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Abstract

The motivation of this research is to address the use of bearing-only measurements

taken by an optical sensor to aid an Inertial Navigation System (INS) whose

accelerometers and gyroscopes are subject to drift and bias errors. The concept of

Simultaneous Localization And Mapping (SLAM) is employed in a bootstrapping

manner: the bearing measurements are used to geolocate ground features, following

which the bearings taken over time of the said ground features are used to improve the

navigation state provided by the INS. In this research the INS aiding action of tracking

stationary, but unknown, ground features over time is evaluated. It does not, however,

address the critical image registration issue associated with image processing. It is

assumed that stationary ground features are able to be detected and tracked as pixel

representations by a real-time image processing algorithm.

Simulations are performed which indicate the potential of this research. It is shown

that during wings level flight at constant speed and fixed altitude, an aircraft that

geolocates and tracks ground objects can significantly reduce the error in two of its three

dimensions of flight, relative to an Earth-fixed navigation frame. The aiding action of

geolocating and tracking ground features, in-line with the direction of flight, with a

downward facing camera did not provide improvement in the aircraft’s x-position

estimate. However, the aircraft’s y-position estimate, as well as the altitude estimate, were

significantly improved.
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AUTOMATED DRIFTMETER FUSED WITH

INERTIAL NAVIGATION

I. Introduction

Much work has been accomplished in recent years to reduce the military’s

dependence on the Global Positioning System (GPS). General Norton Schwartz, the 19th

Chief of Staff of the Air Force, was quoted in January of 2010 as saying,

Global positioning has transformed an entire universe of war-fighting
capability. Our dependence on precision navigation in time will continue to
grow,... It seemed critical to me that the joint force reduce its dependence on
GPS aid... Our operations cannot grind to a halt for a degraded or denied
system,... We must ... proceed to build more resilient systems... [3]

This thesis develops a theoretical analysis of an integrated airborne navigation system

fusing optical and inertial measurements. The specific focus is on autonomy where GPS

signals are not available, but precision navigation is achieved through the use of passive

self-contained sensors. This work is a follow-on to previous research efforts at the Air

Force Institute of Technology (AFIT), utilizing a strategy of fusing bearing measurements

with an optical sensor and inertial navigation [3], [4], [5]. This research continues to

investigate the use of bearing measurements, taken with a monocular camera, as a viable

aid to inertial sensors, in order to provide automated navigation comparable to modern

GPS precision.

1.1 History

Since the inception of the heavier-than-air aircraft in 1903, methods and tools for

navigation have evolved tremendously. Arthur Hughes, the author of History of Air

1



Navigation [6], stated, “in the first twenty years of flying, men were equal to, or better

than, the machine”. Navigation tools were not available and the ability to navigate was

dependent on the skill and instinct of the pilot. This section provides the historical

background of a few of the early navigation methods that are related to the development of

this modern application of the driftmeter concept fused with inertial navigation.

1.1.1 Air Pilotage.

Air pilotage, or piloting, is the method of directing an aircraft from place to place by

referring to visible landmarks on Earth’s surface, such as light-beacons, landmarks,

railroads, rivers, mountains, or lakes, with the use of a map and dead reckoning [7]. Dead

reckoning, in the context of pilotage, combines the knowledge of the aircraft’s position

over visible landmarks with map readings and the measured time between the landmarks

to determine ground speed, estimated time of arrival, required heading changes, and/or

wind speed and direction. There are many limitations to navigating solely on pilotage.

The most obvious being that it requires an accurate land map and ideal conditions of

flight. For instance, the weather must be clear and the aircraft must be flying low enough

so that the landmarks can be seen.

1.1.2 Driftmeter.

The driftmeter was one of the earliest instruments developed to determine the effect

of wind on the direction of flight and the ground speed of an aircraft. A dedicated

navigator used information from an altimeter and an airspeed indicator along with bearing

measurements of ground features to calculate the ground speed and the directional drift

caused by wind vectors on his aircraft during flight. The bearing measurements were

determined by visibly tracking stationary objects on the ground or whitecaps on the water

surface [7]. The drift meter was installed so that a zero degree line was parallel to the

longitudinal axis of the aircraft and the navigator would have an unobstructed view

downward through a glass plate in the floor of the aircraft. The track arm could be rotated
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so that objects on the ground appear to travel along the horizontal drift line. The amount

that the horizontal drift line rotated from the zero degree line would indicate the drift

angle.

The Pioneer Speed and Drift Indicator was one of these devices [8]. It is illustrated

graphically in Figure 1.1 and can be viewed online at the Smithsonian “Time and

Navigation” webpage [9]. It had a pivoting eye piece for the navigator to look through,

which was mounted on an arm that established a set distance between the navigator’s eye

and the horizontal drift line. (The set distance between the eye piece and the horizontal

drift line can be compared to the focal distance of a camera.) The horizontal drift line had

two sets of cross wires that the navigator used to initiate and stop a timer as a ground

object crossed under. The ground speed of the aircraft was then determined by dividing

the altitude of the airplane above the ground by the time required for the ground feature to

pass from one cross wire to the next. While navigation measurements were being made,

the aircraft would have to be flown straight and level.

Figure 1.1: Pioneer Drift Meter
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A more advanced driftmeter, named the B-3, was manufactured by the

Eclipse-Pioneer Division of the Bendix Aviation Corp., and was standard equipment on

Air Force and transoceanic aircraft [7] through the World War II and early Cold War eras

[10]. It was stabilized by a gyroscope, which allowed the set of reference timing lines to

remain horizontal at all times, regardless of turbulence and within 20 degrees of roll, pitch,

and yaw of the aircraft. It had two different eye pieces, which allowed for viewing ground

features at different elevations: one for normal sight and one for three times magnification.

The drift meter was a proven tool for determining the drift angle, wind speed, and

ground speed of an aircraft by tracking the bearing angle of distinct ground features. It

was utilized over land with stationary features such as houses, roads, trees, and rivers. It

was also used for transoceanic flights where the navigator utilized whitecaps as a

reference point. Although the driftmeter improved navigation compared to the method of

air pilotage, it also shared several similar shortcomings which greatly limited navigation.

It required flight conditions to be ideal in order to view ground objects, which limited the

altitude of flight and flight through or above cloud formations. Perhaps the greatest of its

shortcoming was the accrued error, because the navigator was not physically capable of

continuously monitoring changes in flight conditions (altitude, airspeed, etc.).

1.1.3 Inertial Navigation.

The ability to determine position, velocity, and attitude through the use of inertial

sensors revolutionized navigation. This was first demonstrated by the Germans during

World War II aboard the V-2 ballistic missile and further developed in the United States in

the late 1940s and early 1950s by the MIT Instrumentation Laboratory, Northrop, and the

Autonetics division of North American Aviation, under Air Force sponsorship [11]. By

integrating a body’s acceleration and angular rotation rate, the position, velocity, and

attitude could be determined.
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Inertial navigation systems (INS) have remained a vital tool in modern navigation.

Reference [12] states that INSs are special because they are “self-contained: they are

independent of weather conditions and are operable anywhere in seas, underwater, lands,

tunnels, or in air.” The self-contained nature of INS is the result of employing six inertial

sensors. Three orthogonally mounted accelerometers are used to detect the

three-dimensional specific forces acting on the body and three gyroscopes are used to

establish the spatial attitude in a three-dimensional Cartesian coordinate frame [13]. The

quality of these inertial sensors directly reflects the precision and performance of the INS.

INS’s have been, and continue to be, used in a variety of applications. They can be

found on ships, aircraft, submarines, guided missiles, spacecraft, and, to some extent,

modern automobiles, where each specific application requires different levels of precision.

Grewal [14] defined general usage categories as strategic (very high performance

navigation), navigational (medium-accuracy navigation), tactical (low-accuracy

navigation), or consumer (non-navigational applications). The performance of the INS is

characterized by the quality of the inertial sensors, because their measurements are

integrated over time to determine the INS output. Therefore, the integration of small

accelerometer and gyroscope errors over time cause navigation precision to deteriorate

over time. Consequently, the quality of the inertial sensors determines how long the

navigation information can be trusted and, like anything else, the price generally

determines their quality.

1.1.4 Satellite Based Navigation.

The first fully operational satellite-based navigation system was the U.S. Navy’s

system known as Transit, which was developed and implemented from the early to

mid-1960’s [15]. Each satellite was a self-contained navigation beacon. It was designed to

update dead reckoning navigational information from an INS aboard the Polaris

submarines, where the position updates were done at intervals of more than an hour. Since
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Transit was designed primarily for oceanic vessels, accuracy was degraded for aircraft or

users on land by uncertainties in their altitude and their velocity.

The second operational navigation satellite system, Cicada, was developed by Russia

in response to the Cold War. It was similar in design to Transit and primarily used for ship

navigation [15]. Two more satellite navigation programs were established and began

development in the mid 1960’s: “621B” by the Air Force Space and Missile Organization

(SAMSO) and “Timation” by the Naval Research Laboratory (NRL) [15].

“In 1968, the Joint Chiefs of Staff (JCS) issued new requirements for precisely

locating military forces worldwide” [15]. The most stringent of these requirements were

for aircraft, which became the driving parameters for a newly established DOD

Navigation Satellite Executive Steering Group (NAVSEG). This group commissioned a

number of comparative studies and evaluated three US satellite navigation systems,

ultimately leading to the GPS program.

Since the first launch of an operational GPS satellite in 1978 [15], GPS has become

the benchmark for precision navigation. It requires that a minimum of four satellites are

visible to the user to determine his or her position. The orbital configuration utilized a

total of 24 satellites in 6 different orbits, providing a minimum of six satellites in view at

any time. Unlike the previous satellite navigation systems, it provided continuous

three-dimensional positioning needed for aircraft. The military and civilian applications

are countless.

At the time [15] was written, the Standard Positioning Service (SPS) provided to

civilian users was 6 [m] accuracy and the Precise Positioning Service (PPS) provided to

military users was 2.3 [m] accuracy. Because of the error accumulation over time

associated with INS, GPS better satisfied the requirements set for a precise navigation

system. However, low power signals transmitted from the satellites require that the user’s

antenna have a direct Line of Sight (LOS) with at least four satellites. This prevents usage
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indoors and limits usage in urban canyons. GPS is also vulnerable to attack or disruption,

such as jamming or spoofing [16].

1.2 Motivation

Advancements in computer technology over the past few decades has drastically

increased data processing speeds and thus improved the usage of recursive algorithms like

the Kalman filter, introduced in 1960 [2]. The Kalman filter algorithm has been used to

merge inertial navigational data from Inertial Measurement Units (IMU) with position

data from GPS receivers to create an accurate passive navigation solution. Passive

navigation systems are required for military applications because they do not transmit

signals out for the purpose of navigating; therefore, they are not easily detected. Active

navigation tools using radar are less desirable in combat environments.

The performance of an INS is characterized by the drift of the accelerometers and

gyroscopes discussed in section 1.1.3. The INS accuracy can be improved through the use

of more accurate sensors; however, the cost of these sensors quickly escalates. An

alternative approach, referred to as integrated navigation [17], utilizes an additional

navigation source along with a Kalman filter algorithm to aid the INS and significantly

reduce its drift over time. When this technique is employed, the INS is allowed to drift

without influence from the additional navigational source. The Kalman filter utilizes the

measurements from the additional navigation source and estimates the drift error of the

INS, which is then subtracted from the output of the INS to improve navigation

performance. The INS without any aiding is referred to as the“Free INS”.

The work presented in this thesis is motivated by the possibilities of aiding a

navigation-grade INS with an optical sensor, acting as a automated driftmeter, to achieve

precision results similar to GPS. Therefore, it provides an alternative passive navigation

system for military aircraft applications. A three-dimensional measurement equation will

be utilized in this work that blends optical sensor data of tracked ground features with
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output INS data. This will be done on the principles of the method developed by Pachter

and Relyea [18] [3].

Much research has been accomplished in recent years on a process known as

Simultaneous Localization and Mapping (SLAM) [19], which is the process of jointly

establishing an aircraft’s ownship position and geolocating ground features. For this

particular work, geolocation is the act of acquiring stationary ground features to establish

reference points, whose bearings will be measured over time. These measurements will be

used to aid the INS in order to improve the aircraft’s position estimate. This particular

method of SLAM is herein referred to as “bootstrapping”. First, the aircraft’s somewhat

inaccurate position and bearing measurement are used to geolocate a ground feature.

Then, the bearing measurements of the said ground feature taken over time are used to aid

the aircraft’s INS in order to improve the aircrafts’s position estimate. These steps are

taken in the same way as a man is able to “pull himself out” of quicksand by his own

bootstraps.

The advantage of this method of SLAM is that it allows for navigation without a

strict, predefined map or a priori information of ground features. The disadvantage is that

the aircraft’s position uncertainty increases with time. However, while a ground feature is

being tracked over time, its position uncertainty does not increase. It remains the same

from the moment of geolocating that ground feature. Thus, an improved navigation

system, comparable to GPS, is provided.

Image processing associated with the geolocation and tracking of ground features

from raw optical sensor data is still a developing field. The aircraft navigators of the early

1900’s had the God given ability of discernment and reason as they selected stationary

ground features to track while operating the driftmeter. This is not an easy task for a

computer, which must scan a two-dimensional pixel representation of a three-dimensional
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world in order to detect the best features to track and flawlessly perform the image

registration task as it moves from frame to frame.

Two algorithms currently used are Scale Invariant Feature Transform (SIFT) and

Speeded Up Robust Features (SURF) [20], [21]. One of the most challenging tasks is the

process of determining the slant range to a specific ground feature while the terrain

elevation is changing. The absolute altitude was used for calculating the ground speed

while using the driftmeter [7]. The absolute altitude, while flying over land, was

determined by subtracting the terrain elevation from the altitude measurement provided by

an altimeter.

Advantages of the automated feature tracking algorithm are that it would have the

ability to track more than one ground feature at a time and it would be able to

continuously track and update the INS at increments much smaller than humanly possible.

The navigator of the past would only periodically track features in order to determine

ground speed for dead-reckoning, creating accumulated error throughout the flight.

1.3 Scope and Assumptions

There are very few things that are definite in this world. Even as you read these

words, you may be very confident in your position of where you are sitting and confident

in the distance of stationary objects around you, but your exact position is only stationary

relative to Earth. Calculating your position or distance from stellar objects, not rotating

with the Earth, is much more difficult. Moreover, there is a certain amount of doubt in your

position. This doubt or uncertainty is quantified by the term covariance, from statistics.

The contribution of this research is the calculation of the covariance associated with

geolocating a ground feature and then tracking that feature until it disappears from the

field of view (FOV) of the camera, whereupon is replaced by a newly geolocated ground

feature. This process has been accomplished by other research, but not in the particular

manner, involving bearing measurements, presented in this research.
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To evaluate the possible contributions of bearing measurements as a viable aid to an

INS, a plausible navigation scenario is established. The scope of this research focuses on

the navigation contribution of SLAM. Consequently, assumptions are made in the

scenario which improve the focus of this research. The greatest of these assumptions is

that stationary ground features may be detected and tracked as pixel representations by a

real-time image processing algorithm. The next is that two distinct ground features are

available for each image frame throughout the navigation scenario and their elevation is

known to be zero. Involving the navigation environment, it is assumed that the aircraft is

nominally flying straight and level at a constant ground speed over a flat and non-rotating

Earth.

The critical image registration issue associated with image processing is outside the

scope of this research and will not be addressed. It is fair to assume that ground features

may be detected and tracked as pixel representations, because current image processing

algorithms identify features as pixel locations on a coordinate system relative to each

image frame [16]. However, it was stated in 2008 that a “great leap in feature

generation/tracking technology and significantly more precise optics” are required for the

development of a viable vision based navigation platform [19].

The assumption that two distinct ground features are available does not imply that

these features are known. When utilizing the navigation method of pilotage the ground

features were associated with maps that identified specific, known feature locations. This

research considers features which are measured with an uncertainty (covariance) relative

to the quality (resolution) of the optical sensor. However, their locations are not known.

The assumption that the ground feature elevations are known/zero is fair because

generally ground feature heights are relatively small in comparison with the elevation of

aircraft flying overhead.
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To ensure a proper evaluation of the benefit of bearings tracking to aid an INS, the

calculations of this navigation scenario are justifiably simplified, with the assumption of a

flat and non-rotating Earth. By simplifying these parameters, the flight dynamics are

simplified. Furthermore, the development of errors from the Free INS and the Kalman

filter’s estimate of those errors are more easily compared with the truth data in the

simulations.

1.4 Related Research

This section presents modern research in the field of navigation by use of optical

sensors. It presents their research task along with the specifications of equipment used.

