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Intelligent Agents as a Basis for Natural Language Interfaces 

David Ngi Chin 

ABSTRACT 

Typical natural language interfaces respond passively to the user's commands and 

queries. They cannot volunteer information, correct user misconceptions, or reject uneth­

ical requests. In order to do these things, a system must be an intelligent agent. UC 

(UNIX Consultant), a natural language system that helps the user solve problems in using 

the UNIX operating system, is such an intelligent agent. 

The agent component of UC is UCEgo. UCEgo provides UC with its own goals 

and plans. By adopting different goals in different situations, UCEgo creates and exe­

cutes different plans, enabling it to interact appropriately with the user. UCEgo adopts 

goals from its themes, adopts sub-goals during planning, and adopts meta-goals for deal­

ing with goal interactions. It also adopts goals when it notices that the user either lacks 

necessary knowledge, or has incorrect beliefs. In these cases, UCEgo plans to volunteer 

information or correct the user's misconception as appropriate. These plans are prestored 

skeletal plans that are indexed under the types of situations in which they are typically 

useful. Plan suggestion situations include the goal which the plan is used to achieve, the 

preconditions of the plan, and appropriateness conditions for the plan. Indexing plans by 

situations improves efficiency and allows UC to respond appropriately to the user in real 

time. Detecting situations in which a plan should be suggested or a goal adopted is 

implemented using if-detected daemons. 

The user's knowledge and beliefs are modeled by the KNOME (KNOwledge Model 

of Expertise) component of UC. KNOME is a double-stereotype system which categor­

izes users by expertise and categorizes UNIX facts by difficulty. KNOME deduces the 

user's level of expertise during the dialog with the user. 

After UCEgo has selected a plan, it is refined through the process of answer expres­

sion by the UCExpress component. UCExpress first prunes the answer to avoid telling 

the user something that the user already knows, and to mark where to use anaphora or 

ellipsis in generation. UCExpress also uses specialized expository formats to express 

different types of information in a clear, concise manner. The result is ready for genera­

tion into English. 
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Preface 

A Short History of UC 

The original idea and motivation for UC, the UNIX Consultant, came from my 

advisor, Robert Wilensky, without whom this thesis and UC would not exist. The very 

first version of UC was written in early 1982 by myself. This version of UC used Yigal 

Arens's PHRAN parser/understander and an early version of his CLUSTER Context 

Modeller ([Arens, 1986]). It used a Conceptual Dependency ([Schank, 1975]) style 

representation, and produced canned output. 

After the success of the initial version of UC, Yigal Arens (the senior graduate stu­

dent at the time) was appointed by Robert Wilensky to head implementation of the UC 

project, and other students were brought in to work on various aspects of UC. Joe Faletti 

attempted to adapt his PANDORA commonsense planner ([Faletti, 1982]) for UC, Lisa 

Rau wrote an ellipsis understanding component for UC ([Rau, 1985]), Paul Jacobs wrote 

the PHRED generator for UC ([Jacobs, 1983]), Jim Mayfield started work on a goal 

analysis mechanism ([Mayfield, forthcoming]), and Jim Martin started work on the 

UCfeacher knowledge acquisition component ([Martin, 1985]). During this time, UC 

was adapted to run on the PE.I\RL AI database system ([Deering et aL, 1982]), My part 

of the project centered on the knowledge representation and inference mechanisms of UC 

([Chin, 1983a] and [Chin, 1983b]). 

This was an exciting period for working on UC. Transcripts of electronic mail to 

actual UNIX Consultants were collected and analyzed to see how UC might be 

improved. The group even performed a small experiment to see if users would behave 

differently when interacting with a human than when interacting with a program (simu­

lated by a human unbeknownst to the subjects). This was described in [Chin, 1984]. All 

of this culminated in a version of UC that was described in the CACM article, [Wilensky 

et al., 1984]. 

Eventually some of the senior graduate students left (Yigal Arens and Joe Faletti), 

and new students joined the project. Charley Cox took over the task of building a 

parser/understander for UC ([Cox, 1986]), Marc Luria wrote a planner for doing things in 

UNIX ([Luria, 1985] and [Luria, forthcoming]), and Dekai Wu wrote a Concretion 

Mechanism for doing certain low level inferences. At this time, the KODIAK represen­

tation language ([Wilensky, 1987]) was developed at Berkeley in large part to address 

inadequacies in the representation scheme of the previous versions of UC. The initial 

implementation of KODIAK was written by Peter Norvig for his FAUSTUS story under­

stander ([Norvig, 1986]) and this was adapted for use in UC. Also during this period, 

Lisa finished her Master's thesis and left; Paul Jacobs finished his Ph. D. thesis on the 

KING natural language generator ([Jacobs, 1986]) and left, leaving Anthony Albert to 

continue work on generation in UC. The implementation of UC was headed at various 

times by Rick Alterman (a postdoctoral fellow at Berkeley), Marc Luria, or myself. My 

work on UC shifted to the areas presented in this thesis (e. g. [Chin, 1986]). This period 

of UC's development culminated in the Berkeley Technical Report, [Wilensky et al., 

1986]. 
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Chapter I 

Introduction 

1. Consultation Programs 

Consider the problem of building a program that simulates a human consultant. A 

user would be able to come up to such a program and obtain advice in the program's 

domain of expertise by entering queries in English (or some other natural language). The 

consultant program would then provide solutions in English. A user might ask for advice 

about how to do things, for definitions of terminology, or for advice in solving problems. 

In short, this program would behave like a real human consultant. 

In order to build such a system, one needs to satisfy at least three requirements. 

First, the computer system needs to be able to understand the user's queries. Next, the 

program must be able to solve the user's problems and formulate an answer. Finally, the 

system must be able to convey the solution to the user in a clear, concise manner. Need­

less to say, there are many difficult and unsolved problems in each of these areas. The 

first requirement, understanding the user, involves the whole of natural language under­

standing, a difficult area of artificial intelligence research. The second requirement, 

problem solving, has a long continuing history of research in AI. The last requirement, 

communicating the answer to the user, has a shorter history of research in AI, but is no 

less difficult a problem. 

However, even if all of the problems in each of the three areas were to be solved, 

and one could build a natural language consultation system that did each of the three 

tasks perfectly, that would still not be enough for a good natural language consultation 

system. A good consultation system also needs to be able to take the initiative in a dialog 

with the user, rather than always responding passively to the user. For instance, consider 

the following user interaction with a hypothetical program that provides advice on using 

the UNIX1 operating system: 

User: What does Is -v do? 

Program: It lists the contents of your current directory. 

The hypothetical program gives an answer that is literally correct, since the Is com­

mand actually ignores inappropriate flags such as -v. However, a consultant that pro­

vides only the above answer has failed to correct the user's incorrect preconception that 

the Is command has a -v flag. So, although the user did not specifically ask whether ls 

has a -v flag, a good consultant would not fail to provide the information that in fact Is 

does not have such a flag. Such a response is shown in the next dialog: 

1 UNIX is a trademarlc of Bell Laboratories. 
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User: What does Is -v do? 

Program: There is no-v option for Is. 

This is a better answer even though it literally does not answer the user's question. 

In deciding to ignore the user's direct question and shift its attention to the user's 

misconception, the program has taken the initiative in the dialog. This shows that a good 

consultant cannot just passively respond to the user; rather, it must have its own agenda. 

In the previous dialog, the better answer requires that the program realize that the 

user has a misconception. To do this, the system must first infer that the user believes 

that Is has a -v option and then realize that the user's belief conflicts with the program's 

knowledge. So, in general, a good consultant system must also model the user's 

knowledge and beliefs. 

Even after a consultant system realizes that the user has a misconception, it must 

decide how to deal with the misconception. In the above example, the system decides 

that it should inform the user of the facts in order to correct the user's misconception. In 

other cases, the system may choose to ignore the misconception, as in the following 

scenario: 

User: How can I delete someone else's file when I don't have v.Tite 

permission on the file? 

Program: I will not help you delete someone else's file because that is unethi­

cal. 

In the user's statement above, the user has assumed that one needs write permission 

on the file to delete it. This is not true. Rather, one needs write permission on the parent 

directory to delete the file. Regardless of what is the correct precondition, the program 

decides not to help the user because of ethical considerations. This also means that the 

program decides not to correct the user's misconception, so as to avoid helping the user 

delete someone else's file. This is an example of a decision by a consultant program to 

be uncooperative. 

Of course a good consultant program cannot arbitrarily decide to be uncooperative. 

In the previous case, the decision to be uncooperative was based on the fact that the 

user's goal of deleting someone else's file conflicts with the program's goal of preserving 

all users' files. In this case, the program's goal of preserving files wins out over the 

program's desire to help the user who asked the question. These sorts of goals and goal 

interactions are needed to guide a consultant system properly. 

After a course of action has been determined, it must be carried out. Even in the 

simplest case where the program just answers the user's question, there are still many 

ways to express the answer to the user. In the following scenario, Fl and F2 represent 

two possible formats for expressing the answer to the user's question. 
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User: How can I change the group protection of a file? 

Fl: To change the permission of a file, type 'chmod' followed by one or 

more spaces or tabs followed by 'g', followed by either'+' for add per­

mission or '-' for remove permission, followed by the type of permis­

sion, which is either 'r' for read permission, 'w' for write permission, 

or 'x' for execute permission, followed by or more spaces or tabs fol­

lowed by the name of the file to be changed, followed by a carriage re­

turn. 

F2: Use chmod. 
For example, to add group read permission to the file foo, 

type 'chmod g+r foo'. 

The first form of the answer, Fl, is correct and quite general, but it is also so ver­

bose that it is undecipherable. On the other hand, the second form of the answer, F2, is 

succinct and gives the user information in an easily readable form, but it is considerably 

less general. In fact the second format is somewhat inaccurate, since the example strictly 

applies only to adding group read permission to the file foo. It is up to the reader to use 

analogous reasoning to apply this to other cases. Despite this lack of generality, the 

second answer form is clearly superior to the first. Note that the second form requires 

additional computation to transform the general solution of Fl into an example. A 

natural language system needs to incorporate knowledge about when and how to use spe­

cial presentation formats like examples to convey information more clearly to the user. 

2. Intelligent Agents 

The examples in the previous section have shown that a good computer consultation 

system cannot be just a passive question-answering system. Rather, the consultant sys­

tem must often take the initiative. This is because consultant systems generally have 

greater knowledge in their field of expertise than users. As in the example in the previ­

ous section, the consultant may sometimes need to take the initiative in order to correct a 

user's misconceptions. Also, the consultant may need to take the initiative in order to 

provide needed information that the user did not explicitly ask for. In fact, the user often 

does not even realize that such information is pertinent, so will never ask for it. A com­

puter consultant system needs to have the human-like capability of taking the initiative in 

a dialog rather than always responding to the user passively. 

Previous efforts in natural language systems that take the initiative have resulted in 

programs capable of "mixed-initiative" dialogs. Among the first of these, the SCHO­

LAR system ([Carbonell, 1970a&b]) for CAl (Computer-Aided Instruction), could take 

the initiative to test the user on facts in its knowledge base. It also allowed the user to 

query the system about facts in its knowledge base. This type of "mixed-initiative" 

works only for limited situations such as matual quizzing. A system based on answering 

or generating quiz questions cannot be adapted to help the user solve problems, volunteer 

information pertinent to the user's problems, or detect misconceptions evident from the 
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user's questions (as opposed to wrong answers from the user). 

More recent effons have followed one of two approaches to the problem of taking 

the initiative in a dialog: script-based or frame-based. In the script-based approach, the 

system follows a set script of interchanges with the user. For example, the hotel reserva­

tion application of the HAM-ANS system ([Hoeppner et al., 1984]) used a fixed series of 

exchanges in which the system has the initiative pan of the time. The other approach, 

frame-based initiative, is exemplified by the GUS system ([Bobrow et al., 1977]). GUS 

took the initiative in the dialog when it needed to fill in information for a slot in a frame. 

Typically, the frame would represent information that GUS needed in order to address 

the user's problem. Each of these approaches works to provide programs with the capa­

bility to take the initiative in limited situations. However, none is general enough to 

cover other types of situations where a program should take the initiative. For example, 

neither approach would allow a program to take the initiative to correct a user miscon­

ception. 

The approach that I take is to view the program as an agent. That is, a consultation 

system should be viewed as a system that can perform actions. For a natural language 

consultation system, acting consists of mostly speech acts ([Austin, 1962] and [Searle, 

1969]), i.e. acting by communicating with the user. Within this paradigm, taking the ini­

tiative in a diaiog rransiates into acting without the guidance of the user. An agent that 

has this capability of taking the initiative is called an autonomous agent. 

A rational agent is an agent that behaves rationally. In AI programs, much as in 

popular psychology, this usually means attributing reasonable plans and goals to the 

agent in question. For example, PAM ([Wilensky, 1978]) understood stories involving 

rational agents by analyzing the goals and plans of the characters. Likewise, TALE­

SPIN ([Meehan, 1976]) used plans and goals to create simple stories with rational agents 

as characters. In the problem solving domain, robot planning programs (e. g. [Fikes and 

Nilsson, 1971] and [Sacerdoti, 1974]) have shown that planning is a good paradigm for 

programming robots as rational agents. In the realm of conversation, [Hobbs and Evans, 

1980] have argued that human conversation fits such a paradigm. So, a program that 

contains reasonable plans and goals and that is guided by those plans and goals can be 

considered a rational agent. 

Within the planning paradigm, a rational autonomous agent is one that contains 

plans and goals that allow the agent to take the initiative in appropriate situations. The 

central problem in building autonomous agents is determining which situations require 

the agent to take the initiative. For a rational autonomous agent that is based on the plan­

ning paradigm, this problem translates to the problem of determining appropriate goals 

for the planner. Such a process is called goal detection ([Wilensky, 1983]). 

After a rational autonomous agent, hencefonh called an intelligent agent, has 

detected appropriate goals, it is up to the planner of the intelligent agent to formulate a 

plan to satisfy these goals and then carry out the plan. Much work has been done in AI in 

the area of planning where the goals of the planner are provided by the operator. For 

example, [Newell and Simon, 1972] formulated "means-ends" analysis as a general stra­

tegy for achieving given "ends" or goals. However, the robot planning programs all 

assumed that the goals are given by the users. Likewise in TALE-SPIN, the programmer 

provided the initial goals of the characters. For story understanding, PAM was able to 
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recognize a character's goals when directly stated in the narrative, or when the goal could 

be inferred from the characters' stated actions based on the assumption that the actions 

were part of the character's plan. As [Carbonell, 1982] points out, none of these systems 

have systematically addressed the problem of goal detection, which is essential for build­

ing intelligent agents. 

The PANDORA planner ([Faletti, 1982]), which implemented some of the com­

monsense planning ideas presented in [Wilensky, 1983], did perform some goal detec­

tion. PANDORA detected goals when actual or projected states conflicted with goals or 

plans. Also, certain goals were attached to the frames describing situations. For exam­

ple, the goal of "find out about the world" was attached to the "morning" frame, which 

meant that PANDORA would try to read a newspaper in the morning. However, except 

for very simple frames, PANDORA did not address the problem of when is it proper to 

invoke frames and their associated goals. Also, because PANDORA existed in a self­

contained simulated world, it did not address the problem of detecting goals when the 

system must interact with real users. 

In order to interact intelligently with its environment, an agent needs knowledge 

about its environment. Such knowledge is needed for the agent to respond properly to 

stimuli, which for a rational agent is equivalent to detecting the right goals and carrying 

out the right plans. In the case of a.1 agent that is a computer consultation system, the 

environment consists of a discourse with the user on the system's domain of expertise. 

Thus, the intelligent agent needs to have information about its domain of expertise and 

about its user. A computer consultation system could not be built without some informa­

tion about its domain; however, information about its user is less commonly found in 

such systems. Yet, a model of the user is essential for a computer consultation system 

that attempts to embody an intelligent agent. 

This thesis addresses the problem of building a natural language computer consulta­

tion system that behaves as an intelligent agent The ideas presented in this thesis are 

implemented in the UC (UNIX Consultant) system, which embodies an intelligent agent. 

3. UC, the UNIX Consultant 

UC (UNIX Consultant) is an interactive natural language consultant system for the 

UN1X operating system. UC is able to provide information about how to do things in 

UNIX, provide definitions about UNIX or general operating system terminology, and 

provide help in debugging problems with using UNIX. 

The main purpose of the UC project is to investigate fundamental issues of AI in 

natural language processing, knowledge representation, planning and problem solving, 

and building integrated natural language interfaces. The UC program serves as a test-bed 

for ideas on how to approach these problems. Successful ideas are carried over to 

succeeding versions of UC, while unsuccessful ideas are rethought. Although UC is 

completely implemented, it is still only an extendible prototype and does not contain 

enough knowledge to be usable in the real world. Indeed, producing a usable product is 

an inappropriate pursuit for a research institution; so, UC is only implemented in enough 

breadth to validate its research ideas and to show that a real system might actually be 
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constructed along the lines suggested by the research. 

A short overview of UC follows. For more details on other aspects of UC not dis­

cussed in this thesis, the reader is referred to [Wilensky et al., 1986] and [Wilensky et al., 

1984]. 

In a typical UC session, the user types questions in English to UC, and UC responds 

to the user in English. A schematic diagram of the flow of information among UC' s vari­

ous components is shown in Figure 1.1. The input to UC is analyzed by the ALANA 

language analysis component of UC, which produces a semantic representation of the 

input. This representation is in the form of a KODIAK network (see Appendix A). Next, 

UC's Concretion Mechanism performs concretion inferences ([Wilensky, 1983] and 

[Norvig, 1983]) based on the semantic network. Concretion is the process of inferring 

more specific interpretations of the user's input than might strictly be correct on a logical 

basis. Such inferences might be motivated by the context of the utterance or by cultur­

ally accepted usage biases. After concretion, the modified KODIAK network is passed to 

PAGAN, UC's goal analysis component. PAGAN deduces the user's actual goals. This 

includes inferring the user's high-level goals as well as the user's immediate goals. 

PAGAN also handles phenomena such as indirect speech acts. 

After the initial analysis of the user's input. the UCEgo component of UC decides 

how UC should respond. UCEgo is the component of UC that implements an intelligent 

agent. It first determines what UC's own goals should be, then formulates a plan to 

achieve these goals, and finally carries out this plan. UCEgo detects its own goals based 

on the present situation, which may include such varied factors as the user's goals, the 

user's utterances, as well as UC's own goals, knowledge, and internal state. 

Part of UCEgo's response may involve calling on the services of the UCPlanner 

component of UC. UCPlanner is a UNIX domain planner that creates plans for doing 

things in UNIX. Another component of UC that may be called by UCEgo is UCExpress. 

UCExpress uses the process of answer expression to refine the communicative plans pro­

duced by UCEgo. First, UCExpress prunes extraneous concepts from the answer, either 

when the user already knows the concepts, or when the concepts either are already part of 

the conversational context. Next UCExpress uses specialized formats such as similes and 

examples to express information to the user in a clear and concise manner. The result of 

UCExpress' processing is an annotated KODIAK network that is ready for generation 

into English by the UCGen tactical level generator. 

Another important part of UC is KNOME, the user modeling component. KNOME 

encodes the knowledge and beliefs of the user. It also deduces what the user knows and 

believes based on UC's conversation with the user. KNOME also models the extent of 

UC's own knowledge of UNIX. This is useful in differentiating between actual user 

misconceptions and cases in which UC's knowledge base is incomplete. 

This thesis is mainly concerned with the UCEgo, UCExpress, and KNOME com­

ponents of UC. UCEgo is composed of two parts, a goal detector and a plan 

selector/executor. The goal detector detects appropriate goals for UC according to the 

situation. The plan selector/executor then takes these goals and plans for them, eventu­

ally executing the plans. Goal detection in UCEgo is described in Chapter III, and plan 
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Figure 1.1. Flow of information among UC components. 
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selection/execution is discussed in Chapter IV. Refinement of the plans by UCExpress is 

described in Chapter V, and KNOME, the user modeling component, is described in 

Chapter IT. 

3.1. A Session with UC 

To see how UCEgo works in more detail, consider the following trace of a UC ses­

sion. In the trace, actual output from UC to the user is shown in Bold Courier font, 

trace output from UC is shown in Courier font, and input from the user to UC is 

shown in Oblique Courier font. Explanations of the processing are in normal font 

and are separated by half lines from the actual trace. 

In the trace output, an"&" represents an abbreviation by UC of a concept that was 

completely specified earlier in the trace (UC marks previously printed concepts so that it 

will know when it can abbreviate). Where parts of the trace are left out for brevity, this 

is indicated by three dots. In order to fit the trace on the page, the indentation of some of 

the LISP forms were adjusted by hand. These conventions will be used throughout the 

rest of this thesis for trace output from UC. 

The following trace demonstrates what UC can do, concentrating on the capabilities 

of the UCEgo, KNOME, and UCExpress components. In the trace, the user asks UC six 

questions. The somewhat lengthy trace of processing the user's first question illustrates 

some of the more basic capabilities of the system, including: how KNOME deduces what 

the user knows from the user's query; how UCEgo detects goals, plans for those goals, 

and executes the resultant plans; and how UCExpress refines those plans through the pro­

cess of answer expression. 

The next five examples demonstrate some of the more exotic capabilities of UC. 

The second query shows UC correcting a user misconception, and the third example 

illustrates the use of an example format by UCExpress to more clearly convey informa­

tion to the user. UC's reply to the user's fourth question shows UC volunteering infor­

mation to the user, and the user's followup question elicits an answer in UCExpress' 

simile format. Finally, the last example shows UCEgo refusing to help the user with an 

unethical request. 

Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type 'AD' or' (exit)'. 

Hi. 
How can I help you? 

This first user query is used to show some of the more basic features of UC. 
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# How can I find out the protection of a file? 

The parser produces: 

(ASKlO (listenerlO = UC) 

(speaker10 = *USER*) 

(asked-for10 = 

(QUESTION10 (what-is10 

(INFORMATION-ACTIONO? 

(actor0-1 = *USER*) 

(INFORMATION-ACTION-effectO 

(INFORMATION-EFFECT1? 

(desired-info1 = 

(ACTION14? (actor14 

(STATE-OF-FILEO (file-stateO = FILE-PROTECTION1) 

(state-file0-0 = FILE4?))) 

*USER*)))))) 

(informantl = (actor0-1 aspectual-of 

(INFORMATION-ACTIONO? &))))) 

(cause0-0 = (ACTION14? &))) 

The first step in UC's processing is done by UC's parser/understander component which 

produces a KODIAK semantic network representation of the meaning of the user's utter­

ances. The KODIAK representation system used in UC is described in Appendix A. The 

above linearized form of KODIAK represents the fact that the user (*USER*) has asked 

(ASKlO) UC a question about what is the referent of ACTION14. ACTION14 is the 

cause of INFORMA TION-ACTIONO, which represents the user finding out the file­

protection (FILE-PROTECTIONl) state (STATE-OF-FILEO) of some file (FILE4). 

UCEgo detects the following concepts: 

FILE-PROTECTIONl 

and asserts the following concept into the database: 

(user-knows6 (uk-fact6 = FILE-PROTECTIONl) 

(uk-user6 = *USER*) 

(uk-truth-val6 =TRUE)) 

KNOME: Asserting *USER* knows FILE-PROTECTIONl 

KNOME: Since FILE-PROTECTIONl is a FILE-PROTECTION, 

asserting *USER* knows FILE-PROTECTION 

KNOME: FILE-PROTECTION has difficulty MUNDANE, so deducing: 

KNOME: ruling out *USER* = NOVICE 

KNOME: *USER* is SOMEWHAT-UNLIKELY to be BEGINNER 

=> likelihood(*USER* = BEGINNER) = UNCERTAIN 

KNOME: *USER* is SOMEWHAT-LIKELY to be INTERMEDIATE 

=> likelihood(*USER* = INTERMEDIATE) = SOMEWHAT-LIKELY 

KNOME: *USER* is LIKELY to be EXPERT 

=> likelihood(*USER* = EXPERT) = LIKELY 
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K.."l'\lOME, the user modeling component of UC, is described in Chapter II. K.NOME 

models the user's knowledge in the UNIX domain. It infers individual facts about what 

the user does or does not know from what the user says, and then combine this evidence 

to figure out the user's level of expertise in using UNIX. Here, from the fact that the user 

correctly uses the concept of FILE-PROTECTION in a sentence, K.NOME infers that the 

user must know that concept. This deduction allows KNOME to make further inferences 

about the user's level of expertise in the UNIX domain. Since FILE-PROTECTION is a 

concept of a mundane difficulty level, KNOME infers that the user could not be a novice, 

is somewhat unlikely to be a beginner, is somewhat likely to be an intermediate, and is 

likely to be an expert (actually, although an expert is likely to know about file protection, 

an expert would also know how to change a file's protection and would not ask such a 

question; this latter inference appears later in the trace). 

Ordinarily, the inferences that KNOME makes about the user's level of expertise are 

immediately useful to UC in forming its answer. However, in this particular case, these 

inferences will not be used until UC processes the user's next query. 

The goal analyzer produces: 

((HAS-GOAL-gaO 
(planner-gaO = *USER*) 

(goal-gaO = (KNOW-gaO? (knower-gaO = *USER*) 
(fact-gaO= (ACTION14? &)))))) 

Based on the fact the user asked UC a question about how to do something, UC's goal 

analysis component infers that the user's goal is to know ACTION14, which represents 

how to find out the protection of a file. 

UCEgo: suggesting the plan: 

(PLANFOR73 (goals73 = (HELPS (helpeeS *USER*) 
(helperS UC))) 

(plan73 = (SATISFY6 (need6 (KNOW-gaO?&)) 

(actor6 = UC) ) ) ) 

based on the situation: 

(UC-HAS-GOAL63 (status63 ACTIVE) (goal63 = (HELPS & ) ) ) 

(HAS-GOAL-gaO &) 

UCEgo suggests specific plans when it encounters certain specialized situations. In this 

case, UCEgo suggests that a plan (PLANFOR73) for helping the user is to satisfy the 

user's goal of knowing (KNOW-gaO) how to find out the protection of a file. In general, 

UCEgo suggests the plan of helping the user by satisfying the user's goal of knowing, 

whenever UCEgo encounters a situation in which UC has the goal of helping the user, 

and the user has the goal of knowing something. UC's goal of helping the user 
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originated at the start of the session from UC's role theme of being a UNIX consultant. 

Themes and the goals which arise from themes are discussed in Chapter III, Section 2. 

The suggestion of plans for carrying out these goals is described in Chapter IV, Section 

2. The actual detection of situations is performed by if-detected daemons, which are 

described in Chapter VI. 

UCEgo detects the following concepts: 

(HAS-GOAL-gaO &) 
and asserts the following concept into the database: 

(user-knows7 (uk-user7 = *USER*) 

(uk-truth-val7 = FALSE) 

(uk-fact7 = (ACTION14? &))) 

KNOME: Asserting *USER* does not know ACTION13? 

The fact that the user wants to know how to find out the protection of a file allows 

KNOME to infer that the user does not know how. Since "how to find out the protection 

of a file" is a description of an object rather than an actual object, KNOME does not 

immediately use this fact to infer the user's level of expertise as it did when it inferred 

that the user knew the concept of file protection. Later, after UC identifies the referent of 

the description, KNOME will then make additional inferences about the user's level of 

expertise. 

UCEgo detects the following concepts: 

(UC-HAS-GOAL63 &) 
(PLANFOR73 & ) 
and asserts the following concept into the database: 

(UC-HAS-INTENTION9 (intention9 = (SATISFY6 &)) (status9 ACTIVE)) 

Here, UCEgo adopts the intention of carrying out the plan for helping the user (inten­

tions are described in Chapter IV, Section 3.1). An intention has two possible meanings 

depending upon the type of plan. If the plan is a series of actions, then the intention 

means that UCEgo has scheduled the plan for execution during its plan execution stage 

(see Chapter IV, Section 3). On the other hand, if the plan is to satisfy some state (as in 

this case), then the intention means that UCEgo will adopt that state as a sub-goal and 

continue its planning process. This is shown below: UCEgo adopts the sub-goal of hav­

ing the user know how to find out the protection of a file. 

UCEgo: detected the goal: 

(UC-HAS-GOAL66 (goal66 = (KNOW-gaO?&))) 

from the situation: 
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(UC-HAS-INTENTION9 &) 

UCEgo detects the following concepts: 

(PLANFOR-gal (goals-gal= (INFORMATION-EFFECTl? &)) 

(plan-gal= (ACTION14? &))) 

(UC-HAS-GOAL66 &) 
and asserts the following concept into the database: 

(UNIX-planner2 (user-goals2 = (INFORMATION-EFFECTl? &))) 

Since UC has the goal of knowing a plan for something, it calls the UNIX domain 

planner component of UC in case the domain planner can produce a plan for UC. This 

type of reasoning is described in Chapter IV, Section 3.2. 

The planner is passed: 

((INFORMATION-EFFECTl? &)) 

The planner produces: 

(PLANFOR460 (goals460 = (INFORMATION-EFFECTl? &)) 

(plan460 = UNIX-LS-1-COMMANDO)) 

(LS-1-HAS-FORMATO 
(LS-1-HAS-FORMAT-comrnandO = UNIX-LS-1-COMMANDO) 

(LS-1-HAS-FORMAT-formatO = 

(LS-1-FORMATl (LS-1-FORMAT-stepl = 

(SEQUENCE30 (next30 
(step30 

-1) 

ls)))))) 

(HAS-EFFECT120 
(command-of-effect120 

(effect-of-commandl20 
UNIX-LS-1-COMMANDO) 

(LIST-EFFECT10 
(list-objectlO = FILE-PROTECTIONO?)))) 

(HAS-OPTION20 (comrnand-of-option20 = UNIX-LS-1-COMMANDO) 

(option20 = -1-0PTIONO)) 

(HAS-COMMAND-NAME180 

(HAS-COMMAND-NAME-named-obj180 = UNIX-LS-1-COMMANDO) 

(HAS-COMMAND-NAME-name180 = (SEQUENCE30 &))) 

(LS-1-FORMATO (LS-1-FORMAT-stepO = (SEQUENCE30 &))) 

The UNIX domain planner produces the plan of using the Is -1 command. 

UCEgo: suggesting the plan: 

(PLANFOR74 
(goals74 = (KNOW-gaO?&)) 

(plan74 = (TELL6 (effect6 = (STATE-CHANGEl 
(final-statel 

(listener6-0 = *USER*) 

(speaker6-0 = UC) 

(K."JOW-gaO? &) ) ) ) 
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(proposition6 = (PLANFOR460 &))))) 

based on the situation: 

(ANSWER-FOR4 (answer4 = (PLANFOR460 &)) 

(query4 = (ACTION14? &))) 

(UC-HAS-GOAL66 &) 

Based on the fact that PLANFOR460 (representing using the Is -1 command) is an answer 

for the query of how to find out the protection of a file, UCEgo suggests the plan of tel­

ling the user the answer in order to achieve the sub-goal of having the user know how to 

find out the protection of a file. 

UCEgo detects the following concepts: 

(ANSWER-FOR4 &) 

(KNOW62 (knower62 = *USER*) 
(fact62 = (ACTION14? &)) 

(truth-val62 =FALSE)) 

and asserts the following concept into the database: 

(user-knows8 (uk-fact8 = (PL~~FOR420 &)) 

(uk-user8 = *USER*) 
(uk-truth-val8 & FALSE)) 

KNOME: Asserting *USER* does not know PLANFOR460 

Based on the previous inference that the user does not know how to find out the protec­

tion of a file and the fact that using Is -1 is a plan for finding that out, KNOME infers that 

the user does not know that Is -1 is a plan for finding out the protection of a file (the 

meaning of PLANFOR460). 

UCEgo detects the following concepts: 

(UC-HAS-GOAL66 &) 

(PLANFOR7 4 & ) 

and asserts the following concept into the database: 

(UC-HAS-INTENTIONlO (intentionlO = (TELL6 &)) 

(statuslO =ACTIVE)) 

UC adopts the intention of carrying out the plan of telling the user the answer. 

UCEgo detects the following concepts: 

(UC-HAS-INTENTIONll &) 

and asserts the following concept into the database: 

(UCexpress3 (gen-prop3 = (TELL6 &))) 
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Telling the user involves passing the proposition to the UCExpress component, which 

does answer expression. UCExpress is described in Chapter V. 

UCEgo detects the following concepts: 

(KNOW63 (knower63 = *USER*) 

(fact63 = (PLANFOR460 &)) 

(truth-val63 =FALSE)) 

and asserts the following concept into the database: 

(user-knows9 (uk-fact9 = UNIX-LS-1-COMMANDO) 

(uk-user9 = *USER*) 

{uk-truth-val9 =FALSE)) 

KNOME: Asserting *USER* does not know UNIX-LS-1-CO~~O 

KNOME: Since UNIX-LS-1-COMMANDO is a UNIX-LS-1-COMMAND, 

asserting *USER* does not know UNIX-LS-1-COMMAND 

KNOME: UNIX-LS-1-CO~~ has difficulty MUNDANE, so deducing: 

KNOME: ruling out *USER* = EXPERT 

!<'.NOME: *USER* is SOMEWHAT-LIKELY to be BEGINNER 

=> likelihood(*USER* = BEGINNER) = SOMEWHAT-LIKELY 

KNOME: *USER* is SOMEWHAT-UNLIKELY to be INTERMEDIATE 

=> likelihood(*USER* = INTERMEDIATE) = UNCERTAIN 

Since the user does not know the main usage of ls -1 (the meaning of a PLAr-..TfOR), 

KNOME can infer that the user must not be familiar with ls -1. Based on this, KNOME 

makes further inferences about the user's level of expertise. Since the user does not 

know ls -1, KNOME infers that the user cannot be an expert, is somewhat unlikely to be 

an intermediate, and is somewhat likely to be a beginner. 

Express: now expressing the PLM~FOR: 

(PLANFOR460 &) 

Express: expressing a complete plan, so expanding the action 

PLANFOR460 into its subcomponents: 

TYPE-ACTIONO 

In expressing the answer, UCExpress chooses to compress the information in the plan of 

''use the UNIX ls -1 command which has the format of ls followed by -1'' into the more 

succinct subaction, "type 'ls -I'," since the shoner answer is easier to read and under­

stand. 

Express: not expressing INFORMATION-EFFECTl?, 
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since it is already in the context. 

UCExpress concludes that it does not have to express the concept, INFORMATION­

EFFECfl, which represents the phrase "find out the protection of a file," since this is 

already part of the context of the dialog. 

The generator is passed: 

(TELL6 &) 

The actual translation of concepts into English is done by the tactical level generator 

component of UC. 

Type 'ls -1'. 

The next query illustrates how UC corrects user misconceptions. 

# What does ls -p do? 

The parser produces: 

(ASKll (listenerll = UC) 
(speakerll = *USER*) 

(asked-forll = (QUESTIONll (what-isll = STATE13?)))) 

(HAS-EFFECT21? (effect-of-command21 STATE13?) 

(command-of-effect21 = UNIX-LS-COMMANDO)) 

(HAS-OPTION3 (option3 = -p-OPTIONO) 

(command-of-option3 = UNIX-LS-COMMANDO)) 

The parser/understander interprets the user's question as a query about the effects 

(STATE13) ofUNIX-LS-COMMANDO which has a -p option . 

• 
• 
• 

The processing up to this point is similar to the previous example: the goal analysis 
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component infers that the user's goal is to know the effects of Is -p, and UCEgo adopts 

the user's goal of knowing as a sub-goal of helping the user (UC-HAS-GOAL67). 

UCEgo detects the following concepts: 

(HAS-EFFECT21? &) 

(UC-HAS-GOAL67 &) 
and asserts the following concept into the database: 

(UC-find-effectsl (unknown-commandl = UNIX-LS-COMMANDO)) 

UC-find-effects is a procedure which finds the effects of UNIX commands. 

UCEgo: trying to find effects for UNIX-LS-COMMANDO 

UCEgo: unknown relation: 

(HAS-OPTION3 &) 
UCEgo: User has the misconception: 

(HAS-MISCONCEPTIONl (confusedl = *USER*) 

(misconceptionl (HAS-O?TION3 &))) 

since 
(KNOW42 (fact42 (ALL3 (such-that3 

(HAS-OPTIONO? (optionO = (ALL3 &)) 

(command-of-optionO = 
SIMPLE-COMMANDO?))) 

(all-type3 

(knower42 = UC)) 

and since the user believes: 

OPTIONO?))) 

(HAS-OPTION3 (option3 = -p-OPTIONO) 

(command-of-option3 = UNIX-LS-COMMANDO)) 

which involves an unknown OPTION 

In the process of finding the effects of the UNIX-LS-COMMANDO, UCEgo notices that 

it has an option (HAS-OPTION3) which does not have a analog in UC's knowledge base. 

This, in conjunction with the fact that UC knows all of the options of simple commands 

(of which ls is a member), tells UC that the user has a misconception. What UC knows is 

represented by KNOME using meta-knowledge, such as the above fact to model the limi­

tations of UC's own knowledge. Meta-knowledge is described in Chapter II, Section 4. 

Correcting user misconceptions is described in Chapter III, Section 4. 

UCEgo: suggesting the plan: 

(PLANFOR76 
(goals76 = (HELPS&)) 

(plan76 = 

(SATISFY8 (need8 = 
(KNOW67? (knower67 *USER*) 
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(fact67 = (NEGATEl (negativel = 
(HAS-OPTION3 &)))))) 

(actorS= UC)))) 

based on the situation: 

(UC-HAS-GOAL63 &) 

(HAS-MISCONCEPTIONl &) 

To satisfy the goal of helping the user, UCEgo suggests the plan of having the user know 

that ls does not have a -p option . 

• 
• 
• 

The processing here follows the same pattern as in the previous example: U CEgo adopts 

the intention of carrying out the pian, passes the proposition to UCExpress which passes 

the concepts to the tactical generator. 

ls does not have a -p option. 

UC's response to the next user question shows how UCExpress uses an example format 

to more clearly express information to the user. 

# How can I add write permission to a file? 

The parser produces: 

(ASK12 
(listenerl2 = UC) 

(speakerl2 = *USER*) 

(asked-forl2 = 
(QUESTION12 (what-isl2 = (ACTIONlS? (actorlS 

(CHANGE-PROT-FILE-ACTIONO? 

*USER*)))))) 

(ch-prot-effectO = (CHANGE-PROT-FILE-EFFECTO? 

(change-protO FILE-PROTECTION2) 

(change-fileO =FILES?))) 

(actor0-2 = *USER*) 

(cause0-1 = (ACTIONlS? &))))) 

(HAS-PROT-VALUEl (value-protection-typel = ADD-STATUS) 

(prot-type-argl-0 = FILE-PROTECTION2)) 

(HAS-FILE-PROTECTION2 (prot-file2 FILES?) 

(file-prot2 = FILE-PROTECTION2)) 
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(HAS-ACCESS-TYPEl (access-protection-typel = WRITE-PROT) 

(prot-type-argl = FILE-PROTECTION2)) 

UCEgo detects the following concepts: 

FILE-PROTECTION2 
and asserts the following concept into the database: 

(user-knowsll (uk-factll = FILE-PROTECTION2) 

(uk-userll = *USER*) 

(uk-truth-valll =TRUE)) 

KNOME: Asserting *USER* knows FILE-PROTECTION2 

KNOME: FILE-PROTECTION2 is a FILE-PROTECTION, but KNOME 

already knows that *USER* knows FILE-PROTECTION, 

so not making any more deductions. 

KNOME already inferred from the user's first query that the user knows the concept of 

FILE-PROTECTION, so KNOME does not make any additional inferences about the 

user's level of expertise this time . 

• 
• 
• 

The processing here is standard: the goal analyzer determines that the user wants to know 

how to add write permission to a file, the domain planner is called and returns with the 

plan of using the chmod command, and UCEgo implements the plan of telling the user 

this information. 

KNOME: Asserting *USER* does not know UNIX-CHMOD-COMMANDO 

KNOME: Since UNIX-CHMOD-COMMANDO is a UNIX-CHMOD-COMMAND, 

asserting *USER* does not know UNIX-CHMOD-COMMAND 

KNO~£: UNIX-CHMOD-COMMAND has difficulty COMPLEX, so deducing: 

KNOME: *USER* is LIKELY to be BEGINNER 

=> likelihood(*USER* = BEGINNER) = VERY-LIKELY 

KNOME: *USER* is SOMEWHAT-LIKELY to be INTERMEDIATE 

=> likelihood(*USER* = INTERMEDIATE) = SOMEWHAT-LIKELY 

Based on the fact that the user does not know how to add write permission to a file, and 

hence does not know that the UNIX chmod command is a plan for doing this, KNOME 

can infer that the user is not familiar with the chmod command. This allows KNOME to 

infer that the user is likely to be a beginner and somewhat likely to be an intermediate. 
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Express: now expressing the PLANFOR: 

(PLANFOR330 & ) 

Express: creating an example for the incomplete plan, CHMOD-FORMATO 

Express: choosing a name, foo, for an example file. 

Express: selecting USER-PROT --print name, u, 

to fill in a parameter of the example. 

UCExpress is passed PLANFOR330 to express. PLANFOR330 is an incomplete plan, 

because the user did not specify either the user type (either user, group, or other) to 

which chmod should add write permission or the name of the file argument. By consult­

ing KNOME, UCExpress can infer that the user does not know the command format of 

chmod. In order to communicate the format to the user, UCExpress uses an example. In 

order to create an example, UCExpress must fill in the unspecified parts of the plan by 

choosing a name for the file and a user type for the protection. When and how to use 

specialized formats such as examples to inform the user is described in Chapter V, Sec­

tion 3. 

Express: created the example(s): 

( (TELLlO 
(speakerl0-0 = UC) 
(listenerl0-0 = *USER*) 

(propositionlO = 
(EXAMPLEO 

(exarnpleO = (PLANFOR330-0 
(goals330-0 = 

(CHANGE-PROT-FILE-EFFECT0-0? ... )) 

(plan330-0 = (TYPE-ACTIONl 
(speakerl-4 = *USER*) 

(type-stringl = 
(CHMOD-FORMAT0-0 ... )))))))))) 

Express: not expressing CHANGE-PROT-FILE-EFFECTO?, 

since it is already in the context. 

This concept corresponds to the phrase "add write permission to a file." Since UCEx­

press has pruned this concept (i. e. marked the concept as not needing generation), the 

tactical generator, upon checking that this concept is unambiguous (i. e. there are not 

other EFFECTs being generated), is able to omit the concept. This shortens ''To add 

write permission to a file, use chmod" to just "Use chmod." Pruning by UCExpress is 

described in Chapter V, Section 2. 



The generator is passed: 

{TELL9 & ) 

The generator is passed: 

{TELLlO &) 
Use chmod. 
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For examp1e, to add individua1 write permission to the fi1e named 

foo, type 'chmod u+w foo' . 

In the next example, UCEgo takes the initiative in the conversion to volunteer informa­

tion to the user. 

t Is chin logged into the network? 

