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Although different approaches to decision-making in self-adaptive systems have shown their effectiveness
in the past by factoring in predictions about the system and its environment (e.g., resource availability),
no proposal considers the latency associated with the execution of tactics upon the target system. However,
different adaptation tactics can take different amounts of time until their effects can be observed. In reactive
adaptation, ignoring adaptation tactic latency can lead to suboptimal adaptation decisions (e.g., activating
a server that takes more time to boot than the transient spike in traffic that triggered its activation). In
proactive adaptation, taking adaptation latency into account is necessary to get the system into the desired
state to deal with an upcoming situation. In this paper, we introduce a formal analysis technique based on
model checking of stochastic multiplayer games (SMGs) that enables us to quantify the potential benefits of
employing different types of algorithms for self-adaptation. In particular, we apply this technique to show
the potential benefit of: (i) considering adaptation tactic latency in proactive adaptation algorithms, and
(ii) making available additional tactics in the repertoire employed to adapt a system. Our results show
that factoring in tactic latency in decision making, not only improves the outcome of adaptation, but also
enables algorithms to fully exploit the set of available tactics for adaptation. We also present an algorithm
to do proactive adaptation that considers tactic latency, and show that it achieves higher utility than an
algorithm that under the assumption of no latency is optimal.

Categories and Subject Descriptors: D.2.0 [Software Engineering]: General; D.2.4 [Software/Program
Verification]: Formal methods

General Terms: Verification, Algorithms

Additional Key Words and Phrases: Proactive adaptation, Stochastic multiplayer games, Latency

1. INTRODUCTION
When planning how to adapt, self-adaptive approaches typically focus on the quali-
ties of the resulting system, such as performance, operating cost, and reliability [Gar-
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lan et al. 2004; Zhang and Lung 2010], or safety and liveness properties of the sys-
tem [Braberman et al. 2013; Goldman et al. 2003]. However, properties of the adapta-
tion itself are largely ignored. One such property is the time it takes for an adaptation
to produce its intended effect. Different adaptation tactics take different amounts of
time until their effects can be observed. For example, consider two tactics to deal with
an increase in the load of a system: reducing the fidelity of the results (e.g., less res-
olution, fewer elements, etc.), and adding a computer to share the load. Adapting the
system to produce results with less fidelity may be achieved quickly if it can be done
by changing a simple setting in a component, whereas powering up an additional com-
puter to share the load may take some time. We refer to the time it takes since a tactic
is started until its effect is observed as tactic latency. Current approaches to decide
how to self-adapt do not take the latency of adaptation tactics into account when de-
ciding what tactic to enact. For reactive adaptation, the consequence of this limitation
is that the system may decide to adapt in a way that takes longer than other alterna-
tives to achieve a marginally better result. For proactive adaptation, considering tactic
latency is necessary so that the adaptation can be started with the sufficient lead time
to be ready in time.

In this paper, we explore the use of tactic latency information in the case of proactive
self-adaptation. Specifically, the contribution of this paper is twofold:

(1) A novel analysis technique based on model checking of stochastic multiplayer
games (SMGs) that enables us to quantify the potential benefits of employing dif-
ferent types of algorithms for self-adaptation. Specifically, we show how the tech-
nique can be used to: (i) compare alternatives that consider tactic latency informa-
tion for proactive adaptation with those that are not latency-aware, and (ii) quan-
tify the potential improvement in the outcome of adaptation of incorporating addi-
tional tactics in the adaptation model for the system.

(2) A specific latency-aware algorithm for proactive adaptation. The algorithm extends
one computes the optimal sequence of adaptation decisions for anticipatory dy-
namic configuration [Poladian et al. 2007]. The algorithm presented in this paper
considers the effects of latency on adaptation.

Our formal verification results show that factoring in tactic latency in decision mak-
ing improves the outcome of adaptation both in worst and best-case scenarios. More-
over, results indicate that while non-latency-aware algorithms can prevent the selec-
tion of available tactics that could help improve the outcome of adaptation, latency-
aware algorithms are able to better exploit adaptation tactic repertoires. This is con-
sistent with the results obtained for our latency-aware proactive adaptation algorithm,
showing that it is able to obtain higher utility than Poladian et al.’s algorithm, which
is optimal under the assumption of no tactic latency.

The remainder of this paper is structured as follows: Section 2 summarizes Znn.com,
the example used to illustrate our approach. Section 3 introduces some background
and related work. Section 4 describes our technique for analyzing adaptation based on
model checking of stochastic games. Next, section 5 presents our algorithm for latency-
aware proactive adaptation. Finally, section 6 concludes the paper and indicates future
research directions.

2. EXAMPLE
Znn.com [Cheng et al. 2009a] is a case study portraying a representative scenario for
the application of self-adaptation in software systems which has been extensively used
to assess different research advances in self-adaptive systems. Znn.com embodies the
typical infrastructure for a news website, and has a three-tier architecture consisting
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Stochastic Game Analysis and Latency Awareness for Proactive Self-Adaptation A:3

of a set of servers that provide contents from backend databases to clients via front-
end presentation logic (Figure 1). The system uses a load balancer to balance requests
across a pool of replicated servers, the size of which can be adjusted according to ser-
vice demand. A set of clients makes stateless requests, and the servers deliver the
requested contents.

c0

c1

c2

lbproxy

s0

s1

s2

s3

Fig. 1: Znn.com system architecture

The main objective for Znn.com is to provide content to customers within a reason-
able response time, while keeping the cost of the server pool within a certain operating
budget. It is considered that from time to time, due to highly popular events, Znn.com
experiences spikes in requests that it cannot serve adequately, even at maximum pool
size. To prevent losing customers, the system can maintain functionality at a reduced
level of fidelity by setting servers to return only textual content during such peak
times, instead of not providing service to some of its customers. Concretely, there are
three quality objectives for the self-adaptation of the system: (i) performance, which de-
pends on request response time, server load, and network bandwidth, (ii) cost, which
is associated with the number of active servers, and (iii) fidelity, which maps to the
fidelity level of the contents being served (e.g., text, images).

In Znn.com, when response time becomes too high, the system is able to increment
its server pool size if it is within budget to improve performance; or switch servers to
textual mode if the cost is near to budget limit.

3. BACKGROUND AND RELATED WORK
This section first introduces the adaptation model that we assume in this paper. Next,
we overview probabilistic model checking of SMGs, the technique upon which we build
to analyze different kinds of adaptation in our approach. Finally, we present related
work in proactive self-adaptation.

3.1. Adaptation Model
Although there are many approaches that rely on a closed-loop control approach to self-
adaptation, including those that exploit architectural models for reasoning about the
target system under management [Garlan et al. 2004; Kramer and Magee 2007; Or-
eizy et al. 1999], in this paper we use some of the high-level concepts in Rainbow [Gar-
lan et al. 2004] as a reference framework to illustrate our approach. Rainbow is an
architecture-based platform for self-adaptation, which has among its distinct features
an explicit architecture model of the target system, a collection of adaptation tactics,
and utility preferences to guide adaptation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January 2014.
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We assume a model of adaptation that represents adaptation knowledge using the
following high-level concepts:1

— Tactic: is a primitive action that corresponds to a single step of adaptation, and
has an associated: (i) cost/benefit impact on the different quality dimensions, and
(ii) latency, which corresponds to the time it takes since a tactic is started until its
effect is observed.2 For instance, in Znn.com we can specify pairs of tactics with
opposing effects for enlisting/discharging servers, or increasing/reducing the fidelity
of the contents being served.

