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Abstract

High precision Cold Atom Interferometers (CAI) are in development to supplement

or replace conventional, navigation quality inertial measurement units. A major drawback

of the atomic interferometers is their low duty cycle and sampling rate, caused by delays

required for cooling the atoms and collecting acceleration and angular rate measurements.

A method is herein developed for inertial navigation by integrating highly accurate, low

duty cycle CAI measurements with high bandwidth, conventional Inertial Navigation

System (INS) measurements. A fixed-lag smoothing algorithm is used to estimate optimal

acceleration and angular rate measurements from the CAI and INS data. Given current

CAI limitations, simulation results demonstrate nearly 50 percent error reduction for the

enhanced INS compared to a conventional, unaided INS. When the conventional INS

position error was increased by 500 (m/hr), the 50 percent error reduction from aiding

was maintained. Increasing the conventional INS data rate fifteen-fold while maintaining

a 1 Hz CAI sample rate leads to an approximately 6 percent increase in navigation

error, suggesting that the CAI-aiding algorithm effectivity is only slightly influenced

by the conventional INS data rates. A five-fold increase of the CAI measurement rate

shows approximately 80 percent reduction in navigation error, supporting the potential

for significant performance gains in the near future from advancements in cold atom

technology.
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SIGNAL PROCESSING IN COLD ATOM INTERFEROMETRY-BASED INS

I. Introduction

1.1 Research Motivation

Precision navigation is critical for numerous applications in both civilian and defense

sectors, from vehicle guidance to accurate target location. Historically, passive inertial

navigation was the dominant guidance system used for naval and aviation purposes, but lost

favor after the widespread introduction of the Global Positioning System (GPS). Recent

advances in GPS technology now provide centimeter-level measurements for users in

certain applications. Users have developed a dependency upon GPS, a weakness which

our enemies exploit by interfering with its signals, often via low cost methods. In addition

to deliberate threats, GPS has a number of other limitations. Sub-meter GPS accuracy

is only attainable when users’ receivers have uninterrupted tracking of at least four GPS

satellites [1]. Large buildings, canyons and indoor environments still pose problems for

users attempting to acquire and track GPS signals. In light of these limitations and the

recognized dependency, interest has reverted toward alternative, passive sensors for aiding

Inertial Navigation Systems (INSs), particularly for military operations. This research

will investigate the feasibility of using a Cold Atom Interferometer (CAI) as a passive

navigation aid.

Demonstrations in cold atom interferometry technology show the potential for

collecting high precision measurements in the fields of navigation, gradiometry, geophysics

and atomic clocks [2]. Numerous universities are researching hardware designs

and improvements for cold atom interferometers, including Stanford and Ben-Gurian

University in Israel [3], [4]. Stanford University has demonstrated the performance of a
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large, 1 (m3) prototype CAI used for ground navigation, as well as a compact CAI for

collecting aerial gradiometry measurements. The CAI performance characteristics used in

this thesis are referenced from the Stanford University demonstrations [5]. Ben-Gurian

University has recently developed a CAI fabricated chip, illustrated in Figure 1.1, which

opens the possibilities for compact, affordable applications in the near future [4].

Figure 1.1: Atom Chip [6]

1.1.1 Inertial Navigation.

Inertial navigation is the process of measuring position, velocity and orientation

through use of dead-reckoning inertial sensors. Specifically, inertial navigation systems

use acceleration and angular rotation rate measurements collected from accelerometers

and gyroscopes (gyros), and then integrate these measurements to determine position,

velocity and attitude [7]. The measured acceleration is the sum of linear acceleration and

2



gravity along the accelerometer’s input axis of measurement. Integration of the gyroscopes’

rotation rates provides angular orientation so that the acceleration vector may be resolved

in a reference frame. Typical strapdown inertial navigation systems are thus composed

of three accelerometers and three gyroscopes to collect measurements from the three

orthogonal axes. The strapdown INS is a digital alternative to the mechanical gimbal and

is used predominately in aerospace navigation because of its improved reliability, lighter

weight, and reduced costs. Ring laser or fiber optic interferometers act as rate gyroscopes

and accelerometers in the strap down systems and can collect measurements on the order of

300 Hz. The INS is also a passive system, which makes its operation impervious to external

denial techniques and makes them very useful for military applications against jamming

or spoofing threats [7]. Despite the passive nature and high sampling rates, small sensor

errors, which are integrated as part of the inertial measurements, cause the INS accuracy

to degrade and become unreliable over time. Thus, the INS measurements require aiding

from other sensors, typically GPS, to bound error growth [7].

1.1.2 Cold Atom Interferometry.

Conceptually, the cold atom interferometer design is similar to an optical interferom-

eter used in both ring laser and fiber optic gyros. Using reflectors and beam splitters, a

ring laser interferometer guides counter-propagating light beams and then collects rotation

information from the resultant interference patterns as illustrated in Figure 1.2. Similarly,

atomic ’matter’ waves are split using either material structures or light fields [8] as shown

by the π and π
2 beams shown in Figure 1.2. The atom waves are then guided using ei-

ther lasers or magnetic fields [4]. The wavelength of the atomic wave, λ, is related to the

momentum p of the atom according to the quantum mechanics relationship as follows [8]:

λ =
h
p

=
h

mv
(1.1)

where h is Plank’s constant, m is the atom’s mass and v is its velocity. In general, CAI

physics is based upon de Broglie’s wave-particle duality hypothesis which states that at

3



the quantum level, matter exhibits wave-like properties [5]. In the CAI, cooled atoms are

guided through a vacuum and their resultant acceleration-induced phase shifts are measured

via a diffraction grating. The phase shift ∆φlight is analogous to the Sagnac effect in the

optical interferometers and can be described by [5]

∆φlight =
4πΩA
λc

(1.2)

where Ω is the angular rate of the instrument, c is the speed of light, and A is the enclosed

area of the interferometer’s optical path. The phase shifts cause interference patterns on

the diffraction grating from which phase information is collected and used to determine

angular rotation. Additionally, because of their particle nature, the atoms may be treated as

inertial masses and their movement is used to determine the CAI system’s acceleration.

Despite functional similarities, the CAI’s atom wave interferometer offers the

advantage of higher sensitivity to inertial forces as compared to the conventional, optical

interferometer in strapdown INS. The group velocity of the atoms is relatively small

compared to the speed of light, so very small accelerations will still induce a significant

change in the atom beam’s path, causing measureable phase shifts in the interference

signal. If A is held constant, theoretically CAI is more sensitive to rotation than an optical

interferometer by a factor of 10 since atomic mass is greater than the light photon’s relative

mass [3]. This is expressed in the following equation, where δφlight was defined in (1.2),

and δφatom is the atom phase shift:

δφatom

δφlight
=

m
h/(λc)

> 1010

Evaporative cooling techniques allow for precise control of the velocity and position

of the atoms in the atomic wave. The low temperatures necessary to cool the atoms also

improve the CAI’s signal-to-noise ratio and its sensitivity to external fields [8].

However, there are some factors which reduce the CAI sensitivity, including

bandwidth and duty cycle. Due to low bandwidth associated with high precision sensors,
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Figure 1.2: Comparison of Optical and Atom Interferometer (Mach-Zehnder type

configuration).

large dynamics may cause the path of the atom particles to exceed the sensor’s detection

threshold. Thus, a high dynamic environment may produce unreliable measurements or

CAI system failure. Additionally, the time duration for collecting a CAI measurement is

on the order of 1 Hz [8], which leads to a loss in collected information as compared to the
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typical 50-300 Hz sample availability provided by conventional strap-down INS. The main

themes for this research are both understanding and compensating for this latter issue.

1.2 Problem Definition

The objective of this thesis is to explore Inertial Navigation using CAI-based

acceleration and angular rate measurements. While CAI-based measurements are very

accurate, the rate at which they can be obtained is relatively low, e.g. 1 Hz. The low

duty cycle is caused by delays required for cooling the atoms and collecting acceleration

and angular rate measurements [5], [8]. Less accurate, conventional INS measurements,

which are available at a much higher rate, might be used to fill the temporal gap in

CAI measurements. In addition, the CAI measurements represent an average of the true

acceleration and angular rate during the collection phase of the duty cycle. Therefore, the

CAI measurement may be combined with the conventional INS data during this phase

to reduce the overall navigation error. For a CAI sensor with 50 percent duty cycle,

the conventional INS measurements would be used for navigation during the first half

of the duty cycle where CAI measurements are unavailable. Subsequently, a weighted

combination of 1) the conventional INS-provided multiple measurements, and 2) the single,

CAI-based acceleration and angular rate measurements would be used for the second half

of the duty cycle.

1.3 Related Research

1.3.1 Multiple INS Integration.

Omr, Georgy and Noreldin propose a method for integrating the accelerometer

measurements from multiple MEM sensors for pedestrians in [9]. The authors show that

Micro Electro-Mechanical System (MEMS) measurements from multiple devices carried

on different parts of the user may be collected and combined wirelessly. Associated

covariances for the position and velocity measurements are used to calculate the best

6



estimate for a unified navigation solution, or conversely, used to update all the individual

MEM’s measurement solutions. The covariance weighting algorithm requires less

computing power than a centralized Kalman filter because it only updates the solutions. In

other words, propagation of an internal Kalman filter model is unnecessary. This method

allows for integrating an unrestricted number of inertial navigation sensors, which the

authors note is a challenge in centralized Kalman filters.

This thesis differs from Omr’s research in that this work considers more complex

inertial navigation sensors, corresponding measurements, and purpose. The cold atom

interferometer and INS sensor are much more accurate than MEMs and provide angular

rate measurements in addition to acceleration measurements. Thus, while Omr’s research is

limited to aiding position and velocity, this thesis also proposes methods for aiding attitude.

Additionally, this thesis accounts for the problems posed by integrating measurements from

sources which operate at different sample rates and duty cycles. Finally, while Omr et

al focus on pedestrian navigation, this thesis applies multiple sensor integration to three

dimensional aircraft navigation.

1.3.2 CAI Integration with Conventional INS.

Jekeli [5] proposes a model for the cold atom interferometer which, with some

reasonable assumptions, can be viewed as analogous to the conventional INS. Using bias

and drift parameters associated with the accelerometers and gyroscope, he demonstrates

the CAI inertial sensor’s theoretical performance. The acceleration and gyroscope

measurement models presented in Jekeli’s research [5], and substantiated in [10], are used

for the CAI and conventional INS measurements in this thesis.