Finally, their achieved navigation precision and the research’s limitations are presented.

1.4.1 Binocular Feature Tracking Fused with Inertial Measurements.

Veth’s AFIT PhD dissertation in 2005 was inspired by the precision navigation

capabilities of animals/biometrics [16]. It claimed that “there exists a natural synergy

between imaging and inertial systems” [16]. Veth performed indoor measurements and

outdoor flight test with two identical monochrome digital cameras, a consumer-grade

strapdown IMU, and a tactical-grade strapdown IMU. His system was configured such

that both IMUs would record measurements simultaneously. This configuration insured

the same dynamics for both grades of IMUs and thus fair testing between the two. The

specifications for his two IMUs are listed in Table 1.1.

The cameras had a 1280 × 1024 (1.3 megapixel (MP)) resolution. They were rigidly

mounted with space between them, allowing distance for triangulation for range

calculations of the features. They had a measurement rate of three frames per second at

full resolution. The camera data was processed using the SIFT algorithm, which

determined features in each frame and tracked them according to their pixel location.
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Table 1.1: Veth’s Inertial Measurement Sensor Specifications for the Crista
consumer-grade IMU and the Honeywell HG1700 tactical-grade IMU. Veth
estimated the parameters with an asterisk since they were not included in
manufacturer specification data [16].

Parameter UNITS Crista IMU HG1700

Sampling interval ms 5.0 10.0

Gyro bias sigma deg/hr 1800 1.0

Gyro bias time constant hr 2* 2*

Angular random walk deg/
√

hr 2.23 0.3

Gyro scalefactor sigma PPM 10000 150

Accel bias sigma m/s2 0.196 0.0098

Accel bias time constant hr 2* 2*

Velocity random walk m/s /
√

hr 0.261 0.57*

Accel scalefactor sigma PPM 10000 300

An extended Kalman filter was used to aid the SIFT algorithm according to matched

estimations of propagated feature locations, determining whether they were good or bad

features. As new features were determined to be stronger, they replaced weaker ones. His

algorithm assumed that the navigation state errors and the landmark errors were

independent. His system “learned” its environment by maintaining a database of the

tracked features and position estimates.

Veth obtained meter level position precision in the indoor environment, but the flight

test results were non-conclusive, because the test lacked a faithful truth source.

Ultimately, his work proved that a combination of optical data and inertial data can

provide precision navigation capabilities equivalent to GPS, while utilizing binocular

measurement geometry to determine the LOS range of tracked features.
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1.4.2 Covariance Analysis of Vision Aided Navigation by Bootstrapping.

Relyea’s AFIT Master’s thesis in 2012 followed the work of Guner Mutlu, a previous

AFIT student under the guidance of Dr. Meir Pachter [3]. Relyea further developed the

calculations for bearing measurements of ground features from a single/monocular

camera, ultimately used in this current work. He also developed the simplified flight

dynamics, used herein, where he applied the camera measurements to a Free INS and

performed covariance analysis. His Free INS specifications were calculated based on 1 km
hr

propagated sensor bias errors, which qualifies it as a navigation-grade INS. The accuracy

of his camera bearing measurements was based on an assumption of a 9 MP camera with

an aspect ratio of one. His non-dimensional INS specifications are listed in Table 1.2.

Table 1.2: Relyea’s calculated 1-σ inertial sensor specifications provided a
variance of 1 km

hr drift error due to the influence of biases. These values are
non-dimensional according to his navigation scenario [3].

Parameter UNITS 1 km/hr

Sampling interval ms 10

Gyro bias sigma Non-Dim 1.0912 × 10−5

Accel bias sigma Non-Dim 9.0935 × 10−8

His camera only tracked two ground features at a time, and he started the navigation

scenario with two “known” ground features and progressed until he only tracked

“unknown” features. The covariance of newly tracked ground feature’s (x and y) position

was determined by adding the covariance of the navigation state error (x and y) position,

at the time of geolocating the new ground feature, with the covariance of the camera

measurement.

The resulting standard deviations of his covariance analysis are provided in Table 1.3.

Relyea’s 1-σ standard deviation achieved meter level precision with the simulated flight of

one hour, while utilizing INS specifications equivalent to a navigation-grade INS.

13



However, he only used INS sensor bias in his system – not process noise, a.k.a sensor

drift. Also, he only evaluated the overall system covariance – not the aided results.

Table 1.3: Relyea’s covariance analysis results of one hour simulated flight [3].

Std Dev Unaided Final Value Aided Peak Value Aided Final Value

σx 1 km 4.7 m 4.7 m

σy 1 km 4.0 m 4.0 m

σz 0.7071 km 0.10 m 0.0389 m

σvx 7 × 10−3 m/s 8.21 × 10−5 m/s 3.93 × 10−5 m/s

σvy 7 × 10−3 m/s 3.06 × 10−5 m/s 2.29 × 10−5 m/s

σvz 4 × 10−3 m/s 3.9 × 10−5 m/s 2.16 × 10−7 m/s

σφ 3.27 × 10−5 rad 2.40 × 10−6 rad 1.07 × 10−7 rad

σθ 3.27 × 10−5 rad 3.16 × 10−6 rad 2.39 × 10−7 rad

σψ 3.27 × 10−5 rad 2.23 × 10−5 rad 2.23 × 10−5 rad

1.4.3 Inertial Navigation System Aiding Using Vision.

Quarmyne’s AFIT Master’s thesis in 2013 followed the work of Relyea [4]. His goal

was to apply a linear Kalman filter to the covariance analysis of the previously developed

three-dimensional flight simulation. The camera resolution and inertial sensor

specifications were the same as those of Relyea with only bias errors applied to the Free

INS.

Quarmyne also began his navigation scenario with two “known” ground features and

progressed until he only tracked “unknown” features. However, advancements were made

in his research with derivations of newly tracked ground feature’s geolocation and

associated error covariance by using the corrected (aided) measurement equation. This

method is further developed in this current research.

14



The standard deviations derived from the covariance of his Kalman filter final values

are presented in Table 1.4. Quarmyne’s Kalman filter estimated the error of the Free INS.

By correcting that error, an improvement of one order of magnitude was achieved.

Table 1.4: Qyarmyne’s Kalman filter results after one hour of simulated flight.
The ”Unaided Final Values” are the results of his Free INS and the ”Aided
Peak Values” are the results of subtracting the KF estimated values from the
corresponding Free INS values [4].

Std Dev Unaided Final Value Aided Final Value

σx 6.56 km 692.72 m

σy 6.56 km 18.84 m

σz 0.707 km 5.72 m

σvx 3.67 × 10−2 m/s 5.74 × 10−3 m/s

σvy 3.67 × 10−2 m/s 8.66 × 10−5 m/s

σvz 3.93 × 10−3 m/s 3.18 × 10−5 m/s

σφ 1.05 × 10−4 rad 1.09 × 10−5 rad

σθ 1.05 × 10−4 rad 3.27 × 10−5 rad

σψ 1.05 × 10−4 rad 5.85 × 10−5 rad

1.5 Approach/Methodology

The current research follows the work of Quarmyne and utilizes the same flight

dynamics for a one hour flight. The tactical-grade Free INS specifications are developed

with both sensor bias and sensor drift errors, equally responsible for 1 km
hr navigation error.

The automated driftmeter measurement equations are borrowed from the work of Relyea

and utilize a downward facing monocular camera for optical measurements. A recursive

linear Kalman filter algorithm utilizes Free INS measurements and automated driftmeter
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measurements to determine an optimal estimate of the Free INS error. The estimate is then

subtracted from the Free INS output, providing an improved navigation state.

Prior to the beginning of the navigation scenario, flight conditions include an

elevation of 1000 [m] flying straight and level over a flat non-rotating Earth, where a GPS

aided INS provides precise position data. At the beginning of the navigation scenario,

GPS is no longer available, the INS is perfectly aligned, and two “unknown” ground

features are geolocated. During the geolocation of all newly tracked ground features, their

associated geolocation error estimate is set equal to zero, because it will on average be

zero. Their covariance is derived from the improved navigation state error covariance plus

the camera measurement covariance.

1.6 Thesis Organization

Chapter 1 discusses the viability of vision/bearing measurements as an aid for inertial

sensors and then follows up with the current state of related research. Chapter 2 provides

the mathematical concepts needed for the development of the modern driftmeter system.

Chapter 3 introduces the methodology used to simulate the system. Chapter 4 discusses

and analyzes the results of the simulations. Chapter 5 provides conclusions from the

research and details possible future work.
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II. Mathematical Background

This chapter describes the mathematics and physics required to understand inertial

navigation, Kalman filtering, and bearings-only ground feature tracking. The three

reference frames used in this work are presented, followed up by the calculations required

to transition between them. The concepts of a strapdown INS, as used in this work, are

presented. Design considerations and the equations for linear Kalman filtering are

presented. Lastly, the optics model and required calculations for bearings-only tracking

are presented. The bulk of this discussion is drawn from the work of Titterton and Weston

on strapdown inertial navigation [17], Maybeck on Kalman filter design [1] with the use

of Brown and Hwang’s Kalman filtering equation notations [2], and Relyea on bearing

feature tracking [3].

2.1 Reference Frames

For navigation over the Earth, it is necessary to define a convenient set of axes. The

inertial frame, Earth frame, navigation frame, wander azimuth frame, and the body frame

are the co-ordinate frames described in [17]. For this research, the two frames of concern

are the navigation frame and the body frame. The focal frame is also introduced as a

concept, but is not of major concern because it is perfectly aligned with the body frame.

2.1.1 Navigation reference frame.

The navigation frame is a local geographic frame, which has its origin placed at the

position of the aircraft near the surface of the Earth (at the location of the INS) [17]. The

xn-yn plane is tangent to the surface of the Earth, with the positive xn-axis pointing true

North, the positive yn-axis pointing East, and the positive zn-axis pointing down, toward

the center of the Earth. This is referred to as the North-East-Down (NED) axes

convention. See Figure 2.1 for an illustration of the navigation reference frame.
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Figure 2.1: Navigation reference frame

2.1.2 Body-fixed reference frame.

The body frame is affixed to the aircraft, where the origin is commonly located at the

aircraft’s center of gravity. The axes of the frame have the same rotational motion as the

body does. The positive xb-axis points out of the nose of the aircraft creating the roll axis,

the positive yb-axis points out the starboard (right) wing creating the pitch axis, and the

zb-axis points out the bottom of the aircraft, which creates the yaw axis. See Figure 2.2 for

an illustration of the aircraft body frame.

Figure 2.2: Aircraft body frame
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2.1.3 Camera-focal reference frame.

The focal frame is rigidly attached to the camera, with its origin at the camera’s

optical center [16]. The x f and y f axes point up and to the right, respectively, while the z f

axis is perpendicular to the focal plane, as shown in Figure 2.3.

Figure 2.3: Camera focal frame

The focal plane is best represented as an array of pixels with a physical height of H

and width of W [16]. The aspect ratio is determined by dividing the H by W. For this

research, the FOV captured in this array is square and thus the aspect ratio is equal to one.

The camera is facing downward and co-located with the INS; hence, the x f axis is aligned

with the xb axis and y f axis is aligned with yb axis. The number of pixels determines the

image resolution, which determines the variance of the camera measurements.

Figure 2.4: Camera focal plane represented as a pixel array
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2.2 Coordinate System Transformation

This section develops the mathematics needed to transition navigation vectors from

one coordinate frame to another. Reference [17] is primarily used for this introduction of

Euler rotation angles and the direction cosine matrix (DCM). Although there are other

methods of coordinate transformation, this method is preferred when dealing with a stable

platform INS.

The three orthogonal gyroscopes described in Section 1.1.3 measure the rotation rate

about the three body frame axes. The corresponding body angles are referred to as the

Euler rotation angles. Using the Euler angles, transformation from the body frame to the

navigation frame can be carried out as three successive rotations about the three body

frame axes as follows [17]:

rotation ψ about zb-axis, C1 =


cos ψ −sin ψ 0

sin ψ cos ψ 0

0 0 1



rotation θ about yb-axis, C2 =


cos θ 0 sin θ

0 1 0

−sin θ 0 cos θ



rotation φ about xb-axis, C3 =


1 0 0

0 cos φ −sin φ

0 sin φ cos φ


Thus, the transformation from the body frame to the navigation frame may be expressed

as the product of these three separate transformations as follows [17]:

Cn
b = C1 · C2 · C3
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where Cn
b is the DCM specifically for the transformation from the body frame to the

navigation frame. The resultant product is as follows:

Cn
b =


cos θ · cos ψ

−cos φ · sin ψ
+ sin φ · sin θ · cos ψ

sin φ · sin ψ
+ cos φ · sin θ · cos ψ

cos θ · sin ψ
cos φ · cos ψ

+ sin φ · sin θ · sin ψ
−sin φ · cos ψ

+ cos φ · sin θ · sin ψ
−sin θ sin θ · cos θ cos φ · cos θ


(2.1)

According to [17], when considering small angle rotations, valid in this research, the body

to navigation frame transformation DCM is further simplified as follows:

sin φ → φ cos φ → 1

sin θ → θ cos θ → 1

sin ψ → ψ cos ψ → 1

Therefore, making these substitutions in (2.1) and ignoring products of small angles, the

DCM expressed in Euler rotations reduces approximately to the skew symmetric form of

Cn
b as follows:

Cn
b =


1 −ψ θ

ψ 1 −φ

−θ φ 1

 (2.2)

If transformation from the navigation frame to the body frame is desired, then Cn
b

would be calculated as follows

Cb
n = CnT

b = CT
3 · C

T
2 · C

T
1

where the superscript T indicates that it is the transpose of the matrix being evaluated.

Applying the transpose and the small angle rotations provides the DCM for transforming

from the navigation to the body frame, as follows:

Cb
n =


1 ψ −θ

−ψ 1 φ

θ −φ 1

 (2.3)
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Due to the placement of the camera, the focal frame is perfectly aligned with the body

frame, so the transformation is simply Cb
f = I.

2.3 Strapdown INS

This section presents fundamental information pertaining to the understanding of the

INS utilized in this research. Original applications of inertial navigation technology used

stable platform techniques [17]. These systems isolated the rotational motion of the

vehicle by mounting the inertial sensors on a stable platform. Modern systems, including

the system used in this research, have removed the mechanical complexity of stable

platform systems by rigidly mounting or “strapping down” the inertial sensors directly to

the body of the aircraft. These systems have decreased both cost and size and have greater

reliability. However, they demand increased computational complexity and the gyros must

have an expanded dynamics range. Fortunately, both of these concerns are easily satisfied

with today’s ring laser gyro (RLG) or fiber optic gyroscope (FOG) technology.

2.3.1 Specific Force Model.

The strapdown INS utilizes three orthogonally mounted accelerometers whose input

axes are aligned with the body axes. This determines the specific force applied to the body

in three dimensions. The measured components of specific force and estimate of gravity

are summed to determine components of acceleration with respect to the navigation

frame. The summed value is then integrated once to determine the velocity of the body

and a second time to determine the position of the body relative to the navigation frame.

The acceleration components a(n) of the aircraft body in the navigation frame is

mathematically represented, as follows:

a(n) =
d2r(n)

dt2 (2.4)

where r is the vector which describes the three dimensional position of the body in the

navigation frame. Each accelerometer contributes to the specific force vector f(n), which is
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described mathematically as a perfect sensor with no errors, as follows

f(n) = a(n) − g(n)

where g(n) is the specific force due to gravity. During constant altitude and wings level

flight, f (n)
x = a, f (n)

y = 0, and f (n)
z = g, where g is the acceleration of gravity and a is the

longitudinal acceleration of the aircraft [3]. Thus,

f(n) =


a

0

0

 −


0

0

−g

 =


a

0

g


and the skew symmetric [13] matrix form of the vector is defined by f(n)×:

f(n)× = F(n)

F(n) =


0 −g 0

g 0 −a

0 a 0

 (2.5)

The skew symmetric matrix of the specific force vector is used in the development of the

INS error equations.

2.3.2 Imperfect Sensors.

The reality of the accelerometers and gyroscopes is that they provide imperfect

representations of the true specific force and true body rotation rate information. The two

dominant sources of error are described as sensor bias and sensor random-walk (drift).

The sensor bias error is random on start-up but constant thereafter. A random-walk error is

an accumulation of zero-mean random errors associated with “electronic noise from

power supplies, intrinsic noise from semiconductor devices, or from quantization errors in

digitization” [14]. This research analyzes the effect of modeling both of these errors

separately, as well as combined.
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2.3.3 Navigation State.