— Utility Profile: To enable the selection of tactics at run-time, we assume that adap-
tation is driven by utility functions and preferences, which are sensitive to the con-
text of use and able to consider trade-offs among multiple potentially conflicting
objectives. The different qualities of concern are characterized as utility functions
that map them to architectural properties. In this case, we assume that utility func-
tions are defined by an explicit set of value pairs (with intermediate points linearly
interpolated).
Table I summarizes the utility functions for Znn.com. Function UR maps low re-
sponse times (up to 100ms) with maximum utility, whereas values above 2000ms
are highly penalized (utility below 0.25), and response times above 4000ms provide
no utility. Function UF maps a low (1) level of content fidelity (e.g., textual version of
contents) to a utility 0.5, whereas a high level (2) of content fidelity (e.g., including
images/video) is mapped to maximum utility. Function UC maps a increasing cost
(derived from the number of active servers) to lower utility values. Utility prefer-
ences capture business preferences over the quality dimensions, assigning a specific
weight (wUR

, wUF
, wUC

) to each one of them. In the context of Znn.com, preference is
typically given to performance over cost and fidelity.

By evaluating how different tactic execution sequences might affect the different
qualities of concern using a utility profile, a proactive adaptation algorithm can build
a strategy with the objective of maximizing accrued utility throughout the execution
of the system.

Table I: Utility functions and preferences for Znn.com
UR UF UC

0 : 1.00 500 : 0.90 2000 : 0.25 1 : 0.50 0 : 1.00 3 : 0.30
100 : 1.00 1000 : 0.75 4000 : 0.00 2 : 1.00 1 : 1.00 4 : 0.00
200 : 0.99 1500 : 0.50 2 : 0.90

3.2. Model Checking Stochastic Games
Automatic verification techniques for probabilistic systems have been successfully ap-
plied in a variety of application domains that range from power management or wire-
less communication protocols, to biological systems. In particular, techniques such as
probabilistic model checking provide a means to model and analyze systems that ex-
hibit stochastic behavior, effectively enabling reasoning quantitatively about probabil-
ity and reward-based properties (e.g., about the system’s use of resources, time, etc.).

Competitive behavior may also appear in (stochastic) systems when some compo-
nent cannot be controlled, and could behave according to different or even conflicting

1We use a simplified version of Stitch [Cheng and Garlan 2012] to illustrate the main ideas in this paper.
2Stitch incorporates a different notion of timing delay to monitor the outcome of tactic executions in reactive
adaptation strategies, which is not discussed in this paper.
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goals with respect to other components in the system. In such situations, a natural fit is
modeling a system as a game between different players, adopting a game-theoretic per-
spective. Automatic verification techniques have been successfully used in this context,
for instance for the analysis of security [Kremer and Raskin 2001] or communication
protocols [Hoek and Wooldridge 2003].

Our approach to analyzing adaptation builds upon a recent technique for modeling
and analyzing stochastic multi-player games (SMGs) extended with rewards [Chen
et al. 2013a]. In this approach, systems are modeled as turn-based SMGs, meaning
that in each state of the model, only one player can choose between several actions,
the outcome of which can be probabilistic.

Definition 3.1 (SMG). A turn-based stochastic multi-player game augmented with
rewards (SMG) is a tuple G = 〈Π, S,A, (Si)i∈Π,∆, AP, χ, r〉, where Π is a finite set of
players; S 6= ∅ is a finite set of states; A 6= ∅ is a finite set of actions; (Si)i∈Π is a
partition of S; ∆ : S × A → D(S) is a (partial) transition function; AP is a finite set of
atomic propositions; χ : S → 2AP is a labeling function; and r : S → Q≥0 is a reward
structure mapping each state to a non-negative rational reward. D(X) denotes the set
of discrete probability distributions over finite set X.

In each state s ∈ S of the SMG, the set of available actions is denoted by A(s) = {a ∈
A | ∆(s, a) 6= ⊥}. We assume that A(s) 6= ∅ for all states s in the model. Moreover, the
choice of which action to take in every state s is under the control of a single player
i ∈ Π, for which s ∈ Si. Once action a ∈ A(s) is selected by a player, the successor state
is chosen according to probability distribution ∆(s, a).

Definition 3.2 (Path). A path of SMG G is an (in)finite sequence λ = s0a0s1a1 . . . s.t.
∀j ∈ N • aj ∈ A(sj) ∧ ∆(sj , aj)(sj+1) > 0. The sets of all finite paths in G is denoted
as Ω+

G .

Players in the game can follow strategies for choosing actions in the game, cooper-
ating with each other in coalition to achieve a common goal, or competing to achieve
their own (potentially conflicting) goals.

Definition 3.3 (Strategy). A strategy for player i ∈ Π in G is a function σi :
(SA)∗Si → D(A) which, for each path λ · s ∈ Ω+

G where s ∈ Si, selects a probability
distribution σi(λ · s) over A(s).

In the context of this paper, we always refer to player strategies σi that are memo-
ryless (i.e., σi(λ · s) = σi(λ

′ · s) for all paths λ · s, λ′ · s ∈ Ω+
G ), and deterministic (i.e.,

σi(λ · s) is a Dirac distribution for all λ · s ∈ Ω+
G ). Memoryless, deterministic strategies

resolve the choices in each state s ∈ Si for player i ∈ Π, selecting actions based solely
on information about the current state in the game. These strategies are guaranteed
to achieve optimal expected rewards for the kind of cumulative reward structures that
we use in our models.3

Reasoning about strategies is a fundamental aspect of model checking SMGs, which
enables checking for the existence of a strategy that is able to optimize an objective
expressed as a property in a logic called rPATL. Concretely, rPATL can be used for
expressing quantitative properties of stochastic multi-player games, and extends the
logic PATL [Chen and Lu 2007] (a probabilistic version of ATL [Alur et al. 2002], a logic
extensively used in multi-player games and multi-agent systems to reason about the
ability of a set of players to collectively achieve a particular goal). Properties written

3See Appendix A.2 in [Chen et al. 2013a] for details.
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in rPATL can state that a coalition of players has a strategy which can ensure that
the probability of an event’s occurrence or an expected reward measure meet some
threshold.

rPATL is a CTL-style branching-time temporal logic that incorporates the coalition
operator 〈〈C〉〉 of ATL [Alur et al. 2002], combining it with the probabilistic operator
P./q and path formulae from PCTL [Bianco and de Alfaro 1995]. Moreover, rPATL in-
cludes a generalization of the reward operator Rr

./x from [Forejt et al. 2011] to reason
about goals related to rewards. An example of typical usage combining coalition and
reward operators is 〈〈{1, 2}〉〉Rr

≥5[F
?φ] 4, meaning that “players 1 and 2 have a strategy

to ensure that the reward r accumulated along paths leading to states satisfying state
formula φ is at least 5, regardless of the strategies of other players.” Moreover, ex-
tended versions of the rPATL reward operator 〈〈C〉〉Rr

max=?[F? φ] and 〈〈C〉〉Rr
min=?[F? φ],

enable the quantification of the maximum and minimum accumulated reward r along
paths that lead to states satisfying φ that can be guaranteed by players in coalition C,
independently of the strategies followed by the rest of players.

In this paper, we employ rPATL specifications based on the extended versions of
the reward operator to compute accrued utility rewards during system execution, en-
abling the analysis of worst- and best-case scenarios for different types of proactive
adaptation algorithms.