Canciani and Raquet propose three filter frameworks to integrate a CAI with a

conventional, navigation-grade INS [11]. The first framework corrects the INS acceleration

and attitude measurements and when available, mechanizes off the CAI measurements.

The second framework always uses the conventional INS in the mechanization equations,

7



but uses the CAI delta-velocities and delta-thetas to correct the navigation solution at the

position level. The third framework proposes integrating CAI with GPS measurements

in order to compensate for GPS outages. When outage times were very short, the first

framework showed the best results, while the second framework showed the best results

during the longer, high-g CAI outages. The simulation tests assumed that the CAI

measurements would be available consistently until outages occurred; for example, a duty

cycle of 80 percent was modeled as a square wave with periodic 2 minute outages.

While Canciani’s research focused on the CAI dropouts and outages, this thesis

investigates the effects from the CAI’s low duty cycle, sampling rates, and the analysis

methods to compensate for them. This thesis makes measurement corrections on the

acceleration and angular rate level, similar to the first framework. However, Kalman filter

modeling is not used; rather, this thesis implements an estimation algorithm similar to a

fixed-lag smoother.

1.4 Scope and Assumptions

This research uses a proof of concept approach to model the CAI and INS errors and

performance characteristics. The acceleration and gyroscope error models are composed

of a bias and discrete measurement drift based upon a continuous-time, stochastic process.

The analytical development of the latter is made in Appendix A. A linear relationship is

assumed between the sensor’s drift induced measurement variances and bias variances,

which allows for calibration using the Lyapunov covariance equation in Appendix B.

Furthermore, the Earth model is simplified to a flat, non-rotational environment to simplify

the mechanization equations. This assumption neglects the effects of Coriolis acceleration,

Schuler cycle, transport rate and other frame translational errors introduced from the

Earth’s curvature and rotation. Altitude aiding from barometric data or radar altimeter

measurements is neglected, although it would be generally present in conventional,

navigation-grade INS.
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As noted earlier, this research focuses on the limitations of CAI aiding pertaining to the

low duty cycle and data rate. Additional effects from high dynamic dropouts are neglected,

although it is assumed that an integrity monitor would exist in a fielded implementation to

disregard CAI data when dynamics exceeded an experimentally determined g-level.

1.5 Methodology

In order to integrate the CAI with the INS, measurement models were developed

and error parameters were calibrated to meet their respective theoretical performances.

These error parameters were used to create stochastic random variables which corrupted a

simulated truth. The availability of the CAI and conventional INS measurement samples

was modeled. An analytical method was developed based upon this model to combine

the measurement samples and estimate their bias and drift variances for each periodic

CAI duty cycle. MATLAB software was used to simulate noisy conventional INS and

CAI measurements and then integrate them according to the proposed algorithm methods.

The resultant error means and standard deviations were tabulated a part of a Monte Carlo

analysis.

Chapter 2 presents the mathematical background necessary to understand basic

inertial navigation, error modeling, and basic Kalman Filtering. Chapter 3 develops the

aforementioned measurement models and the proposed algorithms for integrating them.

Chapter 4 presents the methods used to statistically analyze the simulation results. Error

characterizations were made by evaluating the statistical results of multiple, hour-long

runs to nullify the effects of potential anomalous behavior in single runs. Chapter 5

presents a conclusion of the data analysis, CAI aiding performance, and recommendations

for improvements. Areas of future research are also suggested based upon predicted

technological developments.

9



II. Mathematical Background

This chapter presents the background information required to understand the

navigation topics and mathematics discussed in the presented research. It covers basic

notation, reference frames, inertial navigation system models and an overview of Kalman

filters.

2.1 Notation

Notation used consistently is described below:

Scalars: denoted as upper or lower case italic letters.

Vectors: denoted as lower case bold font letters and assumed as column vectors unless oth-

erwise specified.

Matrices: denoted as upper case bold font letters and may have subscripts specifying rows

and columns.

Transpose: denoted by a superscript T.

Estimated variables: denoted by the hat superscript (e.g. x̂).

Reference frame: denoted by superscript in parentheses (e.g. x(a) is a scalar in the ’a’

frame).

2.2 Reference Frames

A reference frame is necessary for expressing and measuring the motion of bodies in

navigation. Depending upon the scope, some reference frames are more convenient than

others. All reference frames discussed herein use three-dimensional axes, with right hand,

orthonormal basis.
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2.2.1 True Inertial Frame.

A true inertial frame is a theoretical, non-accelerating frame from which Newton based

his first law of motion. Due to relativity, this frame has no origin and is stationary relative

to absolute time.

2.2.2 Earth-Centered Inertial Frame (i-frame).

The Earth-centered inertial frame is defined by the fixed stars, with an origin at the

center of the earth. The vertical axis aligns with the North Pole and horizontal x-axis

and y-axis lie along the equatorial plane. This frame is non-rotating, but does follow the

Earth’s rotation about the sun. However, because the Earth’s orbit about the sun is very

slow in relation to navigation about the earth, the i-frame may be approximated as a true

inertial frame.

2.2.3 Earth-Centered Earth-Fixed Frame (e-frame).

As its name implies, the Earth-Centered Earth-Fixed (ECEF) frame also has an origin

at the center of the earth. However, its horizontal axes move to coincide with the earth’s

rotation. The x-axis points to the Greenwich Meridian and the y-axis points to 90 degrees

east longitude [7].

2.2.4 Navigation Frame (n-frame).

The navigation frame origin coincides with the location of the navigation system of

interest. The vertical axis points downward in the direction of the local vertical–defined

as the gravity vector for a given location on the Earth. The x-axis and y-axis point North

and East, respectively, giving rise to the familiar North-East-Down (NED) convention. The

navigation system’s motion causes the navigation frame to rotate at the transport rate ωen.

2.2.5 Body Frame (b-frame).

The body frame origin is co-located with the n-frame, but rigidly attached to the

vehicle. That is, the x, y, and vertical z axes point in the direction of the aircraft nose,

right wing and bottom of the aircraft, respectively. The axis set rotates with roll, pitch,

11



and yaw angles as the aircraft moves. It is important to note that in strapdown INS, the

accelerometer and gyroscope measurements are initially resolved in the b-frame and then

converted to the navigation frame using the Euler angles via Direction Cosine Matrices

(DCM).

2.3 Inertial Navigation

2.3.1 Mechanization Equations.

The following equations are derived from [11] and [7]. For this research, the reference

frame for the systems of interests will be the local geographical level, i.e. navigation frame.

The inertial navigation system accelerometers measure the specific force vector f, which is

the difference between the inertial accelerations, r̈(i), and gravity g(i):

f(i) = r̈(i) − g(i)

Rearranging, the acceleration in the naviation frame with respect to the earth is:

v̇(n)
e = f(n)

− (2ω(n)
ie + ω(n)

en ) − g(n) (2.1)

where g(n) is gravity in the navigation frame, f(n) is specific force in the navigation frame,

ω(n)
ie is the rotational rate of the Earth, ω(n)

en is the transport rate, and the term (2ω(n)
ie +ω(n)

en ) is

the Coriolis acceleration caused from navigating in a non-inertial, rotating reference frame

[12]. Integrating (2.1) gives the three dimensional velocity vector

ẋ(n)
e = v(n)

e (2.2)

To simplify analysis, this research assumed a nonrotating and flat Earth, which ignores

the effects of the Coriolis acceleration, so that the n-frame ≡ i-frame. The inertial system

accelerometers only provide measurements in the body frame, so a DCM, C(n)
b is used to

resolve the force vector into the navigation frame

Ċ(n)
b = C(n)

b Ω
(b)
nb
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In our simplified inertial frame, the DCM becomes simply the identity matrix and ω(b)
nb

is assumed equivalent to ω(b)
ib .

𝑧(𝑛) 

𝑦(𝑛) 

𝑥(𝑛) 

𝑧(𝑏) 

𝑥(𝑏) 

𝑦(𝑏) 

𝑓𝑦 

𝑓𝑥 

𝒇 

Figure 2.1: Visualization of Local Level Plane with associated body frame and navigation

frame.

2.3.2 Strapdown Error States.

Since a non-rotating, flat Earth is assumed, flight in the local level plane may be

visualized as Figure 2.1 where the specific force vector f is comprised of the axis specific

13



components fxi , fyi , and fzi of the i-frame [13]

fxi = fxbcosθ + fzb sinθ

fyi = 0

fzi = − fxb sinθ + fzbcosθ (2.3)

where θ is the aircraft pitch angle and fxb and fzb are the axis specific force components in

the b-frame. Perturbing (2.3) gives the specific force error equations

δ fxi = (− fxb sinθ + fzbcosθ)δθ + δ fxbcosθ + δ fzb sinθ

= fziδθ + δ fxbcosθδ fzb sinθ

δ fyi = 0

δ fzi = −( fxbcosθ + fzb sinθ)δθ − δ fxb sinθ + δ fzbcosθ

= − fxiδθ − δ fxb sinθδ fzbcosθ

The errors in acceleration, velocity, and angular rate are found by perturbing equations

(2.1) and (2.2):

δẋi = δvxi

δẏi = 0

δżi = δvzi

δv̇xi = δ fxi = fziδθ + cosθδ fxb + sinθδ fzb

δv̇yi = 0

δv̇zi = δ fzi = − fxiδθ − sinθδ fxb + cosθδ fzb

δθ̇ = δω (2.4)

where δẋi, δẏi, and δżi are the axis specific velocity errors; δv̇xi , δv̇yi , and δv̇zi are the

axis specific acceleration errors; and δθ̇ is the angular rate error.
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If we further assume wings level, constant altitude flight, then the vertical force fzi

simplifies to the gravitational acceleration, g; the horizontal force δ fxi simplifies to the

horizontal acceleration, a, and θ = 0. The equations from (2.4) are combined to form a

9 × 9 error state vector δx as follows:

δx =

[
δp δv δΨ

]T

where δp, δv are the position and velocity errors vectors, and δΨ is a 3×1 vector of angular

errors due to misalignment from the navigation frame, that is

δΨ = −δC(n)
b · C

(b)
n

= −δC(n)
b

=

[
−δψ −δθ −δφ

]T

The navigation state error δẋ equation (with driving inputs δf(b) and δω(b)
nb ) is

δẋ = Mδx + Γ

 δf
(b)

δω(b)
nb


where

M =


0 I 0

0 0 F(n)

0 0 0

 , Γ =


0 0

C(n)
b 0

0 −C(n)
b


In wings level flight, F(n) is the skew symmetric form of the specific force vector f(n):

Fn =


0 g 0

−g 0 −a

0 a 0


2.4 Kalman Filter

The Kalman filter is a linear, recursive, optimal data processing algorithm used

to estimate the unknown states of a stochastic differential equation. Using current, noisy
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measurements of some components of the state, and a state estimate based on the previous

measurements, the Kalman filter calculates the current, statistically optimal states. The

predicted current state is more accurate than the measured state, which is affected by

sensor noise. Unlike batch estimation techniques, storing a history of measurements

or estimates is unnecessary because the statistical information is contained within the

Kalman filter’s recursive state estimates and associated covariance. The Kalman filtering

algorithm is based upon the following key assumptions: the linear mathematical model

is an accurate representation of the true system, all the random process errors in the

model and measurements are white Gaussian noises and the measurement observations

are uncorrelated [14], [15]. It should be noted that no true process is perfectly described by

a linear model, thus filter tuning and modification are sometimes necessary to achieve the

best solution.