The navigation state vector, x, presented in [3] is used for this research. It is

comprised of nine states, which describe the position, velocity, and attitude of the aircraft

body in the navigation frame. The previously described imperfections from the sensor

measurements contribute to the output of the INS and are described as the error states, δx,

of the INS. Therefore, the calculated (output) states of the INS are as follows:

xc = x + δx

The error states are the primary focus of this research, as the goal is to evaluate the

contribution of an automated driftmeter’s ability to help estimate these INS error states so

they can be removed and thus provide an improved navigation state.

2.4 Kalman Filtering

This section provides some basic Kalman filter (KF) design considerations and the

basic equations for the KF loop. Most information in this section will be drawn from [1]

and [2]. Kalman filtering is a perfect match for the performance characteristics of a

navigation-grade INS. INSs provide very good high frequency information. However, the

long term, or low frequency, performance is poor [1]. All INSs have position errors that

grow slowly with time, and ultimately these errors are unbounded. The KF utilizes the

statistical characteristics of the errors in both the INS and the external source to optimally

estimate the error from the INS. This is used to reduce error.

2.4.1 Kalman filter system design.

The KF design is determined by the application. Maybeck [1] stated that four design

choices are available: “total state space” versus “error state space” formulation, and

“feedforward” versus “feedback” mechanization. These design aspects are presented in

Figure 2.5 with the aspects utilized in this research emphasized with a gray background.

This is followed with a discussion of the advantages and disadvantages of each.
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Figure 2.5: Kalman filter design aspects [1]

The “total state space” configuration integrates the KF inside the INS loop, where the

accelerometers, gyroscopes, and external navigation measurements are the KF input and

the navigation state information is the output. This provides “optimal time-varying gains,”

thus improving the performance response time [1]. The major drawback is that it requires

very high bandwidth, which creates a high computation burden. Another drawback is that

the INS cannot operate without the filter. The risk of losing INS operation completely

makes this a less desirable configuration.

The “error state space” KF is what is used in this current work. The inputs for this

KF are the INS navigation states and the external navigation data, while the outputs are

the navigation state error estimates. The KF dynamics are based on the INS error

propagation equations, which for a navigation-grade INS are adequately represented as

linear. The update rate can be much lower than the previously discussed configuration.

Maybeck states that an effective sampling rate could be “on the order of half a minute”,

because the Scheuler period is 84 minutes [1]. The configuration used in this research is a

variation of this “error state space” KF, focusing solely on the error states of the INS and

utilizing a sampling frequency of 1 second.

Furthermore, the “indirect feedforward” configuration is used in this work. The basic

block diagram presented in [1] is illustrated in Figure 2.6. The KF compares the data from

each navigational source and estimates the errors in the INS. These errors are then

subtracted from the Free INS-provided navigation state, yielding an improved estimate of
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the aircraft position, velocity, and attitude. In the event of KF or external navigation

system failure, the Free INS data is still available; hence the advantage of this

configuration. However, allowing the INS to drift with unbounded errors may compromise

the validity of the linear error dynamics model, which is directly related to the KF

performance.

Figure 2.6: Indirect feedforward Kalman filter [1]

An alternative design is the “indirect feedback” configuration, illustrated in

Figure 2.7. The KF estimates the INS errors, which are then fed back into the INS to reset

it. This feedback action prevents the unbounded runaway of the INS error. Therefore, the

“adequacy of a linear model is enhanced,” improving KF performance [1]. Maybeck

further stated that the “slow sample rate and the slow INS error dynamics” would allow

for detection of filter or external aid failure and “the correction to the INS could be

removed before much (any) performance deterioration were caused” [1]. This will be a

design consideration for future work discussed in Chapter 5.

2.4.2 Continuous-Time Linear Stochastic System Model.

The continuous-time linear stochastic system model presented in [1] and [19] is

ẋ = F · x + B · u + G · ẇ (2.6)
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Figure 2.7: Indirect feedback Kalman filter [1]

where x is the state vector, u is a deterministic control input vector, F is the system

dynamics matrix, B is a deterministic input matrix, G is the noise input matrix, and w is a

vector of white, Gaussian, noise. w is described as a zero-mean Gaussian process with

statistics, that follow:

E{w(t) · wT (t + τ)} = Q(t) · δ(τ)

where Q is the noise intensity, and δ(τ) is the Dirac delta function.

The continuous-time linear error equation δẋ, presented in state space form by [3]

and [4], is as follows:

δẋ = A · δx + Γ · δu (2.7)

where δx is the navigation state error vector, δu is the random bias vector, A is the system

error dynamics matrix, and Γ is the input matrix for the sensor bias terms. These error

equations do not have a stochastic term. Therefore, they only model errors caused by the

sensor biases, which are random on start-up but constant thereafter.

2.4.3 Linear Measurement Model.

The measurements z are provided to the KF in discrete time increments. The

equation is presented in [1] as follows:

z(ti) = H(ti) · x(ti) + v(ti)
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where z(ti) is a vector of measurements taken at time instant ti. H(ti) is the observation

matrix, which relates the state values in x at time ti to the measurement values in z

produced by the sensor at time ti. The covariance of the white Gaussian noise vector v is

specified as follows:

E{v(ti) · vT (t j)} = R(ti) · δi j

where R is the noise strength in the measurements z and δi j is a Kroeneker delta function

[19].

2.4.4 Discrete-Time Linear Stochastic System Model.

The discrete-time linear stochastic system model is presented in [1] as follows:

x(ti) = Φ(ti, ti−1) · x(ti−1) + Bd(ti−1) · u(ti−1) + w(ti−1) (2.8)

where the state vector x is calculated for time instant (ti) with state transition matrix Φ and

discrete input matrix Bd plus white Gaussian noise at time instant (ti−1). Reference [2]

utilizes subscript k for the discrete time notation, so (2.8) would instead be presented as

xk+1 = Φk · xk + Bdk · uk + wk (2.9)

This discrete-time notation is adopted herein.

2.4.5 Discrete-Time Kalman Filter Loop.

The recursive equations for the discrete-time KF loop, as presented in [2], are

illustrated in Figure 2.8. The recursive loop begins with an estimate of the initial

conditions which are considered suboptimal and designated with a superscript minus sign.

The Kalman gain is then calculated based on the initial covariance P−0 and the

measurement covariance Rk. This gain value is then used to update (optimize) the initial

conditions estimate with initial conditions of the external measurement z0. Since this is

now an optimal estimate, it is used by the system and the associated covariance is

calculated. The state transition matrix Φ is then used to project ahead (propagate) what

the estimated values of the navigation state error should be for the next instant in time,
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k + 1. Thus, a suboptimal state estimate and an associated covariance are created. From

this point, the recursive loop starts over by calculating the Kalman gain associated with

the suboptimal estimates.

Figure 2.8: Linear Kalman Filter Recursive Loop [2]

2.5 Camera Model

This section introduces the optical sensor model. The ground feature is a pixel in the

camera’s focal plane. It explains the calculations of the ground feature’s bearing

measurements from the pixel’s position in the camera’s focal plane. The bearing

measurements are used to develop the measurement equation for the Kalman filter and are

borrowed from [5] and [3].
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2.5.1 Optical Sensor Model.

The measurements that are used to aid the Free INS are from an optical

sensor/camera located on the belly of an aircraft, co-located with the INS, and pointing

downward in the same manner as a driftmeter. The optical sensor is modeled as a pinhole

camera as in Figure 2.9, where all incoming light must pass through the optical center and

is projected onto a focal plane located at distance f from the lens [16]. The focal distance

from the lens to the focal plane is crucial to the calculations of ground speed in the same

way it was used for the driftmeter in Section 1.1.2. A ground feature is acquired at the

very edge of the camera’s FOV and its centroid is represented in its focal plane as a single

pixel. The pixel is tracked as it moves in the camera’s focal plane and is used to determine

the bearing of the ground feature.

Figure 2.9: Pinhole camera model. The centroid of the ground features are
tracked as a pixel representations in the focal plane.

2.5.2 Bearing Measurements.

The concept of bearing measurement tracking used as an automated driftmeter is

presented in this section. This concept is first introduced from a two-dimensional

perspective and then further explained for three dimensions. Finally, the equations used

for the measurements input into the Kalman filter are presented.
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A two dimensional representation of an aircraft flying along the x axis while tracking

a single ground feature is illustrated in Figure 2.10. The ground feature’s position is

represented by xp and the corresponding pixel location in the focal plane is represented as

x f `, where ` indicates a discrete time instant. The aircraft position relates to its horizontal

distance d` from that ground feature at time `. As the ground feature is tracked across the

camera’s FOV in the focal plane, pixel by pixel, the camera measures the ground feature’s

bearing angle.

Figure 2.10: Two dimensional bearing measurement model

Consider the simplified two dimensional scenario where the aircraft’s distance from

the tracked ground feature is determined based on three factors: the “known” altitude h,

the fact that pitch angle θ ≡ 0, and the measured bearing angle. Thus, the camera provides

a measurement d` of the aircraft’s horizontal distance directly from the tracked ground
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feature position xp through the relationship that follows:

d`
h

=
x f `

f
(2.10)

where x f ` is the location of the ground feature image in the focal plane of the camera.

Transitioning to the three dimensional scenario, Figure 2.11 illustrates that the

camera’s focal plane is placed a distance f in front of the camera. This is done in order to

invert the image in the focal plane, simplifying the calculations.

Figure 2.11: Three dimensional image representation

The relationship of the true position and true attitude of the aircraft to that of a

ground feature is determined by the attendant geometry and is given by the Main Equation

32



derived in [3] that follows:
x

y

z

 =


xp

yp

zp

 −
|RLOS |√

x2
f + y2

f + f 2
Cn

b


x f

y f

− f

 (2.11)

where x f and y f are the pixel coordinates in the focal plane of the projected ground

feature, whose true position is xp and yp, and f is the camera’s focal length. The direction

cosine matrix Cn
b previously described in (2.2) transforms a vector coordinatized in the

body frame into the very same vector coordinatized in the navigation frame. The

expression
√

x2
f + y2

f + f 2 is used to scale the line-of-sight range (RLOS ) between the

aircraft and the ground feature. The subscript p designates the position in the navigation

frame of the ground feature and the coordinates (x, y, z) without subscripts designate the

true position of the aircraft in the navigation frame.

Recall that the navigation frame is attached to the flat and non-rotating Earth.

Equation (2.11) can then be separated into three equations as follows:

xp − x =
|RLOS |√

x2
f + y2

f + f 2

[
1 0 0

]
Cn

b


x f

y f

− f

 (2.12)

yp − y =
|RLOS |√

x2
f + y2

f + f 2

[
0 1 0

]
Cn

b


x f

y f

− f

 (2.13)

zp − z =
|RLOS |√

x2
f + y2

f + f 2

[
0 0 1

]
Cn

b


x f

y f

− f

 (2.14)
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Equation (2.14) can be rearranged such that the following is true:

|RLOS |√
x2

f + y2
f + f 2

=
zp − z

[
0 0 1

]
Cn

b


x f

y f

− f



(2.15)

It is assumed that the elevation zp of the tracked ground feature is known to be zero. Two

measurement equations are obtained by substituting the right side of (2.15) into (2.12) and

(2.13), which yields the following equation:

 xp

yp

 −
 x

y

 =
zp − z

[
0 0 1

]
Cn

b


x f

y f

− f



 1 0 0

0 1 0

 Cn
b


x f

y f

− f



This is further simplified by multiplying out the matrices as follows, where Cn
b is given by

(2.2):  xp

yp

 −
 x

y

 = (zp − z)
1

−x f · θ + y f · φ − f

 x f − y f · ψ − f · θ

x f · ψ + y f + f · φ


Nondimensionalizing such that the following is the case:

x f →
x f

f
, y f →

y f

f

yields the following equation: xp

yp

 −
 x

y

 = (zp − z)
1

−x f · θ + y f · φ − 1

 x f − y f · ψ − θ

y f + x f · ψ + φ


This result can now be separated into two nonlinear measurement equations as follows:

xp − x = (zp − z)
(

x f − ψ · y f − θ

−1 − θ · x f + φ · y f

)
(2.16)

yp − y = (zp − z)
(

y f + ψ · x f + φ

−1 − θ · x f + φ · y f

)
(2.17)
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To further simplify the measurement equations we can apply the binomial approximation

with the small angle assumption. This causes the denominator of (2.16) and (2.17) to be

multiplied by the numerator while changing the signs of the small angles as follows:

xp − x ≈ (zp − z)(x f − y f · ψ − θ)(−1 + x f · θ − y f · φ) (2.18)

yp − y ≈ (zp − z)(y f + x f · ψ + φ)(−1 + x f · θ − y f · φ) (2.19)

It is assumed that the ground feature elevation is known and then, without loss of

generality, zp is set equal to zero. Equations (2.18) and (2.19) are further simplified, such

that the products of the small angles after distribution are also set equal to zero, thus

yielding:

xp − x ≈ z
(
x f − θ(1 + x2

f ) + x f · y f · φ − y f · ψ
)

(2.20)

yp − y ≈ z
(
y f − x f · y f · θ + φ(1 + y2

f ) + x f · ψ
)

(2.21)

The states and measurements are then perturbed such that the following is true:

x = xc − δx y = yc − δy z = zc − δz

θ = θc − δθ φ = φc − δφ ψ = ψc − δψ

xp = xpc − δxpc yp = ypc − δypc

x f = x f m − δx f y f = y f m − δy f

where the subscript “c” indicates the navigation state components provided by the Free

INS. The subscript “m” indicates measured quantities of the pixels in the focal frame.

Inserting the perturbation equations into the measurement equations (2.20) and (2.21)

yields the following:

xpc − δxpc − (xc − δx) = (zc − δz)
(
x f m − δx f − (θc − δθ)(1 + x2

f m − 2x f m · δx f + δx2
f )

+ (x f m − δx f )(y f m − δy f )(φc − δφ) − (y f m − δy f )(ψc − δψ)
)
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ypc − δypc − (yc − δy) = (zc − δz)
(
y f m − δy f − (x f m − δx f )(y f m − δy f )(θc − δθ)

+ (φc − δφ)(1 + y2
f m − 2y f m · δy f + δy2

f ) + (x f m − δx f )(ψc − δψ)
)

Due to the small error in the measurements and the small angles, the products of these

terms can be neglected. Therefore, the measurement equations can be further reduced to

the linear forms that follow:

xpc − δxpc − (xc − δx) = (zc − δz)
(
x f m − δx f − (θc − δθ)(1 + x2

f m)

+ (x f m · y f m)(φc − δφ) − y f m(ψc − δψ)
)

ypc − δypc − (yc − δy) = (zc − δz)
(
y f m − δy f − (x f m · y f m)(θc − δθ)

+ (φc − δφ)(1 + y2
f m) + x f m(ψc − δψ)

)
By moving all the error terms (navigation state error and measurement errors) to the Right

Hand Side (RHS) and all the non-error terms (INS-provided navigation state and pixel

position measurements) to the Left Hand Side (LHS) of the two measurement equations,

the Kalman filter measurement equations are obtained as follows:

xpc − xc − zc

(
x f m − θc(1 + x2

f m) + φc · x f m · y f m − ψc · y f m

)
=

− δx − δz · x f + δθ(1 + x2
f ) − δφ · x f · y f + δψ · y f + δxpc − δx f

(2.22)

ypc − yc − zc

(
y f m − θc · x f m · y f m + φc(1 + y2

f m) + ψc · x f m

)
=

− δy − δz · y f + δθ · x f · y f − δφ(1 + y2
f ) − δψ · x f + δypc − δy f

(2.23)

2.6 Summary

In summary, this chapter has presented the mathematical background required to

understand the development and simulation of the automated driftmeter fused with inertial

measurements. The three reference frames used in this research, strapdown INS concepts,

Kalman filtering equations, and bearing measurement equations were introduced in this

chapter. Chapter 3 will now provide the specific calculations used to develop the

navigation scenario for this research.
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III. Methodology

This chapter provides a detailed description of the simulations conducted and the

algorithms used in this research. The navigation scenario developed in [3] and followed

up in [4] is first presented. Next, the continuous-time INS error equations developed in

this research from the merging of equations (2.6) and (2.7) is introduced. This is followed

by the discrete-time equivalent INS error equations, which are used to develop the

navigation-grade INS specifications for this research. After these 1-σ INS error

specifications are developed, they are used throughout the research for three different INS

scenarios. The first scenario incorporates the error specifications for the accelerometers’

and gyroscopes’ drift. The second incorporates the error specifications for the

accelerometers’ and gyroscopes’ biases. Finally, the third incorporates a combination of

these two error sources. This presentation method is employed with the development of

geolocation and tracking as well as the transitioning between these tracked ground

features.