3.3. Related Work
Poladian et al. demonstrated that when there is an adaptation cost or penalty, proac-
tive adaptation outperforms reactive adaptation [Poladian et al. 2007]. Intuitively, if
there is no cost associated with adaptation, a reactive approach could adapt at the
time a condition requiring adaptation is detected without any negative consequence. In
their work, Poladian et al. presented two algorithms for proactive adaptation that con-
sidered the penalty of adaptation when deciding how to adapt. One of the algorithms
assumed perfect predictions of the environment, while the other handled uncertainty.
The latter was used to improve self-adaptation in Rainbow [Cheng et al. 2009b], where
Cheng et al. considered tactic latency only to skip the adaptation if the condition that
triggered it was predicted to go away by itself before the adaptation tactic completed.
However, the approach did not consider all the effects that arise due to tactic latency
(see Section 5).

Proactive adaptation has received considerable attention in the area of service-based
systems [Calinescu et al. 2011; Hielscher et al. 2008; Metzger et al. 2013; Wang and
Pazat 2012] because of their reliance on third-party services whose quality of service
(QoS) can change over time. In that setting, when a service failure or a QoS degra-
dation is detected, a penalty has already been incurred, for example, due to service-
level agreement (SLA) violations. Thus, proactive adaptation is needed to avoid such
problems. Hielscher et al. proposed a framework for proactive self-adaptation that
uses online testing to detect problems before they happen in real transactions, and
to trigger adaptation when tests fail [Hielscher et al. 2008]. Wang and Pazat use on-
line prediction of QoS degradations to trigger preventive adaptations before SLAs are
violated [Wang and Pazat 2012]. These approaches ignore the adaptation latency.

Musliner considers adaptation time by imposing a limit on the time to synthesize a
controller for real-time autonomous systems [Musliner 2001]. However, in that work
there are not distinct planning and execution phases, and thus there is no considera-

4The variants of F?φ used for reward measurement in which the parameter ? ∈ {0,∞, c} indicate that,
when φ is not reached, the reward is zero, infinite or equal to the cumulated reward along the whole path,
respectively.
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Stochastic Game Analysis and Latency Awareness for Proactive Self-Adaptation A:7

tion of the latency of the different actions the system could take to adapt. In the area
of dynamic capacity management for data centers, the work of Gandhi et al. considers
the setup time of servers, and is able to deal with unpredictable changes in load by be-
ing conservative about removing servers when the load goes down [Gandhi et al. 2012].
Their work is specifically tailored to adding and removing servers to a dynamic pool,
a setting that resembles the running example we use in this paper. However, their
work assumes the environment is unpredictable, and, consequently, does not consider
the possibility of being able to predict a reduction or transient spikes in load. Our ap-
proach, on the other hand, can exploit predictions of such events and either adapt as
soon as possible when removing servers, or avoid adaptations completely.

4. ANALYZING ADAPTATION
This section describes our approach to analyze self-adaptation, based on model check-
ing of SMGs. In a nutshell, the underlying idea behind the approach is modeling both
the self-adaptive system and its environment as two players of a SMG, in which the
system attempts to maximize an accrued reward (in the context of this paper, accrued
utility during system execution). Although in general, the environment does not have
any predefined goal, it is useful to consider it either as an adversary of the system, or
as a cooperative player to enable worst- and best-case scenario analysis, respectively, of
different classes of adaptation algorithms (e.g., latency-aware vs. non-latency-aware).

By expressing properties that enable us to quantify the maximum and minimum
rewards that a player can achieve, independently of the strategy followed by the rest of
players, we can analyze the performance of a particular type of adaptation algorithm,
giving an approximation of the reward that an optimal decision maker would be able
to guarantee both in worst- and best-case scenarios (by synthesizing strategies that
optimize different rewards). These properties follow the general pattern 〈〈P〉〉RU

./[F
cω],

where P is a set of players that can include the system and/or the environment, U is
a reward that encodes the instantaneous utility of the system, ./ ∈ {min =?,max =?}
identifies whether we are considering the minimum or the maximum utility reward,
respectively, and ω is a state formula that encodes a stop condition for the system’s
execution. Section 4.2 details how such properties are used in our approach.

In the remainder of this section, we first present a SMG model of Znn.com that
enables the comparison of latency-aware against non-latency-aware adaptation. We
then describe how these models can be analyzed and show some results for different
instances of the model.

4.1. SMG Model
Our formal model is implemented in PRISM-games [Chen et al. 2013b], an extension
of the probabilistic model-checker PRISM [Kwiatkowska et al. 2011] for modeling and
analyzing SMGs. Our game is played in turns by two players that are in control of the
behavior of the environment and the system, respectively. The SMG model consists of
the following parts:

4.1.1. Player definition. Listing 1 illustrates the definition of the players in the stochas-
tic game: player env is in control of all the (asynchronous) actions that the environment
can take (as defined in the environment module), whereas player sys controls all tran-
sitions that belong to the target system module.5 Global variable turn in line 4 is used
to make players alternate, ensuring that for every state of the model, only one player
can take action. Turn-based gameplay suffices to naturally model the interplay be-

5Actions enlist trigger, enlist, and discharge are explicitly labeled to improve readability (see Listing 3), but
are still asynchronous in our model.
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tween the environment and the system, which only senses environment information
and reacts to it if necessary at discrete time points.

1 player env environment endplayer
2 player sys target system,[enlist],[enlist trigger],[discharge], [decrease f], [increase f] endplayer
3 const ENV TURN=1, SYS TURN=2;
4 global turn:[ENV TURN..SYS TURN] init ENV TURN;

Listing 1: Player definition for Znn.com’s SMG

4.1.2. Environment. The environment is in control of the evolution of time and other
variables of the execution context that are out of the system’s control (e.g., service
requests arriving at the system). The choices in the environment module are speci-
fied non-deterministically to obtain a representative specification of the environment
(through strategy synthesis) that is not limited to specific behaviors, since this would
limit the generality of our analysis. Listing 2 shows the encoding used for the environ-
ment, in which Lines 1-3 define different constants that parameterize its behavior:6

— MAX TIME defines the time frame for the system’s execution in the model
([0,MAX TIME]).

— TAU sets time granularity, defining the frequency with which the environment up-
dates the value of non-controllable variables, and the system responds to these
changes. The total number of turns for both players in the SMG is MAX TIME/TAU.
Note that two consecutive turns of the same player are separated by a time period
of duration TAU.

— MAX ARRIVALS constrains the maximum total number of requests that can arrive
at the system for processing throughout its execution. Unconstrained arrivals would
result in an unrealistic behavior of the environment (e.g., by following the strategy
of continuously flooding the system with requests).

— MAX INST ARRIVALS is the maximum number of arrivals that the environment can
place for the system to process during its turn (i.e., during one TAU time period).

1 const MAX TIME;
2 const TAU;
3 const MAX ARRIVALS, MAX INST ARRIVALS;
4
5 module environment
6 t : [0..MAX TIME] init 0;
7 arrivals total : [0..MAX ARRIVALS] init 0;
8 arrivals current : [0..MAX INST ARRIVALS] init 0;
9 a upd : bool init false;

10 [] (t<MAX TIME) & (turn=ENV TURN) & (arrivals total+x<MAX ARRIVALS) & (!a upd) −> (arrivals current’=x) &
(a upd’=true);

11 ...
12 [] (t<MAX TIME) & (turn=ENV TURN) & (a upd) −> 1:(t’=t+TAU) & (a upd’=false) &

(arrivals total’=arrivals total+arrivals current) & (turn’=SYS TURN);
13 endmodule

Listing 2: Environment module

6Constant values not defined in the model are provided as command-line input parameters to the tool.
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Moreover, lines 6-9 declare the different variables that define the state of the envi-
ronment:

— t keeps track of execution time.
— arrivals total keeps track of the accumulated number of arrivals throughout the exe-

cution.
— arrivals current is the number of request arrivals during the current time period.