2.4.1 State Model.

The following Kalman filter equations closely follow [14]. The linear system model

satisfies the stochastic differential equation:

ẋ(t) = Ax(t) + Bu(t) + Gw(t) (2.5)

with state vector x(t), control input u(t) and system process noise w(t). The A matrix gives

the mathematical coupling between states and the G matrix relates the system dynamics

noise to the states. The dynamics noise w(t) is modeled as zero-mean white Gaussian noise

with a noise strength Q described by

E[w(t)] = 0

E[w(t)w(t′)T] = Q(t)δ(t − t′)
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Integrating equation (2.5) gives the discrete-time form solution [14]:

xi+1 = Φ(ti+1, ti)xi +

∫ ti+1

ti
Φ(ti+1, τ)G(τ)δβ(τ)

= Φ(∆t)xi + wdi

where β(t) is a Brownian motion process with dispersion Q, andΦ is the discrete-time

state transition matrix [14]. That is,

Φ(ti+1, ti) = Φ(∆t) = eA∆t

wdi is a zero-mean, uncorrelated (i.e. white Gaussian) process with discretized noise

strength Qdi
:

Qdi
= E[wdiw

T
di

]

=

∫ ti+1

ti
Φ(ti+1, τ)G(τ)Q(τ)G(τ)TΦ(ti+1, τ)Tδτ

2.4.2 Measurement Model.

The Kalman filter accepts discrete-time measurements/observations, z, from external

sensors and incorporates them as part of its optimal estimate. Recall that the measurements

must be uncorrelated both in time and with other measurements. The measurements must

be of the linear form

zi = Hixi + vi

The H matrix is the mathematical coupling betwen the system states in x with the

measurements in vector z. The measurement noise vector, v represents zero-mean white

Gaussian noise with strength R:

E[vivT
j ] =


Ri for i = j

0 for i , j


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2.4.3 Kalman Filter Algorithm.

As discussed above, the Kalman filter is developed using a model of the dynamic

system, where a state transition matrixΦi, input matrix Bi, and noise vector w with strength

Qi are used to determine the state of the model. Given knowledge of the initial state and

covariance estimates of the system, updates to state estimates can be calculated. State

and covariance updates are designated by x̂ and P, respectively. The algorithm estimation

is comprised of two phases: propagation and updating. In the propagation phase, the

current state estimates are transitioned forward in time according to the system model.

In the update phase, external measurement information is incorporated and the Kalman

filter creates a new optimal estimate for the states using this information. State and

covariance estimates updated by measurement zi, are designated by a superscripted plus

sign, x̂+ and P+, respectively. Similarly, state and covariance estimates propagated forward

in time without measurement updates are designated by a superscripted minus sign, x̂− and

P−, respectively. Since the system and measurement models are stochastic, all states and

measurements are treated as Gaussian random processes [12]. One of the unique properties

of Gaussian random variables is that they can be completely described by their first two

moments. Therefore, only the states’ mean and covariance are calculated, propagated and

updated during the Kalman filter phases.

The Kalman filter algorithm begins with initial conditions x̂+
i−1 and P+

i−1 as inputs to

the propagation phase. The propagation routine steps from time i − 1 to i. Φi−1, Qi−1, Bi−1,

and control input u are used to calculate x̂−i and P−i according to

x̂−i = Φi−1x̂+
i−1 + Bi−1ui−1

P−i = Φi−1P+
i−1Φ

T
i−1 + GdQGT

d

x̂−k and P−k are now the state and covariance estimates propagated forward to the next

step. If no updated measurements are available, then the current state is reiterated through

the measurement routine. If a measurement z is available, the update phase is initiated. The
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state and covariance estimates from the propagation phase are used as inputs to the update

phase. Given the modeled measurement matrix Hi and measurement noise strength Ri, the

optimal Kalman gain Ki is calculated as follows [14]:

Ki = P−i HT
i

[
HiP̂

−

i HT
i + Ri

]−1

The Kalman gain is then used to determine the amount of influence that the residual

r, discussed in detail below, will have on the updated state estimate x̂+
k . A new covariance

estimate P+
i is also calculated using the optimal Kalman gain according to [14]:

x̂+
i = x̂−i + Kiri (2.6)

P̂+

i = P̂−i −KiHiP̂
−

i (2.7)

ri = zi −Hix̂−i (2.8)

Both x̂+
i and P+

i can be output as the updated estimates and utilized in the state

propagation estimates. Prior to entering the propagation routine, the time index is reset

and x̂+
i and P+

i become x̂+
i−1 and P+

i−1. A summary of the Kalman filter algorithm is shown

in Figure 2.2.

In a modeling and simulation setting, a truth model is used to refine the Kalman filter

and improve its outputs. The difference between the model’s truth and the Kalman filter is

known as the error e+
i [14].

e+
i = xi − x̂+

i (2.9)

Assuming the Kalman filter state estimates are Gaussian, then the error vector must also be

Gaussian and completely described by its mean and covariance [14], [16].

E
[
e+

i |zi
]

= x̂+
i − x̂+

i = 0 (2.10)

E
[
e+

i e+T

i |zi

]
= P+

i (2.11)
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Figure 2.2: Kalman Filter Process [15]

The error covariance is completely independent of the measurements, but are dependent

on the type and quality of the measurement [14]. For analysis in this thesis, the estimation

error can be used to quantify the estimation algorithm’s effectiveness.

In reality, the truth data is not known and must be measured. Noise is often introduced

with actual measurements and must be weighed against the estimate of the next state.

A residual is a comparison of the Kalman filter output to the measurement states. The

residual is defined as the difference between the measurement and the state estimate prior

to measurement update, as shown in equation (2.8). Residuals associated with the present

state are independent of past residuals and are described as white, Gaussian, and zero mean
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[16]. Like error, the residual can also be described by its mean and covariance as follows

[14].

E [ri] = 0 (2.12)

E
[
rirT

i

]
= HiP−i HT

i + Ri (2.13)

Given a nominally operating Kalman filter, residuals can be statistically monitored for

changes, such as a bias shift. Significant changes typically indicate a malfunction or

anomaly in the measurement, for example a failed sensor or “noisy” failure [14]. Figure 2.3

illustrates residual monitoring and sensor failure detection due to residual bias shift (top)

and residual strength increase (bottom).

Figure 2.3: Residual Monitoring and Sensor Failure Detection [14]

As opposed to simulation studies, true states cannot be measured directly in practice.

Therefore, it is difficult to determine if the Kalman filter is accurately estimating the states

and whether the model is an accurate representation of reality. This uncertainty is mitigated

by rigorous testing and simulation of the model by generating a simulated truth based on

knowledge of how the system behaves dynamically and how measurements are reported.

Chapter 3 will detail specifics of these system dynamics.
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III. Algorithm Development and Model Creation

This chapter develops the INS and CAI accelerometer and gyroscope sensor models,

the algorithm model used to integrate the CAI and INS measurements, and the navigation

mechanization equations used for system simulation.

3.1 Postulate

In principle, the CAI-based acceleration measurement u(CAI)

k provided at the discrete

time instant k at the completion of the kth duty cycle is the average acceleration during the

CAI-based measurement interval. In other words, it is the area under the true acceleration

divided by the CAI duty cycle length, α∆T :

u(CAI)

k =
1

α∆T

∫ k∆T

(k−α)∆T
u(t)dt (3.1)

where α is the CAI accelerometer or gyro duty cycle fraction, ∆T is the sampling time

of the CAI-based acceleration measurements, and u(t) is the true acceleration. Figure 3.1

illustrates the derivation for (3.1).

During the CAI accelerometer or gyro initiation time interval [(k − 1)∆T, (k − α)∆T )

in duty cycle k, there are N − n conventional INS acceleration measurements uml available,

l = 0, 1, ...,N−n−1. In addition, during the duty cycle interval [(k − α)∆T, k∆T ), where the

CAI accelerometer performs an acceleration measurement, there are n + 1 measurements

of the conventional INS, for l = N − n,N − n + 1, ...N. N is the total number of acceleration

measurements from the conventional INS during the CAI-based accelerometer’s sampling

time interval ∆T . Thus,

N ,
∆T
δt

(� 1)

where δt is the short sampling time of the conventional INS accelerometer. The number

of conventional INS acceleration measurements taken while the CAI accelerometer is also
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collecting a measurement is n + 1, as shown in Figure 3.1. Thus,

n ,
α∆T
δt

t 

(k-α)ΔT kΔT (k-1)ΔT 

u(t) 

αΔT 

u
k

(CAI) 

umN

(INS) 
umN-n

(INS) 

ûN 

True acceleration 

umk

(CAI) 

Figure 3.1: Model 1: Acceleration over one duty cycle (k)

The sampling intervals ∆T and δt of the CAI and conventional accelerometers,

respectively, and the duty cycle fraction α, are such that both N and n are integers. The

area, A, under the acceleration u(t) during the duty cycle interval [(k − α)∆T ≤ t ≤ k∆T ) is
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approximated using the trapezoidal integration rule, as shown in the following equation:

A ≈
1
2

[u((k − α)∆T ) + u((k − α)∆T + δt)] δt + ...