3.1 Navigation Scenario

It is assumed the aircraft is flying straight and level at a constant velocity over a flat

and non-rotating Earth. All of the system variables and parameters are

non-dimensionalized according to Table 3.1 [5]. With the aircraft cruising at a constant

Table 3.1: Non-dimensionalized navigation scenario parameters

Position Velocity Specific Force Error Angular Rate Error Time

x→ x
h vx →

vx
v δ fx →

δ fx
g δω(b)

x → h δω(b)
x

v t → t v
h

y→ y
h vy →

vy

v δ fy →
δ fy
g δω(b)

y → h δω(b)
y

v T → T v
h

z→ z
h vz →

vz
v δ fz →

δ fz
g δω(b)

z → h δω(b)
z

v
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nominal/true altitude h = 1000 m, the nominal/true velocity is v = 100 m
s . The gravity

acceleration is assumed to be g = 10 m
s2 and is non-dimensionalized according to the

following:

g→
h · g
v2 =

1000 m · 10 m
s2

(100 m
s )2 =

10000 m2

s2

10000 m2

s2

= 1 (3.1)

The camera frame rate is the same as the sampling frequency fs which is 1 Hz. The

sampling time ∆T is non-dimensionalized and calculated according to the following:

∆T →
1
fs
·

v
h

=
1

1 1
s

·
100 m

s

1000 m
= 0.1 (3.2)

3.2 INS Error Equations

It is necessary to develop a linear dynamic model of the INS errors. The flight

scenario is highly idealized so that the aircraft dynamics are minimized and the INS errors

are modeled. There are many sources of errors that impact the performance of an INS.

Reference [17] states that significant error sources include alignment errors, sensor

drift/bias errors, and computational errors. In this research, the INS alignment errors are

assumed to be zero. An evaluation of computational errors is outside the scope of this

research and will not be addressed. The INS’s accelerometer and gyroscope sensors each

have two types of errors: a Gaussian distributed random start-up bias error and a Gaussian

random walk/drift error.

The continuous-time INS navigation state error δx dynamics are represented in state

space form as follows:

dδx = (Ac · δx + Γc · δu)dt + Γc · dw (3.3)

which is rewritten as follows:

δẋ(t) = Ac · δx(t) + Γc · δu(t) + Γc · ẇ(t) (3.4)

where δx is the navigation state error vector Ac is the system error dynamics matrix, Γc is

an input matrix, δu is the unknown accelerometer and gyro biases vector, and w is a
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Brownian motion vector (which quantifies the gyros’ and accelerometers’ drift). The

navigation state error vector is as follows:

δx = [ δx, δy, δz, δvx, δvy, δvz, δφ, δθ, δψ ]T (3.5)

The accelerometers’ and gyros’ bias errors are random on start-up but constant thereafter.

The errors are expressed as follows:

δu = [ δ f (b)
x , δ f (b)

y , δ f (b)
z , δω(b)

x , δω(b)
y , δω(b)

z ]T (3.6)

where the accelerometer’s bias errors (δ f (b)) are Gaussian distributed with a mean of zero

and a standard deviation of σba . The gyroscope’s bias errors, (δω(b)) are also Gaussian

distributed with a mean of zero and a standard deviation of σbg . They are described as

follows:
δ f (b) ∼ N

(
0, σ2

ba

)
δω(b) ∼ N

(
0, σ2

bg

) (3.7)

The vector of white noise processes ẇ is an additive zero mean Gaussian process with

covariance expressed as follows:

E{ẇ(t) · ẇT (t + τ)} = Q · δ(τ)

where δ(τ) is the Dirac delta function. It accounts for high-bandwidth error sources such

as electrical noise and/or thermal noise in the gyros and accelerometers. The ẇ vector

contains the random walk standard deviation scale values for the accelerometers (σda) and

gyroscopes (σdg), is expressed as follows

ẇ =

 N
(
0, I3 · σ

2
da

)
N
(
0, I3 · σ

2
dg

)


6×1

(3.8)

where all four sensor noise standard deviation values will be calibrated for this navigation

scenario in a later section.
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The error dynamics matrix Ac is as follows:

Ac =


0 I3 0

0 0 −F(n)

0 0 0


9×9

(3.9)

where F(n), as developed in (2.5), is the skew-symmetric matrix form of the specific force

vector f (n) in the navigation frame.

The input matrix Γc is as follows:

Γc =


0 0

Cn
b 0

0 Cn
b


9×6

(3.10)

where the matrix Cn
b is the body to navigation frame DCM developed in (2.2). At constant

altitude flight in the direction of the x axis, the nominal/true Cn
b = I3.

3.3 Discrete-Time Dynamics

The continuous-time navigation state error in (3.4) is converted to discrete-time with

a sampling interval of ∆T , calculated in (3.2). The discrete-time navigation error state

equation is then as follows:

δxk+1 = Ad · δxk + Γd · δuk + Γc · wk (3.11)

where the subscript k represents discrete instances in time.

The discrete-time state transition matrix Ad is calculated from the continuous-time

dynamics matrix Ac according to the following:

Ad = eAc·∆T

Therefore, we calculate matrix Ad as follows:

Ad =


I3 I3 · ∆T −1

2 · F
(n) · ∆T 2

0 I3 −F(n) · ∆T

0 0 I3


9×9
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which for the substitutions in Section 3.1 quantifies to the following:

Ad =



1 0 0 0.1 0 0 0 0.005 0

0 1 0 0 0.1 0 −0.005 0 0

0 0 1 0 0 0.1 0 0 0

0 0 0 1 0 0 0 0.1 0

0 0 0 0 1 0 −0.1 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


The input matrix Γc is transformed to discrete-time according to the following

equation:

Γd =

(∫ ∆T

0
eAc·tdt

)
· Γc

where the integral is as follows:

(∫ ∆T

0
eAc·tdt

)
=


I3 · ∆T 1

2 · I3 · ∆T 2 −1
6 · F

(n) · ∆T 3

0 I3 · ∆T −1
2 · F

(n) · ∆T 2

0 0 I3 · ∆T


9×9
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This integral quantifies as follows:

(∫ ∆T

0
eAc·tdt

)
=



0.1 0 0 0.005 0 0 0 0.000167 0

0 0.1 0 0 0.005 0 −0.000167 0 0

0 0 0.1 0 0 0.005 0 0 0

0 0 0 0.1 0 0 0 0.005 0

0 0 0 0 0.1 0 −0.005 0 0

0 0 0 0 0 0.1 0 0 0

0 0 0 0 0 0 0.1 0 0

0 0 0 0 0 0 0 0.1 0

0 0 0 0 0 0 0 0 0.1


The product of the integral and Γc yields the discrete-time input matrix that follows:

Γd =


1
2 · I3 · ∆T 2 −1

6 · F
(n) · ∆T 3

I3 · ∆T −1
2 · F

(n) · ∆T 2

0 I3 · ∆T


9×6

Γd finally quantifies to the following:

Γd =



0.005 0 0 0 0.0001667 0

0 0.005 0 −0.0001667 0 0

0 0 0.005 0 0 0

0.1 0 0 0 0.005 0

0 0.1 0 −0.005 0 0

0 0 0.1 0 0 0

0 0 0 0.1 0 0

0 0 0 0 0.1 0

0 0 0 0 0 0.1


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The discrete-time random drift error vector wk remains the same as the

continuous-time, random drift error vector in (3.8) as follows:

wk ∼

 N
(
0, I3 · σ

2
da

)
N
(
0, I3 · σ

2
dg

)


6×1

(3.12)

where it remains multiplied by the continuous-time input matrix Γc. This is done while

taking into account the discrete-time sampling interval ∆T . Each of the six drift errors are

Gaussian distributed and randomly selected at every time instant k. The associated

covariance is as follows:

E{wk · wT
k } = Qd

and in matrix form is as follows:

Qd =

 I3 · σ
2
da

0

0 I3 · σ
2
dg


6×6

3.4 Augmenting the System Dynamics with Constant Biases

The navigation state error vector δx is augmented with the bias input error vector δu,

because the bias errors are random on system start-up but constant thereafter. The

augmented navigation state error vector is as follows:

δxak =


δxk

...

δuk


15×1

δxa0 ∼ N

0,


09×9 03×3 03×3

03×3 I3 · σ
2
ba

03×3

03×3 03×3 I3 · σ
2
bg


15×15

 (3.13)

The augmented discrete-time navigation state error equation is as follows:

δxak+1 = Ada · δxak + Γca · wk (3.14)

where the initial covariance accounts for the uncertainty in the original nine INS error

states’ alignment and the Gaussian distributed random bias error states. The state

transition matrix Ad is augmented with the discrete-time input matrix Γd as follows:

Ada =

 Ad Γd

06×9 I6


15×15

(3.15)
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The continuous-time input matrix Γc must be augmented with zeros, as follows:

Γca =

 Γc

06×6


15×6

(3.16)

The discrete-time random walk vector wk remains the same as specified in (3.12).

3.5 Navigation Grade INS Calibration

For this simulation the bias and random walk measurement errors for the

accelerometers and gyroscopes are assumed to be equally responsible for the INS errors.

A covariance analysis of the INS x position error state is used to calculate the standard

deviation values for the sensors biases and drift, which will cause a 1 km
hr navigation error.

Using the discrete-time Lyapunov equation that follows:

Pk+1 = Ada · Pk · Ada
T + Γca ·Qd · Γca

T , k = 0, 1, . . . , 3600 (3.17)

The state covariance matrix P (uncertainty in the system state dynamics) is propagated

throughout a one hour flight. The discrete noise covariance matrix Qd (uncertainty in the

system noise input) is constant throughout the flight. It is assumed that there are no INS

initial alignment errors. Therefore, the navigation state errors provided in (3.5) at the

initial time step (k = 0) are all zero and the measurement bias errors are random and

Gaussian distributed. Measurement bias errors are represented within the navigation state

error initial conditions δxa0 as follows:

δxa0 =


09×1

ζ3×1

γ3×1


15×1

(3.18)

where ζ ∼ N
(
0, I3 · σ

2
ba

)
and γ ∼ N

(
0, I3 · σ

2
bg

)
. The uncertainty at start-up is specified by

the accelerometers’ and gyroscopes’ bias standard deviation σba and σbg , respectively.
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Therefore, the navigation state error covariance matrix Pk is initialized as follows:

P0 =


09×9 09×3 09×3

03×9 I3 · σ
2
ba

03×3

03×3 03×3 I3 · σ
2
bg


15×15

(3.19)

The accelerometers’ and gyros’ drift is described as follows:

Qd =

 I3 · σ
2
da

03×3

03×3 I3 · σ
2
dg


6×6

(3.20)

The system dynamics are propagated at the non-dimensional sampling interval ∆T with

the Lyapunov equation shown in (3.17). This is done for one non-dimensional hour, 3600

time steps, in order to determine the final variance value of x-position. This final value

constitutes element (1,1) of the covariance matrix so it equals (P3600)1,1.

This propagation is repeated four times to determine the final x-position of the

variance for each measurement error. Each time only one measurement error contributes to

the 1 km
hr navigation error. This is represented in Table 3.2. There is a linear relationship

Table 3.2: Final x-position variance values after propagating for one hour
according to set INS sensor error parameters.

Final Value Accel bias σ Gyro bias σ Accel drift σ Gyro drift σ

αb = (P3600)1,1 σba = 1 σbg = 0 σbg = 0 σdg = 0

βb = (P3600)1,1 σba = 0 σbg = 1 σbg = 0 σdg = 0

αd = (P3600)1,1 σba = 0 σbg = 0 σbg = 1 σdg = 0

βd = (P3600)1,1 σba = 0 σbg = 0 σbg = 0 σdg = 1

between the uncertainty in the accelerometer and the gyro variance, which can be directly

related to the aircraft’s final x-position variance. This linear relationship is as follows:

(P3600)1,1 = αb · σ
2
ba

+ βb · σ
2
bg

+ αd · σ
2
da

+ βd · σ
2
dg

(3.21)
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The accelerometers and gyros are assumed to be equally at fault and their standard

deviations are scaled according to Table 3.3. These standard deviation values are now

Table 3.3: Calibrated navigation-grade INS specifications for 1 km
hr .

Final x-Position Variance Scaled With Calibrated INS Sensor Specifications

αb = 4.2037 × 109 1
√

4·αb
σba = 7.7118 × 10−6

βb = 6.0567 × 1013 1√
4·βb

σbg = 6.4247 × 10−8

αd = 1.5558 × 108 1
√

4·αd
σda = 4.0085 × 10−5

βd = 3.0254 × 1012 1√
4·βd

σdg = 2.8746 × 10−7

used together in the Lyapunov equation shown in (3.17) to propagate the x-position

variance of the INS throughout the one hour flight and verify that it does yield the 1 km
hr

navigation error. Figure 3.1 illustrates the propagated x-position variance with

accelerometer and gyroscope noise standard deviations according to the calibrated sensor

specifications in Table 3.3.
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Figure 3.1: x-position error standard deviation with biases and process noise
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3.6 Free INS

The drift errors for the simulated Free INS are developed by propagating the

discrete-time stochastic INS error equations for one hour. In this section the performance

of the Free INS is presented with just drift errors sources, just bias errors sources, and

with combined error sources. The calibrated sensor error standard deviation values in

Table 3.3 are used throughout this research.

3.6.1 Drift Induced Error.

The sensor drift errors that plague an INS are a result of high-bandwidth sources such

as electrical noise and/or thermal noise from every accelerometer and gyroscope discrete

measurement throughout the flight. The result of the noisy measurements is a random

walk superimposed on the true measurement. The random walk measurement errors will

cause the errors to drift either positive or negative of the true measurement with a strength

drawn from a zero mean, Gaussian distribution. The strictly drift-driven navigation state

error equation is extracted from the original form of the discrete-time navigation error

state equation shown in (3.11) before any augmentation as follows:

δxk+1 = Ad · δxk + Γc · wk (3.22)

This equation is propagated with k throughout the one hour flight. The vector of white

noise processes wk is randomly selected for every iteration according to (3.12). The

covariance Pk+1 of the drift-caused navigation state error is calculated using the

discrete-time Lyapunov equation as follows:

Pk+1 = Ad · Pk · Ad
T + Γc ·Qd · Γc

T (3.23)

where the navigation state error covariance matrix P is propagated for one hour to

generate a 68% error state estimate for each of the nine state values throughout the flight.

It is assumed that there are no INS alignment errors. Therefore, the navigation state errors

provided in (3.5) at k = 0 are all zero and there is 100% confidence in the alignment. This
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confidence is inversely proportional to the uncertainty in the alignment (also referred to as

the covariance P). The covariance matrix for the Free INS alignment is therefore as

follows:

P0 =


0 0

. . .

0 0


9×9

The random input from the white noise processes wk will be different each time the

simulation is run and consequently so will be the navigation state error dynamics.

Appendix B contains Figures B.1, B.2, and B.3, which illustrate the drift error and

covariance from just one run of the Free INS with only sensor drift error inputs.

3.6.2 Bias Induced Error.

The accelerometers’ and gyroscopes’ bias errors are random on start-up but constant

thereafter. Maybeck [1] refers to these types of error as turnon-to-turnon nonrepeatability

biases, because they change from one period of operation to another. They should not be

confused with alignment errors (said to be zero for this simulation) that occur as a result

of the error between the aircraft’s true position, velocity, and attitude relative to where the

external navigation source said it was during the alignment. After alignment, the biases

are constant and cause the INS measurements to be offset by that bias until the next

alignment. Therefore the strictly bias-caused navigation state error equation is only

random during initial alignment. The simulation randomly selects the bias values during

initialization from a Gaussian distribution described in (3.7). They then remain constant

throughout that simulated one hour flight.

The strictly bias state space error equation δxak+1 is extracted from (3.14) and is as

follows:

δxak+1 = Ada · δxak (3.24)

where it is propagated with iterations of k throughout the one hour flight and the bias

terms are augmented into the state transition matrix Ada. The covariance of the navigation
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state error caused by the bias is calculated using the augmented discrete-time Lyapunov

equation as follows:

Pk+1 = Ada · Pk · Ada
T (3.25)

The augmented navigation state error vector δxa is initialized according to (3.18).

Therefore, the augmented covariance matrix P0 is initialized according to (3.19).

The covariance for the Free INS will be driven by the covariance of the bias terms

and will be the same every time the simulation is run. However, the random choice that

creates the bias terms during initialization will be different each time the simulation is run

and the propagated error will be different each time. Appendix B contains Figures

B.4, B.5, B.6, B.7, and B.8, which illustrate the bias-caused error and covariance from just

one run of the Free INS with only sensor bias error inputs.