Each turn of the environment consists of two steps:

(1) Setting the amount of request arrivals for the current time period. This is achieved
through a set of commands that follow the pattern shown in Listing 2, line 10: the
guard in the command checks that (i) it is the turn of the environment, (ii) the
end of the time frame for execution has not been reached yet, and (iii) the value
of request arrivals for the current time period has not been set yet (controlled by
flag a upd). If the guard is satisfied, the command sets the value of request arrivals
for the current time period (represented by x in the command). It is worth noticing
that there may be as many of these commands as different possible values can be
assigned to the number of request arrivals for the current time period (including
zero for no arrivals). Probabilities in these commands are left unspecified, since it
will be up to the strategy followed by the player (to be synthesized based on an
rPATL specification) to provide the discrete probability distribution for this set of
commands.

(2) Updating the values of the different environment variables (line 12), by: (i) increas-
ing the t time variable one step, and (ii) adding the number of request arrivals for
the current time period to the accumulator arrivals total. In addition, the turn of
the environment player finishes when this command is executed, since it modifies
the value of variable turn, yielding the control of the game to the system player.

4.1.3. System. Module target system (Listing 3) models the behavior of the target sys-
tem (including the execution of tactics upon it), and is parameterized by the constants:

— MIN SERVERS and MAX SERVERS, which specify the minimum and maximum
number of active servers that a valid system configuration can have.

— INIT SERVERS is the number of active servers that the system has in its initial
configuration.

— MIN FIDELITY and MAX FIDELITY, which specify the minimum and maximum fi-
delity levels for served content.

— INIT FIDELITY is the level of fidelity of served content in the system’s initial config-
uration.

— ENLIST LATENCY is the latency of the tactic for enlisting a server, measured in
number of time periods (i.e., the real latency for the tactic in time units is TAU *
ENLIST LATENCY). In our model, tactic latencies are always limited to multiples of
the time period duration.

— MAX RT and INIT RT, which specify the system’s maximum and initial response
times, respectively.

Moreover, the module includes variables which are relevant to represent the current
state of the system:

— s corresponds to the number of active servers.
— f is the fidelity level of the contents being served (in this version of Znn.com, we

consider it to be the same for all servers).
— rt is the system’s response time.
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1 const MIN SERVERS, MAX SERVERS, INIT SERVERS;
2 const MIN FIDELITY, MAX FIDELITY, INIT FIDELITY;
3 const ENLIST LATENCY;
4 const MAX RT, INIT RT;
5
6 module target system
7 s : [0..MAX SERVERS] init INIT SERVERS;
8 f : [1..MAX FIDELITY] init INIT FIDELITY;
9

10 rt : [0..MAX RT] init INIT RT;
11 counter:[−1..ENLIST LATENCY] init −1;
12 [] (s<=MAX SERVERS) & (turn=SYS TURN) & (counter!=0) −> (counter’=counter>0?counter−1:counter) &

(turn’=ENV TURN) & (rt’=totalTime);
13 [enlist trigger] (s<MAX SERVERS) & (turn=SYS TURN) & (counter=−1) −> (counter’=ENLIST LATENCY) &

(turn’=ENV TURN) & (rt’=totalTime);
14 [enlist] (s<MAX SERVERS) & (turn=SYS TURN) & (counter=0) −> 1: (s’=s+1) & (counter’=−1) & (turn’=ENV TURN) &

(rt’=totalTime);
15 [discharge] (s>MIN SERVERS) & (turn=SYS TURN) & (counter!=0) −> (s’=s−1) &

(counter’=counter>0?counter−1:counter) & (turn’=ENV TURN) & (rt’=totalTime) ;
16 [decrease f] (turn=SYS TURN) & (f>MIN FIDELITY) & (counter!=0)−> (turn’=ENV TURN) & (f’=f−1) &

(counter’=counter>0?counter−1:counter);
17 [increase f] (turn=SYS TURN) & (f<MAX FIDELITY) & (counter!=0)−> (turn’=ENV TURN) & (f’=f+1) &

(counter’=counter>0?counter−1:counter);
18 endmodule

Listing 3: System module

— counter is used to control the delay between the triggering of a tactic and the moment
in which it becomes effective in the target system. In this case, the variable is used
to control the delay between the activation of a server, and the time instant in which
it really becomes active.

During its turn, the system can decide not to execute any tactics, returning the turn
to the environment player by executing the command defined in line 12, Listing 3.
Alternatively, the system can execute one of these tactics:

— Activation of a server, which is carried out in two steps:
(1) Triggering of activation through the execution of the command labeled as en-

list trigger (line 13). This command only executes if the current number of active
servers is less than the maximum allowed, and the counter that controls tactic
latency is inactive (meaning that there is not currently a server already booting
in the system). Upon execution, the command activates the counter by setting it
to the value of the latency for the tactic, and returns the turn to the environment
player.

(2) Effective activation through the enlist command (line 14), which executes when
the counter that controls tactic latency reaches zero, incrementing the number
of servers in the system, and deactivating the counter. All the commands in this
module, except for the latter, decrement the value of the counter 1 unit, if the
counter is activated (counter’=counter>0?counter-1:counter).

— Deactivation of a server, which is achieved through the discharge command (line 15),
which decrements the number of active servers. The command fires only if the cur-
rent number of active servers is greater than the minimum allowed and the counter
for server activation is not active.

— Lowering the fidelity of all active servers, setting them to textual mode through the
execution of the command decrease f (line 16). This tactic decreases the value of
the fidelity variable f, and thus increases the service rate, which in turn causes a
reduction in the system’s response time.
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— Raising the fidelity of all active servers, setting them to multimedia mode through
the execution of command increase f (line 17), which has the opposite effect of de-
crease f.

In addition, all the commands in this module update the value of the response time
according to the request arrivals during the current time period and the number of
active servers (computed using of an M/M/c queuing model [Chiulli 1999], encoded by
formula totalTime). Moreover, note that the latency of all tactics in the model, except
for the one to enlist servers, is zero.

4.1.4. Utility profile. Utility functions and preferences are encoded using formulas and
reward structures that enable the quantification of instantaneous utility. Specifically,
formulas compute utility on the different dimensions of concern, and reward structures
weigh them against each other by using the utility preferences.

1 formula uR = (rt>=0 & rt<=100? 1:0)
2 +(rt>100&rt<=200?1+(−0.01)∗((rt−100)/(100)):0)
3 ...
4 +(rt>2000&rt<=4000?0.25+(−0.25)∗((rt−2000)/(2000)):0)
5 +(rt>4000 ? 0:0);
6 ...
7 const W UR,W UF,W UC;
8 rewards ”rIU”
9 (turn=SYS TURN) : TAU∗(W UR∗uR + W UF∗uF +W UC∗uC);

10 endrewards

Listing 4: Utility functions and reward structure

Listing 4 illustrates in lines 1-5 the encoding of utility functions using a formula
for linear interpolation based on the points defined for utility function UR in the first
column of Table I. The formula in the example computes the utility for performance,
based on the value of the variable for system response time rt. Moreover, lines 8-10
show how a reward structure can be defined to compute a single utility value for any
state by using utility preferences (in this case defined as weights W UR, W UC, and
W UF). Specifically, each state in which it is the turn of the system player is assigned
with a reward corresponding to the entire elapsed time period of duration TAU, during
which we assume that instantaneous utility does not change.