+
1
2

[u(k∆T − δt) + u(k∆T )] δt

=

uN−n + uN

2
+

N−1∑
i=N−n+1

ui

 δt (3.2)

where ui ≡ u(i · δt).

The CAI-based accelerometer and gyro measurements are subject to drift. Each of the

CAI accelerometer-provided acceleration samples u(CAI)
mk

has a small error caused by drift

δu(CAI)

k ∼ N(0, σ2
CAI). The quantification of the standard deviation of the sampling error σCAI

is discussed in Appendix A. From (3.1) and (3.2), the true CAI measurement is obtained:

u(CAI)
mk
− δu(CAI)

k =
1

α∆T

∫ k∆T

(k−α)∆T
u(t)dt

=
1
n

uN−n + uN

2
+

N−1∑
i=N−n+1

ui

 (3.3)

Expanding (3.3) gives

nu(CAI)
mk

=
1
2

uN−n + uN−n+1 + ... + uN−1 +
1
2

uN + αNδu(CAI)
k (3.4)

While the accleration measurement is exclusively discussed herein, the same also

applies to the measurement of the aircraft’s angular rate measured by the CAI-based gyros.

In particular, σCAI would be substituted with the corresponding drift uncertainty for the CAI-

based accelerometer
(
σ(CAI)

vd

)
and the CAI-based gyroscope

(
σ(CAI)
θd

)
discussed in Appendix A.

3.2 Signal Processing

Each of the acceleration and angular rate samples provided by the conventional INS

accelerometers and gyros have a constant error from an unknown, random bias δub as

well as error from drift δu(INS )
i ∼ N(0, σ2

INS ); obviously, σCAI << σINS . During the second

half of each duty cycle [N − n, ...N], there are n + 1 acceleration measurements from the
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conventional INS,

u(INS )
mN−n

= uN−n + δub + δu(INS )
N−n

...

u(INS )
mN

= uN + δub + δu(INS )
N


(3.5)

The conventional sensor’s bias δub is recursively estimated. Thus, the estimate δ̂ub
(k)

of the

bias δub changes for each duty cycle k according to the following definition:

δub ∼ N

(
δ̂ub

(k)
,
(
σ(k)

b

)2
)

where σ(k)
b is the bias uncertainty. Since only the variance σb of the sensor’s residual

random bias is specified, the bias estimate is initialized with zero mean so that in duty

cycle k = 1, δub ∼ N(0, σ2
b). Note that these error models would apply to both the

acceleration and angular rate measurements; for simplicity, this discussion is limited to

the accelerometer measurements along a single axis. The bias uncertainty specifications

for the conventional INS accelerometers
(
σbA

)
and gyros

(
σbG

)
are calibrated in Appendix

B to correspond to a 1 (km/hr) conventional navigation quality INS position error.

Equations (3.4) and (3.5) are combined to form a linear regression in the parameterΘ,

yielding the measurement vector z:

z = HΘ + v (3.6)

where Θ is an n + 1 vector of true acceleration samples and the accelerometer’s residual

bias error δub as follows:

Θ ,



uN−n

...

uN

δub


(n+2)×1
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The associated regressor matrix, H, is given as

H =


In+1 e

hT 0

01×(n+1) 1


(n+3)×(n+2)

where In+1 is the (n+1)×(n+1) identity matrix, e is a (n + 1) × 1 vector of ones, and the

transpose of the vector h is

hT =

[
1
2 1 . . . 1 1

2

]
1×(n+1)

The measurement vector in the linear regression, z, consists of the n + 1 conventional

INS measurements, the single CAI accelerometer measurement, and the bias error estimate

available at the beginning of the current duty cycle, e.g. duty cycle k. z is expressed as

follows:

z ,



u(INS )
mN−n

...

u(INS )
mN

nu(CAI)
mk

δ̂ub
(k−1)


(n+3)×1

The equation error vector in the linear regression, v, is given by

v =



δu(INS )
N−n

...

δu(INS )
N

nδu(CAI)

k

ζ(k−1)
b


(n+3)×1

(3.7)
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where the residual variable ζ(k−1)
b ∼ N

(
0,

(
σ(k−1)

b

)2
)
. Thus equation (3.6) has a diagonal

covariance matrix R, expressed as follows [14]:

R , E
[
vvT

]

=


σ2

INS In+1 0(n+1)×1 0(n+1)×1

01×(n+1) n2σ2
CAI 0

01×(n+1) 0
(
σ(k−1)

b

)2


(n+3)×(n+3)

(3.8)

Solving the linear regression in (3.6) according to the following equation for the optimal

estimate vector Θ̂:

Θ̂ =
(
HTR−1H

)−1 HTR−1z (3.9)

yields the optimal estimates ûN−n, ..., ûN of the n+1 acceleration samples during the kth CAI

duty cycle, u((k − α)∆T + iδt), i = 0, ..., n and the accelerometer’s bias error estimate δ̂ub
(k)

obtained at the end of the kth CAI duty cycle. The covariance of the parameter estimation

error is [14]:

P , E
[
(Θ − Θ̂)(Θ − Θ̂)T

]
=

(
HTR−1H

)−1 (3.10)

recalling that Θ̂ from (3.9) is:

Θ̂ =

(̂
uN−n, ..., ûN , δ̂ub

(k)
)T

(3.11)

Since the inputs u were treated as scalars, Θ̂ will need to computed six times for each of

the three acceleration and gyro measurements. However, the covariance matrix P from the

linear regression is the same for all acceleration components. Likewise, P will be the same

for all three angular rate components. Note that the bias uncertainty
(
σ(k−1)

b

)2
featured in

equation (3.8) is determined from P as follows:

(
σ(k)

b

)2
= Pn+2, n+2, k = 2, ...; σ(1)

b = σb
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and is initialized at k = 1 from the respective accelerometer and gyroscope bias

specifications, σbA and σbG , both derived in Appendix A. To calculate P, substitute for

the H and R matrices in (3.10):

HTR−1H =

 In+1 h 0(n+1)×1

eT 0 1




1
σ2

INS
In+1 0(n+1)×1 0(n+1)×1

01×(n+1)
1

n2σ2
CAI

0

01×(n+1) 0 1(
σ(k−1)

b

)2




In+1 e

hT 0

01×(n+1) 1



=

 In+1 h 0(n+1)×1

eT 0 1




1
σ2

INS
In+1

1
σ2

INS
e

1
n2σ2

CAI
hT 0

01×(n+1)
1(

σ(k−1)
b

)2


=


1

σ2
INS

In+1 + 1
n2σ2

CAI
hhT 1

σ2
INS

e

1
σ2

INS
eT n+1

σ2
INS

+ 1(
σ(k−1)

b

)2


(n+2)×(n+2)

(3.12)

Since (3.12) is in block form, use

Lemma 1: Assume A is symmetric and invertible. The inverse of the blocked matrix

A b

bT c


−1

=

A
−1 + 1

d A−1bbTA−1 − 1
d A−1b

− 1
d bTA−1 1

d

 (3.13)

where the scalar d = c − bTA−1b. �
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From (3.12):

A =
1
σ2

INS

In+1 +
1

n2σ2
CAI

hhT

b =
1
σ2

INS

e

c =
n + 1
σ2

INS

+
1(

σ(k−1)
b

)2

d =
n + 1
σ2

INS

+
1(

σ(k−1)
b

)2 −
1
σ4

INS

eTA−1e

To solve for A−1, use the following Matrix Inversion Lemma (MIL):

MIL: Assume the dimensions of the relevant matrices are compatible and the required

matrix inverses exist. Then,

(
A1 − A2A−1

4 A3

)−1
= A−1

1 + A−1
1 A2(A4 − A3A−1

1 A2)−1A3A−1
1 �

Set

A1 =
1
σ2

INS

In+1

A2 = h

A3 = hT

A4 = −n2σ2
CAI

which gives the inverse of A:

A−1 = σ2
INS In+1 − σ

2
INS In+1h(n2σ2

CAI + hTσ2
INS In+1h)−1hTσ2

INS In+1

= σ2
INS In+1 −

σ4
INS

n2σ2
CAI + σ2

INS hTh
hhT
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Substituting the above expressions gives the covariance of the parameter’s estimation

error in (3.10).

Finally, inserting the calculated covariance of the parameter’s estimation error, P, into

equation (3.9) gives the accelerations’ estimate and current accelerometer’s bias estimate:

Θ̂ = P

 In+1 h 0(n+1)×1

eT 0 1




1
σ2

INS
In+1 0(n+1)×1 0(n+1)×1

01×(n+1)
1

n2σ2
CAI

0

01×(n+1) 0 1(
σ(k−1)

b

)2


z

Substitution gives

Θ̂ =
1

σ2
INS

[
A−1 + 1

d

(
A−1bbTA−1 − A−1beT

)] 1
n2σ2

CAI

(
A−1 + 1

d A−1bbTA−1
)

h −1

d
(
σ(k−1)

b

)2 A−1b

−1
dσ2

INS

(
bTA−1 − eT

)
−1

dnσ2
CAI

bTA−1h 1

d
(
σ(k−1)

b

)2

 z

where

A−1b = σ2
INS b −

σ4
INS

n2σ2
CAI + σ2

INS hTh
hhTb

= e −
nσ2

INS

n2σ2
CAI + σ2

INS (n − 1
2 )

h

To solve for 1
d , first expand d

d =
n + 1
σ2

INS

+
1(

σ(k−1)
b

)2 −
1
σ4

INS

(
(n + 1)σ2

INS −
n2σ4

INS

n2σ2
CAI + σ2

INS hTh

)

=
1(

σ(k−1)
b

)2 +
n2

n2σ2
CAI + σ2

INS

(
n − 1

2

)
Then invert d as follows:

1
d

=

(
σ(k−1)

b

)2 (
n2σ2

CAI +
(
n − 1

2

)
σ2

INS

)
n2σ2

CAI + n2
(
σ(k−1)

b

)2
+

(
n − 1

2

)
σ2

INS

(3.14)

Concerning the recursion for σ(k)
b : (

σ(k)
b

)2
=

1
d
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Then from equation (3.14)

σ(k)
b =

√√√√ n2σ2
CAI +

(
n − 1

2

)
σ2

INS

n2σ2
CAI + n2

(
σ(k−1)

b

)2
+

(
n − 1

2

)
σ2

INS

· σ(k−1)
b

Evidently, σ(k)
b is monotonically decreasing.

