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1 SUMMARY 
The AFRL‐VT‐WSU-UMD Collaborative Center in Multidisciplinary Sciences (CCMS) was 
established after a successful proposal developed jointly by Virginia Tech and Wright State 
University and another one from the University of Maryland. 

These proposals were developed in response to a Broad Agency Announcement (BAA PKV‐08‐
09) with the following stated purpose: 

The Multidisciplinary Technology Center (MDTC) of AFRL will set up an ongoing partnership 
by establishing a Collaborative Center in Multidisciplinary Sciences (CCMS). The best fit will be 
a research team whose expertise strongly complements the AFRL team, as this collaborative 
effort will be an extension of AFRL’s Multidisciplinary Technology Center. Developing a 
Collaborative Center is expected to increase the agility and responsiveness of AFRL research 
efforts. 

This report contains work carried out at the University of Maryland, from the end of the Fall 
2009 semester.  Our focus included the following: 

1. Develop tools for the study and design of micro-air-vehicles (MAVs). 
2. Analyze the physics observed through experiments to determine beneficial phenomena. 
3. Compare the utility of models of varying levels of fidelity to see how they affect the design 

process. 

In Section 2, the academic activities of the students are listed, including a list of publications.  
The development and analysis of two-dimensional (2D) flapping models are discussed in Section 
3.  Special attention is given to comparison of results from the DNS and UVLM models.  Novel 
vibration experiments carried out with the wings of living hawkmoths are included in Section 4, 
along with a formulation of a highly flexible three-dimensional (3D) solid model for use in FSI.  
This section also contains a discussion of the fluid-structure interaction (FSI) implementation of 
the FSI algorithm inside high-performance FLASH code.  Numerical demonstrations of the 
effectiveness of the implementation are presented in Section 5.  Finally, concluding remarks are 
collected together in Section 6. 
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3 Two-Dimensional Modeling 
As an initial step towards understanding phenomena associated with flapping wings and tools 
that can be used to study these systems, two-dimensional (2D) systems are considered.  In a 2D 
setting, the complicated three-dimensional (3D) motions are idealized to motions of a 
representative cross-section of a wing, as depicted in Figure 1.  This simplification greatly 
reduces the complexity of the physics, the possible parameter space for exploration, and the 
associated computational costs.  By working with 2D models, the investigators gained a basis to 
understand the types of models, which would need to be constructed for the 3D cases to be 
studied later. 

3.1 Initial	study	on	flexibility	

In the first model studied, a single measure for the chord-wise deflection is used.  Here, there are 
two rigid elements connected at point b by a torsion spring, as depicted in Figure 2.  This torsion 
spring is assumed to be linear with respect to the deflection angle ߙ between the two rigid 
elements.  The location of point b is specified by the coordinates ሺݔ, ሻ, and ݕ  is the orientation 
of link B.  The center of mass 

i
m , ݅ ∈ ሼA, Bሽ, of each link is located a distance ߟ௜ from the 

connection point b.  The length of the profile is ݈. 

 

Figure 1: Schematic illustration of a two-dimensional wing profile as a representative cross-
section of an insect wing1. 

                                                 

 

1 Photo of female Villa hottentotta, used under a Creative Commons Attribution-ShareAlike license, 
http://commons.wikimedia.org/wiki/File:Villa_hottentotta_female.jpg  
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Figure 2: Schematic of two-dimensional profile with discrete flexibility.  (A) Details of the 
profile’s description and coordinates on the 10% thickness case.  (B) Example of the 3% thickness 

case. 

The equations of motion for this structural model can be arranged as 

0 sin sin( ) sin( )
cos cos( ) cos( )

symm.

A B B B A A A A x x

A B B B A A A A y y

A B A

A

m m m m m Q gx
m m m m m Q gy

I I I Q g
I Q g

 

 

       
       




         
    
                      
         









(3.1) 

where the jQ , { , , , }j x y θ α∈ , are the external generalized forces, and jg  are the nonlinear 

contributions of centrifugal, elastic, and gravity forces.  For the case of hovering flight, the 
motion point b is prescribed.  The kinematics of ( ( ), ( ), ( ))x t y t tθ  are prescribed functions of 
time.  This reduces the unknowns of (3.1) to a single equation for ( )tα . This system, which 
governs the evolution of the deformation of the profile, has the form of a nonlinear oscillator; 
that is, 

sin( ) .A A A AI k I m x Q         

  (3.2) 

This equation does not contain any structural damping since no assumptions have been made 
about a particular damping model.  A consequence of this choice is that this model cannot be 
excited at (linear) resonance.  Combes and Daniel (2003a, 2003b) proposed that certain insects 
flap their wings near linear resonance, and they applied an arbitrary proportional damping to 
make a finite element model response match their data.  The damping factor used in the work of 

(A) (B)
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Combes and Daniel (2003a) is reported to be 10 times the mass. If that same factor was used to 
impose linear damping in this model, the system would be overdamped.  This level of damping 
would dominate the response and the interesting interactions with the fluid would be removed. 
In addition, structural damping data reported in the literature has been limited; there is not yet 
enough evidence to support a particular material damping model.  In the current investigation, 
the researchers are primarily interested in the elastic response of the flapping system with fully 
coupled FSI, and significant damping may reduce the influence of aerodynamic forces making 
the response structurally dominated.  Therefore, structural damping is not considered at this stage 
but is left as possible addition in future work. 

3.2 Fluid-structure interactions 

The computation of dynamics of the fluid field was carried out by using two models in 
conjunction with the structural model defined in §3.1.  The first one was based on the direct 
numerical simulation (DNS) of the Navier-Stokes equations for incompressible flows, and the 
second fluid model used was based on the unsteady vortex lattice method (UVLM).   

The coupling scheme is a predictor-corrector method (Preidikman, 1998; Yang et al., 2008), as 
outlined in Figure 3.  Although not monolithic, the main benefit to this strategy is that fluid 
model and structural model can be modular and replaced as needed.  The fluid system is coupled 
to the structural system by computing the resultant forces from the pressure and vorticity on the 
surface of the body.  This force is then used to integrate a predicted set of structural states.  In 
this predicted configuration, the surface kinematics of the body is fed back as the immersed 
boundary conditions to the fluid model.  This cycle of communication is iterated until the change 
between sub-steps is below a set tolerance.   For all of the models used, only 1 or 2 sub-iterations 
are found to be needed.  This is likely due to the small time steps used to comply with the 
Courant-Friedrichs-Lewy condition (CFL) number.  This approach provides a systematic means 
to couple the equations of motion in strong form. 
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Figure 3: Process flow diagram of the fluid-structure coupling scheme. 

3.3 Parameterization 

The kinematics used are based on simple harmonic hovering (Wang et al., 2004).  These have 
been adapted to include a non-impulsive start (Vanella et al., 2009). 

 

 

/

/
0

( ) 1 sin( )
2

( ) 0

( ) 1 sin( )

20.8

t x
f

t
f

f

Ax t e t

y t

t e A t








   










 



   

     

(3.3) 

Here ( ( ), ( ), ( ))x t y t tθ  are the location and orientation of the top segment of the profile shown in 
Figure 2.  The exponential-decay factor is used to prevent the numerical noise from an impulse 
start.  This was found to be beneficial in removing start up noise in the simulations and having 
the flow fields remain well behaved through the initial transients.  The value of τ  is chosen so 
that it takes around 5 periods of hovering to achieve the regular full motion. 

Approved for public release; distribution unlimited.