1 rewards ”rEIU”
2 (turn=SYS TURN) : TAU∗(W UR∗uER + W UF∗uF +W UC∗uC);
3 endrewards

Listing 5: Expected utility reward structure

In latency-aware adaptation, the instantaneous real utility extracted from the sys-
tem coincides with the utility expected by the algorithm’s computations during the
tactic latency period. However, in non-latency-aware adaptation, the instantaneous
utility expected by the algorithm during the latency period for activating a server does
not match the real utility extracted for the system, since the new server has not yet
impacted the performance (i.e., the server is booting up, but not processing requests
yet). To enable analysis of real vs. expected utility in non-latency-aware adaptation,
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we add to the model a new reward structure that encodes expected instantaneous util-
ity rEIU (Listing 5). In this case, the utility for performance during the latency period
(encoded in formula uER) is computed analogously to uR in Listing 4, but based on the
response time that the system would have with s+1 servers during the latency period.

4.2. Analysis
In order to compare latency-aware vs. non-latency-aware adaptation, we make use of
rPATL specifications that enable us to analyze (i) the maximum utility that adap-
tation can guarantee, independently of the behavior of the environment (worst-case
scenario), and (ii) the maximum utility that adaptation is able to obtain under ideal
environmental conditions (best-case scenario).

4.2.1. Latency-aware Adaptation. In latency-aware adaptation, the real adaptation ex-
tracted from the system coincides with the utility that the adaptation algorithm uses
for decision making.

— Worst-case scenario analysis. We define the real guaranteed accrued utility (Urga)
as the maximum real instantaneous utility reward accumulated throughout execu-
tion that the system player is able to guarantee, independently of the behavior of the
environment player:

Urga , 〈〈sys〉〉RrIU
max=?[Fc t = MAX TIME]

This enables us to obtain the utility that an optimal self-adaptation algorithm would
be able to extract from the system, given the most adverse possible conditions of the
environment. Alternatively, Urga can also be obtained by computing a strategy for
the environment, based on the minimization of the same reward:

〈〈env〉〉RrIU
min=?[Fc t = MAX TIME]

— Best-case scenario analysis. To obtain the real maximum accrued utility achiev-
able (Urma), we specify a coalition of the system and environment players, which
behave cooperatively to maximize the utility reward:

Urma , 〈〈sys, env〉〉RrIU
max=?[Fc t = MAX TIME]

4.2.2. Non-latency-aware Adaptation. In the case of non-latency-aware adaptation, the
real utility does not coincide with the expected utility that an arbitrary algorithm
would employ for decision-making, therefore we need to proceed with the analysis in
two stages:

(1) Compute the strategy that the adaptation algorithm would follow based on the
information it employs about expected utility. That strategy is computed based on
an rPATL specification that obtains the expected guaranteed accrued utility (Uega)
for the system player:

Uega , 〈〈sys〉〉RrEIU
max=?[Fc t = MAX TIME]

For the specification of this property we employ the expected utility reward rEIU
(Listing 5) instead of the real utility reward rIU. Moreover, it is worth observing
that for latency-aware adaptation Uega = Urga.

(2) Verify the specific property of interest (e.g., Urga, Urma) under the generated strat-
egy. We do this by using PRISM-games to build a product of the existing game
model and the strategy synthesized in the previous step, obtaining a new game
under which further properties can be verified. In our case, once we have com-
puted a strategy for the system player to maximize expected utility, we quantify
the reward for real utility in the new game in which the system player strategy
has already been fixed.
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4.3. Results
In this section, we first compare worst- and best-case scenario analysis of a version of
Znn.com that includes only the pair of tactics to enlist/discharge servers that are af-
fected by latency in order to compare latency-aware and non-latency aware adaptation.
Second, we provide some results to quantify the impact in utility that adding tactics to
increase/reduce content fidelity introduce in the system. The improvement of introduc-
ing the new tactics is shown both in the case of latency-aware and non-latency-aware
adaptation.

4.3.1. Comparing Latency-aware vs. Non-Latency-aware Adaptation. Table II compares the
results for the utility extracted from the system by a latency-aware vs. a non-latency-
aware version of the system player, for two different models of Znn.com that represent
an execution of the system during 100 and 200s, respectively. The models consider a
pool of up to 4 servers, out of which 2 are initially active, and includes a repertoire of
tactics limited to enlisting/discharging servers. The period duration TAU is set to 10s,
and for each version of the model, we compute the results for three variants with dif-
ferent latencies for the activation of servers of up to 3*TAU s. The maximum number
of arrivals that the environment can place per time period is 20, whereas the time it
takes the system to service every request is 1s. The fidelity level in this set of experi-
ments is fixed, therefore we factor it out of the utility calculation (wUR

= 0.6, wUF
= 0,

wUC
= 0.4).

We define the delta between the expected and the real guaranteed utility as:

∆Uer = (1− Uega

Urga
)× 100

Moreover, we define the delta in real guaranteed utility between latency-aware an
non-latency aware adaptation as:

∆Urga = (1− Un
rga

U l
rga

)× 100,
where Unrga and U lrga designate the real guaranteed accrued utility for non-latency-

aware and latency-aware adaptation, respectively. The delta in real maximum accrued
utility (∆Urma) is computed analogously to ∆Urga.

Table II: SMG model checking results for Znn.com
MAX TIME Latency Latency-Aware Non-Latency-Aware ∆Urga ∆Urma

(s) (s) Uega Urga ∆Uer(%) Urma Uega Urga ∆Uer(%) Urma (%) (%)
TAU 53.77 53.77 0 99.6 65.97 48.12 -27.05 79.99 10.5 19.68

100 2*TAU 49.35 49.35 0 99.6 64.3 42.1 -34.5 78.39 14.69 21.29
3* TAU 45.6 45.6 0 99.6 64.3 33.25 -48.2 78.39 27 21.29

TAU 110.02 110.02 0 199.6 127.25 95.9 -24.63 156.79 12.83 21.44
200 2*TAU 105.6 105.6 0 199.6 125.57 76.6 -38.99 155.19 27.46 22.24

3* TAU 101.17 101.17 0 199.6 123.9 66.15 -46.6 153.59 34.61 23.05

Table II shows that latency-aware adaptation outperforms in all cases its non-
latency-aware counterpart. In the worst-case scenario, latency-aware adaptation is
able to guarantee an increment in utility extracted from the system, independently
of the behavior of the environment (∆Urga) that ranges between approximately 10 and
34%, increasing progressively with higher tactic latencies. In the best-case scenario
(cooperative environment), the maximum utility that latency-aware adaptation can
achieve does not experience noticeable variation with latency, staying in the range 19-
23% in all cases. Regarding the delta between expected and real utility that adaptation
can guarantee, we can observe that ∆Uer is always zero in the case of latency-aware
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adaptation, since expected and real utilities always have the same value, whereas in
the case of non-latency-aware adaptation there is a remarkable decrement that ranges
between 24 and 48%, also progressively increasing with higher tactic latency.

4.3.2. Quantifying the Impact of Tactics on Utility. In this section, we compare the results for
the utility extracted from the system for the worst-case scenario, using four different
model variants of Znn.com. Two of the variants correspond to the latency-aware adap-
tation case when it includes: (i) only the pair of tactics to enlist/discharge servers (LA),
and (ii) an extended set of tactics that include the tactics to enlist/discharge servers,
plus the pair of tactics to increase/reduce content fidelity (LA+). The other two variants
include the same sets of tactics for the non-latency-aware adaptation case (indicated
by NLA and NLA+, respectively).

All models represent an execution of the system during 1000s, and consider a pool
of up to 4 servers, out of which 2 are initially active. The period duration TAU is set
to 10s, and for each version of the model, we compute the results of a latency range
for the activation of servers between 0 and 7*TAU s. The maximum number of arrivals
that the environment can place per time period is 20, whereas the time it takes the
system to service every request is 1s for high fidelity, and 0.9s for low fidelity. The
utility preferences used for the experiments give preference to performance over cost
and fidelity (wUR

= 0.6, wUF
= 0.2, wUC

= 0.2).