Having solved the linear regression in (3.9) to obtain the estimates ûn, ..., ûN of the

scalar sensor inputs un, ..., uN and the current estimate of the input bias û(k)
b , the error δui is

determined by substituting (3.6) into (3.9):

Θ̂ −Θ =
(
HTR−1H

)−1 HTR−1v

Since the first n + 1 elements of Θ ∈ Rn+2 consists of un, ...uN , it is now known that

δui , ûi − ui

= eT
i+1−n

(
HTR−1H

)−1 HTR−1v, i = n, ...,N

where e j is the n + 2 vector, all of whose elements are zero except the j-th element, which

is 1. Recall that the elements of the n + 3 equation error vector v in (3.7) consist of the

errors in the n + 2 measurements taken during the CAI measurement part of the duty cycle

and the last element ζ(k−1)
b is the current knowledge of the residual uncertainty (computed

at the end of the k − 1 duty cycle) of the bias error δub.

Indeed, at the beginning of the current, kth duty cycle, information concerning the bias

error is supplied as follows:

δub ∼ N

(
δ̂u

(k−1)
b ,

(
σ(k−1)

b

)2
)

Furthermore, the statistics of ζ(k−1)
b are expressed as follows:

ζ(k−1)
b ∼ N

(
0,

(
σ(k−1)

b

)2)
(3.15)

Hence, δui = αi · ζ
(k−1)
b + [a linear combination of the first u + 2 elements of v] where

the coefficients αi are expressed as follows:

αi = ei+1−n

(
HTR−1H

)−1 HTR−1en+3, i = n, ...,N (3.16)
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3.3 Proof of Concept

The combined acceleration and angular rate estimates, Θ̂, during the CAI measure-

ment interval [(k − 1)∆T, k∆T ] and the conventional INS acceleration and angular rate

measurements prior to the interval are used in an inertial frame INS to calculate the ve-

locity and position x of the aircraft. This is accomplished by integrating according to the

simple kinematic differential equation:

ẍ = u

where u is the measured acceleration. The angular rotation θ is calculated by integrating

the angular rate ω as follows:

θ̇ = ω

The error in position is caused by the accelerometer bias bA and any platform

misalignment that may be present. The misalignment of the platform due to the gyroscopes’

errors is caused by the gyro bias bG.

The position and velocity estimation errors are determined by the conventional and

CAI accelerometer drifts (σINS and σCAI, respectively), and the bias bA of the conventional

accelerometer. Specifically, the drift induced error prior to the CAI accelerometer

measurement duty cycle is determined by σINS , and the drift induced error during the CAI

duty cycle interval is determined from the covariance matrix P in equation (3.10). Similarly,

the angular rotation errors are determined from the corresponding INS and CAI gyro drifts

and gyro bias bG. The (n + 2)× (n + 2) covariance matrix P is not diagonal. Further analysis

is required to correctly account for the correlation terms in P and solve for the variance of

the navigation state error caused by the acceleration and gyroscope measurement errors.

For both the INS and CAI IMUs, the accelerometer error equations are as follows:

δẍ = δu, δu̇ = 0
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The gyroscope error equation is:

δθ̇ = δω

3.4 Navigation

A wings level flight at constant altitude is considered. For proof of concept, the

Earth is assumed flat and non-rotating and the inertial navigation frame is attached to the

Earth. The simplified discrete-time navigation state error equations are derived from their

continuous-time form as follows [17]:

δẋc(t) = Mcδxc(t) + Γc

bA

bG

 + Γc

σvcβ̇A(t)

σθcβ̇G(t)

 (3.17)

where the navigation state is

xc =

[
x, y, z, vx, vy, vz, φ, θ, ψ

]T

for aircraft position coordinates x, y, z; velocities vx, vy, vz, and Euler angles φ, θ, ψ. The

continuous time state space matrices Mc and Γc are given as:

Mc =


0 I 0

0 0 F

0 0 0


9×9

, Γc =


0 0

Cb
n 0

0 −Cb
n


9×6

The matrix F = f× is the skew symmetric matrix form of the nominal specific force vector

f. During wings level flight, f is as follows:

f =


ux

0

g


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where ux is the aircraft’s longitudinal acceleration and g is the acceleration of gravity.

Consequently, the matrix F is as follows:

F = f× =


0 −g 0

g 0 −ux

0 ux 0


Cb

n is the 3 × 3 Direction Cosine Matrix (DCM) and for small Euler angles is as follows:

Cb
n =


1 −ψ θ

ψ 1 −φ

−θ φ 1


For constant altitude, wings level flight in the x axis direction, Cb

n is nominally the identity

matrix, I. βA and βG are 3 × 1 vectors of independent, unity Brownian motions, that is,

βA(t) ∼ N (0, t · I) and βG(t) ∼ N (0, t · I). The rate gyro drift parameter σθc is derived from

the rate gyro’s drift specification in Appendix A.

Converting the dynamics in (3.17) to discrete time, the navigation state discrete-time

error equation is

δxi+1 = Mdδxi + Γd

bA

bG

 + Γc

σvd
wAi

σθd
wGi

 (3.18)

where

Md = eMc∆T =


I I∆T −1

2F∆T 2

0 I −F∆T

0 0 I


9×9

,
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Γd =

∫ ∆T

0
eMc(t−τ)Γcdτ

= Md ·

(∫ ∆T

0
eMc(−τ)dτ

)
· Γc

=


1
2I∆T 2 −1

6F∆T 3

I∆T −1
2F∆T 2

0 I∆T


9×6

and wAi
∼ N (0, I), wGi

∼ N (0, I). The discrete-time accelerometer and gyro parameter

featured in (3.18), σvd and σθd respectively, are derived in Appendix A.

It is herein assumed that intially the INS is perfectly aligned (no alignment error) and

therefore the navigation state error is exclusively brought about by the accelerometers’ and

gyros’ biases and drifts. As such, the navigation state error’s statistics will be determined

by the accelerometers’ and gyros’ bias statistics and the intensity of their respective drifts.

After the measurement part of the kth duty cycle is complete and the linear regression

in (3.9) has been solved, one reruns the mechanization equations which are modified as

follows:

xmi+ = fd
(
xmi , ûi

)
, i = n, ...,N − 1 (3.19)

where ûi is a 6 × 1 vector of the scalar accelerometer and gyro estimates ûn, ..., ûN−1

obtained from (3.9). The result is a smoothed navigation state estimate xmn+1 , ..., xmN for

the CAI measurement portion of the duty cycle. The navigation state filtered estimate xmN

is obtained in real time with some computational delay; however, the smoothed navigation

state estimates xmN−1 , ..., xmn+1 are delayed by the computational delay + δt, ...+, (n − 1)δt,

where δt are the discrete-time instants. In view of the mechanization equation expressed

in (3.19), the discrete-time navigation state error δxmi+1 for the smoothed navigation state

during the CAI measurement part of the duty cycle is expressed as follows:

δxmi+1 = Mdδxmi + Γdδui, i = n, ...,N − 1 (3.20)
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where

δxmi = xmi − xi, i = n + 1, ...,N

δui = ûi − ui, i = n, ...,N − 1

and δxmi and δui are 6×1 vectors of the scalar accelerometer and gyro measurement errors.

The statistics of the scalar input errors δun, ..., δuN−1 are provided from the solution to the

linear regression in (3.10) obtained at the completion of the kth duty cycle, and are as

follows: 

δun

...

δuN

ζ(k)
b


∼ N

(
0,P(k)

)

The covariance of the smoothed navigation state estimation error P(δx), expressed in

(3.20), may be rewritten as follows:

δxm j = M j−n
d δxmn +

j−n∑
l=1

M j−n−l
d Γdδun+l−1, j = n + 1, ...,N (3.21)

where δxmn ∼ N
(
0,P(δx)

n

)
. The covariance of the smoothed navigation state estimation

error P(δx)
n+1, ...,P

(δx)
N is then expressed as:

P(δx)
n+1 ≡ E

(
δxmn+1δx

T
mn+1

)
= MdPδx

n MT
d + ΓdP(k)

1,1Γ
T
d + MdE

(
δxmnδu

T
n

)
ΓT

d

+ Γd

(
E

(
δxmnδu

T
n

))T
MT

d

...

P(δx)
N ≡ E

(
δxmNδx

T
mN

)
To solve for the covariances E

(
δxmnδuT

i

)
when i = n, ...,N − 1, δxmn must first be

considered. For the first half of each duty cycle (prior to the CAI measurement portion),

36



the mechanization equation for the CAI-aided INS is expressed as follows:

xmi+1 = fd

(
xmi ,u

(INS )
mi
− û(k−1)

b

)
The discrete time navigation state error equation is:

δxmi+1 = Mdδxmi + Γdζ
(k−1)
bi

+ Γc

σvd
wAi

σθd
wGi

 , i = 0, ..., n − 1

where ζ(k−1)
bi

is a 6 × 1 vector of the scalar residual uncertainties, defined by (3.15), of

the accelerometer and gyro bias errors. Note that ζ(k−1)
bi+1

= ζ(k−1)
bi

. Thus

δxmn = Mn
dδxm0 +

 n−1∑
l=0

Ml
d

Γdζ
(k−1)
b + Γc

σvd
wAi

σθd
wGi


The correlations E

(
δxnδuT

i

)
for i = n, ...,N − 1 can then be calculated as follows:

E
(
δxnδuT

i

)
=

 n−1∑
l=0

Ml
d

ΓdE
(
ζ(k−1)

b αiζ
(k−1)
b

)
= αi

(
σk−1

b

)2
 n−1∑

l=0

Ml
d

Γd

where αi was given in (3.16).