The parser produces: 
{ASK13 {asked-forl3 = 

{QUESTION13 
(wh<~t-is13 

{STATE-OF-USERO? 
{user-stateO 

{state-userO 
{listenerl3 = UC) 

{LOGGED-INTO-NETWORKl 
{onto-networkl = NETWORK2))) 

USER9))))) 

{speaker13 =*USER*)) 

{HAS-USER-NAME2 {user-name2 = chin) {named-user2 USER9)) 

• 
• 
• 

KNOME: Asserting *USER* does not know STATE-OF-USERO? 

• 
• 
• 

UCEgo detects the following concepts: 

{UC-HAS-GOAL70 &) 

and asserts the following concept into the database: 

{UC-is-statel (is-statel = (STATE-OF-USERO? &))) 

UC-is-state is a procedure for determining state information for users. Since access to 

UNIX was not implemented for this version of UC, UC-is-state always claims that UC 

does not know the information. 
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UCEgo: UC does not know STATE-OF-USERO? 

UCEgo: detected the goal: 

(UC-HAS-GOAL71 (goal71 = (KNOW7S? (knower7S = UC) 
(fact7S = (STATE-OF-USERO? &))))) 

from the situation: 
(KNOW74 (knower74 = UC) 

(truth-val74 =FALSE) 

(fact74 = (STATE-OF-USERO? &))) 

(UC-HAS-GOAL70 &) 

Since UC has the goal of having the user know STATE-OF-USERO, and UC does not 

know this information, UCEgo adopts the meta-goal of UC knowing this information. 

Meta-goals are described in Chapter ill, Section 3. 

UCEgo detects the following concepts: 

(UC-HAS-GOAL7l &) 

and asserts the following concept into the database: 

(UC-is-state2 (is-state2 = (STATE-OF-USERO? &))) 

UC-is-state is called whenever UC has the goal of knowing state information for a user. 

Previously UC-is-state was called, since UC had the goal of having the user know. Now 

UC has the goal of having UC know, so UC-is-state is called again. 

UCEgo: suggesting the plan: 

(PLANFOR81 (plan81 = (APOLOGIZE2 (apology2 = (KNOW74 &)) 

(listener2-3 = *USER*) 

(speaker2-3 = UC))) 

(goals81 = (BE-POLITES (polite-toS *USER*) 

(is-politeS = UC)))) 

based on the situation: 

(KNOW74 &) 
(HAS-GOAL-ga3 &) 

(UC-HAS-GOAL6l (status61 ACTIVE) (goal61 (BE-POLITES & ) ) ) 

Since UC does not know what the user wants to know, and UC wants to be polite to the 

l!Ser, UCEgo suggests the plan of apologizing to the user for not knowing. 

UCEgo detects the following concepts: 

(UC-HAS-GOAL61 &) 

(PLANFOR81 &) 
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and asserts the following concept into the database: 

(UC-HAS-INTENTION17 (intention17 ~ (APOLOGIZE2 &)) 

(status17 ~ACTIVE)) 

UCEgo detects the following concepts: 

(UC-HAS-INTENTION17 &) 

and asserts the following concept into the database: 

(UCexpress6 (gen-prop6 ~ (APOLOGIZE2 &))) 

Express: not expressing STATE-OF-USERO?, 

since it is already in the context. 

The generator is passed: 

(APOLOGIZE2 & ) 

I'm sorry, I do not know that. 

Since UCExpress marked STATE-OF-USERO as not needing generation, the tactical 

generator is able to consider using the pronoun "that" in place of STATE-OF-USERO. 

Since UCExpress has not actually altered the conceptual network, but only marked 

STATE-OF-USERO as not needing generation, the generator stili has enough information 

to generate the full sentence, if the use of a pronoun were to be ambiguous. 

At this point, UC still has the goal of knowing whether chin is logged into the network, 

although UCEgo does not know of any plans for achieving this goal. So UCEgo adopts 

the meta-goal (shown below) of finding out a plan for achieving this goal. This will 

eventually lead UC to find a plan for finding out whether chin is logged into the network 

and then to volunteer this information to the user. 

UCEgo: do not know a single planfor the foreground goal: 

(UC-HAS-GOAL71 &) 

so adding the meta-goal: 

(UC-HAS-GOAL72 (goal72 (KNOW76? (knower76 ~ UC) 

(fact76 = ACTION16?)))) 

(PLANFOR82? (goals82 ~ (INFORMATION-EFFECT2? 

(desired-info2 = (STATE-OF-USERO? &)) 

(inforrnant2 ~ UC))) 

(plan82 ~ ACTION16?)) 

UCEgo detects the following concepts: 

(PLANFOR82? &) 

(UC-HAS-GOAL72 &) 

and asserts the following concept into the database: 

(UNIX-planner4 (user-goals4 = (INFORMATION-EFFECT2? &))) 

UCEgo calls the domain planner to produce a plan for achieving UC's goal. 



The planner is passed: 

((INFORMATION-EFFECT2? &)) 

The planner produces: 
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(PLANFOR490 (goals490 = (INFORMATION-EFFECT2? &)) 

(plan490 = (UNIX-RWHO-COMMANDO (rwho-actorO 

(RWHO-HAS-FORMATO 

(RWHO-HAS-FORMAT-commandO = (UNIX-RWHO-COMMANDO &)) 

(RWHO-HAS-FORMAT-formatO = 

(RWHO-FORMATO (RWHO-FORMAT-stepO = rwho)))) 

(HAS-EFFECT180 

(command-of-effectl80 (UNIX-RWHO-COMMANDO &)) 

(effect-of-commandl80 = (LIST-ACTIONllO 

UC)))) 

(list-locllO ~ TERMINAL3) 

(list-objsllO = USER-LOGIN-TIMEl?)))) 

(HAS-COMMAND-NAME200 

(HAS-COMMAND-NAME-named-obj200 = (UNIX-RWHO-COMMANDO &)) 

(HAS-COMMAND-NAME-name200 = rwho)) 

The domain planner returns the plan of using the rwho command to find out if chin is 

logged into the network. 

UCEgo detects the following concepts: 

(UC-HAS-GOAL66 &) 

(PLANFOR450 & ) 

and asserts the following concept into the database: 

(UC-HAS-INTENTION21 (intention21 = (UNIX-RWHO-COMMANDO &)) 

(status21 =ACTIVE)) 

UCEgo would like to carry out the plan of using the rwho command, but cannot, since 

UC does not presently have a UNIX interface. 

UCEgo: suggesting the plan: 

(PLANFOR84 
(goals84 = (HELPS&)) 

(plan84 = (SATISFY12 (actor12 = UC) 

based on the situation: 

(UC-HAS-GOAL63 &) 

(PLANFOR490 &) 

(HAS-GOAL-ga3 &) 

(need12 = (KNOW69? (fact69 = (PLANFOR490 &)) 

(knower69 =*USER*)))))) 
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Based on the fact that UC wants to help the user (UC-HAS-GOAL63), the user wants to 

know something (HAS-GOAL-ga3), there is a plan for finding this out (PLMTFOR490), 

and the user does not know the plan (not shown), UC suggests that a plan (PLANFOR84) 

for helping the user is for UC to let the user know the plan. This is an example of when 

UCEgo decides to volunteer information to the user. The user did not specifically ask 

UC how to find out if chin is logged into the network; rather the user only asked UC 

whether chin is logged into the network. UCEgo takes this opportunity to teach the user 

something helpful. Note that UCEgo only decides to volunteer this information if it 

believes that the user does not already know the information (as modeled by KNOME). 

Different situations in which a system might want to volunteer information are described 

in Chapter Ill, Section 5 . 

• 
• 
• 

To find out, type 'rwho'. 

This followup query by the user shows the use of a simile format by UCExpress. The 

simile format takes advantage of the user's prior knowledge as modeled by KNOME in 

order to convey information to the user more succinctly. 

# What exactly does rwho do? 

The parser produces: 

(ASK14 (listenerl4 = UC) 

(speakerl4 = *USER*) 

(asked-forl4 = (QUESTION14 (what-isl4 = STATE14?)))) 

(HAS-EFFECT22? (effect-of-command22 STATE14?) 

(command-of-effect22 = UNIX-RWHO-COMMANDl)) 

• 
• 
• 

UCEgo: trying to find effects for UNIX-RWHO-COMMANDl 

the effects are: 

((HAS-EFFECT16-0 
(command-of-effectl6-0 

(effect-of-commandl6-0 

(LIST-ACTION9-0 

(UNIX-RWHO-COMMANDl &)) 

(list-loc9-0 = TERMINAL3-0) 

(list-objs9-0 = 
(ALL8-0 (such-that8-0 = 



(LOGGED-INTO-NETWORK0-0? 

(network-user0-0 = 
(ALLS-0 &) ) 

(via-login0-0 = 
(LOGGED-INTO-MACHINE7-0? 

(logged-on-user7-0 = (ALLS-0 &)) 

(login-tty7-0 = TTYS-0?))) 

(onto-network0-0 = NETWORKl-0))) 

(all-type8-0 = USER8-0?)))))) 

(HAS-EFFECT17-0 
(command-of-effect17-0 = (UNIX-RWHO-COMMANDl &)) 

(effect-of-command17-0 = 
(LIST-ACTIONl0-0 (list-locl0-0 = TERMINAL3-0) 

(list-objsl0-0 = TTYS-0?)))) 

(HAS-EFFECT18-0 

(command-of-effectlS-0 = (UNIX-RWHO-COMMANDl &)) 

(effect-of-commandlS-0 = 

(LIST-ACTIONll-0 (list-objsll-0 = USER-LOGIN-TIMEl-0?) 

(list-locll-0 = TERMINAL3-0))))) 

UCExpress: Found a related command, so creating a comparison 

between UNIX-RWHO-COMMANDl and UNIX-WHO-COMMANDO 

In describing the effects of a command, UCExpress checks to see if there is a related 

command in the command hierarchy which the user already knows (as modeled by 

KNOME) and which can be used to form a comparison with the command about which 

the user asked. If resultant simile is more succinct than simply listing the effects of the 

command directly, then UCExpress uses the simile to convey the knowledge to the user. 

Similes and other explanatory formats are described in Chapter V, Section 3. 

KNOME: Asserting *USER* does not know HAS-EFFECT26 

• 
• 
• 

KNOME: Asserting *USER* does not know UNIX-RWHO-COMMANDl 

KNOME: Since UNIX-RWHO-COMMANDl is a UNIX-RWHO-COMMAND, 

asserting *USER* does not know UNIX-RWHO-COMMAND 

KNOME: UNIX-RWHO-COMMAND has difficulty MUNDANE, so deducing: 

KNOME: asserting *USER* = BEGINNER 

The fact that the user does not know the rwho command, in conjunction with previous 

facts, allows UC to infer that the user is a beginner. 
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• 
• 
• 

rwho is like who, except rwho is for all users on the network. 

The last example, below, shows UC refusing to help the user delete someone else's files. 

# How can I delete Chin's files? 

The parser produces: 

(ASKlS 
(listener15 = UC) 

(speakerlS = *USER*) 

(asked-for15 = (QUESTION15 
(what-is15 = (ACTION17? (actor17 

(DELETE-ACTIONO? 

(del-effectO = (DELETE-EFFECTO? 

(DELETE-EFFECT-final-stateO 

(EXISTSO (exist-objectO = FILE6) 

(existenceO =FALSE))) 

(DELETE-EFFECT-initial-stateO = 

(EXISTS3 (exist-object3 = FILE6) 

(existence3 =TRUE))) 

(del-objectO = FILE6))) 

(actor0-3 *USER*) 

(cause0-2 (ACTION17? & ) ) ) ) ) 

(HAS-OWNERl (ownerl PERSON39) (owned-objl = FILE6)) 

(HAS-NAME27 (name27 = chin) (named-obj27 = PERSON39)) 

• 
• 
• 

UCEgo: suggesting the plan: 

(PLANFOR89 (goals89 = (HELPS&)) 

*USER*)))))) 

(plan89 = (SATISFY14 (need14 = (KNOW-gaS?&)) 

(actor14-1 = UC)))) 

based on the situation: 

(UC-HAS-GOAL63 &) 

(HAS-GOAL-gaS & ) 

As in normal simations, UCEgo suggests the plan of having the user know how to delete 

Chin's files in order to help the user. 
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• 
• 
• 

UCEgo: suggesting the plan: 

(PLANFOR90 
(goals90 = (ACT-ETHICALLYO (actor0-0 = UC))) 

(plan90 = (SATISFYlS (actorlS = UC) 

based on the situation: 

(HAS-OWNERl &) 

(needlS = (PREVENTS (preventerS = UC) 

(prevent-stateS = 

(KNOW-gaS? &) ) ) ) ) ) ) 

(UC-HAS-GOAL62 (status62 =ACTIVE) (goal62 = (ACT-ETHICALLYO &))) 

(PLANFOR-gaB (goals-gaB= (DELETE-EFFECTO? &)) 

(plan-gaB= (ACTION17? &))) 

(HAS-GOAL-gaS & ) 

However, in this particular situation (in which someone wants to know how to delete a 

file owned by someone eise and UC has the goal of acting et.;ically), UCEgo suggests the 

plan of preventing the user from knowing how in order to act ethically. 

UCEgo detects the following concepts: 

(UC-HAS-GOAL62 &) 

(PLANFOR90 & ) 

and asserts the following concept into the database: 

(UC-HAS-INTENTION23 (intention23 = (SATISFYlS &)) 

(status23 =ACTIVE)) 

UCEgo detects the following concepts: 

(UC-HAS-GOAL63 &) 

(PLANFORB9 &) 

and asserts the following concept into the database: 

(UC-HAS-INTENTION24 (intention24 = (SATISFY14 &)) 

(status24 =ACTIVE)) 

UCEgo adopts the intention of carrying out the two plans. 

UCEgo: detected the goal: 

(UC-HAS-GOAL75 (goal75 = (KNOW-gaS?&))) 

from the situation: 

(UC-HAS-INTENTION24 &) 

UCEgo: detected the goal: 

(UC-HAS-GOAL76 (goal76 = (PREVENTS&))) 



from the situation: 
(UC-HAS-INTENTION23 &) 
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UCEgo adopts as sub-goals: the goal of having the user know, and the goal of preventing 

the user from knowing. 

UCEgo detects the following concepts: 

(PLANFOR-ga8 & ) 

(UC-HAS-GOAL75 &) 
and asserts the following concept into the database: 

(UNIX-plannerS (user-goalsS = (DELETE-EFFECTO? &))) 

UCEgo detects the following concepts: 

(UC-HAS-GOAL75 &) 

(UC-HAS-GOAL76 &) 

and asserts the following concept into the database: 

(HAS-PRECEDENCE? 
(greater? = (UC-HAS-GOAL71 

(lesser? 

(goal71 = 
(RESOLVE-GOAL-CONFLICT2 

(conflict-goal-A2 (UC-HAS-GOAL76 &)) 

(conflict-goal-B2 = (UC-HAS-GOAL75 &)))))) 

(UC-HAS-GOAL76 &))) 

Since UC both wants something and wants to prevent it, UCEgo detects a goal conflict. 

So it adopts the meta-goal (UC-HAS-GOAL71) of resolving the conflict (RESOLVE­

GOAL-CONFLICf2). The HAS-PRECEDENCE? relation states that the goal of resolv­

ing the conflict should take precedence over one of the conflicting goals. The HAS­

PRECEDENCES relation below states that resolving the conflict also has precedence 

over the other conflicting goal. 

UCEgo detects the following concepts: 

(UC-HAS-GOAL75 &) 

(UC-HAS-GOAL76 &) 

and asserts the following concept into the database: 

(HAS-PRECEDENCES (lesser8 = (UC-HAS-GOAL75 &)) 

(greater8 = (UC-HAS-GOAL71 &))) 

UCEgo: detected the goal: 

(UC-HAS-GOAL77 &) 

from the situation: 
(UC-HAS-GOAL75 &) 

(UC-HAS-GOAL76 &) 

UCEgo: suggesting the plan: 
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(PLANFOR91 (goals91 = (RESOLVE-GOAL-CONFLICT2 &)) 

(plan91 = (UC-resolve-conflictl 

(goal-Al (UC-HAS-GOAL76 &)) 

(goal-Bl = (UC-HAS-GOAL75 &))))) 

based on the situation: 

(UC-HAS-GOAL77 &) 

UC-resolve-confiict is a procedure which tries to resolve the goal conflict. 

UCEgo: suggesting the plan: 

(PLANFOR92 
(plan92 = (APOLOGIZE3 

(speaker3-3 = UC) 

(apology3 = 
(HAS-ABILITYl (abilityl 

(TELL15 (speakerlS-0 = UC) 

(listenerlS-0 =*USER*))) 

(truth-vall-1 = FALSE) 

(doerl = UC) ) ) 

(listener3-3 =*USER*))) 

(goals92 = (BE-POLITES&))) 

based on the situation: 

(ASK15 &) 

(UC-HAS-GOAL61 &) 

(UC-HAS-GOAL76 &) 

Since UC does not want the user to know something which the user asked about, yet UC 

still wants to be polite to the user, UCEgo suggests the plan of apologizing to the user for 

not be able to tell the user. 

UCEgo detects the following concepts: 

(UC-HAS-GOAL61 &) 

(PLANFOR92 & ) 

and asserts the following concept into the database: 

(UC-HAS-INTENTION25 (intention25 = (APOLOGIZE3 &)) 

(status25 =ACTIVE)) 

UCEgo detects the following concepts: 

(UC-HAS-GOAL71 &) 

(PLANFOR91 & ) 

and asserts the following concept into the database: 

(UC-HAS-INTENTION26 (intention26 = (UC-resolve-conflictl &)) 

(status26 =ACTIVE)) 

UCEgo detects the following concepts: 



-30-

{UC-HAS-INTENTION2S &) 

and asserts the following concept into the database: 

{UCexpresslO {gen-proplO = {APOLOGIZE3 &))) 

UCEgo detects the following concepts: 

(UC-HAS-INTENTION26 &) 

and asserts the following concept into the database: 

(UC-resolve-conflictl &) 

UCEgo: detected conflicting goals: 

(UC-HAS-GOAL76 
(goal76 = 

(PREVENTS (preventerS = UC) 

(prevent-stateS = 

(UC-HAS-GOAL 7 S 
(goal7S = 

(KNOW-gaS? (knower-gaS = *USER*) 

(fact-gaS= (ACTION17? 
(actorl7 

(KNOW-gaS? (knower-gaS = *USER*) 

*USER*) ) ) ) ) ) ) ) 

(fact-gaS= (ACTION17? (actorl6 =*USER*)))))) 

UCEgo: goal, UC-HAS-GOAL76, has higher precedence, 

so resolving goal conflict by discarding the goal, UC-HAS-GOAL7S 

The goal conflict is finally resolved by abandoning one of the conflicting goals. Resolv­

ing goal conflicts is described in Chapter IV, Section 2.5. 

The planner is passed: 

((DELETE-EFFECTO? &)) 

The planner produces: 

(PLANFOR2SO 
(goals2SO = (DELETE-EFFECTO? &)) 

(plan2SO = (UNIX-RM-COMMANDO (rm-fileO = FILE6) 

(UNIX-RM-COMMAND-effectO 

(DELETE-EFFECTO? &))))) 

(HAS-FILE-NAME20 (named-file20 = FILE6) 

(file-name20 = (lisp= nil))) 

(RM-HAS-FORI-iATO 
(RM-HAS-FORMAT-commandO = (UNIX-~~-COMMANDO &)) 

(RM-HAS-FORI-iAT-formatO = 

(RM-FORMATO (rm-file-argO = 
(file-name20 = aspectual-of 

(HAS-FILE-NAME20 &))) 

(RM-FORMAT-stepO = rm) ))) 

(HAS-COMMAND-NAMEOO 

(HAS-COMMAND-NAME-named-objOO = (UNIX-R..t-1.-COM¥~0 &)) 

(HAS-COMMAND-NAME-nameOO = rm)) 
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UCEgo detects the following concepts: 

(ANSWER-FOR9 (answer9 = (PLANFOR250 &)) (query9 

(KNOW83 (knower83 = *USER*) 

(fact83 = (ACTION17? &)) 

(truth-val83 =FALSE)) 

(ACTION17? &) ) ) 

and asserts the following concept into the database: 

(user-knows20 (uk-fact20 = (PLANFOR250 &)) 

(uk-user20 = *USER*) 

(uk-truth-val20 =FALSE)) 

~~OME: Asserting *USER* does not know PLANFOR250 

UCEgo detects the following concepts: 

(KNOW84 (knower84 = *USER*) 

(fact84 = (PLANFOR250 &)) 

(truth-val84 =FALSE)) 

and asserts the following concept into the database: 

(user-knows21 (uk-fact21 = (UNIX-RM-COMMANDO &)) 

(uk-user21 = *USER*) 

(uk-truth-val21 =FALSE)) 

KNOME: Asserting *USER* does not know UNIX-RM-COMMANDO 

KNOME: Since UNIX-RM-COMMANDO is a UNIX-RM-COMMAND, 

asserting *USER* does not know i.JNIX-RH-COMHA.'ID 

The generator is passed: 

(APOLOGIZE3 & ) 

I'm sorry, I cannot tell you. 

UCEgo: do not know a single planfor the foreground goal: 

(UC-HAS-GOAL76 &) 

so adding the meta-goal: 

(UC-HAS-GOAL78 (goal78 (KNOW87? (knower87 = UC) 

(fact87 = ACTION18?)))) 

(PLANFOR93? (goals93 = (PREVENTS&)) (plan93 = ACTION18?)) 

Since UCEgo does not know how to prevent the user from knowing how to delete Chin's 

files, it adopts the meta-goal of finding out a plan for achieving that goal. 

UCEgo detects the following concepts: 

(PLANFOR93? & ) 
(UC-HAS-GOAL78 &) 

and asserts the following concept into the database: 

(UNIX-planner6 (user-goals6 = (PREVENTS&))) 

The planner is passed: 

((PREVENTS & ) ) 

The planner produces: 
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nil 

The domain planner does not know of any plans either. 

4t Good-bye 

• 
• 
• 

Good-bye. 

3.2. Other Approaches to Building Natural Language Consultants 

At about the same time as UC, The UCC system ([Douglass and Hegner, 1982]) 

was built to answer questions about UNIX. UCC stored information about l.JN1X in a 

conventional data-base, and translated user queries into a data-base query language, 

which was then used to retrieve information about UNIX from the data-base. This work 

was continued in the Yucca-II system ([Hegner, 1988] and [McKevitt and Wilks, 1987]. 

Yucca-II is also designed as a data-base of UNIX facts with a separate natural language 

front end. 

More recently, the AQUA system ([Quilici et al., 1985], [Quilici et al., 1986], and 

[Quilici et al., 1987]) uses the paradigm of reminding to recognize user problems as 

being similar to AQUA's experiences prestored in a dynamic episodic memory. Based 

on the similarities, AQUA can classify the user's problem and then construct different 

advice based on the type of problem. 

In a similar vein, SUSI ([Jerrams-Smith, 1986]), USCSH ([Matthews and Biswas, 

1986]), and the SINIX Consultant SC ([Kemke, 1987]), provide direct interfaces to 

UNIX (or SINIX). These systems concentrate on detecting user mistakes or 

inefficiencies as users interact with UNIX (or SINIX), and then either correcting the 

user's mistakes or suggesting more efficient plans. The PASSIVIST and ACTIVIST sys­

tems ([Fischer et al., 1985]) attack the same problem in the domain of using the BISY 

editor. 

The EUROHELP project ([Breuker et al., 1987] and [Breuker, 1987]) has concen­

trated on coaching strategies for teaching the user once the system has detected a user 

problem from monitoring the user in action. A prototype EUROHELP system has been 

implemented for the domain of UNIX-Mail. 

In the domain of the V AXNMS operating system, the WIZARD system ([Shrager, 

1981], [Shrager and Finin, 1982], and [Finin, 1983]) monitors users, and pops up a help 

window when it detects inefficient usage of VMS commands by the user. 
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There are many differences between these systems and UC, both in their approach 

to the domain and in their implementations. For example, the Yucca-II system concen­

trates more on complex domain planning and less on natural language understanding than 

UC. The AQUA system concentrates on a particular aspect of consultation in the ~rrx: 

domain, plan-oriented user misconceptions. The SUS!, USCSH, SC, ACTIVIST, and 

WIZARD systems concentrate on active help in which the systems look over the 

shoulder of the user. Finally, the EUROHELP project has concentrated on coaching stra­

tegies for teaching the user. 

In terms of this thesis, the most important difference between these other systems 

and UC is that the other systems are not implemented as intelligent agents. Although 

some of these systems address some of the same issues as the intelligent agent part of 

UC, none of these systems address all of the issues. So, AQUA and many of the active 

help systems can volunteer advice and/or handle some user misconceptions, but none of 

these systems would ever refuse to help the user when it is inappropriate to do so. Of 

course, one can always put in ad-hoc rules to look for special cases, but such systems 

would have difficulty detecting interactions (both positive and negative) among rules. To 

address these issues in a principled fashion, a system should have its own goals, plans, 

and meta-plans to deal with interactions among its plans and goals. In short, a system 

should be structured as an intelligent agent. 
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Chapter ll 

KNOME: UCEgo's User Modeler 

1. Introduction 

An intelligent agent needs to have a model of its environment in order to act intelli­

gently. In the case of an intelligent agent that plays the role of a consultant, a large part 

of the agent's environment is the client of the consultant. Since the main job of a consul­

tant is to impart knowledge to its client, a consultant system that is an intelligent agent 

needs to have a model of its user's knowledge and beliefs. In particular, an intelligent 

consultant system needs a user model in order to detect situations in which the user's 

knowledge is incorrect (misconceptions) and situations in which the user lacks needed 

information. In such case the intelligent consultant should take the initiative to correct 

the user's misconception or inform the user of the needed information, respectively. 

Besides being useful in volunteering information and correcting misconceptions, a 

model of the user's knowledge allows a natural language interface to: 

1) avoid telling the user something that the user already knows 

2) tailor explanations for the user's level of understanding 

3) utilize the user's background knowledge in interpreting what the user 

says 

The KNOME (KNOwledge Model of Expertise) component provides UC with a 

model of what its users know. KNOME infers specific facts about what a user does or 

does not know from a dialog with the user, and combines this evidence to infer the user's 

level of expertise. Then, KNOME uses this judgment of the user's expertise to predict 

the likelihood that the user might know other facts. KNOME's model of the user's 

knowledge is made available to other components of UC, including UCEgo, UCExpress, 

and PAGAN (the goal analyzer). These components utilize KNOME's model of the 

user's knowledge to respond more intelligently to the user. 

1.1. Some UC Examples 

To see how KNOME can infer a user's level of expertise from a conversation with 

the user, and how this information can be used advantageously by UC in helping the user, 

consider the two UC sessions shown in Figures 2.1 and Figure 2.2. 
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Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type 'AD' or' (exit)'. 

Hi. 
How can I help you? 

# How can I delete a file? 

Use rm. 
For example, to delete the file named foo, type 'rm foo' . 

# What does ruptime do? 

ruptime is used to list the uptime of all machines on the network, 

list the number of all users on them, and list their load average. 

Figure 2.1. UC session with Userl. 

Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type 'AD' or' (exit)'. 

Hi. 
How can I help you? 

# How can I find out the inode of a file? 

Use ls -i. 

# What does ruptime do? 

ruptime is like uptime, except ruptime is for all machines on the 

network. 

Figure 2.2. UC session with user2. 
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The user of the first session, Userl, is apparently a novice who knows very little 

about UNIX. After all, Userl does not even know something as simple as how to delete 

a file (the subject of Userl 's first question). On the other hand, the user in the second 

session, User2, knows what an inode is, a relatively complex UNIX concept. So User2 is 

probably a much more advanced user of UNIX than Userl. KNOME uses this type of 

evidence about particular facts that users know or do not know in order to deduce their 

level of expertise. 

Based on the different levels of expertise of the two users as deduced by KNOME, 

UC is able to provide qualitatively different answers to the two users. In the first answer 

to Userl, KNOME gives an example of the format of the rm command (simply "rm" 

followed by the name of the file to be deleted). UC gives an example of the format to 

Userl, since a user as unsophisticated as Userl probably would not know the format of 

rm. On the other hand, User2 is a more advanced user who undoubtedly already knows 

the format of Is. Hence UC is able to give a very concise answer to User2's first query, 

"Use ls -i," that does not include an example of the format of Is. This illustrates how 

KNOME is used to avoid telling the user something that the user already knows. 

The second query of both users is the same. For the more advanced user, UC was 
nhlo + .... O~?"'la:- +l.o ........ +i"'"n "0-""'anrl :n to ....... s 0~ a Sl.ml"l, .. co ........... .,-A ....... ·lm 0 +l.n+ +\..e 
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more advanced user presumably already knows. Such a simile would not work for 

Userl, since a novice user probably would not know the uptime command, and so could 

not exploit the simile to understand ruptime. KNOME's modeling of the user's 

knowledge allows UC to choose whether or not to use different forms of presentation like 

similes based on whether or not the user will understand them. 

1.2. Problems in Modeling 

There are many difficulties in building and maintaining a model of what the user 

knows. The system must first determine what the user knows, and then represent this 

information internally. To determine the user's knowledge of the domain, the system 

could quiz the user exhaustively. However for most domains, such a quiz would be 

extremely time consuming and most users would not consent to such extensive quizzing. 

Fortunately, users tend to learn domain knowledge in a predictable order, so the system 

can make additional inferences about what a user is likely to know or not know based on 

a partial user model. That is, the user modeling system should be able to predict a user's 

knowledge based on partial information about what the user knows or does not know. 

Exactly which predictions/inferences are allowable is problematic. This is the key prob­

lem for any user modeling system that wishes to take advantage of the order in which 

users typically gain knowledge in a domain. 

Besides the basic question of which inferences are allowable, there is also the prob­

lem of uncertainty. Making inferences about the user based on limited prior knowledge 

about the user is a form of default reasoning. Such default reasoning is not always valid, 

so the system needs to be able to handle the fact that such inferences are uncertain. Usu­

ally this requires that the user modeler be able to judge the certainty of its default infer­

ences. Also, as the system obtains more concrete information, it must be able to update 

its user model. The new information may contradict previous predictions, so 
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maintenance is not simple. 

Another problem concerns the organization of the inferences. Many inferences tend 

to be grouped together, because people tend to go through distinct stages of learning (see 

[Kay and Black, 1985]). People at a particular stage of learning tend to have similar 

knowledge. Once a system has determined its user's level, it can assume that this user 

knows about as much as other users at that level. A good user modeling system needs to 

group such inferences together in a simple and efficient manner. 

Another problem in user modeling is how to represent the model internally. The 

simplest method is the overlay model ([Carr and Goldstein, 1977]) wherein the user's 

knowledge is represented as a subset of the system's knowledge. However, a simple 

overlay model cannot predict what a user might know based on partial information. An 

overlay model does not represent the order in which users typically learn information in a 

domain. What is needed is a model that represents such ordering information in a 

manner useful for prediction of what a user might know based on partial information. 

1.3. Other User Models 

User models have appeared frequently in Intelligent Tutoring Systems (e. g. [Burton 

and Brown, 1976], (Sleeman and Brown, 1982]). [Kass, 1987] provides a survey of user 

models in ITS. Typically, ITS use some variant of the simple overlay model ([Carr and 

Goldstein, 1977]). Overlay models encode the user's knowledge as a subset of the 

system's expert knowledge base. One variant is to encode users as a collection of differ­

ences from the system's built-in expert. Differences may include a lack of user 

knowledge relative to an expert. This is frequently augmented by a library of buggy 

procedures/rules that are common among users (e. g. [Brown and Burton, 1978], 

[Stevens et al., 1979], [Sleeman and Smith, 1981], [Johnson and Soloway, 1984], 

[Anderson et al., 1985], and [Reiser et al., 1985]). These types of user models are not 

designed to predict a user's knowledge based on partial information about what the user 

knows or does not know. This sort of default inference is not so appropriate for ITS 

where the system needs to keep an accurate user model. On the other hand, consultation 

systems usually do not interact with a single user for as much time as tutoring systems, so 

they do not have the time to build a complete user model. In such cases, default reason­

ing is needed. Therefore, consultation systems need a different type of user model than 

is commonly found in ITS. 

An exception is the hierarchical overlay model of USCSH ([Matthews and Biswas, 

1986]) which does some limited prediction. USCSH predicts the user's proficiency for 

parent nodes in the hierarchy by taking a weighted sum of the proficiency ratings of the 

children nodes. This approach allows prediction of highly related topics, but does not 

extend to prediction of the user's knowledge of less related topics. For example, such a 

system could predict that a user has high proficiency in process monitoring when the sys­

tem knows that the user has high proficiency in using the ps, who and kill commands. 

However such a system could not predict the proficiency of the user in an unrelated topic, 

such as using the cat command, based on the system's knowledge of the user's 

proficiency in process monitoring commands. 
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Other user models have been built to model a number of aspects of the user (see 

[Wahlster and Kobsa, 1986] for a survey). For example, Grundy ([Rich, 1979], [Rich, 

1983], and [Rich, 1987]) modeled user personality traits. Grundy used user stereotypes 

to group default inferences about user traits, then used these traits for suggesting books to 

the user for reading. To determine which stereotypes were applicable to a particular user, 

Grundy asked the user for a self description at the start of a session. Individual phrases 

(e. g. self descriptions such as athletic or feminist) would trigger stereotypes that were 

likely to apply to that user. Such an approach worked well for modeling personality 

traits, but does not carry over to modeling domain knowledge. A user's self description 

as a "beginner" often will not coincide with the system's idea of a "beginner." Also, 

stereotype triggers cannot be used to make inferences such as inferring that the user does 

not know something when the user asks about it Stereotype triggers are not sufficient 

for inferring what users know. 

Another use of user models is for representing user preferences. The hotel reserva­

tion system of HAM-ANS ([Hoeppner et al., 1984] and [Morik, 1987]) and the Real 

Estate Agent ([Morik and Rollinger, 1985]) chose different hotel rooms or apartments 

based on users' needs and preferences. These systems expect users to mention at the 

start of their session their requirements and preferences for a room/apartment. Such an 

approach works well in domains where users tend to specify their needs and preferences 

at the start of a session. However this is not the case in consultation domains where users 

are unlikely to mention their level of expertise in the domain at the start of a session. 

Many systems including UC have modeled the user's plans and goals (e. g. [Allen 

and Perrault, 1980], [Carberry, 1983] and [Carberry, 1987], [Litman and Allen, 1984], 

[Johnson and Soloway, 1984], [Wilensky, 1986]). Such systems infer the user's plans 

and goals by matching the user's actions to steps of prestored plans. This type of infer­

ence works well for detecting the user's plans, but does not extend to determining what 

the user does or does not know. 

2. Internal Representation of Users 

KNOME represents what UC believes users know about UNIX. In this sense, 

IC~OME's model of the user is not necessarily meant to accurately model actual users, 

but is meant to conform to the way human UNIX consultants model their clients. So in 

developing KNOME's user models, no attempt was made to psychologically profile what 

different users know. Instead, former UNIX consultants (UC's implementors) were 

informally surveyed to determine how they viewed users. 

2.1. Double-Stereotypes 

Humans use categorization to organize inferences (see [Rosch, 1977], [Rosch, 

1978], and [Rosch, 1983]). These categories serve as reference points or prototypes for 

judging objects. Once an object has been identified as belonging to a particular category, 

default inferences about the object can be made based on the object's membership in the 

category. 
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An approach similar to human categorization is used in KNOME to organize infer­

ences concerning users. In KNOME, users are grouped according to their level of exper­

tise in using UNIX. Each group is represented by a prototype-style category. There are 

four such categories in UC: novice, beginner, intermediate, and expert. Each of the 

categories represents an increasing mastery of UNIX information. 

Individual users are represented as members of one of these categories and inherit 

properties from their category. Specific information about individual users overrides 

inherited information. Thes~ user categories are also termed stereotypes after the stereo­

types of Grundy ([Rich, 1979], [Rich, 1983], and [Rich, 1987]), which pioneered categor­

ization of users in computer programs. However, unlike the stereotypes in Grundy, 

which consist of collections of attributes, the stereotypes in KNOME are implemented as 

categories within the KODIAK representation system (see Appendix A). As such, 

KNOME's stereotypes are integrated into KODIAK's multiple inheritance hierarchy and 

its default inheritance mechanisms. 

Besides categorizing users, KNOME also categorizes information into levels of 

difficulty. Commands, command-formats, terminology, and other relevant information 

are categorized according to their level of difficulty. These stereotype categories include 

simple, mundane, and complex. Information is grouped into categories based on their 

typical location on the learning curve, in other words, based on when th.e typical user 

would learn the information. For example, some simple concepts include the rm, Is, and 

cat commands, the technical term "file," and the simple file command-format (the name 

of the command followed by the name of the file to be operated upon). These simple 

concepts are learned early in the experience of a typical user. Somewhat more advanced 

are mundane level concepts. Some examples are the vi, diff and spell commands, the 

technical term "working directory," and the -1 option of Is. Examples of complex con­

cepts are the grep, chmod, and tset commands, the term "inode," and the fact that 

write permission on the containing directory is a precondition for using the rm command 

for deleting a file. Complex concepts are learned relatively late by the typical user. 

In addition to the three previously mentioned levels of difficulty, KNOME has the 

category esoteric that includes information that is not typically learned at any particular 

stage of experience. Such concepts are learned only when users have special needs. 

Some may be familiar to beginners, yet unfamiliar to many experts. An example of an 

esoteric command is spice, a program used for electronic circuit simulation. Only peo­

ple who need to perform circuit simulations would know how to use spice. This group 

would likely include beginning users as well as intermediate and expert users. On the 

other hand, there are many expert UNIX users who do not know about spice, because 

they have never needed to perform semiconductor circuit simulations. 

Once information has been classified into levels of difficulty, inferences based on 

user stereotypes can easily be represented as relations between the various user stereo­

types and difficulty levels. For example, Figure 2.3 shows a graphical KODIAK 

representation of one such relation. This Figure shows the KODIAK representation of 

the fact that intermediate users know most facts that have the difficulty level of mundane. 

The predicate of MOST is used, because there is uncertainty as to whether any particular 

intermediate user will know any particular mundane level fact. However, any intermedi­

ate level user will know most mundane level facts. Table 2.1 summarizes the relation 
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between different user stereotypes and different knowledge difficulty levels. 
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Figure 2.3. KODIAK representation of: intermediates know most mundane facts. 

User Knowledge Difficulty Level 

Stereotype simple mundane complex esoteric 

expert ALL ALL MOST -
intermediate ALL MOST AFEW -
beginner MOST AFEW NONE -
novice AFEW NONE NONE NONE 

Table 2.1. Relation between user stereotypes and knowledge difficulty levels. 

The use of stereotype categories for both users and information is an example of a 

double-stereotype system. Single stereotype systems like Grundy used stereotypes for 

users (e. g., FEMINIST, INTELLECfUAL, SPORTS-PERSON) but not for information 

(i. e., Grundy did not have stereotypes for books such as GOTHIC-ROMANCE, 

DETECfiVE-STORY, or SCIENCE-FICTION). KNOME is the first user modeling sys­

tem to utilize double-stereotypes. 

The use of stereotypes allows KNOME to predict what users are likely to know or 

not know based on a ~artial user model. Once KNOME has accumulated a small number 

of facts (typically -3) about what users do or do not know during the course of a UC ses­

sion, it can infer the user's level of expertise (see Section 3). Then based on the user's 

level of expertise, KNOME can predict whether or not the user is likely to know other 

facts. The small set of facts that allows KNOME to infer the user's level of expertise 

constitutes a partial user model, and the inference that the user belongs to a particular 

2 The actual nwnber varies, because facts may mutually reinforce KNOME's evaluation of the user's lev­

el of expertise, in which case fewer facts will be needed; or facts may provide contradictory evidence, in 

which case more facts will be needed to evaluate the user's level of expertise. 
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stereotype represents a set of default inferences that are made on the basis of the partial 

user model. 

The use of stereotypes allows KNOME to efficiently group these default inferences 

together. A system that did not use stereotypes would need to represent individually 

every partial user model and all the default inferences from that partial user model. 

Since a partial user model is simply a set of facts about a user, there is a combinatorically 

large number of partial user models. So, representing all such partial user models and 

their default inferences would be extremely inefficient. However many partial user 

models have similar default inferences. These can be grouped together efficiently using 

user stereotypes. A double-stereotype system is even more efficient, since it allows the 

system to encode for each fact only its level of difficulty rather than having to encode its 

relationship to every user stereotype. The rest of a double-stereotype system can then be 

encoded in a small number of statements relating the two levels of stereotypes. This rela­

tionship in KNOME beween user stereotypes and knowledge difficulty levels is sum­

marized in Table 2.1. 

KNOME currently has only one double-stereotype range for users. This range 

represents user's knowledge of UNIX file manipulation commands, UNIX information 

gathering commands, and UNIX concepts and terminology. This corresponds to UC's 

domain of expertise within UNIX. If UC were extended to cover more of UNIX or even 

other operating systems, then KNOME would need more ranges of double-stereotypes. 

For example, if UC also covered usage of the vi and emacs editors, then KNOME would 

need separate expertise ranges for each of these domains. KNOME would also need to 

encode how the user's level of expertise in one domain might be used to predict the 

user's level of expertise in another domain. So, an expert in using vi would undoubtedly 

have a high level of expertise in manipulating the UNIX file system. On the other hand, 

a high level of expertise in using emacs does not necessarily indicate a high level of 

expertise in using UNIX, since the emacs editor is commonly found in other operating 

systems. 

2.2. Modeling Individual Users 

Individual users usually do not completely fit any one stereotype. As a result, a user 

model that uses stereotypes must also encode how individual users differ from the stereo­

types. KNOME stores specific information about what individual users know and do not 

know. Such information is stored as a collection of propositions about what a user knows 

or does not know. These propositions are represented using KODIAK. In reasoning 

about what a user knows, this collection of individual facts is checked before resorting to 

reasoning from the user's stereotype category. 

To avoid storing too many individual facts about what users know, only those facts 

that cannot be inferred with high likelihood from a user's category are stored. For exam­

ple, the fact that a particular intermediate user knows the rm command (a simple com­

mand) does not need to be stored explicitly, since it is directly inferable from the fact that 

intermediate users know all simple facts. Also, the fact that a particular beginner knows 

the rm command does not need to be stored. This is because beginners know most sim­

ple facts and hence it is likely that any particular beginner would know rm. On the other 
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hand, the fact that a particular novice knows the rm command does need to be stored 

explicitly, since that is not inferable with high likelihood. Because novice users know 

just a few simple facts, it is unlikely that any particular novice would know rm. 