3.6.3 Bias and Drift Induced Errors.

The combination of the two error sources creates a noisy output that has a random

walk about the bias relative to the true measurement. If the true measurement were zero,

then the bias offset would be added first and then the random walk would be added to

cause a drift around the bias. The navigation state error equation with both error sources is

the same as presented in (3.14). It is presented again here for reference:

δxak+1 = Ada · δxak + Γca · wk

The navigation state error is propagated for one hour and its covariance Pk+1 is calculated

using the following equation:

Pk+1 = Ada · Pk · Ada
T + Γca ·Qd · Γca

T (3.26)

The realization of the drift-caused error and the bias error will be different every time the

simulation is run. Appendix B contains Figures B.9, B.10, B.11, B.12, and B.13, which

illustrate the error and covariance from just one run of the Free INS with drift and bias

sensor error.
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3.6.4 Free INS Output.

The errors developed in this section from propagating the Free INS must be added to

the true state of the simulated aircraft flight in order to establish an INS output of a

moving aircraft. As mentioned in Section 3.1, the aircraft is flying straight and level at a

constant velocity over a flat and non-rotating Earth. Therefore, the only true dynamics of

the simulated aircraft is the movement in the x direction. This movement is due to the

aircraft’s constant velocity, which directly relates to the true aircraft position. Therefore,

the output of the Free INS is calculated according to Table 3.4, where the subscript c

indicates that the value is the INS-calculated output. These calculated INS output values

are used in the measurement equation to establish the measurements provided to the

Kalman filter.

Table 3.4: Free INS Output

Position Velocity Attitude

xc = t + δx vxc = 1 + δvx φc = δφ

yc = δy vyc = δvy θc = δθ

zc = 1 + δx vzc = δvz ψc = δψ

3.7 SLAM

A measurement epoch n (period of time) is initiated by the geolocation of a new

ground feature. Without loss of generality it is simulated that the ground features are

arranged such that they are evenly spaced 1000 m apart. With the aircraft moving at a

constant speed of 100 m
s ground speed in the direction of the ground features, each epoch

is 10s long. Therefore, the simulation of a one hour flight will have 360 epochs, and

n = 1, ...,N, where N = 360. Camera measurements are taken at the same interval that the

Free INS is sampled ∆T = 1 s, so there are 10 camera measurements per measurement

epoch. According to [19], at least two ground features must be tracked at all times in order
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to maintain observability when bearing-only measurements are used. Observability is

increased as more ground features are tracked. However, this work assumes only two

ground features are tracked in each measurement epoch.

The first epoch (n = 1) is different from the remaining epochs because in the first

epoch the camera simultaneously geolocates two ground features. The first ground

feature, xp1 , is at 1000 m and the second, xp2 , is at 2000 m. These factors are

non-dimensionalized according to Table 3.1 to xp1 = 1 and xp2 = 2. A two-dimensional

representation of the geolocated ground features for the first epoch is illustrated in

Figure 3.2. The Free INS is perfectly aligned. The INS x calculated position, xc, is exactly

zero. The INS z calculated position, zc, is exactly one. The INS y calculated position, yc, is

exactly zero, and is not illustrated.

The geolocated ground features are acquired while the aircraft position is exactly

known with noisy camera measurements. Therefore, the first two geolocated ground

feature’s positions are calculated according to Table 3.5, where the geolocation state error

values δxpc and δypc are on average zero, with an uncertainty associated with the standard

deviation of the camera measurement σ2
c .

Table 3.5: Calculated non-dimensional position measurements for first two
ground features

Ground Feature # 1 Ground Feature # 2

xpc1 = 1 + δxpc1 xpc2 = 2 + δxpc2

ypc1 = 0 + δypc1 ypc2 = 0 + δypc2
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Figure 3.2: First Epoch where the first two ground features are geolocated

The navigation state error vector δx is augmented with the geolocation error vector δs

as follows:

δs =



δxpc1

δypc1

δxpc2

δypc2


4×1

(3.27)

which accounts for the accumulated error from acquiring a ground feature while using a

noise-corrupted bearing measurement and the error prone INS-provided ownship position.

For the first epoch it is assumed that the aircraft position measurements are known exactly.

However, the camera measurements are noise-corrupted with a standard deviation σc.

Therefore, the initial geolocation error vector δs0 is as follows:

δs0 =



δxpc1

δypc1

δxpc2

δypc2


4×1

∼



N
(
0, σ2

c)

N
(
0, σ2

c)

N
(
0, σ2

c)

N
(
0, σ2

c)


4×1

(3.28)

where the geolocation error is on average zero and is included in the augmented

navigation state error vector δx, while the associated variance is captured in the

augmented covariance matrix P. The following subsections present how the augmentation
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for SLAM is accomplished for the three different methods: strictly INS drift/process noise

error, strictly INS bias error, and combined INS drift and bias errors.

3.7.1 SLAM with INS Process Noise Only.

The errors associated with geolocating two ground features are augmented into the

navigation state error. The augmented dynamics are as follows:

δxsk+1 = Ads · δxsk + Γcs · wk (3.29)

where

δxs =

 δxδs


13×1

(3.30)

The state transition matrix Ads and the noise input matrix Γcs account for the geolocation

error and are augmented as follows:

Ads =

 Ad 09×4

04×9 I4


13×13

(3.31)

Γcs =

 Γc

04×6


13×6

(3.32)

The discrete-time random drift vector wk is the same as presented before in (3.12). Since

the INS initial alignment is assumed perfect, and the geolocation errors are on average

zero, the augmented navigation state error vector is initialized with a vector of zeros as

follows:

δxs0 =


0
...

0


13×1

(3.33)

and the associated covariance P0 is initialized according to the following equation:

P0 =

 09×9 09×4

04×9 I4 · σ
2
c


13×13
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3.7.2 SLAM with INS Bias Errors Only.

The augmented navigation state error vector in (3.24) includes the INS bias errors. In

this section, the state vector is augmented again to include the geolocation error vector δs

as follows:

δxask+1 = Adas · δxask (3.34)

The new augmented state transition matrix Adas is as follows:

Adas =


Ad Γd 09×4

06×9 I6 06×4

04×9 04×6 I4


19×19

(3.35)

This augmented navigation state error vector is initialized with a vector of zeros because

the error from the first nine states is assumed to be zero, the error from the six INS bias

states is assumed to be on average zero, and the four states that track the geolocation error

for the first two ground features is on average zero. This is expressed as follows:

δxas0 =


0
...

0


19×1

(3.36)

The associated covariance is initialized according to the following equation:

P0 =



09×9 09×3 09×3 09×4

03×9 I3 · σ
2
ba

03×3 03×4

03×9 03×3 I3 · σ
2
bg

03×4

03×9 03×3 03×3 I4 · σ
2
c


19×19

where the first nine entries represent the navigation state error and the uncertainty is zero

because of perfect INS alignment. The next six entries represent the standard deviation of

the accelerometers’ and gyroscopes’ biases. The last four entries represent the uncertainty

in the camera measurements. This method of augmenting for geolocation error is applied

again for the combined INS error scenario in Section 3.7.3.
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3.7.3 SLAM with INS Drift and Bias Errors.

The augmented navigation state error equation in (3.14) includes the INS bias errors

and the INS process noise errors. In this section, the geolocation state error δs is also

augmented into the dynamics as follows:

δxask+1 = Adas · δxask + Γcas · wk (3.37)

where the process noise terms are simply added to the navigation state error equation from

the previous section. The process noise input matrix Γcas is augmented to account for the

geolocation error as follows:

Γcas =

 Γc

010×6


19×6

(3.38)

where the zeros in (3.38) do not allow the random drift error vector wk to influence the

geolocation state error terms. The navigation state error vector and the associated

covariance matrix are initialized as in Section 3.7.2.

3.8 The Kalman Filter

The Kalman filter algorithm optimally combines noise-corrupted bearing

measurements from the camera with noise-corrupted accelerometer and gyroscope

measurements, to determine an estimate of the INS navigation state error. The algorithm

uses the Free INS navigation state error dynamics to propagate the navigation state error

estimate δ̂x
−

for the next discrete time instant according to the system model. The

algorithm then updates the estimate with the knowledge of the camera measurement z to

determine an optimal estimate δ̂x
+

of the INS navigation state error. This optimal estimate

is then subtracted from the Free INS calculated navigation state xc to determine an

improved navigation state estimate x̂. x̂ is expressed as follows:

x̂ = x + δx − δ̂x
+

(3.39)

The algorithm is illustrated in block diagram form in Figure 3.3.
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Figure 3.3: INS Aiding Using a Kalman Filter

During a measurement epoch, the Free INS error equations described in (3.29),

(3.34), or (3.37) (according to the system being modeled) are updated using the

measurement equation that follows:

z` = H` · δx` + v` (3.40)

where the subscript ` = 1, ..., L represents discrete instants of time within each epoch and

L is the last measurement within that epoch. The optical measurement z` at time instant `

is related to the navigation state error δx through the observation matrix H plus the

measurement error v. The measurement error is a white Gaussian sequence with a

covariance R expressed as follows:

R =


σ2

c 0 0 0
0 σ2

c 0 0
0 0 σ2

c 0
0 0 0 σ2

c

 (3.41)

Calculation of σc is based on the measurements in the camera’s focal plane having a one

pixel error. Therefore, the camera’s aspect ratio of one and its resolution (MP count)
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determine the standard deviation σc of the camera, calculated as follows:

σc =

√
1

# MP
· 10−6 (3.42)

where #MP is the resolution of the camera.

The 4 × 1 measurement vector z` contains the measurements of the geolocated

ground features in the two dimensional x and y plane, relative to the position of the

aircraft. The first and second measurement terms relate to the first ground feature’s (x, y)

position and the third and fourth measurement terms relate to the second ground feature’s

(x, y) position. These measurements are best explained by relating the measurement d` in

the two dimensional illustration in Figure 2.10, where the bearing measurement provides

the position of the aircraft relative to the position of the ground feature.

The measurement vector z` is derived from the geolocated ground feature

measurements at the beginning of each epoch, the Free INS measurements from the

beginning of the navigation, and the optical measurements in the focal plane of the

geolocated ground features throughout each epoch. Measurement vector z` is developed

from the LHS of (2.22) and (2.23) as follows:

z
`

=



xpc1 − xck − zck

(
x f m1` − θck(1 + x2

f m1`
) + φck · x f m1` · y f m1` − ψck · y f m1`

)
ypc1 − yck − zck

(
y f m1` − θck · x f m1` · y f m1` + φck(1 + y2

f m1`
) + ψck · x f m1`

)
xpc2 − xck − zck

(
x f m2` − θck(1 + x2

f m2`
) + φck · x f m2` · y f m2` − ψck · y f m2`

)
ypc2 − yck − zck

(
y f m2` − θck · x f m2` · y f m2` + φck(1 + y2

f m2`
) + ψck · x f m2`

)


4×1

(3.43)

where the geolocated ground feature measurements, (xpc1 , ypc1 , xpc2 , and ypc2) remain

constant throughout each measurement epoch n, because the tracked ground features are

stationary. These measurement values are presented in Table 3.5 for the first epoch where

the position of the aircraft is initially known exactly and the only error in geolocation is
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from the camera measurement. However, the geolocated ground feature measurements for

the remaining epochs are established from the aided (corrected) INS-provided aircraft

position and the camera measurement of the ground features. The INS-calculated

navigation state values are drawn directly from the Free INS according to Table 3.4 for the

one hour flight. The camera measurements in the focal plane (x f m1` , y f m1` , x f m2` , and y f m2`)

include the error from the camera and are taken throughout each epoch at each discrete

time instant `. These camera measurements are iterated according to ` and are calculated

as in Table 3.6, where ζ is the error from the camera measurement drawn randomly

according to the Gaussian distribution, N(0, σ2
c). The calculations embodied in (3.40) and

(3.43) are represented in the block labeled ”Measurement Generator” in Figure 3.3.

Table 3.6: Pixel measurements in focal plane over time for the 1st and 2nd

ground features

time x f m for 1st y f m for 1st x f m for 2nd y f m for 2nd

` = 0 x f m10
= 1.0 + ζ y f m10

= 0 + ζ x f m20
= 2.0 + ζ y f m20

= 0 + ζ

` = 1 x f m11
= 0.9 + ζ y f m11

= 0 + ζ x f m21
= 1.9 + ζ y f m21

= 0 + ζ

...
...

...
...

...

` = 9 x f m19
= 0.1 + ζ y f m19

= 0 + ζ x f m29
= 1.1 + ζ y f m29

= 0 + ζ

` = 10 x f m110
= 0.0 + ζ y f m110

= 0 x f m210
= 1.0 + ζ y f m210

= 0 + ζ

The observation matrix H` is a 4 × 9 matrix, which relates the optical measurements

in the focal frame to the navigation state error vector shown in (3.5) in the navigation

frame. It is augmented according to the specific navigation state error vector configuration

being considered. The observation matrix is generated using the RHS of (2.22) and (2.23)

for both ground features’ bearing measurements. The first and second rows relate to the

first ground feature’s x and y coordinates and the third and fourth rows relate to the second
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ground feature’s x and y coordinates. H` is as follows:

H` =



−1 0 −x f 1` 0 0 0 −x f 1` · y f 1` 1 + x2
f 1`

y f 1`

0 −1 −y f 1` 0 0 0 −(1 + y2
f 1`

) x f 1` · y f 1` −x f 1`

−1 0 −x f 2` 0 0 0 −x f 2` · y f 2` 1 + x2
f 2`

y f 2`

0 −1 −y f 2` 0 0 0 −(1 + y2
f 2`

) x f 2` · y f 2` −x f 2`


4×9

(3.44)

Since the aircraft is moving in the positive x direction, and in the first measurement epoch

the ground features are located at 1000 and 2000 meters in the positive x direction, the

x f 1` and x f 2` non-dimensional measurements in the camera’s focal plane are initially

recorded as one and two. These recorded measurements decrease relative to the aircraft’s

constant forward velocity. Therefore, the tracked ground features’ x-direction pixel

location values decrease, while y-direction pixel location values remain at zero according

to Table 3.7 throughout each epoch.

Table 3.7: Pixel values in observation matrix over time for the 1st and 2nd

ground features

time x f for 1st y f for 1st x f for 2nd y f for 2nd

` = 0 x f10
= 1.0 y f10

= 0 x f20
= 2.0 y f20

= 0

` = 1 x f11
= 0.9 y f11

= 0 x f21
= 1.9 y f21

= 0
...

...
...

...
...

` = 9 x f19
= 0.1 y f19

= 0 x f29
= 1.1 y f29

= 0

` = 10 x f110
= 0.0 y f110

= 0 x f210
= 1.0 y f210

= 0

3.8.1 Kalman Filter with only INS Drift Error.

This section presents the equations used to propagate and update the navigation state

error estimate of the Free INS with only process noise errors. The recursive KF algorithm

begins by initializing a loop in each measurement epoch when ` = 0 and when the two

ground features are geolocated. Since it is assumed that the INS alignment is perfect in the
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first measurement epoch (n = 1), the KF is initialized using the following equation:

(
δ̂xs

+

0

)n=1
=


0
...

0


13×1

(3.45)

where the superscript plus sign indicates that it is an optimal estimate of the navigation

state error. The four geolocation error estimates are on average zero. The product of the

optimal state estimate and the state transition matrix Ads provides a propagated navigation

state error estimate δ̂x
−

for the next discrete-time instant, as follows:

δ̂xs
−

`+1 = Ads · δ̂xs
+

` (3.46)

where the superscript minus sign indicates that it is before the camera measurements have

been received.

The uncertainty in the KF navigation state error estimates are captured in the

covariance matrix P` for each discrete time iteration `. The initial covariance matrix P+
0

describes the confidence in the initial alignment and describes the navigation state error

estimate in (3.45) where the superscript plus sign indicates that it is the covariance of the

optimal navigation state error estimate.