Returning to (3.18), if it is assumed that the accelerometer and gyro errors bA and bG

respectively are constant, random Gaussian distributed biases, the state error vector δx may

be augmented with the vectors bA and bG as follows:

δxi =

[
δxi, δyi, δzi, δvxi , δvyi , δvzi , δφi, δθi, δψi,bAi

,bGi

]T

Consequently, the dynamics matrix is augmented with discrete time matrix Γd as follows:

A =

Md Γd

06×9 I6×6


15×15
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and Γc is augmented to acknowledge the additional bias states to form discrete time matrix

G:

G =

 Γc

06×6



=



0 0

I 0

0 I

0 0

0 0


15×6

The final discrete-time form of the augmented navigation state error dynamics is expressed

as follows:

δxi+1 = Aδxi + G
√

Qwi

where √
Q =

σvd
I 0

0 σθd
I


6×6

,wi =

wAi

wGi


6×1

3.5 Simulation

For simulation of the conventional INS, (3.18) is modified slightly to reflect the

calibration performed in Appendix B as follows:

δxi+1 = Mdδxi + Γd

bA

bG

 + Γd

σvd
wAi

σθd
wGi

 (3.22)

where the accelerometer and gyro errors bA and bG are 3 × 1 vectors of constant, random

Gaussian distributed bias, so bA ∼ N
(
0, σ2

bA
I
)

and bG ∼ N
(
0, σ2

bG
I
)
. The values for the

bias variances, σ2
bA

and σ2
bG

, and discrete-time accelerometer and gyro parameters, σvd
and

σθd
respectively, are calculated in Appendix B.
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The CAI-aided INS simulation mechanization equations for the first N − n measure-

ments of each duty cycle k = 1, ..., 3600 are as follows:

δxmi+1 = Mdδxmi + Γd

(
u(INS )

mi
− δ̂u

(k−1)
b

)
, δxm0 = 0 ∈ R9, i = 0, ...,N − n − 1 (3.23)

where u(INS )
mi is a 6× 1 vector consisting of each scalar conventional INS accelerometer and

gyro measurement described in (3.5). Likewise, δ̂u
(k−1)
b is a 6 × 1 vector of each of the

scalar accelerometer and gyro bias error estimates. Note that when k = 1, all six bias error

estimates are initialized as zero.

The CAI-aided INS simulation mechanization equation for the CAI-measurement

portion of each duty cycle k is as follows:

δxmi+1 = Mdδxmi + Γdûi, i = N − n, ...,N (3.24)

where ûi is a 6 × 1 vector of the estimated scalar accelerometer and gyro measurements

provided from Θ̂ in the linear regression expressed in (3.9).

3.6 Revision of Model 1

Vanderbruggen and Mitchell [18] have recently proposed a numerical method to

generate a collimated, continuous source of pin-polarized atoms which could be used for

cold atom interferometry. Increasing the rate of available atoms should likewise increase

the measurement availability. With this concept in mind, the initial integration model is

revised to investigate what improvements, if any, would be gained from increasing the CAI

measurement rate while maintaining the 50 percent duty cycle. CAI measurements were

simulated twice per second and reflected the average of the acceleration and angular rate

measurements during the two measurement duty cycles, as illustrated in Figure 3.2. Finally,

the model is revised once more to simulate a 5 Hz CAI measurement rate with 50 percent

duty cycle. All model results are collected and tabulated in Chapter 4.
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Figure 3.2: Revised Model 1. Acceleration over two CAI duty cycles.

3.7 Alternate Model

An alternate model is considered in an attempt to improve the CAI-aiding performance

inspired from research conducted by Omr et al [9]. As discussed in Section I, Omr, Georgy

and Noreldin integrate position and velocity measurements provided from multiple MEMs

INS. The MEMs devices calculate ownship position and velocity by integrating their unique

acceleration measurements. The alternate model assumes that the CAI system operates

as an inertial measurement unit with its processor for calculating position, velocity and

angular rate states, x(CAI). Likewise, the conventional INS unit has its own integration

processor which outputs position, velocity and angular rate states x(INS). The conventional

INS and CAI IMU state measurements are optimally combined using basic Kalman gain
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principles (discussed in Chapter 2) to calculate the best estimate position, velocity, and

angular rate states x̂. The best estimate x̂ is then substituted for the previously calculated

x(INS) in the conventional INS mechanization equations, as shown in Figure 3.3.

u(INS) = u
(TRUE) 

+ δ u(INS)  x(INS) = x
(TRUE) 

+ δ x(INS)  

INS 
INS Mechanization 

Equations 

u(CAI) = u
(TRUE) 

+ δ u(CAI)  

CAI 
Mechanization 

Equations 

x(CAI) = x
(TRUE) 

+ δ x(CAI)  

K 

Figure 3.3: Model 2 System Concept.

The 9 × 1 INS and CAI state measurement vectors are defined as follows:

x(INS) = x(TRUE) + ζ

x(CAI) = x(TRUE) + ν
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where x(TRUE) is the true measurement state vector, and the INS and CAI measurement

error vectors are ζ and ν, respectively. The errors are assumed to be zero-mean, stochastic

variables with covariances P, as expressed with the following equations:

ζ ∼ N(0,P(INS))

ν ∼ N(0,P(CAI))

The INS and CAI state measurement vectors may be augmented as z as follows:

z = Hx + v

=

 x(INS)

x(CAI)


18×1

with regressor matrix H and augmented error vector v

H =

 I9×9

I9×9

 , v =

 ζν


and augmented covariance matrix R

R =

 P(INS) 09×9

09×9 P(CAI)


18×1

From the Kalman filter optimization discussed in Chapter 2, the estimated state vector

is calculated from the following:

x̂ =

[
H−1RH

]−1
Hz

= x(INS) + K
(
x(CAI) −Hx(INS)

)
where K is the gain, defined as:

K =
P(INS)HT

HP(INS)H + P(CAI)

This concept model would work if the CAI measurements were consistently available.

However, if there were CAI accelerometer or gyro measurement dropouts due to high
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dynamics, the model is no longer useful because the CAI mechanization equations would

have to be re-initialized. For this reason, this alternate model was not pursued beyond a

conceptual design.
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IV. Results and Analysis

4.1 Monte Carlo Analysis

A Monte Carlo (MC) simulation of 1000 runs is performed to validate the navigation

algorithm’s performance over one hour. The aircraft’s position and velocity are initialized

at 0 meters and 0 (m/s), respectively. The calibrated variances of the measurement

uncertainties are given in Table 4.1.

Table 4.1: Sensor Uncertainties for Scenario 1 = 1000 (m/hr), Scenario 2 = 1500 (m/hr)

Scenario 1 Bias Variance Measurement Noise Variance

INS accelerometer
(
7.72 × 10−5 m/s2

)2 (
1.27 × 10−2 m/s2/

√
Hz

)2

INS gyro
(
6.55 × 10−9 rad/hr

)2 (
9.27 × 10−7 rad/

√
hr

)2

CAI accelerometer N/A
(
2.00 × 10−5 m/s2/

√
Hz

)2

CAI gyro N/A
(
1.47 × 10−9 rad/

√
hr

)2

Scenario 2

INS accelerometer
(
1.16 × 10−4 m/s2

)2 (
1.90 × 10−2 m/s2/

√
Hz

)2

INS gyro
(
9.83 × 10−9 rad/hr

)2 (
1.39 × 10−6 rad/

√
hr

)2

CAI accelerometer N/A
(
2.00 × 10−5 m/s2/

√
Hz

)2

CAI gyro N/A
(
1.47 × 10−9 rad/

√
hr

)2

From this analysis, it is determined that aiding a conventional INS with CAI-based

acceleration measurements, or vice versa, aiding a CAI-based INS with conventional INS

measurements, reduced the navigation error by approximately 48.5 percent, as illustrated

in Figure 4.1. An additional Monte Carlo simulation is run with the conventional INS

position accuracy calibrated to 1500 (m/hr), reflecting navigation-grade INS specifications,
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to see if the CAI aiding would be as effective. As shown in Figure 4.2, the standard

deviation is reduced by approximately 47.2 percent, which suggests that the unaided system

performance does not significantly impact the CAI-aiding capabilities when used with

the proposed mechanization algorithm. Table 4.2 shows the unaided, aided, and percent

correction for the position, velocity, and attitude parameters in both scenarios.
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Figure 4.1: Monte Carlo Simulation results for Position Error over 1000 runs. Calibrated

standard deviation position error for conventional INS is 1000 (m/hr).

4.1.1 Varying Conventional INS Data Rate.

The original simulation assumes that the CAI measurements would be aiding a

conventional INS with 10 Hz data rate. This assumption is made to simplify the algorithm

development; however, conventional INS systems operate at much higher data rates in

the field, typically in the range of 50 to 300 Hz. To account for this disparity, the CAI-
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Figure 4.2: Monte Carlo Simulation results for Position Error over 1000 runs. Calibrated

standard deviation position error for conventional INS was 1500 (m/hr)

aiding algorithm is tested with conventional INS sampling rates of 50 Hz, 100 Hz and 150

Hz. Computer memory limitations prevented simulations above 150 Hz. The INS drift

and bias uncertainties are re-calibrated for 1500 (m/hr) drift to compensate for each of

the differing data rates as shown in Table 4.3. Note that the CAI measurement data rate

is kept at 1 Hz, so no recalibration was necessary. The unaided and aided RMS values

for the position, velocity and attitude are given in Table 4.4. The original 10 Hz results

are also included for comparison purposes. Figure 4.3 illustrates an inverse relationship

between the error correction percentages and conventional INS data rates. As the data rates

increase, the INS measurements are weighted more heavily and overshadow the single CAI

measurement. With more samples, there is more potential for anomolous noise to enter the

INS measurements which may not be accounted for by the algorithm’s weighting matrix R.
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Table 4.2: Unaided, Aided Error and Error Correction Values after One Hour for Varied

INS Drifts

1000 (m/hr) INS drift Position (m) Velocity (m/s) Attitude (rad)

Unaided INS (RMS) 1051.25 0.68 2.98 × 10−5

CAI-Aided INS (RMS) 541.85 0.34 1.40 × 10−5

Error Correction 48.46 % 50.19 % 53.19 %

1500 (m/hr) INS drift

Unaided INS (RMS) 1554.50 1.00 4.60 × 10−5

CAI-Aided INS (RMS) 819.60 0.50 2.22 × 10−5

Error Correction 47.23 % 50.18 % 51.70 %

However, the drop in aiding performance is marginal; with a fifteen-fold increase in data

rate, the error correction percentage decreases by approximately six percent.