2.3. Types of Knowing 

In UC, two senses of "know" are used. The first is the classical sense of know: the 

knower believes that some proposition P is true, and P is true. An example of this sense 

of knowing is: '' the user knows that the cd command is used to change the current 

working directory." There is also another sense of know that is found in UC. This sense 

of know is closer to the colloquial usage wherein knowing an object means being fami­

liar with that object. However, in UC this vague usage is made precise. For UC, know­

ing a command such as the UNIX-RM-COMMAND implies knowing that there exists a 

command with the name rm, knowing the main purposes of this command, knowing the 

format of the command, knowing the main effects of the command, and knowing the 

main preconditions of the command. 

The main purposes of a command are represented in UC using the planfor ([Chin, 

1983a] and [Wilensky et al., 1986]) relation, which relates a goal and the plan that is typ­

ically used to satisfy that goal. The planfors of a plan are different from the effects of the 

plan, since not all of a plan's effects can be considered goals that the plan is typically 

used to satisfy. All goals in the planfors of a command are also effects of the command, 

but some side effects of the command may not be part of its planfors. For instance, cal­

ling the game program rogue with a file argument has a side effect that is not found in 

the planfors of rogue. When rogue is given a file argument that is not a rogue-format 

save file, then rogue arbitrarily removes the file. This is a side effect of the rogue pro­

gram, but it is not in any planfors, since users do not typically run rogue in order to 

remove files. 

2.4. Dealing with Uncertainty 

In any user model, the inferences that the model makes about the user contains 

some degree of uncertainty. In KNOME, an attempt was made to avoid the use of 

numeric representations of uncertainty, because their use tends to lead systems to overes­

timate the accuracy of their ratings of uncertainty. So, UC uses a fixed number of simple 

rating levels instead: LIKELY, UNLIKELY, VERY-LIKELY, VERY-UNLIKELY, 

SOMEWHAT-LIKELY, SOMEWHAT-UNLIKELY, TRUE, FALSE, and UNCER­

TAIN (c. f. fuzzy logic [Zadeh, 1965]). KNOME also uses predicates such as AFEW, 

MOST, ALL, and NONE (c. f. [Zadeh,1982)). Such predicates and ratings are used by 

KNOME to express the certainty of its inferences. For example, when KNOME is asked 

whether an particular user knows some particular fact, it will return either TRUE, 

LIKELY, UNLIKELY, FALSE, or UNCERTAIN. TRUE and FALSE indicate that 

KNOME has complete confidence. LIKELY and UNLIKELY indicate some uncertainty. 

An UNCERTAIN result indicates that KNOME does not have enough information to 

guess whether the user does or does not know that fact. 
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To deduce whether a particular user knows some particular fact, KNOME uses a 

multi-step inference process. First, KNOME checks the individual user model for that 

user. If the individual user model records that this user does or does not know this fact, 

then the answer is, respectively, TRUE or FALSE. If there is no specific information in 

the user's individual user model, KNOME next checks the stereotype category of the 

user. If users of the user's stereotype do or do not know that fact, then the answer is 

again TRUE or FALSE, respectively. If these checks fail, KNOME resorts to inference 

based on the difficulty level of the fact If the user's stereotype knows ALL facts of that 

difficulty level, then the answer is TRUE; if the stereotype knows MOST facts of that 

difficulty then, the answer is LIKELY; and if the stereotype knows AFEW facts of that 

difficulty, then the answer is UNLIKELY. Finally, if this process fails due to lack of 

information, then the answer is UNCERTAIN. This algorithm is summarized in the flow 

chart of Figure 2.4. 
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Figure 2.4. Algorithm for determining whether User knows Fact. 

3. Deducing the User's Level of Expertise 

One of the main problems in user modeling is how to build up a model of a particu­

lar user. In a user modeling system based on stereotypes, this means determining which 

stereotype(s) best fit the current user and how that user differs from the stereotypes. In 

UC, this means that KNOME must determine the user's level of expertise in using UNIX. 
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3.1. Other Model Acquisition Systems 

Various approaches to building up models of users have been used. Some systems 

such as the Real Estate Agent ([Morik and Rollinger, 1985]) expect users to mention 

enough self-characteristics at the start of a session so that the system can build up the 

user model. This works for situations such as a real estate agent interchange with a client 

where the client is likely to mention what he/she needs/wants at the beginning of a dia­

log. However, this does not extend to other consultation situations where the user usu­

ally will not mention what he/she knows at the start of a session. In such consultation 

situations the user typically begins by describing his/her problem to the consultant. 

Another approach is to ask the user for a self-description at the start of a session as 

in Grundy [Rich, 1979]). This is a reasonable approach for judging the user's personality 

traits, but does not work well for determining what the user knows. For judging the 

user's level of expertise, this approach is inaccurate, since the user's concept of different 

levels of expertise like "intermediate" may differ considerably from the system's con­

cept or from other users' concept of an ''intermediate.'' Also, this requirement is not 

very practical for occasional users, since this increases the overhead of using the system. 

A third approach is to quiz users at the start of a session so that the system may esti­

mate the user's expertise. For example, the MAP system ((Macmillan, 1983]) helps a 

user to specify a correct user model of how that user interacts with an operating system. 

Such an approach is extremely time consuming. For tasks like intelligent operating sys­

tem interfaces for which MAP was designed, such a protracted process is somewhat more 

acceptable, since the user will realize its benefits over a long period of time. However 

for interacting with a consultation system like UC where typical sessions are short, such a 

process would be too time consuming. The casual user that only needed the answer to a 

single question would be better off without a user model rather than having to put up 

with such a lengthy process. 

The most common approach in ITS (Intelligent Tutoring Systems) is to compare the 

user's performance with what a built-in expert would do. Differences in performance 

can then be attributed to either a lack of user knowledge or differences in user knowledge 

such as improper procedures or rules. However such an approach is only applicable if 

the system can ''look over the shoulder'' of the user. Consultation systems often cannot 

observe the user at work. Even when this is possible, consultation systems should not be 

expected to constantly observe the user, since human consultants do not do so. 

To properly emulate a human consultant, the system should be able to assess the 

expertise level of the user while talking to the user. None of the previously mentioned 

approaches model this ability, which is a difficult problem in natural language under­

standing. One system that has addressed this problem is the VIE-DPM user modeling 

system ([Kobsa, 1985a]). However, VIE-DPM uses only a syntactic interpretation of the 

user's statements to derive the user's beliefs. VIE-DPM makes assumptions about the 

user's beliefs based on the form of the user's input (a yes/no question, a wh-question, or a 

command) ([Kobsa, 1985a] and [Kobsa, 1986]) or the presence of linguistic particles 

(e. g. "not") in the user's input ([Kobsa, 1985b]). Such a syntax-only system would not 

be able to properly interpret phenomena such as indirect speech acts ([Austin, 1962], 

[Searle, 1975]). For example, "Can you pass the salt?" is a yes/no question, but one 
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should not assume from this question that the speaker does not know whether the listener 

can pass the salt. Despite such limitations, VIE-DPM is a step in the right direction. 

3.2. KNOME's Approach 

KNOME uses the approach of inferring the user's level during the course of a ses­

sion. At the beginning of a session, UC has no information about the user. In such cases, 

KNOME remains open to the possibility that the user may belong to any stereotype. 

KNOME maintains a list of candidate stereotypes to which the user may belong. 

KNOME also rates the likelihood that the user may be a member of any particular stereo­

type. At the start, the likelihood ratings for membership in any stereotypes is neutral, 

except for the beginner stereotype. The likelihood rating for beginner is initially slightly 

higher than neutral, since more of UC's users tend to be beginners rather than novices, 

intermediates, or ex pens. As more information is gathered about the user during the ses­

sion, the stereotypes may rise or fall in likelihood. 

KNOME deduces the user's level of expenise using a two phase process. First, dur­

ing the course of the conversation, .KNOME deduces individual facts about what the user 

does or does not know. As such facts are gathered, .KNOME combines the evidence to 

adjust the likelihood ratings for the different levels of expenise. Eventually l<l~OME 

identifies the stereotype level of expenise to which the user belongs. 

3.3. Collecting Evidence 

The first step in the process of deducing the user's level of expenise is to collect 

evidence on that subject. Typically, such evidence takes the form of individual facts 

about what the user knows or does not know. Such facts and other forms of evidence can 

be deduced from what the user says (or does not say) and from an analysis of the user's 

goals. KNOME distinguishes six classes of inferences that were found to be useful in 

UC for determining the user's level of expenise. These inference classes are summarized 

in Table 2.2, which lists the inference class and the kinds of inferences that are com­

monly found in each inference class. 
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Inference Kinds of Inferences 
Class 

Claim user states that user does (not) know ?x ~ user does (not) know ?x 

Goal user wants to know ?x ~ user does not know ?x 

Usage user uses ?x ~ user knows ?x 

Background user mentions his/her background ~ user knows as much as the 

stereotype indicated by the background 

Query-Reply system asks if user knows, user replies~ user's reply 

No-Clarify system uses new terminology, user does not ask for clarification 

~ user understands terminology 

Table 2.2. Taxonomy of deduction types for inferring what users know. 

The first class of inferences, Claim inferences, applies when the user claims to know 

or not know something. The second class, Goal inferences, applies when the system can 

infer that the user wants to know something. In such cases, the system can also infer that 

the user must not know whatever is wanted, since if the user already knew it, then the 

user would not have the goal of knowing it. The third class, Usage inferences, are made 

when the user properly uses some command or terminology. KNOME can then deduce 

that the user must know the command or terminology. The fourth class, Background 

inferences, are made when the user mentions some relevant information about his/her 

background. The fifth class of inference, Query-Reply, applies when the system queries 

the user about the user's knowledge and the user replies. The last type of deduction, 

No-Clarify, is made when the system uses some new terminology that the user may or 

may not know. If the user does not ask for a clarification of the terminology, then the 

system can assume that the user probably already knew the terminology. Each of these 

classes of inference is described in greater detail below. 

Claim inferences are concerned with direct statements by the user about what the 

user does or does not know. Examples of such statements and the inferences that 

KNOME makes based on the statements include: 
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I already know about mkdir. 
~ the user knows the mkdir command 

I don't know how to move a file. 
~ the user does not know how to move a file 

~ the user does not know that mv is a plan for moving files 

~ the user does not know the mv command 

In the first example, the user claims to already know the mkdir command. This 

statement is not as straightforward as it might seem, since the user and the system may 

not agree on what it means to know a command. A reasonable interpretation of what a 

user might mean is that the user knows how to use mkdir, knows the main purpose of 

mkdir and knows the main effects and preconditions of mkdir. This interpretation is the 

same as what UC means when it encodes that a user knows a command (see Section 2.3). 

Of course, it may be that the system should not believe the user's statement about 

knowing mkdir. It is possible that the user may be confused and does not actually know 

mkdir. But, there is always doubt about what someone might really know, no matter 

how strong the evidence. For exa.'Tiple, even if the system were to watch the user use the 

mkdir command successfully, it is possible that the user may have actually wanted to 

create a file instead of a directory. However, in none of these cases is there any reason to 

doubt the user. Unless KNOME obtains evidence to the contrary, it assumes that the user 

really does (or does not) know something when the user makes such a claim. 

The second example requires somewhat more complex processing than the first 

example. In the second example, the user claims not to know how to move a file. Since 

UC knows that mv is used to move files, KNOME is able to deduce that the user does not 

know that mv is a plan for moving files. Finally, because the user does not know one of 

the main purposes of the mv command, KNOME deduces that the user must not know 

mv. 

KNOME only stores information about levels of difficulty for objects and not for 

descriptions, so only facts about a user knowing (or not knowing) specific objects (e. g. 

commands, concepts, etc.) can be used in deducing the user's level of expertise. This 

approach eliminates redundancy, since any object will have many possible descriptions. 

For example, the user could have referred to mv by "how to rename a file" rather than 

''how to move a file.'' So, the fact that the user does not know mv is useful for deducing 

the user's level of expertise, but the descriptive fact that the user does not know how to 

move a file cannot be directly used. UC must first determine that this description applies 

to the mv command before it can be used for deducing the user's level of expertise. In 

UC, descriptions of the purpose of commands are interpreted by UC's UNIX planner 

component. After UC's UNIX planner has determined the command referred to by the 

command description, KNOME can use this information in deducing the user's level of 

expertise. 

Goal inferences apply when UC can deduce the user's goals. If UC can infer that 

the user wants to know something, ?x, then KNOME can deduce that the user does not 
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know ?x and also does not know the answer to ?x. For example, if the user asks "How 

can I delete a file?'' then UC can deduce that the user's goal is to know how to delete a 

file. From this goal, K.NOME can deduce that the user does not know how to delete a 

file. Then, after UC computes that a plan for deleting a file is to use the rm command, 

K.NOME can infer that the user does not know this planfor relation between deleting files 

and the rm command. Finally, since the planfor relation is central to UNIX commands, 

KNOME can deduce that the user does not know rm in the sense that the user is not fam­

iliar with rm (see Section 2.3). 

In UC, the initial deduction about the user's goal is made by UC's goal analysis 

component, PAGAN ([Wilensky et al., 1986] and [Mayfield, forthcoming]). PAGAN 

computes the user's plans and goals from the dialogue, and can handle phenomena such 

as indirect speech acts. In some cases, PAGAN utilizes KNOME's model of the user's 

knowledge in deducing the user's goals. For example, if the user asks, "Do you know 

how to compact a file?'', then the choice between the direct interpretation (the user wants 

to know if UC knows how to compact a file) and the indirect interpretation (the user 

wants to know how to compact a file) depends partly on whether or not KNOME believes 

the user already knows the compress command. If KNOME does believe that the user 

is likely to know compress, then that will bias PAGAN toward the direct interpretation 

that the user is testing UC (not uncommon), and vice-versa. 

This process may seem circular, since PAGAN's analysis of the user's goal depends 

on KNOME, while KNOME's analysis of the user's knowledge depends on PAGAN. 

However, KNOME's initial evaluation of whether the user knows is only a prediction 

from a partial user model. This prediction does not determine PAGAN's interpretation, 

because PAGAN must also take into account other factors in its analysis. One such fac­

tor is the frequency of usage of the direct versus indirect interpretations. PAGAN is 

biased toward adopting the more frequent usage. Another factor is the the context of the 

dialog. When UC is configured in knowledge acquisition mode as UCTeacher ([Martin, 

1985]), then the direct interpretation (i.e. the user is testing UC's knowledge), is 

inherently more likely than the indirect interpretation. KNOME's beliefs about the state 

of the user's knowledge is only one factor in PAGAN's analysis, which then leads 

KNOME to its own inference about the state of the user's knowledge. 

Besides questions on how to do something, Goal deductions apply to many other 

kinds of queries such as: 
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What is a directory? 
~the user wants to know what is a directory (goal) 

~the user does not know what is a directory 

~ the user does not know the directory concept 

Can you tell me how to find out who is on the system? 

~ the user wants to know who is on the system (goal) 

~ the user does not know who is on the system 

What does ruptime do? 
~ the user wants to know the effects of the ruptime command (goal) 

~ the user does not know the effects of the ruptime command 

~ the user does not know the ruptime command 

All of the above queries represent Goal deductions, since PAGAN can deduce that 

the user wa..nts to know some information. Based on this initial deduction, KNOME can 

infer that the user does not know the information that is sought. 

Usage deductions are made when the user applies some plan/procedure correctly, or 

uses some specialized terminology correctly. Examples include: 

I tried typing ''rm foo,'' but I got the message, ''rm: foo not removed.'' 

~ the user knows the rm command 

How can I find out the inode of a file? 
~ the user knows the inode concept 

I tried typing ''del foo' ', but I got the message ''del: Command not found.'' 

~ the user knows the DOS del command 
~ the user does not know the UNIX rm command 

In the first example, KNOME can deduce that the user knows the rm plan. In the 

second example, KNOME deduces that the user knows the meaning of the term ''inode.'' 

This is the main type of deduction used in ITS in which the system observes the user at 

work solving problems. This type of deduction is suggested by [Rich, 1983] for consult­

ing situations. 

In general, whenever the user uses specialized terminology correctly, KNOME 

infers that the user must know the concept denoted by the terminology. In UC, terms 

include UNIX command names and operating system terminology such as ''file protec­

tion'', ''directory,'' and ''inode.'' Checking that the user used the terms correctly is not 

very sophisticated in KNOME. The first check is simply that the term must be used in an 

English sentence that UC can parse and understand. However, the fact that the user used 

a term in an understandable sentence does not automatically mean that the user knows 
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the meaning of the term. For example, if the user asks, ''What does rm do?'', KNOME 

should not infer that the user knows the rm command. The same principle applies when 

the user states, ''I don't know the rm command.'' In these types of sentences, KNOME 

actually first infers that the user does know rm and then reverses its inference later based 

on the fact that the user has the goal of knowing the effects of rm, which is a Goal type 

inference. In cases when KNOME has evidence both that the user knows something and 

that does not know it, KNOME always assumes that the user doesn't know, since it is 

always possible that the user just seems to know and in fact doesn't know. 

The last example is somewhat more complex than the previous examples. In this 

case, KNOME first infers that the user knows the DOS del command. Then, since the 

DOS del command is used to delete files and the user mistakenly tried to use the del 

command, KNOME can deduce that the user does not know the UNIX command for 

deleting files, that is, the rm command. In general, whenever the user tries to use a 

foreign command in UNIX, then KNOME assumes that the user does not know the 

corresponding UNIX command. This correspondence is found by looking at the goal of 

the foreign command and finding a UNIX command that is a plan for the same goal. 

Background deductions are made when the system learns some relevant fact about 

the user's background. Examples include: 

I am a fourth year computer science graduate student. 

~ the user is a member of the 4TH-YEAR-CS-GRAD stereotype 

~ the user is LIKELY to be an EXPERT 

In my CS2 class, . . . 
~ the user is a member of the CS2-STUDENT stereotype 

~ the user is LIKELY to be a BEGINNER 

In the first example, KNOME infers that the user is a member of the 4TH-YEAR­

CS-GRAD stereotype. This allows KNOME to further infer that the user is LIKELY to 

be an expert, because most 4th year CS graduate students are experts. In the second 

example, UC's Concretion mechanism infers from "my CS2 class" that the user is a 

CS2-STUDENT. Based on this, KNOME then infers that the user is a member of the 

CS2-STUDE1\TT stereotype, and so is likely to be a beginner. 

To make Background deductions, KNOME uses a collection of rules, one for each 

stereotype related to the user expertise levels. For example, the rule for CS2-STUDENT 

is: if the user is a CS2-STUDENT, the the user is LIKELY to be a BEGINNER. 

Query-Reply deductions are made after the system asks whether or not the user 

knows some fact. The user's answer usually provides information about whether or not 

the user knows the fact. For example, if a system were to ask the user, ''Do you know 

the rep command?" and the user answers "Yes," then the system can infer that the user 

knows the rep command. This type of deduction has not been implemented in KNOME, 

since the current version of UC does not ask the user whether the user knows particular 

facts. 
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No-Clarify deductions show how a system might obtain information based on what 

the user does not say. If the system uses some terminology that the system is not sure of 

the user knows, then the system can infer that the user does know this terminology pro­

vided that the user does not ask for a clarification and the meaning of the terminology is 

not evident from the context. Such deductions are more complex than the previous ones, 

since they require that the system keep track of the conversation. This type of deduction 

has not been implemented in KNOME, since UC tries to avoid the use of terminology 

unfamiliar to the user. 

In KNOME, deductions are made using a rule-based system. The actual rules were 

shown in Table 2.2, with the exception of the Background type of inference. The Back­

ground type inference is actually implemented by a collection of rules. For every type 

of user background that gives some clue about the user's level of expertise in using 

UNIX, there is a rule. Since there are potentially many types of user backgrounds that 

are relevant, there will be a corresponding number of such rules. For example, if the 

user is a CS2 student, then that is a relevant piece of background information which pro­

vides some clue about user's level of expertise in using UNIX. On the other hand, the 

fact that the user is a scuba diver, likes blueberry pies, or is a bachelor are irrelevant. 

The particular Background rules that have been implemented in ~~Or..ffi arc shown in 

Table 2.3, which also lists the auxiliary inferences which support the major inferences 

that were shown in Table 2.2. 

user is a fourth year . . 
Cs d d 

~ user IS likely to be an expert 
gra uate stu ent 

user is a CS2 student ~ user is likely to be a beginner 

user does (not) know ?x, 
where ?xis a description, ~ user does (not) know ?x 
and ?y is the referent of ?x 

user does (not) know 
~ user does (not) know ?x 

a planfor of command ?x 

user does (not) know 
the effects of command ?x ~ user does (not) know ?x 

Table 2.3. Other rules used to infer what users know. 

Such rules are implemented using if-detected daemons (see Chapter VI), which are 

daemons that detect specific configurations of knowledge in UC's KODIAK knowledge 

bases. For example, the first rule shown above would normally fire after PAGAN has 

inferred that the user wants to know something. Then the action part of the rule allows 

KNOME to infer that the user does not know some fact. 
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These classes of deductions were found to be important in the domain of a natural 

language consultation system. Other domains may provide other clues as to what a user 

knows. For example, in a domain where the user provides speech input, a system may be 

able to make deductions about the user's knowledge when the user mispronounces techn­

ical words. 

3.4. Combining Evidence 

After collecting evidence that the user does or does not know certain facts, the sys­

tem must combine the evidence to determine the user's level of expertise. Facts are par­

ticular pieces of information about what the user does or does not know as described in 

the previous section. Note that a single user statement or query may produce several 

facts. Each unique fact is treated equally in determining the user's level of expertise. 

When KNOME deduces that the user does or does not know something more than once 

(perhaps from different user statements), only the first such fact is used in deducing the 

user's level of expertise. The rest only reconfirm the first fact, so they do not contribute 

to determining the user's level of expertise. 

At the start of a session, KNOME has very little idea about the level of expertise of 

Lhe user. KNOME's beliefs about the user's level is encoded as ratings of the likelihood 

that the user is a member of a candidate stereotype category. As evidence is gathered 

during the dialog, KNOME continuously adjusts its ratings concerning the likelihood that 

the user might be a member of any particular stereotype. Eventually, KNOME gathers 

enough evidence to peg the expertise level of the user. Typically, this takes about three 

interchanges. After making this decision, KNOME does not change its estimation of the 

user's level. This works well in UC where typical sessions are short and it is advanta­

geous to quickly guess the user's level of expertise. A more flexible approach is to keep 

a running account of likelihoods as in SC-UM ([Nessen 1986]), a user modeling system 

that is based on the methodology demonstrated in KNOME. However, a system that 

does not commit to a particular interpretation of the user's level of expertise cannot avoid 

the need to store information that can be predicted from the user's stereotype. This 

becomes inefficient as more is learned about the user. 

There are two types of conclusions that may be drawn from any particular fact 

about what the user knows or does not know. First, the evidence may be enough to elim­

inate some stereotypes from consideration. An example is when the user does not know 

a simple fact such as the rm or Is commands. In these cases, KNOME can rule out the 

possibility that the user may be an intermediate or an expert, since all intermediates and 

experts know all simple facts (see Table 2.1 ). So, if the user does not know a simple 

command like rm or Is, then the user could not possibly be more advanced than a 

beginner. 

Even when the evidence is not enough to rule out a category, the system can still 

infer that the category is either more likely or less likely. KNOME does this by increas­

ing or decreasing the likelihood rating of candidate categories. 

Likelihood ratings are combined using the following linear scale: FALSE, VERY­

UNLIKELY, UNLIKELY, SOMEWHAT-UNLIKELY, UNCERTAIN, SOMEWHAT­

LIKELY, LIKELY, VERY-LIKELY, TRUE. The UNCERTAIN rating is neutral. It 
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implies that the system does not believe that membership in that category is either likely 

or unlikely. Likelihood ratings combine linearly according to the scale. For example, a 

rating of LIKELY when combined with another LIKELY rating produces a TRUE rating. 

Also a SOMEWHAT-LIKELY rating combined with a VERY-UNLIKELY rating pro­

duces an UNLIKELY rating. 

To see why KNOME might change a likelihood rating, consider what happens when 

KNOME determines that a user does not know some mundane level fact. In this case, 

KNOME infers that the user cannot be an expert, since experts know all mundane facts. 

Also, KNOME considers it somewhat less likely that the user might be an intermediate, 

since intermediates know most mundane level facts. Similarly, the user is considered 

somewhat more likely to be a beginner, since beginners know a few mundane facts. 

Finally, since the stereotypical novice does not know any mundane facts, the user is con­

sidered more likely to be a novice. 

Table 2.4 shows the basis for these deductions. Given that a user does or does not 

know a fact of some difficulty level, and given that a particular user stereotype knows 

none/afew/most/all of the facts of that difficulty level, then KNOME can deduce that the 

user belongs to that stereotype with the additional likelihood shown in Table 2.4. 

Stereotype Likelihood (user e stereotype) 

knows 
Difficulty user does user does not 

Level know fact know fact 

NONE FALSE LIKELY 

AFEW SO?vffiWHA T -UNLIKELY SOMEWHAT-LIKELY 

MOST SO?vffiWHA T-LIKEL Y SOMEWHAT-UNLIKELY 

ALL LIKELY FALSE 

Table 2.4. Deductions when user does (not) know some fact. 

Combining Table 2.4 with Table 2.1, yields Tables 2.5 and 2.6. Given the particu­

lar stereotypes used in KNOME, these two tables show the deductions that are made 

when KNOME determines that a user does (Table 2.5) or does not (Table 2.6) some fact 

that has the difficulty level indicated. Deductions consist of eliminating categories 

(FALSE) or increasing/decreasing the likelihood ratings of categories. Since these two 

Tables are easily derivable from the previous two, KNOME does not actually store the 

information of these two Tables internally. Table 2.1 is represented declaratively as a 

KODIAK network that is accessible to the rest of UC. Only Table 2.4 is stored internally 

in KNOME. This Table is used when needed to derive the likelihood rating differences 

shown in Tables 2.5 and 2.6. 
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User Difficulty Level of Fact 

Stereotype simple mundane complex esoteric 

novice 
SOMEWHAT-

FALSE FALSE FALSE 
UNLIKELY 

beginner 
SOMEWHAT- SOMEWHAT-

FALSE -
LIKELY UNLIKELY 

intermediate LIKELY 
SOMEWHAT- SOMEWHAT- -

LIKELY UNLIKELY 

LIKELY LIKELY 
SOMEWHAT-

expert -
LIKELY 

Table 2.5. Deduction when user knows some fact. 

User Difficulty Level of Fact 

Stereotype simple mundane complex esoteric 

novice 
SOMEWHAT-

LIKELY LIKELY 
SOMEWHAT-

LIKELY LIKELY 

beginner 
SOMEWHAT- SOMEWHAT-

LIKELY -
UNLIKELY LIKELY 

intermediate FALSE 
SOMEWHAT- SOMEWHAT-

-
UNLIKELY LIKELY 

FALSE FALSE 
SOMEWHAT-

expert -
UNLIKELY 

Table 2.6. Deduction when user does not know some fact. 

When the likelihood rating of a stereotype reaches TRUE, it is selected as the user's 

category. The user's category can also be deduced by elimination. Candidate stereo­

types are eliminated when their likelihood drops to FALSE. When all but one candidate 

have been eliminated, the remaining candidate is selected. During the period before the 

final decision, KNOME works under the provisional assumption that the user belongs to 

the category with the highest current likelihood. In the case of a tie (i. e. when there are 

two or more candidate categories with the same highest likelihood rating), the lower 

level of expertise is chosen to represent the user temporarily. Using the lower level helps 

prevent KNOME from overestimating the user before KNOME is sure about the user's 

level of expertise. Underestimating the user's level may result in more verbose descrip­

tions, but does not lead KNOME to leave out information that the user may not know. 

Also, inferences that are made based on these provisional stereotype assumptions are 
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marked as having greater uncertainty. 

3.5. Examples 

To see how KNOME deduces a user's level of expertise, consider the following 

traces from the UC sessions shown in Figures 2.5 and 2.6. At the start of either session, 

UC does not have any information about either user. In such cases, UC starts with a 

slight bias toward believing that the user is a beginner, because more UC users tend to be 

beginners. Hence the likelihood rating for the user being a beginner is SOMEWHAT­

LIKELY, whereas the likelihood ratings for the user being a novice, intermediate or 

expert are all UNCERTAIN (the neutral likelihood rating). 

In Figure 2.5, KNOME deduces that the user is a novice, because the user does not 

know either the more or lpr commands, which are both simple commands, nor the rwho 

command, which is of mundane difficulty. When KNOME first deduces that the user 

does not know the more command, KNOME can draw a number of inferences based on 

the fact that the user does not know a simple command. Since experts and intermediates 

know all simple commands (see Table 2.1), KNOME rules out the possibility that the 

user might be an intermediate or an expert. Also, since beginners know most simple 

facts, KNOME lowers the likelihood rating for the user being a beginner from 

SOMEWHAT-LIKELY to UNCERTAIN. Likewise, since novices know only a few 

simple facts, KNOME raises the likelihood rating for the user being a novice to 

SOMEWHAT-LIKELY. 

When KNOME next determines that the user does not know the simple command, 

lpr, KNOME makes additional inferences. KNOME raises the likelihood rating of the 

user as a novice to LIKELY and lowers the likelihood rating of the user as a beginner to 

SOMEWHAT-UNLIKELY. Finally when KNOME finds that the user does not know the 

mundane command rwho, the likelihood rating for the user being a novice rises from 

LIKELY to TRUE. TRUE is the threshold (nothing can have a higher likelihood than 

TRUE), so KNOME concludes that this user is a novice. 

Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type 'AD' or' (exit)'. 

Hi. 
How can I help you? 

# What will display a file on my terminal? 

KNOME: Asserting *USER* does not know ACTION12? 

KNOME: Asserting *USER* does not know PLANFOR40 

KNOME: Asserting *USER* does not know UNIX-MORE-COMMANDO 
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KNOME: Since u~IX-MORE-COMMANDO is a UNIX-MORE-COMMAND, 

asserting *USER* does not know unix-more-command 

KNOME: UNIX-MORE-COMMAND has difficulty SIMPLE, so deducing: 

KNOME: ruling out *USER* = INTERMEDIATE 

KNOME: ruling out *USER* = EXPERT 

KNOME: *USER* is SOMEWHAT-LIKELY to be NOVICE 

=> likelihood(*USER* = NOVICE) = SOMEWHAT-LIKELY 

KNOME: *USER* is SOMEWHAT-UNLIKELY to be BEGINNER 

=> likelihood(*USER* = BEGINNER) = UNCERTAIN 

Use more. 
For example, to display the file named foo, type 'more foo' . 

# How can I print a file on the lineprinter? 

KNOME: Asserting *USER* does not know UNIX-DLPR-COMMANDO 

KNOME: Since UNIX-DLPR-COMMANDO is a UNIX-DLPR-COMMAND, 

asserting *USER* does not know UNIX-DLPR-COMMAND 

KNOME: UNIX-DLPR-COMMAND has difficulty SIMPLE, so deducing: 

KNOME: *USER* is SOMEWHAT-LIKELY to be NOVICE 

=> likelihood(*USER* = NOVICE) = LIKELY 

KNOME: *USER* is SOMEWHAT-UNLIKEI,Y to be BEGINNER 

=> likelihood!*USEP* = BEGINNEB) = SOMEWHAT-UNLIKELY 

Use lpr. 
For example, to print the file named foo, type 'lpr foo'. 

# What does rwho do? 

KNOME: Asserting *USER* does not know STATEll? 

KNOME: Asserting *USER* does not know HAS-EFFECT23 

KNOME: Asserting *USER* does not know UNIX-RWHO-COMMANDO 

KNOME: Since UNIX-RWHO-COMMANDO is a UNIX-RWHO-COMMAND, 

asserting *USER* does not know UNIX-RWHO-COMMAND 

KNOME: UNIX-RWHO-CO~~ has difficulty MUNDANE, so deducing: 

KNOME: asserting *USER* = NOVICE 

rwho is used to list all users on the network, list their tty, 

and list their login t~. 

Figure 2.5. UC session with an novice. 

In Figure 2.6, KNOME deduces that the user is an intermediate. First, KNOME 

deduces that the user knows what an inode is, since the user mentions "the inode of a 

file.'' Since knowing about inodes is a complex fact, KNOME is able to eliminate the 

novice and beginner categories as possibilities. KNOME also lowers the likelihood rat­

ing of the user as an intermediate and raises the likelihood rating of the user as an expert. 
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However, these changes in likelihood ratings are canceled out by KNOME's deduction 

from the same user query that the user does not know the Is -i command, which is of 

complex difficulty. Next, KNOME deduces that the user does not know the rwho com­

mand, which is of mundane difficulty. This allows KNOME to eliminate the possibility 

that the user might be an expert, leaving KNOME to conclude that the user is an inter­

mediate, since that is the only possibility left. 

Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type '~D' or' (exit)'. 

Hi. 
How can I help you? 

# Can you tell me how to find out the inode of a file? 

KNOME: Asserting *USER* knows INODEl 

KNOf1E: Since INODEl is a INODE, 

asserting *USER* knows INODE 

KNOME: INODE has difficulty COMPLEX, so deducing: 

KNOME: ruling out *USER* = NOVICE 

KNOME: ruling out *USER* = BEGINNER 

KNOME: *USER* is SOMEWHAT-UNLIKELY to be INTERMEDIATE 

=> likelihood(*USER* = INTERMEDIATE) = SOMEWHAT-UNLIKELY 

KNOME: *USER* is SOMEWHAT-LIKELY to be EXPERT 

=> likelihood(*USER* =EXPERT) = SOMEWHAT-LIKELY 

KNOME: Asserting *USER* does not know ACTION15? 

KNOME: Asserting *USER* does not know PLANFOR390 

KNOME: Asserting *USER* does not know UNIX-LS-i-COMMANDO 

KNOME: Since UNIX-LS-i-COMMANDO is a UNIX-LS-i-COMMAND, 

asserting *USER* does not know UNIX-LS-i-COMMAND 

KNOME: UNIX-LS-i-COMMAND has difficulty COMPLEX, so deducing: 

KNOME: *USER* is SOMEWHAT-LIKELY to be INTERMEDIATE 

=> likelihood(*USER* = INTERMEDIATE) = UNCERTAIN 

KNOME: *USER* is SOMEWHAT-UNLIKELY to be EXPERT 

=> likelihood(*USER* =EXPERT) = UNCERTAIN 

Type 'ls -i'. 

# What does rwho do? 

KNOME: Asserting *USER* does not know UNIX-RWHO-COMMANDO 

KNOME: Since UNIX-RWHO-COMMANDO is a UNIX-RWHO-COMMAND, 

asserting *USER* does not know UNIX-RWHO-COMMAND 
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KNOME: UNIX-RWHO-COMMAND has difficulty MUNDANE, so deducing: 

KNOME: ruling out *USER* = EXPERT 

KNOME: only one candidate left, so asserting *USER* = INTERMEDIATE 

rwho is like who, except rwho is for all users on the network. 

Figure 2.6. UC session with an intermediate. 

Even before KNOME has completely determined the expertise level of the user, 

KNOME's partial user model is still useful to the other components of UC. In the dialog 

with the novice, UC chooses to provide the user with examples of command-formats 

based on KNOME's initial deduction that the user is SOMEWHAT-LIKELY to be a 

novice. On the other hand, UC does not provide examples of simple command-formats 

to the intermediate user who presumably would already know such simple formats. Also, 

UC is able to use a simile to explain to the intermediate user the rwho command in terms 

of the who command. The novice user was given a complete explanation of rwho, since 

KNOME believed that the user would not know the who command and so would not 

understand the simile. 

4. Modeling UC's Knowledge 

Besides modeling what users know, KNOME also models what UC itself knows. 

Such a model allows KJ"l"OME to differentiate between cases where UC lacks knowledge 

and where the user has a misconception (see Chapter III, Section 4). 

4.1. Open vs. Closed World Models 

An important problem in AI knowledge bases is to define the limitations of the 

knowledge base. One solution is to use a closed world model, which states that the 

knowledge base knows everything (see [Reiter, 1978]). In a closed world model, any­

thing that is neither in the knowledge base nor deducible from the knowledge base is 

deemed false. Such a model works only for completely self-contained micro-worlds such 

as airline reservation systems that know all airline flights. For real world applications, a 

closed world model is untenable, since real world knowledge bases cannot know every­

thing even in just their own area of expertise. So a system with a closed model would be 

prone to giving out false information such as claiming that objects that the system did not 

happen to know about do not exist, claiming that actions that the system could not figure 

out cannot be done, etc. 

The other extreme is an open world model, which states that anything that is neither 

in the knowledge base nor directly deducible from the knowledge base is not known. 

This model has a significant problem with ruling out things that do not exist. For exam­

ple, a knowledge base might list all the participants in any particular relation. Using a 
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closed world model, the system would know that these are the only participants of that 

relation. However, in an open world model, the system cannot rule out that there might 

not be other participants unless the knowledge base explicitly encodes for all other possi­

ble participants that they do not participate in that relation. Since there are usually many 

more such negative facts than positive facts, encoding such facts in a knowledge base is 

extremely inefficient. 

Neither model is quite adequate. A closed world model allows a system to rule out 

spurious hypotheses easily, but is prone to ruling out true facts that were not in the 

knowledge base. An open world model allows the system to be non-committal about 

hypotheses that are not covered by its knowledge base, but does not allow it to rule out 

spurious hypotheses when the system does have complete information. The ideal system 

needs to combine the best of both models. It needs to be assertive in ruling out spurious 

hypotheses when the system does have complete information, yet remain non-committal 

when it does not have complete information. To do this, a system needs to know the lim­

itations of its own knowledge. 

4.2. Meta-Knowledge 

UC uses an open world model augmented by knowledge about the coverage limita­

tions of the knowledge base. By using an open worid model, UC is abie to remain non­

committal about information that is not in its knowledge base. This allows UC to profess 

ignorance about things outside its area of expertise. On the other hand, when UC does 

have complete information about an area, this is explicitly encoded in KNOME's model 

of UC's knowledge. In a sense, this is a model of what UC itself knows. Such 

knowledge is called meta-knowledge. 

The term meta-knowledge was previously used for AI knowledge bases by [Barr, 

1977] and [Davis and Buchanan, 1977]. [Barr, 1977] argues that AI knowledge bases 

need meta-knowledge, i.e. the system's knowledge about "the extent and limit of avail­

able knowledge, what facts are relevant in a given situation, how dependable they are, 

and how they are to be used.'' [Davis and Buchanan, 1977] describes meta-knowledge in 

the TEIRESIAS system and its use in knowledge acquisition and in selecting which rules 

to try applying first through the use of meta-rules. [Smith and Genesereth, 1983] use 

meta-level reasoning to find all of the solutions to a problem. Although they use a closed 

world assumption, they suggest that other systems for which the closed world assumption 

is not valid can encode limits on the number of solutions and use these limits to cut off 

inference. Such limits can be considered a type of meta-knowledge. 

In KNOME, meta-knowledge is not primarily used for the same purposes as in 

TEIRESIAS; rather it is primarily used in dealing with user misconceptions. So 

KNOME's meta-knowledge describes the coverage limitations of UC's knowledge base. 

Chapter III, Section 4 describes how user misconceptions are detected and how meta­

knowledge is used in correcting the user's misconceptions. 
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4.3. Representation of Meta-Knowledge 

Meta-knowledge in KNOME is represented explicitly as a collection of KODIAK 

statements about what UC knows. Examples of meta-knowledge include the fact that UC 

knows that it knows all-file manipulation commands and the fact that UC knows all pos­

sible side effects for all known simple commands, and most known mundane commands 

and a few known complex commands. The fact that UC does not know all of the side 

effects for known commands is due to not enough programming and the knowledge limi­

tations of the UC's programmers rather than any inherent limitation of UC. 

Figure 2.7 shows the representation of KNOME's meta-knowledge about simple 

commands. KNOWl states that UC knows all of the effects of simple commands, and 

KNO\V2 represents the fact that UC knows all of the options of simple commands. 

OPTIONl? 

Figure 2.7. KODIAK representation of some of UC's meta-knowledge. 

Besides the explicit meta-knowledge modeled by KNOME, UC also has meta­

knowledge that is represented implicitly within the KODIAK representation language. 

For example, any aspectual of a relation can be constrained to be filled by only certain 

classes of objects. This effectively constrains the way in which different objects may be 

related to other objects in KODIAK. Of course, these constraints are sometimes violated 

when users speak metaphorically. [Martin, 1987] describes how such metaphors and 

analogies can be handled in the UNIX domain. 

5. Conclusion 

5.1. Summary 

The user modeling system of KNOME is extremely simple, yet it provides enough 

functionality for the needs of UC. KNOME can infer what the user knows from a consu­

lation dialog with the user. Based on only a few such facts about what a user does or 
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does not know, KNOME can also predict many other default facts about what the user 

might or might not know. KNOME's stereotypes serve to efficiently group those default 

inferences that commonly co-occur. Using only a few such stereotypes, KNOME is able 

to provide enough differentiation among potential users so that UC can use these differ­

ences in answer expression, goal analysis, and detection of situations when the user lacks 

knowledge or has misconceptions. The double-stereotype system is not only space 

efficient, but also allows easy addition of knowledge to KNOME. When a new fact is 

added to UC, the knowledge engineer needs only to classify the new fact according to its 

difficulty level. 

Although no attempt has been made yet to apply the methodology to other areas, it 

would seem that many of the techniques should transfer well. Stereotype categories are 

used in UC in similar fashion to the way humans use categories, that is as reference 

points for reasoning about individual members (see [Rosch, 1977], [Rosch, 1978], and 

[Rosch, 1983]). Thus stereotypes should be useful for approximate reasoning wherever 

human categorization has proven to be useful. The double-stereotype system extends the 

use of computer stereotype categories to cover more of human categorization, that is to 

include categories for knowledge as well as categories/stereotypes for people/users. The 

double-stereotype system can be applied straightforwardly to other domains where a 

computer system needs to model the relation between different classes of users and dif­

ferent classes of information. In cases where the user population is homogeneous or 

where the information is homogeneous, then a double-stereotypes system would not be 

applicable. 

The methodology used to deduce the user's stereotype in KNOME transfers in two 

ways to other domains. First, the method used to infer individual facts about what the 

user knows is applicable to any natural language system that needs to infer facts about 

the user's knowledge based on what the user says. On the other hand, the methodology 

used to combine such evidence is highly dependent on a double-stereotype system. 

However it can be used in any double-stereotype system where the system can deduce 

particular relations between the user's stereotype and the modeled information. 