In order to maintain consistency with [4], the uncertainty in position at the beginning

of the navigation scenario is assumed to be one meter, while the uncertainty in velocity is

assumed to be 10−3 z mm/s, and the uncertainty in the aircraft attitude is assumed to be 20

arc seconds. Thus, the non-dimensional navigation state error covariance values are as

follows:

δPx, δPy, δPz ∼ N
(
03×1, 1 × 10−6·I3

)
δVx, δVy, δVz ∼ N

(
03×1, 1 × 10−16·I3

)
δΨφ, δΨθ, δΨψ ∼ N

(
03×1, 1 × 10−8·I3

)
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The initial covariance matrix for the KF also includes the covariance of the geolocation

error terms described in (3.28) as N
(
0, σ2

c), which is unique for the initialization of the

first epoch. The initialization of the following epochs is discussed in Section 3.9. The KF

initial state covariance matrix P+
0 is as follows:

P+
0 =



I3 · 10−6 0 0 0

0 I3 · 10−16 0 0

0 0 I3 · 10−8 0

0 0 0 I4 · σ
2
c


13×13

(3.47)

The propagated KF covariance of the navigation state error estimate at time instant (` + 1)

is calculated by solving the Lyapunov equation, as follows:

P−`+1 = Ads · P+
` · Ads

T + Γcs ·Qd · Γcs
T (3.48)

where the superscript minus sign indicates that it is the covariance of the suboptimal

navigation state error estimate and is calculated according to the following:

E
{(
δx − δ̂x

−

`+1

)(
δx − δ̂x

−

`+1

)}
(3.49)

The Kalman gain K`+1 is calculated as follows:

K`+1 = P−`+1 ·Hs
T
`+1(Hs`+1 · P−`+1 ·Hs

T
`+1 + R)−1 (3.50)

where the observation matrix H in (3.44) is augmented to account for the geolocation

error terms as follows:

Hs` =

[
H4×9 I4

]
4×13

(3.51)

Through this augmentation, the geolocation error terms in (3.28) directly enter the

measurement equation (z = H · δxs + v). The Kalman gain is then used to establish the

navigation state error estimate δ̂xs
+

`+1 for the discrete time instant ` + 1, after the

measurement z`+1 has been received.
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An update to the navigation state error estimate, δ̂xs
−

`+1 occurs when the measurement

z from the optical sensor has been received. The optimal navigation state error estimate

δ̂xs
+

`+1 is determined according to the following equation:

δ̂xs
+

`+1 = δ̂xs
−

`+1 + K`+1

(
z`+1 −Hs`+1 · δ̂xs

−

`+1

)
(3.52)

The covariance P+
`+1 of the estimation error for the navigation state error at time ` + 1 is

calculated as follows:

P+
`+1 =

(
I13 −K`+1 ·Hs`+1

)
P−`+1 (3.53)

The recursive loop starts over by propagating with (3.46) and (3.48). This loop continues

until time ` = 10 = L. After L = 10, the first ground feature is no longer in the camera’s

FOV and a new ground feature must be geolocated.

3.8.2 Kalman Filter with only INS Bias Error.

This section presents the equations used to propagate and update the navigation state

error estimate for the Free INS model with only bias noise errors. The algorithm is the

same as presented in Section 3.8.1, however the augmentation of the bias terms into the

state transition matrix must be handled differently. As with the previous algorithm, the

recursive loop begins when the ground features are geolocated and the INS is aligned with

the external navigation source and thus provides an optimal navigation state error estimate

δ̂x
+

as follows:

(
δ̂xas

+

0

)n=1
=


0
...

0


19×1

(3.54)

where the nine navigation state error estimates are aligned with the external navigation

source and said to be zero, the six bias error estimates are on average zero, and the four

geolocation error estimates are on average zero. The navigation state error estimates are

propagated with the state transition matrix which accounts for the bias terms according to
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the following equation:

δ̂xas
−

`+1 = Adas · δ̂xas
+

` (3.55)

The initial covariance matrix P+
0 for the bias error model will be the same as with the drift

error model in (3.47), except it will include the covariance for the bias terms as shown in

the following equation:

P+
0 =



I3 · 10−6 0 0 0 0 0

0 I3 · 10−16 0 0 0 0

0 0 I3 · 10−8 0 0 0

0 0 0 I3 · σ
2
ba

0 0

0 0 0 0 I3 · σ
2
bg

0

0 0 0 0 0 I4 · σ
2
c


19×19

(3.56)

It is propagated for time instant ` + 1 with the state transition matrix according to the

following equation:

P−`+1 = Adas · P+
` · Adas

T (3.57)

The Kalman gain K`+1 is calculated the same as in Section 3.8.1, as shown in the

following equation:

K`+1 = P−`+1 ·Has
T
`+1(Has`+1 · P−`+1 ·Has

T
`+1 + R)−1 (3.58)

however, the observation matrix H in (3.44) is augmented to exclude the bias error terms

and include geolocation error terms as follows:

Has` =

[
H4×9 04×6 I4

]
4×19

(3.59)

where the bias error terms in the navigation state error vector δxas` do not impact the error

from the camera measurement z. The geolocation error terms on the other hand directly

influence z.
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The Kalman gain is then used to establish the navigation state error estimate δ̂xas
+

`+1

for the next discrete instant after the measurement z has been received.

An update to the navigation state error estimate δ̂xas
−

`+1 occurs when measurement z

from the optical sensor has been received. The optimal estimate δ̂xas
+

`+1 is determined

using the following equation:

δ̂xas
+

`+1 = δ̂xas
−

`+1 + K`+1

(
z`+1 −Has`+1 · δ̂xas

−

`+1

)
(3.60)

The covariance P+
`+1 for the optimal estimate at time ` + 1 is calculated as follows:

P+
`+1 =

(
I19 −K`+1 ·Has`+1

)
P−`+1 (3.61)

The recursive loop starts over by propagating with (3.55) and (3.57). This loop continues

until the first ground feature is no longer in the camera’s FOV and a new ground feature is

geolocated at time L.

3.8.3 Kalman Filter with Both INS Error Sources.

This section presents the equations used to propagate and update the navigation state

error estimate for the Free INS model with both sensor drift errors and sensor bias errors.

This is simply a combination of Sections 3.8.1 and 3.8.2 . The initial conditions are drawn

from (3.54) and (3.56). The recursive equations are presented in Figure 3.4.

3.9 Transitioning from epoch n to epoch n + 1

At the beginning of navigation the aircraft navigation state is perfectly known and

consequently the navigation state error associated with a perfect alignment is zero. At the

very instant the alignment is established, the aircraft camera geolocates two ground

features. Their measurements(xpc1 , ypc1 , xpc2 , and ypc2) are established in (3.28) and remain

constant throughout the first measurement epoch. They are used in the KF measurement

vector z in (3.40) to establish bearing measurements which are used to ultimately aid the

INS courtesy of the KF algorithm.
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Figure 3.4: Linear Kalman Filter Recursive Loop

At the completion of the first epoch, the first ground feature (whose coordinates are

xpc1 and ypc1) is no longer in the camera’s FOV and the coordinate measurements are

discarded. Simultaneously, xpc2 and ypc2 are transitioned to be tracked as the new first

ground feature, whose coordinates are xpc1 and ypc1 in the new measurement epoch n + 1.

This new measurement epoch is marked by the geolocation of a new ground feature that

replaces xpc2 and ypc2 of the previous epoch n. This is illustrated in Figure 3.5 where the y

coordinate is not shown.

The aircraft’s corrected navigation state x̂ is used to establish the location of the new

ground feature and thus initializes the next epoch n + 1 at time ` = 0. The ground feature

measurements for this new epoch are derived from (2.16) and (2.17) utilizing the
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Figure 3.5: Transition from Epoch n to Epoch n + 1

improved navigation state estimate x̂ as follows:

xn+1
pc1

= xn
pc2

yn+1
pc1

= yn
pc2

xn+1
pc2

=
(
xcL − δ̂xL

)
+

(
zcL − δ̂zL

) x f m20 −
(
ψcL − δ̂ψL

)
y f m20 −

(
θcL − δ̂θL

)
1 +

(
θcL − δ̂θL

)
x f m20 −

(
φcL − δ̂φL

)
y f m20

yn+1
pc2

=
(
ycL − δ̂yL

)
+

(
zcL − δ̂zL

) y f m20 +
(
ψcL − δ̂ψL

)
x f m20 +

(
φcL − δ̂φL

)
1 +

(
θcL − δ̂θL

)
x f m20 −

(
φcL − δ̂φL

)
y f m20

(3.62)

where the terms with a hat are KF estimates of the specific navigation state error

components. These estimates are subtracted from their corresponding Free INS outputs,

indicated with a subscript cL where L indicates the last measurement of the previous

epoch. This provides the corrected navigation state, which is used with the x f and y f

camera measurements in the focal plane during geolocation of the new ground feature.

These focal plane measurement values for the second ground feature at instant ` = 0 are

presented in Table 3.6 and again as follows for convenience:

x f m20
= 2.0 + ζ y f m20

= 0 + ζ
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where ζ ∼ N(0, σ2
c). The geolocated measurements xpc1 , ypc1 , xpc2 , and ypc2 are used in the

calculations for the KF measurement z and remain constant throughout epoch n + 1. The

associated geolocation error values (δxpc2 and δypc2) for the new ground feature have a

mean of zero and a covariance which is calculated using the matrix M.

The matrix M is derived from the measurement equations (2.22) and (2.23) that

follow:

xpc − xc − zc

(
x f m − θc(1+x2

f m) + φc · x f m · y f m − ψc · y f m

)
=

− δx − δz · x f − δφ · x f · y f + δθ(1 + x2
f ) + δψ · y f + δxpc − δx f

ypc − yc − zc

(
y f m − θc · x f m·y f m + φc(1 + y2

f m) + ψc · x f m

)
=

− δy − δz · y f − δφ(1 + y2
f ) + δθ · x f · y f − δψ · x f + δypc − δy f

The KF measurement equation in state space form is as follows:

z = H · δx + v

where the vector z contains the input measurement values from the camera. These

measurement values are calculated with the LHS of (2.22) and (2.23), so, the input

measurements z2 for the second ground feature are as follows:

z2 =

 xpc2 − xc − zc

(
x f m2 − θc(1 + x2

f m2
) + φc · x f m2 · y f m2 − ψc · y f m2

)
ypc2 − yc − zc

(
y f m2 − θc · x f m2 · y f m2 + φc(1 + y2

f m2
) + ψc · x f m2

)


2×1

The new geolocated measurements (xpc and ypc) are derived in (3.62) for epoch n + 1. The

associated variance of these measurements is extracted from the RHS of (2.22) and (2.23).

The RHS contains all the error terms for the measurement equation and accounts for the

deviation from the true measurements of the LHS. This is equal to the RHS of the state

space measurement equation, therefore the following is true:

H · δx + v =

−δx − δz · x f − δφ · x f · y f + δθ(1 + x2
f ) + δψ · y f + δxpc − δx f

−δy − δz · y f − δφ(1 + y2
f ) + δθ · x f · y f − δψ · x f + δypc − δy f
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where the KF estimates of the measurement error are contained in δx. This is better

presented as follows:

H · δ̂x + v =

−δ̂x − δ̂z · x f − δ̂φ · x f · y f + δ̂θ(1 + x2
f ) + δ̂ψ · y f + δ̂xpc − δx f

−δ̂y − δ̂z · y f − δ̂φ(1 + y2
f ) + δ̂θ · x f · y f − δ̂ψ · x f + δ̂ypc − δy f

where v accounts for the variance of the camera measurements in the focal plane (δx f and

δy f ) and has a covariance of R. The KF’s covariance P accounts for the remaining terms.

Therefore, the covariance of the geolocation error term (δ̂xpc and δ̂ypc) can be isolated

from the navigation error state terms as follows:

δ̂xpc = δ̂x + δ̂z · x f + δ̂φ · x f · y f − δ̂θ(1 + x2
f ) − δ̂ψ · y f + δx f

δ̂ypc = δ̂y + δ̂z · y f + δ̂φ(1 + y2
f ) − δ̂θ · x f · y f + δ̂ψ · x f + δy f

(3.63)

Recall the following:

δ̂x =

[
δ̂x, δ̂y, δ̂z, δ̂vx, δ̂vy, δ̂vz, δ̂φ, δ̂θ, δ̂ψ

]T

Furthermore, the matrix M is extracted from (3.63) and is the inverse of the observation

matrix H as follows:

M =

 1 0 x f 0 0 0 x f · y f −(1 + x2
f ) −y f

0 1 y f 0 0 0 (1 + y2
f ) −x f · y f x f


2×9

where x f and y f measurements are for the new geolocated ground feature at ` = 0 in

epoch n + 1. Therefore, x f = 2, and y f = 0 and matrix M is as follows:

M =

 1 0 2 0 0 0 0 −5 0

0 1 0 0 0 0 1 0 2


2×9

(3.64)

where  δxpc

δypc

 = M · δx +

 δx f

δy f

 (3.65)
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The matrix M is used to calculate the covariance of the new geolocated ground feature

measurements, which is then combined with the KF covariance matrix P during the

transition between epochs. The following subsections present the transition of the

navigation state error terms and the associated covariance for each of the three INS system

error models.

3.9.1 Transitioning from epoch n to epoch n + 1 with INS Drift Errors Only.

This section develops the transition for the INS system with only random drift errors.

The KF’s optimal estimate of the navigation state error
(
δ̂x

+

s

)n

L
at the end of epoch n is

transitioned to epoch n + 1 according to the following:

(
δ̂x

+

s

)n

L
=



δ̂x 9×1

δ̂xpc1

δ̂ypc1

δ̂xpc2

δ̂ypc2


13×1

=⇒
(
δ̂x

+

s

)n+1

0
=



δ̂x 9×1

δ̂xpc2

δ̂ypc2

0

0


13×1

(3.66)

where the nine error state estimates remain the same. The geolocation error estimates for

the first ground feature (δ̂xpc1 and δ̂ypc1
) in epoch n are discarded because the ground

feature is no longer in the camera’s FOV. However, the geolocation error estimates for the

second ground feature (δ̂xpc2 and δ̂ypc2
) in epoch n are transitioned to the first ground

feature position for epoch n + 1. The newly acquired ground feature error estimates are set

equal to zero because they are on average zero with a covariance derived from the previous

epoch’s navigation state error covariance plus the camera measurement error covariance.
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The covariance
(
P+

)n

L
of the navigation state error estimates for the last camera

measurement L at the end of epoch n is as follows:

(
P+

)n

L
=



P
(
δ̂x

)
9×9

• • • •

• P
(
δxpc1

)
• • •

• • P
(
δypc1

)
• •

• • • P
(
δxpc2

)
•

• • • • P
(
δypc2

)


13×13

(3.67)

where the (•) are place-holders representing the covariance of the error of the navigation

state error estimate for each component of the navigation state error. To facilitate the

discussion of the covariance matrix transition, the covariance matrix is separated into

individual blocks. Likewise the navigation state estimation error covariance matrix
(
P+

)n+1

0

for time ` = 0 in epoch n + 1 is separated into individual blocks and labeled as follows:

(
P+

)n+1

0
=


P1,1 P1,2 P1,3(
P1,2

)T
P2,2 P2,3(

P1,3
)T (

P2,3
)T

P3,3


13×13

(3.68)

The block labeled P1,1 is a 9 × 9 matrix that contains all of the covariance terms for the

navigation state error estimates. The block labeled P1,2 is a 9 × 2 matrix which contains

the off-diagonal covariance terms corresponding to the geolocation error estimates for the

first ground feature. The block labeled P2,2 is a 2 × 2 matrix which contains the diagonal

covariance terms for the geolocation error estimates for the first ground feature. The block

labeled P1,3 is a 9 × 2 matrix and the section labeled P2,3 is a 2 × 2 matrix. These two

matrices together contain the off-diagonal covariance terms corresponding to the

geolocation error estimates for the second ground feature. The block labeled P3,3 is a 2 × 2

matrix that contains the diagonal covariance terms corresponding to the geolocaton error

estimates for the second ground feature.
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Since the nine navigation state error estimates remain the same for the transition

between measurement epochs, the corresponding covariance terms will remain the same

as well. This is shown as follows:

Pn+1
1,10

= Pn
1,1L

The section labeled P1,2 is populated with the off-diagonal covariance terms for the

previously tracked second ground feature. This is presented as follows:

Pn+1
1,20

= Pn
1,3L

The terms in P2,3 in epoch n are discarded because they correlate the covariance of the

previously tracked first ground feature with the covariance of the second. The section

labeled P2,2 is populated with the diagonal covariance terms for the previously tracked

second ground feature. This is presented as follows:

Pn+1
2,20

= Pn
3,3L

The covariance terms for the newly tracked ground feature in sections P1,3, P2,3, and P3,3

are determined by using matrix M. The general matrix M must be augmented with zeros

to account for the geolocation error terms in δxs. This augmentation is shown as follows:

Ms =

[
M2×9 02×4

]
2×13

(3.69)

The covariance terms in P1,3 are derived from the expectation of the navigation state

error terms minus the KF estimated navigation state error terms. These covariance terms

are expressed as follows:

Pn+1
1,30

= E


(
δxs

)n

L
·

Ms ·

((
δxs

)n

L
−

(
δ̂x

+

s

)n

L

)
+

 δx f

δy f




T
Pn+1

1,30
= E

{(
δxs

)n

L
·
(
δxs

)nT

L

}
·Ms

T
−

[(
δ̂x

+

s

)n

L
·
(
δ̂x

+

s

)nT

L

]
·Ms

T
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Pn+1
1,30

=
(
P+

)n

L
·Ms

T
−

[(
δ̂x

+

s

)n

L
·
(
δ̂x

+

s

)nT

L

]
·Ms

T

The result is a 13 × 2 matrix, where the top nine rows fill the section P1,3. The covariance

terms in P2,3 are derived from the covariance of the previous δxpc2 and δypc2 terms in rows

12 and 13 of the covariance matrix minus the KF estimated values for δxpc2 and δypc2 .