Table 4.3: Calibrated Conventional INS Uncertainties for Different Data Rates

50 Hz Bias Variance Measurement Noise Variance

INS accelerometer
(
1.16 × 10−4 m/s2

)2 (
4.25 × 10−2 m/s2/

√
Hz

)2

INS gyro
(
9.83 × 10−9 rad/hr

)2 (
3.11 × 10−6 rad/

√
hr

)2

100 Hz

INS accelerometer
(
1.16 × 10−4 m/s2

)2 (
6.01 × 10−2 m/s2/

√
Hz

)2

INS gyro
(
9.83 × 10−9 rad/hr

)2 (
4.39 × 10−6 rad/

√
hr

)2

150 Hz

INS accelerometer
(
1.16 × 10−4 m/s2

)2 (
7.37 × 10−2 m/s2/

√
Hz

)2

INS gyro
(
9.83 × 10−9 rad/hr

)2 (
5.39 × 10−6 rad/

√
hr

)2
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Figure 4.3: Position Error Corrections from Monte Carlo Simulations for Varying

Conventional INS Data Rates.

4.1.2 Varying Acceleration Input.

In the field, the CAI-aided INS will be subjected to varying accelerations. To test its

performance, two scenarios are simulated where the accelerations are 0.5 Hz sinusoidal

inputs. The first acceleration waves are given an amplitude of 1.5 g’s and the second, 3

g’s. The 3 g amplitude represents the maximum cut-off for low dynamics, based upon the

author’s field test experience and previous research from Canciani [12]. CAI measurements

are flagged as unusable when subjected to accelerations above 3 g’s because the vibrations

saturate the sensitive instruments of the low-bandwidth system. It should be noted that

flagging an aiding system’s measurements in poor environmental conditions, e.g. poor
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Table 4.4: Unaided and Aided RMS Error after One Hour for Varied INS Data Rates

10 Hz Position (m) Velocity (m/s) Attitude (rad)

Unaided INS (RMS) 1554.50 1.00 4.60 × 10−5

CAI-Aided INS (RMS) 819.60 0.50 2.22 × 10−5

Error Correction 47.23 % 50.18 % 51.70 %

50 Hz

Unaided INS (RMS) 1529.13 1.02 4.30 × 10−5

CAI-Aided INS (RMS) 876.21 0.56 2.21 × 10−5

Error Correction 42.70 % 45.61 % 48.55 %

100 Hz

Unaided INS (RMS) 1566.95 1.03 4.52 × 10−5

CAI-Aided INS (RMS) 897.16 0.57 2.34 × 10−5

Error Correction 42.74 % 44.53 % 48.20 %

150 Hz

Unaided INS 1505.09 0.99 4.46 × 10−5

CAI-Aided INS 889.55 0.56 2.35 × 10−5

Error Correction 40.90 % 43.38 % 47.42 %

GPS GDOP, is a common practice in industry. For each scenario, the INS and CAI drift

and bias uncertainties are re-calibrated for 1500 (m/hr) and 5 (m/hr) respectively, because

the values in the transition matrix changed for different acceleration inputs. The CAI data

rate are limited to 1 Hz while the INS data rates are limited to 10 Hz. The unaided, aided,

and error correction values for the position, velocity and attitude are given in Table 4.5.

Comparing the two scenarios, the CAI-aided INS has slightly more accurate performance

when the acceleration amplitude is increased to 3 g’s. This is possibly due to the CAI-aiding
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being more effective when larger conventional INS errors are introduced from increased

dynamics. The growth of INS errors is highly dependent upon the vehicle trajectory, as

seen in the time-dependent transition matrix A. More scenarios should be tested before

making conclusions regarding the acceleration impacts. It should also be emphasized that

this trend would likely not hold in accelerations greater than 3 g’s. Multiple error sources

are not modeled in this research that would become more influential in high dynamics, e.g.

accelerometer and gyroscope scale factors. Additionally, current CAI technology limits its

measurement bandwidth to dynamics to less than 3 g’s.

Table 4.5: Unaided, Aided Error and Error Correction Values after One Hour for Varied

Acceleration

1.5 g Acceleration Position (m) Velocity (m/s) Attitude (rad)

Unaided INS (RMS) 1579.15 1.04 4.76 × 10−5

CAI-Aided INS (RMS) 832.08 0.52 2.22 × 10−5

Error Correction 47.31 % 49.62 % 53.53 %

3 g Acceleration

Unaided INS (RMS) 1623.58 1.07 4.62 × 10−5

CAI-Aided INS (RMS) 826.07 0.52 2.16 × 10−5

Error Correction 49.12 % 51.06 % 53.15 %

4.1.3 Varying CAI Measurement Data Rate.

As discussed in Chapter 3, recent research advances in cold atom physics have shown

the potential for having continuously sourced atoms, which would allow for higher sample

rates and bandwidth [18]. To test the impact of increased CAI sample rates, Monte

Carlo simulations are run with 2 Hz and 5 Hz CAI data rates. The conventional INS

sample rates are maintained at 10 Hz. The unaided, aided, and error correction values
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for the position, velocity and attitude are given in Table 4.6, with the 1 Hz CAI data

rate results included for comparison purposes. A five-fold increase in CAI data rates

gave remarkable improvements in navigation accuracy, including a nearly 87 percent

correction of RMS position drift error. These results demonstrate how improvements in

CAI measurement availability would significantly increase the effectiveness of CAI-based

aiding when implementing the proposed mechanization algorithm.

Table 4.6: Unaided, Aided Error and Error Correction Values after One Hour for Varied

CAI Data Rates

1 Hz CAI Position (m) Velocity (m/s) Attitude (rad)

Unaided INS (RMS) 1554.50 1.00 4.60 × 10−5

CAI-Aided INS (RMS) 819.60 0.50 2.22 × 10−5

Error Correction 47.23 % 50.18 % 51.70 %

2 Hz CAI

Unaided INS (RMS) 1577.96 1.04 4.75 × 10−5

CAI-Aided INS (RMS) 836.52 0.53 2.24 × 10−5

Error Correction 49.99 % 49.05 % 52.91 %

5 Hz CAI

Unaided INS (RMS) 1533.84 1.00 4.34 × 10−5

CAI-Aided INS (RMS) 206.57 0.22 1.35 × 10−5

Error Correction 86.53 % 77.76 % 68.96 %
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V. Conclusions and Recommendations

5.1 Conclusion

High accuracy cold atom interferometers offer a potential quantum leap in inertial

navigation accuracy and possibly an autonomous navigation alternative for GPS navigation.

However, the CAI accelerometers and gyros’ low duty cycle significantly reduces its

viability as a standalone INS. Fusing the CAI-based accelerometer and gyroscope

measurements together with conventional, navigation grade INS measurements increases

the overall system’s bandwidth while also reducing the navigation error. It should be noted

that the covariance calculations add processing delay, with a minor reduction in duty cycle

(dependent upon the processor capabilities). In this research, a 10 Hz free-INS’s position

errors are reduced by 47.2 percent by employing CAI measurements, despite the one second

gaps in their availability. When the conventional INS data rate is increased to 150 Hz,

the CAI-aided INS showed a marginal decrease in navigation accuracy. Increasing the

CAI measurement sampling rate made a significant improvement in the CAI-aided INS

performance.

5.2 Recommendations for Future Research

Further investigations should be made to determine the CAI-aiding performance dur-

ing dynamic flight scenarios where the CAI may incur longer gaps between measurements,

similar to research conducted by Canciani and Raquet [11].

As explained Section 1.4, the acceleration and gyro measurement models are

simplified to include a single bias and drift induced error. The Earth is also assumed to

be flat and non-rotating for the navigation simulations. More complex error and mechanics

models are proposed in [11] and [19]. These models could be employed to make a realistic

evaluation of their contributive effects in more dynamic flight scenarios.
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Errors caused from the processing delay or lag should be investigated in a real-time

model. The errors caused from gaps in acceleration and angular rate measurements become

more significant when those corresponding dynamics are rapidly changing, particularly

in medium to high dynamics. The developed algorithm performance could be compared

with an extended Kalman filter which estimate the INS mechanization during gaps in CAI-

aiding. Increased CAI measurement availability may reduce the impact from these delays.

Cold atom technology is developing at a fast pace due to its application in multiple

areas where precision measurements are a necessity. As more CAI improvements and

demonstrations are made, system limitations and parameters should be updated to reflect

actual performance. Ideally, flight testing of actual CAI hardware could be performed in

the future to test advanced mechanization models and their aiding algorithms.
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Appendix A: Analytic Sensor Drift Modeling

A.1 Gyro Drift

The continuous-time rate gyro dynamics are modeled as a stochastic differential

equation

θ̇(t) = ω(t) + bG + σθc β̇(t), θ(0) = 0 (A.1)

where ω(t) is the true input angular rate, bG is the gyro’s residual random bias bG ∼

N
(
0, σ2

bG

)
and the stochastic process β(·) is a unit Brownian motion, that is, β(t) ∼ N (0, t).