5.2. Problems 

Currently, KNOME does not address the problem of whether the user knows some­

thing after UC has informed the user. The difficulty is that the user may not understand 

the system's presentation, in which case the user modeling system should not infer that 

the user knows the new information. A drawback of systems limited to natural language 

interactions is that these systems cannot watch the user's reactions to deduce whether or 

not the user is having trouble understanding the system's presentation. Human consul­

tants are able to switch explanation strategies midway through a presentation when they 

notice their clients' facial expressions showing confusion. A computer consultant would 

have to wait for the user to respond with language in order to get feedback. In such 

cases, the best that a user modeling system can do may be to assume that the user has 

understood (perhaps with a lower certainty factor), until the modeler gets evidence to the 

contrary. Then, if the user does not ask for a clarification in the next exchange, the 

modeler can increase the certainty of its belief that the user has indeed understood. 
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Another deficiency in KNOME is that it does not contain very many specific rules 

for inferring what specific facts a user might know based on other specific facts that the 

user knows. For example, if a user knows the rwho command, then it is very likely that 

the user will also know the who command. KNOME has avoided these types of explicit 

rules in favor of the more efficient, though less specific mechanism of double stereotypes. 

The double stereotypes allow KNOME to combine a small number of explicit facts to 

first infer the user's level of expertise and from this, the user's knowledge of large sets of 

other facts. Although this powerful general mechanism works well, there are still cases 

when explicit rules will give more specific information about what a user knows with a 

higher degree of certainty. The GUMS general user modeling shell ([Finin, 1987]) 

makes good use of these explicit rules. 

A possible deficiency with KNOME' s method of combining evidence is that 

KNOME marks the user as belonging to a particular stereotype after only a short time 

(typically -3 interchanges). After this, KNOME does not alter its conception of the 

user's level of expertise. This is reasonable in the UC domain, because UC sessions are 

typically short. However, this would not be acceptable for longer term user models. If a 

system needs to keep track of a user's level of expertise over periods long enough that 

the user's expertise may increase appreciably, then the system needs to be able to change 

its judgment of the user's level of expertise. This process is easier than one might sup­

pose, since a user's level of expertise tends to grow monotonically (it seems reasonable 

to ignore the phenomenon of forgetting). 

Currently, KNOME only has a single range of user expertise and a single range of 

knowledge difficulty. This is sufficient for UC, since UC only covers commands related 

to the UNIX file system. In order to extend UC to cover other areas of UNIX such as 

using the vi or emacs editors, KNOME would need additional ranges of user expertise 

levels and information difficulty levels. Problems which need to be addressed with mul­

tiple ranges include how the levels in one range might relate to the levels of other ranges. 

For example, a system may be able to predict that an expert in using vi is likely to be an 

expert in using the UNIX file system. On the other hand, th~re may be no such relations 

between familiarity with emacs and familiarity with the UNIX file system, since the 

emacs editor is common to many other operating systems. 

Another area which KNOME does not address completely is how to model users of 

other operating systems. Such users may be able to transfer some amounts of expertise 

to UNIX. These users can benefit from analogies between UNIX and the operating sys­

tem that they know. On the other hand, such users sometimes incorrectly apply analogies 

and often mix up commands. Adding additional stereotypes for such users would 

enhance KNOME's ability to provide proper analogies and to detect improper analogies 

or command usage. [Macmillan, 1983] has shown that one user modeling system can 

adequately model different operating systems (UNIX, TOPS-20, and VM). However, 

no-one has investigated how knowledge of the user's expertise in one domain transfers to 

another domain (correctly or incorrectly) or how to exploit such knowledge (e. g. to pro­

vide analogies). 

Other areas not addressed by KNOME include applying the techniques demon­

strated in KNOME for other purposes such as selection of terminology in generation (c. 

f. [Lehman and Carbonell, 1987]) The approach used in KNOME would also be useful in 
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the selection of different explanation strategies as in the TAILOR system ([Paris, 1987]). 
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Chapter ill 

Goal Detection 

The central problem in building an intelligent agent is how to detect appropriate 

goals for the agent, goals that can then be used to guide the agent's actions. This process 

is called goal detection ([Wilensky, 1983]). 

Although considerable work has been done in the area of planning, very few plan­

ning systems have addressed the problem of how to detect appropriate goals for planning. 

In almost all planning systems, the high level goals are provided by the human operators 

of the planners. An exception is described by [Allen, 1979], whose system simulated a 

train station ticket agent. It detected goals based on an analysis of obstacles to a user's 

plans. By addressing these obstacles, the system could volunteer information that the 

user would need to achieve the user's plan. This approach addresses only a fraction of 

the general problem of goal detection. An analysis of obstacles to the user's plan does 

not address how these obstacle-related goals might interact with the system's other goals. 

Also, analyzing obstacles would not lead a system to detect user misconceptions and 

detect the goal of correcting the misconceptions. Even in terms of volunteering useful 

information to the user, an analysis of obstacles to a user's plans does not address the 

problem when the system should volunteer an alternative pian. 

The PANDORA planner ([Faletti, 1982]) also detected its own goals. It detected 

goals when actual or projected states conflicted with goals or plans and when certain 

frames describing situations were activated. For example, the goal of "find out about the 

world" was attached to the "morning" frame, which meant that PANDORA would try 

to read a newspaper in the morning. However, except for very simple frames, PAN­

DORA did not address the problem of when is it proper to invoke frames and their asso­

ciated goals. Also, because PANDORA existed in a self-contained simulated world, it 

did not address the problem of detecting goals when the system must interact with real 

users. 

Once an agent has determined its goals, then the relatively better understood process 

of planning can be applied to satisfy those goals. A simple plan selection and execution 

mechanism for satisfying such goals is described in Chapter IV. This chapter describes 

how goals are represented in UC and how such goals are detected by UCEgo. 

1. Definitions and Classifications 

This section describes the types of goals found in UC and how they are represented. 

Different goals are detected by UCEgo in different situations. The types of situations 

that give rise to new goals for UC are classified here, while later sections describe the 

specific goals that are detected in each type of situation. 
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1.1. Types of Goals 

In UC, goals are represented in KODIAK (see Appendix A) using the HAS-GOAL 

relation, which has two aspectuals: goal and planner. That is, a goal is modeled as a 

relation between an individual (planner) and some state (goal) which that individual 

wishes to achieve. There is no absolute category of goals, since a state cannot be said to 

be a goal unless some individual can be said to have that goal. This is not to say that 

there are not some states (e. g. having lots of money) that are habitually thought of as 

being goals. However, habitual goals encompass only a fraction of what is meant by the 

term goal. Almost any state can be a goal provided only that some individual wishes to 

achieve that state. Thus treating goals as aspectuals of HAS-GOAL relations captures 

the meaning of the term goal. A graphical representation of the definition of the HAS­

GOAL relation is shown in Figure 3 .1. 

I " uc I 

Figure 3.1. Definition of goals in UC. 

Besides the goal and planner aspectuals, HAS-GOAL has a status aspectual. 

This aspectual of HAS-GOAL is actually inherited from M-POSSESS (for mental­

possess), which dominates HAS-GOAL as well as KNOW, BELIEVE, and HAS­

INTE:l'-lliON. That is, HAS-GOAL is a kind of M-POSSESS where the planner is the 

possessor and the goal is the possessed object. The status aspectual describes the 

status of the relation and can have the values ACTIVE, INACTIVE, or DONE. An 

HAS-GOAL with an ACTIVE status means that the planner is currently actively pursu­

ing that goal. INACTIVE implies that it is not the case that the planner currently has that 

goal. Note that this is not the same as saying that the planner has the inverse goal. For 

instance, if it is not the case that UC wants a file to exist, then it does not necessarily fol­

low that UC wants that file to not exist. It may just be that UC does not care whether that 

file exists or not. The status DONE implies that the planner has already achieved the 

goal. The DONE marker is usually applied to ACTIVE goals that become satisfied dur­

ing the course of a UC session. To be complete, UC should have a full temporal 

representation based on points, intervals, or some other formalism. However, because 

full temporal reasoning was not found to be essential for the proper operation of UC, the 
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DONE status was devised as a simple expedient for marking goals that have been 

achieved during a session. 

Among HAS-GOALs, there is a sub-class called UC-HAS-GOAL where the 

planner is UC. This separation highlights the importance of UC's own goals to itself. It 

also facilitates differentiation between the goals of UC and the goals of other agents that 

can be found in UC's knowledge base. 

Other types of goals include recurrent goals and background goals. Recurrent 

goals are those goals that recur even after they have been satisfied. An example is UC's 

goal of helping the user. Even after UC has helped the user once, UC continues to try to 

help the user. (Recurrent goals in UC are different than cyclic physiological goals -

e. g. satiation of hunger, satiation of thirst, and need for rest/sleep - because the cyclic 

goals are not constantly active; rather, they are inactive for a period immediately after 

their satisfaction.) Recurrent goals are represented in UC as simple sequences in which 

the next item in the sequence is itself. In handling goal sequences, U C adopts successive 

members of the sequence as goals, continuing to the next member after satisfying the 

previous member. By encoding recurrent goals as self-referential goal sequences, 

UCEgo avoids the need for a special status for recurrent goals. 

Background goals are those goals that do not require immediate attention. Exam­

ples of background goals inciude goals of politeness and various presen·ation goals 

([Schank and Abelson, 1977]) that arise from the Preservation theme ([Wilensky, 1983 ]). 

Examples include self-preservation and preservation of the UNIX system. Since back­

ground goals are not dealt with immediately, this creates the problem of deciding when a 

background goal should be pushed to the foreground. This is equivalent to the problem 

of detecting new goals, since pushing a background goal to the foreground can be 

thought of as having a new goal to consider. In UCEgo, the problem of activating back­

ground goals is handled by ignoring background goals until UCEgo encounters a situa­

tion that suggests a plan for handling the background goal. Once UCEgo detects a plan 

for the background goal, then the background goal is activated and is treated like any 

other foreground goal. 

[Wilensky, 1983] argues against the need for background goals, such as preserva­

tion goals. Instead, themes, such as the Preservation theme, would directly give rise to 

specific goals in appropriate situations. This scheme would eliminate the extra inter­

mediate level of background goals between themes and the specific goals. However, 

without this intermediate level of general goals, a system would not be able to abandon 

some of the general goals of a theme without either abandoning the whole theme, or 

adding ad-hoc rules that disable the detection of a some subset of situation classes in 

which that theme should detect specific goals. With intermediate level goals, a system 

can easily disable part of a theme by disabling the appropriate intermediate level goals. 

The intermediate level goals also make it easier for a system to reason about its own gen­

eral goals (e. g. does the system want to preserve itself), since these general goals are 

explicitly represented in the system. 
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1.2. Types of Situations 

In general, an agent may detect new goals whenever there is a change in an agent's 

environment or internal state. Any such combination of factors in the agent's environ­

ment and/or in the agent's internal state that leads to a new goal for the agent is called a 

situation after the terminology of [Wilensky, 1983]. 

For the purposes of detecting goals, it is less important to provide a taxonomy of 

goals, such as in [Schank and Abelson, 1977] and [Carbonell, 1982]. Rather, it is more 

imponant to catalog the types of situations that lead a planner to detect new goals. This 

section will classify the kinds of situations that lead UCEgo to detect new goals. 

Since UC is a computer consultation system, UCEgo's environment is limited to a 

dialogue with the user on the subject of the UNIX operating system. So for UCEgo, 

situations are composed of combinations of UC's internal state, the user's statements, 

and information that might be derived from the user's statements such as the user's plans 

and goals and the user's knowledge and beliefs. UC's internal state includes UC's 

domain knowledge, UC's own goals, and UC's themes ([Schank and Abelson, 1977]). 

The situations that give rise to goals in the UC domain can be divided into five main 

situation classes: 

1) themes ---+ goals 

2) plans ---+ sub-goals 

3) goal interactions ---+meta-goals 

4) gaps in the user's knowledge---+ goals 

5) user misconceptions ---+ goals 

Themes can be considered as the internal motivations of an agent; so they are a 

prime source of new goals. Another source of goals is the planning process. As an agent 

plans for goals, the resulting plans may produce sub-goals that the agent will need to 

adopt and in turn plan to satisfy. When an agent has several goals, these goals may 

interact, giving rise to a meta-goal ([Wilensky, 1983]), which is a goal for dealing with 

the interaction among other goals. 

The previous three sources of goals are universal in that they are common to all 

intelligent agents. The other two sources of goals are somewhat more panicular to a con­

sulting environment. In a consulting environment, situations commonly arise wherein 

the state of the user's knowledge base (as deduced by KNOME from conversing with the 

user) differs from the consultant's knowledge base. One kind of difference is detected 

when the consultant determines that the user lacks some necessary knowledge. Another 

kind of difference is found when the consultant determines that the user's knowledge 

base conflicts with its own knowledge base, that is, that the user has a misconception. 

Both of these classes of situations are concerned with the user's knowledge, because that 

is the main task of a consultant, namely to impan information to the user. In other types 

of programs, a different focus may lead to other situation classes. The situation classes 

listed above are described in greater detail in the following sections. 
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In UCEgo, situation classes are encoded using if-detected daemons. Each daemon 

is a tiny inference engine that detects the presence of particular configurations of 

KODIAK network in UC's knowledge base. When an if-detected daemon detects a 

match, the daemon is activated and adds its inference in the form of more KODIAK net­

work to UC's memory. In the case of if-detected daemons that are used for goal detec­

tion, the matching KODIAK network represents a situation class, and the inference adds 

a new goal to UC's memory. 

An example of an if-detected daemon used for goal detection is shown in Figure 3.2 

This is a very simple daemon that asserts that in situations where the user wants to exit 

(HAS-GOAL1), UCEgo should detect the goal of exiting (UC-HAS-GOAL1). More 

details on the implementation of if-detected daemons can be found in Chapter VI. 

Figure 3.2. If-detected daemon for detecting the goal of exiting. 

2. Goals from Themes and Plans 

UCEgo has a number of themes ([Schank and Abelson, 1977]), which give rise to 

goals. These include life themes as well as role themes. An example of a life theme is 

UCEgo's Stay-Alive theme. This theme gives rise to the recurrent background goals of 

preserving the UC program and preserving the UNIX system. The Stay-Alive theme is 

also an instance of the Preservation theme ([Wilensky, 1983]), since it gives rise to 

preservation goals. An example of a role theme is UCEgo's Consultant role theme. This 

gives rise to the recurrent goals of helping the user and being polite to the user. The goal 

of being polite is a background goal, since UCEgo does not attempt to plan for it 

immediately. On the other hand, the goal of helping the user is a foreground goal, 

because UC immediately tries to find ways to help the user. 

Since all goals that arise from themes are detected when UC first starts up, it might 

seem that attributing these goals to themes is extraneous. However themes are really 

quite useful. First of all, themes provide relative importance ordering for goals, which is 

useful in case of goal conflicts (see Section 3, Meta-Goals). This relative importance for 

goals can be used as a basis for a more complete theory for the calculus of the value of 

different goals for an agent. Secondly, they provide a means of organizing goals into 
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related groups. For example, if UC were to provide other functions besides a UNIX Con­

sultant, then the goals that arise from its Consultant role theme could be added when UC 

starts working as a consultant and removed when UC stops working as a consultant. 

The goals that arise from themes usually give rise to yet more goals, called sub­

goals, during the planning phase of UCEgo. In fact, all of UC's goals can ultimately be 

traced back to UC's themes, either directly or as sub-goals of other goals, which in turn 

can be traced back to UC's themes. 

2.1. An Example Trace 

To see how UCEgo detects goals during the planning process, consider a very sim­

ple interaction with UC such as shown in Figure 3.3. The main goal that UCEgo detects 

in this interaction is the goal (UC-HAS-GOAL50) of having the user know how to delete 

a file (KNOW-gaO). This goal leads UCEgo to call the UNIX domain planner com­

ponent of UC to determine the answer. Then UCEgo selects the plan (PLANFOR56) of 

telling the user the answer. The goal of having the user know is actually a sub-goal of 

UC's goal of helping the user (UC-HAS-GOAL47), which arose from UC's Consultant 

role theme. 

Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type 'AD' or' (exit)'. 

Hi. 
How can I help you? 

# How can I delete a file? 

UCEgo: suggesting the plan: 

(PLANFORSS 
(goalsSS = (HELP4 (helpee4 =*USER*) (helper4 = UC))) 

(planSS = (SATISFY4 
(need4 = (KNOW-gaO? (knower-gaO = *USER*) 

(fact-gaO = (ACTION12? 
(actor6 =*USER*))))) 

(actor4-0 = UC)))) 

based on the situation: 

(UC-HAS-GOAL47 (status47 =ACTIVE) (goal47 = (HELP4 &))) 

(HAS-GOAL-gaO (planner-gaO= *USER*) (goal-gaO= (KNOW-gaO?&))) 

Here UCEgo suggests a plan for helping the user: satisfy the state of having the user 

know how to delete a file. ACfiON12 represents "how to delete a file." 
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UCEgo: detected the goal: 

(UC-HAS-GOALSO (goalSO = (KNOW-gaO?&))) 

from the situation: 

(UC-HAS-INTENTIONlO (intentionlO = (SATISFY4 &)) 

(statuslO =ACTIVE)) 

After UCEgo adopts the intention of carrying out the previous plan, UCEgo adopts the 

sub-goal of having the user know how to delete a file. This is a sub-goal of UC's goal of 

helping the user. 

UCEgo: suggesting the plan: 

(PLANFOR56 
(goals56 = (KNOW-gaO?&)) 

(plan56 = (TELL6 (listener6-0 = *USER*) 

(speaker6-0 = UC) 

(proposition6 
(PLANFOR180 
(goalsl80 = (DELETE-EFFECTO? 

(DELETE-EFFECT-final-stateO 

(plan180 

(effect6 

based on the situation: 

(EXISTSO (exist-objectO = FILE3?) 

(existenceO =FALSE))) 

(DELETE-EFFECT-initial-stateO = 

(EXISTS3 (exist-object3 = FILE3?) 

(existence3 =TRUE))) 

(del-objectO = FILE3?))) 

(UNIX-RM-COMMANDO 
(rrn-fileO = FILE3?) 

(UNIX-RM-COMMAND-effectO 

(DELETE-EFFECTO? &)))))) 

(STATE-CHANGEl (final-statel = 

(KNOW-gaO?&))))))) 

(ANSWER-FOR2 (answer2 (PLANFOR180 &)) (query2 = (ACTION12? &))) 

(UC-HAS-GOALSO &) 

After UC determines the answer, UCEgo suggests the plan of telling the user the answer 

in order the satisfy the goal of having the user know how to delete a file. Since that is a 

sub-goal of helping the user, it will also help to satisfy that goal. 
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Use :em. 
For example, to delete the file named foo, type 'rm foo' . 

Figure 3.3. Simple UC dialog showing sub-goals. 

2.2. Goals from Themes 

When UC first starts up, it has a number of themes. These immediately give rise to 

goals for UC. The themes that have been found to be important for UC include the 

Stay-Alive and Ethics life themes, and the Consultant role theme. Other systems may 

find that different themes will be useful. Certainly, systems that are not consultation sys­

tems will have a different role theme than UC's Consultant role theme. 

The Consultant role theme represents UC's job of being a UNIX consultant. It 

motivates UC to behave as a consultant to help the user. Therefore, the Consultant role 

theme leads UCEgo to adopt the recurrent goal of helping the user. This goal is a 

recurrent goal, since once UC has helped the user, UC continues to have the goal of help­

ing the user. Unlike other goals that arise from themes, the goal of helping the user is not 

· a background goal. This means that UCEgo is constantly planning how to satisfy this 

goal. 

Another aspect of being a consultant involves being polite to the client. So the Con­

sultant role theme leads UCEgo to adopt the recurrent background goal of being polite to 

the user. This goal is a recurrent goal, since UC never stops being polite to the user. It is 

also a background goal, since UCEgo does not try to plan how to be polite to the user. 

Instead, when a situation arises in which UC should be polite, this goal will become 

activated. Such social situations include greetings, farewells, and apologies. See 

Chapter IV, Section 2.4 for more details on such social situations. 

The Ethics life theme represents UC's desire to act ethically. It gives rise to UC's 

goal of ACT-ETHICALLY. Since UC cannot perform actions except for communicative 

acts, UC only has to worry about performing unethical communicative actions. For 

example UC worries about providing information to the user that will help the user per­

form an unethical act. In such situations, UCEgo detects a conflict between UC's goal of 

helping the user (from the Consultant role theme) and UC's goal of ACT-ETHICALLY. 

Such goal interactions are described further in Section 3. 

The Stay-Alive life theme is an instance of the Preservation Theme (see [Wilensky, 

1983 ]), whence arise preservation goals. This particular Preservation theme represents 

UC's desire to preserve itself. As a result, it leads UC to adopt the goals of preserving 

the UC program and preserving the UNIX system on which UC runs. Other preservation 

goals that need to be taken into account in planning how the user should do things in 

UNIX (e. g. preserving the user's files and preserving the privacy of the user's files) are 

handled by UC's UNIX domain planner ([Luria, 1985] and [Luria, forthcoming]). 
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Themes in UC and the goals that they give rise to are summarized in Table 3.1. 

Theme ~oal goal-type 

UC-Consultant UC help user recurrent foreground goal 

Role Theme UC be polite to user recurrent background goal 

UC-Stay-Alive preserve UC program recurrent background goal 

Life-Theme preverve UNIX system recurrent background goal 

UC-Ethics UC act-ethically recurrent background goal 
Life-Theme 

Table 3.1. Themes that give rise to goals in UC. 

2.3. Situations Leading to Sub-Goals 

Except for those goals that UC adopts from its themes, all of UC's other goals are 

sub-goals or, infrequently, meta-goals. This section will show how UCEgo adopts sub­

goals and describe some of the sub-goals found in UC. Other sub-goals are introduced as 

appropriate in later sections. 

Sub-goals are created as part of the planning process. Many of UCEgo's plans con­

tain steps that call for the achievement of a state. When UCEgo adopts such a plan, it 

adopts the sub-goal of the achieving that state. Figure 3.4 shows the if-detected daemon 

that adopts a sub-goal whenever UC has the intention of satisfying some state. 

Figure 3.4. If-detected daemon that adopts a sub-goal from an intention. 

An example of a particular sub-goal is shown in Figure 3.5. The if-detected daemon 

shown allows UCEgo to adopt the user's goal of knowing something. This daemon is 

triggered by a class of situations that consists of two parts: 



1) 

2) 
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UC has the goal of helping someone. 

That person wants to know something. 

When UCEgo encounters a matching situation, it asserts that a plan for helping the 

user is to satisfy the sub-goal of having the user know what the user wants to know. This 

situation is a very common one for UC, because UC's users usually want to know some­

thing about UNIX. 

Figure 3.5. If-detected daemon for detecting the sub-goal of having the user know. 

Another example of a sub-goal situation is shown in Figure 3.6. This if-detected 

daemon detects situations in which UCEgo adopts a sub-goal of UC's goal of acting ethi­

cally. The type of situation that triggers the daemon involves four relations: 

1) UC has the goal of acting ethically. 

2) Someone, ?p1, wants to alter a file (alter includes delete). 

3) The owner of the file is someone, ?p2. 

4) ?p2 (the owner) differs from ?pl (the alterer). 

After detecting such a situation, UCEgo asserts that a plan for acting ethically is to 

prevent the first person from altering the second person's file. This sub-goal is not very 

helpful for UC, since UC does not presently have any way to interact with UNIX and so 

cannot really do anything to prevent the user from deleting someone else's file (e. g. 

inform the system administrators and/or the owner of the file about the user's intentions). 
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If UC had emotions, then it would probably be frustrated. 

Figure 3.6. Detect sub-goal: prevent someone from altering someone else's file. 

The situation class encoded in this if-detected daemon is rather specific; it only 

detects unethical situations in which someone wants to delete someone else's files. A 

more general approach would be to have an if-detected daemon detect situations in 

which: 

1) Someone has an unethical goal. 

2) UC has the goal of acting ethically. 

Then, in such situations, UC can adopt the sub-goal of preventing that person from 

achieving their unethical goal. With this if-detected daemon, UCEgo would still need to 

determine which goals are unethical. Such an approach would help to highlight the 

difference between an agent's reaction to an immoral situation (attempt to prevent it) and 

the agent's judgment of morality. Since it was not the purpose of UCEgo to develop a 

systematic representation of morality, the rather specific approach shown above was used 

for efficiency. The same is true of the next if-detected daemon, shown in Figure 3.7, 

which encodes the related situation class of someone wanting to know how to alter some­

one else's file. 
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Figure 3.7. Detect sub-goal: prevent someone from knowing something unethical. 

This if-detected daemon encodes situations iri which: 

1) UC has the goal of acting ethically. 

2) Someone, ?p 1, wants to know: 

3) a plan for altering a file (altering includes the sub-class of deleting). 

4) The owner of the file is someone, ?p2. 

5) ?p2 (the owner) differs from ?pl (the alterer). 

When UCEgo detects such a situation, it asserts that a plan for acting ethically is to 

adopt the sub-goal of preventing the first person from knowing how to alter the second 

person's file. Normally this type of situation occurs when the user asks UC how to alter 

someone else's file. UC should not help the user to perform unethical actions, so in such 

cases, UC should not provide the user with such information. However this conflicts 

with UC's normal mode of operation in which UC adopts the user's goal of knowing in 

order to help the user. This results in an internal goal conflict for UC. Section 3 

describes such goal interactions and how they are resolved. 

3. Meta-Goals 

To correct user misconceptions or provide suggestions to the user does not neces­

sarily require that the system have explicit goals of its own. Those types of responses 
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can be provided by simpler systems that do not have goals and plans. However, a system 

based on planning for goals is more flexible, because such a system can much more 

easily handle interactions among goals. Goals can interact either negatively by 

conflicting, or positively by overlapping. When UCEgo detects a situation where goals 

conflict or overlap, it creates a new goal for dealing with the goal interaction. Such goals 

for dealing with other goals are called meta-goals ([Wilensky, 1983]). 

Meta-goals in UC, like UC's sub-goals, are completely equivalent to all other goals 

of UC. That is, meta-goals are not discriminated from other goals in UC either by 

representational differences or by differences in their processing. Of course, in discuss­

ing goals, it is useful to distinguish meta-goals and sub-goals because these types of goals 

tend to originate from different kinds of situations and tend to have different subject 

areas. 

Meta-goals are also useful for controlling the planning and plan execution process. 

In UC, meta-goals control when UCEgo tries to find out information for the user in situa­

tions in which UC does not know the information. Also, when UCEgo cannot find a 

pre-stored plan to satisfy one of UC's goals, UCEgo adopts the meta-goal of knowing a 

plan for finding out a plan to satisfy this goal. This is an example of meta-planning 

([Wilensky, 1983]), since UC is planning to create a plan that is used to find another plan. 

3.1. Controlling Planning 

When UCEgo fails to find a plan to satisfy one of UC's foreground goals, it adopts 

the meta-goal of knowing a plan for satisfying this goal. Since UCEgo selects plans (see 

Chapter IV, Section 2) using if-detected daemons, it does not know whether it has found 

a plan for a particular goal until after any relevant if-detected daemons have been 

activated. So, after all possible daemons have been given a chance to activate, UCEgo 

looks through its memory to see if there are any foreground goals for which it does not 

have a plan for satisfying. For each such unsatisfied foreground goal, UCEgo adopts the 

meta-goal of knowing a plan for satisfying the unsatisfied foreground goal. 

A very simple case of such a meta-goal is found when UC first starts up with a new 

user. At startup, UCEgo adopts the Consultant role theme (see Section 2), which leads to 

the foreground goal of helping the user. However, before the user has stated a problem 

to UC, UC does not know exactly how it can help the user. So UCEgo adopts the meta­

goal of knowing a plan for helping the user. Then, since UC knows that the user knows 

how UC can help the user, UCEgo suggests the plan of asking the user how UC can help 

in order to satisfy the meta-goal of knowing a plan for helping the user. Executing the 

plan results in UC asking the user, "How can I help you?" A trace of this processing is 

shown in Figure 3.8. 
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Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in Enqlish. 

To leave, just type '~D' or' (exit)' . 

• 
• 
• 

Hi 

• 
• 
• 

UCEgo: do not know a single planfor the foreground goal: 

(UC-HAS-GOALS6 &) 
so adding the meta-goal: 
(UC-HAS-GOALS7 (goalS7 (KNOW49? (knower49 = UC) 

(fact49 = ACTIONll?)))) 

(PLANFOR61? (goals61 = (HELPS&)) (plan61 = ACTIONll?)) 

UCEgo does not currently have a specific plan for the goal of helping the user, which is a 

foreground goal, so it adopts the meta-goal of finding out a plan for helping the user. 

UCEgo: suggesting the plan: 

(PLANFOR62 
(plan62 = (ASKS (asked-forB = (QUESTIONS (what-is8 

(listenerS = *USER*) 
(speakerS= UC))) 

(goals62 = (KNOW49? &))) 

based on the situation: 

*USER* 
(UC-HAS-GOALS7 &) 

ACTIONll ?) ) ) 

Since UC knows that the user knows how UC can help, UCEgo suggests the plan of ask­

ing the user in order to find out how to help the user. This plan is described in Chapter 

IV, Section 2.3. 

The planner is passed: 
((HELPS &) ) 



The planner produces: 

nil 
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UCEgo always consults the UNIX domain planner, whenever it wants to know a plan. 

The domain planner fails to devise a plan in this case. 

The generator is passed: 

(ASKS &) 

How can I help you? 

# 

Figure 3.8. Trace showing meta-goal. 

UCEgo also uses meta-goals to control the planning process, when UCEgo does not 

know some information sought by the user. In these situations, UCEgo adopts the meta­

goal of finding out the information. Such situations are detected by the if-detected dae­

mon shown in Figure 3.9. More specifically, UCEgo adopts the meta-goal (UC-HAS­

GOAL2) of UC knowing something whenever UC has the goal (UC-HAS-GOALl) of 

having the user know something, and UC does not know (KNOWl) that. 

Figure 3.9. Daemon for detecting the goal of finding out something that UC does not know. 



-79-

Once UCEgo has adopted the meta-goal, the regular planning process is used to 

devise a plan for UC to find out the information. This meta-goal is meant to model the 

behavior of human consultants who do not know the answer to a client's question, but 

can ''look it up'' to find out the answer, The meta-goal can also be thought of as a sim­

ple form of "curiosity," since UC wants to know something when it realizes that it does 

not know the information. Unfortunately, the current implementation of UC does not 

have the capability to "look up" answers. However, the plan that UC discovers for 

looking up answers may be useful to the user, since the user does have the capability to 

"look up" answers. In such cases, when UCEgo comes up with a plan for finding out 

the answer to the user's query, and KNOME does not believe that the user already knows 

this plan, then UCEgo suggests this plan to the user. Section 5.3 discusses how UCEgo 

makes suggestions in greater detail, while Section 5.5 shows a trace of UCEgo adopting 

this type of meta-goal. 

3.2. Mutual Inclusion 

Meta-goals are used to deal with both positive and negative interactions between 

goals. One way in which goals can interact positively is through mutual inclusion 

([Wilensky, 1983]). This describes situations in which a planner has the same or similar 

goals for different reasons. In such situations, the planner can merge the goals into a sin­

gle goal. This saves resources, because the planner no longer has to plan several times 

nor execute many similar plans. 

When UCEgo finds that it has two goals that are similar, it adopts the meta-goal of 

merging the redundant goals. The redundant goals may actually be identical, or they 

may be just similar enough to be merged successfully into a single goal. For example, 

consider what happens when the user asked UC, "Is cp used to copy files?" 

In processing this query, UC's goal analysis component, PAGAN, deduces that the 

user's goal is to know whether cp is a plan for copying files. PAGAN also deduces that 

this goal has two possible parent goals (one or both of which might hold): 

1) The user wants to know the effects of the cp command. 

2) The user wants to know how to copy files. 

To see why this added level of goal analysis is necessary, consider the slightly dif­

ferent query, "Is cp used to create files?" The answer to this query is, "No." However 

this is not a very good answer. In fact, any human consultant who only replied, "No" in 

this case would be labeled uncooperative. The reason why "No" is not a good answer 

for this query, whereas "Yes" is a reasonable answer for the first query is because the 

"No" answer only superficially addresses the user's goals. It only addresses the user's 

immediate goal, to know whether or not cp is used to create files, but does not address 

either of the two possible goals that motivate that goal: the user wants to know the effects 

of the cp command, or the user wants to know how to create files, or both. To provide a 

more cooperative answer in such situations, UCEgo volunteers additional information by 

addressing the user's higher level goals as well as the user's immediate goal. 
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Volunteering information in such cases is described in Section 5.4. 

The second query shows that UCEgo sometimes needs to address all of the user's 

goals rather than just the user's immediate goal. However, if UCEgo were to address all 

of the user's goals in the first query, then it would end up providing three very similar, 

indeed redundant, answers to the user. UCEgo might approach this problem of redundant 

answers in one of two ways. It could always handle only the user's immediate goal and 

then volunteer more information only if it discovers that satisfying the user's immediate 

goal does not contribute to satisfying the higher level goals that motivate the immediate 

goal. The problem with this approach is that it is fairly difficult to tell whether or not 

satisfying the immediate goal helps to satisfy the underlying goals. In fact, a planner will 

usually have to plan to satisfy the underlying goals before it can make such a judgment. 

Since a planner often must plan for the underlying goals anyway, UCEgo uses the 

strategy of always planning to satisfy all of the user's goals and then noticing when these 

goals overlap to prevent redundant answers. Figure 3.10 shows the if-detected daemon 

that notices situations with potential goal overlap. Whenever UC has two different goals 

(UC-HAS-GOALl and UC-HAS-GOAL2) of wanting the user (PERSONl) to know 

something, and the answer (ANSWER-FORI and ANSWER-FOR2) for those queries are 

similar (implemented by the procedural test, UC-test-similar), then UCEgo adopts the 

meta-go::~l (UC-HAS-GOAL3) of merging the redundant goals (MERGE­

REDUNDANT-GOALS). 

Figure 3.1 0. If-detected daemon for detecting overlapping goals. 

The procedural test, UC-test-similar, checks to see if the two goals are similar 

enough to be merged. It first matches the two answers to see if they are the same. If so, 

then the two goals can be merged. It also has knowledge that certain types of relations 
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are similar enough that they convey essentially the same information. For example, 

HAS-EFFECT and PLANFOR are similar enough to be merged, provided of course that 

they relate similar concepts. 

The trace of a UC session shown in Figure 3.11, shows how UCEgo merges goals 

during the processing of the user query, ''Is cp used to copy files?'' By adopting all 

three potential user goals, UCEgo detects the three goals: 

1) UC wants the user to know whether cp is used to copy files (UC-HAS­

GOAL67) 

2) UC wants the user to know the effects of the cp command (UC-HAS­

GOAL66) 

3) UC wants the user to know a plan for copying files (UC-HAS-GOAL68) 

UCEgo cannot tell that these goals are similar until after it has deduced the referent 

of the descriptions in UC's goals. For instance, the referent (encoded as an ANSWER­

FOR relation) for the goal of knowing the effects of the cp command is the HAS­

EFFECf21 relation, whereas the referent of the goal of knowing a plan for copying files 

is the PLANFOR340 relation. These are similar, albeit different relations, so they are 

candidates for merging. Since they both relate a UNIX-CP-COMMAND to a COPY­

FILE-EFFECf, UC-test-similar decides that they can indeed be merged. Another type of 

similarity is found when one answer is contained in the other. In this example, the 

answer for the goal of knowing whether cp is a plan for copying files is the HAS­

TRUTH-VALUED relation relating the truth-value, TRUE, and the proposition, PLAN­

FOR71, that the cp command is a plan for copying files. When comparing this answer, 

only the propositional content is compared. Eventually, all three goals are merged by 

discarding all but the immediate goal (the merging of goals is described in more detail in 

Chapter IV, Section 2.5). 

The final answer is shortened to just, "Yes," rather than "Yes, cp is used to copy 

files.'' This is done since the proposition, ''cp is a plan for copying files,'' is already part 

of the context (it is part of the user's query). This is an example of pruning the concepts 

to be expressed to the user and is described in Chapter V, Section 2. 

Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type '~D' or' (exit)'. 

Hi. 
How can I help you? 

# Is cp used to copy files? 

The parser produces: 



(ASKlO (asked-forlO 
(QUESTIONlO 
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(what-islO 
(PLANFOR71? (goals71 

(plan71 

(listenerlO = UC) 
(speakerlO =*USER*)) 

(COPY-FILE-EFFECTO? 
(copy-to-fileO = FILES?) 

(copy-frorn-fileO = FILE4?))) 

UNIX-CP-COMMANDO))))) 

(COPY-FILE-ACTIONO? 
(COPY-FILE-ACTION-effectO = (COPY-FILE-EFFECTO? &))) 

The goal analyzer produces: 

( (HAS-GOAL-ga2 
(planner-gaO = *USER*) 
(goal-ga2 = (KNOW-ga2? (knower-gaO = *USER*) 

(fact-ga2 =SOMETHING-gaO?)))) 

(HAS-GOAL-gal 
(goal-gal = (KNOW-gal? (knower-gal = *USER*) 

(fact-gal (PLANFOR71? &)))) 

*USER*)) (planner-gal 
(HAS-GOAL-gaO 

(planner-ga2 *USER*) 

(goal-gaO = (KNOW-gaO? (knower-ga2 = *USER*) 
(fact-gaO= ACTION-gaO?))))) 

PAGAN deduces that the user has the goals: 

know whether cp is a plan for copying files- HAS-GOAL-gal 

know a plan (ACfiON-gaO) for copying files- HAS-GOAL-gaO 

know the effects (SOMETHING-gaO) of the cp command- HAS-GOAL-ga2 

UCEgo: suggesting the plan: 

(PLANFOR72 (goals72 = (HELPS (helpeeS = *USER*) (helperS 

(plan72 = (SATISFY6 (need6 = (KNOW-ga2? &)) 

(actor6 = UC)))) 

based on the situation: 
(UC-HAS-GOAL63 (status63 

(HAS-GOAL-ga2 &) 
ACTIVE) (goal63 = (HELPS&))) 

UCEgo: suggesting the plan: 

(PLANFOR73 (goals73 = (HELPS&)) 
(plan73 = (SATISFY7 (need7 = (KNOW-gal?&)) 

(actor7 = UC)))) 

based on the situation: 

(UC-HAS-GOAL63 &) 

UC))) 
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(HAS-GOAL-gal &) 

UCEgo: suggesting the plan: 

(PLANFOR74 (goals74 = (HELPS&)) 
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(plan74 = (SATISFYS (needS= (KNOW-gaO?&)) 

(actorS= UC)))) 

based on the situation: 

(UC-HAS-GOAL63 &) 
(HAS-GOAL-gaO &) 

UCEgo: detected the goal: 

(UC-HAS-GOAL66 (goal66 = (KNOW-ga2? &))) 

from the situation: 
(UC-HAS-INTENTIONll (intentionll = (SATISFY6 &)) 

(statusll =ACTIVE)) 

UCEgo: detected the goal: 

(UC-HAS-GOAL67 (goal67 = (KNOW-gal?&))) 

from the situation: 
(UC-HAS-INTENTIONlO (intentionlO = (SATISFY7 &)) 

(statuslO =ACTIVE)) 

UCEgo: detected the goal: 

(UC-HAS-GOAL6S (goal68 = (KNOW-gaO?&))) 

from the situation: 

(UC-HAS-INTENTION9 (intention9 = (SATISFY8 &)) 

(status9 =ACTIVE)) 

UCEgo adopts all three of the user's goals as its own. 

UCEgo: trying to find effects for UNIX-CP-COMMANDO 

the effects are: 

((HAS-EFFECT21 (command-of-effect21 = (UNIX-CP-COMMANDO &)) 

(effect-of-command21 
(COPY-FILE-EFFECT-0 (copy-to-file-0 = FILE-2) 

(copy-frorn-file-0 = FILE-3))))) 

This is to help satisfy the sub-goal of having the user know the effects of the cp com­

mand. 

UCEgo: checking the truth value of the proposition: 

(PLANFOR71? &) 
the proposition is TRUE 
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This is to help satisfy the sub-goal of having the user know whether cp is used to copy 

files. 

UCEgo: suggesting the plan: 

(PLANFOR7S 
(goals7S = (KNOW-gal?&)) 

(plan7S 
(TELLS (effectS = (STATE-CHANGEl 

(final-statel 

(listeners-a = *USER*) 

(speakers-a = UC) 

(propositionS = 

(KNOW-gal?&)))) 

(HAS-TRUTH-VALUEa (truth-valuea = TRUE) 

(t-v-propO = (PLANFOR71? &))))))) 

based on the situation: 

(ANSWER-FORS (answerS= (HAS-TRUTH-VALUEO &)) 

(queryS = (PLANFOR71? &))) 

(UC-HAS-GOAL67 &) 

UCEgo: suggesting the plan: 

(PLJl_JqFOR7 6 
(goals76 = (KNOW-ga2? &)) 

(plan7 6 
(TELL6 (effect6 = (STATE-CHANGE2 

(final-state2 

(listener6-0 = *USER*) 

(speaker6-0 = UC) 

(proposition6 = 

(KNOW-ga2? &)))) 

(HAS-EFFECT21 (command-of-effect21 

(UNIX-CP-COMMANDO &)) 

based on the situation: 

(effect-of-command21 = 
(COPY-FILE-EFFECT-0 

(copy-to-file-0 = FILE-2) 

(copy-frorn-file-0 = FILE-3)))))))) 

(ANSWER-FOR4 (answer4 = (HAS-EFFECT21 &)) 

(query4 =SOMETHING-gaO?)) 

(UC-HAS-GOAL66 &) 

UCEgo: detected the goal: 

(UC-HAS-GOAL69 (goal69 = (MERGE-REDUNDANT-GOALS2 

from the situation: 

(UC-HAS-GOAL67 &) 

(UC-HAS-GOAL66 &) 

(ANSWER-FORS & ) 

(ANSWER-FOR4 &) 

(rnerge-goal-A2 (UC-HAS-GOAL66 &)) 

(rnerge-goal-B2 = (UC-HAS-GOAL67 &)) ) )) 



- 85-

UCEgo detects a situation with redundant goals, so it adopts the meta-goal (UC-HAS­

GOAL69) of merging the redundant goals. 

UCEgo: suggesting the plan: 

(PLANFOR7 9 
(goals79 = (MERGE-REDUNDANT-GOALS2 &)) 

(plan79 = (UC-merge-goalsl (merge-Al (UC-HAS-GOAL66 &)) 

based on the situation: 

(UC-HAS-GOAL69 &) 

(merge-Bl = (UC-HAS-GOAL67 &))))) 

UCEgo: merging the overlapping goals: 

(UC-HAS-GOAL66 &) 

(UC-HAS-GOAL67 &) 

by discarding the goal, UC-HAS-GOAL66 

and its sub-goal, UC-HAS-INTENTION12 

UCEgo merges the goals by discarding one of the goals. 

The planner is passed: 

((COPY-FILE-EFFECTO? &)) 

This is to help satisfy the sub-goal of having the user know a plan for copying files. 

The planner produces: 

(PLANFOR340 
(goals340 = (COPY-FILE-EFFECTO? &)) 

(plan340 = (UNIX-CP-COMMANDl (cp-dest-filel = FILES?) 

(cp-source-filel = FILE4?) 