These terms are shown as follows:

Pn+1
2,30

=
(
P+

[12:13]

)n

L
·Ms

T
−

 δ̂xpc2

δ̂ypc2

 · (δ̂x+

s

)nT

L
·Ms

T

The resulting matrix is 2 × 2, which fills P2,3 and relates the previous δxpc2 and δypc2

uncertainty with the new measurement uncertainty. The covariance terms in P3,3 are

derived from the previous covariance plus the covariance from the camera measurement.

Pn+1
3,30

= Ms ·
(
P+

)n

L
·Ms

T
+ I2 · σ

2
c

The resulting matrix is 2 × 2, which fills P3,3 and is the covariance for the geolocation of

the new ground feature.

3.9.2 Transitioning from epoch n to epoch n + 1 with INS Bias Errors Only.

This section develops the transition for the INS system with only sensor bias errors.

It is very similar to Section 3.9.1, except that bias terms must be accounted for

appropriately. The KF’s optimal estimate of the navigation state error at the end of epoch

n is transitioned to epoch n + 1 according to the following:

(
δ̂x

+

as

)n

L
=



δ̂x 9×1

b̂a 3×1

b̂g 3×1

δ̂xpc1

δ̂ypc1

δ̂xpc2

δ̂ypc2


19×1

=⇒
(
δ̂x

+

as

)n+1

0
=



δ̂x 9×1

b̂a 3×1

b̂g 3×1

δ̂xpc2

δ̂ypc2

0

0


19×1

(3.70)
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where the nine error state estimates and the six INS bias error estimates remain the same.

The geolocation error estimates for the first ground feature (δ̂xpc1 and δ̂ypc1
) in epoch n are

discarded because the ground feature is no longer in the camera’s FOV. However, the

geolocation error estimates for the second ground feature (δ̂xpc2 and δ̂ypc2
) in epoch n are

transitioned to the first ground feature position for epoch n + 1. The newly acquired

ground feature error estimates (δ̂xpcnew and δ̂ypcnew
) are on average zero with a covariance

derived from the previous epoch’s navigation state error covariance plus the camera

measurement error covariance.

The KF’s covariance
(
P+

)n

L
of the navigation state error estimates from the last

measurement L at the end of epoch n is as follows:

(
P+

)n

L
=



P
(
δ̂x

)
9×9

• • • • • •

• I3 · σ
2
ba

• • • • •

• • I3 · σ
2
bg

• • • •

• • • P
(
δxpc1

)
• • •

• • • • P
(
δypc1

)
• •

• • • • • P
(
δxpc2

)
•

• • • • • • P
(
δypc2

)


19×19
(3.71)

where the (•) are place-holders representing the covariance values of the error of the

navigation state error estimate for each component of the navigation state at time L in

epoch n. In the same fashion as described in the previous section, the covariance matrix is

separated into smaller sections according to the lines in (3.71). Likewise the covariance

matrix
(
P+

)n+1

0
for time ` = 0 in epoch n + 1 is separated into smaller sections and labeled
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according to the following:

(
P+

)n+1

0
=


P1,1 P1,2 P1,3(
P1,2

)T
P2,2 P2,3(

P1,3
)T (

P2,3
)T

P3,3


19×19

(3.72)

In general, the transition of this covariance matrix is the same as the Free INS with only

drift error terms shown in Section 3.9.1. The major difference is the inclusion of the bias

covariance terms; however, their covariance does not change between measurement

epochs and as a result the 15 × 15 section labeled P1,1 remains the same through the

transition. This is presented as follows:

Pn+1
1,10

= Pn
1,1L

The covariance terms associated with the previously tracked first ground feature are

discarded and the previously tracked second ground feature terms are transitioned into the

sections for the first ground feature covariance terms, presented as follows:

Pn+1
1,20

= Pn
1,3L

Pn+1
2,20

= Pn
3,3L

where section P1,2 is a 15 × 2 matrix of the off-diagonal terms for the first ground feature

and section P2,2 is a 2 × 2 matrix of the diagonal terms for the first ground feature. Section

P3,2 contains the correlated covariance terms between the first and second ground features,

therefore it is discarded from measurement L of epoch n.

The covariance terms for the newly tracked ground feature in sections P1,3, P2,3, and

P3,3 are determined by using matrix M. The general matrix M must be augmented with

zeros to account for the bias error terms and the geolocation error terms in δxas. This

augmentation is shown as follows:

Mas =

[
M2×9 02×10

]
2×19

(3.73)
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The elements in the 15 × 2 matrix, labeled P1,3, are the covariance of the cross-correlated

nine navigation state error estimates and six bias estimates with the newly geolocated

ground feature measurement estimates. These covariance values are derived from the

expectation of the KF’s previous navigation state error estimates with the measurement

variance of the second ground feature. These covariance values are as follows:

Pn+1
1,30

= E


(
δxas

)n

L
·

Mas ·

((
δxas

)n

L
−

(
δ̂x

+

as

)n

L

)
+

 δx f

δy f




T
Pn+1

1,30
= E

{(
δxas

)n

L
·
(
δxas

)nT

L

}
·Mas

T
−

[(
δ̂x

+

as

)n

L
·
(
δ̂x

+

as

)nT

L

]
·Mas

T

Pn+1
1,30

=
(
P+

)n

L
·Mas

T
−

[(
δ̂x

+

as

)n

L
·
(
δ̂x

+

as

)nT

L

]
·Mas

T

The result is a 19 × 2 matrix, where the top 15 rows fill section P1,3. The covariance terms

in P2,3 are derived from the covariance of the previous δxpc2 and δypc2 terms, in rows 18

and 19 of the covariance matrix. Pn+1
2,30

is expressed as follows:

Pn+1
2,30

=
(
P+

[18:19]

)n

L
·Mas

T
−

 δ̂xpc2

δ̂ypc2

 · (δ̂x+

as

)nT

L
·Mas

T

The resulting matrix is 2 × 2, which fills P2,3 and relates the previous δxpc2 and δypc2

uncertainty with the new measurement uncertainty. The covariance terms in P3,3 are

derived from the expectation of the newly geolocated ground feature measurements, and

are expressed as follows:

Pn+1
3,30

= Mas ·
(
P+

)n

L
·Mas

T
+ I2 · σ

2
c

The resulting matrix is 2 × 2, which fills P3,3 and is the covariance for the geolocation of

the new ground feature.

3.9.3 Transitioning from epoch n to epoch n + 1 with Both INS Error Sources.

The transition from epoch n to epoch n + 1 for the INS system with both random drift

errors and sensor bias errors is accomplished in the same manner as Section 3.9.2. This is
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the case because the transition only changes the KF navigation state error estimate and the

associated covariance. At the point of transitioning between epochs the KF has already

accounted for the uncertainty in the navigation state error due to system process noise.

Therefore, the transition of the geolocation error estimates and the associated covariance

are processed in the same manner as with no additive system process noise.

3.10 Summary

In summary, this chapter has fully developed the navigation scenario for simulation

of the automated driftmeter fused with inertial measurements. Three INS sensor error

configurations were presented: INS drift errors exclusively, INS bias errors exclusively,

and combined INS errors. The Kalman filter fused vision measurements from the

automated driftmeter with INS measurements in a SLAM process. Chapter 4 will now

provide the results for these simulations.
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IV. Results

This chapter presents the simulation results of the automated driftmeter aided INS

developed in Chapter 3. Monte Carlo analyses are applied to the navigation scenarios to

provide a statistical representation of true navigation state performance. The automated

driftmeter is first evaluated with the same camera resolution used in the previous works of

Relyea [3] and Quarmyne [4]. Two levels of analysis (60 or a 500 run Monte Carlo) are

utilized. A 60 run Monte Carlo illustrates the performance of the same three error

parameters presented in Chapter 3: INS drift errors exclusively, INS bias errors

exclusively, and combined INS errors. Finally, the resolution is modified to provide

improved results and is analyzed with a 500 run Monte Carlo, presenting a comparison

between the results of a 9 MP and 25 MP camera in tabular form.

The resolution of the camera determines its measurement standard deviation. It is

assumed that camera measurements would have an uncertainty of one pixel relative to the

truth data. The standard deviation for each camera specification is calculated using

equation (3.42), presented again here for convenience:

σc =

√
1

# MP
· 10−6

where the covariance of the camera measurement is the inverse of the number of pixels

populating the focal plane. The square root of that value provides the standard deviation

of those camera measurements.

The 1-σ inertial sensor specifications for this analysis are drawn from Section 3.5

and presented in Table 4.1. The combined specifications provide a variance of 1 km
hr .

However, some sections only utilize part of these specifications and consequently do not

provide the full 1 km
hr variance. The sampling rate of the inertial sensors and the camera are

set to 1 Hz. The Kalman filter measurement updates from the camera therefore occur at

the same rate that inertial measurements are made.
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Table 4.1: Calculated 1-σ inertial sensor specifications provided a variance of
1 km

hr drift error due to the influence of drift and biases. These values are non-
dimensional for this navigation scenario.

Parameter UNITS 1 km/hr

Sampling interval s 1

Gyro bias sigma Non-Dim 6.4247 × 10−8

Angular random walk Non-Dim 2.8746 × 10−7

Accel bias sigma Non-Dim 7.7118 × 10−6

Velocity random walk Non-Dim 4.0085 × 10−5

4.1 Automated Driftmeter Utilizing 9 MP Camera

This section presents the results of the three Free INS error parameters presented in

Chapter 3. Section 4.1.1 presents resutls for INS drift errors only. Section 4.1.3 presents

the results for INS bias errors only. Section 4.1.5 presents the results for a combination of

the INS errors.

4.1.1 A Single Run with INS Drift Errors Only.

The KF is able to estimate the Free INS’s drift error, as illustrated in

Figures 4.1 and 4.2. The KF’s covariance indicates the uncertainty of the estimate, while

the Free INS’s covariance indicates the uncertainty in position. Due to the error

accumulations within 15 epochs (150 seconds) the Free INS’s uncertainty in position is

5 m. However, the Free INS’s uncertainty in position accumulates to approximately 600 m

within 360 epochs (1 hour). The KF’s covariance for the x-position also accumulates with

time, while the covariance of the y & z-positions stabilize. This indicates the KF’s

confidence in its estimate.
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Figure 4.1: First 15 epochs of position error with only INS drift errors, aided
by a 9 MP camera. The Free INS position error is indicated with a red solid
line and the KF estimate with a blue solid line. The Free INS covariance is
indicated with a black dashed line and the KF covariance is indicated with a
green dashed line.
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Figure 4.2: Full 360 epochs of position error with only INS sensor drift errors,
aided by a 9 MP camera. Color scheme is the same as that in Figure 4.1.
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4.1.2 60 Run Monte Carlo Analysis with INS Drift Errors Only.

The 60 run Monte Carlo analysis provides a statistical representation of the Free INS

and the aided INS performance, and is indicated in Figures 4.3, 4.4, and 4.5. This analysis

includes each individual run of the Free INS’s and the aided INS’s position error, along

with their mean and standard deviations. The mean values are provided to illustrate the

quality of the Monte Carlo analysis, which is determined by comparing the mean system

output to the mean of the Gaussian distribution input (zero for this data).

In Figure 4.3, the x-axis standard deviation of the aided INS performance is the same

as, if not worse than, the Free INS performance. Along the y-axis (in Figure 4.4) the aided

system’s performance is significantly better than the Free INS’s performance, such that the

standard deviation constrains its mean error close to zero. Likewise, the aided system’s

performance along the z-axis, (in Figure 4.5) is even better than the y-position’s

performance, such that the standard deviation constrains its mean error closer to zero.
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Figure 4.3: 60-run Monte Carlo of x-position error with only INS sensor drift
errors and aided by an automated driftmeter, with a 9 megapixel camera.
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Figure 4.4: 60-run Monte Carlo of y-position error with only INS sensor drift
errors and aided by an automated driftmeter, with a 9 megapixel camera.
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Figure 4.5: 60-run Monte Carlo of z-position error with only INS sensor drift
errors and aided by an automated driftmeter, with a 9 megapixel camera.
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The final navigation state error standard deviation results from this 60 run Monte

Carlo analysis are presented in Table 4.2.

Table 4.2: 60 Run Monte Carlo with only drift final navigation state error
standard deviations.

Std Dev Unaided Final Value Aided Final Value Percent Improved

σx 0.694 km 899.93 m −29.7%

σy 0.751 km 20.90 m 97.2%

σz 0.576 km 4.79 m 99.2%

σvx 4.30 × 10−3 m/s 4.81 × 10−3 m/s −11.9%

σvy 4.73 × 10−3 m/s 1.72 × 10−4 m/s 96.4%

σvz 5.88 × 10−2 m/s 2.54 × 10−4 m/s 99.6%

σφ 1.73 × 10−5 rad 1.13 × 10−5 rad 34.7%

σθ 1.76 × 10−5 rad 1.49 × 10−5 rad 15.3%

σψ 1.85 × 10−5 rad 5.91 × 10−5 rad −219.5%

4.1.3 A Single Run with INS Bias Errors Only.

The KF’s ability to estimate the Free INS’s bias error is illustrated in

Figures 4.6 and 4.7. Contrary to the drift error analysis, this Free INS’s error accumulates

to 1 m within the first 15 epochs (150 seconds). For 360 epochs (1 hour), the Free INS’s

uncertainty in position accumulates to approximately 600 m, similar to the drift error plot.

This KF’s covariance for the x-position also increases with time; however, remains less

than the covariance of the drift error-faulted INS. This KF’s covariance for the y &

z-positions stabilize in the same way as the system that only contains drift errors.
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Figure 4.6: First 15 epochs of position error with only INS bias errors, aided
by a 9 MP camera. The Free INS position error is indicated with a red solid
line and the KF estimate with a blue solid line. The Free INS covariance is
indicated with a black dashed line and the KF covariance is indicated with a
green dashed line.
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Figure 4.7: Full 360 epochs of position error with only INS sensor bias errors,
aided by a 9 MP camera. Color scheme is the same as that in Fig 4.6.
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4.1.4 60 Run Monte Carlo Analysis with INS Bias Errors Only.

This section presents the results of a 60 run Monte Carlo analysis with only INS

sensor bias errors in Figures 4.8, 4.9, and 4.10. Contrary to the drift error analysis, when

the standard deviation of the aided INS performance along the x-axis is evaluated,it proves

slightly better than the Free INS performance. In the same manner, the aided INS

performance along the y and z axes is much better than the Free INS performance.
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Figure 4.8: 60-run Monte Carlo of x-position error with only INS sensor bias
errors and aided by an automated driftmeter, with a 9 megapixel camera.

Throughout these simulations, spikes are apparent from white Gaussian noise caused by

the camera measurement noise. They are more evident early in the simulations due to the

smaller average values of the estimates. These spikes in the standard deviations caused

unstable results at times, which are not presented in the results section, because they are

considered statistical outliers.
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Figure 4.9: 60-run Monte Carlo of y-position error with only INS sensor bias
errors and aided by an automated driftmeter, with a 9 megapixel camera.
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Figure 4.10: 60-run Monte Carlo of z-position error with only INS sensor bias
errors and aided by an automated driftmeter, with a 9 megapixel camera.
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The final navigation state error standard deviation results from this 60 run Monte

Carlo analysis are presented in Table 4.3.

Table 4.3: 60 Run Monte Carlo with only bias final navigation state error
standard deviations.