— Latency-aware Adaptation. Figure 2 compares the two variants of latency-aware
adaptation. In the LA variant, it can be observed that the progressive increment in
latency of the enlist server tactic results in a proportional reduction of the real guar-
anteed utility Urga. However, for increasing latency values in the LA+ variant, Urga
only decreases moderately in comparison with the LA variant, due to the fact that
the optimal strategy synthesis algorithm starts favoring the selection of the tactic to
reduce fidelity instead of the one to enlist a new server. Although decreasing fidelity
has a negative influence in the value of the fidelity utility UF and has a moderate
impact in reducing response time compared to adding a new server, increasing la-
tencies of the enlist server tactic dwindle its capability to extract system utility over
time, compared to reducing content fidelity.

— Non-latency-aware Adaptation. Figure 3 compares the two variants of non-
latency-aware adaptation. In contrast with the latency-aware adaptation case, there
is a clear discrepancy between real guaranteed utility Urga, and the expected guar-
anteed utility Uega both for the NLA and NLA+ variants. Interestingly, it can be
observed how the addition of the pair of fidelity tactics does not represent any dif-
ference in Uega nor Urga between the NLA and NLA+ variants. This is a direct conse-
quence of the strategy synthesis process not being aware of the latency of the tactic
to enlist servers. Concretely, the synthesis only considers the positive net impact
on utility of enlisting a server, which outweighs the impact on utility of reducing
fidelity, effectively preventing the selection of the fidelity reduction tactic, indepen-
dently of the fact that it is capable to extract more system utility over time than the
tactic to enlist servers.

5. LATENCY-AWARE ADAPTATION
Latency-aware adaptation takes into account the tactics’ latency when deciding how to
adapt. In our approach, the goal is to consider the latency of the tactics so that the sum
of utility provided by the system over time is maximized. The effect of tactic latency
on utility is that for tactics that have some latency, the system does not start to accrue
the utility gain associated with the tactic until some time after the enactment of the
tactic. Moreover, negative impacts of the tactic may have no latency, and start without
delay. For example, when adding a server to the system, the server takes some time to
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Fig. 2: Fidelity tactics impact on utility: Latency-Aware Adaptation

Fig. 3: Fidelity tactics impact on utility: Non-Latency-Aware Adaptation

boot and be online, whereas it starts consuming power—and thereby increases cost—
immediately. In this example, it means that the tactic to add a server causes a drop in
utility before it results in a gain.

Another consequence of tactic latency is that some near-future system configurations
can be infeasible. For example, let us suppose that the system has to deal with an
increase in load within 5 seconds, and it could handle that with an additional server. If
enlisting an additional server takes 10 seconds, then the desired configuration that has
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one additional server 5 seconds into the future is infeasible. Current approaches that
do not take latency into account would consider that solution regardless of whether
it is feasible or not. When proactively looking ahead, taking adaptation latency into
account allows the adaptation mechanism to rule out infeasible configurations from
the adaptation space.

A complication arises when tactic latency is longer than the interval between adap-
tation decisions. When that is the case, it is possible that during an adaptation deci-
sion, a tactic that has been previously started has not yet reached the point where its
effect will have been realized. If the decisions are made based only on the currently
observed state of the system, ignoring the expected effect of adaptations in progress,
the system will overcompensate, starting unnecessary adaptations. What is needed is
a model of the system that not only represents the current state of the system, but also
keeps track of the expected state of the system in the near future based on the tactics
that have been started but have not yet completed.

5.1. Algorithm
The algorithm we present is an extension of an algorithm developed by Poladian et
al. to compute the optimal sequence of adaptation decisions for anticipatory dynamic
configuration [Poladian et al. 2007]. Using dynamic programming and relying on a
perfect prediction of the environment for the duration of a system run, their algorithm
can find the adaptation decision that at each time step maximizes the future aggregate
utility, while accounting for the penalty of switching configurations. They showed that
the algorithm had pseudo-polynomial time complexity, and was therefore suitable for
online adaptation.

The key improvement our algorithm brings is how the latency of tactics is taken
into account. On the one hand, there is an adaptation cost that latency induces. For
example, if adding a server takes λ seconds from the time a server is powered up until
it can start processing requests, and ∆Uc is the additional cost the new server incurs,
then the adaptation cost is λ∆Uc. This cost could be partially handled by the original
algorithm, as a reconfiguration penalty. However, that is not sufficient to handle the
other issues previously mentioned that latency brings, namely, the infeasibility of con-
figurations and the need to track adaptation progress. Our algorithm for latency-aware
proactive adaptation explicitly handles the issues that arise due to tactic latency.

The algorithm requires iterating over all the possible configurations of the system,
where a configuration describes variable aspects of the system relevant to the adap-
tation decision. In the Znn example, a configuration indicates how many servers are
in the pool of servers, and what is the fidelity level of the content being served. To
keep track of adaptation progress, a configuration also encodes information about the
progress of adaptations that have non-zero latency. In our example, that means that a
configuration indicates whether a new server is being added, and how much progress
that tactic has made. It is important to note that the information about progress is only
needed at the granularity of the evaluation period τ . In general, C is the set of possible
configurations, and Ci is the ith configuration, for i ∈ {1 . . . |C|}. For our running ex-
ample, C = (S ×A× F ) \ {(s, a, f) : S ×A× F |s = 4 ∧ a ∈ A \ {0}}, where S = {1 . . . 4}
is the number of active servers in the system; A =

{
0 . . . dλτ e

}
is the number of evalua-

tion periods until the addition of a server completes, with 0 indicating that the tactic is
not being executed; and F = {1, 2} is the fidelity level. Since the tactic to add a server
cannot be used when the system already has the maximum number of servers, all the
configurations with 4 servers and the tactic running are not included in C.

The algorithm also needs to determine whether a particular configuration can
be reached at a particular time, and tactic latency plays a key role in that de-
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termination. More specifically, the algorithm needs to determine if configuration c′

can be reached from configuration c in one evaluation period—the boolean function
isReachableFromConfig(c, c′) encapsulates that. In addition, it needs to know if con-
figuration c′ can be reached at the current time—the function isReachableNow(c′) de-
termines that. In addition to latency, blocking effects between tactics are also consid-
ered by these functions. For example, in our running example, only one tactic can be
used in an evaluation period. More details about these two functions are provided in
section 5.1.1.

In reactive adaptation, the decision algorithm is typically invoked upon events that
require an adaptation to be performed. However, for proactive adaptation, the decision
must be done periodically, looking ahead for future states that may require the sys-
tem to adapt. Our algorithm is therefore run periodically, with a constant interval τ
between runs. We limit the look-ahead of the algorithm to a near-term horizon of H
evaluation periods, which in turn limits how far into the future the environment state
needs to be estimated.7 The estimation of the future environment state is accessed by
the algorithm via the function env(x), which returns the expected environment state x
time units into the future.

Employing a dynamic programming approach, the algorithm (Algorithm 1) uses two
matrices, u and n, to store partial solutions. The element ui,t holds the utility projected
to be achieved from the evaluation period t (with t = 0 being the current period, t = 1
the next one, and so on) until the horizon if the system has configuration Ci at evalu-
ation period t. An infeasible partial solution is marked by a value of −∞ assigned to
ui,t. The element ni,t holds the configuration that the system must adopt in period t+1
to attain the projected utility ui,t if the configuration in period t is Ci.