(UNIX-CP-COMMAND-effectl = 

(COPY-FILE-EFFECTO? &))))) 

(HAS-FILE-NAME17 (named-filel7 =FILES?) 

(file-namel7 = (lisp= nil))) 

(HAS-FILE-NAME18 (named-filel8 = FILE4?) 

(file-namelB = (lisp= nil))) 

(CP-HAS-FORMATO 
(CP-HAS-FORMAT-commandO = (UNIX-CP-CO~~l &)) 

(CP-HAS-FORMAT-formatO = 
(CP-FORMATO (CP-FORMAT-two-file-argO = 

(CP-TWO-FILE-SEQO (cp-dest-file-argO 
(file-namel7 = 
aspectual-of 
(HAS-FILE-NAME17 &))) 

(cp-source-file-argO = 
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(CP-FORM.:D,.T-stepO 

(HAS-COMMAND-NAME90 

(HAS-COMMAND-NAME-named-obj90 

(HAS-COMMAND-NAME-name90 = cp)) 

(file-namel8 = 
aspectual-of 
(HAS-FILE-NAME18 &))))) 

cp)))) 

(UNIX-CP-COMMANDl &)) 

UCEgo: suggesting the plan: 

(PLANFOR80 
(goals80 = (KNOW-gaO?&)) 

(plan80 = (TELL7 (effect7 = (STATE-CHANGE3 
(final-state3 

(listener7-0 = *USER*) 

(speaker7-0 = UC) 

(KNOW-gaO?&)))) 

(proposition7 = (PLANFOR340 &))))) 

based on the situation: 

(ANSWER-FOR6 (answer6 = (PLANFOR340 &)) (query6 =ACTION-gaO?)) 

(UC-HAS-GOAL68 &) 

UCEgo: detected the goal: 

(UC-HAS-GOAL70 (goal70 = (MERGE-REDUNDANT-GOALS3 

(merge-goal-A3 (UC-HAS-GOAL67 &i i 

(merge-goal-B3 = (UC-HAS-GOAL68 &))))) 

from the situation: 

(UC-HAS-GOAL68 &) 

(UC-HAS-GOAL67 &) 

(ANSWER-FOR6 & ) 
(ANSWER-FORS & ) 

UCEgo detects another pair of overlapping goals. 

UCEgo: suggesting the plan: 

(PLANFOR81 
(goals81 = (MERGE-REDUNDANT-GOALS3 &)) 

(plan81 = (UC-merge-goals2 (merge-A2 (UC-HAS-GOAL67 &)) 

based on the situation: 

(UC-HAS-GOAL70 &) 

(merge-B2 = (UC-HAS-GOAL68 &))))) 

UCEgo: merging the overlapping goals: 

(UC-HAS-GOAL67 &) 

(UC-HAS-GOAL68 &) 

by discarding the goal, UC-HAS-GOAL68 

and its sub-goal, UC-HAS-INTENTION15 

Express: not expressing PLANFOR71?, 

since it is already in the context. 



The generator is passed: 

(TELLS & ) 
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Figure 3.11. UC dialog showing the meta-goal of merging redundant goals. 

3.3. Goal Conflict 

Goals can interact negatively by conflicting. When UCEgo detects a situation in 

which UC has two goals that conflict with one another, UCEgo adopts the meta-goal of 

resolving the goal conflict. A frequent type of goal conflict situation is found when a 

planner both wants to achieve some state and wants to prevent that state from occurring. 

UCEgo detects such situations with the if-detected daemon shown in Figure 3.12. 

Figure 3.12. If-detected daemon for detecting goal conflict. 

An example of a goal conflict situation is when the user asks UC, "How can I 

delete UC?" In this case, the usual flow of processing leads UCEgo to adopt the user's 

goal of having the user know a plan for deleting the UC program. This sub-goal can be 

traced back to UC's goal of helping the user, which in turn arose from UC's Consultant 

role theme (see Section 2). 

In parallel to this, UCEgo also has a Stay-Alive life theme, which gives3 rise to 

UC's goal of preserving the UC program. This is a background goal (see Section 1, 

Types of Goals), which means that UCEgo does not immediately plan to satisfy the goal. 

Rather, the goal becomes active only after UCEgo detects a relevant situation, such as in 
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the present example. Whenever someone wants to know how to alter something that UC 

wishes to preserve, UCEgo adopts the sub-goal of preventing the user from knowing how 

to do that. In this example, the user wants to delete (a specific kind of alte~.ng) the UC 

program, which UC wants to preserve. So, UCEgo adopts the sub-goal of preventing the 

user from knowing how to delete the UC program. The if-detected daemon that detects 

such situations is shown in Figure 3.13. 

SOMETIIINGl? 

~
1? 

NO 

dominator 
dominated ~ 

uc-H§Au? 
1.2? 

Figure 3.13. Daemon that detects the sub-goal of preventing someone from knowing. 

At this point, these two lines of processing interact with a goal conflict. On the one 

hand, UC wants to help the user and hence wants the user to know how to delete the UC 

program. On the other hand, UC wants to preserve the UC program and hence wants to 

prevent the user from knowing how to delete the UC program. The goals of wanting the 

user to know and wanting to prevent the user from knowing serve to activate the 

conflict-detection daemon shown earlier in Figure 3.12. Activating the daemon gives UC 

the goal of resolving the conflict. In this case, the meta-plan of abandoning the lower 

priority goal (helping the user) is used to resolve the conflict. Thus, UC does not help the 

user by telling the user how to delete UC. Conflict resolution is described in Chapter IV, 

Section 2.5. 

4. Handling User Misconceptions 

User misconceptions are commonly encountered in systems like consultant pro­

grams where the system knows more than the user. A user is said to have a misconcep­

tion when the user's beliefs conflict with what the consultation system knows. In order 
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to respond properly in such cases, the consultant system must first detennine that the 

user's beliefs conflict with what the system believes, and then correct the user's miscon­

ception. 

4.1. Other Approaches to User Misconceptions 

Other systems that have dealt with user misconceptions use one of two common 

approaches. The first approach compiles an a priori list of possible user misconceptions 

for use in detecting misconceptions. This is common among ITS (Intelligent Tutoring 

Systems) (e. g. [Brown and Burton, 1978], [Stevens et al., 1979], [Sleeman and Smith, 

1981], [Johnson and Soloway, 1984], [Anderson et al., 1985], and [Reiser et al., 1985]). 

These systems are not very flexible, since they cannot deal with any user misconceptions 

that are not listed among their precompiled a priori lists. 

Another approach attempts to detect classes of misconceptions. Among the best of 

these is Kaplan's CO-OP natural language database-query system ([Kaplan, 1983]), 

which handles a class of faulty user presumptions. An example from CO-OP is shown in 

Figure 3.14. 

User: Who advises projects in area 36? 

CO-OP: I don't know of any area #36. 

Figure 3.14. CO-OP example with hedged response to misconception. 

The user in the CO-OP example believes that there is an area 36. In processing the 

user's query, CO-OP finds that there is no area 36 listed in its database, so it detects a 

possible user misconception: the user may mistakenly presume that there is an area 36 

when in actuality there might not be an area 36. Note that CO-OP's reply does not actu­

ally correct the user's misconception, rather it hedges, claiming that it does not know of 

any area #36. By hedging, CO-OP cannot correct the user's misconception, but can only 

suggest to the user that the user might be mistaken. CO-OP is unable to take corrective 

action, because it does not assume either an open or closed world model for its database. 

As a result, it cannot tell from the fact that there is no area 36 in its database whether 

there really is no area 36, or if area 36 was just left out of its database. Unlike UC, in 

which the KNOME subcomponent models UC's own knowledge with meta-knowledge 

(see Chapter II, Section 4 ), CO-OP does not have a model of its own database. 

A corrective response is shown in Kaplan's example of a cooperative human, shown 

in Figure 3.15. 
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User: Which students got a grade ofF in CS 105 in Spring 1980? 

Human: CS105 was not given in Spring 1980. 

Figure 3.15. Kaplan's example of a cooperative human respondent. 

Because CO-OP does not adopt either an open or closed world model, it would not 

be able to deny that CS105 was given in Spring 1980 as in Kaplan's example of a 

cooperative human. CO-OP would only be able to suggest a misconception by saying 

something like, "I don't know of any CS105 in Spring 1980." To be able to actually 

correct the user, CO-OP would need to know that the absence of a CS 105 among the 

Spring 1980 courses implies that there was no CS 105 offered then. That is, CO-OP 

would need meta-knowledge. Since CO-OP was designed to be easily transportable 

among different databases, it did not have such non-transportable meta-knowledge. 

The DAIQUIRY module of HAM-ANS ([Marburger, 1986]) extended the miscon­

ception approach of CO-OP to include conceptual failures in which the user asks about 

objects not modeled by the database. Because DAIQUIRY, like CO-OP, did not have 

meta-knowledge, it too could only hedge its replies to the user. For example, it would 

reply, "The system has no knowledge about 'SHIP'," when SHIP was not in its concep­

tual hierarchy. 

[Mays, 1980] and [Webber and Mays, 1983] report efforts to deal with user miscon­

ceptions that can be found by constraint violations on relations. For example, if the 

TEACH relation is constrained to relate only FACULTY to COURSES, then the system 

can detect a misconception if the user asks about UNDERGRADUATES that TEACH. 

This type of relational constraint can be considered a kind of implicit meta-knowledge. 

It differs from the explicit meta-knowledge of KNOME in that relational constraints can 

only be used to detect misconceptions about what can be the case, and not misconcep­

tions about what is the case. For example, relational constraints can be used to deduce 

that only commands can have command-options, but not whether any particular com­

mand has any particular command-option. 

After a user misconception has been detected, it must be corrected. [McCoy, 1985] 

and [McCoy, 1987] discuss strategies for correcting object-oriented misconceptions. 

[Quilici et al., 1987] discusses correcting plan-oriented misconceptions in AQUA. 

AQUA assumes a closed world model for its knowledge base of plans, called an "advi­

sor model.'' As a result of this assumption, AQUA can only model perfect advisors that 

have complete knowledge of the domain. If AQUA's advisor model were incomplete, 

then AQUA would tend to mislead the user. For example, if an obscure side effect of a 

plan were inadvertently left out of AQUA's knowledge base, then AQUA would mislead 

the user to believe that the plan did not have this a side-effect. Some form of meta­

knowledge would be required to allow AQUA to model an advisor without perfect 

knowledge of the domain. 
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4.2. Detecting Misconceptions in UC 

User misconceptions are detected by UC during the processing of the user's query. 

Currently, UC only handles relational misconceptions, that is, misconceptions in which 

the user believes a relation holds between two objects when in fact, such a relation can­

not hold or does not happen to hold between those particular objects. UC does not han­

dle object-oriented misconceptions, such as those for which [McCoy, 1985] discusses 

correction strategies. 

In processing the user's query, UC checks to see whether all relations mentioned by 

the user in the user's query have a counterpart in UC's knowledge base. For example, if 

the user asks, "What does ls -e do?", then UC's parser/understander understands part of 

this as a HAS-OPTION relation relating an instances of the Is command and an instance 

of the-e option. While looking for the effects of the command, UC finds that there is no 

corresponding HAS-OPTION relation between the Is command and the -e option in 

UC's knowledge base. At this point, UC suspects that the user may have a misconcep­

tion. 

In order to see whether the user actually has a misconception, or whether UC just 

lacks information about this particular option of this command, UC checks with the 

KNOME subcomponent, which models the limitations of UC's knowledge base using 

meta-knowledge (see Chapter II, Section 4). If KNOME has meta-knowledge that UC 

knows all of the options of this command, then UC knows that the user has a misconcep­

tion. On the other hand, if the options of this command are not covered by KNOME's 

meta-knowledge, then UC cannot assume that the user has a misconception. Instead, UC 

must assume that it lacks information about this command/option combination. 

4.3. Correcting Misconceptions 

After UC has determined either that the user has a misconception or that UC lacks 

knowledge, UCEgo decides how UC should reply to the user. When the user has a 

misconception, UCEgo tries to correct this misconception by denying that what the user 

mistakenly believes is the case. On the other hand, if UC determines that it lacks infor­

mation, then UCEgo apologizes to the user for not knowing the answer to the user's 

query. These two types of responses are shown in the UC session of Figure 3.16. 
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Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type 'AD' or' (exit)'. 

Hi. 
How can I help you? 

# What does who -b do? 

who does not have a -b option. 

# What does ruptime -t do? 

I'm sorry, I do not know that. 

Figure 3.16. UC session showing different UC responses to possible misconceptions. 

In the first query, UC corrects the user's misconception that who has a -b option. It 

does this by first noticing that the user's usage of "who -b" translates into a HAS­

OPTION relation between a UNIX-WHO-COMMAND and a -b-OPTION. There is no 

equivalent HAS-OPTION relation in UC's knowledge base, so UC suspects a possible 

user misconception. To see if this is the case or if UC just lacks knowledge about this 

particular option, UC consults the meta-knowledge stored in KNOME. The appropriate 

meta-knowledge in this case is the fact that UC knows all the options of all simple com­

mands. Since who is a simple command, and since the -b-OPTION is not listed among 

the options of UNIX-WHO-COMMAND in UC's knowledge base, KNOME can infer 

that there is no such option for who. Next, UCEgo decides that UC should correct the 

user's misconception by denying the existence of a -b option for who. 

On the other hand, in the second query, UC professes ignorance about the -t option 

of the ruptime command. As in the previous query about who, UC detects a possible 

misconception when it does not find a-t option listed for ruptime in its knowledge base. 

However, in this case, ruptime is a complex command, so the previous meta-knowledge 

does not apply. There is no meta-knowledge about the options of complex commands 

(due to not enough programming by UC's implementors rather than any inherent limita­

tion of UC), so UC cannot tell if ruptime has a-t option. In order to be polite, UCEgo 

apologizes to the user for not knowing. 
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4.4. An Example Trace 

The user of Figure 3.17 has the misconception that Is has a -v option. Since Is 

ignores unknown options, Is -v would do the same thing as Is. So, a system that did not 

detect and correct user misconceptions and just told the user that Is -v does the same 

thing as Is would be technically correct, although misleading. Yet, a corrective answer 

such as UC gives, which technically does not answer the user's question, is a much better 

answer. 

Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type 'AD' or' (exit)'. 

Hi. 
How can I help you? 

# What does ls -v do? 

The parser produces: 

(ASKlO (listenerlO = UC) 

(speakerlO = *USER*) 

(asked-forlO = (QUESTIONlO (what-islO = STATE12?)))) 

(HAS-EFFECT21? (effect-of-command21 STATE12?) 

(command-of-effect21 = UNIX-LS-CO~~DO)) 

(HAS-OPTION3 (option3 = -v-OPTIONO) 

(command-of-option3 = UNIX-LS-COMMANDO)) 

The parser understands the user's input as a question about the effects of the UNIX-LS­

COMMANDO, which has a -v option (HAS-OPTION3). 

The goal analyzer produces: 

((HAS-GOAL-gaO (planner-gaO= *USER*) 

(goal-gaO 
(KNOW-gaO? (knower-gaO = *USER*) 

(fact-gaO= STATE12?))))) 

UCEgo: suggesting the plan: 

(PLANFOR71 (goals71 = (HELPS (helpeeS = *USER*) (helperS 

(plan71 = (SATISFY6 (need6 = (KNOW-gaO? &) ) 

(actor6 = UC)))) 

based on the situation: 

(UC-HAS-GOAL63 (status63 

(HAS-GOAL-gaO &) 

ACTIVE) (goal63 = (HELPS&))) 

UC))) 
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UCEgo: detected the goal: 

{UC-HAS-GOAL66 {goal66 = {KNOW-saO?&))) 

from the situation: 
{UC-HAS-INTENTION9 {intention9 = {SATISFY6 &) ) {status9 ACTIVE)) 

UCEgo adopts the sub-goal of having the user know what the effects of ls -v are. 

UCEgo: trying to find effects for UNIX-LS-COMMANDO 

UCEgo: unknown relation: 

(HAS-OPTION3 &) 
UCEgo: User has the Misconception: 

(HAS-MISCONCEPTIONl {confusedl = *USER*) 
{misconceptionl {HAS-OPTION3 &))) 

since 
{KNOW42 {fact42 {ALL3 {such-that3 

{HAS-OPTIONO? {optionO = {ALL3 &)) 

{command-of-optionO = 
SIMPLE-COMM~~O?))) 

{all-type3 

{knower42 = UC)) 
OPTIONO?))) 

and since the user believes: 

{HAS-OPTION3 {option3 = -v-OPTIONO) 
(command-of-option3 = UNIX-LS-COMMANDO)) 

which involves an unknown OPTION 

UCEgo: suggesting the plan: 

(PLANFOR72 
{goals72 = {HELPS&)) 

(plan72 = (SATISFY? {need? 
(KNOWS9? (knower59 = *USER*) 

(factS9 = (NEGATEl 

(actor? 

based on the situation: 

(UC-HAS-GOAL63 &) 
{HAS-MISCONCEPTIONl) 

UC)))) 

UCEgo: detected the goal: 

{UC-HAS-GOAL67 {goal67 = (KNOW59? &) ) ) 

from the situation: 

(negativel 
{HAS-OPTION3 &)))))) 

(UC-HAS-INTENTIONlO (intentionlO = (SATISFY?&)) 

(statuslO =ACTIVE)) 

UCEgo: suggesting the plan: 

(PLANFOR73 (plan73 
(TELLS (propositionS= (NEGATEl &)) 

(listenerS-0 = *USER*) 
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(speakerS-0 = UC))) 

(goals73 = (KNOW59? &))) 

based on the situation: 

(UC-HAS-GOAL67 &) 

The generator is passed: 

(TELLS & ) 

ls does not have a -v option. 

Figure 3.17. UC session showing UC handling a user misconception. 

UC detects misconceptions as part of the process of fulfilling the user's request. In 

the example of Figure 3.17, UCEgo detects the misconception in the process of finding 

the effects of Is -v. After processing by the parser/understander and goal analysis com­

ponents of UC, the interpretation of the user's query is that the user wants to know the 

effects of the Is command (UNIX-LS-COMMANDO) with the -v option (HAS­

OPTION3). In retrieving the effects of the command, UCEgo must check all of the rela­

tions of the command. This process leads to the discovery that the relation HAS­

OPTION3 does not correspond to anything in UC's knowledge base. When such an unk­

nown relation is encountered, UCEgo tries to see if it is covered by UC's meta­

knowledge. In this case, UC has the meta-knowledge that UC knows (KNOW32) all of 

the options of simple commands. Since Is is a simple command, UC believes that it 

knows all of the options of Is. Because -v is not listed among Is's options in UC's 

knowledge base, UC concludes that it must be a user misconception. 

After detecting the misconception, UCEgo detects a plan (PLANFOR56) for help­

ing the user that involves having the user know that Is does not have a -v option. This 

new sub-goal of correcting the misconception is detected by the if-detected daemon 

shown in Figure 3.18. This results in UC telling the user that, ''Is does not have a -v 

option." 
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misconception 

I SOMETiliNGlf 

~ 

plan3~ :&1? 
SA 1? lr------,1 

goal need fact j MAYBE 

goals3 actor ~ 

ed 

~ bww~ 
PERSON!? 

helper! ____ ___,L__ ____ _j 

helpeel 

Figure 3.18. If-detected daemon for correcting misconceptions. 

5. Filling Gaps in User Knowledge 

A major difference between programs that purport to be consultants or tutors and 

typical application programs is the fact that consultant/tutor programs typically know 

more about their domain than their users. This leads to problems when users of a consul­

tant system do not know enough to ask the right questions. A tutoring system can usually 

avoid this problem by properly structuring tutoring sessions or by not providing the user 

with opportunities for unconstrained inquiry. A consultant system, however, cannot util­

ize either of these methods. It must be able to handle unconstrained inquiries from the 

user in its domain, and be prepared to deal with users that do not know enough to ask the 

right questions. 

One type of difficulty encountered by consultant systems in dealing with users 

occurs when the user lacks some information that is useful for the user's task. In such 

cases, the consultant should volunteer the information rather than waiting for the user to 

ask for it. Volunteering the information solves the bottleneck problem that occurs when 

the user never asks for needed information because the user does not realize than the 

information is necessary. 

5.1. Different kinds of Volunteered Information 

In order to be able to volunteer information, a consultant system. must do three 

things: 
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determine that it would be helpful for the user to know some information 

deduce whether or not the user already knows the information 

inform the user if the system either believes that the user does not know 

the information or if the system wants to remind the user of the informa­

tion 

The kinds of information that might be volunteered by a consultant can be divided 

into three types: warnings, suggestions, and elaborations. Warnings are provided when 

the consultant believes there is a potential problem for the user. Suggestions are given to 

present alternatives and methodological hints to the user. Elaborations involve providing 

additional information that is relevant to the user's query. Each type of volunteered 

information is described in greater detail below. 

5.2. Warnings 

A consultant system should consider providing a warning to the user, when the con­

sultant believes that there may be a problem with the user's plans, Two factors come 

into play when deciding whether or not to give a warning. The first factor is the likeli­

hood that the problem will actually occur. For example, if the user wants to print a file, 

the user's plan may fail if there is a power blackout or if the printer is out of ink. The 

chances of a problem caused by a power blackout are so unlikely that giving such a 

warning would be unreasonable. On the other hand, it may be reasonable to warn the 

user about the printer being out of ink, if the consultant knows that the printer is currently 

low or out of ink, or if this particular printer is so heavily used that it frequently runs out 

of ink. 

Another factor in deciding whether or not to give a warning to the user is the 

consultant's belief about whether or not the user is already aware of the potential prob­

lem. Being aware of the problem implies that the user both knows that there is a poten­

tial problem with this type of plan, and knows that this problem may arise in this case. If 

the consultant believes that the user is already aware of the potential problem, then the 

consultant does not need to warn the user. If the consultant believes that the user knows 

about this class of problem, but might not apply this knowledge in this particular case, 

then the consultant should remind the user with a warning. In some cases, the potential 

problem may be important enough that the consultant may wish to remind the user, even 

though the user is already aware of the problem. 

Common warnings include telling the user about a plan's preconditions that are 

commonly violated and telling the user about a plan's deleterious side-effects. An exam­

ple of warning the user about a commonly violated precondition is: 
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User: How can I delete the directory named mise? 

UC: Type 'nndir mise'. 
However, rmdir works only if the directory is empty. 

In the example, UC warns the user about a precondition of the rmdir plan, namely 

that the directory must be empty. This precondition is commonly violated, hence it is a 

candidate for expressing to the user. This can be contrasted to other preconditions of 

rmdir such as the need for write permission on the directory containing the directory to 

be deleted. This precondition is much less frequently violated, so it is not a candidate for 

expressing to the user. Such frequency information is stored as concerns ([Luria, 1987]) 

by the UNIX domain planning component of UC. When the UNIX domain planner 

creates a plan, it passes along to UCEgo those preconditions that have a high degree of 

concern. UCEgo then decides whether or not to warn the user about the precondition 

depending on whether or not KNOME believes that the user already knows that this type 

of problem may arise in this such plans. Since KNOME does not model the user's ability 

to apply general knowledge to individual cases, UCEgo can only assume that, if the user 

knows about this problem in general, then the user will know that it applies in this 

"'P~"~hl"' "aco<> So TTCE<Tn "rou;r! .. c a ':V"rnincr nnhl ,.,h ... ., KJN()MP hPliP"PC th!'lt the ucer 
~ \..t'-'.lJ..J."' "" ..>v. '\.J b"' y.a. ,. "u.""'"' "' ~ .. ... b ...., ..... J .. -. ..... _ .... • ~ -·~ ... ......., --· ........ " .,...., -·- ........ ~ "" 

does not know about the precondition to the plan. 

Warnings about a plan's deleterious side-effects are handled in a similar fashion. 

The UNIX domain planner stores concerns about the side-effects of plans and returns 

them along with the plan that it produced. In the following example, UC warns the user 

about one of mv's deleterious side-effects, namely that mv will overwrite files: 

User: How can I move the file named new to the file named old? 

UC: Type 'mv new old'. 
However, be careful, since if the file named old exists, it will be delet­

ed. 

5.3. Suggestions 

Suggestions are provided by a system to present alternative plans to the user and to 

present methodological hints to the user. A trace of a UC dialog in which UC volunteers 

a suggestion to the user is shown in Figure 3.19. 
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Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type '~D' or' (exit)'. 

Hi. 
How can I help you? 

# Who is on the system? 

I'm sorry, I do not know that. 

To find out, type 'who' . 

Figure 3.19. UC session showing UC volunteering a suggestion to the user. 

Since UC was not programmed with direct access to UNIX, UC does not know who 

is on the system. Hence UC apologizes to the user in order to be polite. However, UC 

does know how the user can find out who is on the system, namely by using the who 

command. So, if UC believes that the user does not already know about the who com­

mand, UC will suggest this plan to the user. Figure 3.20 shows the daemon that detects 

the sub-goal of having the user know how to find out something that the user wishes to 

know when the user does not know this particular plan for finding out the required infor­

mation (obviously, the user does know one plan for finding out, namely, ask UC). 
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Figure 3.20. If-detected daemon that suggests how to find out information. 

In general, this daemon is activated in the following situations: 

1) UC wants to help the user (UC-HAS-GOAL1) 

2) the user wants to know something (HAS-GOALl) 

3) there is a specific (tested by the NOT DOMINA TEl test) plan for finding 

out (INFORMATION-EFFECT1) the information 

4) the user does not know the plan (tested by the TEST-NOT, does-user­

know? 1, which represents a call to KNOME) 

In such situations, the daemon asserts that a plan for helping the user is to adopt the 

sub-goal of having the user know the plan for finding out the information. 

The previous example shows how UCEgo proceeds when it fails to find a plan for a 

goal. It adopts the meta-goal (see Section 3.1) of finding a plan for that goal. In this 

case, UC does not know who is on the system, so it adopts the meta-goal of knowing a 

plan for finding out who is on the system. UC's UNIX domain planner returns the plan 

of using the who command, which UC cannot use, because it does not have direct access 

to UNIX. However, UC can suggest this plan to the user who does have access to UNIX 

and so can use the plan. The if-detected daemon shown in Figure 3.20 suggests the plan 

for helping the user of adopting the sub-goal of having the user know the who plan. 

Note that the daemon only suggests this plan if KNOME believes that the user does not 

already know about who. After all, it is possible that the user does know who, but 

instead decided to ask UC in order to find out the information (a plan that fails in this 

case). An extended analysis of UC's processing in volunteering these types of sugges­

tions is given in Section 5.5. Some other examples of the same type are shown in Figure 
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3.21. 

Welcome to OC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type 'AD' or' (exit)'. 

Hi. 
How can I help you? 

# What is Chin's office? 

I'm sorry, I do not know that. 

To find out, type 'finger chin' . 

# What is the inode of the file named junk? 

I'm sorry, I do not know that. 

To find out, type 'ls -i'. 

# How can I print a file on the laser printer? 

Ose lpr -Plz. 
Don't forget to file the printer output in the boxes. 

Figure 3.21. UC session showing suggestions by UC. 

The last example shows a reminder type suggestion. Reminders are given when the 

system believes that the user already knows some information, but the system also 

believes that the user is likely to forget or ignore the information. In such cases, the sys­

tem issues a reminder. In this example, KNOME believes that the user already knows 

about filing printer output in the boxes, so normally, UCEgo would abandon the goal of 

suggesting that to the user. However, in this case it is likely that the user will shirk this 

duty, so UCEgo decides to provide the suggestion as a reminder. 

In general, to issue a reminder type suggestion requires that a system perform the 

following: 

1) detect some useful information for suggestion to the user 

2) determine that the user is likely to forget/ignore the information 

3) inform the user if the system believes that the user needs to be reminded 

of the information 
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Whether a user is likely to forget or ignore information is represented in UC in a 

fashion similar to concerns ([Luria, 1987]). Facts that users are likely to forget or ignore 

are marked as needing reminding. Since UC will provide a reminder type suggestion 

regardless of whether the user already knows the information, there is no need to check 

for this as in other types of suggestions. On the other hand, UC does need to check 

whether it has direct evidence during the current session that the user is cognizant of the 

information. So, if the user has previously mentioned the information, or if UC has pre­

viously reminded the user of the information, then UC does not provide a reminder type 

suggestion to the user. 

5.4. Elaborations 

Elaborations are given when the user asks a simple yes/no question and the system 

volunteers more information. Volunteering additional information in such cases has been 

termed over-answering by [Wahlster et al., 1983], who implemented over-answering in 

the HAM-ANS natural language system. An example of elaboration produced by UC is 

shown in Figure 3.22. 

Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type 'AD' or' (exit)'. 

Hi. 
How can I help you? 

# Is rn used to rename files? 

No, rn is used to read news. 
To rename a file to another file, use mv. 

For example, to rename the file named foo to the file named fool, 

type 'mv foo fool' . 

Figure 3.22. UC dialog showing an elaboration in UC's response to the user. 

Elaborations such as the above require that the system recognize that the user not 

only has the goal of knowing whether rn is used to rename files, but also that this goal is 

a sub-goal of two possible parent goals, namely knowing the effects of the rn command 

and knowing how to rename files. In UC, these deductions are made by UC's goal 

analysis component, PAGAN. After PAGAN has deduced the user's goals, UCEgo 

proceeds by adopting all of the user's possible goals. In cases where the answer is yes, 

both potential parent goals are satisfied by the simple answer of yes, so all three goals 
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can be merged into a single goal (see Section 3.2), and no elaboration is needed. How­

ever, in the above example, a no answer only satisfies the user's immediate goal of know­

ing whether rn is used to rename files and does not satisfy either possible parent goal. In 

such cases, UCEgo proceeds to process both parent goals and produces answers to satisfy 

both. When KNOME believes that the user already knows one of the answers, only the 

other answer is given to the user. 

This goal-based approach to elaboration can be compared to the over-answering 

methodology of HAM-ANS. HAM-ANS used specific strategies such as filling optional 

deep case-slots in the case-frame associated with a verb used in the user's request. The 

problem with such non-goal-based approaches is that they are prone to volunteering 

information that the user may not actually be interested in. For example, when the user 

asks HAM-ANS, "Has a yellow car gone by?" HAM-ANS elaborates upon the where 

case-slot to produce the answer, "Yes, one yellow one on Hartungstreet" This is a good 

answer if the user were actually interested in where the yellow car passed by. However, 

if the user were interested in how long ago the car passed by, then an elaborative answer 

like ''Yes, fifteen minutes ago,'' would be much better. Likewise, if the user were 

interested in following the yellow car, then a better answer would be, ''Yes, north on 

Hartung street.'' 

In order to choose between such different elaborations, an analysis of the user's 

goals is needed. For example, if the user had prefaced the question by the statement, 

"My friend is supposed to pick me up here," then an analysis of the user's goals would 

show that the user is probably more interested in how long ago the yellow car passed by. 

On the other hand, if the user is a police officer chasing a vehicle, then the user is prob­

ably interested in following the yellow car. So, deciding how to elaborate a yes/no 

answer requires a goal-based elaboration strategy such as the one used in UC. 

Besides being useful for deciding exactly how to elaborate a yes/no answer, a goal­

based strategy also tells the system whether or not it is useful to elaborate at all. For 

example, when the user asks UC, "Is compact used to compact files?" then a simple 

answer of "Yes," is quite sufficient. There is no need for UC to elaborate on this 

answer, because it addresses all of the user's possible parent goals. Similarly, in the 

hypothetical dialog with a HAM-ANS-like system shown in Figure 3.23, there is no need 

to elaborate the answer to the user's question, "Has a yellow car gone by?" since an ela­

boration would not help to satisfy the user's goals. 
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User: I need the results from your checkpoint for the Cannonball Run auto 

race. 
Has a black Porsche 911 Turbo gone by? 

System: Yes. 

User: Has a blue pickup gone by? 

System: Yes. 

System: Has a yellow car gone by? 

User: No. 

Figure 3.23. Hypothetical dialog in which elaboration is not needed. 

5.5. An Example Trace 

To see in greater detail how UCEgo decides to volunteer information, consider the 

annotated trace of a UC session shown in Figure 3.24 below. 

Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type 'AD' or' (exit)'. 

Hi. 
How can I help you? 

# What is chin's phone number? 

The parser produces: 
(ASK9 (listener9 = UC) 

(speaker9 = *USER*) 
(asked-for9 

(QUESTION9 
(what-is9 (STATE-OF-USERl? (user-statel = USER-PHONEO) 

(state-userl = USER9)))))) 

(HAS-USER-NAME2 (user-name2 =chin) (named-user2 = USER9)) 

(HAS-NAME27 (name27 =chin) (named-obj27 = PERSON36)) 

The goal analyzer produces: 
((HAS-GOAL-gaO (planner-gaO= *USER*) 

(goal-gaO = 
(KNOW-gaO? (knower-gaO *USER*) 
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(fact-gaO= (STATE-OF-USERl? &)))))) 

The user's goal is to know STATE-OF-USERl, which represents the phone number of 

USER9 who has name "chin." 

• 
• 
• 

This part is typical; it leads up to UCEgo adopting the goal of having the user know 

Chin's phone number. 

UCEgo detects the following concepts: 

(UC-HAS-GOAL59 &) 

and asserts the following concept into the database: 

(UC-is-statel (is-statel = (STATE-OF-USERl? &))) 

UCEgo calls the procedure UC-is-state to try to look up the state information. The next 

trace message shows that UC-is-state failed to find the information. 

UCEgo: UC does not know STATE-OF-USERl? 

UCEgo: detected the goal: 

(UC-HAS-GOAL60 
(goal60 = (KNOW54? (knower54 = UC) 

(fact54 (STATE-OF-USERl? &))})) 

from the situation: 

(KNOW53 (knower53 = UC) 
(truth-val53 = FALSE) 
(fact53 = (STATE-OF-USERl? &))) 

(UC-HAS-GOAL59 &) 

Since UC wants the user to know Chin's phone number, and UC does not know this 

information, UC adopts the meta-goal (UC-HAS-GOAL60) of finding out this informa­

tion (i.e. adopting the goal of having UC- rather than the user as in the previous UC­

HAS-GOAL59- know Chin's phone number). Such meta-goals are discussed in Sec­

tion 3.1. 



- 106-

UCEgo detects the following concepts: 

(UC-HAS-GOAL60 &) 
and asserts the following concept into the database: 

(UC-is-state2 (is-state2 = (STATE-OF-USERl? &))) 

The procedure UC-is-state is tried again, only this time UC's goal is for UC to know the 

answer rather than the user. However, the result is the same: UC-is-state does not have 

the information. 

UCEgo: suggesting the plan: 

(PLANFOR64 (plan64 = (APOLOGIZE2 (apology2 = (KNOWS3 &)) 

(listener2-2 = *USER*) 
(speaker2-2 = UC))) 

(goals64 = (BE-POLITES (polite-toS *USER*) 

baoed on the situation: 

(KNOWS3 &) 
(HAS-GOAL-gaO & ) 
(UC-HAS-GOALS4 (statusS4 

(is-politeS = UC)))) 

ACTIVE) (goalS4 = (BE-POLITES&))) 

Since UC wants to be polite, and does not know what the user wishes to find out, UCEgo 

suggests the plan of apologizing to the user for not knowing in order to be polite to the 

user. 

UCEgo detects the following concepts: 

(UC-HAS-GOALS4 &) 

(PLANFOR64 & ) 
and asserts the following concept into the database: 

(UC-HAS-INTENTIONll (intentionll = (APOLOGIZE2 &)) 

(statusll-0 =ACTIVE)) 

UCEgo detects the following concepts: 

(UC-HAS-INTENTIONll &) 

and asserts the following concept into the database: 

(UCexpress3 (gen-prop3 = (APOLOGIZE2 &))) 

The generator is passed: 

(APOLOGIZE2 & ) 
I'm sorry, I do not know that. 



- 107-

The actual apology. 

UCEgo: do not know a single planfor the foreground goal: 

(UC-HAS-GOAL60 &) 
so adding the meta-goal: 

(UC-HAS-GOAL61 (goal61 = (KNOW55? (knower55 = UC) 
(fact55 = ACTION13?)))) 

(PLANFOR65? 
(goals65 = (INFORMATION-EFFECTl? 

(desired-infol = (STATE-OF-USERl? &)) 

(informantl- UC))) 

(plan65 = ACTION13?)) 

Since UC does not know of any planfor satisfying the goal of knowing Chin's phone 

number (UC-HAS-GOAL60), it adopts the meta-goal of knowing (KNOW55) a plan 

(ACfiON13) for finding out (INFORMATION-EFFECfl) the information. 

UCEgo detects the following concepts: 

(PLANFOR65? & ) 
(UC-HAS-GOAL61 &) 
and asserts the following concept into the database: 

(UNIX-planner2 (user-goals2 = (INFORMATION-EFFECTl? &))) 

UCEgo calls the UNIX domain planner to find a plan for finding out Chin's phone 

number. 

The planner is passed: 
((INFORMATION-EFFECTl? &)) 

The planner produces: 

(PLANFOR330 (goals330 = (INFORMATION-EFFECTl? &)) 

(plan330 (UNIX-FINGER-COMMANDO 
(finger-userO = USER9)))) 

(FINGER-HAS-FORMATO 
(FINGER-HAS-FORMAT-commandO= (UNIX-FINGER-COMMANDO&)) 

(FINGER-HAS-FORMAT-formatO = 

(FINGER-FORMATO 
(finger-name-argO = chin) 

(FINGER-FORMAT-UNIX-COMMAND-FORMAT-stepO =finger)))) 

(HAS-COMMAND-NAMElOO 
(HAS-COMMAND-NAME-named-objlOO = (UNIX-FINGER-COMMANDO&)) 

(HAS-COMMAND-NAME-namelOO =finger)) 
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The UNIX domain planner returns the plan of using the finger command. 

UCEgo detects the following concepts: 

(UC-HAS-GOAL62 &) 
(PLANFOR330 & ) 
and asserts the following concept into the database: 

(UC-HAS-INTENTION14 (intention14 = (UNIX-FINGER-COMMANDO&)) 

(status14 =ACTIVE)) 

UC intends to finger Chin, but it cannot, because has not been programmed to have direct 

access to UNIX. 

UCEgo: suggesting the plan: 

(PLANFOR67 (goals67 = (HELPS&)) 

(plan67 - (SATISFYS (actorS = UC) 
(needS = 

based on the situation: 
(UC-HAS-GOALS6 &) 
(PLANFOR330 & ) 

(HAS-GOAL-gaO &) 

(M~OW56? (fact56 (PLANFOR330 &)) 

(knowerS6 =*USER*)))))) 

Since UC wants to help the user (UC-HAS-GOAL56), and the user wants to know Chin's 

phone number (HAS-GOAL-gaO), and finger is a planfor finding out Chin's phone 

number, UCEgo suggests that a plan for helping the user is for the user to know that 

finger is a planfor finding out Chin's phone number. This is the if-detected daemon that 

volunteers information . 

• 
• 
• 

As in processing typical queries, UCEgo suggests the plan of telling the user in order to 

achieve the goal of having the user know the information. 

The generator is passed: 

(TELLS & ) 
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To find out, type 'finger chin' . 

Figure 3.24. UC session showing UC providing a suggestion to the user. 

6. Conclusion 

6.1. Summary 

This chapter has addressed the problems of where goals come from and how an 

intelligent agent can detect the right goals. These are important problems which have not 

been systematically addressed by previous planners, whose high level goals were all pro­

vided by their human operators. In order to be independent, a system needs be able to 

detect the right goals, which the agent can then plan to achieve, and in this way act intel­

ligently in response to changes in its environment. 

The ultimate source of goals is an agent's themes, which represent the agent's inter­

nal motivations. However, themes only provide very general goals, such as helping the 

user, preserving oneself, and being polite. More specific goals are detected by an agent 

as sub-goals of these higher level goals (or as sub-goals of sub-goals). Other types of 

specific goals are detected when goals or plan steps are found to interact (either posi­

tively or negatively). In these cases, an agent detects meta-goals for dealing with the 

interaction among the agent's goals. 

Specific goals are detected by a system in particular situations. Since a consultant 

system's main task is to impart knowledge to its user, situations in which the user either 

lacks knowledge or has incorrect information (misconceptions) are the most important 

types of situations for UC's agent, UCEgo. Other important types of situations include 

those in which UC's goals interact either negatively by conflicting, or positively by over­

lapping. In such situations, UC detects meta-goals for dealing with the goal interaction. 

Situations are difficult to detect since they can consist of arbitrary sets of internal or 

external states. For example, an agent may have the relatively high level goal of having 

money (which, in turn, is a sub-goal of other even higher level goals or themes). This 

agent may even have various scriptal plans for achieving this goal, such as borrowing 

money, getting a job, winning the money by gambling, etc. However consider what 

might happen if an eccentric billionaire comes up to the agent and tells the agent, ''I will 

give you a million dollars, if you will stand on your head whenever, during the next 

month, you hear an electronic wristwatch beep, and the sun happens to be shining.'' In 

this case, the agent will detect the new sub-goal of doing a headstand in situations in 

which the sun is shining and there is a beep from an electronic wristwatch. Of course, 

the condition could be almost anything, so variants of this scenario will lead an agent to 

detect new sub-goals in almost arbitrary situations. This arbitrary nature of situations in 

which agents might detect new goals, makes the goal detection process extremely 
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difficult. 

My approach to efficiently detecting situations (in particular, those that lead an 

agent to detect new goals) is to encode situations using if-detected daemons. These dae­

mons are in essence tiny inference engines that look for particular types of situations, and 

add inferences, such as new goals for the agent, when they detect a matching situation. 

6.2. Problems 

UCEgo only deals with a small subset of potential situations which might lead an 

agent to detect new goals. In particular, UCEgo is concerned with situations related to 

the state of knowledge of its user, since UC's main purpose is to provide information to 

its user. In other domains, agents will need to concentrate on other types of situations. 

For example, an intelligent agent for driving a car will need to concentrate more on the 

locations of other cars and road hazards than on its user. It is not clear whether the 

methodologies demonstrated in UCEgo can be extended to cover other domains that have 

a different emphasis on the types of situations that can lead an intelligent agent to detect 

new goals (although, I do believe these methodologies are extensible). 

One of the main deficiencies of UCEgo is that it does not have a hierarchy of situa­

tion ciasses. One wouid like such a hierarchy in order to more efficiently encode reiated 

situations. A system that had such a hierarchy could look for the most specific matching 

situation, and detect the specific goal for that situation. In case where there are no 

matching specific situations, the agent could fall back on more general situations and the 

relatively more general goals. This deficiency shows up in some of UCEgo's goal detec­

tion situations as a lack of generality in the encoded situations. Many of UCEgo's situa­

tions tend to be extremely specific, partly because these are more efficient than general 

situations. A hierarchy of situation classes would allow a system to retain specific situa­

tions for efficiency as well as have more general situations for wider coverage. 

An important problem that UCEgo does not address, is how to add new 

situation/goal pairs to its goal detection mechanism. This problem involves not only 

learning new situation/goal pairs, but also reasoning about how they might generalize. 

