rejerable}, rf_null);

create _edge (following_ vr, declaration 'LAST .last_ vr,

{known, stmt_rejerable}, rf_null);

decl_seq.last_ vr = following_ vr;
declaration'ALL.declaring_scope =INCLUDING declaring_scope;

I --empty
&SEMANTICS

DUMMY_ VR: IGVertex = create_vertexO;
decl_seq.first_vr, decl_seq.last_vr =DUMMY_ VR;

-- statements cannot affect the referencing environment of their enclosing

-- context, so no first_ vr or last_ vr is needed.

stmt_list
opt_stmt+{";"}

&SEMANTICS
opt_stmt' ALL.in_ vr = stmt_list.in_ vr;

opt_stmt
stmt

&SEMANTICS
stmtopt_stmt.in_ vr = opt_stmt.in_ vr;
I --empty

stmt
assignment

&SEMANTICS
assignment.in_ vr = stmtin_ vr;
I proc_call

&SEMANTICS
proc_call.in_vr = stmt.in_vr;
I if_stmt

&SEMANTICS
if_stmt.in_ vr = stmt.in_ vr;
I case_stmt

&SEMANTICS
case_stmt.in_ vr = stmt.in_ vr;
I while_stmt

&SEMANTICS
while_stmt.in_vr = stmtin_vr;
I repeat_stmt

The Grammar

155

§7.6.3

156

&SEMANTICS
repeat_stmt.in_ vr = stmt.in_ vr;
I loop_stmt

&SEMANTICS
loop_stmtJn_vr = stmtin_vr;
I for_stmt

&SEMANTICS
for_stmt.in_ vr = stmt.in_ vr;
I with_stmt

&SEMANTICS
with_stmtin_ vr = stmtin_ vr;
I "EXIT"
I "RETURN"
I "RETURN" expr

&SEMANTICS
expr.in_ vr = stmt.in_ vr;

assignment
designator":=" expr

&SEMANTICS
designator .in_ vr, expr.in_ vr = assignment.in_ vr;

proc_call
designator

&SEMANTICS
designator.in_ vr = proc_call.in_ vr;
I designator actual_panns

&SEMANTICS
designator .in_ vr = actual_panns.in_ vr = proc_call.in_ vr;

if_stmt
"IF" expr "THEN" stmt_list elsif_seq opt_else "END"

&SEMANTICS
expr.in_ vr = stmt_list.in_ vr = elsif_seq.in_ vr = opt_else.in_ vr = if_stmt.in_ vr;

elsif_seq
elsif*

&SEMANTICS
elsif' ALL.in_ vr = elsif_seq.in_ vr;

elsif
"ELSIF" expr "THEN" stmt_list

&SEMANTICS
expr.in_ vr = stmt_list.in_ vr = elsif.in_ vr;

§7.6.3
The Grammar

opt_else
"ELSE" stmt_list

&SEMANTICS
stmt_list.in_ vr = opt_else.in_ vr;
I --empty

case_stmt
"CASE" expr "OF' case_list opt_else "END"

&SEMANTICS
expr.in_ vr = case_list.in_ vr = opt_else.in_ vr = case_stmtin_ vr;

case_list
opt_case+ {"I"}

&SEMANTICS
opt_case 'ALL. in_ vr = case_list.in_ vr,

opt_case
[case_label_list ":" stmt_list]

&SEMANTICS
case_label_listin_ vr = stmt_list.in_ vr = opt_case.in_ vr,

while_stmt
"WHILE" expr "DO" stmt_list "END"

&SEMANTICS
expr.in_ vr = stmt_list.in_ vr = while_stmt.in_ vr;

repeat_stmt
"REPEAT" stmt_list "UNTIL" expr

&SEMANTICS
expr.in_ vr = stmt_list.in_ vr = repeat_stmt.in_ vr;

157

A for statement creates a new scope which declares the control variable, and inherits visi­

bility from the last visibility region preceding the for .

for_stmt
"FOR" id ":=" expr "TO" expr opt_by "DO" stmt_list "END"

&SEMANTICS
expr<l>.in_vr= for_stmt.in_vr,
-- create binding of control variable local for for statement

LOCAL_ VR: IGVertex = create_vertexO;

create_edge (for_stmt.in_vr, LOCAL_ VR,
{containing, stmt_referable, decl_referable}, rf_null);

NAME:Name = ident_to_name(id);

define_ vis (LOCAL_ VR,
@BindingRecord(NAME,

@EntityRecord(NAME,

The Grammar §7.6.3

158

opt_by

pervasive=false,
readOnly=false,
declaring_scope = null,
kind = control_ var_decl,
...)),

{known, stmt_referable, decl_referable})

expr<2>.in_ vr = opt_by .in_ vr = stmt_list.in_ vr = LOCAL_ VR;

"BY" const_expr

&SEMANTICS
const_expr.in_ vr =opt_ by .in_ vr;

loop_stmt
"LOOP" stmt_list "END"

&SEMANTICS
stmt_listin_ vr = loop_stmt.in_ vr;

The with statement in Modula-2 creates a new open scope in which all bindings local to

the opened record are directly visible. This is achieved by creating a new scope (a new vertex

inheriting all but known visibility) and adding edges from the last visibility region local to the

record being opened. Inheritance is restricted to the fields local to that record. known visibility

is inherited, so any binding inherited from the opened record will shadow any clashing binding

visible outside the with statement.

with_stmt
"WITH" designator "DO" stmt_list "END"

&SEMANTICS
LOCAL_ VR: IGVertex =create_ vertex();

create_edge (for_stmt.in_ vr, LOCAL_ VR,
{containing, stmt_referable, decl_referable}, rf_null);

-- new scope inherits all visibility of bindings local to

-- named record
create_edge (designator.binding.ref_env, LOCAL_ VR,

{known, stmt_referable, decl_referable},

rf_local_decls(designator.binding));

stmt_listin_vr =LOCAL_ VR;

const_expr
expr

&SEMANTICS
expr.in_ vr = const_expr.in_ vr;

§7.6.3
The Grammar

159

7.7. Modula-2 Description: Summary and Conclusions

The Attribute Grammar Descriptive Method

The experience of writing the inheritance graph description was mixed, giving both positive

and negative results. The description is quite long, and writing it was tedious at times. However,

I feel that both of these problems are primarily due to the attribute grammar-like descriptive

method used. This is a common problem with attribute grammars, because transferring infonna­

tion from one part of the tree to another may involve many intennediate steps, each copying the

infonnation along from one node to the next. Default copy rules are often used to shorten the

description, but they were intentionally avoided in order to avoid confusion. Default copy rules

help eliminate semantic functions that carry little meaning, thus making the important parts of the

description stand out However, they make the absence of an important semantic function less

obvious - an attribute grammar evaluator generator will happily fill in a copy rule in its place,

which can result in a hard-to-detect bug.

Using default copy rules would shorten the description significantly. Many of the copy

rules are needed just to propagate the proper visibility region for references down through expres­

sions. However, the description would still be quite long. Part of this is still be due to the attri­

bute grammar fonnalism. Another method of shortening the description and making it more

readable would be the use of Ganzinger' s technique of parameterizing compiler modules by split­

ting a language description into several sub-grammars [Ganzinger 1981]. Each sub-grammar

contains only the semantics and syntax for a part of the language (e.g., visibility control and

related parts of the language), and a bijection exists between each sub-grammar and the full

grammar. Most copy rules can be eliminated from the description because productions irrelevant

to the purpose of the sub-grammar can be abstracted out. Also, the semantic functions for each

sub-grammar are concerned only with one area of language semantics, avoiding the problem of

intennixing different parts of the semantics of a language in each production of an attribute gram­

mar.

Another approach to modularizing attribute grammars is described by Watt [Watt 1985].

Each part of the semantics of a language is described using a separate attribute grammar, but

unlike Ganzinger's approach, each partition operates on the same attribute grammar. Also. the

attribute grammar is based on the abstract syntax of the language instead of the concrete syntax.

A special propagate operator is used to eliminate the many copy rules otherwise required by the

use of the complete grammar.

Some descriptive method other than attribute grammars might be better for defining the

translation from programs to inheritance graphs. A graph-based fonnalism would be a good can­

didate.

Complexity of the Description

The inheritance graph description for Modula-2 is more complex than the descriptions of

individual visibility constructs given in Chapter 6. Four visibility classes -were required for the

description. This is mostly because the visibility control rules for Modula-2's language con­

structs are more complex than for the other contructs considered in the examples43• The first

problem is the use of different visibility rules depending on whether a reference occurs in a state­

ment or in a declaration. This necessitates the use of two separate visibility classes,

stmt_referable and decl_referable, for "nonnal" references. This is a good example of how not

to let implementation considerations affect language design.

43 An exception is the Ada use statement

The Grammar §7.6.3

160

The second problem arises from the interaction of declaration-before-use and nested

qualified references. Nested qualified references are very useful, and disallowing them while

allowing other qualified references would tend to destroy the orthogonality of a language design.

When nested qualified references are mixed with a declaration-before-use requirement, however,

the semantics of the reference become much more complex, as previously illustrated. and in the

Modula-2 description in this chapter. The problems of declaration-before-use will be discussed

in more depth in Chapter 9.

Most of the description of the visibility control rules was not very difficult. Even features

which are traditionally problematic, such as distinguishing properly between a (legal or illegal)

forward reference and a reference to a binding in an enclosing scope, were easy to describe with

the use of multiple visibility types. Many compilers of both Pascal and Modula-2 do not handle

this correctly.

The only difficult feature to describe was nested qualified references, which are unarguably

complex, so any description of them is likely to be complex. The greatest problem in writing the

description was the tedium of going from a basic design of the inheritance graph for Modula-2 to

the complete description. This was mostly due to the length of the attribute grammar description,

as discussed in the previous section.

Ambiguities in Modula-2

Describing the inheritance graph for Modula-2 was very useful in aiding understanding of

its visibility control rules, and in discovering gaps in the definition of the rules [Wirth 1982].

The process of developing an appropriate schema for each construct forced a clear understanding

of the construct, while permitting a local description of the construct Most of the ambiguities

described in §7.1 in this chapter were discovered in this process.

§7.7
Complexity of the Description

....

...

161

CHAPTERS

Evaluating the Inheritance Graph

Chapter 6 defined the meaning of the inheritance graph in terms of a least fixed point

assignment to a graph, where the value at each vertex was the visible set for that vertex. Another

view considers the inheritance graph as a constraint system, with the restriction,

definition/redefinition, and clash resolution functions comprising the constraints.

All that is required is enough information to evaluate the visible primitive at any vertex, and

to check for errors defined in the Clash Table. Computing the visible set for every vertex makes

visible very simple, but it is possible to place more of the burden of definition on visible , as

described in §5.3, where the What Visible and the Where Visible approaches to defining the visi­

bility control rules of languages are discussed. In the Inheritance Graph Model of visibility con­

trol, this distinction has been abstracted out, but the distinction is still useful at the implementa­

tion level.

None of the definitions of the meaning of an inheritance graph provide us with a satisfactory

method of finding the least fixed point assignment to the graph, or discovering if there is no fixed

point assignment (an erroneous inheritance graph) or more than one fixed point, of which none is

least (an ambiguous inheritance graph). This chapter explores several approaches to assuring that

visible can be computed. The chapter presents methods for finding a least fixed point assignment,

and describes sufficient conditions on an inheritance graph description to assure that any fixed

point found is the least fixed point. As defined, an inheritance graph for which no valid assign­

ment exists usually represents an incorrect program, although an inheritance graph for which the

assignment oscillates usually indicates a poorly defined inheritance graph description.

An evaluation method based on the first model of visibility control presented, the Search

Model, is presented first. More powerful and general techniques will follow.

The set of all bindings defined in the inheritance graph is available, and is denoted by Bind­

ings. This set is easily maintained as a side-effect of define_vis and redefine_vis calls.

8.1. Search Model Evaluation of the Inheritance Graph

The Search Model has been used both to describe (as in [Wirth 1982]) and to implement

(as in [Blower 1984]) the visibility control rules of languages. It is almost certainly the mental

model used by some programmers to understand the use and availability of names in their pro­

grams. It seems obligatory to consider use of the Search Model as an approach to defining the

meaning of visible .

The basics of the Search Model are as defined in Chapter 2. The search is initiated by a call

to visible, with a vertex, a name, and a visibility class as arguments. A reference is resolved by

searching from the point of the reference (the vertex) to find a definition matching the reference.

In the inheritance graph, the search proceeds in the direction opposite that of the inheritance

edges, following edges of the visibility class given in the call to visible. The restriction function

on each edge traversed is used to augment the search predicate for the reference, as described in

§5.2. The search terminates (for some languages) when a define_vis or redefine_vis operation is

encountered that defines a matching binding with the visibility class specified in the call to visi­

ble.

162

Several characteristics of the inheritance graph complicate the search:

(1) The inheritance graph may contain cycles. The search must avoid looping, performing a

depth-first or breadth-first search (for example). Usually, the search strategy doesn't matter,

although in the old version of Flavors [Weinreb and Moon 1981), the search order is

important. Due to the nature of inheritance, there is no advantage to following cycles.

(2) Branches may occur in the search. If overloading is allowed, all visible bindings of the

referenced name must be found so that the overloading resolution algorithm may be

applied. If no overloading is allowed, searching of all branches may be necessary to find

any clashing bindings that may signify an error.

(3) Cash resolution must occur at each node. Suppose that a binding/visibility-class pair

<b, vci >is defined at vertex vb_def• is referenced at vbJef• and is visible (inherited) at

vb Jef along a path p 44 from vb _clef to vb Jef in the absence of any clash resolution. That is,

the above-described search finds the definition of b , and b satisfies the search predicate

accumulated by the search. According to the definition of the inheritance graph, if another

pair <b 1 , vci > is inherited at some vertex vb' on path p and clash (b ,b '),then clash resolu­

tion must take place, which may shadow <b , vc i > or <b 1 , vc i > or signal an error.