7 

The nondimensionalization of the system's parameters reduces the parametric space to 4 key 

ratios: body

fluid

( , , , )f x

n

ARe
l

ρ ω
ρ ω

.  The reference speed of the Reynolds number ( ref /Re u l ν= ) is 

chosen to be the peak translation speed of the forcing 

max .
2

x fA
x


  

The reference length is the chord l .  The ratio between the stroke length and the chord length is 
obtained from (Wang et al., 2004) to be / 2.8xA l = .  The maximum value for rotation is set to

/ 4Aθ π= , and the profile is assumed to rotate about the vertical position 0 / 2θ π= − .  For 

symmetric hover 0φ = , and there is no lead or lag.  Fixing ref 1u = , and 1l =  provides a period of
2.8T π= .  

The density of the fluid, in the nondimensional DNS code is already 1; so to set the Reynolds 
number, the kinematic viscosity ν  is selected.  The parameters of the structure ( , , , )A A Am I kη

from (3.2) are computed by geometry and choice of body

fluid

( , )f

n

ρ ω
ρ ω

.  In Figure 2, each rigid link is 

taken to be a rectangle with a circular endcap.  Due to computational considerations in the fluid 
solver, a finite thickness profile is needed.  The area, location of the centroid Aη , mass Am , and 

rotary moment of inertia AI  can be directly computed from geometry once the density ratio is 
chosen.  Finally, the spring constant k  is computed from the relation 

2 .n
A

k
I

   

In the next sub-sections, the results obtained through the DNS and UVLM computations are 
introduced and discussed.  For these computations, the ratio body fluid/ 25ρ ρ =  has been chosen to 

scale the aerodynamic forces to be of the same order as the fluid forces. The fluid-structure 
interactions are investigated by selecting various spring constants in the model.  As discussed 
above, the difference spring values correspond to different choices of the ratio /f nω ω .  In the 

following results, the values of /f nω ω  range from the soft case corresponding to the ratio of 1/2, 

to the intermediate spring constants of 1/3 and 1/4, and the almost rigid spring case 
corresponding to / 1/ 6f nω ω = . 
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3.4 Direct numerical simulations in two dimensions 

Direction numerical simulation (DNS) represents the highest fidelity computational fluid model 
in common use.  It is constructed by the direct discretization on a staggered grid of the Navier-
Stokes equations for incompressible flow.  The results, as presented in Vanella et al. (2009), are 
constructed from a second order central difference scheme on a stretched Cartesian mesh.  Time 
marching is performed by using the fractional step method (Kim and Moin, 1985).  The body is 
represented in the fixed grid by using an immersed boundary method (Yang et al., 2008).  To 
enforce the no-slip condition, the predicted velocity field of the fractional step method is forced 
to match the velocity field along the surface of the body.  The flapping profile is placed in the 
center of a large box so that the boundaries do not interact with the body.  The equations are 
integrated from rest to 15 periods of motion.  It takes approximately 1.5 days to compute a single 
period T  of flapping motion on an Intel XEON based computer.   

The computational grid was constructed to resolve the boundary layers, and other flow features 
on the moving profile.  A schematic of the domain is shown in Figure 4 with an expanded view 
near the tip of the body.  The center point of the profile is located at the center of a 30 30l l×  
domain to minimize the effects of the far-field boundary conditions.  The center region, where 
the body passes through, is a uniform grid with cell size 33.725 10x y l−∆ = ∆ = × .  This provides 
approximately 8 or 16 points inside the boundary for the various Reynolds number cases. 
Outside of this region, the grid is stretched to the boundaries.  

Figure 4: Schematic of the profile inside the DNS grid showing the overall size of the domain.  
The detailed view shows a close up near the leading edge of a 10% thick body, where the red lines 

are grid lines, the black points are control points representing the body, and the flow field is the 
magnitude of velocity for 250Re = , / 1/ 2f nω ω = , at time / 9.75t T = . 
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Figure 5: Vorticity contours from DNS at 75Re = .  Contours range from -10 to 10 with 80 
intervals.  Columns A-C are flexible profiles with / {1/2, 1 /3, 1 /4}f nω ω ∈ , respectively; Column 

D is the rigid profile.   Adapted from Vanella et al. (2009). 
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Figure 6: Averaged lift to drag ratio from the two-dimensional DNS calculations for various 
frequency ratios.  Profile thickness is / 10l . 

A summary of the resulting flow fields is depicted in Figure 5 for a range of /f nω ω  at Reynolds 

number 75Re = .  The vorticity contours reveal the vortex structure interplay with the flexible 
profile.  Similar results were also computed for 250Re =  and 1000Re = .  It is worth noting that 
for the soft spring case of / 1/ 2f nω ω = , the system undergoes extremely large deflections, and 

the passive link almost undergoes a complete rotation about the joint.  

On examining the averaged dimensionless aerodynamic forces acting on the profile, there is an 
interesting finding.  It is observed that for the particular spring value corresponding to 

/ 1/ 3f nω ω = , there is a  peak in the ratio of lift coefficient and drag coefficient /L DC C , as 

viewed in Figure 6.  It is also noted that the flexible profile has an improved efficiency compared 
to that of the rigid profile. 

3.5 Unsteady vortex lattice method in two dimensions 

In contrast to the computationally expensive DNS method, vortex methods present a compromise 
between speed and fidelity.  In the unsteady vortex lattice method (UVLM) employed by 
Preidikman (1998), it is assumed that the flow field is inviscid and the wake can be completely 
described by point vortices.  A body in the flow field is discretized into panels, and the no-
penetration condition is applied at the chosen control points along each panel.   The 
discretization used in this method is illustrated in Figure 7.   
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Figure 7: Schematic for the discretization of the Unsteady Vortex Lattice Method. 

This method can be applied to a membrane or zero-thickness problems, since assuming the wake 
to only separate at the edges is suitable.  Vortices are convected from the trailing edge after each 
time step by using the Kutta condition. Similarly, Valdez et al. (2006) proposed a method to 
convect vortices simultaneously from the leading of the profile. Since a zero-thickness profile is 
used here, the tips are assumed to be the points where the wake separates from the body.  Also 
proposed by Valdez et al. (2006), is a reconstruction of the entire velocity and pressure fields 
from the vortex particle wake.  For the results presented here, the original code was authored by 
Valdez (2008). 

Unlike the slower DNS computations, a complete run of 20 periods of hovering motion takes 
around 10 hours on an eight processor Intel XEON computer.  The issue with longer simulations 
is that with each additional time step, there are two additional vortices whose influence needs to 
be included.  So the number of computations increases at a rate 2( )O n , where n  is the number of 
time steps in the integration.  This makes short time computations quick in comparison to a DNS 
study, but long time simulations quickly become impractical.  These characteristics make the 
UVLM simulations attractive from a design perspective since coarse results can be obtained 
rather quickly.   