For example, an agent might learn that if it sees a particular tree catch fire, then it should 

adopt the goal of extinguishing the fire. The agent might then generalize this to all trees 

fires, but it should not generalize this to all fires including useful fires such as stovetop 

burners. Learning new goal detection situations is an important facet of an intelligent 

agent. 
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Chapter IV 

Plan Selection & Execution 

After UCEgo has detected its own goals, it must plan for those goals and then exe­

cute the resultant plan. UCEgo selects different plans according to what is appropriate 

for the current situation. Plans may contain sub-goals, which are then recursively 

satisfied by UCEgo. This chapter describes the processes of plan selection and then exe­

cution in UCEgo. 

1. Introduction 

Natural language systems act primarily by communicating with the user. These 

communicative actions are called speech acts ([Austin, 1962] and [Searle, 1969]). A 

planner that produces plans consisting of speech acts has somewhat different require­

ments than other types of planners. First of all, speech act planners need to perform in 

real time in order to carry out a dialog with the user. This implies that such planners 

need to avoid inefficient search and backtracking by using real world knowledge to guide 

the planning process. 

1.1. Other Planners 

Planning has a long history in AI, starting from its origins as search within a prob­

lem space. In the GPS means-ends analysis formalism of [Newell and Simon, 1963], a 

planner searches for a sequence of operators that allows the planner to move from an ini­

tial state in the problem space to the goal state of the planner. STRIPS ([Fikes and Nils­

son, 1971]) is an early example of a planner based on means-ends analysis. ABSTRIPS 

([Sacerdoti, 1974]) extended the formalism to work in hierarchical problem spaces. 

ABSTRIPS broke down a planning problem into a hierarchy of sub-problems and solved 

each sub-problem independently. Since sub-problems may not actually be independent, 

planners were developed by [Sussman, 1975], [Tate, 1975], [Warren, 1974], [Waldinger, 

1977], [Sacerdoti, 1977], [Stefik, 1980], and others, that could handle planning when the 

ordering of plan steps is critical to the success of a plan. KAMP ([Appelt, 1981]) applied 

this type of planner to the problem of planning natural language utterances. KAMP 

planned English sentences from the speech act level down to selection of actual words. 

The previous types of planners develop plans from scratch. This presents a prob­

lem, since such planning is computationally expensive. For example, it was not unusual 

for KAMP to take several hours to plan a complex utterance. Indeed, Appelt developed 

the TELEGRAM unification grammar ([Appelt, 1983]) to improve the efficiency and 

modularity of planning at the linguistic level. Developing plans from scratch using 

"weak methods" such as search and theorem-proving leads to inefficient back-tracking 

and computationally expensive checking of preconditions for every plan step. These 

methods do not take advantage of available domain knowledge about the types of plans 

that are applicable in different situations. 
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Another problem with general purpose planners that use "weak methods" is that 

their complexity is not needed in planning speech acts. The OSCAR speech act planner 

([Cohen, 1978]) showed that a very simple planner that did not backtrack was sufficient 

for planning basic speech acts. Although OSCAR did not actually produce natural 

language output, it did plan speech acts at the conceptual level in enough detail to 

demonstrate the computational theory of speech act generation devised by [Cohen and 

Perrault, 1979]. However, since OSCAR did not have to produce speech acts in real time 

in order to sustain a dialog with a user, it did not worry about how to plan efficiently. 

Given a goal, OSCAR merely looped through an ordered list of all potential actions until 

it found one whose effects matched the goal. Only after deciding upon an action would 

OSCAR test the preconditions of the plan and adopt as sub-goals any preconditions that 

OSCAR did not believe to already be true. If OSCAR could not satisfy a precondition 

sub-goal, then it failed in planning since it did not backtrack to try different actions. The 

fact that OSCAR worked fairly well despite this seemingly severe limitation, shows that 

planning speech acts does not usually require complex planning. 

An alternative to planning from scratch using "weak methods" is presented by 

[Schank and Abelson, 1975] in their theory of scripts and plans. In their theory, a script 

consists of a very specific series of steps, while a plan is more abstract and includes other 

components, such as preconditions on the use of the plan. The TALE-SPIN story genera­

tor ([Meehan, 1976], [Meehan, 1981]) implemented this theory to produce plans for the 

characters in its stories. [Friedland, 1980] and [Friedland and Iwasaki, 1985] describe 

the MOLGEN and SPEX planners, which extended the idea of scripts and plans into a 

hierarchy of skeletal plans. Skeletal plans are pre-stored plans whose plan-steps may 

vary in generality from specific actions as in scripts to abstract sub-goals. They are simi­

lar to the MACROPs of STRIPS and the chunks of [Rosenbloom and Newell, 1982]. 

However, the latter systems emphasized learning chunks or MACROPs rather than the 

selection and instantiation of abstract plans. In a similar vein, [Carbonell, 1986], 

[Kolodner et al., 1985], [Alterman, 1986], and [Hammond, 1986] have worked on adapt­

ing previous plans to new situations using techniques such as analogical reasoning, case­

based reasoning, and utilization of a knowledge hierarchy to generalize old plan-steps 

and then respecify them to form new plan-steps. 

Using prestored skeletal plans makes for a much more efficient planner than one 

that has to plan from scratch using weak methods. However, the use of prestored plans 

presents a different efficiency problem: how to find the right plan for a specific situation. 

TALE-SPIN indexed scripts and plans under the goal of the script/plan and then looped 

through all possibilities, checking the most specific scripts first, until a workable plan was 

found. Similarly, MOLGEN and SPEX only looked at the UTILITY slot, i.e. the goal, 

of the skeletal plan. Since skeletal plans of MOLGEN and SPEX did not have precondi­

tions, the planners could not even consider a plan's preconditions to eliminate unsuitable 

plans. Instead, the planners considered all skeletal plans that fit the goal and returned all 

proper instantiations of those plans for the user's consideration. 

[Hendler, 1985] describes SCRAPS, a planner that used marker-passing to help 

make more efficient choices during planning. The marker-passing mechanism detected 

plan choices that might result in intra-plan sub-goal conflicts early in the planning pro­

cess. The planner could then avoid the potential conflict by choosing an alternative and 
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hence avoid inefficient backtracking. For example, SCRAPS was able to avoid back­

tracking while planning in the following situation: 

You are on a business trip (in a distant city). You wish to purchase a cleaver. 

By passing markers from BUYING, *ME*, and CLEAVER-27, SCRAPS found the 

following intersection path: 

BUYING --+ TAKE-TRIP --+ PLANE --+ BOARDING --+ WEAPONS­

CHECK --+ IF you go through WEAPONS-CHECK with a WEAPON, you get 

arrested t- WEAPON t- CLEAVER t- CLEA VER-27 

This path was then evaluated to determine that it represents a negative interaction, 

because it is a ''bad thing'' to get arrested. As a result, SCRAPS ruled out the choice of 

taking a PLANE (taking a BUS or TRAIN instead), and avoids the backtracking that 

would be required if the planner had chosen to take a PLANE. One of the problems with 

such a scheme is the length of the marker-passing path needed to detect important inter­

sections. As longer paths are considered, there are more and more spurious intersections. 

If a marker-passer were to consider only short paths, then would run the risk of missing 

important longer path-length intersections. With a path length of eight as in the previous 

example, any reasonably large knowledge base would produce a very large number of 

intersections, most of which would be spurious. Even if marker-passing were imple­

mented in parallel, and all of the resulting intersections checked in parallel, it is uncertain 

whether it would be more efficient to plan using marker-passing or simply to plan in 

parallel (e. g. a planner could consider traveling by PLANE, BUS, and TRAIN in the 

previous example in parallel, and then evaluate the best plan later). With current serial 

machines, marker-passing would undoubtedly be less efficient. 

Another problem with SCRAPS is that it ignores other criteria for making choices 

besides potential negative sub-goal interactions. For example, choosing among the vari­

ous travel plans in Hendler's example should depend on much more than buying a 

cleaver. One would not want to take a bus or train if the business trip in the distant city 

were on the opposite coast of the United States. Choice criteria such as the distance of 

the trip are not preconditions in the sense that one could still take a bus or train for long 

distance travel, although one would not want to do so, unless one suffered from fear of 

flying or lacked the money for a plane ticket. In fact, most people would rather abandon 

the goal of buying a cleaver, rather than abandon the plan of taking the plane home from 

a distant city. Of course, most people in that situation would fix their plans by mailing 

the cleaver home or putting it in checked baggage (to avoid going through weapons­

check with the cleaver). However, the latter is not a fair criticism of SCRAPS, since 

SCRAPS was not programmed with the knowledge needed to make such plan fixes. 

1.2. Planning in UCEgo 

UCEgo attacks the problem of efficient planning of speech acts in several ways. 

First of all, like OSCAR, UCEgo uses a very simple planner that avoids inefficient 
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backtracking. Secondly, like Meehan's TALE-SPIN, Friedland's MOLGEN planner, and 

Iwasaki's SPEX, UCEgo uses prestored skeletal plans that efficiently encode knowledge 

about planning for dialog. However, unlike those planners, UCEgo selects for considera­

tion only those skeletal plans that are appropriate to the current situation. A plan is 

judged appropriate if the goal of the plan is currently a goal of the system, and also if the 

preconditions and appropriateness conditions for the plan are satisfied by being true in 

the current situation. UCEgo indexes plans according to the type of situation in which 

the plans are useful. As a result, UCEgo does not waste resources in considering pre­

stored plans that are inappropriate and hence will fail. 

Another difference between UCEgo and other planners is that UCEgo uses the idea 

of rr.eta-planning developed by [Wilensky, 1983] and first implemented in part by 

[Faletti, 1982]. Through meta-planning, UCEgo is able to handle positive and negative 

interactions among UCEgo's goals and plans. This notion of meta-planning is different 

from that of [Stefik, 1981], who used "meta-planning" in reference to his MOLGEN 

planner. Our notion of meta-planning involves the recursive application of a planner to 

solve its own planning problems (problems such as interactions among goals or plans). 

On the other hand, [Stefik, 1981] used "meta-planning" to refer to a multi-layered con­

trol structure that allows a planner to schedule its own planning tasks using a variety of 

strategies, such as least-commitment or application of heuristics. 'vVhen planning prob­

lems arose, MOLGEN could only backtrack. It could not apply itself recursively to 

create and execute plans for handling the planning problems. 

The rest of this chapter describes the processes of planning and plan execution in 

UCEgo. Section 2 describes plan selection in UCEgo, giving details on the types of 

situations in which different types of plans are suggested. Plan execution and other types 

of simple reasoning in UCEgo are described in Section 3. 

2. Plan Selection 

UCEgo selects plans based on the current situation. Every plan in UCEgo has one 

or more associated situation class. When the situation class associated with a plan 

matches the current situation, that plan is suggested to UCEgo. The suggestion of plans 

based on situations is implemented using if-detected daemons (see Chapter VI). If­

detected daemons can be considered tiny inference engines that look for particular 

classes of situations. When the current situation matches the situation class of a daemon, 

it performs appropriate actions such as suggesting a plan. 

A simple example of an if-detected daemon used to suggest plans is shown in Fig­

ure 4.1. This daemon suggests the plan (PLANFORl) of having UC exit (UC-exitl) 

whenever UC has the goal (UC-HAS-GOALl) of exiting. 
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ALl? 

Figure 4.1. Suggest plan of executing the UC-exit procedure when UC wants to exit. 

2.1. Situation Types 

Situations that suggest plans consist of many different types of information. A plan 

situation always includes the main goal of the plan. It may also include preconditions 

and other appropriateness conditions. For example, the plan suggestion situation for a 

USE-CHAIN-SAW plan might include the following appropriateness condition: need to 

cut thick branch (over 1 inch diameter). This appropriateness condition is not a precon­

dition, since chain saws can be used to cut smaller branches. Indeed, when a user has 

already started using a chain saw to cut some thick branches, the user will often use the 

chain saw for smaller branches. However, if one had only small branches to trim, one 

would not think of using a chain saw (hedge shears are more appropriate). Adding such 

appropriateness conditions to a plan suggestion situation prevents the suggestion of inap­

propriate plans. 

The plan suggestion situations in UC can be divided into four main categories. 

These are situation classes that suggest: 

1) inform-plans 

2) request-plans 

3) social-plans 

4) meta-plans 

Situations that suggest inform-plans comprise those situations in which the planner 

wishes to inform the user of some information. Request-planning situations are those in 

which the planner wishes to request information from the user. Situations that invoke 

social-plans include salutations and apologies. Meta-planning situations involve suggest­

ing meta-plans for dealing with meta-goals. Each of these situation classes and the plans 

that are suggested to deal with those classes of situation are described in the following 

sections. 
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2.2. Inform-Plans 

UCEgo suggests inform-plans whenever UC has the goal of having the user know 

something. There are two situation classes in which inform-plans are detected. The two 

classes are distinguished by the type of infonnation that UC wants the user to know. If 

the knowledge is a network of real concepts, then UCEgo simply suggests the plan of 

communicating those concepts to the user. On the other hand, if UC wants the user to 

know something that is only a description of some concept(s), then UC should communi­

cate to the user the concept(s) that is the referent of the description. For example, if UC 

wants the user to know "how to delete files," then UC should inform the user that "the 

rm command is used to delete files.'' ''How to delete files'' is a description of the con­

cepts, "the rm command is used to delete files." If UC were to communicate just the 

description to the user, that would not achieve UC's goal of having the user know how to 

delete a file. UC needs to communicate the referent of the description to the user. As a 

result, UC needs to compute the referent before informing the user in situations where 

the type of information is a description. 

The two situation classes that suggest inform-plans are summarized in Table 4.1. 

'rh f; fh · · · boh · · I . h 1 ' al fh. th 
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user know something. The second part of the situation in the first class represents the 

precondition that the information should not be a description. The opposite is the case in 

the second class. Also, the second class of situation has the additional precondition that 

the description must have an identified referent. 

Situation Suggested Plan 

Planner wants the user to know ?x, tell the user ?x 

and ?x is not a description 

Planner wants the user to know ?x, tell the user ?y 

and ?x is a description 
and ?y is the referent of ?x 

Table 4.1. Situations that suggest inform-plans. 

The actual if-detected daemons that detect inform-plan situations and suggest the 

plans are shown in Figures 4.2 and 4.3. Figure 4.2 shows the if-detected daemon for 

detecting situations in which UC has the goal (UC-HAS-GOAL3) of having the user 

know (KNOWl) something (SOMETIIINGl) that is not a description. Since descrip­

tions in UC are always hypothetical (see Appendix A, Section 2), they can be detected by 

checking to make sure that the concept to be communicated is not hypothetical. Since 

hypothetical concepts are marked as being dominated by HYPOTHETICAL, this means 

that the if-detected daemon should check to make sure that whatever matches SOME­

THING! is not dominated by HYPOTHETICAL. This check is indicated by the NOT 

link from DOMINA TEl in Figure 4.2. 
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Figure 4.2. Suggest plan of telling user when UC wants the user to know a real concept. 

In the second class of situations, UC wants the user to know a description for which 

UC has identified a referent. Figure 4.3 shows the if-detected daemon for detecting situa­

tions in which UC has the goal (UC-HAS-GOAL2) of having the user know (KNOW1) 

something (SOMETHING 1) that is a description. The referent of the description is indi­

cated by the ANSWER-FOR relation between SOMETHING 1 (the description) and 

SOMETHING2 (the referent). There is no explicit check to make sure that SOME­

THING 1 is indeed a description, because only descriptions participate in the ANSWER­

FOR relation. 
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Figure 4.3. Suggest plan of telling the user the referent of a description. 

2.3. Request-Plans 

The request-plan is suggested by UCEgo whenever UC wants to know something, 

?x, and additionally, UC believes that the user is likely to know ?x. The latter condition 

is not a precondition in the classical sense, since UC can still use the plan of asking the 

user even when UC does not believe that it is likely to work. Also, the fact that UC does 

not believe that the user knows the information does not mean that the plan will neces­

sarily fail, since UC may be mistaken in its beliefs about what the user knows. In fact, 

when they have no better alternatives (or are just too lazy to try other alternatives), peo­

ple will often ask someone else for information even when they believe that it is very 

unlikely that person knows the information. Thus the condition that one only asks some­

one one believes knows the information should not preclude use of this plan. This con­

tradicts [Schank and Abelson, 1977]'s approach in which this is termed an uncontrollable 

precondition, meaning that this plan is always aborted, unless this precondition is true. 

Nevertheless, one does not normally ask someone for information, when one does not 

believe that this person possesses the information. This is an example of an appropriate­

ness condition for the use of a plan. UCEgo will not suggest the plan of asking someone 

for information unless UC believes that the person knows the information sought by UC. 

Whether or not the user knows the information sought by UC is modeled by 

KNOME (see Chapter II). Since such information is often not represented explicitly in 

UC's knowledge base, but instead is inferable from the user's level of expertise, a call to 

KNOME is needed to determine whether or not the user knows something. Hence in the 
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if-detected daemon for suggesting the request-plan, the appropriateness condition is 

coded as a test involving a call to the KNOME procedure, does-user-know?. This is 

shown in Figure 4.4. 

Ll? 
PL 

K~goal goals 

wer 

r-~"""""---L--

fact ._I ----

Figure 4.4. Suggest the plan of asking, when it is likely that the user knows. 

2.4. Social-Plans 

Social-plans consist of salutations and apologies. Common to all situation classes 

that suggest social-plans is the planner's goal of being polite to the user. If the planner 

did not wish to be polite, then there would be no point to either greeting the user or apo­

logizing to the user. 

Salutations include greetings and farewells. UCEgo suggests the greeting plan, 

whenever UC first encounters someone (a precondition), and UC has the goal of being 

polite to this person. The plan of saying good-bye is suggested, whenever UC has the 

goal of being polite and also has the goal of exiting. Although there are two UC-goals in 

the good-bye plan's suggestion situation, only one goal is satisfied by the good-bye plan. 

The good-bye plan is only a plan for being polite, since UC cannot exit merely by means 

of saying good-bye to the user. The goal of exiting serves as an appropriateness condi­

tion for suggesting the plan of exiting. It is not a precondition, because the planner can­

not plan to achieve the precondition before using this plan. It is not even an uncontroll­

able precondition, since it is a condition under the planner's control. After all, if a 

planner has the goal of being polite to the user, then it might try to use the good-bye plan, 

and then decide to exit in order to satisfy this precondition of the good-bye plan. 

The if-detected daemon that suggests the plan of greeting the user is shown in Fig­

ure 4.5. This daemon is triggered, whenever UC has the goal of being polite to someone, 

and UC encounters this person for the first time. The daemon that suggests the plan of 

saying good-bye to the user is shown in Figure 4.6. The situations that trigger this dae­

mon are those in which UC has the goal of being polite to someone and also has the goal 

of exiting. 
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Figure 4.5. Suggest plan of greeting the user when encountering a new user. 
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Figure 4.6. Suggest plan of saying good-bye to the user when exiting. 

Social goals involving apologies are suggested when UC cannot fulfill its obliga­

tions as a consultant. This occurs either when UC cannot tell the user the solution to the 

user's problem because UC does not know the answer to the user's query, or when UC 

does not want to tell the user the answer. In the first case, UC apologizes to the user for 

not knowing. In the second case, UC apologizes to the user for not being able to tell the 

user (this is really a canned figure of speech, since UC actually is able to tell the user but 

just does not want to do so). The situations that suggest these plan of apology are sum­

marized in Table 4.2. 
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Situation Suggested Plan 

Planner has goal of being polite to user, apologize to user 

User has goal of knowing something, ?x, for not knowing ?x 

Planner does not k.11ow ?x 

Planner has goal of being polite to user, apologize to user for not 

User asked UC a question about something, ?x, being able to tell user ?x 

Planner wants to prevent the user knowing ?x 

Table 4.2. Situations that suggest plans of apology. 

The actual if-detected daemons that detect situations calling for UC to apologize to 

the user are shown in Figures 4.7 and 4.8. In the first daemon, the fact that UC does not 

know something has two possible sources. First, this fact may already be in UC's 

knowledge base. Secondly, UCEgo may add such knowledge to UC's knowledge base 

after one of UC's other components (e. g. UC's domain planner) has tried to solve the 

user's problem and reports a failure. For the second daemon, the fact that UC wants to 

prevent the user from knowing something is usually the result of a preservation goal. For 

example, when the user asks UC how to delete UC, this will trigger the goal of preserv­

ing the UC program and hence the goal of preventing the user from knowing how to 

delete UC. This leads to a goal conflict for UC between wanting to tell the user in order 

to help the user, and wanting to prevent the user from knowing. In this case, UCEgo 

resolves the conflict by abandoning the goal of wanting to tell the user. Detecting such 

goal conflict situations are described in Chapter lll, Section 3, and the plan for resolving 

the conflict is described in this chapter in Section 3.3. 
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Figure 4.7. Suggest plan of apologizing when UC does not know the answer. 
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Figure 4.8. Suggest plan of apologizing when UC does not want the user to know. 
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2.5. Meta-Plans 

Meta-plans are just like any other plans in UC. The only difference is that meta­

plans tend to be useful for achieving meta-goals. An example of a meta-plan is the plan 

of calling the procedure, UC-merge-goals, in order to satisfy the meta-goal of MERGE­

REDUNDANT-GOALS. The if-detected daemon that suggests this plan is shown in Fig­

ure 4.9. 

Figure 4.9. Suggest plan of merging redundant goals. 

The UC-merge-goals procedure takes two similar goals and merges them. UC­

merge-goals first matches the two goals to see if they are identical. If so, the goals can be 

merged by simply discarding any one of the goals. A more complex case is when one of 

the goals is contained by the other goal. In such a case, UC-merge-goals discards the 

contained goal. For example, if the user asks, "Is compact used to compact files?" then 

UC adopts the following three similar goals (see Chapter III, Section 3.2): 

1) UC wants the user know whether compact is used to compact files 

-+ UC wants the user to know that yes, compact is used to compact 

files. 

2) UC wants the user to know the effects of the compact command 

-+ UC wants the user to know that compact is used to compact files. 

3) UC wants the user to know how to compact files 
-+ UC wants the user to know that to compact a file, use compact. 

The similarity among the goals does not become apparent until after UC deduces 

the referent of the descriptions in the original goals (see Chapter III, Section 3.2 for more 

details on detecting goal overlap). Although theoretically the order of merging goals 

does not make any difference in the final result, in actual practice the referents of the 
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descriptions of the first two goals are found before the third, so the first two goals listed 

above are the first to be merged. In merging the first two goals, the second goal is con­

tained by the first, so the goals are merged by simply abandoning the second goal. Next, 

after UC identifies the referent of the third goal, UCEgo notices that it is similar to the 

first goal (a similarity with the second goal is not detected, since the second goal has 

already been abandoned at this point). Once again, the third goal is approximately con­

tained by the first goal (approximate in that "to compact a file, use compact" is 

represented as a PLANFOR relation, which is similar to but not identical to the HAS­

EFFECf relation that is used to represent, "compact is used to compact files), so the 

two goals are merged by abandoning the third goal. These two merges leave only the 

first goal, which leads to UC's answer of "Yes." The propositional part of this answer is 

pruned by UCExpress (see Chapter V, Section 2). 

Another of UCEgo's meta-plans is suggested when UCEgo detects a goal conflict 

and adopts the meta-goal of resolving the conflict. The appropriate meta-plan is sug­

gested by the if-detected daemon shown in Figure 4.10. This meta-plan represents a call 

to the procedure, UC-resolve-conflict, which resolves the conflict by abandoning the less 

important of the two conflicting goals. To determine which goal is less important, UC­

resolve-conflict first searches for a direct precedence relationship (represented by a 

HAS-PRECEDENCE relation) between the two goals. If such a relation does not exist, 

then UC-resolve-conflict expands the search to include the causal parents of the goals. 

The search continues until the ultimate sources of the goals, which are usually UC 

themes, are included in the check for relative precedence relations. Since goal conflicts 

usually involve goals that originate from different UC themes, and, because all of UC's 

themes have a relative precedence, UC-resolve-conflict is almost always able to decide 

which goal to abandon in order to resolve the conflict. 

Figure 4.10. Suggest plan of resolving the conflict. 

An example of resolving a goal conflict is shown in the trace of a UC session shown 

in Figure 4.11. In this dialog, the user asks UC how to crash the system, which leads UC 

to adopt the following two conflicting goals: 
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1) UC wants the user know how to crash the system (UC-HAS-GOAL66). 

2) UC wants to prevent the user from knowing how to crash the system 

(UC-HAS-GOAL67). 

The first goal is a sub-goal of UC's goal of helping the user, which in turn originates 

from UC's consultant role theme. The second goal is a sub-goal ofUC's goal of preserv­

ing the system, which in turn originates from UC's staying alive life theme. UCEgo 

detects the fact that these two goals conflict (see Chapter III, Section 3.3), since UC both 

wants to achieve some state and prevent the achievement of that state. To resolve the 

goal conflict, UCEgo calls the UC-resolve-conflict procedure, which checks the relative 

precedence of the two conflicting goals and abandons the less important goal. The search 

for precedence terminates at UC's Stay-Alive life theme and UC's Consultant role 

theme. Since UC's life theme has greater precedence than UC's role theme, the UC­

resolve-conflict procedure resolves the conflict by abandoning the goal of having the user 

know how to crash the system. 

Although UCEgo has abandoned the goal of having the user know how to crash the 

system, UCEgo still has the goal of being polite -to the user. This leads UCEgo to the 

plan of apologizing to the user for UC's inability to help the user. UCEgo suggests this 

plan in a situation where someone asks UC a question, UC wants to be polite to this per­

son, and UC want to prevent that person from knowing the answer to the query. Similar 

plans calling for UC to apologize in order to be polite are suggested when UC does not 

know the answer and when UC cannot perform actions that the user requests. More 

details on these and other social plans can be found in Section 2.4. 

We1come to UC (Unix Consu1tant) version 3.23 

To a '#' prompt, p1ease type in your questions 

about the UNIX fi1e system in Enq1ish. 
To 1eave, just type 'AD' or' (exit)'. 

Hi. 
How can I he1p you? 

# How can I crash the system? 

The parser produces: 
(ASKlO (listenerlO = UC) 

(speakerlO = *USER*) 
(asked-forlO = 

(QUESTIONlO (what-islO = (ACTION14? (actorl4 =*USER*)))))) 

(CRASH-ACTIONO? (del-effectO = (CRASH-EFFECTO? 

(actor0-1 
(cause0-0 

(crash-objectO =UNIX-SYSTEM))) 

*USER*) 
(ACTION14? & ) ) ) ) ) 
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UC's parser understands the user's input as a question about a way to crash the UNIX 

system. 

The goal analyzer produces: 
((HAS-GOAL-gaO 

(planner-gaO = *USER*) 
(goal-gaO = (KNOW-gaO? (knower-gaO = *USER*) 

(fact-gaO (ACTION14? &)))))) 

UCEgo: suggesting the plan: 
(PLANFOR71 (goals71 = (HELPS (helpeeS = *USER*) (helperS 

(plan71 = (SATISFY6 (need6 = (KNOW-gaO?&)) 
(actor6 = UC) ) ) ) 

based on the situation: 
(UC-HAS-GOAL63 (status63 
(HAS-GOAL-gaO &) 

ACTIVE) (goal63 = (HELPS & ) ) ) 

UC))) 

Since UC wants to help the user (UC-HAS-GOAL63), and the user wants (HAS-GOAL­

gaO) to know (KNOW-gaO) something, UCEgo suggests the plan of satisfying the user's 

goal of knowing. 

UCEgo: suggesting the plan: 
(PLANFOR72 

(goals72 = (PRESERVES (preserverS 
(preservedS 

(plan72 = 

UC) 
UNIX-SYSTEM) ) ) 

(SATISFY7 (need7 = (PREVENTS (preventerS = UC) 
(prevent-stateS= (KNOW-gaO?&)))) 

(actor7 = UC)))) 

based on the situation: 
(PLANFOR-gal (goals-gal= (CRASH-EFFECTO? &)) 

(plan-gal= (ACTION14? &))) 

(HAS-GOAL-gaO &) 
(UC-HAS-GOALS9 (statusS9 = ACTIVE) (goalS9 (PRESERVES & ) ) ) 

Since the user wants to know how to alter (crash is a kind of altering) something that UC 

wants (UC-HAS-GOAL59) to preserve, UCEgo suggests the plan of preventing the user 

from knowing how to crash the system. 

UCEgo: detected the goal: 
(UC-HAS-GOAL66 (goal66 = (KNOW-gaO?&))) 
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from the situation: 
(UC-HAS-INTENTIONlO (intentionlO = (SATISFY6 &)) 

(statuslO =ACTIVE)) 

UCEgo: detected the goal: 

(UC-HAS-GOAL67 (goal67 = (PREVENTS&))) 

from the situation: 
(UC-HAS-INTENTION9 (intention9 = (SATISFY7 &)) (status9 ACTIVE)) 

UCEgo adopts the sub-goals of having the user know how to crash the system (UC­

HAS-GOAL66) and preventing the user from knowing (UC-HAS-GOAL67). 

UCEgo: detected the goal: 
(UC-HAS-GOAL68 

(goal68 = (RESOLVE-GOAL-CONFLICT2 
(conflict-goal-A2 (UC-HAS-GOAL67 &)) 

(conflict-goal-82 = (UC-HAS-GOAL66 &))))) 

from the situation: 
(UC-HAS-GOAL66 &) 
(UC-HAS-GOAL67 &) 

UCEgo detects the meta-goal of resolving the conflict. 

UCEgo: suggesting the plan: 

(PLANFOR73 (goals73 = (RESOLVE-GOAL-CONFLICT2 &)) 

(plan73 = (UC-resolve-conflictl 

based on the situation: 
(UC-HAS-GOAL68 &) 

(goal-Al (UC-HAS-GOAL67 &)) 

(goal-Bl = (UC-HAS-GOAL66 &))))) 

UCEgo suggests the meta-plan of calling the UC-resolve-conflict procedure to resolve 

the goal conflict. 

UCEgo: suggesting the plan: 

(PLANFOR74 
(plan74 = (APOLOGIZE2 

(speaker2-2 = UC) 
(listener2-2 = *USER*) 
(apology2 = 

(HAS-ABILITYl (abilityl 
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(TELL6 (speaker6-0 = UC) 
(listener6-0 =*USER*))) 

(truth-vall = FALSE) 
(doerl UC)) ) ) ) 

(goals74 = (BE-POLITES (polite-toS = *USER*) (is-politeS UC)))) 

based on the situation: 
(ASKlO &) 
(UC-HAS-GOAL61 (status61 ACTIVE) (goal61 (BE-POLITES&))) 

(UC-HAS-GOAL67 &) 

Since UC has the goal of preventing the user from knowing something that the user asked 

about, and UC has the goal of being polite to the user, UCEgo suggests the plan of apolo­

gizing to the user for not being able to tell the user in order to be polite. 

UCEgo: detected conflicting goals: 

(UC-HAS-GOAL67 
(goal67 = (PREVENTS 

(preventerS = UC) 
(prevent-stateS = 

(KNOW-gaO? (knower-gaO = *USER*) 
(fact-gaO = (ACTION14? 

(actorl4 

(UC-HAS-GOAL66 
(goal66 = (KNOW-gaO? 

(knower-gaO = *USER*) 

*USER*)))))))) 

(fact-gaO= (ACTION14? (actorl4 =*USER*)))))) 

UCEgo: goal, UC-HAS-GOAL67, has higher precedence, 

so resolving goal conflict by discarding the goal, UC-HAS-GOAL66 

The planner is passed: 
((CRASH-EFFECTO? &)) 

The planner produces: 
nil 

As it turns out, UC does not in fact know how to crash the system (the planner does not 

return a plan to achieve CRASH-EFFECTO). However, even if UC did know how, it 

would not tell the user, since it has abandoned that goal. Unfortunately, UC did not 

abandon the goal before it had already decided to call the UNIX domain planner, other­

wise UC might save that step. In a sense, UC is thinking in parallel. On the one hand, it 

is continuing to plan for both conflicting goals, while at the same time it is planning how 

to resolve the conflict between the two goals. Potentially, any one of these processes 

might finish first So, the planner might return a plan for crashing the system and UC 

might even adopt the plan of telling this to the user, before UC has resolved the goal 
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conflict. However, since UCEgo separates planning and plan execution into two distinct 

stages, UCEgo will always abandon the goal (and its sub-goals) before it executes any 

plans such as telling the user how to crash the system. Then UC will not execute the 

plan, since its goal has been abandoned by UC. This separation of the planning and plan 

execution phases ensures that such subtle timing effects among parallel lines of thought 

will not present a problem for UCEgo. 

The generator is passed: 
(APOLOGIZE2 & ) 
I'm sorry, I cannot tell you. 

UCEgo: do not know a single planfor the foreground goal: 

(UC-HAS-GOAL67 &) 
so adding the meta-goal: 
(UC-HAS-GOAL69 (goal69 (KNOW60? (knower60 = UC) 

(fact60 = ACTIONlS?)))) 

(PLANFOR7S? (goals7S = (PREVENTS&)) (plan7S = ACTIONlS?)) 

The present version of UCEgo does not know how to prevent the user from knowing, so 

it adopts the meta-goal of finding out a plan for preventing the user from knowing. A 

more complex version of UCEgo that did have plans for preventing the user from know­

ing (e. g. lying to the user, threatening the user, etc.) would not need to adopt the meta­

goal of finding out such a plan. 

The planner is passed: 
((PREVENTS & ) ) 

The planner produces: 
nil 

Figure 4.11. UC dialog showing the meta-goal of resolving a goal conflict. 

3. Plan Execution 

After UCEgo has suggested a plan for satisfying a goal, it must decide whether or 

not to execute that plan. UCEgo needs to decide to execute a plan, rather than always 

executing any suggested plan, because UCEgo might have to choose among several alter­

native plans that have been suggested.3 Also, UCEgo may have to change or even 

3 Actually, this version of UCEgo never does suggest two different plans for the same 
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abandon a plan that interacts with another of UCEgo's active plans. In order to find such 

plan interactions and correct them before it is too late, UCEgo separates planning and 

plan execution into two distinct phases of processing. 

The planning process, especially planning fairly simple plans such as those in 

UCEgo, can be considered a simple reasoning process similar to other simple reasoning 

processes. Other simple reasoning processes include figuring out which UNIX command 

to use for a particular purpose, recalling the effects of a particular UNIX command, or 

remembering the definition of a term. In UCEgo, each type of reasoning is initiated in 

the appropriate situation by an if-detected daemon. These are described below. 

3.1. Intentions 

In UCEgo's first phase of processing, it detects goals, suggests plans for achieving 

its goals, and adopts the intention of executing those plans. The intention of executing a 

plan means that UCEgo has scheduled the plan for execution during its second phase of 

processing, plan execution. There is one exception to this: when the intended plan is a 

sub-goal (i. e. the plan is to SATISFY some state), then UCEgo immediately adopts the 

desired state as a sub-goal in order to continue planning. The fact that UCEgo has 

adopted an intention does not mean that it cannot abandon that intention later. For exam­

ple UCEgo may abandon an intention to carry out a plan if later UCEgo decides to aban­

don the goal which that plan is meant to achieve. 

UCEgo's notion of intention is similar to [Cohen and Levesque, 1987a&b]'s usage 

of intention as a persistent (i. e. a commitment over time) goal to do an action. As in 

their notion of relativized intention, UCEgo abandons an intention when the motivation 

for the intention no longer holds. However, unlike their definition of intention, UCEgo 

does not worry about its own beliefs concerning commitment of the action. [Cohen and 

Levesque, 1987 a&b] 's theoretical treatment of intention needed to be concerned about 

the beliefs of the agent since they wanted to be able to rule out the possibility that an 

agent might intend to doing something accidentally or unknowingly. In a real system, 

such as UCEgo, intentions are adopted as part of the planning process, so it would never 

accidentally or unknowingly adopt an intention to perform an action. Such concerns are 

more relevant to analyzing the intentions of other agents. 

Figure 4.12 shows the if-detected daemon that adopts intentions. Whenever UC has 

a goal (UC-HAS-GOALl), there is a plan for that goal (PLANFORl), and that PLAN­

FOR is real and not hypothetical (implemented by the NOT DOMINA TEl), then this 

daemon asserts that UC should adopt the intention of carrying out the plan. 

goal. However, it is possible, so UCEgo was designed to handle such contingencies. 
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-;. , ..... 
STATUSl? 

Figure 4.12. If-detected daemon that adopts the intention of executing a plan. 

Unlike other systems that need to instantiate the abstract plans that are selected by 

the system, in UCEgo plans are automatically instantiated by the if-detected daemons 

that suggested the plans. This is possible, because all information relevant to the plan, 

especially information needed to fully instantiate a plan, are encoded as part of the situa­

tion class in which UCEgo suggests the plan. For example, consider what happens when 

the if-detected daemon shown in Figure 4.13 is activated. This daemon suggests the plan 

of adopting the sub-goal (SA TISFYl) of preventing (PREVENT!) the altering 

(ALTER-EFFECfl) of something (SOMETillNGl) in situations where: 

1) UC wants (UC-HAS-GOALl) to preserve (PRESERVE!) that something 

(SOMETHING 1 ). 

2) someone else (checked by the NOT DOMINA TEl with dominator UC­

HAS-GOAL 1) wants (HAS-GOAL2) to alter it. 
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.~1? 
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·~ planner 
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preventer 
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uc 
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,----'------, ter-o ~ect 

Figure 4.13. Suggest plan of preventing the altering of what UC wants preserved. 

If the user tells UC, "I want to delete UC," then this is interpreted as "the user has 

the goal of deleting the UC-program." Since UC has the goal of preserving the UC­

program, this daemon is activated. As a result, it creates a new instance of PLANFOR 

with goals being the goal of preserving the UC-program and with plan being a new 

instance of SATISFY. This in turn has need being a new instance of PREVENT with 

preventer being UC and with prevent-state being deleting the UC-program. The final 

result is a completely specified version of the abstract plan stored under the if-detected 

daemon. So, since the plan suggested by the daemon is already completely specified, 

UCEgo does not need to further instantiate the abstract plan. 

After there are no more goals to be detected, plans to be suggested, intentions to be 

adopted, or inferences to be made - that is, after there are no more if-detected daemons 

to activate - UCEgo proceeds to its next phase, executing those intentions that are still 

active. Since UC can only perform communicative actions, UCEgo only has to worry 

about producing output to the user. It does this simply by taking the concepts that it 

wants to communicate to the user and passing them to the UCExpress component, which 

is described in Chapter V. 

3.2. Simple Reasoning 

Besides planning for goals and executing the plans, UCEgo also performs other 

types of reasoning in certain situations. For example, when UCEgo has the goal of hav­

ing someone (usually UC or the user) know a plan, it calls the UNIX domain planner 

component of UC. The if-detected daemon that does this is shown in Figure 4.14. 
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Figure 4.14. Daemon that calls the UNIX domain planner component ofUC. 

Calling the domain planner to compute a plan for doing something in UNIX can be 

viewed in two ways. One might think of this as part of the plan for satisfying UC's goal 

of having the user know how to do something in UNIX. In this view, the plan would 

consist of two steps: figuring out the answer, and then informing the user of this answer. 

This is technically correct, but it does not seem cognitively valid that a consultant has to 

do planning in order to figure out the answer, especially for the fairly simple queries that 

UC can handle. When a human UNIX consultant is asked, ''How can I delete a file?'' it 

does not seem as if the consultant thinks, "I will figure out the answer and then tell the 

user." Rather, the consultant seems to retrieve the answer from memory instinctively 

and then plans to inform the user of this answer. So, when a human consultant is told, 

"Don't think about how to delete a file," it is very hard for the consultant to stop the 

thought processes that lead to recall of the rm command. If humans had to plan to figure 

out this information, then it should be fairly easy to not execute the plan and so not think 

about how to delete a file. 

UCEgo takes the view that such simple thought processes are unplanned. That is, 

UCEgo does not plan to think and then think; rather, it always performs simple thought 

processes in appropriate situations. Since these simple thought processes do not lead 

directly to actions on the part of UC, they do not interfere with UCEgo's planning pro­

cess. 

Another example of a procedure that implements a simple thought process for UC is 

the recall of the definition of a term. The UC-define procedure is called by the if­

detected daemon of Figure 4.15, whenever UC wants someone to know the definition of 

a term. Similarly, when UC wants someone to know the effects of some UNIX com­

mand, the if-detected daemon of Figure 4.16 calls the UC-find-effects procedure. When 

UC wants someone to know whether something is a plan for something else, UCEgo 

calls the UC-is-planfor procedure as shown in Figure 4.17. Finally, whenever UC wants 

someone to know whether some state holds, UCEgo calls the UC-is-state procedure 

shown in Figure 4.18. 
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Figure 4.15. Daemon for finding out the definition of a term. 

Figure 4.16. Daemon for finding out the effects of a command. 

UC-H 
orl? 

goall 

L is-planfor 

K.l'E1t J fact 

PL NF Rl? 

Figure 4.17. Daemon for finding out whether some action is the plan for some goal. 



- 135-

goall 
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Figure 4.18. Daemon for finding out whether some state holds. 

4. Conclusion 

4.1. Summary 

The main issue addressed by UCEgo's planner is efficient planning. As the main 

dialog planner for the interactive UC system, UCEgo needs to plan efficiently in order to 

be able to respond to the user in real time. This is in direct contrast to most other AI 

planners, which did not have this constraint and so could afford to plan inefficiently. I 

approached this problem of efficient planning in two ways. First, UCEgo incorporates a 

very simple planner that takes advantage of knowledge about typical speech acts encoded 

in prestored skeletal plans to completely avoid inefficient weak methods. Secondly, 

UCEgo avoids inefficient backtracking by selecting plans according to the situation. 

UCEgo encodes knowledge about which plans are typically useful in different types 

of situations by adding appropriateness conditions to plans. These appropriateness con­

ditions are not preconditions, because plans can be used even when their appropriateness 

conditions are violated (sometimes even successfully). Appropriateness conditions 

encode when it is appropriate to use a plan, in contrast to preconditions, which encode 

when it is possible to use a plan. By encoding the appropriateness conditions along with 

the preconditions and the goal of a plan into a situation class, UCEgo can suggest the 

plan whenever it encounters a situation that fits the situation class. These situation 

classes are represented using if-detected daemons, which suggest the plan associated with 

the situation class whenever the daemon detects a matching situation. By selecting 

among only appropriate plans as opposed to all possible plans, UCEgo avoids inefficient 

backtracking during planning. 

UCEgo's success shows that a very simple planner that is based on prestored skele­

tal plans and that does not backtrack can be used successfully to plan speech acts. 