(4) The procedure associated with the creation of dynamic definitions (§6.6.9) can depend on

the set of all bindings visible at one or more vertices. One approach to computing this set

of bindings is to perform a search lookup for every binding in Bindings at each vertex the

procedure depends on, but this computation requires 0 (I Bindings I) searches for every ver­

tex that a procedure creating dynamic definitions depends on. Alternatively, a search could

be implemented that finds all inherited bindings, maintaining the search predicate during

the search, and adding each binding satisfying the search predicate for which a define_vis or

redefine_vis operation is encountered. The length of this search is the same as a search for a

single binding, assuming all branches must always be searched. The issues of clash resolu­

tion and error detection described in (3) must be resolved for this search also.

The clash resolution and error detection problems described in (3) are the most difficult ones.

Clash Resolution with the Search Model

For a call visible (v :IGVertex, name :Name, vci :VisibilityType), clash resolution can be

handled by finding all binding/visibility-class pairs <b, vci > on the search path (subject to the

search predicate) whether or not i=j. The search process describes a search tree through the

inheritance graph. After visiting all children of a vertex v 1 in this tree, the search process has col­

lected the set vsv' ,II(1J'M of all binding/visibility-class pairs inherited by v 1 subject to the search

predicate and matching name. The clash resolution process is invoked on the set vsv',fiiJIM, possi­

bly resulting in errors, possibly shadowing some elements of vsv' _ resulting in a new set of

binding/visibility-class pairs which are inherited at the parent of v 1 'in the search tree.

In an inheritance graph with no restrictions on the clash table, the result computed by this

bottom-up clash resolution process depends on the fact that cycles are eliminated by breaking the

search when a cycle is detected (when a vertex on the path from the root to the current vertex is

encountered again). If the rule required instead that each cycle be traversed once, then a different

result could be computed. In the example in §6.8 (Figure 6.19), this is true: for a reference at v2,

the search order v0,v 2,v 3,v 1 results in a clash in the bottom-up computation at v2, resulting in nei­

ther b 1 nor b 2 being visible at v2. The search order v0,v 2,v 3,v 2,v 1 results in a clash in the

bottom-up computation at v3, shadowing b 1 and b 2 at v3. At the next (and last) step in the

bottom-up traversal (at vv b 1 alone is visible and is the result of the search. This ambiguity

""There may be another path from v•-•t, but it can be considered separately.

§8.1 Search Model Evaluation of the Inheritance Graph

163

resulting from the precise definition of the search tree is the product of an inherently ambiguous

inheritance graph.

If there are no dynamic definitions, and the inheritance graph is ordered (§6.8.1), then the

search and clash resolution process can be proven correct and unambiguous by induction on the

search tree: i.e., it produces the correct set of binding/visibility-class pairs at vertex v. The

traversal of cycles cannot affect the result of the search. A full proof is omitted, but a sketch of

the important points follows:

• All paths of inheritance are represented in the search tree, except those containing cycles.

• Traversing a cycle cannot affect the result of a search, because any binding/visibility-class pair

found by traversing a cycle must by necessity have been found by a shorter path in the search

tree. The order in which bindings are found does not matter, because shadowing is governed

by a strict order- the clashing binding/visibility-class pair with the lowest-numbered visibility

class will not be shadowed regardless of where on the search path it is discovered.

• The induction involves computing the visible bindings of the referenced name at the leaves,

and then for successive levels higher in the search tree.

Error Handling with the Search Model

Detecting all errors is more difficult An error resulting from a clash table entry is indepen­

dent of any references. This is one of the greatest weaknesses of the Search Model. According to

the definition of the inheritance graph, a pair of clashing binding/visibility-class pairs visible at a

vertex must be subjected to the clash resolution process specified by the clash table, with one pos­

sible result being an error message. Tile brute force approach is to find all bindings visible at

each vertex by the above described search, followed by clash resolution to discover errors. This

is clearly unacceptably inefficient. Some optimizations of this process are possible, but I have

been unable to develop an acceptable method for finding all errors in an otherwise unrestricted

ordered inheritance graph using the Search Model.

If some restrictions are placed on how the inheritance graph designer writes the description

and checks for errors, efficient error checking is possible. illegal clashing bindings are the pri­

mary source of errors. Suppose <b, vci > is defined at vertex v. If the description is written such

that all bindings <b ', vc1 >satisfying:

(1) clash (b, b ')=true, and

(2) The result of clash resolution of <b, vci >and <b', v_c1 >is a clashing binding error,

are visible at v , then the check for illegal clashing bindings can be attached to v or to the

definition of b itself, eliminating the error entry from the clash table. For the sequence of

declarations local to a scope, as in Pascal and Modula-2, the condition for this transformation is

easily satisfied.

However, the inheritance graph resulting from the presence of import and export statements

in Modula-2, as described in Chapter 7, does not satisfy this condition. Two bindings b 1 and b 2

of the same name declared in different modules and explicitly imported into the same module M

violate the condition: both b 1 and b2 are known in M, which is an error, but neither b 1 nor b 2 is

known at the definition vertex of the other (in the absence of other import statements). This and

other similar situations can handled by attaching a check for known clashing bindings to the ver­

tex resulting from the import statement. This case is not difficult, but more general cases are

difficult to handle. If a scope-opening style import makes the bindings from the imported module

known in the importing module, then such a check is necessary for all of the bindings inherited

due to the import, but the set of bindings made visible by the import is not easily determined at

the point of the import statement. This situation arises at any vertex that is at the confluence of

two or more inheritance edges with visibility classes that can result in clashing-binding errors. In

c.Jash Resolution with the Search Model §8.1

164

the worst case, it is necessary to locate all bindings visible with one of the incoming visibility
classes at the vertex.

The only other kind of error in the clash table I have found reason to use is a "description
error''. The description error entries in the clash table are intended as redundant checks, and if
the inheritance graph description is as intended, will never be invoked. If one is willing to elim­
inate these redundant checks, and write the inheritance graph description such that checks for ille­
gal clashing declarations can be attached to vertices where definitions occur, the error-checking
function of the clash table, and thus the problem of checking for errors at every vertex, can be
eliminated.

Handling of Priorities Using the Search Model

The possible extension to the Inheritance Graph Model allowing prioritized clash resolution
can be handled easily in the Search Model. When doing bottom-up clash resolution, if two clash­
ing bindings are inherited, and if the clash table entry for the two bindings and their associated
visibility classes is prioritize, then the binding inherited via the edge with the lowest numbered
priority value is selected (if there is only one such binding), and all other clashing bindings are
shadowed.

Summary of Search Model Evaluation Method

For fairly simple inheritance graphs, the Search Model can be used without much difficulty.
Error-detection is the hardest problem, with only a very inefficient general solution (known to us
at this point, at least). By placing most of the burden of error detection on the inheritance graph
designer, requiring placement of error checks at appropriate vertices, this inefficiency can be
avoided for a large class of languages. For some language features, error checking seems to be
unavoidably inefficient using the Search Model.

The problem of error detection seems to be an example of an inherent weakness of the
Search Model: handling some visibility constructs requires information from a large area of a
program. Collecting this information separately for each vertex where it is needed is inevitably
inefficient. The Visible Set Model avoids this problem, because the information at each vertex is
defined in terms of information at adjacent vertices, and information can be collected for the
entire graph at once. The Search Model is useful in cases where information flow is simpler. Its
advantages are its simplicity and ease of understanding (for simple visibility rules) and its low
storage requirements.

8.2. Evaluation Using Data Flow Analysis

Computing the set of visible binding/visibility-class pairs at each vertex in an ordered inher­
itance graph turns out to map very easily to a standard data flow problem: that of finding reaching
definitions [Hecht 1977]. This is a set union problem for which bit vectors can be used. A bit
vector in this problem represents a subset of Bindings. Standard data flow analysis _(DFA) tech­
niques can be used to find an assignment, and DFA results can be used to guarantee a least fixed­
point assignment

8.2.1. Formulation of Data Flow Problem

An ordered inheritance graph /G can be ''partitioned'' into separate graphs /G 1, · • • , IG, ,
where n is the number of visibility classes used in the inheritance graph description, and /Gi has
only visibility class vci edges. Each /Gj has the same vertex set as /G. Each /Gi forms a
separate data flow problem to be solved, and can depend on the solutions to IG;, l~i <j. The
uniqueness results for DF A do not hold if the inheritance graph is not ordered, because the basis
for the flow problem (Kll..L and DEF) is then not constant. This problem will be described more

§8.1 Error Handling with the Search Model

....

165

fonnally later.

The mapping of a graph /G i into a graph suitable for DF A 45 is as follows:

(1) Each vertex in /Gi is split into three vertices, corresponding to the three stages of visibility

defined within an inheritance graph vertex (as explained in §6.2.1): inherited visibility,

intennediate visibility, and net visibility. The three vertices correspond to the three rectan­

gles on the left side of Figure 8.1.

(2) Each edge of this graph is labeled with the function(s) affecting the inheritance of visibility

via that edge. An edge corresponding to a nonnal inheritance edge in the inheritance graph

is labeled with the restriction function for that edge. The edge connecting the "inherited

visibility" and "intennediate visibility" vertices is labeled with the define_vis and

redefine_vis calls associated with the original inheritance graph vertex. Finally, the edge

connecting the "intennediate visibility" and "net visibility" vertices is labeled with the

clash resolution function, clash-resolve.

(3) The resulting graph is transfonned into the corresponding edge graph [Bondy and

Murty 1976]. In simple, imprecise tenns, there is a vertex in the edge graph corresponding

to each edge in the original graph, and there is an edge in the edge graph corresponding to

each pair of edges adjacentto the same vertex in the original graph. More precisely, there is

a vertex vi in the edge graph corresponding to each edge ei in the original graph, and two

vertices v1 and v2 in the edge graph are connected by a directed edge (v 1,v2,) if and only if

0 0

clash resolution

0

Figure 8.1: Inheritance Graph to Flow Graph Transformation

45 Conventional DFA. Some algorithms, such as Graham-Wegman path compression [Graham and

Wegman 1976; Wegman 1981] operate on edges. Then. the transformation is different (and simpler).

Formulation of Data Flow Problem §8.2.1

166

edges e 1 and e2 were adjacent to the same vertex v in the original graph, with e 1 going into

v , and e 2 going out of v . The transformation is illustrated in Figure 8.1.

(4) This graph will not be connected if /Gi is not connected, and thus is not a flow graph. This

happens quite often. The /G know,. subgraph for a Pascal program consists of many com­

ponents - one component for each declaration scope. A dummy start vertex v s can be

created with an edge or edges to each component of the graph46
• Vertices from each com­

ponent must be selected for these edges such that each vertex in each component is reach­

able from v s o The resulting flow graph is called FG i o

Kll..L and DEF for each vertex in FG i must be defined. Kills are generated by restriction func­

tions, redefine_vis calls, and shadow entries in the clash table. Defs are generated by define_vis

and redefine_ vis calls. There are three kinds of vertices in FG i :

• Vertices corresponding to inheritance edges between vertices in /G i. Each such vertex has

only one incoming edge and one outgoing edge.

• Vertices corresponding to the definition/redefinition step in an inheritance graph vertex. Each

such vertex may have many incoming edges, but only one outgoing edge.

• Vertices corresponding to the clash-resolution step in an inheritance graph vertex. Each such

vertex may have only one incoming edge, but many outgoing edges.

The following sections define KILL and DEF for each of these vertices.

Vertices Corresponding to Inheritance Edges

The restriction function for edge ei in /Gi is rfi. A restriction function restricts inheritance along

an edge. The corresponding vertex in FGi is vi.

rfi: Binding ~ Boolean

Kll..L(vi) = {be Bindings I rfi(b)=false}

DEF(vj) =: 0

Definition/Redefinition Vertices

Kll..L (vi)= {bold I 3 redefine _vis (vi, bold, b)}

DEF (vi)= { b I 3 define _vis (vi, b)v redefine _vis (v;, bold, b)}

Notes:

If 3 define _vis (x, bi), redefine _vis (y, b1, bt) such that x=y A(b;=b1 v bJ=bt) (i.e., opera­

tions at the same node kill and def the same binding), then the meaning depends on order of

operations. This is not allowed, because it makes DF A more difficult in some cases, as will be

described later. In any event, it doesn't seem to make sense to both def and kill a binding at one

node.

46 Some formulations of DF A also require a conunon exit vertex. An alternative to making the entire graph a

flow graph is to do DF A on each component separately, but we must still ensure that each component is a flow graph.

§8.2.1 Formulation of Data Flow Problem

167

Clash Resolution Vertices

The precondition to clash (b; ,bj) is b; .name=bj .name. The precondition to

clash _resolve (<b;, vc" >, <bj, vc1 >) is clash (b; ,bj).

DEF (v;, vck) = 0

KILL(v;,vc1)={be Bindings l3b 1
E vis_top~c(v;), lSk<l,

s.t. clash _resolve (<b, vcj >, <b 1 , vc; >)=shadow b }

If shadowing between bindings with the same visibility class is allowed (the inheritance

graph definition is not ordered), the definition of KILL is:

KILL (v;, vc1) = { b e Bindings I 3b 1 e vis _top~c(vi), lSk~l,

s.t. clash _resolve (<b, vcj >, <b 1 , vci >)=shadow b }

In this case, ambiguous inheritance graph definitions are very easy to create. The fixed

point found (if any) depends on the order of propagation, because KILL depends on vis_top.