3.6 POD analysis of the flow fields 

3.6.1 Formulation 

The proper orthogonal decomposition (POD) goes by many names such as the Karhunen-Loève 
transform, principal component analysis, or singular systems analysis depending on the 
discipline.  It also can be formulated in a continuous or discrete sense, and used for experimental 
or computational data.  The overarching goal of the POD is to decompose data into hierarchical 
sets of spatial basis functions, often called mode shapes.  Here the velocity fields of the fluid are 
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decomposed into spatial modes by using the continuous approach.  The gives the assumed 
representation of the flow field the following form 

1

( , ) ( ) ( ) .i i
i

t t 




u x x  (3.4) 

This can be interpreted from a vibrations perspective as time-dependent coefficients in modal 
coordinates.  The modes ( )xφ  are chosen to maximize the projection of the empirical data onto 

these modes in a 2L  sense.  So the problem statement is formulated as in the work of Holmes et 
al. (1996), and further simplifications can be made, since it can be recognized that the modes are 
a special superposition of the data snapshots. Employing the method of snapshots (Sirovich, 
1987), the modes φ  can be approximated as a finite sum over the known data 
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 (3.5) 

O’Donnell and Helenbrook (2007) demonstrate through a scaling argument that the pressure 
components can be neglected for incompressible flow in the substitution back into the Fredholm 
equation.  This means that only the velocity field is needed for the computations, while the 
modes of the pressure field are still computed.  The simplified results become an algebraic 
eigenvalue problem of size M

 C (3.6) 

where 

1: ( , )· ( , ) . lk l kC t t dV
M 

  u x u x  (3.7) 

Since TC C=  only the upper or lower triangular part needs to be constructed.  So the process to 
construct the POD set can be described as a sequence of the following steps:  

• Generate velocity field data at equal time intervals.
• Construct each element of (3.7) by integrating over the domain.
• Solve the M M×

  algebraic eigenvalue problem of (3.6)to get the set of eigenvalues λ  and
the associated eigenvectors ψ .

• Back substitute ψ  into (3.5) to get a truncated set of POD eigenfunctions φ .
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The set of spatial mode shapes φ  are ranked by using the eigenvaluesλ .  This gives a 
quantitative measure to regard the importance of each mode as constructed from the data.  For all 
the examples considered below, 99% of the energy in the snap shots in contained in less than 10 
of the leading eigenvalues.  This significant roll-off means that one can consider just a few 
leading terms.  A noteworthy side effect of the POD obtained by using the method of snapshots 
is immediately appreciable; φ  must be divergence free.  Since the mode shapes are a weighted 
super position of divergence free data, then φ  must also be divergence free (incompressible).  So 
any use of these modes faithfully preserves the incompressibility of the flow field. 

3.6.2 Results 

Next, the results obtained from various POD computations are presented.  Note that these figures 
represent the flow field outside of time, and they are the hierarchical structures of the fluid flow. 
The center joint of the profile moves through the region ( / , / ) ( 1.4,0)x l y l = ± . 

In Figure 8, the vorticity contours of the computed modes are shown for 75Re = .  The plotted 
field is the curl of the velocity mode shape, normalized to have the maximal value be one.  This 
makes comparison between modes informative.  After examining this figure, it is observed that 
all of the mode one results contain a large pair of vortices.  This represents the downward jet of 
fluid, and produces lift on the profile.  For / 1/ 3f nω ω = , this pair of vortices is the most intense 

as well as closest to the region of the body.  Interestingly this corresponds to the most efficient 
response for the given harmonic input kinematics.  It also corresponds to the structural resonance 
for the kinematics being used.  As expected, the scale of the structures decreases as the mode 
number increases.  This follows intuition from vibration mode shapes. 
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Figure 8: Vorticity contours determined by POD from DNS at 75Re = , 10% thickness, and 
harmonic kinematics.  Normalization is max| ( ) | 1i x

x
. Horizontal scale is /x l , vertical 

scale is /y l . 

The results obtained for 250Re = are shown in Figure 9.  It is interesting to note similar patterns 
to those obtained for the low Reynolds number configuration; again, mode one components 
shows a downward jet and mode two shows the end of stroke vortex pair.  In this flow regime, 
the vortices for the spring of intermediate stiffness ( / {1/ 3,1/ 4}f nω ω ∈ ) appears to be more 

spatially regular.  An investigation using other kinematics would need to be carried out in order 
to see how the kinematics affects the regularity of the field.   
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Figure 9: Vorticity contours determined by POD from DNS at 250Re = , 10% thickness, and 
harmonic kinematics.  Normalization is max| ( ) | 1i x

x
. Horizontal scale is /x l , vertical 

scale is /y l . 

Comparing the mode shapes of DNS fields to the UVLM fields cannot be done with vorticity 
contours since the UVLM approach is inviscid in nature.  Instead the velocity contours must be 
compared.  As discussed later in §3.7, the UVLM velocity modes share similar features to the 
DNS generated modes.   
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3.7 Comparing the results from DNS and UVLM studies 

The discussion in this section follows from the published work of Fitzgerald et al. (2011).  The 
goal is to compare the DNS and UVLM models to see where and how each should be best 
employed.  A DNS simulation is expensive; in fact, it would take several weeks for a full run of 
15 periods.  By contrast, the UVLM can produce 15 periods of flapping in several hours.  The 
DNS results are expected to be better, since it fully models the physics of interest.  However, as 
shown by Fitzgerald et al. (2011) the trends observed in the UVLM simulations for various 
configurations agree well with those noted in the DNS studies.  This provides a hybrid approach 
to use for system designers: the UVLM simulations can be first used as a low-fidelity prediction 
tool to find parametric regions of interest, which can be followed by the use of DNS studies to 
compute more realistic data. 

3.7.1 Flow fields 

In Figure 10, comparisons among the flow fields obtained through the DNS studies for 75Re = , 
250 and 1,000 and the UVLM are shown for period 6.  The ratio of the forcing frequency to the 
natural frequency of the system is chosen to be / 1/ 2f nω ω =  to show the largest displacements 

observed.  The magnitude of the velocity field is shown, since the vorticity field is unavailable 
from the UVLM simulations. In these figures, the different vortex structures can be observed and 
compared as the viscous diffusion in the system is decreased.  
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Figure 10: Magnitude of the velocity fields from periods 6--7 for / 1 / 2f nω ω = , DNS at 

{75, 250,1000}Re∈ , and UVLM. The velocity field is normalized as 2 ref| | /uu . 

For 75Re = , the flow field snapshots throughout periods 6 and 9 are nearly identical, resulting in 
the periodicity of the flow field.  This matches with the calculations of the correlation dimension, 
which suggests that a periodic orbit is produced in the low Reynolds number case.  When

250Re = , the snapshots are also very similar between periods 6 and 9.  However, as the 
correlation dimension indicates, an exact periodic solution is not seen.  There are small enough 
differences in the flow fields to cause small disturbances to what is nearly a periodic orbit. At

1000Re = , with relatively low viscous diffusion, the flow field no longer appears to be periodic. 
However, the same kind of vortex structures can be identified as in the low Reynolds number 
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cases, such as the leading and trailing edge vortices. As expected, the intensity of these vortex 
structures increases, since they are proportional to the magnitude of the velocity. The non-
periodicity of the flow field is a consequence of vortex interactions that were not dominant in the 
low Reynolds numbers cases.  

A sample of the velocity POD mode shapes obtained from the DNS and UVLM studies is shown 
in Figure 11.  Here, the downward jet appears in the vertical velocity.  Around the body, traces of 
the end of stroke vortices can be noted.  The UVLM contains no viscous dissipation which is 
why the fluid structures do not dissipate in time.  The results show that the UVLM POD is still 
able to nicely quantify the flow field in terms of the dominant structures.   

Figure 11: Comparisons of Mode 1 of POD velocity contours from DNS and UVLM data for 
/ 1 / 3f nω ω =  with harmonic kinematics.  The fields are normalized by 2 refmax | ( ) | 1 /i u

x
xφ = .  