UCEgo also shows that it is possible to plan speech acts without having to worry about 

mutual beliefs to the extent that the OSCAR system ([Cohen, 1978]) did. For example, 
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to produce a simple inform type speech act, UCEgo worries only about having the user 

believe the proposition, whereas OSCAR worried about having the user believe that the 

system believes the proposition, and then this belief convincing the user to believe the 

proposition. In everyday usage, when the system does not have any a priori reason to 

believe that the user might disagree with the system (such as during argumentation), such 

complex reasoning about mutual beliefs is not absolutely necessary for planning speech 

acts. Even when the system fails to convince the user by simply informing the user of 

the proposition, it can still notice the user's incredulity and correct the situation by pro­

viding additional support for the proposition. 

4.2. Problems 

One potential shortcoming of planning as implemented in UCEgo is that UCEgo 

does not have the capability to fall back on weak methods when it fails to find a prestored 

plan. In one sense, this shows that UCEgo's approach is superior since UCEgo never 

needs to fall back on inefficient weak methods to plan speech acts. This agrees with 

people's intuitions that they are not planning from scratch in everyday conversation. On 

the other hand, people do fall back on planning from scratch occasionally (more fre­

quently when writing than when speaking). So, to be complete, UCEgo should have such 

a capability. 

Unlike skeletal plans ([Friedland, 1980] and [Friedland and Iwasaki, 1985]), the 

UCEgo's plans are not organized into a abstraction hierarchy, but are encoded at a single 

level of abstraction. For planning speech acts, this is not a real problem, because 

UCEgo's single level of plan abstraction matches the single level of communication 

abstraction that is represented by speech acts. The lower levels of communication 

abstraction, choice of expressions and words, are handled by UC's expression mechan­

ism (UCExpress, see chapter V) and tactical generator. The higher levels of abstraction 

(i.e. paragraphs and larger units) are not addressed by UCEgo. If UCEgo were to be 

extended to handle real world actions besides speech acts, or if UCEgo were to be 

extended to plan larger communicative units than speech acts, then UCEgo would need 

to organize plans into an abstraction hierarchy. 

In order to organize plans into an abstraction hierarchy, one should also organize 

the situations that suggest plans into a abstraction hierarchy of situation classes. 

Currently, UCEgo does not organize situation classes into an abstraction hierarchy, 

although such a hierarchy would also be useful for other tasks such as detecting goals. 
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Chapter V 

Answer Expression 

After UCEgo produces a plan consisting of communicative acts, the plan is further 

refined. Refinement of communicative acts is needed because the concepts that UC 

wants to communicate to the user are often not organized in easily understood formats 

and often complete to the point of verbosity. The process of refining communicative 

actions is called answer expression ([Luria, 1982]). The subcomponent of UCEgo that 

does answer expression is called UCExpress. This chapter describes how UCExpress 

refines a communicative plan to produce a clear, concise answer for expression to the 

user. 

1. Introduction 

To see why answer expression is necessary, consider the following example: 

User: What is a directory? 

A1: A directory is a file. 

A2: A directory is a file that is used to contain files. 

A3: A directory is a file. Only empty directories can be deleted. Direc­

tories cannot be edited. Directories contain files. Directories form a 

tree-like structure. Directories always contain themselves and their 

parents. A plan for listing a directory is to use the Is command. 

The different replies are all correct, but contain differing amounts of information. The 

first answer does not give enough information to distinguish between files and direc­

tories. The second answer (what UC actually produces) provides just enough informa­

tion in a concise form and is the best answer in this situation. The third answer is too 

verbose and overwhelms the user with information. An answer like A3 would be more 

appropriate in cases where the user had requested, ''Tell me all you know about direc­

tories.'' 

This example illustrates the problem of determining how much of the answer to 

express to the user. Such considerations are similar to Luria's work ([Luria, 1982]) on 

answering "why" questions in a story understanding system. He pointed out that to 

answer "why" questions required two mechanisms, one to find the causal chain that 

represents the answer, and another answer expression mechanism to determine how 

much of the causal chain to tell the user. 

Another problem in answer expression is deciding what format to use to present the 

answer. Consider the following scenario: 
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User: How can I move a file to another machine? 

A1: To move a file to another machine, type 'rep' followed by one or more 

spaces or tabs followed by the name of the file to be moved followed 

by one or more spaces or tabs followed by the name of the machine fol­

lowed by a colon followed by the new name of the file on the other 

machine followed by a carriage return followed by 'rm' followed by 

one or more spaces or tabs followed by the name of the file. 

A2: Use rep to copy the file to another machine and then use rm to delete it. 

For example, to move the file foo to the file foo 1 on machine dali, type 

'rep foo dali:foo 1 '. 

The first answer is correct and quite general, but it is so verbose that it is undecipherable. 

On the other hand, the second answer is succinct and gives the user information in an 

easily readable form, but it is considerably less general. In fact the second answer is 

somewhat inaccurate, since it applies only to copying a file named foo to a file named 

fool. It is up to the reader to use analogous reasoning to apply this to other cases. 

Despite this lack of generality, the second answer form is clearly superior to the first. 

Note that for a program to format the answer in the second form requires additional com­

putation to transform the general solution of A1 into an example. A natural language sys­

tem needs to incorporate knowledge about when and how to use special presentation for­

mats like examples to more clearly convey information to the user. 

These concerns about how much information to present to the user and about what 

format to use can be viewed as corresponding respectively to Grice's Maxims of Quan­

tity and Quality ([Grice, 1975]). Although such considerations can be considered part of 

generation, there are sufficient differences in both the necessary knowledge and the pro­

cessing to separate such strategic concerns from the more tactical problems of generation 

such as agreement and word selection. These strategic problems are the domain of an 

expression mechanism. 

UCExpress, operates in two phases, pruning and formatting. During pruning, 

UCExpress prunes common knowledge from the answer using information about what 

the user knows based on the conversational context and a model of the user's knowledge. 

Next the answer is formatted using specialized expository formats for clarity and brevity. 

The result is converted to natural language using a tactical level generator. 

2. Pruning 

When UCExpress is passed a set of concepts to communicate to the user, the first 

stage of processing prunes them by marking any extraneous concepts, so that later the 

generator will not generate them. The pruning is done by marking rather than actual 

modification of the conceptual network, since information about the node may be needed 

to generate appropriate anaphora for the pruned concept. 

The guiding principle in pruning is to not tell the user anything that the user already 

knows. Currently UC models two classes of information that the user may already know. 
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The first class of information is episodic knowledge from a model of the conversational 

context. The current conversational context is tracked by marking those concepts that 

have been communicated in the current session. The second class of information con­

cerns the user's knowledge of UNIX related facts. Such user knowledge is modeled by 

KNOME (see Chapter II). Thus any concept that is already present in the conversational 

context or that KNOME indicates is likely to be known to the user is marked and is not 

communicated to the user. 

2.1. An Example Trace 

Consider the trace of a UC session shown in Figure 5.1. 

We~come to UC (Unix Consu~tant) version 3.23 

To a '#' prompt, p~ease type in your questions 

about the UNIX fi~e system in Eng~ish. 

To ~eave, just type 'AD' or' (exit)'. 

Hi. 
How can I he~p you? 

# How can I print a file on the laser printer? 

The parser produces: 

(ASKlO (listenerlO = UC) 
(speakerlO = *USER*) 

(asked-forlO = 
(QUESTIONlO (what-islO = (ACTION14? (actor14 

(PRINT-ACTIONO? (pr-effectO = PRINT-EFFECTO?) 

(actor0-1 = *USER*) 

(cause0-0 = (ACTION14? &))) 

(HAS-PRINT-DESTO (pr-destO = LASER-PRINTERO) 

(pr-dest-objO = PRINT-EFFECTO?)) 

(HAS-PRINT-OBJECTl (pr-objectl = FILE3?) 

(pr-obj-objl = PRINT-EFFECTO?)) 

The goal analyzer produces: 

((HAS-GOAL-gaO 
(planner-gaO = *USER*) 

(goal-gaO = (KNOW-gaO? (knower-gaO = *USER*) 

(fact-gaO= (ACTION14? &)))))) 

The planner is passed: 

(PRINT-EFFECTO?) 

The planner produces: 

(PLANFOR260 
(goals260 = PRINT-EFFECTO?) 

(plan260 = (UNIX-LPR-Plz-COMMANDO 

*USER*) ) ) ) ) ) 



- 140-

(lpr-plz-fileO = FILE3?) 

(UNIX-LPR-Plz-COMMAND-effectO = PRINT-EFFECTO?)))) 

(HAS-FILE-NAMElS (named-filelS = FILE3?) 

(file-namelS (lisp= nil))) 

(LPR-Plz-HAS-FORMATO 

(LPR-Plz-HAS-FORMAT-co~mandO 

(LPR-Plz-HAS-FORMAT-formatO 

(LPR-Plz-FORMATl 
(lpr-plz-file-argl = 

{UNIX-LPR-Plz-CO~~DO &)) 

{file-namelS = aspectual-of {HAS-FILE-NAMElS &))) 

{LPR-Plz-FORMAT-stepl = 

{SEQUENCElO {steplO lpr) 
{nextlO = {CONCATOO {concat-stepOO = -P) 

{concat-nextOO lz)))))))) 

{HAS-COMMAND-NAME30 

{HAS-COMMAND-NAME-named-obj30 {UNIX-LPR-Plz-COMMANDO &)) 

{HAS-COMMAND-NAME-name30 = {SEQUENCElO &))) 

Express: now expressing the PLANFOR: 

{PLANFOR260 &) 

Express: not expressing the format of the command, 

UNIX-LPR-Plz-COMMANDO, since the user already knows it. 

Express: not expressing PRINT-EFFECTO?, 

since it is already in the context. 

The generator is passed: 

{TELL7 {listener7-0 = *USER*) 

{speaker7-0 = UC) 
{proposition?= (PLANFOR260 &)) 

{effect7 = {STATE-CHANGEl 
{final-statel {KNOW-gaO?&))))) 

The generator is passed: 

{TELLS (speakerS = UC) 
(listenerS = *USER*) 

{propositionS= {REMINDERlO &))) 

Use lpr -Plz. 
Don't forget to file the printer output in the boxes. 

Figure 5.1. UC session with an intermediate user showing trace of UCExpress. 

The above example traces UCExpress' processing of the question, "How can I print 

a file on the laser printer?" The answer given by UC is, "Use lpr -Plz," along with a 

reminder to file the printer output in the boxes (see Chapter III, Section 5.3 for details on 

reminder type suggestions). The actual KODIAK conceptual network that is passed to 

UCExpress, shown in Figure 5.2, is not nearly as succinct, because it contains all of the 
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details of the command that are needed for planning. 

goals260 

namcd-filel8 

pr~-dest-objO pr-obj-ob~-1 pr-objcctl 

HAS-P DESTO HAS-

HAS- - BJECTl 

pr-dcstO 

iu:E!~PRINTERo I 

Il'R-Piz-HAS-FORMA T-formatO 

~~pO-m.-.,1 
LPR-Piz-FORMA T-step 1 

SEQ 10 

nextlO 

S-CO NAME30 

,-----.3~- concat-

concat-ncxtOO 

'----Eb 

Figure 5.2. KODIAK representation of the lpr -Piz plan for printing. 

If the KODIAK network passed to UCExpress were to be generated directly into 

English, it might look like the following: 

To print a file on the laser printer, use the lpr -Plz command. The command­

format of the lpr -Plz command is "lpr" followed by concatenating "-P" with 

''lz'' followed by the name of the file to be printed on the laser printer. 

This literal paraphrase is harder to understand than UC's more concise answer. To see 

how UCExpress prunes the network to arrive at the actual answer, consider the division 

of the concepts into the following three subnetworks: 
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A plan for PRINT-EFFECfO is 
UNIX-LPR-Plz-COMMANDO 

printing a file on the laser printer 

LPR-Plz-HAS-FORMA TO: the command-format of the UNIX-LPR-Plz-COMMANDO 

is "lpr -Plz <the name of the file to be printed>" 

These three subnetworks are depicted in Figure 5.2 as regions enclosed in double lines. 

In traversing this network, UCExpress prunes LAS-PRINT-EFFECfO, because "printing 

a file on the laser printer'' is already a part of the context (it is part of the user's ques­

tion). Also, the command-format (LPR-Plz-HAS-FORMATO) is pruned from UC's 

actual answer based on information from KNOME. In this case, KNOME was able to 

deduce that, since the user was not a novice, the user already knew the UNIX-LPR-Plz­

FORMAT, which is an instance of the SIMPLE-FILE-FORMAT (the name of the com­

mand followed by the name of the file to be operated upon), which all non-novice users 

know. Finally what is left unpruned is the plan part of PLANFOR50, UNIX-LPR-Plz­

COMMANDO, which the generator translates as "Use lpr -Plz." 

If the user was just a novice, then UC could not assume that the user already knew 

the command-format and instead would provide the following answer that includes an 

example of the lpr -Plz command-format: 
Use lpr -Plz. 
For example, to print the file foo on the laser printer, type 'lpr -Plz foo'. 

3. Formatting 

After pruning, UCExpress enters the formatting phase, during which it tries to apply 

different expository formats to express concepts in a clearer manner. Current expository 

formats include example, definition and simile formats. Each expository format is used to 

express different types of information. They are triggered by encountering particular 

concept types in the answer network. After triggering, the procedural component of the 

expository format is called to transform the concept into the corresponding format. The 

formats are not simple templates that can be filled in with readily available information. 

A fair amount of additional processing is needed to transform the information into the 

right format. 

3.1. Example Format 

The example format is used in expressing general knowledge about complex (i. e. 

multi-step) procedures such as UNIX commands. In UC's representation of UNIX com­

mands, every command has an associated command format. When expressing a com­

mand, UCExpress checks to see if it should also express the format of the command. If 
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KNOME believes that the user already knows the format of the command, then there is 

no need to express the format. Next, UCExpress checks to see if the format of the com­

mand is completely specified. If so, UCExpress collapses the command and format into 

a single statement as shown in the trace of a UC dialog shown in Figure 5.3. 

Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type '~D' or' (exit)'. 

Hi. 
How can I help you? 

# How can I add general write protection to the file personal? 

Type 'chmod o-w personal'. 

Figure 5.3. UC Session with an answer that combines the command and format. 

An English rendition of the conceptual network passed to UCExpress for the above 

example might be something like: 

A plan for adding general read protection to the file personal is to use the 
chmod command with format 'chmod' followed by concatenating 'o' with '-' 

with 'r' followed by 'personal'. 

Since the command is completely specified, the format of the command is combined with 

the command to form a single statement. 

If the command is not completely specified, then UCExpress uses an example for­

mat to express the format of the command to the user. The key principle in producing 

examples is to be explicit. So, UCExpress first steps through a copy of the general pro­

cedure to transform any general information into specific instances. In cases where the 

underspecified part of the procedure has a limited range of options, an arbitrary member 

that is compatible with the rest of the procedure and with previous UCExpress choices is 

selected. Next, the new, completely specified copy of the format is combined with a 

copy of the command, much as in the above UC dialog. Finally the new plan is encapsu­

lated in an example shell (which tells the generator to produce "For example,"). 

To see the algorithm in more detail, consider the UC dialog shown in Figure 5.4. 
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Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type 'AD' or' (exit)'. 

Hi. 
How can I help you? 

# How can I change the read permission of a file? 

The parser produces: 
(ASK10 (listener10 = UC) 

(speaker10 = *USER*) 
(asked-for10 = 

(QUESTION10 (what-is10 = (ACTION14? (actor14 

(CHANGE-PROT-FILE-ACTIONO? 
(ch-prot-effectO = (CHANGE-PROT-FILE-EFFECTO? 

(change-protO FILE-PROTECTION1) 

(change-fileO = FILE3?))) 

(actor0-1 = *USER*) 
(cause0-0 = (ACTION14? &))))) 

(HAS-FILE-PROTECTION2 (prot-file2 = FILE3?) 
(file-prot2 = FILE-PROTECTION1)) 

(HAS-ACCESS-TYPE1 (access-protection-type1 = READ-PROT) 

(prot-type-arg1 = FILE-PROTECTION1)) 

The goal analyzer produces: 

((HAS-GOAL-gaO 
(planner-gaO = *USER*) 
(goal-gaO = (KNOW-gaO? (knower-gaO = *USER*) 

(fact-gaO= (ACTION14? &)))))) 

The planner is passed: 
((CHANGE-PROT-FILE-EFFECTO? &)) 

The planner produces: 
(PLANFOR330 

(goals330 = (CHANGE-PROT-FILE-EFFECTO? &)) 

(plan330 = 

*USER*) ) ) ) ) ) 

(UNIX-CHMOD-COMMANDO (chmod-fileO = FILE3?) 
(chmod-protectionO = FILE-PROTECTION1) 

(UNIX-CHMOD-COMMAND-effectO 
(CHANGE-PROT-FILE-EFFECTO? &))))) 

(HAS-FILE-NAME19 (named-file19 = FILE3?) 
(file-name19 = (lisp= nil))) 

(HAS-PROT-VALUE1 (prot-type-arg1-1 = FILE-PROTECTION1) 

(value-protection-type1 = (lisp= nil))) 

(HAS-USER-TYPE1 (prot-type-arg1-0 = FILE-PROTECTION1) 

(user-protection-type1 = (lisp= nil))) 
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(CHMOD-HAS-FORMATO 

(CHMOD-HAS-FORMAT-commandO 

(CHMOD-HAS-FORMAT-formatO = 
(CHMOD-FORMATO 

(UNIX-CHMOD-COMMANDO & ) ) 

(CHMOD-FORMAT-stepO 

(CHMOD-FORMAT-argsO 

(HAS-COMMAND-NAME80 

chmod) 
) ) ) ) 

(HAS-COMMAND-NAME-named-obj80 = (UNIX-CHMOD-COMMANDO &)) 

(HAS-COMMAND-NAME-name80 = chmod)) 

Express: now expressing the PLANFOR: 

(PLANFOR330 &) 

Express: creating an example for the incomplete plan, CHMOD-FORMATO 

Express: choosing a name, foo, for an example file. 

Express: selecting USER-PROT -- print name, u, 

to fill in a parameter of the example. 

Express: selecting ADD-STATUS -- print name, +, 

to fill in a parameter of the example. 

Express: created the example(s): 

( (TELL7 
(speaker7-0 = UC) 

(listener7-0 = *USER*) 

(proposition? 
(EXAMPLEO 

(exampleO = 
(PLANFOR330-0 

(goals330-0 = (CHANGE-PROT-FILE-EFFECT0-0? 

(change-prot0-0 FILE-PROTECTIONl-0) 

(change-file0-0 = FILE3-0?))) 

(plan330-0 = 
(TYPE-ACTIONO (speaker0-4 = *USER*) 

(type-stringO = 

(CHMOD-FORMAT0-0 
(CHMOD-FORMAT-step0-0 chmod) 

(CHMOD-FORMAT-args0-0 

(CHMOD-TWO-ARG-SEQ0-0 

(chmod-file-arg0-0 = ... foo) 

(CHMOD-TWO-ARG-SEQ-step0-0 

(PROT-ARG-SEQ0-0 

(user-bit0-0 = . . . u) 

(PROT-ARG-SEQ-concat-next0-0 

(ARG-SEQ0-0 
(value-bit0-0 = ... +) 

(access-bit0-0 = r))))))))))))))))) 

Express: not expressing CHANGE-PROT-FILE-EFFECTO?, 

since it is already in the context. 
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The generator is passed: 
(TELL6 (effect6 = (STATE-CHANGEl (final-statel 

(listener6-0 = *USER*) 
(speaker6-0 = UC) 
(proposition6 = (PLANFOR330 &))) 

The generator is passed: 
(TELL7 &) 

Use chmod. 

(KNOW-gaO?&)))) 

For example, to add group read permission to the file named foo, 

type 'chmod g+r foo' . 

Figure 5.4. UC Session showing an answer that contains an example. 

The conceptual answer that is passed to UCExpress in the a!x>ve dialog can be para­

phrased in English as: 

A plan for changing the read permission of a file is to use the chmod command 

with format 'chmod' followed by concatenating <the protection-user-type> 

with <the protection-value-type> with 'r' followed by <the name of the file to 

be changed>. 

In stepping through the above format, <the protection-user-type> is underspecified. In 

order to give an example, a particular value is needed, so UCExpress arbitrarily chooses 

a value from the list of possible fillers (user, group, other, or all). The same is done for 

<the protection-value-type>. In the case of 'r', this is already a fully specified value for 

protection-access-type, so UCExpress maintains the selection. However, with <the name 

of the file to be changed>, there is no list of possible fillers. Instead, UCExpress calls a 

special procedure for selecting names. This naming procedure chooses names for files 

starting with 'foo' and continuing in each session with 'foo 1 ', 'foo2', etc. Other types of 

names are selected in order from lists of those name types (e. g. machine names are 

chosen from a list of local machine names). By selecting the names in order, name 

conflicts (e. g. two different files with the same name) can be avoided. 

Another consideration in creating examples is that new names must be introduced 

before their use. Thus 'foo' should be introduced as a file before it appears in 'chmod 

g+r foo'. This is done implicitly by passing the entire PLANFOR as the example, so that 

the generator will produce 'to add group read permission to the file named foo' as well as 

the actual plan. 

3.2. Definition Format 

The definition format is used to express definitions of terminology. The UC-define 

procedure first collects the information that will be expressed in the definition. 
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Collecting the right amount of information involves satisfying the Gricean Maxim of 

Quantity. The usual procedure is to collect the information that the term has some 

semantic category, and then add the primary usage of the term. In rare cases where the 

node does not have a usage, some other property of the node is chosen. For example, a 

definition of a directory would include the information: 

1) directories are files 

2) directories are used to contain files 

After such information is collected, it must be transformed into a definition format. 

This involves creating instances of both the term and its category and then combining the 

two pieces of information into one coherent statement. The latter task requires an attach­

ment inversion where the distinguishing information is reattached to the term's category 

rather than to the term itself. For example, the information about directory containing 

files is reattached to form "a file that is used to contain files" in the following definition: 

User: What is a directory? 

UC: A directory is a file that is used to contain files. 

This attachment inversion is not specific to English but seems to be a general universal 

linguistic phenomenon in the expression of definitions. Here are some other examples of 

the definition format: 

User: What is a file? 

UC: A file is a container that is used to contain text, code, or files. 

User: What is a container? 

UC: A container is an object that is used to contain objects. 

User: What is rm? 

UC: Rm is a command that is used to delete files. 

User: What is a search path? 

UC: A search path is a list of directories that is used by the csh to search for 

programs to execute. 

3.3. Simile Format 

The simile format is used by UCExpress to provide explanations of what a com­

mand does in terms of other commands already known to the user. This format is 

invoked when UCExpress attempts to explain a command that has a sibling or a parent in 
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the command hierarchy that the user already knows (as modeled in KNOME). An exam­

ple is explaining what ruptime does in terms of uptime. A trace of UC's processing is 

shown in Figure 5.5 

Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English. 

To leave, just type 'AD' or' (exit)'. 

Hi. 
How can I help you? 

# What does ruptime do? 

The parser produces: 

(ASKlO (listenerlO = UC) 
(speakerlO = *USER*) 
(asked-fcr10 ~ (QUESTIO~llO (what-islO ~ STATE13?)))) 

(HAS-EFFECT21? (effect-of-command21 STATE13?) 

(command-of-effect21 = UNIX-RUPTIME-COMMANDO)) 

The goal analyzer produces: 

((HAS-GOAL-gaO (planner-gaO= *USER*) 

(goal-gaO = (KNOW-gaO? (knower-gaO = *USER*) 

(fact-gaO= STATE13?))))) 

UCEgo: trying to find effects for UNIX-RUPTIME-COMMANDO 

the effects are: 

((HAS-EFFECT6-0 (command-of-effect6-0 = (UNIX-RUPTIME-COMMANDO &)) 

(effect-of-command6-0 = 
(LIST-ACTION3-0 (list-loc3-0 = 

TERMINALl-0) 
(list-objs3-0 = 
UP-TIMEl-0)))) 

(HAS-EFFECT7-0 (command-of-effect7-0 = (UNIX-RUPTIME-COMMANDO &)) 

(effect-of-command7-0 = 
(LIST-ACTION4-0 (list-loc4-0 = 

TERMINALl-0) 
(list-objs4-0 = 
NUMBERl-0))) ) 

(HAS-EFFECTS-0 (command-of-effectS-0 = (UNIX-RUPTIME-COMMANDO &)) 

(effect-of-command8-0 = 

(LIST-ACTIONS-0 (list-locS-0 = 
TERMINALl-0) 

(list-objsS-0 = 
LOAD-AVERAGEl-0))))) 

UCExpress: Found a related command, so creating a comparison 

between UNIX-RUPTIME-COMMAND2 and UNIX-UPTIME-COMMANDO 
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Express: not expressing UNIX-RUPTIME-COMMANDO, 

since it is already in the context. 

The generator is passed: 
(TELLS 

(effectS = (STATE-CHANGEl (final-statel 

(listeners-a = *USER*) 

(KNOW-gaO? &) ) ) ) 

(speakerS-0 = UC) 
(propositionS = 

(HAS-EFFECT24 
(command-of-effect24 
(effect-of-command24 

(UNIX-RUPTIME-COMMANDO &)) 

(ANDO 
(step0-0 = 

(next0-0 == 

(LIST-ACTION3-0 
(list-loc3-0 = 

(list-objs3-0 
(ANDl (stepl-0 = 

TERMINAL 1-0 ) 
UP-TIMEl-0))) 
(LIST-ACTION4-0 
(list-loc4-0 = TERMINALl-0) 

(list-objs4-0 = NUMBERl-0))) 

(nextl-0 = 

(LIST-ACTIONS-0 
(list-locS-0 = TERMINALl-0) 
(list-objsS-0 = LOAD-AVERAGEl-0)))))))))) 

ruptime is like uptime, except ruptime is for all machines on 

the network. 

Figure 5.5. UC Session showing an answer that contains a simile. 

The processing involves comparing the effects of the two commands and noting 

where they differ. In the above example, the effects of uptime are to list the uptime of 

the user's machine, list the number of all users on it, and list its load average. The effects 

of ruptime are similar except it is for all machines on the user's network. The com­

parison algorithm does a network comparison of the effects of the two commands. A 

collection of differences is generated, and the cost of expressing these differences (meas­

ured in number of concepts) is compared with the cost of simply stating the effects of the 

command. If expressing the differences is more costly, then the simile format is not 

used. On the other hand, if expressing the differences is less costly, then the differences 

are combined into a shell of the form "<CommandA> is like <CommandB>, except 

[ <CommandA> also ... ] [and] [ <CommandA> does not ... ] [and] ... " 

4. Conclusion 
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4.1. A Comparison 

McKeown's TEXT system ([McKeown, 1985]) is perhaps the closest in spirit to 

UCExpress. TEXT provided definitions using an identification schema. This is similar 

to UCExpress' definition format except TEXT did not worry about how much informa­

tion to convey. TEXT was designed to always produced paragraph length descriptions, 

hence it was not overly concerned with how much information to provide. The definition 

format requires more knowledge about the domain in order to select the most relevant 

information for a short description. 

TEXT also used a compare and contrast schema to answer questions about the differ­

ences between objects in a database. This is similar to UCExpress' simile format except 

that the compare and contrast schema was not used for giving descriptions of an object in 

terms of another that the user already knew. Since TEXT did not have a complete model 

of the user, it was unable to determine if the user already knew another object that could 

be contrasted with the requested object. This lack of a user model was also evident in the 

fact that TEXT did not provide anything similar to the pruning phase of UCExpress. 

Pruning is probably more relevant in a conversational context such as UC as contrasted 

with a paragraph generation context such as TEXT. On the other hand, TEXT was able 

to keep track of the conversational focus much better than UC. Focus does not seem to 

be quite as essential for a system like UC that gives brief answers. 

Other related research include work on using examples for explanation and for argu­

ment in a legal domain ([Rissland et al., 1984] and [Rissland, 1983]). The difference 

between those examples and the examples created by UCExpress is that Rissland's 

examples are preformed and stored in a database of examples whereas UCExpress 

creates examples interactively, taking into account user provided parameters. Rissland's 

HELP system dealt only with help about particular subjects or commands rather than 

arbitrary English questions like UC, thus HELP did not have to deal with questions such 

as how to print on a particular printer. Also by using prestored text, HELP was not con­

cerned with the problem of transforming knowledge useful for internal computation in a 

planner to a format usable by a generator. 

The TAILOR system ([Paris, 1987]) used a idea of user expertise similar to 

KNOME's to tailor explanations to the user's level of expertise. TAILOR concentrated 

on higher level strategies for explanation than UCExpress. For example, TAILOR used 

notions of the user's level of expertise to choose among process-oriented or parts­

oriented description strategies in building up a paragraph. TAILOR could also mix the 

two types of strategies within a paragraph to explain different aspects of a system. Such 

considerations are more important when generating longer explanations as in TAILOR, 

than when generating brief explanations as in UCExpress. 

4.2. Summary 

UC separates the realization of speech acts into two processes: deciding how to 

express the speech act in UCExpress, and deciding which phrases and words to use in 

UC's tactical level generator. Through this separation, the pragmatic knowledge needed 
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by expression is separated from the grammatical knowledge needed by generation. 

UCExpress makes decisions on pragmatic grounds such as the conversational context, 

the user's knowledge, and the ease of understand of various expository formats. These 

decisions serve to constrain the generator's choice of words and grammatical construc­

tions. 

Of course, it is sometimes impossible to realize all pragmatic constraints. For 

example, the expression mechanism may specify that a pronoun should be used to refer 

to some concept since this concept is part of the conversational context, but this may not 

be realizable in a particular language because using a pronoun in that case may interfere 

with a previous pronoun (in another language with stronger typed pronouns, there may 

not be any interference). In such cases, the generator needs to be able relax the con­

straints. UCExpress allows the generator to relax constraints by passing to the generator 

all of the conceptual network along with addition pragmatic markings on the network. 

This way, the generator has access to all of the information it might need to relax the 

constraints added by UCExpress. 
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Chapter VI 

If-detected Daemons 

The heart of UCEgo's implementation involves the use of if-detected daemons. 

These daemons are used for detecting the user's level of expertise (see Chapter II, Sec­

tion 3), for goal detection (see Chapter III), and for planning (see Chapter IV). All of 

these tasks share the feature that they require that the system perform certain actions in 

appropriate situations. For example, UC should detect goals in various situations. Plans 

should be suggested in other classes of situations, and yet other situations lead KNOME 

to make inferences about the user's knowledge. Recognizing these classes of situations 

and initiating the associated action is done by if-detected daemons. 

There are two main problems in recognizing situations. First of all, situations are 

difficult to detect, because they consist of arbitrary collections of external and internal 

state. [Wilensky, 1983] suggests the use of if-added daemons in detecting situations, but 

pure if-added daemons are problematic, because they can only detect a change in a single 

state. This is fine for situations that comprise only a single state. However, situations 

that consist of many states in conjunction are much harder to detect, because the various 

states are usually not realized simultaneously. Because the different states that comprise 

a situation become true at different times, an if-added daemon that was activated by the 

addition of one particular state would always need to check for the co-occurrence of the 

other states. Also, to detect a multi-state situation, one would need as many if-added 

daemons as states. Each if-added daemon would be slightly different, since each would 

need to check for a slightly different subset of states after activation. 

The other problem in recognizing situations is how to do it efficiently. In any rea­

sonably complex system, there are a very large number of possible internal and external 

states. Looking for certain situation types becomes combinatorically more expensive as 

there are more possible states and more situation types. Parallel processing would help, 

but parallel machines are not yet widely available. Even with parallel machines, optimi­

zation techniques can still be used to reduce the computational complexity considerably. 

This chapter describes how if-detected daemons can recognize multi-state situation 

classes and how they are implemented in an efficient manner in UC. 

1. Structure of the Daemon 

Like all daemons ([Chamiak, 1972]), if-detected daemons are composed of two 

parts: a pattern and an action. For if-detected daemons, these are called the detection-net 

and the addition-net respectively, since both the pattern and action in if-detected dae­

mons are composed of KODIAK networks (see Appendix A). These daemons work by 

constantly looking in UC's knowledge base for a KODIAK network that will match its 

detection-net. When a match is first found, the daemon adds a copy of its addition-net to 

UC's knowledge base. If-detected daemons are said to be activated when they detect the 

presence of some set of KODIAK network in UC's knowledge base that matches the 

daemon's detection-net. Any particular set of network is allowed to activate a daemon 
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only once. This avoids the problem of a daemon being repeatedly activated by the same 

match. 

The KODIAK networks of the detection-net and addition-net are not distinct, but 

rather may share concepts/nodes in their networks. In such cases, the if-detected daemon 

does not copy the shared node in the addition-net, but instead uses the concept that 

matched the shared node. A simple example of an if-detected daemon whose detection­

net and addition-net share nodes is shown in Figure 6.1. 

AI.J? 

status status 

"' It goal 

goal I STA TUS2? -' _1_ 
GOAL~ENCE2? 

goal-step 

Figure 6.1. If-detected daemon for handling background goal sequences. 

Figure 6.1 shows the actual form of the daemon as it is entered into UC using the 

KODIAK graphic interface. This daemon is activated whenever UC has a background 

goal that is a goal sequence. In such cases, UC adopts as a new background goal the first 

step of the goal sequence. The detection-net of the daemon is composed of those parts of 

the network that have arrows leading into the double circle labeled ''if-detected'' plus all 

concepts that are either its aspectual-values (i.e. the values of its aspectuals) or the 

aspectual-values of those concepts, recursively. In KODIAK diagrams, this corresponds 

to all nodes that have arrows pointing to the double circle or that can be reached by fol­

lowing arrows away from those concepts. This daemon's detection-net consists of the 

concepts: UC-HAS-GOAL3, GOAL-SEQUENCE2, STATUS2, and SOMETHING2. 

The addition net is similarly depicted, except that the arrow points from the double-circle 

toward the initial nodes. In this case, the addition-net consists of the nodes: UC-HAS­

GOAL4, STA TUS2, and SOMETHING2. Note that SOMETHING2 and STA TUS2 are 

shared by both the detection-net and the addition-net. So, when a match is found, the 

daemon will create a new copy of UC-HAS-GOAL4 that will have as its goal whatever 

matched SOMETHING2 and as its status whatever matched STA TUS2. 

1.1. Comparing other Daemons 

Although if-detected daemons look for the presence of particular configurations of 

KODIAK network in UC's knowledge base, these configurations come into being 

predominantly4 when new concepts are created and added to UC's knowledge base, 

4 It was found that the particular if-detected daemons used in UC were not being ac­
tivated by changes in the values of aspectuals, so UC was optimized to not look for this 
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rather than when pre-existing concepts are reconfigured (e. g. by changing the value of an 

aspectual). In this sense, if-detected daemons are similar to if-added daemons ([Char­

niak, 1972]) that are activated when adding information to a data-base. The difference is 

that if-added daemons look only for the addition of simple patterns to the data-base, 

whereas if-detected daemons can handle arbitrary conjunctions5 of patterns. So, an if­

detected daemon may be activated when concepts matching only a small portion of its 

detection-net are added to the data-base, provided that the rest of the detection-net is 

already matched by concepts already present in UC's knowledge base. 

Another consequence of handling arbitrary conjunctions is that an if-detected dae­

mon may be activated many times by the addition of only one datum to the data-base. 

Such cases occur when that part of the detection-net that is not matched by the added 

concept matches several distinct sets of concepts in UC's knowledge base. For example, 

multiple activations can occur with a detection-net consisting of a conjunction of 

independent networks that we will refer to as net-A and net-B. Suppose that there are 

several conceptual networks in the data-base that match net-A, called A1, A2, and A3. 

Then, when a conceptual network, B1, matching net-B is added to the data-base, the if­

detected daemon will activate three times, once each for A1 & B 1, A2 & B 1, and A3 & 

Bl. 

If-detected daemons can also handle negations. This means that the daemon is 

activated by the absence of data matching the pattern that is negated. Usually, only a 

part of the daemon's detection-net is negated. In such cases, the daemon looks for the 

presence of concepts matching that part of the detection-net that is not negated, and then 

for the absence of concepts matching that part of the detection-net that is negated. Since 

the detection-net and addition-net of if-detected daemons are both KODIAK networks, 

the negated parts of the detection-net may shared concepts/nodes with the non-negated 

parts. In such cases, the shared nodes serve as additional constraints on the negated parts 

of the detection net in that the daemon need only detect the absence of KODIAK network 

where the shared nodes have been replaced by their matches. 

Although if-detected daemons can handle both conjunctions and negations and so 

should be able to detect any situation, it is still useful to have procedural attachment for 

if-detected daemons. This is because not all knowledge is represented explicitly in 

knowledge bases; some knowledge is only inferable from the knowledge bases. Such 

inference procedures are often complex, so it is often undesirable to encode the pro­

cedures as daemons. 

An example of a daemon with an attached procedure is shown in Figure 6.2. This 

daemon detects the plan of having UC ask someone a question about something, when­

ever UC believes that the person knows what UC wants to know. The arrow labeled 

"TEST" indicates a procedure attached to the daemon. In this case, the procedure is an 

instance of the does-user-know? procedure, which represents a call to KNOME, UC's 

type of activation. Other types of network reconfiguration, such as when individual con-

cepts are concreted (i. e. made instances of more specific concepts down the hierarchy), 

were more common. 
s Disjunctions can be handled by both types of daemons simply by splitting the dis­

junction into two daemons. 
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user modeling component (see Chapter III). This call is necessary, because whether or 

not some user knows some fact may not be explicitly represented in the knowledge base, 

but may instead be inferable from the user's level of expertise. Such inferences are made 

by the does-user-know? procedure of KNOME. After the daemon has detected that UC 

has the goal of knowing something and that there is someone present, then KNOME is 

called via the procedure to see if that person knows what UC wants to know. If so, then 

the test completes the activation of the daemon, and the plan of asking that person in 

order to find out what UC wants to know is added to UC's knowledge base. 

Ll? 
PL A"' ~-? duk-knowe 

knower duk-fact 
')., 

fact I \ 

Figure 6.2. If-detected daemon with procedural detection-net. 

Besides calls to procedures that test for input, if-detected daemons also allow calls 

to procedures in their output, i. e. in their addition-nets. An example of this is shown in 

the if-detected daemon of Figure 6.3. This if-detected daemon is used to call the UNIX 

Planner component of UC whenever UC wants to know some way to do something. 

UNIX-plannerl is a kind of procedure (i.e. it is an instance of the PROCEDURE 

category in KODIAK terminology), so the daemon knows that it should not just copy the 

node, but should also call the procedure UNIX-planner with the arguments being what­

ever matched SOMETHING 1. This capability of if-detected daemons makes them less 

like pure daemons, which only add information to their data-base, and makes them more 

like production systems. The essential difference is that if-detected daemons are embed­

ded in a full hierarchical conceptual network representation system, namely KODIAK, 

whereas most production systems allow only first-order predicate logic representations. 
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Figure 6.3. If-detected daemon with procedural addition-net. 

1.2. An Example 

The following example will show in detail how if-detected daemons work. Con-

sider the if-detected daemon shown in Figure 6.4. This daemon is activated whenever: 

1) a user wants to know something 

2) UC does not know it 

3) UC wants to be polite to the user 

In such situations, the daemon will add the fact that a plan for being polite to the 

user is for UC to apologize to the user for not knowing. The detection-net of the daemon 

encodes the situation and consists of the concepts: HAS-GOALl, KNOW2, SOME­

THING!, KNOWl, UC, FALSE, UC-HAS-GOAL2, TRUE, BE-POLITE!, and USERl. 

The addition-net consists of the concepts: PLANFORl, APOLOGIZE!, UC, USER 1. 

KNOWl, and SOMETHING!. 
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Figure 6.4. If-detected daemon for apologizing when UC does not know the answer. 

This daemon might be activated when the user asks UC, "What does du -r do?" 

Although UC does know what du does, it does not know what du -r does. Moreover, 

thanks to UC's meta-knowledge (see Chapter III, Section 4), UC knows that it does not 

have any knowledge about the options of du. To be polite, UC apologizes to the user for 

not knowing what du -r does. Figure 6.5 shows the state of affairs after the user has 

asked UC the question and UC's goal analyzer has determined the user's goal. The 

relevant concepts include the fact that UC has the goal of being polite to the user and the 

fact that the user has the goal of knowing the effects of du -r. This by itself is not 

enough to cause the activation of the daemon, since part of the detection-net does not 

have a match, namely that UC does not know the effects of du -r. 
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Figure 6.5. Relevant concepts leading up to activation of the daemon. 

After UC has tried to find out the effects of du -rand failed, the process responsible 

notes the failure by adding the fact that UC does not know the effects to UC's knowledge 

base. The relevant concepts are shown in Figure 6.6. This completes the match of the 

daemon's detection net. UC-HAS-GOAL2 is matched by UC-HAS-GOAL47; BE­

POLITE!? is matched by BE-POLITES; USER!? is matched by *USER*; HAS­

GOAL!? is matched by HAS-GOAL-gaO; KNOW2? is matched by KNOW-gaO; SOME­

THING!? is matched by STATEll?; and KNOW!? is matched by KNOW47. In match­

ing, a hypothetical concept (see Appendix A, Section 2) is allowed to match any concept 

that is a member of the same categories as the hypothetical concept. The matching con­

cept is also allowed to be a member of more categories than the hypothetical concept 

(since KODIAK has multiple inheritance), and is also allowed to be a member of more 

specific sub-categories than the hypothetical concept. For example, the hypothetical con­

cept SOMETillNGl? can be matched by STATEll?, because STATE is a more specific 

sub-category of the SOMETillNG category. Concepts such as UC, TRUE, and FALSE 

in the detection-net that are not hypothetical are treated as constants instead of as vari­

ables. A non-hypothetical concept can only match itself. For example, the value of the 

truth-val aspectual of whatever matches KNOW!? must be FALSE, because FALSE is 

not a hypothetical concept (see Appendix A, Section 1 for a discussion of truth values in 

KODIAK). 
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Figure 6.6. Relevant concepts completing the activation of the daemon. 

One disadvantage of using the hypothetical marker for variables is that it is hard to 

specify that the matching concept must be a hypothetical concept. This problem is 

solved by adding the new marker MAYBE exclusively for this purpose. Thus SOME­

TIITNGl? is marked as dominated by MAYBE in the detection-net of the daemon. This 

adds the requirement that whatever matches SOMETI-IING 1? must also be hypothetical. 

So, STATEll? can match SOMETHING 1?, only because it is indeed hypothetical. 

After the match, the daemon adds a copy of its addition-net to UC's knowledge 

base. The output of this daemon in this example is shown in Figure 6.7. Concepts that 

are shared between the addition-net and the detection-net are not copied. Rather, the 

corresponding matching concept is used instead. An example of a shared concept is BE­

POLITE!?, which was matched by BE-POLITE5. The copy of the addition-net shown in 

Figure 6.7 shows that BE-POLITE5 is used directly. Hypothetical concepts that are not 

shared are copied, and non-hypothetical concepts are used directly. Copying hypotheti­

cal concepts in the addition-net means creating new concepts that are dominated by the 

same categories as the old concepts except for the hypothetical marker. In those cases 

where one desires the new copy to also be hypothetical, the MAYBE marker can be used 

to mean that the copy should also be made hypothetical. This is analogous to the use of 

MAYBE in detection-nets. 
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*USER* 

FALSE 

PL 

BE·~~li~ 
is-polite5 -........-.;o,.,.--------, 

* I *USER* 
uc 

fact 

~ 

Figure 6. 7. Output from the daemon: a copy of its addition-net for UC' s knowledge base. 