If priorities are allowed, then the definition of KILL is:

KILL(Vj, vc1)::

{ <b,p>e vc" I (3<b 1 ,p 1>E vis_top~c(v;),lSk~l.

s.t. clash _resolve (<b, vcj >, <b 1 , vc; >)=shadow b)

v (3<b 1 , p 1> e vis _topr (v;),

s.t. clash_resolve(<b, vcj >, <b 1
, vci >)=prioritize "P 1>p)}

Data Flow Equations

Inheritance-edge vertices v;: labeled with r/;

vis _top (v;) = vis _bot (y) where y e P RED (vi), and y is unique

vis _bot (vi)= vis _top (vi)- KILL (v;)

Definition/redefinition vertices vi: labeled with one or more de.fine_vis or rede.fine_vis operations.

vis_top(v;)= u vis_bot(vj)
vie PRED(v;)

vis _bot (v;) =(vis _top (v;)- KILL (v;)) u DEF (v;)

Clash-resolution vertices v;:

Definition/Redefinition Vertices §8.2.1

168

vis _top (vi) = vis _bot (y) where y e P RED (vi), and y is unique

VIS (v, vci) is defined to be the set of binding/visibility-class pairs <b 1
, vci >, i <j, visible at v.

VIS (v , vc i) = vis _bot (v) for IG i, given the preceding data flow equations.

8.2.2. Computation of KILL and DEF for Each Node

Definition/redefinition functions operate on specific bindings, so the DEF bit vectors are

easy to compute.

However, straightforward computation of bit vectors for KILL would be very inefficient,

requiring 0 (I Bindings I xr) steps, where r is the number of nodes in the flow graph. This

involves applying the clash resolution function and every restriction function to every binding

b e Bindings to compute the bit vector corresponding to that function. This section describes

more efficient ways of computing KILL for clash resolution and restriction functions.

Errors and the effects of other function calls in the clash table at v may depend on

VIS (v, vcj), so they must be done after DFA is completed.

Clash Resolution

Oash resolution must be performed at every clash resolution vertex in the flow graph. A

different KILL bit vector must be computed for every such vertex and every visibility class,

because the binding/visibility-class pairs <b, vcj >shadowed at vertex v because of clash resolu­

tion depend on VIS (v, vci), i <j. A brute-force approach would do pairwise tests of all bindings

b 1 e Bindings and b 2 e VIS (v, vci) for shadowing, resulting in 0 (I Bindings 12xn) complex­

ity to compute KILL for all clash resolution vertices, where n is the number of vertices in /G ,

However, the restriction that only bindings with the same name clash can be used to reduce

the expected complexity significantly. Of course, if all bindings have the same name, this doesn't

help. Usually, however, relatively few names are used multiple times in a program. It is easy to

track all bindings with the same name by implementing bindings with an abstract data type, and

keeping track of all bindings created with the same name.

The following auxiliary functions are defined to track the auxiliary information needed to

compute KILL efficiently for clash resolution:

same _name _set (n :Name) = { b e Bindings I b.name=n }

PCB =potentially _clashing _bindings = { b e Bindings I size(same _name _set (b.name))> 1 }

NCB =non _clashing _bindings =Bindings -potentially _clashing _bindings

The bindings in PCB can be grouped together at the beginning of the bit-vector representing

Bindings. Also, bindings b ,b 1 such that b ,b 1 e same _name _set(b.name) can be grouped

together. For small groups of bindings with the same name, their bits will be together in the same

byte or word, which can make later bit set operations asymptotically more efficient. More gen­

erally, each set can be represented as a (offset, bit _vector, length) triple, where offset is an

offset into the Bindings bit vector, and bit_vector has length length (in bytes or words, depend­

ing on the grarmlarity of bit-set operations).

§8.2.1 Data Flow Equations

L

169

clash _set (b) = { b' e same _name _set (b.name) I clash (b ,b ')=true}

The value clash _set for a binding will also often be representable in a single byte or word.

Given a set of bindings bs, the set of bindings that clash with bindings in bs can be computed by

or'ing together clash _set (b) for all b e bs. clash _set and the other auxiliary functions and sets

can be computed once, before doing the DF A, because the set of bindings is fixed for a given pro­

gram. Cyclical inheritance graph descriptions can add new edges, but not new bindings.

Dynamic definitions can add new definitions of existing bindings. In an incremental environ­

ment, it must be possible to update these sets, which requires somewhat more sophisticated set

operations.

Figure 8.2 contains an algorithm to compute KILL for all visibility classes and all vertices

of inheritance graph /G .

The step at L1 requires !potentially _clashing _bindings I search steps to find the bindings

in pcb, plus ipcb I union operations (often restricted to a single word or byte) to compute

KILL(v, vc1). The step at L2 requires !potentially _clashing _bindings I search steps to find the

bindings in pcb , plus n (n -1)/2 calls on f for each clash _set partition of

potentially _clashing _bindings, where n is the size of the clash_set partition. Each call on f

may result in single-bit additions to Kll..L (v, vc1).

Inheritance Restriction Functions

A restriction function rf kills bindings that fail to satisfy a predicate specified by rf .
Unlike KILL for clash resolution, which tends to be different for every vertex, there are usually

only a few distinct restriction functions in an inheritance graph description, as witnessed by the

Modula-2 example. The restriction function rf _closed_scope in the Modula-2 example is the

rocedure compute_clash_kill
for j ~ 1 to the number of visibility classes

'<:/ v in /G such that v is a clash-resolution vertex
DEF (v, vc1) ~ 0
KILL(v, VCj) ~ 0
for i ~ 1 to U -1)

Clash Resolution

if clash-table(vci, vc1)=shadow b 2 then

Let pcb = { b e VIS (v, vci) I b e potentially _clashing _bindings }

Preceding step is a zero-time operation, since pcb is a

contiguous group in VIS (v, vci)
L1: KILL(v, vcj) ~ KILL(y, vcj)U(U clash_set(b))

bE pcb

elseif clash _table [vc i , vc i] is a function call f (b 1 , b 2) then

Let pcb = { b e VIS (v, vci) I b e potentially _clashing _bindings }

L2: '<:/ b 1 epcb,b 2 e clash_set(b 1 .name), b 1 * b2

actions ~ f(bl,bz)
if shadow b2 e actions then
I KILL(v, vc1) ~ KILL(v, vc1)+b2
Discard all other actions (including error messages)

else error action: handled after computation of VIS (v, vc1), for all vertices,

or empty clash table entry.

Figure 8.2: Compute KILL for Clash Resolution Vertices

§8.2.2

170

same for all edges reflecting the default inheritance into a module. K.ILLrt _closed_scope can be

computed once for an inheritance graph, and attached to every inheritance edge labeled with

rf _closed_scope. Computing Kll..Lrt _closed_scope requires iterating over Bindings, testing the

pervasive attribute of each binding.

Some restriction functions depend on the instance of the production that created the edge,

such as rf _local_decls and rf _name _list in the Modula-2 description, and thus a separate KILL

vector must be computed for each edge labeled with one of these restriction functions. In the

Modula-2 description, these are the functions that are computed as closures dependent on some

program tree.

KILL for functions computed by rf _name _list depends only on testing equality of names

of bindings. The computation can be optimized easily to kill only bindings with names from the

list in the restriction function. The easiest way to do this would be to provide rf _name _list as a

primitive, with KILL for a closure created with rf _name _list defined to be contain exactly those

bindings with names in the name _list argument to rf _name _list.

Functions such as those computed by rf _local_decls depend on an attribute of a binding

other than the name, and thus require testing all bindings.

8.2.3. Conventional Data Flow and the Inheritance Flow Graph

There are several differences between the graphs derived from inheritance graphs and pro­

gram flow graphs, resulting from the fundamentally different language concepts they represent.

The first difference is that inheritance graphs may consist of separate components, as discussed

earlier.

The second difference is that a graph corresponding in structure to a deeply nested while­

loop [Hecht 1977, p. 96] is common in inheritance flow graphs. This subgraph will occur fre­

quently in any inheritance graph with edges of a single visibility class flowing in both directions

in the graph. This bidirectional flow commonly occurs in languages like Pascal, which has

declaration-before-use and requires that bindings be shadowed at the beginning of each scope.

The inheritance graph subgraph corresponding to a list of declarations in Pascal is shown on the

left side of Figure 8.3, with the corresponding flow graph shown on the right side. The number of

nodes in the subgraph corresponds to the number of declarations local to a scope, which can be

quite large.

This presence of this subgraph makes using certain DF A techniques undesirable because

this subgraph tends to bring out their worst-case behavior. Interval analysis [Allen and

Cocke 1976] requires one step in the derived sequence for every vertex in such a graph (less

one). The complexity of interval analysis is 0 (kr) bit-vector steps, for r much greater than k

[Hecht 1977, p. 158], where r is the number of edges in the flow graph and k is the length of the

derived sequence. Since r oc k in the nested-while subgraph, the complexity of interval analysis

in this situation is 0 (r2).

Iterative algorithms will also tend to show worst-case behavior on this subgraph. For exam­

ple, the standard round-robin algorithm requires d+1 iterations, where d is the number of back

arcs in a path from a definition to a use. d for the while-loop subgraph is the number of nodes in

the graph less one, resulting in a net complexity of 0 (dr) bit-vector steps [Hecht 1977, p. 142],

or (r 2), since r ocd for this subgraph.

The third difference is the likely presence of irreducible flow graphs. The inheritance graph

in Figure 8.4 illustrates how adjacent imports can produce an irreducible graph (the expansion to

a flow graph is omitted, but the expansion preserves irreducibility).

Thus, either a more efficient algorithm that handles irreducible graphs must be found, or

node-splitting must be used.

§8.2.2 Inheritance Restriction Functions

\-

171

CD def/redef node

Q9 clash resolution node

e restriction func. node

Figure 8.3: Nested While-Loop Graph

import · · ·

k

import · · ·

Figure 8.4: Irreducible Inheritance Graph

8.2.4. Graham-Wegman Global DFA

Graham and Wegman [Graham and Wegman 1976; Wegman 1981] developed an algo­

rithm based on path compression which has a worst-case bound of 0 (e log e) function operations

Conventional Data Flow and the Inheritance Flow Graph §8.2.3

172

on a graph with e edges. They give another complexity analysis that demonstrates that the

number of function operations is proportional to e plus the number of non-structured exits from

loops, resulting in linear performance for programs with only single-entry, single-exit control

structures. The nested-while subgraph corresponds to nested single-entry, single-exit while

loops, and thus can be analyzed using the Graham-Wegman algorithm in linear time. Inheritance

graphs can contain subgraphs corresponding to multiple-exit control structures, but they are

uncommon, and usually only affect the complexity of the DFA algorithm in an additive, not mul­

tiplicative manner.

In [Wegman 1981], Wegman describes an extension of the algorithm to handle irreducible

graphs using node-splitting. This increases the worst-case bound to n3 for a graph with n nodes,

but analysis of the most common examples of irreducible subgraphs in inheritance graphs sug­

gests that only a small added cost is due to each occurrence of the irreducible subgraph.

In Graharn-Wegman DFA (GWDFA), the functions that affect the flow of information

through the graph are attached to edges, so step (2) (in §8.2.1) in the conversion of IG; into the

corresponding flow graph FG i is omitted. The nodes of FG i correspond to the three stages of an

inheritance graph venex. The edges of FG i correspond to inheritance edges,

definitions/redefinitions, and the clash resolution process.

The fundamental concept of GWDF A is the stepwise reduction of the flow graph to a single

node using three transformations: T 1
1

, T 2', and T 3
1

• Each edge e is labeled with a function

f 11 e F representing the effect of traversing e on the information of interest. Each transforma­

tion T; 1 (G) produces a graph G 1 with a labeling F 1 such that the f 11 for any e deleted in the

transformation is represented by combining the f 's for two or more edges in G into a single f I

on an edge in G 1
• This will be clarified by means of a complete example.

Suitability of GWDF A

Suppose that X is the finite set of facts under consideration. In an inheritance graph parti­

tion /Gi, X is the set of all bindings, Bindings. GWDFA requires that the set F of functions be

fast. Quoting from Graham and Wegman [Graham and Wegman 1976, p. 175], a function/is

fast if "i/ X 1 !;;; X, f (f (X 1)) ~!(X 1) u X 1
47. A set of functions F is an information propagation

space if (1) F is closed under composition and intersection, and (2) F is monotonic. A set of

functions F is fast if (1) F is an information propagation space, and (2) all f e F are fast func­

tions.

The set of functions F1G; composed of inheritance restnct10n functions,

definition/redefinition functions, and clash resolution functions for IG; (in an ordered inheritance

graph) is fast:

(1) F1G; is clearly closed under intersection and composition.

(2) F1G; is monotonic, because each f e FIG; simply adds or deletes bindings, or both. If

KILL for clash resolution for visibility class vci is allowed to depend on IG_;, then FIG;

may not be monotonic. Thus, clash resolution for IG; is allowed to depend only on previ­

ous partitions of IG .

(3) All f e FIG; are fast. For all f e F 1G; , X; e X, f (j (X;)) = f (X;), so the requirement for

f to be fast reduces to: "i/ X 1 eX ,f (X 1) ~!(X 1) uX 1, which is a tautology.

47 Note that we substitute u for n and reverse the direction of the inequality, because the "reaching

definitions" problem is a set-union problem, and Graham and Wegman's exposition assumed a set-intersection prob­

lem.

§8.2.4 Graham-Wegman Global DFA

173

Therefore, IP1a, = (/G;, Fw,, Bindings, M), where M is a mapping from nodes to edges, is an

information propagation problem, according to Graham and Wegman's definition, and is amen­

able to application of GWDF A. The goal is the computation of VIS for each node in the graph

(corresponding to vis_bot in the earlier formulation as a conventional DFA problem).

GWDFA finds an acceptable assignment AA, which is a safe assignment, and is at least as

good as a maximal (minimal in the case of set-union problems) fixed point. For the problem of

computing VIS , this is the least fixed point.