Horizontal scale is /x l , vertical scale is /y l . 
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3.7.2 Aerodynamic loads 

The aerodynamic forces of interest here are the lift force and the drag.  The lift is defined as the 
vertical force; or the force that would keep a hovering system from falling.  The dimensionless 
lift is 

2
fluid ref

1
2

y
L

Q
C

u l
 (3.8) 

where yQ  is the vertical force.  Since the vertical motion of the joint is zero, the drag is taken to 

be the horizontal force that opposes the horizontal translation.  The dimensionless drag is 

2
fluid ref

sgn( ) 1
2

x
D

QC x
u l

  (3.9) 

where xQ  is the horizontal force.  Observing the time series obtained through DNS at 1000Re =
and the UVLM shows that the signals initially match quite well, as seen in the first period and a 
half in Figure 12.  As the simulation evolves however, the solutions appear to diverge, but still 
follow similar trends.  The loads from the UVLM successfully capture the dominant 
characteristics, with similar peaks and valleys in ( )LC t  corresponding to the mid-stroke and 
stroke reversals, respectively.  In both the lift and drag coefficients the UVLM results appears to 
follow the same pattern of over-estimating the highs and lows.  This suggests that the simulation 
of a transient maneuver, such as clap and fling (Weis-Fogh, 1973), and averaged long-term 
dynamics may be reasonably predicted by using UVLM simulations.  To explore long-term 
dynamics, a statistical approach is needed. 
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Figure 12: Time series of the dimensionless loads of the hovering profile from DNS at 1000Re =
in red and UVLM in blue for the frequency ratio / 1 / 3f nω ω = . 

The time histories have been collapsed to a single period by phase-averaging in Figure 13.  The 
data from periods 5 through 15 are averaged by using the hovering period T  as the reference 
clock.  This range of time is used since the hovering kinematics has reached the full amplitude, 
and the startup transients in the fluid should have died down.  At the stroke reversal, when

/ {0, / 2} 1t T ∈ , there is a jump in DC  that is not fully captured by the UVLM simulations.  A 
possible reason for the discrepancy could be that the vortex interaction during this event is 
influenced more by viscosity than at other points of the cycle.  For softer spring values; that is,

/ {1/ 2, 1/ 3,  1/ 4}f nω ω ∈ , the curves generally are in better agreement.  This is particularly 

visible in the case of the lift.  The prediction is worst for the rigid case. 
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Figure 13: Phase averaged forces of the hovering profile from DNS at 1000Re =  in red and 
UVLM in blue for various frequency ratios.  (a) Lift coefficient and (b) drag coefficient.  Adapted 

from Fitzgerald et al. (2011). 

The quantitative comparison of which UVLM curve best matches the corresponding DNS curve 
requires another definition.  The error measure assumed here is a scaled 2L -norm.  This is a 
point-wise check to see how far off the UVLM is at every point in time.  This does not account 
for phase lag or lead between the models.  For the drag force, it is written as 

 
1/2

2DNS UVLM

0
DNS DNS

( ) ( )
error( ) :

max min

T

D D

D
D D

C C d
C

C C

  
      




  



 

(3.10) 

with the same form being used for the lift  coefficient LC .  The numerical values are compiled in 
Table 1.  The differences appear to be smaller for the more compliant structures, indicating that 
the UVLM model would be of better use in highly flexible configurations where the structural 
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Table 1:  Relative error values of the phase-averaged loads between the 1000Re =  DNS and 
UVLM results for a range of stiffnesses. 

Frequency Ratio /f n 

Rel. Error 1/ 2  1/ 3  1/ 4  1/ 6  Rigid 

DC 9.9% 15.9% 10.0% 19.6% 24.7% 

LC 9.6% 13.4% 13.6% 25.6% 28.8% 

Figure 14: Comparisons of time averaged dimensionless lift and drag coefficients from the UVLM 
and DNS at various Re . (a) Mean lift and drag coefficients, (b) the ratio of mean lift to mean 

drag.  Adapted from Fitzgerald et al. (2011). 

dynamics outweigh the fluid contributions.  Overall, the predictions are likely acceptable in 
engineering design since the compliant configuration have errors that are less than 20%. 

Taking the overall time-average of the loads provides an even better use of the UVLM results. 
As shown in Figure 13, the time averaged loads LC  and DC  trend together.  The UVLM 
simulations overestimate the lift and the drag, but since it is nearly by the same 15% the ratio of 
the quantities match the DNS results quite well.  Keeping the modeling and kinematic 
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assumptions in mind, the results indicate that moderate flexibility improves the aerodynamic 
performance. 

The results of Figure 13 indicate that the UVLM study is adequate for quasi-steady prediction.  
Furthermore, the results of Figure 14b demonstrate that the UVLM is quite suitable for a 
designer to predict gross quantities and trends.  The trends with respect to the spring parameter 
are the most significant, since it points to the UVLM study being suitable for use in an 
optimization setting.  As mentioned earlier, a designer could adopt a hybrid approach and use the 
UVLM simulations in an optimizer to find parametric regions of interest and follow this up with 
detailed investigations of these regions with DNS studies. 
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4 Three-Dimensional Modeling 

4.1 Introduction 

A survey of the technology to extend the flapping work into 3D problems quickly reveals that the 
modeling of the structure is less well understood than the modeling of the fluid.  The Navier-
Stokes equation for an incompressible Newtonian fluid is an extremely versatile and well-
understood model.  Even a vortex lattice method in 3D is well suited for certain problems.  The 
model for a body or structure, by contrast, is still an open item.  Not merely the geometry is 
variable, but the structure itself and how to model its behavior is open.  Recent work on 
modeling the flapping wing-fluid system have either included rigid wings or highly simplified 
models.  In the work of Pai et al. (2009), a body described by nonlinear structural elements 
interacts with a quasi-steady fluid.  In an experimental study,  Zhao et al. (2010) measured the 
forces on a flapping wing made with Mylar material.  The synthesis of natural fliers to the 
construction of micro aerial vehicles is also a topic of open interest.   

The goal of this section is to present a structural model that is modular enough to be adapted to a 
variety of geometry and material properties, and can be designed for use in concert with a large-
scale fluid simulation.  The finite element method (FEM) provides a nice foundation to base the 
model since there is extensive literature on many aspects of its use.  The FEM is also adaptable 
to nearly any geometry and has the potential to be generalized for a wide range of material 
systems.   

For the immersed boundary methods employed in the available large-scale fluid solver, a body 
with finite thickness is required.  It was this same requirement that necessitated the placement of 
a surface around the structural elements in the 2D work of the previous section.  Several fluid 
grid points must be considered inside the solid body for the pressure to be resolved properly. 
Therefore, the body description selected was a solid body, and not a plate or shell.  This provides 
a natural thickness to the model, and allows for future cases with highly detailed surface 
geometry such as a computed tomography scan of an insect wing.  A solid element also has the 
benefit that one can directly employ many different material laws from continuum mechanics.   

4.2 Experiments 

The bio-inspired design of flapping vehicles draws heavily from the work of both engineers and 
biologists.  Among the various interesting aspects of insect, the wing is one of them.  Largely 
thought to be a passively flexible structure, the details of the structure of the wing have long been 
an area of interest.  Comstock (1918) has illustrated a life's body of work, which includes 
cataloging and defining of the various characteristics of insect wing morphology.  His naming 
conventions of the venation are still in common use by biologists today.  Following these 
footsteps, the efforts of Wootton (1992) further built on the biological map of insect wings. 
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Early engineering-type studies to model the wing include the efforts of Combes and Daniel 
(2003a, 2003b, 2003c) and the PhD dissertation of Wootton's student (Herbert, 2001).  Both 
groups come from a biology background, and they make claims that the flapping frequency 
observed is the fundamental frequency of the structure of the wing.  This notation that an insect 
flaps at linear resonance has only recently been challenged.  Computationally, this does not agree 
with the results shown in §3.7.2 since those models predict that efficiency decreases as linear 
resonance is approached (Fitzgerald et al., 2011; Vanella et al., 2009).   