Note that the units of the strength of the gyro’s drift parameter σθc are (rad/
√

s). If ω(t) ≡ 0

and bG ≡ 0, the solution to the stochastic differential equation (A.1) is as follows:

θ(t) ∼ N
(
0, σ2

θc
t
)

(A.2)

The specified rate gyro’s measurement uncertainty caused by drift σθ is defined as the

angular position uncertainty brought about by integrating the rate gyro’s output over

one hour. In industry, it is commonly referred to as the Angle Random Walk (ARW)

specification because the gyro drift introduces a zero-mean random walk error in the angle

[10]. In other words, if the true angular rate ω(t) ≡ 0, then at one hour, the following is

true:

θ(3600) ∼ N
(
0, σ2

θ

)
(A.3)

Relating equations (A.2) and (A.3) when t = 3600, and using the manufacturer’s provided

gyro specification σθ, we obtain

σθc =
σθ

60 · 180
π

(rad/
√

s) (A.4)

which defines the parameter σθc featured in the continuous-time gyro dynamics modeled

by the stochastic differential equation in (A.1) and in the continuous-time INS navigation

state error equation in (3.17).
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The discrete-time form of (A.1) is as follows:

θi+1 = θi + (ωi + bG)∆T + σθd
ηi, θ0 = 0, i = 0, 1, ... (A.5)

where the intensity of the process noise, σθd
, is the discrete-time equivalent of the parameter

σθc . The random variable ηi is stipulated as ηi ∼ N (0, 1). When ωi ≡ 0 and bG ≡ 0, the

solution to the discrete-time stochastic difference equation (A.5) is:

θi = σθd

i−1∑
i=0

ηi

∼ N
(
0, iσ2

θd

)
, i = 0, 1, ... (A.6)

Since ∆T is related to the sampling rate fs through the following equation:

∆T =
1
fs

then after one hour, i = 3600 · fs, where we recall the units of Hz are (1/s). From (A.3),

(A.4), and (A.6), the parameter featured in the stochastic difference equation (A.5) is as

follows:

σθd
=

σθ

60 · 180
π

·
√

∆T

=
σθc√

fs

(rad)

Assuming the gyro drift and gyro bias uncertainties are the only error sources, the

continuous-time navigation state error equation (3.17) would be specified as follows:

δẋc(t) = Mcδxc(t) + ΓGcbG + σθcΓGcβ̇G(t) (A.7)

where bG ∼ N
(
0, σ2

bG
I
)
, βG is a 3 × 1 vector of independent unity Brownian motions, and

ΓGc =


0

0

I


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Note that in (A.7) the units of σbG
are (rad/s). If σbG

is specified in terms of (deg/hr), then

convert σbG
to (rad/s) using the following equation:

σbG
(rad/s) := σbG

·
1

3600 · 180
π

The discrete-time form of the navigation state error equation (A.7) is

δxi+1 = Mdδxi + ΓGd
bGi

+ σθd
ΓGcwGi

, δx0 = 0 (A.8)

where

ΓGd
= Md ·

(∫ ∆T

0
eMc(−τ)dτ

)
ΓGc ,

wGi
is a 3 × 1 vector of independent, Gaussian random variables with wGi ∼ N (0, I) for

i = 0, 1, ... and bGi
is a 3 × 1 vector of constant, random biases, that is, bGi+1

= bGi
, bG0

∼

N
(
0, σ2

bG
I
)
. The constant gyro biases may be augmented into the state vector, such that

(A.8) becomes

δxi+1 = AGδxi + σθd
GGwGi

(A.9)

δx0 ∼ N

0,
0 0

0 σ2
bG

I




where

AG =

Md ΓGd

0 I

 , GG = σθd

ΓGc

0


A.2 Accelerometer Drift

The continuous-time accelerometer dynamics are modeled as

v̇(t) = u(t) + bA + σvc β̇(t), v(0) = 0 (A.10)

where u(t) is the true acceleration, bA is the accelerometer’s random bias bA ∼ N
(
0, σ2

bA

)
,

and β(t) is a unit Brownian motion. Hence, the units of σvc are
(
m/s
√

s
)
. If the true
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acceleration u(t) ≡ 0 and bA ≡ 0, the solution of the stochastic differential equation in

(A.10) is as follows:

v(t) ∼ N
(
0, σ2

vc
t
)

(A.11)

The acceleration measurement uncertainty caused by drift σv (m/s) is specified as the

velocity uncertainty brought about by integrating the accelerometer’s output over one hour.

The accelerometer drift introduces a zero-mean random walk error in the velocity output,

so it is aptly called the Velocity Random Walk (VRW) specification [10]. In other words,

if the true acceleration u(t) ≡ 0, then at one hour:

v(3600) ∼ N
(
0, σ2

v

)
(A.12)

From (A.11) and (A.12), when t = 3600, σvc is as follows:

σvc =
σv

60

(
m/s
√

s
)

thus calculating the parameter σvc which features in the stochastic differential equation

(A.10) using the manufacturer supplied specification σv.

Converting the dynamics (A.10) to discrete-time form gives the following equation:

vi+1 = vi + (ui + bA)∆T + σvd
ηi, v0 = 0 (A.13)

where σvd
is the discrete-time equivalent of σvc and as before, ηi ∼ N (0, 1). When ui ≡ 0

and bA ≡ 0, the following is true:

vi ∼ N
(
0, iσ2

vd

)
, i = 0, 1, ... (A.14)

From (A.11), (A.12), and (A.14), the parameter featured in the stochastic difference

equation (A.13) is:

σvd
=

σvc√
fs

(m/s)

Finally, including the accelerometer bias and drift error sources in the navigation state

error dynamics equation (A.7) gives the following equation:

δẋc(t) = Mcδxc(t) + ΓGcbG + σθcΓGcβ̇G(t) + ΓAcbA + σvcΓAc ζ̇A(t) (A.15)
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where

ΓAc =


0

I

0


βA is a 3×1 vector of independent unity Brownian motions, and bA ∼ N

(
0, σ2

bA
I
)
. Note that

the accelerometer bias variance, σ2
bA

, is given in Table 4.1. Re-writing (A.15) in discrete-

time form yields the following expression:

δxi+1 = Mdδxi + ΓGd
bGi

+ σθd
ΓGcwGi

+ ΓAd
bAi

+ σvd
ΓAcwAi

, δx0 = 0 (A.16)

where

ΓAd
= Md ·

(∫ ∆T

0
eMc(−τ)dτ

)
ΓAc

wAi
is a 3× 1 vector of independent, Gaussian random variables: wAi ∼ N (0, I) and bAi

is a

3 × 1 vector of constant, random biases: bAi+1
= bAi

, bA0
∼ N

(
0, σ2

bA
I
)
.

The accelerometer and gyro biases may be augmented into the navigation state vector

as follows:

δxi =


δxi

bAi

bGi


such that in the absence of alignment errors, the discrete-time navigation state error

dynamics equation in (A.16) becomes

δxi+1 = Aδxi + G
√

Qwi, δx0 ∼ N

0,

09×9 0 0

03×9 σ2
bA

I 0

03×9 0 σ2
bG

I



 (A.17)
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where

A =


Md ΓAd

ΓGd

0 I 0

0 0 I


15×15

, G =

 ΓAc ΓGc

06×3 06×3


15×6

Q =

σ
2
vd

I 0

0 σ2
θd

I


6×6

, wi =

wAi

wGi


6×1
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Appendix B: Calibration for Bias and Drift Uncertainty

In the conventional INS and in the CAI-based Inertial Measurement Unit (IMU), the

accelerometer and gyroscope measurement errors at discrete time i = 1, 2, ..., caused

by drift are white, Gaussian noises wAi ∼ N (0, 1) and wGi ∼ N (0, 1), respectively

[15]. Similarly, the accelerometer and gyroscopes’ unknown, but constant, bias errors are

bA ∼ N
(
0, σ2

bA
I
)

and bG ∼ N
(
0, σ2

bG
I
)
. The biases bA and bG are 3 × 1 vectors and their

uncertainties are quantified by the accelerometer and gyroscope specifications, σ2
bA

and

σ2
bG

, respectively.

We determine σvd , σθd , σbA and σbG by calibration, so that the conventional, navigation

grade INS yields a positional error of 1 (km/
√

hr) and the CAI-based IMU in theory yields

a position error of 5 (m/
√

hr). This entails a covariance analysis.

The covariance of the navigation state’s error satisfies the Lyapunov equation as

follows [13]:

P(δx)
i+1 = AP(δx)

i AT + GQGT, i = 0, 1, ...,N − 1 (B.1)

where Q is the accelerometers’ and gyroscopes’ drift uncertainties matrix

Q =

σ
2
vd

I 0

0 σ2
θd

I


and N is such that one hour is considered. Assuming no alignment errors, the covariance

matrix is initialized as follows:

P(δX)
0 =


09×9 09×3 09×3

03×9 σ2
bA

I 03×3

03×9 03×3 σ2
bG

I


and it is required that the x position uncertainty of the conventional INS after one hour be

specified as follows: √(
P(δX)

3600·N

)
1,1

= 1000 m
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Note that there is a linear relationship between the sensors’ drift induced measurement

error variances, σ2
vd

and σ2
θd

; the variance σ2
bA

and σ2
bG

of sensor biases; and the uncertainty

in the aircraft final x position:

(
P(δX)

3600·N

)
1,1

= ασ2
vd

+ βσ2
θd

+ αbσ
2
bA

+ βbσ
2
bG

The coefficients α, β, αb, and βb are determined by sequentially setting all but one

uncertainty to zero in a sequential manner and solving equation (B.1) four times as follows:

α =
(
P(δX)

3600·N

)
1,1
, σvd = 1, σθd = 0, σbA = 0, σbG = 0

β =
(
P(δX)

3600·N

)
1,1
, σvd = 0, σθd = 1, σbA = 0, σbG = 0

αb =
(
P(δX)

3600·N

)
1,1
, σvd = 0, σθd = 0, σbA = 1, σbG = 0

βb =
(
P(δX)

3600·N

)
1,1
, σvd = 0, σθd = 0, σbA = 0, σbG = 1

The uncertainty standard deviations are then determined from the following equations:

σvd =

√(
P(δX)

3600·N

)
1,1

2α
, σθd =

√√(
P(δX)

3600·N

)
1,1

2β

σbA =

√√(
P(δX)

3600·N

)
1,1

2αb

, σbG =

√√(
P(δX)

3600·N

)
1,1

2βb

where
(
P(δX)

3600·N

)
1,1

is the required x position variance after a one hour flight.

For the conventional free INS, where δt = 0.1 seconds (N = 10), we require(
P(δX)

3600·N

)
1,1

= 106 (m2), such that after one hour the x-axis position uncertainty standard

deviation is 1 (km). The calculated measurement variances, σ2
vd

and σ2
θd

, which account for

the acceleration and gyro drifts and the residual bias uncertainties σ2
bA

and σ2
bG

, are given

in Table 4.1 for both the INS and CAI IMUs.

The CAI IMU’s discrete-time navigation state error covariance equations are the same

as (B.1), with the required
(
P(δX)

3600·N

)
1,1

= 25 (m2) such that after one hour the theoretical

position uncertainty standard deviation is 5 (m).
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