Composition and Union of Functions

KILL and DEF corresponding to each function are as defined in §8.2.1, although they are

associated with edges instead of vertices. The function associated with edge e=(u ,v) is

f,_ (VIS (u)) = VIS (v) = (VIS (u)- KILL(e)) u DEF(e)). The separation of each f e Fw, into a

KILL part and a DEF part makes composition and union of functions easy. More precisely, sup­

pose e 1=(u,v)and e 2 =(v,w),and 'VY~X.

f ,_
1
(Y) = (Y- KILL (e 1)) u DEF (e 1)

f ,_
2
(Y)=(Y-KILL(e2))u DEF(e2)

then (derivation omitted, see [Graham and Wegman 1976])

f ,_
2
(/ ,_

1
(Y))=(Y-((KILL(e 1)-DEF(e2))U KILL(e2)))U(DEF(e 1)-KILL(e2))u DEF(e2)

and

DEF (e 2 o e 1) = (DEF (e 1)- KILL(e 2)) U DEF (e2)

KILL(e 2o e 1) = (KILL (e 1)- DEF (e 2)) U KILL (e 2)

KILL(e) and DEF(e) are required to be disjoint for each edge e in /G;, in order that the composi­

tion of KILL and DEF can be defined as shown.

For union of functions48, we have:

f ,_
1
(Y)uf ,_

2
(Y) = (Y-(KI~(e l)(IKILL(e2)))u(DEF(e l)U DEF(e2))

D~F(e 2 U et)= DEF(e l)u DEF(e2)

·KILL(e 2 u e 1)= KILL(e1)(1KILL(e2)

Reduction and Expansion of the Graph

Given these equations, it is possible to define the computations that must accompany each

transformation. The reduction transformations and associated computations are shown in Figure

8.5. Edge numberings are kept consistent across transformations where possible. In applying a

transformation T;' to a graph G , producing G' , edge e in G is labeled with f ,_ , while edge e in

G' is labeled with f ,_'. The canonical definition of f' for an affected edge is given (in terms of

unions and compositions off's), along with the value of KILL and DEF for the affected edge.

48 This differs from Graham and Wegman's presentation. because they present a set-intersection problem.

Suitability of GWDF A §8.2.4

174

1/
''\,

T I
. 3

.. ~;

e2 --+

e~//

dJ"
l es
-~

I 1
(e 1) =I (e 1) u (/ (e 2)of (e 1))

f 1
(e 4) =I (e 3) u (/ (e 2)of (e 1))

y deleted if there exists now :t z such that e s =(y ,w) e E

No computation needed

Figure 8.5: Reduction Computations for Graham-Wegman DFA

The derivations of Kll..L and DEF are omitted, but consist of substituting the definitions of com­

position and union of Kll..L and DEF given above into the definition of f 1
, and simplifying.

T 1
1 removes a self-loop from a node v with a unique predecessor (other than itself). T 2

1

collapses the path x ,y ,z . For a nonexistent edge e, Kll..L (e) = 1 =Bindings, and

DEF (e)= 0 = 0, so that the absence of e 3 does not affect the computation in T 2
1

• If e 3 is absent

in an actual graph reduction, the corresponding union or intersection operation is omitted. If y

§8.2.4 Reduction and Expansion of the Graph

!~

175

has no successors other than z, then y is deleted by the transfonnation. T 3' simply deletes nodes

whose only predecessor is the start node of the flow graph.

T{

T{b

No computation needed

--+
e3 \.

No computation needed

\\

--+
/

e3 \\

..

VIS (y)=f e
1
(VIS (x)) = (VIS (x)-KILL (e 1)) U DEF (e 1)

JK~node

d6~
VIS (x)=f e

1
(VIS (s)) =(VIS (s)-KILL(el))U DEF(e 1)

Figure 8.6: Expansion Computations for Graham-Wegman DFA

Reduction and Expansion of the Graph §8.2.4

176

Each time the reduction deletes a node y , y has a single predecessor x, and f (x ,y) defines

VIS (y) solely in terms of VIS (x). In order to compute VIS for each node in the original graph

IG;. the graph is expanded from the start node to the original graph, applying inverse transforma­

tions in reverse reduction order. Each time a node y is added with predecessor x, VIS (y) is com­

puted using the f (x.y) on (x ,y) when y was deleted from the graph. Figure 8.6 shows the reverse

transformations and the associated computations. It is not actually necessary to expand the graph

-rather, one need just execute the expansion computations in the proper order.

In summary, Graham-Wegman DFA provides an efficient method of computing VIS for

FIG;. It runs in near-linear time, where other DFA algorithms will exhibit 0 (r 2) behavior on the

potentially large subgraphs corresponding to declaration lists in languages with declaration­

before-use. GWDF A also can handle irreducible graphs with node-splitting, though the details of

that transformation are omitted. It also allows the use of bit vectors for efficient computations of

union and intersection. The length of each bit vector will be equal to the number of elements of

Bindings.

8.25. Error and Other Actions in the Clash Table

After VIS (v, vci) has been computed for all vertices v and all visibility classes vci ,

actions in the clash table other than shadow must be executed. These actions are either error

calls, or function calls f (b 1 , b 2), where bindings b 1 and b 2 are being clash-resolved. The

algorithm for processing these actions is:

rocedure clash_actions
actions +- 0
for j +- 1 to number of visibility classes

Tt v in /G such that v is a net-visibility vertex

for i +- 1 to j -1
Tt b 1 e VIS (v, vc;) such that b 1 e potentially _dashing _bindings

I
Tt b 2 e VIS (v, vci) such that b 2 e clash _set (b 1.name)

I actions +- actions u clash _table [vc i , vc i](b 1 ,b z)

If a clash error is defined to be associated with the clashing bindings (giving the error a

place to be displayed), errors can be distinguished from other functions, with a more efficient

implementation:

if clash -table (vci , vci) =error(...) then

Let pcb = { b e VIS (v, vci) I b e potentially _clashing _bindings }

Preceding step is a zero-time operation, since pcb is a contiguous group in VIS (v, vci)

error _actions +- select _error _bindings (u (clash _set (b)('Pcb), error(...))
be pcb

actions +- actions u error _actions

elseif some other function ...

select _error _bindings produces errors (using the error argument) for all bindings in its

binding-set argument.

8.2.6. Cyclical Inheritance Graph Descriptions

A cyclical inheritance graph description, in which construction operations depend on refer­

ence operations (e.g., an import from a named scope), requires that an inheritance graph be

evaluated repeatedly, adding the effects of any newly successful construction operations at each

iteration, until the iteration stabilizes.

When using DFA to evaluate an inheritance graph, this involves repeating the DFA for each

partition of the graph for each iteration. However, the changes to the graph are often small, and

§8.2.4 Reduction and Expansion of the Graph

177

incremental DFA could greatly decrease the amount of work needed for the second and later

iterations. Incremental analysis is even more important for an implementation of a language­

oriented editor, where declarations may be added or deleted, and the structure of the program

changed.

Several methods for doing incremental DF A have been proposed [Pollock and

Soffa 1987; Ryder and Carroll 1987; Ryder and Paull 1987; Zadeck 1984]. Methods based on

interval analysis [Ryder and Carroll 1987; Ryder and Paull 1987] and iterative methods [Pollock

and Soffa 1987] are not applicable because of the nested-while subgraph.

Zadeck's algorithm, called the Partitioned Variable Technique (PVT), is only applicable to

a limited set of data flow problems, but it is applicable to the problem of computing VIS . PVT

partitions the problem into independent problems called clusters, which are solved separately.

For the VIS computation problem, a cluster consists of all bindings with the same name. Since

bindings with different names do not clash, the clusters are clearly independent. The algorithm is

linear in the number of edges in the graph for each cluster affected by a change. For many

changes, the area visited by the algorithm is only a small part of the graph. Adding or deleting a

definition only affects a single cluster, while adding or deleting a vertex or edge can affect many

clusters.

GWDFA bears some similarities to interval analysis, for which Ryder, Carroll, and Paull

give an incremental algorithm. It might be possible to apply the same methods to GWDF A.

However, this possibility has not been analyzed thoroughly, and thus is an area for further

research.

8.2.7. Efficiency Considerations

One problem with the application of DFA as described is that, although the number of bit­

vector operations is near-linear in the number of edges, it is 0(I Bindings I x number of visibility

regions) in space. A Pascal program with 1000 declarations would require about 32K 32-bit

words for storing visible sets for each visibility class, and a roughly proportionate number of bit­

set operations.

However, if programs are modular, in reasonably sized compilation units, then the situation

is much better. Only those bindings declared local to the compilation unit M being processed,

plus those that can be made directly visible to M, must be included in the bit vectors used in the

data flow analysis. Those bindings whose names appear in an import statement in M or which

are directly visible in a scope that is opened by M fall into this category. Of course, how success­

ful this strategy is will depend heavily on the language and specific programs being compiled.

Implementation experience is necessary to evaluate exactly what implementation strategies are

best.

8.3. Non-Automatic Implementation

Instead of automatically generating an inheritance graph and evaluating it using DFA or

some other mechanism, it may be expedient to use the inheritance graph formalism as a guide to

creating a manual implementation for a particular language. This section presents one such

method.

A simple Search Model implementation is easy for languages with fairly simple visibility

control rules. The principles outlined in §8.1 for automatic generation of an evaluator for an

inheritance graph can be applied directly to a hand-written implementation. If the language being

implemented has declaration-before-use, then optimization of the Inheritance Graph Model may

be necessary to get an acceptably efficient implementation, because strict application of the

Inheritance Graph Model will result in one vertex per visibility construct, and thus one search

step per visibility construct. The search can be optimized by collecting the declarations local to a

Cyclical Inheritance Graph Descriptions §8.2.6

178

scope into a hash table, and maintaining explicit source positions for the purpose of determining

the relative order among declarations, and between declarations and references. Then, a search

requires only one search step per scope on the search path, though maintaining the information on

ordering of declarations and references in a scope is more complex than before.

If the language doesn't have declaration-before-use, then we need not worry about ordering

information within a scope, and keeping all declarations local to a scope in a hash table is easy.

Data collected on a large sample of Pascal programs (a total of 133,500 source lines, rang­

ing from 2500 to 31000 lines, covering a wide variety of applications) indicates that an average

of only 2.5 search steps would be needed for a search in such an implementation.

8.4. Summary of Evaluation Methods

Two methods of automatically generating an inheritance graph evaluator from an inheri­

tance graph description were presented: one based on the Search Model, and one using data flow

analysis. An efficient implementation of the Search Model version is possible only if some res­

trictions are placed on how clash resolution is used. Using the clash resolution process to detect

errors is very expensive using the Search Model. However, the Search Model can easily handle

prioritized clash resolution.

Data flow analysis provides an elegant solution to the problem of finding a solution to each

partition of an ordered inheritance graph. If the clash resolution functions, etc., meet some mild

restrictions, then data flow analysis can be used to find a least fixed point assignment in near­

linear time in the number of edges. However, this implementation may be fairly slow and space­

consuming for large monolithic programs.

The implementation effort for data flow analysis is non-trivial. However, if data flow

analysis is going to be used for program optimization, then the implementation of the data flow

analysis can be shared, so the incremental implementation effort for evaluating the inheritance

graph using DF A will be small.

The Inheritance Graph Model can also be useful as a guide to non-automatic implementa­

tion.

§8.3 Non-Automatic Implementation

179

CHAPTER9

Discussion and Conclusions

This chapter ties together the various concepts discussed in the preceding chapters, and also

elaborates on some other ideas that were given short shrift in earlier chapters, and deserve more

attention. Applications of the Inheritance Graph Model are discussed first. Next follows a com­

parison of the Inheritance Graph Model and related work. Some language design issues raised in

this research are then discussed. Fmally, this chapter contains a discussion of topics for future

research, and a summary of the important points of the dissertation.

9.1. Applications of the Inheritance Graph Model

9.1.1. Language Study, Understanding, Comparison, and Design

Perhaps the important application of the Inheritance Graph Model is in the understanding

and comparison of the visibility control rules of programming languages, using inheritance graph

descriptions. An inheritance graph description in this discussion does not necessarily mean a

complete, formal description as given for Modula-2 in Chapter 7. Rather, definitions of the visi­

bility classes, the inheritance graph schemata for the visibility constructs, the clash function and

table, and the describer-defined lookup functions are probably the most appropriate level of

definition for this purpose. A language designer or implementor can create the inheritance graph

description for a language, and use the description to gain a better grasp of the subtleties of the

visibility control.rules. The inheritance graph description helps to expose the complexities of

visibility control rules: there seems to be a roughly proportional increase in the complexity of an

inheritance graph description with the complexity of the visibility control rules being described.

Of course, this comparison is mostly subjective, where we measure the complexity of an inheri­

tance graph description by the number of visibility classes and the complexity of the subgraph

schema corresponding to the visibility constructs of the language. The measure of complexity of

the visibility rules of a language is based on the number of different visibility constructs and the

difficulty of understanding each visibility construct and the interactions between the visibility

constructs. Examples of visibility control features discussed in some detail in this dissertation

that illustrate this point include:

Scope Contour-Relative Shadowing and Declaration-Before-Use

This combination of features (found in Pascal and many other languages) requires the use of

reverse-text-order known edges to represent the fact that a binding shadows clashing bind­

ings at the beginning of a declaring scope, instead of just forward edges. These back-edges

correspond to the fact that back-patching is needed in one-pass name resolution.

Nested Qualified References with Declaration-Before-Use
This is a very complex feature to describe, because the meaning of such a reference depends

on its relative position within each of the enclosing scopes. Its description requires the

additional visibility class containing.

Modula-2 References in Statements/Declarations
In Modula-2, references in declarations require declaration-before-use, while references in

statements do not The distinction between the two kinds of references results in two visi­

bility classes, decl_rejerable and stmt_referable, being used instead of the single referable

visibility class used in Pascal.