Experimentally, Sims (2010) showed that the first natural frequency of a hawkmoth wing is 
around twice that of the flapping frequency.  The spectral information was measured via a 
scanning laser vibrometer from wings recently removed from living hawkmoths.  The tests were 
repeated for several specimens in air and in a vacuum chamber, and the measured first natural 
frequency is around twice the flapping frequency.  Kang et al. (2011) made several scaling 
arguments that predict the optimal natural frequency to be around 1/3 to 1/2 of the flapping 
frequency.  This recent work indicates that not only could older assumption be wrong, but there 
is a tremendous opportunity to exploit nonlinear effects. 

The setup to measure the spectral response of a living insect is outlined in Figure 15.  A living 
insect is anesthetized by exposure to a large amount of Flynap2 and then placed in a fixture 
molded out of modeler's clay.  The forewing is fixed in place near the root with more clay and 
pins.  The wing is acoustically excited by a JBL ASB1728 loudspeaker.  This subwoofer is rated 
to 4000 W of continuous pink noise, and has high fidelity down to 20 Hz. A pseudo-random 
signal is output from the Polytec PSV-400 vibrometer controller to a Crown MA-9000i power 
amplifier connected to the loudspeaker.   

The choice of the Manduca sexta was made due to several key factors.  It has been widely 
studied by biologist and found to be rather uniform in its body and flight characteristics across 
individuals. The insect wing is relatively large and opaque.  This means that it can measured by 
standard vibrometer equipment already available in the Vibrations Laboratory.  This insect 
species can be easily procured and grown from larvae purchased from biology supply companies.  
During the design of the experiment, it was thought that the fundamental frequency of these 
insects was near 25 Hz (Combes and Daniel, 2003a, 2003b, 2003c).  This drove the interest in 
the use of a speaker with good low frequency fidelity. 

2 Flynap is a general anesthetic designed for Musca domestica.  It is composed of 50% Triethylamine, 25% Ethanol, 
and 25% Fragrance, per the Material Safety Data Sheet http://www.carolina.com/pdf/msds/FLYNAP.pdf  
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Figure 15: Schematic depicting the use of a scanning laser vibrometer to characterize the spectral 
response of a living insect wing using non-contact excitation. 

Figure 16: Mesh of the scanning laser vibrometer on a living Manduca sexta forewing.  The color 
markers indicate locations of signal points in Figure 17.  Note that x+  is in the vertical direction. 

The scanning laser vibrometer is then setup to measure the response of a set of points on the 
surface of the wing.  This mesh is shown in Figure 16.  The laser vibrometer is placed such that 
the wing is centered and parallel in the viewfinder.  The scanning is performed sequentially, and 
the frequency information from each point is stored as complex Fast Fourier Transform (FFT) 
data.  Since the total number of FFT data points per mesh point is limited by the software, there 
is a trade-off of spectral resolution when selecting the frequency range of interest.  By choosing 
the maximum number of FFT data points at 6400, and selecting the frequency range of interest to 
be 0-1000 Hz, a working resolution around 0.25 Hz was obtained.   

By examining the FFT data from several key points around the wing, the first natural frequency 
of the wing can be easily located.  In Figure 17, the normalized FFT results are shown for points 
near the root, the tip, and the trailing edge.  The measurements made at these spatial points 
indicate that the first natural frequency of the wing specimen is around 77 Hz.  Locating the  
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Figure 17: Normalized magnitude of the FFT of the velocity data determined from the laser 
vibrometer at various points on the forewing of a Manduca sexta.  The color points are indicated 

on Figure 16. 

second natural frequency is a bit more challenging, since the response of the wing appears is 
found to be rather complicated.   

By searching through the visualizations of the stitched mode shapes on the PSV-400 system, it is 
found that around 134 Hz, there is another mode shape.  The noise floor is too high at the higher 
frequencies to be confident in locating other natural frequencies and associated mode shapes.  
This problem is inherent in the non-contact excitation provided by using a speaker.  The natural 
frequencies reported here agree well with those of Sims (2010), who used an amputated wing 
directly mounted to a shaker and could therefore work with much higher frequencies and 
amplitudes of excitation.  The novelty of the speaker experiments is that the insect and wing 
were alive during and after the entire measurement process.  The wing measured here has not 
been altered by death, atrophy, or temperature.  Sims had to measure the severed wings within 
several hours to ensure that they had not changed significantly, whereas in the current study, the 
researchers had around 30 minutes, the window in which the insect remained asleep. 

Reconstructions of the mode shapes associated with the first two natural frequencies are shown 
in Figure 18.  Here, the data was extracted from the proprietary Polytec data file, and plotted in 
Matlab.  The x and y coordinates are scaled by the span of the wing l , and the vertical 
displacement of the mesh is scaled such that the maximum is / 8l .  The choice of vertical scaling 
is arbitrary since the representation is for a mode shape, and the choice of / 8l  was merely made 
for visualization purposes.  The first mode, which is shown in Figure 18a, appears to correspond 
to spanwise bending.  The second mode, which is shown in Figure 18b, appears to be a 
combination of chordwise bending and some bending near the tip.  A possible use for this type of 
detailed information is in the construction of wing models tailored to perform like a Manduca  
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Figure 18: Experimentally determined modes of a living Manduca sexta forewing.  The x  and y
coordinates are scaled by the wing span, z  is scaled such that the max / 1 / 8z l =  for 

visualization.  (A) Mode 1 at 77.5 Hz.  (B) Mode 2 at 133.75 Hz. 

sexta.  The distribution of material properties could be designed such that the first two natural 
frequencies of the model resemble the experimental results. 

4.3 Implementation using geometrically exact finite elements 

The goal of the tools constructed here are to explore fluid-structure interaction problems, like 
flapping wings.  Solid finite elements are used since the supporting theory and technology is 
widely known.  They provide a foundation to build a framework that many different types of 
structures, wings, material models, and so on, can be tested.  The implementation is general 
enough to handle structural elements as well, and their integration is a possible avenue for future 
work.  Solid models were chosen since they provide finite thickness, fundamentally have the 
fewest assumptions, and they can be widely adapted for a variety of continuum-mechanics based 
response models.  The relative cost of using solid elements in a large-scale CFD simulation is not 
low.   

The implementation technology employed here is largely based on Hughes (2000) for the 
assembly and shape functions and Belytschko et al. (2000) for dealing with nonlinear models. 
Mesh generation is designed around the open-source software Gmsh (Geuzaine and Remacle, 
2009).  The elements implemented are isoparametric quadratic hexahedra for the volume of the 
body.  These 27-node displacement based elements were selected since they do not suffer from 
locking like linear elements. Surface elements used for the FSI and other loading are 9 node 
quadrilaterals.  Each quadrilateral is coincident to a single face of a corresponding hexahedron.   

The implementation contains both Kirchhoff and Biot material models for isotropic properties. 
The implementation of the Biot material was selected since it represents a generalization of the 

(A) (B)
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engineering stress-strain law to finite deformations with arbitrary rigid body motions.  This 
method was selected since it provides a pattern for future code development for problems with 
anisotropic materials.   