Std Dev Unaided Final Value Aided Final Value Percent Improved

σx 0.738 km 369.01 m 50.0%

σy 0.700 km 9.56 m 98.6%

σz 0.498 km 2.54 m 99.49%

σvx 5.41 × 10−3 m/s 2.48 × 10−3 m/s 54.2%

σvy 4.92 × 10−3 m/s 3.68 × 10−5 m/s 99.25%

σvz 5.40 × 10−3 m/s 1.32 × 10−5 m/s 99.8%

σφ 2.31 × 10−5 rad 8.13 × 10−6 rad 64.8%

σθ 2.64 × 10−5 rad 1.25 × 10−5 rad 52.7%

σψ 2.26 × 10−5 rad 3.66 × 10−5 rad −61.9%

4.1.5 A Single Run with Combined INS Sensor Errors.

The KF’s ability to estimate both the drift and bias errors combined in the Free INS is

illustrated in Figures 4.11 and 4.12. From this single run, significant change in

performance is not evident when compared to just one type of inertial sensor error

simulation. In the x-axis, the KF’s covariance is slightly better than the Free INS’s

covariance. However, in the y and z-axis, the KF covariance is significantly better than the

Free INS covariance.
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Figure 4.11: First 15 epochs of position error with combined INS errors, aided
by a 9 MP camera. The Free INS position error is indicated with a red solid
line and the KF estimate with a blue solid line. The Free INS covariance is
indicated with a black dashed line and the KF covariance is indicated with a
green dashed line.
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Figure 4.12: Full 360 epochs of position error with combined INS sensor errors,
aided by a 9 MP camera. Color scheme is the same as that in Fig 4.11.
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4.1.6 60 Run Monte Carlo Analysis with Combined INS Sensor Errors.

This section provides the results of a 60 run Monte Carlo analysis where both the

drift and bias errors are combined in the Free INS. These results are shown in

Figures 4.13, 4.14, and 4.15.

Having great similarity to the simulations with just drift error in the Free INS, the

aided INS standard deviation is slightly better than the Free INS standard deviation in the

x direction. The aided y and z standard deviation of the position error remains

significantly better than the Free INS.
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Figure 4.13: 60-run Monte Carlo of x-position error with combined INS sensor
errors and aided by an automated driftmeter, with a 9 megapixel camera.
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Figure 4.14: 60-run Monte Carlo of y-position error with combined INS sensor
errors and aided by an automated driftmeter, with a 9 megapixel camera.
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Figure 4.15: 60-run Monte Carlo of z-position error with combined INS sensor
errors and aided by an automated driftmeter, with a 9 megapixel camera.
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The final standard deviation of the navigation state error from this 60 run Monte

Carlo analysis is presented in Table 4.4.

Table 4.4: 60 Run Monte Carlo with combined INS sensor errors final
navigation state error standard deviations.

Std Dev Unaided Final Value Aided Final Value Percent Improved

σx 0.878 km 1,091.21 m −24.2%

σy 0.908 km 85.03 m 90.6%

σz 0.736 km 4.85 m 99.3%

σvx 6.09 × 10−3 m/s 4.91 × 10−3 m/s 19.4%

σvy 5.90 × 10−3 m/s 3.02 × 10−4 m/s 94.9%

σvz 1.88 × 10−1 m/s 2.31 × 10−4 m/s 99.9%

σφ 2.46 × 10−5 rad 1.39 × 10−5 rad 43.5%

σθ 2.63 × 10−5 rad 1.65 × 10−5 rad 37.3%

σψ 2.47 × 10−5 rad 2.43 × 10−4 rad −883.8%

4.2 Comparison of a 9 MP with a 25 MP Camera Using 500 Run Monte Carlo

The results from the previous 60 run Monte Carlo analyses are sufficient to show that

the system’s performance is inadequate with the 9 MP camera and requires modification.

This section performs a 500 run Monte Carlo analysis, first with the 9 MP camera and

then with a modified 25 MP camera. The error configuration utilizing both error sources is

most similar to a real Free INS system. Therefore, Section 4.2 will only be concerned with

this configuration.

4.2.1 500 Run Monte Carlo Utilizing a 9 MP camera.

The plots for the 500 run Monte Carlo analysis, using a 9 MP camera, are presented

in Figures 4.16, 4.17, and 4.18.
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Figure 4.16: 500 Run Monte Carlo of x-position error with combined INS
sensor errors and aided by an automated driftmeter, with a 9 megapixel camera.
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Figure 4.17: 500 Run Monte Carlo of y-position error with combined INS
sensor errors and aided by an automated driftmeter, with a 9 megapixel camera.
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Figure 4.18: 500 Run Monte Carlo of z-position error with combined INS
sensor errors, aided by an automated driftmeter, with a 9 megapixel camera.

The final standard deviation of the navigation state error from this 500 run Monte

Carlo analysis is presented in Table 4.5. These results should represent a stronger

statistical representation for the 9MP combined sensor error than the 60 run Monte Carlo.

Table 4.5: Final navigation state error standard deviation from a 500 Run Monte
Carlo with combined INS sensor errors and a 9 MP camera

Std Dev Unaided Final Value 9 MP Aided Final Value Percent Improved

σx 0.992 km 1024.76 m −3.2%

σy 1.081 km 125.18 m 88.4%

σz 0.698 km 5.29 m 99.2%

σvx 6.72 × 10−3 m/s 5.24 × 10−3 m/s 22.0%

σvy 7.13 × 10−3 m/s 3.97 × 10−4 m/s 94.4%

σvz 3.73 × 10−2 m/s 2.4 × 10−4 m/s 99.4%

σφ 2.95 × 10−5 rad 1.39 × 10−5 rad 52.9%

σθ 2.94 × 10−5 rad 1.85 × 10−5 rad 37.1%

σψ 2.97 × 10−5 rad 3.53 × 10−4 rad −1088.5%
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4.2.2 500 Run Monte Carlo Utilizing a 25 MP camera.

The plots for the 500 run Monte Carlo analysis, using a 25 MP camera, are presented

in Figures 4.19, 4.20, and 4.21.
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Figure 4.19: 500-run Monte Carlo of x-position error with combined INS
sensor errors, aided by an automated driftmeter, with a 25 megapixel camera.
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Figure 4.20: 500-run Monte Carlo of y-position error with combined INS
sensor errors, aided by an automated driftmeter, with a 25 megapixel camera.

93



20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Epochs

Z
 P

o
s
. 
E

rr
o

r
[k

m
]

 

 

Aided INS Error Mean

Free INS Error Mean

Aided INS Std dev 1σ

Free INS Std Dev 1σ

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
−1

Epochs [sec×10]

 

Figure 4.21: 500-run Monte Carlo of z-position error with combined INS
sensor errors, aided by an automated driftmeter, with a 25 megapixel camera.

The final standard deviation of the navigation state error from this 500 run Monte

Carlo analysis is presented in Table 4.6. By simply changing the camera resolution,

significant improvements are evident throughout these tabulated results.

Table 4.6: Final navigation state error standard deviation from a 500 Run Monte
Carlo with combined INS sensor errors and a 25 MP camera

Std Dev Unaided Final Value 25 MP Aided Final Value Percent Improved

σx 1.009 km 856.22 m 15.2%

σy 988.01 km 43.49 m 95.6%

σz 0.730 km 4.10 m 99.4%

σvx 6.68 × 10−3 m/s 4.11 × 10−3 m/s 38.5%

σvy 6.57 × 10−3 m/s 1.93 × 10−4 m/s 97.1%

σvz 5.88 × 10−2 m/s 2.01 × 10−4 m/s 99.7%

σφ 2.97 × 10−5 rad 1.39 × 10−5 rad 53.2%

σθ 2.90 × 10−5 rad 1.52 × 10−5 rad 47.6%

σψ 2.80 × 10−5 rad 1.24 × 10−4 rad −342.9%
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4.3 Summary

This chapter presents the simulation results of the automated driftmeter aided INS

developed in Chapter 3. The driftmeter was first evaluated with a 9 MP camera. The

results from a single run of each of the three Free INS error parameters illustrate that the

KF is able to estimate the bias error of the Free INS more easily than the drift error,

providing better aided navigation performance. It is also noted that the estimate of the

x-position error is very weak and is further supported with 60 run Monte Carlo analyses,

which statistically represents the performance of the aided system. The final standard

deviation values of each navigation state error are presented in tables corresponding to

these Monte Carlo analyses. These final navigation state error values are used to

determine the percent improvement of the aided system. From these results it is noted that

the aiding for the ψ Euler angle is also very week. Finally, the camera resolution is

modified to 25 MP and the two different systems are compared using a 500 run Monte

Carlo, where it is shown that 25 MP resolution provides improved navigation state error

estimation and aiding throughout all nine error states.
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V. Conclusions and Recommendations

This thesis advances the development of a method for aiding a navigation-grade INS

with an optical sensor, acting as a automated driftmeter. The motivation of this research is

to achieve precision navigation similar to GPS and thus providing an alternative passive

navigation system for military aircraft applications. Simulations are performed to evaluate

the KF’s ability to mitigate the deleterious effects of the inertial sensor errors of a Free

INS. The main contribution of this research is the calculation of the covariance of the

geolocation error of a ground feature and then tracking that feature until it disappears from

the field of view of the camera, whereupon it is replaced by a newly geolocated ground

feature. Monte Carlo analyses are performed in order to gain a statistical representation of

this new aided system’s performance. This chapter summarizes the results of these Monte

Carlo analyses and provides recommendations for future research.

5.1 Conclusions

This research incorporates a linear Kalman filter algorithm, which utilizes bearing

measurements from geolocating and tracking ground features to aid a Free INS during a

simulated one hour flight. Two levels of Monte Carlo analysis, a 60 run and a 500 run, are

performed, and their results are compiled to establish the degree of improvement afforded

by this method of aiding a navigation-grade INS with an optical sensor.

The current configuration of this automated driftmeter-aided INS does not meet the

precision navigation standards established by GPS. It is shown with the single run

simulations that the linear KF is able to precisely estimate the x, y, and z-position errors

within the first 15 epochs (that is, after having geolocated 15 ground features over a

timespan of 150 s). Over a longer duration of time, however, the linear KF is not able to

estimate the error for the x-position data as effectively. In the best case scenario with
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combined Free INS error sources, and utilizing the 25 MP camera, the x-position error

range is reduced to 856 m. This range is far from the accuracy of GPS.

5.2 Recommendations for Future Work

The inability to estimate the errors in the x-position has been persistent throughout

this research as well as the previous research by Quarmyne [4] and Relyea [3]. This

problem is not resolved herein. Any future work should focus on the disparity between

position error measurements. This may be resolved by using an indirect feedback KF

configuration, as discussed in Chapter 2.

The spikes that are due to the camera measurement noise should be resolved to

improve overall reliability of the aided system. This may be done by implementing

residual monitoring in the KF algorithm. This is done to establish ”reasonableness

checking of measurements before they are processed by the filter” [1].

Further research should evaluate the benefit of providing precise altitude information

to the KF and thus reducing the coupled position error effect from the INS in the

measurement equation. This additional altitude information should improve the overall

navigation capabilities of this autonomous driftmeter. After all, altitude information was

used with driftmeter measurements in the golden age of navigation.

This research employs a simplified navigation scenario, simulated in MATLAB, to

evaluate the possibilities of using bearing-only optical measurements. The results proved

inferior to the performance of the precision navigation standard of GPS. This research

does, however, have the potential to provide an avenue for future improvement of this

passive navigation tool for military applications.
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Appendix A: Honeywell HG9900 INS

Specifications from a commercial navigation grade INS are used for comparison with

the calibrated INS sensor values. The Honeywell HG9900 is a navigation grade INS with

a long-time position accuracy of 0.8 nmi
hr performance, which is equivalent to 1.48 km

hr . The

HG9900 IMU’s 1-σ error specifications are provided in Table A.1.

Table A.1: Honeywell HG9900 tactical-grade IMU 1-σ error specifications
[22]. The value for the velocity random walk is not provided.

Parameter UNITS HG9900

Sampling interval ms 3.33

Gyro bias sigma deg/hr < 0.003

Angular random walk deg/
√

hr < 0.002

Gyro scalefactor sigma PPM < 5.0

Accel bias sigma m/s2 < 25 × 10−6

Velocity random walk m/s/
√

hr not provided

Accel scalefactor sigma PPM < 100

The gyro scale factor causes an error to occur only during actual rotation. The

accelerometer scale factor causes an error to occur only during actual acceleration. They

are specified in terms of Parts Per Million (PPM). Therefore, the error for 360 degrees of

rotation is computed as follows:(
5

1000000

)
· 360 deg = 0.0018 deg

The error for an acceleration of 10 m
s2 is computed as follows:(

100
1000000

)
· 10

m
s2 = 0.001

m
s2
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In the scenario in this research, the nominal rotation and acceleration are zero; therefore,

the scale factor errors can be ignored. Section A.1 analyzes the Gyro’s error dynamics to

better understand how these error specifications relate to the calibrated error values.

A.1 Connecting the HG9900 Gyro’s Specifications to the Mathematical Model of

the Error Equations

The continuous-time dynamics are expressed as

θ̇ = ω + b + σc · ẇ , θ0 = 0 (A.1)

where ω is the true input angular rate, b is the gyro’s random bias, b ∼ N
(
0, σ2

b

)
and w is a

unit Brownian motion w ∼ N(0, t). Therefore, the mathematical model’s units for the

gyro’s continuous-time drift parameter σc are rad
√

s and it is related to the HG9900 Angle

Random Walk specification σθ as follows:

σc =
σθ

60 · 57.3
rad
√

s
(A.2)

σc =
0.002

60 · 57.3
= 5.817 × 10−7 rad

√
s

(A.3)

The discrete-time system dynamics are as follows:

θk+1 = θk +
(
ωk + b

)
∆T + ζk (A.4)

where

ζk ∼ N
(
0, σ2

d
)
, θ0 = 0 (A.5)

When the true angular rate ωk is zero and the bias is zero, then θk ∼ N
(
0, k · σ2

d

)
(where

k = 3600 · fs at one hour). Therefore the following is true:

σ2
θ = 3600 · fs · σ

2
d (A.6)

which is

σd =
σθ

60 · 57.3
·

1√
fs
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The sampling frequency is 1 Hz or 1 1
s . Therefore, following is true:

σd =
0.002

60 · 57.3
·

1
√

1
= 5.82 × 10−7 rad

The manufacturer’s specifications have now been related to the parameters of the

discrete-time INS update scenario.

A.2 Non-Dimensionalized HG9900 Specifications

The HG9900’s bias and drift error specifications are non-dimensionalized according

to the method employed in Section A.1 using parameters described in Section 3.1.

Rate Gyro (HG9900)

• 0.003 ·�
�deg

��hr
·

rad
57.3��deg

·
��hr

3600�s
·

1000��m

100 �m

�s

→ σbg = 1.45 × 10−7

• 0.002 · �
�deg

�
��
√

hr
·

rad
57.3��deg

·
�
��
√

hr
√

3600�s
·

1√
11

�s

→ σdg = 5.82 × 10−7

Accelerometer (HG9900)

• 25 × 10−6 ·
10 ·��m

��s2
·

1000��m

(100 �m

�s
)2

→ σba = 2.50 × 10−5

• not provided → σda � 2.50 × 10−5

The accelerometer random walk value is not provided in the manufacturer specification

sheet, presumably because it is small in comparison to the accelerometer bias and scale

factor error. However, conversions are determined for the remaining 1-σ error terms. If the

accelerometer drift error is assumed to be the same as the accelerometer bias error, then

the average of the HG9900 error standard deviations is 1.3 × 10−5 compared to 1.2 × 10−5

for the average of the calibrated INS error values in Table 3.3. These average values are

closer than one would expect. However, the assumption that accelerometer random walk

value is equivalent to its bias value is probably the source of the error in comparison and it

can be justified that the calibrated INS error values qualify as a navigation grade INS.
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Appendix B: Free INS Results

B.1 Free INS with Process Noise Errors Only

This section presents the results from the free INS with only sensor drift errors.
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Figure B.1: Free INS position error caused by only sensor drift
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Figure B.2: Free INS velocity error caused by only sensor drift
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Figure B.3: Free INS attitude error caused by only sensor drift

B.2 Free INS with Bias Errors Only

This section presents the results from the free INS with only sensor bias errors.
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Figure B.4: Free INS position error caused by only sensor biases
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Figure B.5: Free INS velocity error caused by only sensor biases
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Figure B.6: Free INS attitude error caused by only sensor biases
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Figure B.7: Free INS accelerometer bias
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Figure B.8: Free INS gyroscope bias
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B.3 Free INS with Combined Sensor Errors

This section presents the results from the free INS with both sensor drift and bias

errors.
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Figure B.9: Free INS position error caused by both sensor drift and biases
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Figure B.10: Free INS velocity error caused by both sensor drift and biases

105



20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

−2

−1

0

1

2

x 10
−5

φ 
E

rr
or

[r
ad

]

 

 
Error
Varaince

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

−2

−1

0

1

2

x 10
−5

θ 
E

rr
or

[r
ad

]

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
−4

−2

0

2

x 10
−5

ψ
 E

rr
or

[r
ad

]

Epochs [sec×10]

Figure B.11: Free INS attitude error caused by both sensor drift and biases
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Figure B.12: Free INS accelerometer bias
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Figure B.13: Free INS gyroscope bias
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