180

Since increased complexity of the inheritance graph description corresponds to increased com­

plexity of the visibility control rules it represents (assuming reasonable care and skill on the part

of the person creating the description), and thus increased difficulty of understanding the visibil­

ity control rules, the language designer can use the inheritance graph description to experiment

with different versions of visibility control rules until a satisfactory balance of complexity and

expressive power is found. Of course, one design goal should be minimum complexity for the

desired expressive power of the visibility control rules.

The inheritance graph descriptions for different languages can be used to compare the visi­

bility control rules of the languages. The comparison will be easier if the descriptions are written

using the same style as much as possible, but this is true for any specification method. Such fac­

tors as the number of visibility classes, the meaning of each visibility class, the connectivity of

each subgraph schema, and the clash function and table are all important points of consideration

in such a comparison.

A language implementor can benefit from construction and study of the inheritance graph

description for the language under consideration, because the description can aid in clarifying the

exact meaning of each visibility construct.

9.1.2. Implementation Using the Inheritance Graph Model

As described in Chapter 8, an implementation of the visibility control rules of a language

can be generated automatically from a complete inheritance graph description for the language,

similar to the description given for Modula-2. The inheritance graph for a: particular program can

be generated from the description, and the data flow analysis techniques described in §8.2 can be

used to find the least fixed-point assignment to the inheritance graph.

There are three significant disadvantages to using this approach. The first is that the imple­

mentation effort is significant: Graham-Wegman data flow analysis must be implemented, includ­

ing node-splitting. Support for all of the auxiliary tasks must also be provided, including main­

taining infoimation about the assignment computed at each iteration so that stabilization of an

iterative evaluation can be detected, as well as an oscillating evaluation. The error handler must

be written such that only errors on the final iteration are kept and reported.

This is a much larger implementation effort than even a fairly complex language-specific

symbol-table manager, but the effort is not prohibitive, considering that the usual compiler­

compiler argument applies: the automated system can be used for many different languages.

The second disadvantage is the lack of analytical tools sufficient to ensure that a cyclical

inheritance graph evaluation will not occur for a given inheritance graph description, for reason­

ably complex visibility control rules. The oscillation can be detected at evaluation time, but the

only reasonable result if no program errors have been detected is a "compiler error" message to

the user. If the hypothesis that all oscillating evaluations result from program errors is true

(§6.8.3), then oscillation will only occur if the implementor omits an error check. A compiler

error in this situation is not desirable, but it is better than compiling the program without com­

plaint, as is the case in conventional implementations where error checks are omitted.

The third disadvantage is the lack of a good, concise, readable specification method based

on the Inheritance Graph Model. The attribute grammar-based specification method used for

Modula-2 has several drawbacks, discussed in §7.7.

The alternative to automatic generation of an implementation is hand-coding a symbol table

manager. If this method is chosen, the inheritance graph description for a language (at the level

of the inheritance graph schemata) can be very useful in designing the implementation. The con­

cepts of the Inheritance Graph Model can be applied directly to the implementation, although the

extent to which this can be done while achieving an efficient implementation will depend on the

language being implemented.

§9.1.1 Language Study, Understanding, Comparison, and Design

....

L

181

9.2. Relation to Other Work

Only two specific attempts at modeling and specifying visibility control have been made

prior to this research: those of Reiss [Reiss 1983] and of Wolf [Wolf 1985; Wolf et

al. 1986a; Wolf et al. 1987]. Reiss's goal was a complete model and specification method.

Since Wolfs emphasis was on more on specific concepts of visibility control ("provides'· and

"requests"), he did not carry his specification ideas very far. In the discussion that follows, their

approaches are compared in detail to the Inheritance Graph Model.

Other, more general specification methods have been used to specify visibility control rules

as one part of an entire language specification, such as denotational semantics and attribute gram­

mars. The advantages and disadvantages of these specification methods are also discussed.

9.2.1. Reiss's Model

Order is implicit in Reiss's model of visibility control, as a consequence of its original

development for use in generating batch compilers. Implicit ordering of visibility constructs

makes specification easier in a batch language system, but more complex in an incremental sys­

tem. Reiss adapted the symbol processing system described in [Reiss 1983] to work in the Pecan

system [Reiss 1984a; Reiss 1984b], an interactive programming environment for which

language implementations can be automatically generated. However, it is unclear how some of

Reiss's descriptions of the visibility control rules of languages are fairly concise. The

specification of Ada's rules is only seven pages long. However, this conciseness is achieved

largely through the heavy use of defaults. This approach seems very error-prone, because much

of the specification is defined implicitly by omission.

The specification language is declarative, with specific keywords and clauses corresponding

to specific visibility control features. For example, the NONEST keyword attached to an object

(entity) specification (apparently) means that nested references to bindings of that class are not

allowed. AUTO means that a binding will be automatically created when an undeclared name is

referenced. NOREDEFINE_IN_SCOPE means that a name can't be redefined in the same scope.

This approach also helps to make specifications concise, but it does so at the cost of limiting the

power of the specification method.

Consider the issue of declaration-before-use and its interaction with scope contour-relative

and declaration contour-relative shadowing (§4.4). The property NOUSE_AND_REDEFINE is

provided to handle specify these choices. It means that ''no redefinition is allowed after a use. 49
• •

The precise meaning of NOUSE_AND_REDEFINE is unclear- several intetpretations are possi­

ble: (1) A reference "N" cannot precede the declaration of a binding of "N" in the same scope,

or (2) A reference "N" that automatically creates a definition cannot precede an explicit

definition of "N". Choice (1) can be further subdivided according to what happens if another

binding of ''N'' is declared in the enclosing scope: does the reference get the enclosing binding,

or is it an error?

None of the possible intetpretations is sufficient to allow all possib}e design choices for

declaration-before-use and shadowing. More such properties could be defined to handle these

choices, but this approach of adding a new feature to the model for each new language feature is

clearly undesirable, and impractical from the viewpoint of the person attempting to define the

visibility control rules of a language. This problem is an inevitable result of using a declarative

specification language that provides a list of specific properties that can be attached to the objects

being defined, particularly in a problem domain as rich in subtleties as visibility control.

49 'This definition of NOUSE_AND_REDEFINE was gleaned from the source code of Pecan.

Implementation Using the Inheritance Graph Model §9.1.2

182

The Inheritance Graph Model allows straightforward definitions of all of these choices. The

disadvantage of the Inheritance Graph Model with respect to this approach is that descriptions are

harder to analyze because of their composition from lower level concepts, and because of the

freedom the inheritance graph designer has in combining the concepts.

Reiss's Formal Model of Visibility Control

Reiss's formal model of visibility was summarized in §3.5.5. The formal model shares

most of the same problems as the model represented by the specification language. The order of

visibility constructs and references is still implicit, so variations in the meaning of multiple

declarations of a name in the same scope are not possible. Visibility features such as multiple

inheritance are not handled.

The advantage of the formal model is that the real meanings of the functions such as

LOOKUP and DEFINE can be fairly easily discerned by examining the definitions of the func­

tions, presuming unambiguous definitions of the basic relations are available. It is also possible

to extend the model to handle other features such as multiple inheritance by modifying the func­

tions defined in the model. Adding explicit ordering would require major changes to the model.

The fact that the model must be modified to handle even common visibility constructs indicates

that the model is not one of the fundamental concepts of visibility control, but is rather more like

a partial specification of the visibility rules of a language with fairly general visibility rules: the

specification is completed for a particular language by defining the basic relations, and determin-

9.2.2. Wolf's Model

The most significant difference between the Inheritance Graph Model of visibility control

and Wolf's model is that the Inheritance Graph Model defines the meaning of each visibility con­

struct locally (except named inheritance) while Wolf's model describes the meaning globally, by

placing an edge between an entity E 1 and any entity that requests or provides access to E 1. Since

the effect of a visibility construct VC is non-local, the visibility function that defines the edges

corresponding to VC must somehow ''bridge the gap'' between the local and non-local contexts

to determine which nodes to connect with edges. Thus, the visibility functions are likely to be

complex for more complicated examples than the one given in [Wolf et al. 1987].

Also, many of the visibility functions seem likely to be largely redundant, because similar

edges must be "carried" to non-local parts of a program for many different visibility constructs.

However, no examples of complex visibility constructs or complete languages have been done

using this formalism [Wolf 1987], so it is difficult to know how most of the language features

described in this dissertation would be defined.

Since there are two edges between any two entities where one is ''visible'' to the other in

the conventional sense (a requisition and a provision edge), a visibility graph for a program can

be very dense. It is unclear whether a language designer, implementor, or user would be able to

extract much useful information from this graph. An inheritance graph, on the other hand, has

only 0 (n) edges, where n is the number of visibility constructs in the program, and the structure

of the program with respect to visibility control is readily apparent.

The inheritance graph is in a sense related to Wolf's nesting graph, because both represent

the inheritance structure of a program. Wolf simply did not carry this idea very far. This is

apparently because Wolf's main concern was with language design issues, in particular the pre­

cise control over visibility of bindings. Most of his dissertation is concerned with issues related

to the provide and request clauses. He also discusses the problems resulting from nested scopes,

which were introduced as a mechanism for controlling visibility.

§9.2.1 Reiss's Model

183

9.2.3. Denotational Semantics

The traditional approach to specifying the visibility rules of a language in denotational

semantics [Stoy 1977] is to pass around an "environment" denotation representing the visibility

structure of the program at any given point in the program. This environment denotation may

take several fonns. Most commonly, it is a structured value representing the nesting structure

enclosing the point the particular environment value is associated with, along with the bindings

associated with each scope. This method is of little benefit to the person specifying the language,

because the manipulation, both modification and lookup, is still procedurally defined. The

environment is essentially an encoding of interesting parts of the program tree; the functions for

computing new environments must manipulate this encoding, and the access functions must

traverse the encoding. The effect of each visibility construct cannot be localized, because all

environment-related functions must know the meaning of every visibility construct.

An example of a language specification using denotational semantics in this manner is the

fonnal definition of Ada [Honeywell 1980].

Another disadvantage of denotational semantics is that it is not yet possible to generate

efficient implementations from specifications, although efforts have been made to generate better

implementations [Ganzinger 1980; Mosses 1975; Paulson 1984].

9.2.4. Attribute Grammars

The specification of visibility rules using attribute grammars is usually done using tech­

niques similar to those used in denotational semantics. A structured environment attribute is

passed from production to production in the attributed program tree, with visibility constructs

modifying the value passed appropriately. Both modification and accessing of the environment

attribute are done procedurally, with auxiliary functions. The attribute grammar fonnalism helps

in organizing and specifying the flow of the environment through the program: in attribute gram­

mars intended for generation of batch compilers, the flow and manipulation of the environment

attribute is simply an explicit version of the flow model style of manipulation of visibility control

infonnation used in traditional compilers50•

Hoover [Hoover and Teitelbaum 1986; Hoover 1987] uses a different approach to pro­

pagating visibility infonnation through the attributed program tree. The visibility infonnation for

a visibility region is stored in a structured attribute he calls an aggregate value. An aggregate

value is a set of (key, element value) pairs representing a function from keys to element values.

This is essentially the Visible Set Model described in §3.3, where each aggregate value represents

the visible set for a particular visibility region in program. A (key, element value) pair

corresponds to a name-entity binding. The aggregate value for a visibility region is computed by

copying another aggregate value, adding a (key, element value) pair to another aggregate value,

or by combining two other aggregate values, with a pair in the second aggregate value overriding

(shadowing) a pair with the same key in the first aggregate value.

The advantage of Hoover's approach is that it forces the effects of visibility control to be

exposed in the attribute grammar instead of in auxiliary functions which produce a new environ­

ment attribute from an old environment. And, manipulation of aggregate values is restricted in a

way such that the attribute evaluator can accurately trace the effects of a change to an aggregate

value (for example, one resulting from a new declaration added to the program), and reevaluate

50 There is a big difference in implementation though. because evaluation of an attribute grammar often can't be

done in one pass. It is usually necessary to keep all versions of the environment attribute, though a lot of sharing

between versions is often possible, as in the Pascal example in [Kastens et al. 1981]. Also, it is possible to analyze the

attribute grammar to determine when new versions of the environment can be produced by destructively modifying the

old version, instead of by creating anew copy [Garrison 1984; Hudak and Bloss 1985].

WolrsModel §9.2.2

184

only those attributes that are really affected by the change. This improved efficiency for updates

was the primary motivation for the use of these visible-set aggregate values.

The disadvantage of the use of Hoover's aggregate values is that the operations provided for

manipulating them are fairly limited. While simple visibility constructs can be fairly easily

described, more complex visibility constructs are likely to be quite difficult to describe.

9.2.5. Plotkin's Operational Semantics

Fonnal specification methods based on operational semantics usually use the same

approach to manipulating the "environment" as that used in denotational semantics: structured

values manipulated procedurally.

Plotkin [Plotkin 1981] introduced a structural approach to operational semantics that

avoids this procedural manipulation. The meaning of a program is defined by syntactic transition

rules. These transition rules can be used to compute the visible set at any point in a program,

using set operations, in tenns of other visible sets and the effects of declarations. He only gives

fairly simple examples, and it is unclear how more complex visibility constructs would be

described, particularly constructs with non-local effects.

9.3. Language Design Issues

Several problematical areas of language design became apparent in the process of studying

visibility control featUres, designing the Inheritance Graph Model, and applying the Inheritance

Graph Model to real languages. These problems make the language more difficult for the

language user to understand, and more difficult for the language-system developer to implement.

This section discusses these issues and suggests changes in language design to avoid these prob­

lems.

9.3.1. Declaration-Before-Use Requirements

Much has already been written in this dissertation about the requirement of declaration­

before-use (DBU) in many programming languages, primarily concerning how DBU complicates

the specification of the visibility control rules of a languages and interacts in often unexpected

ways with other visibility control features. This section discusses the history of and motivation

for DBU, describes the resulting problems, and suggests an alternative.