4.3.1 Equations of motion 

The description of motion implemented is a weak-form of momentum conservation often called 
the Total Lagrangian formulation.  It is a Lagrangian method where everything is expressed in 
terms of the reference configuration.  In the usual finite element way, the virtual work of the 
body is expressed as 

int ext 0W W    . (4.1)

The virtual internal work can be expressed in terms of any work-conjugate pair.  The simplest 
pair to work is ( , )E S , which in Voigt notation takes the form 

0
int 0 int

1

{ } { } .
eln

T e

e

W E S dV W  
 

   (4.2) 

The external work can be viewed as the sum of work due to body forces, such as acceleration 
and gravity, and surface tractions. 

extextW W W   u f

(4.3) 

The surface forces will be treated in §4.3.2.  The acceleration term can be written as 

 
0

0 0·  .uW dV  


  u u
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  (4.4) 

By using the usual finite element shape function approximations 

u Nq (4.5) 

one obtains the consistent mass matrix. 
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(4.6) 

Notable features of this matrix are that it is symmetric, and constant.  The symmetry allows for 
computational efficiency in terms of storage and inversion.  The fact that it is constant means it 
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only needs to be built once.  In explicit dynamic algorithms, it needs to only be decomposed 
once as well.  This formulation is still consistent with large motions, and no implied assumptions 
about the body have been made.  The principle of the conservation of mass can be used to show 
that this constant mass matrix in the Total Lagrangian formulation is equivalent to the 
deformation dependent mass matrix by other formulations like the updated Lagrangian form 
(Belytschko et al., 2000). 

After combining (4.2) and (4.6) into (4.1), the result is 

 int ext0 .T  q f Mq f  

After inclusion of linear damping, this can be recast as the semi-discrete equation of motion 

int ext( ) ( ) ( , ) ( , )t t t t  Mq Dq f q f q  (4.7) 

The calculation of intf  is determined by how the selected material model is used to compute the 
second Piola-Kirchhoff stress S .  Essential boundary conditions have not yet been applied to this 
equation and these boundary conditions are needed, along with initial conditions, to fully pose 
the problem. 

4.3.2 Application of essential boundary conditions 

The degrees of freedom (DOF) of the entire body are ordered during the preprocessing of the 
mesh to place the restrained components at the end of the global list.  Thus if q  are the DOF for 
the entire body, then, this list is partitioned as 

 
     

q
q v (4.8) 

where the q  are the unrestrained DOF, and v  are the DOF that have some essential boundary 

condition applied to them.  Here, ( )tv  will be fully defined 2 -functions of time that prescribe 
the motion of points on the body.  This permits the direct partitioning of the mass and damping 
matrices in (4.7). 
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(4.9) 

Extracting only the top equation for the unconstrained DOF gives the equation of motion with 
boundary conditions applied; that is, 
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int

ext
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(4.10) 

Here the over bars are used to emphasize that these DOF are the free DOF, and the internal and 
external forces do depend on all the DOF.  During the linearization of intf  no additional matrix-

partition terms need to be included in h  since their contributions are already present in int ( , )q tf . 

4.4 Fluid-structure interactions 

4.4.1 Overview 
There are many varieties of partitioned methods based on a prediction-correction model.  The 
methods differ in what is used for the prediction, and if the correction is used repeatedly or 
staggered in time. The method implemented here, as outlined in Figure 19, is sub-iterated until 
convergence of the entire system's equilibrium is achieved.  The fluid solver is based on same 
explicit fractional step method used, but implemented inside the FLASH framework (ASC Flash 
Center, 2012; Daley et al., 2012).  The large scale high performance computing (HPC) 
framework is designed to tackle extremely large problem domains on finite-difference grids.  In 
FLASH, one can use either uniform gridding techniques or adaptive mesh refinement (AMR) 
based on the PARAMESH library (MacNeice et al., 2000).  

Each time step is started by predicting the states of the structure, and computing the position, 
velocity, and acceleration fields of the body's wet surface.  Then the fluid velocity field *u  is 

Figure 19: Procedure diagram for the partitioned FSI algorithm. 
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computed.  In the usual manner of fractional step methods, this field is not divergence free.  The 
surface kinematics of the body are then applied to the fluid grid points around the body in a 
Lagrangian fashion as implemented by Vanella ( 2010). The calculation of the pressure P  
presents the most expensive step in the calculation.  This elliptical problem, often referred to as 
the Poisson problem, is discretized to become a set a simultaneous linear equations.  The 
efficient calculation of the pressure represents one of the largest hurtles to large scale solutions 
(Daley et al., 2012).  Once the pressure gradient is computed, the corrected (or end-of-step) 
velocity ( 1)nu +  is calculated and stored.  The velocity and pressure information are then used to 
compute the surface forces on the body.  A corrector procedure then computes an updated 
estimate of the states of the body.  If the states have not changed within some tolerance, then the 
velocity field of the immersed boundary conditions is recomputed and the cycle repeats.  Once 
the convergence criterion has been satisfied, time is incremented and the outer loop begins again 
with a prediction of the structure using the previous fluid load. 

The implementation issues of the predictor-corrector method used here are mostly surrounding 
the treatment of the body, since the coding for the fluid model was already in place.  This entails 
both the time integration of the body as well as the construction of the forcing terms as boundary 
conditions on each partitioned field.  Inside the FLASH architecture there is an entire unit of the 
code dedicated to Lagrangian particle tracking known as PARTICLES.  The previous uses of 
these particles range from physics simulations, to convecting massless particles for event tracing. 
For the FSI implementation considered here, they will serve as the method of communication 
between the fluid domain and the structural domain.   

4.4.2 Imposition of boundary conditions 

Inside the FLASH code, the PARTICLES unit is a well apportioned framework for working with 
Lagrangian points distributed across the Eulerian domain.  The distribution of the particles on the 
HPC cluster is performed by FLASH.  The immersed boundary unit called ImBound uses the 
information of each particle to enforce the no-slip condition.  The use of PARTICLES then is to 
cover the body's surface with particles whose kinematics is prescribed by the surface of the body.  
These particle points are used for both parts of the communication of boundary conditions: 
forcing the fluid and forcing the body.   

In Figure 20A, a small collection of particles inside the fixed fluid grid is shown.  These particles 
each represent a small patch of the surface area on the surface of a body (Figure 20B).  It is the 
information of the particles that connects the fluid and structural domains.  Each patch of surface 
must be near the same size as the fluid grid spacing.  Therefore the spacing of particles is 
determined by the fluid grid since for most problems the fluid mesh will be much finer than the 
body's mesh.  This permits the meshing of the structure to be independent of the fluid grid.  
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Figure 20: A representative region of fluid particles in the fluid domain, and these same particles 
in the structural domain.  (a) The fluid domain particles are used to represent the kinematics of the 

body's surface.  (b) Likewise, the particles are interpreted by the body as patches of constant 
applied traction. 

A designer of the body would need only to be concerned with sufficient spatial resolution for the 
body's deformation.  This is in contrast to previous immersed boundary implementations.  In the 
work of Vanella, (2010), a rigid wing with the planform of a Musca domesica was defined using 
381,662 triangles.  If each triangle was mapped to the face of a tetrahedron finite element, the 
number of DOF for a relatively simple body would be staggering.  The method implemented 
here using particles avoids this complication by grouping particles through surface elements.  
Now a subset of the particles is indexed to a surface element, and this mapping is structured to 
allow for memory efficiency and calculation speed (Fitzgerald, 2013).   

The mapping of each particle to an individual patch of surface on the body is shown in Figure 
21. Here n̂  is the outward facing unit vector at center of the patch, and 1 2 ˆ ˆ{ , }t t  is a pair of
vectors tangent to the surface.  The surface normal is computed by the cross-product of two 
independent vectors on the surface of the body.  To ensure that this calculation results in outward 
facing normals, a check is performed during mesh pre-processing.  The distributed force ff  is 

defined in the global frame.  The area of each surface patch is pA .  The calculations to determine 

the kinematics of the deformed surface are performed at the center point of the patch.  Since the 
spacing of particles is the same as the fluid grid, then it is assumed that ff  is constant on each 

patch. 