The main loop (lines 1-23) works backwards from the horizon, computing the partial
solutions using the partial solutions previously found. For each configuration (lines 2-
22), it computes its projected utility or deems the configuration infeasible. For evalu-
ation periods t > 0, all configurations are assumed feasible, and the only concern is
whether one potential configuration is reachable from another potential configuration.
However, for the current evaluation period (t = 0), only those configurations that can
be reached are deemed feasible. The projected utility a configuration can achieve can
achieve is the sum of the utility the configuration obtains in that particular evalua-
tion period (line 6), and the maximum utility it can achieve in the periods after that.
Computing the former relies on the function U(c, e), which is the instantaneous utility
provided by configuration c in environment e. To compute the latter, the algorithm it-
erates (lines 11-19) over all the feasible configurations that can follow (as determined
by isReachableFromConfig(Ci, Cj)) to find the configuration that the system should
have in evaluation period t + 1 to maximize the projected utility of having configura-
tion Ci in evaluation period t (lines 14-17). Once all the possible solutions have been
computed, the algorithm selects the configuration the system should have at the cur-
rent time to maximize the projected utility (line 24). By comparing the current system
configuration with the selected configuration along the different dimensions (S,A, and
F in our example), it is easy to determine what adaptation tactics have to be started
at the current time, if any.

5.1.1. Adaptation Feasibility. An important part of the proactive latency-aware adapta-
tion algorithm is determining whether it is possible reach a particular system configu-
ration through adaptation at a particular time in the near future. Obviously, tactic la-
tency plays a fundamental role in this determination, not only because a tactic needed

7Environment state estimation is beyond the scope of our work, but techniques such as Poladian et al.’s
calculus for combining multiple source of predictions [Poladian et al. 2007] can be used.
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ALGORITHM 1: Latency-aware proactive adaptation
1: for t = H − 1 downto 0 do
2: for i = 1 to |C| do
3: ui,t ← −∞ {assume infeasible configuration}
4: ni,t ← 0 {assume no next state}
5: if t > 0 ∨ isReachableNow(Ci) then
6: ulocal ← τU(Ci, env(tτ))
7: if t = H then
8: ui,t ← ulocal
9: else
10: {find the next best configuration after i}
11: for j = 1 to |C| do
12: if uj,t+1 > −∞∧ isReachableFromConfig(Ci, Cj) then
13: uprojected ← ulocal + uj,t+1

14: if uprojected > ui,t then
15: ui,t ← uprojected
16: ni,t ← j
17: end if
18: end if
19: end for
20: end if
21: end if
22: end for
23: end for
24: best← argmaxi ui,0 {best starting configuration}
25: return Cbest

to reach a configuration may take some time to execute, but also because it can block
other tactics while executing. In our running example, only one tactic can be executed
at a time, and, additionally, only one tactic can be started in each evaluation period.
The algorithm uses two functions to determine the feasibility of possible adaptations.

The function isReachableNow(c′) returns true if it is possible to reach configuration
c′ immediately from the current configuration of the system. For example, if no tactic
is executing in Znn, it would be possible to reach immediately a configuration in which
the fidelity level has been changed, or one in which the tactic to add a new server
has been started, but not both. On the other hand, if the tactic to add a server was
executing (i.e., it was started in a previous evaluation period and has not completed
yet), it would not be possible to reach any configuration other than the current one.

The function isReachableFromConfig(c, c′) returns true if configuration c′ can be
reached from configuration c in one evaluation period. More specifically, it assumes
that (i) c will be the configuration at the beginning of the period, including the possible
effect of tactics that could have been started at that time; (ii) one evaluation period
will elapse allowing for example progress on a tactic with latency; and (iii) optionally
a tactic can be started at the end of the period. For example, assuming that c is a con-
figuration in which the tactic to add a server has one period left to complete, and c′ is a
configuration with one more active server and a different fidelity would be feasible be-
cause the tactic adding a server would complete in the elapsed period, and the fidelity
can be changed immediately.

These two functions can be implemented in different ways as long as they satisfy
their specification. Furthermore, since they are independent of the state of the envi-
ronment, they can be computed offline, generating a lookup table to be used at runtime.
Taking advantage of this, we used a Alloy [Jackson 2012] to formally specify system
configurations, and adaptation tactics, and to compute the reachability functions of-
fline. Alloy is a language based on first-order logic that allows modeling structures—
known as signatures—and relationships between them in the form of constraints. One
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advantage of using Alloy is that it is a declarative language, and, in contrast to imper-
ative languages, only the effect of operations—tactics in our case—on the model must
be specified, but not how the operations work. The Alloy analyzer can then be used to
find structures that satisfy the model.

The basic definitions of the specification used to compute the reachability functions
is shown in Listing 6. These definitions introduce the sets S, A, and C, representing
the number of servers, the progress of the tactic to add a server, and the possible
configurations the system can have. The elements of S and A are not numbers, but
just abstract elements of an ordered set. It is possible to refer to the first and last
element of the set that represents the possible levels of active servers as servers/first
and servers/last, respectively. The relationships prev and next allow referring to the
previous and next element in the ordered set. The signature C defines the set of all
possible configurations. Without additional constraints, Alloy could generate elements
of C with the same number of servers, progress of the tactic, and fidelity level. To force
all elements of the set to be unique configurations, the constraint in lines 16-18 is
introduced.

1 open util/ordering[S] as servers
2 open util/ordering[A] as progress
3 open util/boolean
4
5 sig S {} // the different number of active servers
6 sig A {} // the different levels of progress of the add server tactic
7
8 /∗ each element of C represents a configuration ∗/
9 sig C {

10 s : S, // the number of active servers
11 a : A, // the progress of the add server tactic
12 f : Bool // fidelity level
13 }
14
15 // force all instances of C to be unique
16 fact uniqueInstances {
17 all disj c, c2 : C | !(c2.s = c.s and c2.a = c.a and c2.f = c.f)
18 }

Listing 6: Alloy model of configuration reachability: basic definitions

The specification of the tactics is shown in Listing 7. The tactic to add a server
is decomposed into two predicates due to its latency. The first predicate (lines 1-6)
specifies the start of the tactic. This predicate has two arguments c and c′, representing
the pre- and post-state, respectively. For the tactic to be able to start, it is required
that no tactic is running, and that the configuration in the pre-state is not the last
level of servers (i.e., the configuration has less than the maximum number of servers).
In the post-state, the only change to the configuration is that the level of progress
of the tactic is the first one. The tactic in the post-state has been started and will in
subsequent steps go through all the levels of progress until it reaches the last one when
it completes. The other predicate (lines 8-13) specifies how the configuration changes
when the tactic makes progress in one evaluation period. The tactic can only make
progress if it has not completed in the pre-state. In the post-state, the configuration
will have the same fidelity level, and the next level of progress. If the latter is the last
level of progress, then the tactic has completed and the post-state configuration has
one more active server. Otherwise, the number of servers stays the same. The tactics
for removing a server (lines 19-24) and for changing the fidelity (lines 26-31) do not
have latency, and, therefore, do not need to be split into start and progress as the other
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tactic. If no tactic is running, the system can just stay in the same configuration. In
the model, the predicate at the end of Listing 7 is used to allow that behavior.