Declaration-Before-Use: History and Rationale

Many modem programming languages evolved directly or indirectly from Pascal, and thus

"inherited" their DBU requirement from Pascal. Pascal was certainly not the first language to

require uses to precede declarations- COBOL [USDoD 1961] required DBU. However, the issue

became more important as user-defined types became popular, and the issue of mutually recursive

types became important Also, Pascal is very widely known, and the reasons for the DBU require­

ment in Pascal are apparent, so Pascal is used as the canonical example of a language with DBU.

As discussed in §2.4.3, the first version of Pascal [Wirth 1972, p. 40] only included DBU as

an implementation restriction. The DBU requirement was in the User Manual [Jensen and

Wirth 1974, pp. 8,18] (but not the Report), and became an official part of the language much

later [ANSI 1983; ISO 1980].

From the history of the development of Pascal, it is clear that implementation issues were

the real reason for the DBU requirement the issue was originally ignored except in an implemen­

tation restrictions section. The restriction was added because it makes one-pass semantic analysis

possible (with some back-patching). The reasons for the gradual elevation in status are unclear:

most likely were inertia and the desire to change things as little as possible. Explicitly removing

the DBU requirement from the language definition would have complicated the lives of many

§9.2.4 Attribute Grammars

ll
I

185

compiler writers, requiring major changes in most existing Pascal compilers.

However, ease of implementation is not the reason most commonly given for the ''value''

of requiring DBU. Programming style reasons are usually given instead: it is stated that if

declarations precede uses, then a program will be easier to read sequentially from start to end.

This is more appropriately an argument for a style of programming, rather than a language restric­

tion. However, placing a declaration before all of its uses is not always the best way of writing a

program to achieve good readability. This may clutter the program unnecessarily. The meaning

of many procedures will be obvious if names are well chosen, or if they implement "standard"

concepts, such as pop and push operations on a stack. The location of such procedures is unim­

portant to the reader most of the time: they should be grouped together according to purpose

somewhere where they can be found easily, but they should not clutter up the more ''interesting''

code. The fundamental style problem with DBU is that it results in over-specification: it results in

an ordering on declarations that may have no meaning to the programmer.

Requiring DBU results in a "reverse-order" program. The main body of the program is the

very last pan of the program text. Oaiming that a program should always be read from lowest­

level parts to highest-level parts is analogous to claiming that writing a program should be done

strictly bottom-up. This is patently absurd: most programmers write programs using a combina­

tion of top-down and bottom-up techniques.

Requiring DBU also results in special-casing to handle mutually recursive types and pro­

cedures (forward declarations in Pascal) to preserve one-pass compilation. It can also lead to

subtle problems, as in the forward-reference error in the Pascal example in §6.8.2 that many Pas­

cal compilers miss. It can also result in strange programming styles: in some large Pascal pro­

grams, the ordering problem for mutually recursive procedures is avoided by providing forward

declarations for all procedures at the beginning of the program. This prevents many forward­

reference errors, but it also separates all procedure headings from their bodies, requiring a person

reading a program to look in two separate places to get the entire definition of a procedure.

Improved program editors, particularly language-oriented editors, make the textual relation

between definitions and uses less important- a use is either "close to" (visible in the same win­

dow) or "distant from" (can be viewed in a separate window or with elision) its declaration. If

the editor has a "show me the declaration corresponding to this use" operation, the textual rela­

tion of "distant" declarations and uses is unimportant

Placement of declarations with respect to uses is mostly a matter of programming style:

declarations should be close to uses where possible; related declarations should be together, etc.

The issue shouldn't be clouded with implementation issues, particularly when the the implemen­

tation issues aren't very important One-pass compilation also becomes less important with the

move to programming environments, which must maintain a representation of the entire program.

Since the entire program is available, information about later points in the program is no longer

''special'', and can be made readily available. These implementation issues are related to the

flow model vs. database model issue discussed in §5.1.

Specification Problems with Declaration-Before-Use

Requiring DBU significantly increases the complexity of the visibility control rules of a

language, from the user's, the describer's, and the implementor's viewpoints. Without DBU,

there is one contour per scope. With DBU, each declaration creates a new contour, so a scope

then corresponds to many contours instead of just one, and the meaning of a name can no longer

be determined solely from the scope immediately containing the reference.

Defining what constitutes an illegal multiple declaration is also easy without DBU: two

clashing bindings result in a multiple-declaration error if and only if they are defined in the same

visibility region (the same scope in this case). With DBU, binding definitions in all contours in a

Declaration-Before-Use: History and Rationale §9.3.1

186

scope must be considered.

Nested qualified references are fairly complicated to define with DBU, as evidenced in the

Nested Qualified References sub-section of §6.5.4, because the ordering of declarations and uses

must be considered for all scopes involved in the qualified reference. Without DBU, this problem

evaporates. A nested qualified reference is identical to any other qualified reference: only the

total set of bindings local to a scope need be considered at each step of the resolution of the

qualified reference. Ordering of declarations and uses is irrelevant.

Shadowing and Declaration-Before-Use

Shadowing is straightforward when DBU is not required: a binding in an inner scope sha­

dows any clashing binding in an enclosing scope. If overloading is permitted, then the meaning

of a clash must be defined appropriately (the clash function in the Inheritance Graph Model).

If DBU is required, then the definition of shadowing becomes much more complicated. The

choice between scope contour-relative shadowing and declaration contour-relative shadowing

must be made. If scope contour-relative shadowing is chosen, a binding b declared in scope S is

only referable after b 's declaration, yet all bindings from enclosing scopes that clash with b are

shadowed at the beginning of S . A specification of the visibility control rules must reflect the

effects of the form of shadowing chosen. If declaration contour-relative shadowing is chosen,

then a binding b in an enclosing scope that clashes with a locally declared binding b' is visible

up to the declaration of b '. The precise locations where b becomes shadowed and b' becomes

visible must also be specified: The declaration of b' may or may not be permitted to reference b .

Also, a recursive reference to b may or may not be permitted within the declaration of b .

Finally, the effects of DBU "loopholes" must be considered, such as the allowance of for­

ward references in pointer type declarations in Pascal. Such a forward reference amounts to a

reference to a binding defined in a inner contour. The "illegal forward reference" error in the

Pascal example in §6.8.2 is related: it is defined to be an illegal reference to a binding declared in

an inner contour, even though a matching binding is declared in an enclosing contour (in the

enclosing scope). It is difficult to devise a simple set of consistent definitions for scopes, con­

tours, etc. because of these loopholes.

Declaration-Before-Use: Summary

Requiring DBU in a language design clearly creates many problems. Some of the problems

arise because the interactions between DBU and other visibility control features are complex, and

thus are relatively complex and difficult to describe, and difficult to understand properly. Some

of the problems arise because DBU results in more choices that must be selected from, yet have

little practical impact on the utility of a language .. The added choices simply add to the difficulty

of specifying and understanding a language.

The complexity of the DBU, particularly the interaction of DBU and scope contour-relative

shadowing is illustrated by the frequency with which the Pascal fragment in Figure 6.23 is

incorrectly implemented. Even the Pascal editor system developed using the Cornell Synthesizer

Generator [Reps and Teitelbaum 1984], which is based on attribute grammars and does not have

a one-pass requirement, implements this example incorrectly, binding the reference ''Tl ''in P to

the T1 declared outside of P. In their documentation of the Pascal synthesizer, they state that a

few semantic checks are not implemented, but adding this check would apparently require

significant additions to their implementation of Pascal.

The cleanest implementation of this test for illegal forward references in Pascal is the one

used in the GAG implementation of Pascal [Kastens et al. 1981]: every reference where a type

name is expected is resolved twice. It is resolved once using the environment preceding the refer­

ence, and again using the environment at $e end of the block containing the reference: if the two

§9.3.1 Specification Problems with Declaration-Before-Use

L

187

lookups give different results, then the reference is an illegal forward reference.

The advantages of DBU are relatively small: some speedup and simplification of semantic

analysis, primarily in batch compilers. In interactive implementations, DBU may be slower and

more difficult to implement than the alternative. The programming style reasons usually given

for DBU are not proper justification for the inclusion of DBU in a language: the DBU requirement

often harms programming style more than it helps it.

For these reasons, DBU should not be included in language designs.

9.4. Avenues for Future Research

Improvements to the Inheritance Graph Model

Due to the definition of the shadow operator in the clash-resolution process, the result when

a multiple declaration error occurs is not the most desirable one, although not necessarily

incorrect If two visibility classes known and referable are used, with the same meanings as used

throughout this dissertation, then when clashing bindings b and b' are declared in the same

scope, the result is that referable visibility of both bindings becomes shadowed, since a known

binding shadows any clashing referable binding, leaving both bindings known but not referable.

The shadowing of referable visibility of both bindings was the primary reason for the edge­

oscillation in the "from P import P" example in Figure 6.21. This shadowing also has the

disadvantage that any attempted reference to these bindings will result in either an ''name not

declared'' error or an ''illegal forward reference'' error, depending on where the reference occurs

and on the definition of the lookup function. The fonner error message is somewhat reasonable,

using the logic that erroneous declarations can't be referenced, but the latter error message would

clearly be confusing. The ideal resuit is not to generate any error messages at attempted refer­

ences to these bindings, on the grounds that since we don't know which of the bindings is the

intended one, signaling errors on any of the references is meaningless.

One solution is to add an additional visibility class referable' such that every binding b is

referable' in every visibility region (and nowhere else) where b would nonnally be referable,

except for the possibility of an illegal multiple declaration. Then, if the lookup function fails to

find a matching referable binding, it can check for a matching referable' binding, and refrain

from generating an error message if one is found. This solution is not entirely desirable, because

it is a lot of effort for what seems to be such a simple problem.

A better solution to this problem is needed, either within the existing frameworlc. of the

Inheritance Graph Model, or through a modification of the Inheritance Graph Model. An impor­

tant criterion for any modification of the Inheritance Graph Model is the maintenance of the nice

mathematical properties of clash resolution that make evaluation of an inheritance graph amen­

able to data flow analysis, unless another acceptable implementation method can be found

without these restrictions.

One reason why inheritance graph descriptions are difficult to an~yze for edge H ref

dependency information is that the descriptions are two-level: The assignment to the graph can

affect the edges in the graph, and vice versa. A model in which the edge set was fixed might be

easier to worlc. with. However, very little effort has been put into pursuing this option.

Specification Languages

The specification method used in Chapter 7 to define the correspondence between a

Modula-2 program tree and its inheritance graph is long and repetitive, and therefore not very

readable. It is also not amenable to analysis for discovering edge H ref dependencies, although it

is not clear how much this is due to the specification method as opposed to the Inheritance Graph

Model itself.

Declaration-Before-Use: Summary §9.3.1

188

Thus, a better specification method would be useful if the Inheritance Graph Model is to be

used in the automatic generation of implementations for visibility rules. Possible methods, still

using attribute grammars, are Ganzinger's technique of parameterized compiler modules, and

Watt's partitioned attribute grammars, as discussed in §7.7, to separate information about the

inheritance graph from irrelevant syntax. A graphical specification language might also be use­

ful, since what we wish to specify is a graph.

Analysis of Inheritance Graph Descriptions

Either in conjunction with or separate from the changes to the Inheritance Graph Model or

specification method already discussed, better methods of analyzing an inheritance graph descrip­

tion for edge H ref dependencies and oscillation caused by dynamic definitions are needed.

A better understanding of precisely what language features and inheritance graph subgraphs

lead to oscillating evaluations is also needed. The hypotheses in §6.8.3 concerning the relation

between oscillating evaluations and program errors should be investigated further, looking either

for a counterexample or better support for the hypotheses.

Incremental Data Flow Analysis

Each successive iteration of evaluation of the inheritance graph involves recomputing the

data flow information for the graph. This information can either be completely recomputed for

each iteration, or recomputed incrementally. Graham-Wegman DFA seems to be the method of

choice for computing the data flow information, but it has never been adapted to incremental

analysis. Zadeck's Partitioned Variable Technique is applicable to incrementally updating the

data flow information on each iteration, but will be slower for the initial complete analysis. For

the best evaluation-time execution speed, the implementor must implement both Graham­

Wegman DFA and Zadeck's incremental technique.

An alternative is to adapt Graham-Wegman DF A to an incremental environment. The tech­

niques used by Ryder, Carroll, and Paull for interval analysis [Ryder and Carroll 1987; Ryder

and Paull 1987] might be applicable.

9 .4.1. Multiple Inheritance and Clashes

When a language allows multiple inheritance, the possibility that multiple clashing bindings

can be inherited by the same scope. This can occur with the Ada use clause, with flavors, etc.

This possibility introduces the need for a language design choice: what is the meaning of multiple

bindings of a single name inherited by the same scope? This may be an error, or one binding may

be selected via depth-first search, as in flavors, or there may be a more complex selection

mechanism, as in Ada. There are probably as many choices as there are languages with multiple

inheritance.

The large number of choices is simply an indication of the complexity of multiple inheri­

tance. There is a hierarchy of complexity of visibility control features, based on w~ere one must

look to find the binding denoted by a reference.

(1) One must look only in the contour containing the reference to find the binding (if any)

denoted by the reference.

(2) One must look only in the contour containing the reference, and on the search path from the

reference to the declaration of the denoted binding.

(3) One must look in contours not on the search path from the reference to the denoted binding

in order to determine that the binding is actually the correct one.

The latter is the most complex, and can result from the presence of multiple inheritance, as it does

in Ada. In Ada adding a binding to a use'd package can invalidate a reference to a clashing

§9.4 Specification Languages

l

\.

189

binding in another use'd package. This can result in unexpected compilation errors, and can

make programs much more difficult to understand. Other multiple inheritance designs have simi­

lar problems.

It is unclear what the solution to this problem is. The problem may be inherent in the use of

multiple inheritance. However, there may be some multiple inheritance design that avoids these

problems without destroying the utility of multiple inheritance.