(A) (B)
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Figure 21: Discrete surface element of the body.  The triad 1 2
ˆ ˆˆ{ , , }n t t  is a local set of unit vectors 

on the patch p , with differential area dA  and surface traction ff . 

The local ordering of the patches on each element is constructed by using Figure 22.  First the 
length of the deformed element is calculated, and compared with the local fluid grid to determine 
the spacing of particles on the surface element.  There are nξ  and nη  particles in the ξ -direction 

and η -direction, respectively.  Each particle is assigned a local index p , and this integer is used 
to uniquely place the patch in the 2D grid ( , )k j  where [1, ]k nξ∈ ⊂   and [1, ]j nη∈ ⊂  .  From 

there, a unique mapping is defined to identify the index p  with all the information needed to 
consistently integrate the constant surface traction over the patch and project the forces to the 
element’s degrees of freedom.  Also this mapping provides all the necessary information to 
reconstruct the position, velocity, acceleration, deformed area, and outward unit-normal used to 
impose the no-slip boundary condition on the fluid grid. 

Figure 22: Natural domain of the surface element, showing a single particle patch. 
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4.4.3 The Generalized-α method 
The use of highly resolved finite elements results in both large storage requirements and also in 
severe time step requirements for explicit integrators.  Most finite element integrators use a 
variant of the seminal Newmark-β method (Newmark, 1959).  The Generalized-α method (G-α) 
is a popular method in the dynamics of linear problems dating back to Chung and Hulbert 
(1993).  It represents a unification of the methods of Hilber et al. (1977) and Wood et al. (1980), 
with improved characteristics.  The G-α is second order in time, implicit, unconditionally stable 
for linear problems, and has user selectable dissipation of high frequencies .  It was shown to 
be suitable for use for nonlinear problems in structural mechanics by Kuhl and co-workers (Kuhl 
and Crisfield, 1999; Kuhl and Ramm, 1996).  A major consequences of using G-α on nonlinear 
structures is the loss of unconditional stability.  A detailed analysis of the properties of the 
method for simple nonlinear systems can be found in the studies of Baldo et al. (2006; Bonelli et 
al. (002), and Erlicher et al. (2002). 

The method requires only slight modifications to handle essential boundary conditions that are 
time dependent.  The forcing term is modified per h  in (4.10), and it is interpolated with the 
other external loads and not with the acceleration terms.  The implemented G-α in an implicit 
that is consistently linearized to perform a full Newton-Raphson continuation of the equilibrium 
of the dynamic equations of motions.  The convergence criterion for the Newton-Raphson 
scheme was chosen to be based on the change to the velocities of the degrees of freedom.  This 
can be stated as 

ref

error .
u t


 

 


q  (4.11) 

where   and   are constants determined by the choice of  .  The G-α method is easily 
adapted for use in the Structure predictor and Structure corrector roles of Figure 19 with some 
careful tweaking.  There are three main points where discretion is required to use the method 
efficiently and robustly: 

1. The choice of spectral radius ρ∞ .
2. The choice of the tolerance ε  in the Newton-Raphson iterations, and how it should be

different between a predictor step and a corrector step in the FSI scheme.
3. The choice of FSI convergence criterion.

The choice of the spectral radius is a body specific problem.  Since the radius is relative to the 
time step a choice of a smaller time step, say for the CFL condition of the fluid, would result in 
more temporal resolution in the structure.  Therefore knowing estimates of the time step that 
complies with the CFL, and knowing how many modes of the body are likely to be of interest 
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provides an estimate for the value of ρ∞ .  The bodies considered here, such as flapping wings or 
moving plates, are mostly undergoing bending deformation similar to their first mode shape. 
The CFL condition at low Reynolds numbers has a much smaller t∆  requirement over the coarse 
FEM body.  Since little excitation of the higher modes are seen, a relatively small value of ρ∞  is 
suitable for most of these types of problems. 

Changing the value of ε  between a prediction step and a correction step was found to be very 
beneficial to the FSI convergence rate.  In the first method explored here, the predictor and 
corrector are set to only take a single Newton-Raphson step that resulted in FSI substeps in the 
40-60 range.  A critical review of how the Newton-Raphson iterations take the body from time n  
to 1n +  provides the basis for improving on that scheme.  For bending problems, the first step of 
a Newton-Raphson method moves the body in the direction of bending; this makes sense since 
that is the direction with the lowest stiffness.  The subsequent Newton-Raphson shifts the body 
axially.  That first step commonly overestimates the displacement, and the subsequent iterations 
could be seen as pulling the body back to equilibrium.  When the single Newton-Raphson step 
was used, the convergence rate was impractical since the fluid was reacting to a body that was 
not close to equilibrium.  Using these observations, the Newton-Raphson exit criterion ε  can be 
intelligently changed. 

• Predictor:  Set the value of ε  to 91 10 .  This makes the predicted deformation field of
the body relatively close to the previous deformation.

• Corrector: Set the value of ε  to 31 10 .  This allows the Newton-Raphson several
substeps before returning to the fluid for an updated set of loads.  The overprediction of a
single Newton-Raphson step is avoided, and the fluid loads are very current.  The
structural solver does not waste time being very exact since the fluid loads will change.

The FSI convergence criterion must be set such that the change of the states during a correction 
is less than the tolerance FSIε ; that is, FSI FSIerror ε≤  where the error is defined as  

(0) ( 1) ( 1)
FSIerror n n 


 q q  (4.12) 

In light of how ε  for the corrector is chosen, the condition on FSI must be more strict, FSIε ε< .  

Therefore, a value of 8
FSI 1 10ε −= ×  is chosen as the default.  Also this scheme implies that at 

least one correction step will always occur which ensures the strong coupling of the equations.  
During test simulations with the values of ε  as stated above, the number of FSI substeps 
dropped from 40-60 down to 5-8 for the same problem setup.  This represents an incredible 
speed up and opens the possibility of using the method in production simulations. 
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5 Moving plate example 
In order to test the FSI code, a simple and relatively small sized problem was required.  Recently, 
Cleaver et al. (2013a, 2013b) performed experiments on compliant plates in a water tunnel. 
Their force measurements could provide FSI numerical studies with a simple validation case. 
The problem setup here has been simplified to make the domain manageable for a small number 
of nodes on the HPC.  Here, only 64-128 processors are used with wall times between 12 to 18 
hours. 

5.1 Formulation 

A moving plate of length L , width 0.3L , and thickness 0.05L  is centered in a 3 3 3L L L× ×  
quiescent fluid domain.  The plate is rotated 15 degrees along its long axis.  The density of the 
body is varied between fluid/ {1, 2, }  10ρ ρ ∈ .  The displacements of one of the short edges is 
restrained by the prescribed kinematics 
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(5.1) 

where the time constant 0.05τ =  is chosen as a small number to remove an impulsive start but 
not affect the kinematics for long.  The Poisson's ratio was chosen to be 0.3 and Young's 
modulus was chosen such that the first natural frequency of the body was 1/ 1/ 3fω ω = .  The 

maximum prescribed velocity is chosen as the reference speed 

ref 3 3max ( ) fx tu A   (5.2) 

The amplitude of oscillation is set to 3 0.15A L= , while the Reynolds number is constructed as 

fluid ref .Re Lu


 (5.3) 

These parameters are not the same as those used by Cleaver et al. (2013a, 2013b), the Reynolds 
number has been lowered from 10,000, there is no free-stream velocity, and the domain is 
smaller.  The setup tested here is merely a first step and the use of future resources would allow 
for larger problems that exactly replicates the published work. 
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5.2 Results 

The solution is computed for several periods 2 /f fT π ω=  of forcing.  In Figure 23, the surface 

tractions on a body are shown.  From these plots it is clearly evident that even for 200Re = , the 
viscous stresses are mostly quite low, except at the edges of the body.  The pressure is acting as 
one would expect with a large high pressure opposing the motion of the plate. 