2. Implementation Strategies 

The simplest way to activate daemons is the simple production system method, 

which loops through all the daemons and performs matching to determine which dae­

mons should be activated. This scheme takes increasingly more processing time as the 

number of daemons increases and as the size of the data-base increases. Theoretically, 

every daemon's pattern would need to be matched against every piece of information in 

the data-base. The processing cost for if-detected daemons is especially high, because 

if-detected daemons have complex detection-nets that consist of combinations of possi­

bly independent concepts. For if-detected daemons, each independent concept in the 

detection-net needs to be matched against every entry in the data-base. The processing 

cost for large numbers of if-detected daemons and very large data-bases becomes prohi­

bitive when real-time response is needed as in UC. 

Actual production systems have addressed the problem of efficiency with a variety 

of methods. These methods cannot be directly applied to if-detected daemons, because 

daemons differ in several important aspects from the rules in most production systems 

(some of the ideas can be modified to apply, and these are described later). First, if­

detected daemons use a semantic network representation (KODIAK), whereas most pro­

duction systems do not (an exception is described by [Duda et al., 1978]). As a result, 

if-detected daemons can take advantage of the multiple inheritance taxonomies of seman­

tic network representations and can more easily use the same relation in several different 

patterns and actions. Also, instead of variables, if-detected daemons use the hypothetical 
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marker, which allows nodes in the detection-net to match any concept in the knowledge 

base that is lower in the KODIAK hierarchy. Since ordinary production systems only 

allow specific tokens at the top-level of their patterns, they would need many more rules 

to encode the same information as one if-detected daemon. Finally, if-detected daemons 

are designed to operate in parallel, whereas most production systems require a conflict 

resolution mechanism to determine which of several conflicting rules should be activated. 

Since if-detected daemons are designed to activate in parallel, the best solution to 

the problem of efficiency would be to perform the match testing of different daemons in 

parallel. Unfortunately, parallel machines that run LISP (the implementation language 

for UC) are not yet readily available. Even with parallel LISP machines, some optimiza­

tions are still useful for improving speed and efficiency. This section will discuss the 

variety of such optimizations and how they might be implemented to considerably 

improve the performance of if-detected daemons. 

One possible optimization in the processing of if-detected daemons involves taking 

advantage of the organization of the data-base to limit the search for matches. This is 

called the data-base retrieval optimization. For AI knowledge bases that are organized 

in inheritance hierarchies, this means restricting candidates for matching to only those 

concepts that are in the same part of the inheritance hierarchy as the concepts in the 

detection-net. For example, when looking for a match for HAS-GOAL1 ?, the matcher 

need only look at instances of HAS-GOAL, and instances of HAS-GOAL's sub­

categories (which in this case includes only UC-HAS-GOAL). This simple optimization, 

which is commonly used in data-base retrieval, considerably restricts the size of the ini­

tial set of candidates. 

2.1. Distributed Data-Driven Activation 

Another possible optimization for the implementation of if-detected daemons is to 

perform the match testing for only those daemons that are probable candidates for activa­

tion. This may seem impossible, since it would be hard to tell whether a daemon is a 

probable candidate for activation without looking at it first. However, the data-base 

retrieval optimization can be used in reverse. Rather than looking in the knowledge base 

hierarchy for candidates, one can look in the hierarchy for matching detection-net con­

cepts, when one changes the knowledge-base. This technique is called distributed data­

driven activation. It is data-driven, since one looks for daemons to activate as data is 

changed (i. e. added, deleted, or modified). It is distributed, since any particular piece of 

newly changed data may only match part of the detection-net of a daemon. The rest is 

matched by either previously changed data or subsequent changes to the data-base. 

Distributed data-driven activation is similar to techniques used in production sys­

tems to increase their efficiency. The Rete Match Algorithm that is used in OPS5 (see 

[Forgy, 1982]) extracts features from the patterns of rules and forms a discrimination net 

of features that is used for matching patterns. When elements are added to or removed 

from working memory, OPS5 uses this precompiled discrimination net to match produc­

tion rules. [McDermott et al., 1978] showed that by using pattern features to index into 

rules, the estimated cost of running a production system can be improved so that the run 

time is almost independent of the number of productions and number or working memory 
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elements. Distributed data-driven activation is different from these schemes in that it 

uses the multiple inheritance hierarchy of KODIAK to index into if-detected daemons. 

Nevertheless, the main idea of distributed data-driven activation is similar to production 

system methods like the Rete Algorithm. 

To see how distributed data-driven activation works, consider what might happen 

when a new instance of HAS-GOAL, HAS-GOALl, is added to a knowledge base. This 

new instance can only cause the activation of those daemons that have detection-nets that 

might match HAS-GOALl. Detection-net concepts that might match HAS-GOALl 

include hypothetical instances of HAS-GOAL or hypothetical instances of any of the 

parent categories of HAS-GOAL (i.e. M-POSSESS, STATE, and SOMETIITNG). This 

is just the reverse of the process used in the data-base retrieval optimization. In that case, 

one starts from the detection-net and looks down the conceptual hierarchy for possible 

matches, whereas here one starts from the potential match and looks up the conceptual 

hierarchy for hypothetical concepts that are in detection-nets. 

A small optimization for speeding up the lookup is to precompile a list for every 

category of those instances that are part of some detection-net This way, whenever a 

new instance is added, one can just look in the list to see which daemons might possibly 

be affected. Such precompilation can be done when daemons are first defined in the sys­

tem. 

Another small optimization is to check for a match only when all the nodes of a 

detection-net have been primed; that is, marked as having potential matches. This way, 

when a new concept primes one node of a detection-net, one can check to see if all of the 

other nodes have been primed before trying to match the entire detection-net. If not all 

of the nodes of the detection-net have been primed, no matching is needed yet, since 

there will be nothing in the knowledge base that will match the unprimed nodes. If there 

were potential matches for these unprimed nodes then they would have been primed 

when the potential matches were added to the knowledge base. This optimization works 

well when a system is just starting up. However, as more concepts are created, more of 

the nodes of a detection-net will have potential matches, and so more daemons will 

become fully primed (i.e. all of the nodes of its detection-net have been primed). Once 

a daemon becomes fully primed, any single new concept that primes a detection-net node 

will require matching. It is not possible to reset the primes after activation, because it is 

always possible that a new concept in conjunction with many old concepts might cause 

the activation of a daemon. This optimization is worthwhile in systems such as UC 

where sessions with users are brief enough so that many daemons remain unprimed for a 

significant part of the session. 

One of the advantages of distributed data-driven activation is that it does away with 

the some of the bookkeeping needed in the production system loop method. Since dae­

mons can only be activated by changes in the knowledge base, the search can no longer 

find something that was a previous match. Thus, the system no longer needs to keep 

around a list of previous matches to avoid multiple activations of a daemon on the same 

concepts. 
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2.2. Delayed Matching 

Another optimization technique involves reducing the frequency of the activation 

process. In the simple production system loop, the processing costs can be reduced by 

performing the loop less frequently. For example, rather than executing the loop 

immediately whenever something changes in the knowledge base, the system can wait 

and execute the loop at fixed times. This way, one loop through the daemons can catch 

many different activations. This delaying tactic does not work if the system expects the 

daemons to be activated immediately. However in many applications such as UC, 

immediate activation of daemons at an atomic level is not needed. For example, in UC 

the activation of daemons can wait until after UC's parser/understander finishes creating 

the KODIAK network that represents the user's input. It is not necessary to activate dae­

mons as soon as the understander creates another KODIAK concepts, because there are 

no daemons that influence the understander. Activating daemons at the end of the 

parsing/understanding process is good enough for the other components of UC. 

The same delaying optimization can be applied to the distributed data-driven activa­

tion scheme. Instead of testing the detection-net of a daemon for a match as soon as its 

nodes have been primed, the testing for a match can be delayed provided that the system 

remembers the priming concepts. Then all the matching can be performed at a later time 

to save work. By delaying the matching as long as possible, the system is given time to 

complete the match. For example, consider the case of a detection-net that consists of a 

single relation, Rl ?, that relates two concepts, Al? and Bl ?. Suppose further that this 

daemon is fully primed, that is there are potential matches for Rl ?, Al ?, and Bl ?. Then 

suppose that the system creates the matching concepts A2, B2 and R2 where R2 relates 

A2 to B2. If the system adds each of these concepts to the knowledge base at separate 

times (which is not unlikely), then the system will have to try to match the detection-net 

after adding each concept. This is necessary because the new concept could potentially 

match the detection-net in conjunction with other older concepts that primed the other 

nodes of the detection-net. For example is A2 is added first, then the system will have to 

try matching Al? to A2, B 1? to its old primes and R2? to its old primes. Since none of 

the old primes of R2? will relate A2, the match will fail. This will be repeated again 

when B2 is added and when R2 is added. Thus the system will have to try matching the 

detection net as many times as priming concepts are added to the knowledge base. How­

ever, if matching can be delayed until all of the pertinent concepts have been added, then 

the system will have to go through the matching process only once. 

In practice, the delaying optimization saves considerable work. However there is 

some minor additional bookkeeping needed. The system needs to keep track of which 

concepts have primed which detection-net nodes since the last time matching was done. 

The system also needs to keep track of which daemons with fully primed detection-nets 

have been primed since the last matching cycle. Since the system already keeps track of 

the new priming concepts, it becomes easy to keep a list of old primes also. This way, 

the system no longer needs to look in the conceptual hierarchy for potential matches (the 

data-base retrieval optimization). This optimization is a space-time tradeoff, since keep­

ing a list of old primes takes up more space while looking in the hierarchy takes more 

time. 
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3. UC's Implementation 

The actual implementation of if-detected daemons in UC uses a distributed data­

driven activation scheme with delayed matching. When UC is created, the if-detected 

daemons are entered into UC after all KODIAK categories have been defined in UC. 

Preprocessing of daemons involves creating a fast-access list for each category (except 

the SOMETIDNG category) consisting of those detection-net nodes that are hypothetical 

and that are members of that category. These lists are stored under the categories' pro­

perty lists and are used to speed up access when priming the detection-net nodes. The 

SOMETIIING category includes everything in UC's knowledge base, so the fast-access 

list for the SOMETIDNG category is simply a pointer to the list of all concepts in the 

knowledge base. 

During the execution of UC, processing of if-detected daemons occurs in the two 

distinct phases in a delayed matching scheme. The two phases are priming and match­

ing. Each phase is described below. 

3.1. Priming 

Priming of detection-net nodes is performed whenever concepts are created or 

modified in UC. Since all KODIAK concepts in UC are stored in UC's knowledge base, 

there is no distinction made between creating concepts and adding concepts to the 

knowledge base. When a concept is created or modified, it primes all matching 

detection-net nodes. Detection-net nodes are found by looking in the fast-access lists 

stored under the concept's immediate categories and all their dominating categories up 

the conceptual hierarchy. A special case is made for those concepts that are modified by 

concreting them, that is making them members of more specific categories than their pre­

vious categories. In these cases, the modified concept will already have primed its old 

categories (and their dominating categories) at the time that the modified concept was 

first created or last modified. Hence the modified concept should not prime these old 

categories to avoid multiple primings. 

Priming involves storing the new/modified concept under the primed node's list of 

priming concepts (kept on the primed node's property list). After priming a node of a 

daemon's detection-net, the priming process checks to see if all of the other nodes of that 

daemon's detection-net have been primed. If so, the fully primed daemon is added to a 

global list of daemons to be checked during the next matching phase. The initial version 

of UC's priming mechanism was coded by Lisa Rau who has since applied a form of 

priming and matching to information retrieval from story data-bases in the SCISOR sys­

tem ([Rau, 1987a] and [Rau, 1987b]). Unlike UC, SCISOR's priming system is a true 

marker passing scheme, and matching in SCISOR is used to rate the similarity of the 

retrieved networks to the priming network. In SCISOR, there is no sense of additional 

inferences beyond unification of the matched networks such as those in the addition-nets 

of if-detected daemons. 
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3.2. Matching 

The matching phase in UC occurs at distinct points in UC's processing: before UC's 

parser/understander, before UC's goal analyzer, and after the goal analyzer. Each match­

ing phase is actually a loop that goes through the global list of fully-primed daemons 

(collected during the priming phase) and tests them for matches. After testing every dae­

mon for matches, the addition-nets of the successfully matched daemons are copied and 

added to UC's knowledge base. Theoretically, matching for each daemon can be done in 

parallel, although in practice UC runs on sequential machines. Likewise, copying the 

addition-nets can be done in parallel. 

As the addition-nets are copied and added to UC's knowledge base (actually an 

atomic operation, since all KODIAK concepts are added to UC's knowledge base as soon 

as they are created), priming may occur, because the knowledge base is being modified. 

These copies of addition-nets can in turn (possibly in conjunction with older concepts) 

cause more daemons to become fully primed. Hence after copying all of the appropriate 

addition-nets, the matching process begins anew. This loop continues until there are no 

more daemons that have been fully primed waiting to be matched. 

Testing for matches in UC involves three phases. First, the non-negated parts of the 

detection-net are matched. If matching is successful, then the negated parts of the 

detection-net are checked. Finally if both previous steps succeed, the daemon's pro­

cedural tests are examined. If all three phases succeed, then the assoc list of detection­

net nodes and their matches are stored for later use in copying the addition-net. The 

addition-nets of activated daemons are not copied until the system has finished the match 

testing for all fully primed daemons. In theory, this prevents a copy of the addition-net 

of one daemon from invalidating the match of another daemon. In practice, the situa­

tions encoded in UC's daemons do not have such interaction problems. 

Copying addition-nets is fairly straightforward. The detection-net is traversed and 

nodes are processed as follows: 

1) Nodes found in the assoc list that was created during matching are re­

placed by their matches. 

2) Nodes that are hypothetical, but not in the assoc list, are replaced by a 

copy. 

3) Nodes that are non-hypothetical are replaced by themselves. 

After copying the detection-net, those nodes that are procedures (i. e. instances of 

PROCEDURE or a sub-category of PROCEDURE) are also executed. The name of the 

lisp function to call is given by the named of the procedure node, and the arguments are 

given by its aspectuals. Some of these procedures include calls to UC's UNIX planner 

component, calls to UC's generator component, and calls to exit UC (see Chapter IV, 

Section 4.2). 
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3.3. An Example 

A simple example will show how if-detected daemons are actually processed in UC. 

The if-detected daemon shown in Figure 6.8 is used to call KNOME via the procedure 

user-knows, whenever UC encounters the situation where some person (PERSONl) 

wants (HAS-GOALl) to know (KNOWl) something (SOMETHING 1), and that person 

is not UC (implemented by the NOT test which checks to make sure that HAS-GOALl is 

not a UC-HAS-GOAL). This daemon is typically activated when UC's goal analysis 

component determines that the user has the goal of knowing something. The arguments 

of the user-knows procedure include the user, what the user wanted to know, and 

FALSE, which indicates that KNOME should infer that the user does not know. 

UC~ALl? 
dominator 

DO~ I NOT 

dominated 

j_ 

uk-fact 

?\.. actl ~ 
I SOMETIIING}'C uk-truth-val 

uk-user 

Figure 6.8. Daemon16: call KNOME when someone wants to know something. 

Figure 6.9 shows a trace of a UC session in which this daemon is activated. When 

the user asks, "How can I delete a file?'' UC's goal analyzer determines that the user has 

the goal (HAS-GOAL-gaO) of knowing (KNOW-gaO) how to delete a file (ACTION12). 

When UC's goal analyzer creates the concepts that encode this inference, the concepts 

prime other related concepts in the detection-net of if-detected daemons. HAS-GOAL­

gaO primes a number of concepts in if-detected daemons. Among these is HAS-GOALl, 

which is in the detection net of the daemon shown in Figure 6.8. \Vhen HAS-GOAL I is 

primed by HAS-GOAL-gaO, HAS-GOAL-gaO is added to the list of primers of HAS­

GOAL! that is stored under HAS-GOAL I 's property list. The reason why the trace mes­

sage about priming occurs before the trace message about the goal analyzer's output is 

because priming is an atomic operation integrated within creation of KODIAK concepts. 

As the goal analyzer creates concepts, priming occurs and trace messages about priming 
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are output. The trace message about what the goal analyzer produces is not output until 

after the goal analyzer has finished creating concepts. 

Welcome to UC (Unix Consultant) version 3.23 

To a '#' prompt, please type in your questions 

about the UNIX file system in English . 

To leave, just type 'AD' or' (exit)'. 

Hi. 
How can I help you? 

# How can I delete a file? 

• 
• 
• 

Mark~ng HAS-GOAL4 as primed by HAS-GOAL-gaO 

Marking daemon32 as fully primed 

Marking HAS-GOAL3 as primed by HAS-GOAL-gaO 

Marking daemon24 as fully primed 

Marking HAS-GOAL2 as primed by HAS-GOAL-gaO 

Marking daemon23 as fully primed 

Marking HAS-GOALl as primed by HAS-GOAL-gaO 

Marking daemonl6 as fully primed 

Daemon16 is the daemon shown in Figure 6.8. 

Marking HAS-GOALO as primed by HAS-GOAL-gaO 

Marking daemonO as fully primed 

• 
• 
• 

The goal analyzer produces: 

((HAS-GOAL-gaO (planner-gaO 
(goal-gaO = 

*USER*) 
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(KNOW-gaO? (knower-gaO = *USER*) 
(fact-gaO= (ACTION12? &)))))) 

UCEgo detects the following concepts: 

(HAS-GOAL-gaO & ) 

and asserts the following concept into the database: 

(user-knows8 (uk-user8 = *USER*) 
(uk-truth-val8 = FALSE) 

(uk-fact8 = (ACTION12? &))) 

KNOME: Asserting *USER* does not know ACTION12? 

• 
• 
• 

Use :rm. 
For examp1e, to de1ete the fi1e named foo, type ':rm foo'. 

Figure 6.9. Trace of concept priming leading to the activation of a daemon. 

The priming of HAS-GOALl completes the priming of its daemon, which is labeled 

daemonl6. Daemon16 is added to the global list of fully primed daemons for processing 

during the delayed matching phase. The first such matching phase occurs after UC's goal 

analyzer has finished. In the matching phase, the detection nets of all fully primed dae­

mons are checked for matches. Daemon16 is one of these, so HAS-GOALl is matched 

against HAS-GOAL-gaO. Since both are instances of HAS-GOAL, the two match at the 

top level, so matching continues with their aspectuals. HAS-GO ALl's goal1 aspectual 

has the value KNOWl, which is matched against the value of HAS-GOAL-gaO's goal 

aspectual, KNOW-gaO. Both are instances of KNOW, so their aspectuals are checked. 

PERSONl, the knower of KNOWl, matches *USER*, the knower of KNOW-gaO; and 

SOMETHING!, the fact of KNOWl, matches ACTION12, the fact of KNOW-gaO. 

Finally the planner aspectual of HAS-GOALl is matched against the planner aspectual 

of HAS-GOAL-gaO. In this case, PERSON! has already been matched with *USER*, so 

the planner of KNOW-gaO must also be *USER* for a proper match. This is indeed the 

case, so the detection-net of daemon16 is completely matched and daemon16 is 

activated. 

Daemon 16 is activated by creating a copy of its addition-net, which consists of 

user-knowsl with aspectuals and values: uk-fact1 =SOMETHING!, uk-user1 =PER­

SON!, and uk-truth-val1 =FALSE. Since user-knows1 is hypothetical, a new copy of 

user-knows1 is created. This is shown in the trace as user-knows8. Next its aspectuals 

are copied. The uk-fact1 aspectual has the value SOMETHING!, which is also 
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hypothetical. However, SOMETHING 1 was previously unified with ACTION12, so 

instead of creating a new copy of SOMETHING1, the unified concept, ACTION12 is 

used instead. Similarly, PERSON1 was unified with *USER*, so uk-user8 gets the 

value *USER*. On the other hand, the value of uk-truth-val1 is not hypothetical, so its 

value, FALSE, is used directly for the value of uk-truth-val8. In the trace, the new copy 

of user-knows1, user-knows8, is noted as being asserted into the database. 

Since user-knows is a procedure (i.e. it is dominated by the PROCEDURE 

category), UCEgo next calls the user-knows procedure with arguments *USER*, 

ACTION12, and FALSE. User-knows is an entry to the KNOME component for infer­

ring a user's knowledge state. In this case, KNOME asserts that the user does not know 

how to delete a file (ACTION12). Later (not shown) after UC's UNIX planner has deter­

mined that a plan for deleting a file is to use the rm command, KNOME will figure out 

that the user does not know rm. Finally, after more priming and matching, UC produces 

its answer, and tells the user to use rm (usually giving an example of using rm also). 
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Chapter VII 

Conclusions 

1. Summary 

The examples presented in this thesis demonstrate that a natural language interface 

needs to be an intelligent agent in order to respond properly to its user. An intelligent 

agent based on goals and plans is the most flexible, because such a system can more 

easily detect positive and negative goal interactions. Within this planning paradigm, the 

key problem for building an intelligent agent is how to detect the right goals for the 

agent in appropriate situations . Once an agent has adopted appropriate goals, planning 

to satisfy those goals is relatively better understood problem. 

Detecting situations in which an agent should detect new goals is a difficult prob­

lem, because such situations can consist of arbitrary collections of external and internal 

states. For an agent that serves as a natural language interface for a user, a large part of 

the agent's external state information will be concerned with the mental state of the user. 

Hence, such agents need to contain a model of the user. Furthermore, if the agent is a 

consultant system whose main purpose is to impart its expertise to the user, then the 

agent needs to model the knowledge and beliefs of the user. 

In the UC system, the UCEgo component implements an intelligent agent, and the 

KNOME component models the knowledge and beliefs of the user. KNOME models 

users using a double-stereotype system with a range of stereotype categories representing 

the expertise of users and a range of difficulty levels for UNIX information. KNOME 

deduces particular facts about what a user knows during the dialog with the user, and 

uses these facts along with other clues to deduce the expertise level of a user. 

The UCEgo component creates and carries out plans to satisfy goals, which it 

detects using the mechanism of if-detected daemons. These daemons are tiny inference 

engines that look for a class of situations and perform inferences, such as detecting goals 

for UC, when the class is matched by the current situation. Besides detecting goals, if­

detected daemons are used to suggest plans for satisfying the newly detected goals. By 

indexing plans according to the type of situation in which those plans are commonly 

found to be useful, UCEgo can avoid considering inappropriate plans and so avoid 

inefficient backtracking. Situations for suggesting plans include not only the goal of the 

plan and the preconditions of the plan, but also appropriateness conditions. 

After a UCEgo adopts a plan, it is further refined by the UCExpress component. 

Since UCEgo can only carry out plans consisting of speech acts, plan refinement is 

through the process of answer expression, which for UCExpress has two phases, prun­

ing, andformatting. In the pruning phase, UCExpress marks as not needing generation 

(in some cases, this means generate a pronoun) those concepts that KNOME believes the 

use already knows or that are already present in the conversational context. In the for­

matting phase, UCExpress uses specialized expository formats, such as examples and 

similes to express information to the user in a clearer manner. 
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2. Current Status 

UC is currently implemented in both Franz LISP and Common LISP. It runs on 

Digital Equipment Corporation VAX machines and on SUN 3 workstations. UC consists 

of approximately 10,000 lines of LISP code and 13,000 lines of KODIAK declarations in 

linearized form. In the original graphical form, UC's knowledge is encoded in approxi­

mately 200 KODIAK diagrams, consisting of a total of about 1000 absolutes, 2,000 rela­

tions, and 3,000 aspectuals. UCEgo contains approximately 50 if-detected daemons. A 

typical query takes UC from 6 to 10 seconds of real time for UC to respond on a SUN 

3/140. 

3. Directions for Future Research 

One of the biggest problems in building a system like UC is the knowledge acquisi­

tion bottleneck. It is very difficult to determine how to best represent the concepts 

needed by UC, and also very time consuming to enter into UC knowledge about the vari­

ous UNIX commands and their formats, effects, planfors, options, preconditions, etc. 

Even with more than 200 KODIAK diagrams worth of knowledge, the present version of 

UC only covers a subset of the UNIX file system manipulation commands. It does not 

cover UNIX mail, the UNIX shells, the editors available under UNIX, or the program­

ming environment tools. Even UC's coverage of the UNIX file system is quite hapha­

zard since many of the commands' options, preconditions, and side-effects are incom­

pletely covered. So, to extend UC with enough knowledge that it could solve a reason­

able proportion of a user's problems would require several orders of magnitude more 

knowledge than the present UC system. Acquiring that amount of knowledge will 

require a better knowledge acquisition method than hand-coding, which suffices only for 

experimental prototypes like UC. 

The UCTeacher component ([Martin, 1985] and [Wilensky et al., 1986]) was an 

attempt to apply some of the techniques demonstrated in UC to the task of acquiring 

knowledge for UC. UCTeacher used parts of UC's natural language interface to acquire 

knowledge about UNIX from the user. It took advantage of UC's core knowledge about 

the basic form of UNIX commands to understand new commands. In a dialog with the 

user, UCTeacher followed a fixed script of interactions with the human expert. This 

approach works well for learning new concepts that are just minor variations on previ­

ously understood concepts. However, it does not work for learning completely new con­

cepts. For example, UCTeacher could acquire knowledge about related commands, but 

could not be used to acquire knowledge about commands that have radically different 

formats or commands whose effects cannot already be represented in UC. UCTeacher 

did not have the flexibility to acquire significantly different concepts. 

If a system like UCTeacher is to be able to acquire radically-new knowledge, it can 

no longer follow a fixed script of exchanges in its dialog with the human expert. Rather, 

it needs to be able to make decisions such as determining what information to ask the 

expert next. It also needs to decide when to confirm newly acquired knowledge by para­

phrasing, and when to ask for clarifications such as examples, definitions, and 
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justifications. In more complex cases, when the information from one expert contradicts 

the information from another, the system needs to have a model of the experts in order to 

be able to decide whom to trust. These sorts of capabilities are indicative of an intelli­

gent agent. 

I believe that the methodology described in this thesis and demonstrated in the 

UCEgo component of UC can be applied successfully to build an intelligent agent for 

acquiring knowledge. Such an intelligent agent would have different requirements than 

UCEgo. In the case of UCEgo, UC knows more than its user and takes the initiative to 

correct deficiencies in the user's knowledge. On the other hand, an intelligent agent for 

knowledge acquisition would know less than its user, and would need to take the initia­

tive to correct deficiencies in its own knowledge base. Also, a knowledge acquisition 

system is much more likely to have many different active goals at the same time, one for 

each different piece of information that the system will need to acquire in order to learn a 

new concept. The problem of choosing which goal to address first will require develop­

ment of a calculus of relative goal values, a problem that was finessed in UCEgo. So, an 

intelligent agent for knowledge acquisition would extend the methodology described in 

this thesis in major new directions, as well as address the important bottleneck problem 

of knc\vledge acquisition. 
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Appendix A 

KODIAK 

The common ground for all the components of UC is the knowledge representation 

language KODIAK ([Wilensky, 1987]). A single KODIAK knowledge base serves all of 

the different components of UC in order to facilitate the sharing of knowledge. The use 

of KODIAK structures for diverse purposes in different components helps to constrain 

the form of the structures and makes them less ad-hoc. In keeping with this philosophy, 

an attempt is made in UC to store even the unshared internal knowledge of UC com­

ponents in the common KODIAK knowledge base. In the case of UCEgo, KNOME, and 

UCExpress (the components of UC described in this thesis), all internal knowledge is 

represented using KODIAK. Since KODIAK knowledge structures appear throughout 

this thesis, this appendix presents a brief description of the KODIAK representation 

language and its notation. For a more detailed description and for a discussion of the 

motivation behind the design of the language, see [Wilensky, 1986] and [Wilensky, 

1987]. A good description of KODIAK as it is used for text understanding can be found 

1n [Nnnr1 cr 1 087] 
A 4 ~ ..... ..._ t • 0 , ... # I • 

1. Basic KODIAK Concepts 

KODIAK is a semantic network style representation language. There are three 

types of nodes: absolutes, relations, and aspectuals. An absolute is used to represent to 

objects (including mental objects) and events. Examples of absolutes include PERSON, 

USER3, and FILE. By convention, absolutes are written in upper-case. Categories of 

absolutes or relations in KODIAK are organized in a hierarchy. In KODIAK terminol­

ogy, a category is said to dominate its sub-classes. Through inheritance, sub-classes 

inherit the properties of their dominators. 

Absolutes or relations that are members of categories are termed instances. By 

convention, instances of categories are denoted by appending a positive integer to the 

name of the category. So, the absolute USER3 is an instance of the absolute category, 

USER. Through inheritance, instances inherit all the properties of their categories. An 

instance can be dominated by several categories, so KODIAK allows multiple inheri­

tance. 

Relations encode the relationships among different absolutes and relations. Exam­

ples of relations include HAS-PART, CONTAINS, and HAS-INTENTION4. Like abso­

lutes, relations are written using upper-case, and instances are denoted by appending a 

number to the category name. Also like absolutes, relations are organized in a multiple 

inheritance hierarchy. Unlike absolutes, every relation has one or more aspectuals that 

serve as its arguments. For example, the aspectuals of HAS-PART are whole and part. 

By convention, aspectuals are written in lower-case, and the aspectuals of relation 

instances have the same numeric extension as their relation. An aspectual has a value , 

which can be an absolute, relation, or another aspectual. 
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For example, consider how to encode in KODIAK that the user USERl has the 

name "chin," then one would use a relation, HAS-USER-NAMEl, which is an instance 

of the relation category HAS-USER-NAME. The relation HAS-USER-NAME has the 

aspectuals user-name and named-user, so HAS-USER-NAMEl has the correspond­

ing aspectuals, user-name1 and named-user1 . To encode that USERl has the name 

"chin," the value of named-user1 would be USERl, and the value of user-name1 

would be "chin." This is shown graphically in Figure 7.1. 

NAME 

HAS~\1El 
-namel named-used 

r-~-"""'-----, 
I USERl 

Figure 7.1. The definition of names in KODIAK. 

Most of UC's KODIAK knowledge is entered into UC graphically using diagrams such 

as that of Figure 7.1. This particular diagram describes how names are encoded in UC. 

The absolutes in the diagram are depicted by wide rectangles and include: MENTAL­

OBJECT, NAME, USER-NAME, FILE, USER, USERl, and chin. The relations are 

depicted using small squares and include: STATE, HAS-NAME, HAS-USER-NAME, 

HAS-FILE-NAME, and HAS-USER-NAMEl. Directed lines labeled with "D" indicate 

that the node from which the line originates is dominated by the node to which the line 

points. Similarly, lines labeled with "I" indicate that the originating node is an instance 

of the target node. 

Aspectuals are depicted either explicitly as circles or implicitly as labels on lines 

originating from relations. Examples of explicitly depicted aspectuals include name, 

named-obj, file-name, named-file, user-name, named-user. Implicit aspectuals 

include user-name1 and named-user1 . The line labeled "named-obj" from HAS­

FILE-NAME to named-file means that named-file is an aspectual of HAS-FILE-
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NAME and that this aspectual plays the same role with respect to HAS-FILE-NAME as 

the aspectual named-obj does to HAS-NAME. This relationship between named-file 

and named-obj is termed a role-play relationship. Its use is restricted to aspectuals, and 

its meaning is somewhat similar to the dominate relationship between two absolutes or 

two relations. This role-play relationship among aspectuals allows one to name aspectu­

als using a convenient alias. One can refer to an aspectual, call it aspl, of a relation, rell, 

by naming rell and also naming any other aspectual asp2, provided that asp 1 plays the 

role of asp2 in rell. For example, one can refer to the named-user1 aspectual of HAS­

USER-NAME! by referring to either the object, the named-obj, or the named-user 

of HAS-USER-NAMEl. 

An aspectual that is not depicted in this diagram is the truth-val aspectual, which is 

an aspectual that is inherited by the STATE relation. Since HAS-NAME, HAS-USER­

NAME, and HAS-FILE-NAME are all dominated by STATE, they all inherit this aspec­

tual too. The value of a truth-val aspectual can be either TRUE or FALSE. This is used 

in UC to encode the truth value of a relation. For example, if HAS-USER-NAMEl were 

to have the truth-val of FALSE, then the meaning of HAS-USER-NAMEl would be that 

USERl does not have the user-name of "chin." If a relation does not have an explicit 

value for its truth-val aspectual, then it inherits th.e default truth-val of TRUE. So true 

relations, such as the present HAS-USER-NAMEl relation, do not need an explicit 

truth-val aspectual with value TRUE, because this is an inherited default value. 

In the diagram, the lines labeled "C" originating from aspectuals indicate a con­

straint on the possible values for that aspectual or any aspectuals that it dominates. Such 

constraints are inherited by any other aspectuals that play the same role as the con­

strained aspectual in the role-play hierarchy. For example the name aspectual can only 

have as a value something that is a NAME. This constraint is inherited by all aspectuals 

that play the same role as name, such as user-name and file-name. Note that user­

name is further constrained to only have values that are of a particular sub-class of 

NAME, namely USER-NAME. 

The specialized terminology of KODIAK is summarized in the following table: 
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Term Meaning 

absolute a KODIAK entity for representing objects (including mental 

objects) and events 

aspectual the arguments of a relation, which can have values 

category an absolute or relation that represents a category in the KO-

DIAK multiple inheritance hierarchy 

concept any absolute, relation, or aspectual 

constrain the possible values of an aspectual can be limited or con-

strained to be filled only by instances of particular 

categories. These are called the cons trainers of the aspec-

tual 

dominate a category may dominate a sub-category in which case the 

sub-category is a sub-type of the parent category, which is 

called the dominator of the dominated sub-category; this 

forms a multiple inheritance hierarchy in which dominated 

categories inherit from their dominators 

hypothetical an ontological marker on a concept to note that it does not 

have a referent in the real world 

instance any absolute or relation that is a member of a category 

relation a KODIAK entity used to encode the relationship between 

different absolutes and relations; relations have one or more 

aspectuals 

role-play an aspectual of a relation often plays the same role as an 

aspectual in the dominator of that relation; if a player as-

pectual plays the same role as another role aspectual, then 

the player aspectual inherits the constrainers of the role as-

pectual; role-play links are many to many 

value aspectuals have values that can be other absolutes, rela-

tions, or aspectuals 

Summary of KODIAK Terminology. 

2. Hypotheticality 

An important extension of KODIAK in UC's implementation is the idea that con­

cepts can be hypothetical. This is represented as an ontological marker that is placed on 

concepts to represent the fact that these concepts do not currently have real extensions. 

For example, when the user asks UC, "How can I delete a file?'', the representation of 

"a file" would be a hypothetical instance of a file, say FILE3. This hypothetical marker 

on FILE3 means that there is not currently an actual file in the world that UC believes to 
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correspond to FILE3. This can be contrasted to what happens when the user asks, "How 

can I delete the file named core?" In this case, "the file" is understood as a real file that 

has the name "core." In this case, UC believes the user, so it will also believe that there 

really is a file named "core" in the world. So this file is not represented as a hypotheti­

cal file by U C. 

All of these ontological marks are relative to UC's world view, since the marked 

concepts are within UC's internal representation of the world, that is, they are "inside the 

head'' of UC. This means that a concept that is marked as hypothetical is one that UC 

has not identified as currently having an extension in the real world. This does not mean 

that there may not exist something in the real world that could be the extension of the 

hypothetical concept. Nor does this imply that UC believes that the concept does not 

have a real extension. It merely means that UC currently does not know of a real exten­

sion for the hypothetical concept. So in the previous example of a hypothetical file, UC 

does not necessarily believe that there is not an actual file that the user has in mind. UC 

merely does not currently know of a real file to which "a file" might refer. 

Hypothetical concepts should not be confused with abstract concepts. An abstract 

object is something that does not have a physical embodiment. Thus files, operating sys­

tems, and organizations are all abstract objects, however not all instances of files, operat­

ing systems, or organizations are hypothetical. For instance, the file named ' 'core,'' 

UNIX, and the University of California at Berkeley are abstract entities, however they 

are not hypothetical. 

In UC's version of KODIAK, abstract objects are those concepts that are dominated 

by the category MENTAL-OBJECT' as opposed to those dominated by the category 

PHYSICAL-OBJECT'. Thus, since the category FILE is dominated by MENTAL­

OBJECT and not PHYSICAL-OBJECT', all files are abstract objects. Hypotheticality is 

implemented in a similar fashion. Hypothetical objects are encoded as instances of the 

HYPOTHETICAL category. However, unlike abstract, the distinction of hypotheticality 

extends to relations/propositions as well as to objects. All relations/propositions can be 

considered abstract, but not all relations/propositions are hypothetical. 

The notion of hypothetical applies to relations/propositions through the classical 

philosophical notion that the referent of a proposition is its truth value. Thus the proposi­

tion, "I own a Ferrari Testarossa," is hypothetical, since it is not true that I now own a 

Ferrari Testarossa. On the other hand, the proposition, ''I wish that I owned a Ferrari 

Testarossa," is not hypothetical, since it is true that I now wish that I owned one. In 

terms of KODIAK relations, "I wish that I owned a Ferrari Testarossa," would be 

represented as two relations, HAS-GOALl and HAS-OWNERl as shown in Figure 7.2. 

HAS-OWNERl represents the proposition, "I own a Ferrari Testarossa," while HAS­

GOAL! encodes "I wish that HAS-OWNER I." HAS-GOALl has the aspectual 

planner1 , which has the value PERSONl (representing "1"), and the aspectual goal1 , 

which has the value HAS-OWNER I. The relation HAS-GOALl has the owner1 aspec­

tual with the value PERSON I, and an owned-obj aspectual with the value TES­

TAROSSAl (representing "Ferrari Testarossa"). In this case, HAS-GOALl is not 

hypothetical, since it is true that PERSONl has the goal of HAS-OWNERl, but HAS­

OWNER! is hypothetical, since it is not true that PERSONl owns TESTAROSSAl. 

Note also that PERSONl is not hypothetical, since the speaker is a real person, whereas 
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TESTAROSSAl is hypothetical, since there is no particular Ferrari Testarossa that is the 

subject of discussion. 

Figure 7 .2. KODIAK representation of "I wish that I owned a Ferrari Testarossa." 

Although a hypothetical proposition is not necessarily true, it is not necessarily false 

either. For example, if the user were to state, "I suspect the machine is down," then 

"the machine is down" is hypothetical, since UC does not have enough information to 

form a belief about whether the machine is really down or not Similarly in the previous 

example about wanting to own a Testarossa, the fact that HAS-OWNERl is hypothetical 

does not imply that PERSONl does not own a Testarossa. That may be inferable from 

the fact that the person wants to own one. However it is a not necessary consequence, 

since it is conceivable that PERSONl has amnesia and does in fact own a Testarossa. 

The hypothetical marker serves two main purposes in UC. The first purpose is so 

that UC can tell if propositions in its knowledge base are true. So in the example of the 

user asking, "How can I delete the file named core?" UC's goal analyzer will deduce 

that the user has the goal of the user knowing how to delete the file named core. This is 

represented in UC's knowledge base as the HAS-GOAL3 relation with aspectual goal3 

having the value, KNOW3, which is hypothetical. Later, if UC were to look in its 

knowledge base to see whether the user knows how to delete the file named core, it will 

find KNOW3 and realize through the hypothetical marker that this does not mean that the 

user does know. Without the hypothetical marker, UC would not be able to tell that 

K.~OW3 is not a real fact even by inspecting all the relations in which K.~OW3 partici­

pates and finding that it is part of the HAS-GOAL3 relation. Even this does not work, 

since participating as the goal in a HAS-GOAL relation does not necessarily mean that 

the participant is not true. It is plausible that the planner might want something that 

already holds. For example, a planner may want the sky to be clear even when the sky is 

clear. 

The second purpose of the hypothetical marker is to replace variables. In UC, 

hypothetical concepts are used in place of the variables found in ordinary programs. For 

example, if the rule, to delete ?x where ?x is a file, type ''rm'' followed by ?x, were 

represented in UC, then the variable ?x would be represented in UC as a hypothetical 

instance of a file. Then a rule applier could match the hypothetical file to any other 

instance of a file. Such replacement of variables is possible, since the great majority of 

"variables" in UC are type-constrained as in the previous example where ?x is con­

strained to be a file. In those infrequent cases where there are no such constraints on the 
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variable, UC can use a hypothetical instance of the category SOMETIDNG, which is 

unconstrained, since all other categories are dominated by SOMETIDNG. 

Replacing variables with hypothetical markers on concepts emphasizes the fact that 

variables in UC are first of all concepts and only secondly variables. Hypothetical con­

cepts are considered variables in the sense that UC does not know of a referent for the 

hypothetical concept in the real world. When a hypothetical concept is found to match to 

a real concept, then the referent of the hypothetical concept has been found: its referent is 

the real world referent of the matching real concept. In the case where a hypothetical 

concept is found to match another hypothetical concept, then this is equivalent to 

unification of variables. 

In keeping with the convention of prepending a "?" to variables, hypothetical con­

cepts are marked in UC by appending a"?" to the name of the concept. This convention 

is built into UC's printers for output so that hypothetical concepts can easily be 

identified. The convention is optional for input of KODIAK concepts to UC. 

The hypothetical marker is only a partial solution to the problem of representing the 

ontological status of concepts. It does not even address some of the issues dealt with by 

possible world semantics. However, it has proven sufficient in UC for distinguishing 

between those concepts that the system believes and other concepts in UC's knowledge 

base. More importantly, the marker is an improvement over traditional variables. It pro­

vides a simple means of encoding type constraints on variables that fits extremely well 

into the framework of hierarchical conceptual network systems. 
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AppendixB 

UNIX Commands 

The following table lists the UNIX commands that are mentioned in this thesis and 

their main uses. 

Command Usage 
cat concatenate and print files 

chmod change the protection of files 

compact compress files 

cp copy files 

diff compare files 

du list disk usage statistics 

emacs extensible editor that runs on many systems 

finger list information about users 

grep search a file for a pattern 

kill terminate processes 

lpr print a file 

Is list file names 

ls -i list files and their inodes 

ls -1 list files and their protections 

rnkdir create directories 

more text-file contents perusal program 

mv move or rename files 

ps list the status of processes 

rep copy files over the network 

rm remove files 

rmdir remove directories 

rn read news 

rogue fantasy game 

ruptime list the uptime of all machines on the network 

rwho list the current users for all machines on the network 

spell list spelling errors in a file 

spice electronic circuit simulation program 

tset terminal dependent initialization 

uptime list the uptime of the machine 

Vl visual display editor 

who list the current users of the machine 
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