9.5. Summary

This dissertation has presented a comprehensive study of the issues involved in visibility

control in languages. The discussion has been limited to programming languages, but most of the

basic concepts should apply to any language with structured resolution of names.

An extensive and comprehensive survey of the visibility control features available in pro­

gramming languages was presented in Chapter 2, with the goal of understanding what is required

of a model of visibility control, and what the fundamental concepts of visibility control are.

These fundamental concepts were described, along with the resulting requirements for a natural

model (Chapter 4), and the available choices in the design of a model of visibility control

(Chapter 5).

Chapter 3 presented several models of visibility control, including both models which have

been implicitly used by programmers and language designers without ever having been formally

stated, and formal models of visibility control that have been developed by others.

Chapter 6 presented the Inheritance Graph Model, a model of visibility control based on the

concept of inheritance of visibility, with an extensive example of the application of the Inheri­

tance Graph Model to the description of the visibility control rules of Modula-2 in Chapter 7.

Chapter 8 presented a method of automatically computing an assignment to an inheritance graph,

allowing resolution of references, based on data flow analysis.

In the process of doing the stages of research roughly corresponding to these chapters, I

have discovered many problematic and subtle issues of language design relating to the issue of

visibility control. The complexity of the problem of understanding the fundamentals of visibility

control and providing an adequate model has turned out to be much greater than expected. Most

of the difficult issues discussed here seem to have been largely ignored or overlooked by many

language designers: their concerns were more with the functionality provided by various visibil­

ity control features than with the difficulties described. This is understandable, because the pri­

mary function of the visibility control rules in modem languages is to provide controlled yet

flexible access to entities- concerns about ease of understanding and specification can easily take

second place to concerns about achieving precisely the desired functionality. It is hoped that the

recommendations given in this dissertation will encourage language designers to make the visi­

bility control rules in their languages easier to understand. The difficulties described are not, in

general, due to visibility control features that provide any real power or benefit to the user: rather

they are due to the interaction of features such as declaration-before-use, which have little value

to the user, with useful features. ·

The Inheritance Graph Model is a general and natural model of visibility control. It is com­

posed of very few concepts: visibility regions, multiple visibility classes, definitions (of visibility

of binding/visibility-class pairs), inheritance, and clash resolution. Yet, the Inheritance Graph

Model is very powerful because its basic concepts closely match those of the problem domain.

Almost all visibility control features considered can be described using the basic Inheritance

Graph Model, and all of the remaining features considered can be described using the extensions.

Because of the Inheritance Graph Model's success in describing all of the visibility features con­

sidered, one would expect it to be adequate to describe other visibilty features not considered or

yet to be developed.

Multiple Inheritance and Clashes §9.4.1

190

The Inheritance Graph Model abstracts out the usual details needed in other methods of

defining visibility control rules: it encompasses the Search Model, the Visible Set Model, the

Range Model, the relevant parts ofReiss's model51 , and Wolf's model.

The most important ideas presented concern the Inheritance Graph Model, along with the

fundamental concepts of visibility control on which it is based, as a way of thinking about visibil­

ity control. The Inheritance Graph Model is useful for designing, understanding, and comparing

languages. It is also a useful model for implementation: we can automatically generate an imple­

mentation of the visibility rules of a language from an inheritance graph description, or we can

use the Inheritance Graph Model as a guide to a hand-written implementation.

Sl Reiss's model handles some problems related to visibility control, such as lexical analysis, that I have largely

ignored.

§9.5
Summary

191

Bibliography

AHO, A. V., SETin, R., and ULLMAN, J. D., Compilers: Principles, Techniques, and Tools,

Addison-Wesley, Reading, MA, 1986.

ALLEN, F. E. and COCKE, J., ''A program data flow analysis procedure'', Comm. of the ACM 19,

3 (March 1976), 137-147.

AMERICAN NATIONAL STANDARDS INSTITliTE, American National Standard FORTRAN, 1966.

AMERICAN NATIONAL STANDARDS INSTITliTE, ''American National Standard Programming

Language PL/1", ANS X3.53-1976, New York, 1967.

AMERICAN NATIONAL STANDARDS INSTITliTE, "IEEE standard Pascal computer programming

language: an American national standard", ISBN 0-471-88944-X, ANSI/IEEE 770

X3.97-1983, IEEE Press and Wiley-Interscience, New York, 1983.

ATKINSON, M.P. and MORRISON, R., "Procedures as persistent data objects", Trans. Pro g. Lang

and Systems 7, 4 (1985), 539-559.

BACKUS, J. W., BAUER, F. L., GREEN, J., KATZ, C., MCCARTHY, J., PERUS, A. J.,

RUTISHAUSER, H., SAMELSON, K., VAUQUOIS, B., WEGSTEIN, J. H.,

VAN WIJNGAARDEN, A., and WOODGER, M., ''Revised report on the algorithmic

language ALGOL 60", Comm. of the ACM 3, 5 (1960), 1-17.

BACKUS, J., ''Can programming be liberated from the von Neumann style?", Comm. of the ACM

21, 8 (Aug. 1978), 613-641.

BALLANCE, R. A., VAN DE V ANTER, M. L., and GRAHAM, S. L., "The Architecture of Pan I",

PIPER Working Paper, Computer Science Division, EECS, UCB, Berkeley, CA,

Summer 1987.

BARRON, D. W., An introduction to the study of programming languages, Cambridge University

Press, Cambridge, UK, 1977.

BAUMANN, R., FEUCIANO, M., BAUER, F. L., and SAMELSON, K., Introduction to ALGOL,

Prentice-Hall, Englewood Oiffs, NJ, 1964.

BIRTWISTLE, G., DAHL, 0., MYHRHAUG, B., and NYGAARD, K., Simula begin, Auerbach,

Philadelphia, 1973.

BLOWER, M. I., "An efficient implementation of visibility in Ada", Proc. SIGPLAN 1984 Symp.

on Compiler Const., June 1984.

BOBROW, D. G. and STEFIK, M. J., LOOPS: An object oriented programming system for

Interlisp, 1982.

BONDY, J. A. and MURTY, U.S. R., Graph Theory with Applications, North:Holland, New York,

NY, 1976.

BORNING, A. H. and INGALLS, D. H. H., "Multiple inheritance in Smalltalk-80", in Smalltalk

80: virtual image version 2, Xerox Palo Alto Research Center, Palo Alto, CA, 1983.

BUSAM, V. A., "A dictionary structure for a PL/1 compiler", International Journal of Computing

and Information Sciences 1, 3 (Sep. 1972), 235-53.

CLARK and WEISMAN, USP 1.5 primer, Dickenson Press, Belmont, California, 1967.

CLARKE, L.A., WILEDEN, J. C., and WOLF, A. L., "Nesting in Ada programs is for the birds",

Proceedings of the ACM-SIPLAN Symposium on the Ada Prog. Lang., Boston, Mass.,

192.

Dec. 1980, 139-145.

CLOCKSIN, W. F. and MELUSH, C. S., Programming in Prolog, Springer Verlag, New York,

1981.

CORMACK, G. V., ''Extensions to static scoping'', Proceedings of the 1983 SJGPLAN symposium

on programming language issues in software systems, San Francisco, 1983.

CURRY, G., BAER, L., LIPKIE, D., and LEE, B., "Traits: An approach to multiple inheritance

subclassing", ACM-SIGOA conference on office automation systems, June 1982.

DAHL, 0. and NYGAARD, K., Simula 67 Common Base Definition, Norwegian Computer Center,

June 1967.

DAHL, 0. and HOARE, C. A. R., ''Hierarchical program structures'', in Structured Programming,

DAHL, 0., DIJKSTRA, E. W., and HOARE, C. A. R. (editor), Academic Press, New York,

1972, 175-220.

DEREMER, F. L., LEVY, P., HANSON, S., JACKSON, P., JOLUG, R., and PITIMAN, T., "Summary

of the characteristics of several 'modem' programming languages", SIGPLAN Notices

14, 5 (May 1979), 28-45.

DEWAR, R. B. K., The SETLprogramming language, NYU, New York, 1979.

DIJKSTRA, E. W., "Notes on structured programming", in Structured Programming, DAHL, 0.,

DIJKSTRA, E. W., and HOARE, C. A R. (editor), Academic Press, New York, 1972, 175-

220.

DIJKSTRA, E. W., "1972 Turing award lecture: the humble programmer", Comm. of the ACM,

October 1972.

DRISCOLL, J. R., SARNAK, N., SLEATOR, D. D., and TARJAN, R. E., "Making data structures

persistent'', Proceedings of the eightteenth annual ACM symposium on the theory of

computing, May 1986, 109-121.

FARROW, R., Covers of attribute grammars and sub-protocol attribute evaluators, Dept of

Computer Science, Columbia University, Sep. 1983.

FARROW, R., "Sub-protocol evaluators for attribute grammars", Proc. SIGPLAN 1984 Symp. on

Compiler Const., June 1984.

FARROW, R., "Automatic generation of fixed-point-finding evaluators for circular, but well­

defined, attribute grammars", Proc. SIGPLAN 1986 Symp. on Compiler Const., July

1986, 85-98.

FELDMAN, J. A and ROVNER, P. D., "An ALGOL-based associative language", Comm. of the

ACM 12, 8 (Aug. 1969), 439-449.

FEUER, A. and GEHANI, N., eds., Comparing and assessing programming languages- Ada, C,

and Pascal, Prentice-Hall, Englewood Oiffs, New Jersey, 1984.

FOX, P., USP 1 programmers manual, Internal Paper, MIT, Cambridge, Mass., 1960.

GANZINGER, H., "Some principles for the development of compiler descriptions from

denotationallanguage definitions", TUM-18006, Technische Universitat Miinchen, May

1980.

GANZINGER, H., "Description of parameterized compiler modules", G1: 11. Jahrestagung,

lnformatik Fachberichte 50, 1981.

GARRISON, P. E., "Modification-in-place in attribute grammars", Unpublished Manuscript,

Computer Science Division, EECS, UCB, Berkeley, CA, June 1984.

GATES, G. W. and POPLAWSKI, D. A., "A simple technique for snuctured variable lookup",

Comm. of the ACM 16,9 (Sep. 1973), 561-5.

193

GoLDBERG, A. J. and ROBSON, D., Smalltalk-80: The Language and Its Implementation, Addison

Wesley, Reading, MA, 1983.

GRAHAM, S. L. and WEGMAN, M., "A fast and usually linear algorithm for global flow

analysis", Journal of the ACM 23, 1 (1976), 172-202.

GRAHAM, S. L., JOY, W. N., and ROUBINE, 0., "Hashed symbol tables for languages with

explicit scope control", Proc. SIGPLAN 1979 Symp. on Compiler Const., Aug. 1979,

50-57.

GRISWOLD, R. E. and GRISWOLD, M. T., The Icon programming language, Prentice-Hall,

Englewood Cliffs, NJ, 1983.

HANSON, D. R., "Is block structure necessary?", Softwarfr-Practice & Experience 11, 8 (Aug.

1981), 853-866.

HECHT, M.S., Flow Analysis of Computer Programs, North-Holland, New York, 1977.

HEWIIT, C., "PLANNER: A language for proving theorems in robots", Proc. Int. Joint Conf on

AI, Washington D. C., 1969, 295-301.

HIGMAN, B., A Comparative Study of Programming Languages, 2nd. edition, Elsevier North

Holland, New York, 1977.

HONEYWELL, INC., Cll HONEYWELL BULL, AND INRIA, Formal Definition of the Ada

Programming Language, Nov. 1980.

HOOVER, R. and TEITELBAUM, T., ''Efficient incremental evaluation of aggregate values in

attribute grammars", Proceedings of the SIGPLAN '86 symposium on compiler

construction, Palo Alto, CA, June 1986, 39-50.

HOOVER, R., "Incremental graph evaluation", 87-836, Dpt of Computer Science, Cornell Univ.,

Ithaca, NY, May 1987.

HUDAK, P. and BLOSS, A.," Avoiding copying in functional and logic programming languages",

Conf Rec. 12th ACM Symp. on Prin. of Pro g. Lang., Jan. 1985, 300.

INTERNATIONAL STANDARDS ORGANIZATION, ''Specification for the computer programming

language Pascal'', Second ISO 7185, Dec. 1980.

IVERSON, K. E., A Programming Language, Wiley, New York, 1962.

JENSEN, K. and WIRTH, N., "PASCAL, user manual and report", Lecture Notes in Computer

Sciente 18 (1974), Springer Verlag.

JOHNSTON, J. B., "The contour model of block structured processes", SIGPLAN Notices 6, 2

(1971), 55-82.

JONES, N. D. and MUCHNICK, S. S., "TEMPO: A Unified treatment of binding time and

parameter passing concepts in programming languages", Lecture Notes in Computer

Science 66 (1978), Springer Verlag.

JOLUG, R. and DEREMER, F., "Regular Right-Part Attribute Grammars", Proc. SIGPLAN 1984

Symp. on Compiler Const., June 1984, 171-178.

KAsTENS, U., HUTT, B., and ZIMMERMANN, E., GAG: A Practical Compiler Generator, Springer

Verlag, Berlin, 1981.

KEMENY, J. G. and KURTZ, T. E., Basic Instruction Manual, Dartmouth College, Hanover, NH,

1964.

KERNIGHAN, B. W. and RITCHIE, D. M., The C Programming Language, Prentice Hall,

Englewood Cliffs, NJ, 1978.

194

KNUTH, D. E., "Semantics of context-free languages", Math Systems Theory 2 (1968), 127-145.

LAMPSON, B. W., HORNING, J. J., LONOON, R. L., MITCHELL, J. G., and POPEK, G. J., "Report

on the programming language Euclid", CSL-81-12, Xerox Palo Alto Research Center,

Palo Alto, California, Oct. 1981.

LEBLANC, R. J. and FISHER, C. N., "On implementing separate compilation in block-structured

languages", Proceedings SIGPLAN symposium on compiler construction, Denver, CO,

1979, 139-143.