Computations of the center of mass show how the effect of mass density changes the FSI across 
different configurations.  In Figure 24, the center of mass is shown for densities 

fluid/ {10,  2,  1}ρ ρ ∈  at 200Re =  as well as a dry body.  The displacements in 1x  and 2x  appear 
to change drastically as the density ratio is lowered, and the FSI forces of the fluid begin to 
dominate the body.  This is especially visible in the 2x  direction where the displacements are 
nearly 10 times those of the dry (non-FSI) case.  The fluid also appears to be damping out the 
higher frequencies of the response.  This is seen in the 3x  direction, where only the dry body 
appears to have multiple frequencies in the response. 

Figure 23: Example of the surface stresses acting on the body.  These are the instantaneous values 
at / 2.05ft T = , for 200Re = , fluid/ 1ρ ρ = .  (A) Pressure on the body, with colors corresponding 

to / 2pC .  (B) Magnitude of the viscous stress, with colors corresponding to / 2fC . 

(B)

(A)
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Figure 24: Position of the center of mass in the deformable plate for 200Re = . 

Integrating the surface stresses across the body provides a way to compare the fluid contributions 
across the density range.  The total force due to viscous stresses is quite small for all time in 
Figure 25.  This correlates well to the instantaneous field shown in Figure 23B where the peaks 
may have been large, but they were highly localized.  The pressure forces are dominating in all 
three directions by an order of magnitude.   

The visualization of the flow fields of Figure 26 were constructed by using TecPlot.  At several 
instances of time, a number of isocontours of the Q-criterion (Hunt et al., 1988) are plotted along 
with a 2x - 3x  slice of the 3x  velocity field.  Depicted in the left column are results for 200Re = , 
and in the right column are 1000Re =  at nearly the same instances of time.  The density ratio of 
the body is fluid/ 1ρ ρ = , which as demonstrated in the previous figures results in the largest 

deformation and highest loads.  The Q-isosurfaces are not symmetric about the 2x - 3x  plane since 

the body is rotated along the 2x -axis.  Comparing side-by-side frames shows that the flow 
structures appear smaller and remain longer as the Reynolds number is increased.  At 

/ 1.61ft T =  for 1000Re =  the Q-isosurface appears to be rolling up on itself in a hairpin-like 
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Figure 25: Fluid forces computed at the centroid of the deformable plate for 200Re = . 

manner (Bernard, 2011).  Overall, the results from these tests appear promising. The FSI 
algorithm works efficiently enough to make serious problems practical for calculations.  This is 
assuming that the necessary HPC power is available.   
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Figure 26: Demonstration of FSI for a flexible plate with fluid/ 1ρ ρ = , and 1/ 1 / 3fω ω = .  The 

time has been nondimensionalized with fT .  Shown are isosurfaces of the Q-criterion and a slice 
of the z  velocity in the y z−  plane. 
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6 Concluding Remarks 

6.1 Future work 

The next steps are to validate the implemented FSI code by using the experiments of Cleaver et 
al. (2013a, b) and use the code to simulate flexible wings.  The first insect inspired geometry to 
be modeled is the forewing of a Manduca sexta.  In Figure 27, the researchers show the first draft 
of a 3D FEM mesh of the planform.  This shape was extracted from a figure provided in the 
work of O’Hara and Palazotto ( 2012).  Another useful reference for wing planforms is the work 
of Comstock (1918), which contains many illustrations. 

The driving kinematics can be based on the functions discussed by Berman and Wang (2007).  
Their angular description of flapping motion is applicable to a broad range of flapping styles. 
The hawkmoth parameters of Berman and Wang (2007) suggest an almost constant angle of 
attack for the majority of the hover stroke with relatively fast reversals at the ends of the stroke.  
This kinematics has been implemented in the FLASH code and illustrated in Figure 28 by using 
the parameters provided by Berman and Wang (2007) for the hawkmoth. 

Figure 27: Mesh of a Manduca sexta inspired wing.  The planform is based on the results of 
O’Hara and Palazotto ( 2012).  The restrained nodes are at the root in magenta.  The free nodes are 

shown in blue (only the top surface is shown for clarity). 
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Figure 28: Demonstration of the implemented  kinematics employing the hawkmoth parameters 
from Berman and Wang (2007). 

Preliminary dry tests with / 1/ 3f nω ω =  for a homogeneous body indicate that the body is too 

soft.  A realistic correction is stiffening of the root and leading edge of the wing.  This follows 
from the spirit of the parameter distribution proposed by Combes and Daniel (2003a) as well as 
the mode shapes found in §4.2.  

The Reynolds number of a Manduca sexta based on the span length and peak tip speed would be 
in the range of 3 32 10 05 29 1   .  This increase in Reynolds number drastically changes the 
computing requirements for a practical simulation.  If uniform grids are used for example, 
assuming that the cell size would need to be approximately 0.002x L∆ = , then a small domain of 
4 4 4L L L× ×  would have roughly 32048  points.  If the FLASH block size is 332 , this results in 

364  blocks to distribute on a HPC.  For this sized blocks, it was found that placing more than 30 
blocks per processor results in poor scaling.  Therefore, 216,224 blocks at 30 blocks per 
processor results in 8,739 processors.  That many processors represent a major use of resources, 
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and this need is beyond the clusters currently available at the University of Maryland.  The use of 
AMR and lower Reynolds number cases will need to be considered as the next practical steps. 

6.2 Outcomes 

• Wing flexibility: The models that capture the physics of flapping flight in 2D were
developed and analyzed.  It was shown that under assumptions moderate flexibility is
beneficial.

• Model fidelity: A comparison study between DNS and UVLM in 2D demonstrated the
range of usefulness of the computationally inexpensive UVLM.  This comparative study
indicates that the UVLM is well suited to determine averaged quantities, such as those
that would be used in an objective function for optimization of design variables.
Subsequent investigations around the design point using the DNS would still be required
to ensure the desired results.

• Insect wing experiments: A novel experiment to measure the vibration characteristics of
a living hawkmoth was conducted.  These findings correlate well to the work of Sims
(2010) and provide information to support the 1/3 harmonic forcing found in nature.

• High fidelity computation: Since the physics of flapping flight in 3D is less well-known,
the uses of low-fidelity models are not yet reliable.  This led the researchers to build a
high-performance FSI code built into the FLASH framework.

• Partitioned FSI algorithm: A novel partitioned FSI algorithm using the Generalized-α
method is described.  This method is suitable for large scale systems, with bodies of tens
of thousands of degrees of freedom.  Special attention is given to the time step
requirements, and how this method decouples the fluid grid generation from the body
mesh generation.  A consistent method to project the boundary conditions between the
body and the fluid is constructed using the Lagrangian markers in the PARTICLES unit
of FLASH.

• Three-dimensional studies with a flexible body: The highly flexible 3D FSI code has
been demonstrated as operational, and algorithmically tuned.  The numerical
demonstrations of the above methods show the effectiveness of the algorithms and
implementations.  A fully flexible plate is excited in a flow over a range of densities and
Reynolds numbers.  It was found that the methods worked well, even for equal densities
between the fluid and the solid.  Large deformations were handled without issue by only
12 elements, and the FSI substeps were kept low (between 5 to 8).
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