LISKOV, B. H. and Zll..LES, S. N., ''Programming with abstract data types'', Proceedings of ACM

SIGPLAN Conference on Very High Level Languages, SIGPLAN Notices 9, 4 (Apr.

1974), 50-59.

LISKOV, B., ATKINSON, R., BLOOM, T., MOSS, E., SCHAFFERT, J. C., SCHEIFLER, R., and

SNYDER, A., LNCS 114, Clu Reference Manual, Springer Verlag, New York, 1981.

MAURER, W. D., The Progranuner's Introduction to SNOBOL, American Elsevier, New York,

1976.

MCCARTHY, J., "History of LISP", in History of progranuning languages, WEXELBLAT, R. L.

(editor), Academic Press, New York, 1981.

MCDERMOTT, D. and SUSSMAN, G. J., "The Conniver reference manual", Memo 259a, MIT AI

Laboratory, 1973.

MITCHELL, J. G., MAYBURY, W., and SWEET, R., "Mesa language manual", CSL-79-3, Xerox

Palo Alto Research Center, Palo Alto, California, Apr. 1979.

MOON, D. A., "Object-oriented programming with flavors", OOPSLA '86 Conf Proc., Nov.

1986, 1-8.

MOSSES, P. D., Mathematical semantics and compiler generation, PhD Dissertation, Univ. of

Oxford, 1975.

PARNAS, D. L., "On the criteria to be used in decomposing systems into modules", Comm. of the

ACM 15, 12 (Dec. 1972), 1053-1058.

PAULSON, L., "Compiler generation from denotational semantics", in Methods and Tools for

Compiler Construction, LORHO, B. (editor), Cambridge University Press, 1984, 219-257.

PLOTKIN, G. D., "A Structural Approach to Operational Semantics", DAIMI FN-19, Computer

Science Dpt., Aarhus Univ., Aarhus, Denmark, Sep. 1981.

POLLOCK, L. L. and SOFFA, M. L., An incremental version of iterative data flow analysis,

ComputerTR87-58, Houston, TX, Aug. 1987.

PRATT, T. W., in Progranuning languages: design and implementation, 2nd. edition, Prentice

Hall, Englewood Cliffs, NJ, 1984.

QUINE, W. V., Word and Object, MIT Press, Cambridge, 1960.

REES, J. A. and ADAMS IV, N. I., "T: a dialect of LISP or, LAMBDA: the ultimate software

tool", Conference record of the 1982 ACM symposium on USP and functional

progranuning, 1982.

REES, J. A., ADAMS IV, N. 1., and MEEHAN, J. R., The T manual, fourth edition, Computer

Science Department, Yale University, New Haven, Cf, 1984.

REISS, S. P., "Generation of compiler symbol processing mechanisms from specifications",

Trans. Prog. Lang and Systems 5, 2 (Apr. 1983).

REiss, S. P., "Graphical Program Development with PECAN Program Development Systems",

SIGPLAN Notices 19, 5 (1984). Proceedings of the ACM SIGSOFf/SIGPLAN Software

Engineering Symposium on Practical Software Development Environments.

195

REISS, S. P., "PECAN: Program Development Systems that Support Multiple Views", Proc. of

the 7th International Conference on Software Engineering, 1984.

REPS, T. and TEITELBAUM, T., "The Synthesizer Generator", Proc. ACM SIGSOFT!SIGPLAN

Software Eng. Symp. on Practical Software Development Environments, Apr. 1984, 42-

48.

REPS, T. and TEITELBAUM, T., The Synthesizer Generator Reference Manual, Dpt. of Computer

Science, Cornell Univ., Ithaca, NY, August 1985.

ROUSSEL, P., PROWG- Manuel de reference et d' utilisation, Groupe d 'Intelligence Artificielle,

UER de Luminy, University d'Aix-Marseille II, 1975.

ROWE, L. A., CORTOPASSI,]. R., OOUCETIE, D. P., and SHOENS, K. A., Rigel Language

Specification, Computer Science Division, EECS, UCB, Berkeley, CA, June 1981.

RYDER, B. G. and CARROLL, M.D., "An incremental analysis algorithm for software systems",

(solicited for Trans. Prog. Lang and Systems), Dpt of Computer Science, Rutgers Univ.,

New Brunswick, NJ, 1987.

RYDER, B. G. and PAULL, M. C., "Incremental data ftow analysis algorithms", Trans. Prog.

Lang and Systems (to appear), 1987.

SCHAFFERT, C., COOPER, T., BUWS, B., K!LIAN, M., and WILPOLT, C., "An introduction to

Trellis/Owl", OOPSLA '86 Conf. Proc., Nov. 1986,9-16.

SCHMIDT, D. A., "Detecting global variables in denotational specifications", Trans. Pro g. Lang

and Systems 7, 2 (Apr. 1985), 299-310.

SCHWANKE, B., "Survey of scope issues in programming languages", CS-78-131, Carnegie­

Mellon University, Pittsburgh, PA, June 1978.

SCHWARTZ, J. T., Abstract algorithms and a set-theoretic language for their expression

(preliminary draft), Computer Science Dept, Courant Institute, NYU, New York, 1970-

1971.

SCHWARTZ, J. T., On programming: An interim report on the SETL project: Installment 1.

Generalities; Installment 2. The SETL language and examples of its use, New York

Univ., 1973.

SCHWARTZ, J. T., DEWAR, R. B. K., DUBINSKY, E., and SCHONBERG, E., Programming with

sets: an introduction to SETL, Springer Verlag, 1986.

SHIMASAKI, M., FUKA Y A, S., IKEDA, K., and KlYONO, T., "An analysis of Pascal programs in

compiler writing", Software-Practice & Experience 10 (1980), 149-157.

STEELE JR., G. L. and SUSSMAN, G. J., "LAMBDA: the ultimate imperative", AI Memo 353,

MIT AI Laboratory, Mar. 10, 1976.

STEELE JR., G. L., "LAMBDA: the ultimate declarative", AI Memo 379, MIT AI Laboratory,

Nov. 1976.

STEELE JR., G. L. and SUSSMAN, G. J., "The Revised Report on Scheme: a Dialect of LISP", AI

Memo 452, MIT AI Laboratory, Jan. 1978.

STEELE JR., G. L. and SUSSMAN, G. J., "The art of the interpreter or, the modularity complex

(parts zero, one, and two)", AI Memo 453, MIT AI Laboratory, May 1978.

STEELE JR., G. L., Common USP: the language, Digital Press, Digital Equipment Corporation,

1984.

STOY, J. E., Denotational semantics: the Scott-Strachey approach to programming language

theory, The MIT Press, Cambridge, 1977.

196

SYMBOUCS, INC., Reference Guide to Symbolics Common USP: Language Concepts, Syrnbolics

Release 7 Document Set, 1986.

TUCKER, A. B., Programming languages, McGraw-Hill, New York, NY, 1977.

UNITED STATES DEPARTMENT OF DEFENSE, "COBOL 1961, Revised specifications for a

common business oriented language", #1961 0-598941, U. S. Government Printing

Office, Washington, D.C., 1961.

UNITED STATES DEPARTMENT OF DEFENSE, "Military standard, Ada programming language",

ANSI/Mll...-STD-1815A, U.S. Government Printing Office, Jan. 1983.

VAN WIJNGAARDEN, A., Revised report on the algorithmic language ALGOL 68, Springer

Verlag, 1976.

WAITE, W. M. and Goos, G., Compiler Construction, Springer Verlag, New York, 1984.

WASSERMAN, A. I., SHERETZ, D. D., KERSTEN, M. L., DERIET, R. P., and DIPPI!, M. D.,

"Revised report on the programming language PLAIN", SIGPLAN Notices 16, 5 (May

1981), 59-80.

W A TI, D. A., "Modular description of programming languages", Unpublished manuscript,

Computer Science Division. EECS, UCB, Berkeley, CA, May 1985.

WEGBREIT, B., "The ECL programming system", AFIPS Conference Proceedings, 1971, 253-

262.

WEGMAN, M., "General and efficient- methods for global code improvement", Ph.D.

Dissertation, Computer Science Division, EECS, UCB, Berkeley, CA, Dec. 1981.

WEGNER, P., "The Vienna definition language", Computing Surveys 4, 1 (Mar. 1972), 5-63.

WEINREB, D. and MOON, D., USP Machine Manual, MIT, Cambridge, Mass., Mar. 1981.

WELSH, J., SNEERINGER, J., and HOARE, C. A. R., "Ambiguities and insecurities in Pascal",

Software-Practice & Experience 7, 6 (1977).

WEXELBLAT, R. L., ed., History of programming languages, Academic Press, New York, 1981.

WHITEHEAD, A. N. and RUSSEll, B., Principia Mathematica, (no listed publisher), Cambridge,

1910-1913,2nd.ed. 1925-1927.

WIRTH, N., "The programming language Pascal (revised report)", 5, Eidgeno:ssische Technische

Hochschule Zu:rich, Fachgruppe Computer-Wissenschaften, Nov. 1972.

WIRTH, N., "Modula: a language for modular multiprogramming", Software-Practice &

Experience 7 (1977), 3-35.

WIRTH, N., "Report on the programming Language Modula-2: third, corrected edition", in

Programming in Modula-2, Springer Verlag, New York, 1982.

WOLF, A. L., "Language and tool support for precise interface control", COINS Tech. Rep. 85-

23, Computer and Information Science Dept, Univ. of Massachusetts, Sep.-1985.

WOLF, A. L., CLARKE, L. A., and WILEDEN, J. C., "The AdaPIC Toolset: Supporting interface

control and analysis throughout the software development process", COINS Tech. Rep.

86-51, Sep. 1986.

WOLF, A. L., CLARKE, L. A., and WILEDEN, J. C., "A model of visibility control", IEEE

Computer Society International Conference on Computer Languages, Miami Beach, FL

(later version submitted for journal publication), Oct 1986, 182-189.

WOLF, A. L., Private communication, Computer and Information Science Dept, Univ. of

Massachusetts, 1987.

l 197

WOLF, A. L., CLARKE, L.A., and Wll..EDEN, J. C., "A model of visibility control", COINS Tech.
Rep. 87-12 (submitted for journal publication), Computer and Information Science Dept.,
Univ. of Massachusetts, Feb. 1987.

WULF, W. A., RUSSELL, D. B., and HABERMANN, A. N., "BLISS: A language for systems
programming", Comm. of the ACM 14, 12 (1971).

WULF, W. A. and SHAW, M., "Global variables considered harmful", SIGPLAN Notices 8
(1973), 28-34.

WULF, W. A., LONDON, R. L., and SHAW, M., "An Introduction to the construction and
verification of Alphard programs", IEEE Transactions on Software Engineering 2, 4
(Dec, 1976), 253-265.

ZADECK, F. K., "Incremental data flow analysis in a structured program editor", Proc. SIGPLAN
1984 Symp. on Compiler Const., June 1984.

198

abstract data types
aliased
anonymous
anonymous type

binding
binding
binding
binding
binding placement rules
binding placement rules
binding set
block structure
bound
clash
clash resolution
class
closed scope
closure
contour
contour search rules
contour search rules
cyclical inheritance graph

description
database model
declaration
declaration contour
declaration contour-relative

shadowing
defining occurrence
definition
definition
directly enclosing
directly visible
dominant
door function
dynamic binding
dynamic definition
dynamic edge
dynamic inheritance
dynamic scoping
edgeHref dependency
encapsulation
enclosing
. entity
enumeration constant
explicit visibility control
fast
final errors

33
37
13
10
13
23
40
44
40
44
43

7
22
52
80
29
32
23
15
40
44

110
65
13
61

61
6
6

83
15
22
15
56
23

103
98
23
23

113
33
14
12
9

27
172
111

Index

Aavors
flow model
free

global
global scope
hides
hiding
inferior
information-hiding
Inheritance Graph Model
inheritance link
inheritance restriction func-

tion
inherited visibility
inheriting scope
inherits
intermediate errors
intermediate visibility
known
known
lexical inheritance
local
methods
module
multiple inheritance
name

name

named inheritance
nesting
nesting graph
net visibility
net visibility
open scope
opening a scope
ordered
outer
overloading
overloads
pervasive :
private
propagation constraint
providing scope
provision
qualified reference
qualified reference
range
range
range

31
65
22
15
15
8
8

14
33
77
57

57
88
57

8
111

88
38
54
23
15
29
29
31

1
5

29
7

50
83
88
32
35

112
14
10
18
32
34
46
57
35
40
44
14
40
44

redefinition
reference
reference occurrence
referenced
referenced
referential transparency
requisition
restriction function
DBU

scope
scope
scope
scope contour
scope contour-relative sha-

dowing
scoping rules
scoping rules
Search Model
Search Model
search predicate
search predicate
search predicate
shadowing
shadows
simple reference
simple reference
static inheritance
subclass
subordinate
superclass
superior
unbound
variable attribute
visibility classes
visibility construct
visibility control
visibility control
visibility control rules
visibility control rules
visibility function
visibility graph
visibility range
visibility range
visibility region
visibility rules
visibility rules
visible
visible
visible
visible
visible set

87
6
6
1
5

25
35
80

184
14
40
44
61

61
1
5

22
43
37
44
71

8
8

40
44
23
29
14
29
15
22
54
78
43

1
5
1
5

49
49
45
72
43

1
5
1

17
22
5

23

visible set
visible set
Visible Set Model

199

40
44
23

200

Prepared by the author using the text processing tools vi, (gnu)-emacs, spell, awk,

sed, lpr, m4, bib, dtbl, deqn, and ditroff with the -me macro package, coordinated by

csh, soelim, and nmake. Printed on an Apple LaserWriter Plus. Processed mostly

from pine.Berkeley.EDU, a Sun Microsystems 3n5, and dougfir.Berkeley.EDU, a

Sun 3/60.