1 pred addServerTacticStart[c, c’ : C] {
2 !tacticRunning[c] and c.s != servers/last
3 c’.a = progress/first
4 c’.s = c.s
5 c’.f = c.f
6 }
7
8 pred addServerTacticProgress[c, c’ : C] {
9 c.a != progress/last

10 c’.a = progress/next[c.a]
11 c’.a = progress/last implies c’.s = servers/next[c.s] else c’.s = c.s
12 c’.f = c.f
13 }
14
15 pred tacticRunning[c : C] {
16 c.a != progress/last
17 }
18
19 pred removeServerTactic[c, c’ : C] {
20 !tacticRunning[c] and c.s != servers/first
21 c’.s = servers/prev[c.s]
22 c’.a = c.a
23 c’.f = c.f
24 }
25
26 pred changeFidelityTactic[c, c’ : C] {
27 !tacticRunning[c]
28 c’.s = c.s
29 c’.a = c.a
30 c’.f = Not[c.f]
31 }
32
33 pred noOp[c, c’ : C] {
34 !tacticRunning[c]
35 c’.s = c.s
36 c’.a = c.a
37 c’.f = c.f
38 }

Listing 7: Alloy model of configuration reachability: tactics

Listing 8 defines the configuration reachability predicates. For isReachableNow
(lines 2-4), configuration c′ can be reached from c trivially if they are the same con-
figuration, or if c′ is the configuration resulting from starting a tactic when the
system is in configuration c, and no passage of time is allowed. In the case of
isReachableFromConfig (lines 7-9), configuration c′ can be reached from c after one
evaluation period if the configuration that results from letting one period to elapse,
configuration temp, is such that configuration c′ can be reached from temp without any
more passage of time. The predicate timeStep (lines 11-13) is used for the first part of
this condition, and isReachableNow is reused for the second part.

The Alloy code in Listing 9 is used to generate the reachability functions. Each of the
predicates will be used to generate the elements of the relationship Result.reachable
for each of the reachability functions. The run commands in lines 13 and 15 are used
to run the Alloy analyzer to generate the relationships that satisfy the corresponding
predicates. The command specifies how many elements the solution should have in
each set. For our example, when the latency of the tactic to add a server is 3τ , the
solution must have 4 servers, 3τ+1 = 4 levels of progress for the tactic, and two fidelity
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1 /∗ is c’ reachable now if current config is c? ∗/
2 pred isReachableNow[c, c’ : C] {
3 c = c’ or removeServerTactic[c, c’] or addServerTacticStart[c, c’] or changeFidelityTactic[c, c’]
4 }
5
6 /∗ is c’ reachable from config c in one evaluation period? ∗/
7 pred isReachableFromConfig[c, c’ : C] {
8 one temp : C | timeStep[c, temp] and isReachableNow[temp, c’]
9 }

10
11 pred timeStep[c, c’ : C] {
12 noOp[c, c’] or addServerTacticProgress[c, c’]
13 }

Listing 8: Alloy model of configuration reachability: functions

levels (not indicated in the command), for a total of 32 configurations.8 Additionally,
the run should produce exactly one result. The output of the Alloy analyzer can be
exported to XML, and then transformed to a format suitable for its use at runtime.

1 sig Result {
2 reachable : C−>C
3 }
4
5 pred isReachableFromConfigGeneration {
6 one r : Result | all c1,c2 : C | c1−>c2 in r.reachable <=> isReachableFromConfig[c1,c2]
7 }
8
9 pred isReachableNowGeneration {

10 one r : Result | all c1,c2 : C | c1−>c2 in r.reachable <=> isReachableNow[c1,c2]
11 }
12
13 run isReachableFromConfigGeneration for exactly 4 S, exactly 4 A, exactly 32 C, exactly 1 Result
14
15 run isReachableNowGeneration for exactly 4 S, exactly 4 A, exactly 32 C, exactly 1 Result

Listing 9: Generation of configuration reachability tables in Alloy

5.2. Simulation
We implemented a simulation of a self-adaptive Znn with two goals. One was to eval-
uate the improvement that our algorithm for latency-aware (LA) proactive adaptation
achieves compared to a non-latency-aware (NLA) approach. The second one, was to
compare the theoretical results obtained with the SMG for generic NLA and LA algo-
rithms with the results obtained with a concrete algorithm. Using simulation allowed
us to run many repetitions of the experiments with randomly generated behaviors of
the environment, and to replicate exactly the same conditions for the two algorithm.

The simulation was implemented using OMNeT++, an extensible discrete event sim-
ulation environment [Varga et al. 2008]. It simulates the arrival of requests from
clients, randomly generating requests. The requests arrive at the load balancer of Znn,
and are forwarded to one of the idle servers. If no server is idle, then the requests are
queued in FIFO order until one server becomes available. Each server processes one

8Even though some of these configuration are not valid, namely those where there are 4 servers and the
add server tactic is executing, we chose to keep the model simpler, even if it produces some elements in the
reachability relationships that will never be used.
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request at a time, with a service time distributed with an exponential distribution
whose rate of depends on the fidelity of the content being served. In the case of high
fidelity, the rate is 1, and for low fidelity the rate is 0.9.

The inter-arrival times between client requests are generated randomly with a rate
that changes periodically, matching the possibilities of the environment in the SMG.
Every τ units of time, a new arrival rate is selected randomly from the interval [0, 2]
with a uniform distribution. That rate is then used to generate exponentially dis-
tributed inter-arrivals until the next rate is selected. To be able to simulate the ex-
ecution of the system with the same random pattern of client requests using each of
the two algorithms, the request inter-arrival times and the service times are drawn
from two separate random number generators. Thus, we can compare the utility each
algorithm achieves when the system faces the same pattern of client requests.

The self-adaptive layer of the simulated system works as follows. The system is
monitored by keeping track of request inter-arrival times when a client request arrives,
and of the request response times every time a request processing completes. Once
every evaluation interval τ , these observations are used to compute their average and
standard deviation for the period since the last evaluation. Using the average response
time, the fidelity level, and the number of servers in the system, the utility accrued
since the last evaluation is computed using the utility functions and preferences shown
in Table I.

Next, the adaptation algorithm is used to determine if the system should self-adapt
and how. We implemented both the latency-aware algorithm (Algorithm 1) and a non-
latency-aware algorithm. The latter is basically the same as the former, except that it
does not account for latency other than by considering the adaptation penalty induced
by the cost of having a server powered until becomes active.

When the algorithm is run in each evaluation period, it needs to know what is the
current configuration of the system, including whether the tactic to add a server is run-
ning, and how much progress it has made. This is achieved by maintaining a model of
the system configuration that keeps track of the number of servers in the system, and
how many of them are active. In addition, the model keeps a list of expected changes
in the future. For example, when a new server is added to the system, an expected
change reflecting that the server becomes active is recorded with an expected time of
λ into the future. In that way, it is possible to determine how much time is needed
until the tactic completes. When a server actually becomes active in the simulation,
the model of the current system configuration is updated to reflect that change and
the corresponding entry is removed from the list of expected system changes.

The predictive model of the environment, env(x) was implemented as an oracle that
can predict perfectly the average and variance of the request inter-arrival times for
the same horizon used by the algorithm. Although the request arrivals are randomly
generated in the simulation, a perfect prediction can still be achieved by generating
the inter-arrival times before they are consumed by the simulation.

Implementing the U(c, e) function requires first estimating the average response
time for requests when the system has configuration c, and the environment is e.
In this case, the relevant properties of the environment are the average and vari-
ance of the inter-arrival times. To estimate the average response time needed for the
utility calculation, we used queueing theory with a G/M/c queueing model (i.e., for
arrivals with a general distribution,9 exponentially distributed service times, and s

9We chose to use a model for a general distribution of arrivals since: (i) although arrivals are generated
with an exponential distribution, the rate parameter of the distribution is changed periodically, and (ii) the
queueing model is for steady-state behavior and does not account for any backlog of requests that could have
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servers) [Gross et al. 2011]. Once the average response time is estimated in this way,
the utility is estimated using the utility functions and preferences shown in Table I.

After the adaptation algorithm has determined how the system has to be changed,
the execution of the adaptation tactics is carried out by adding or removing servers,
and changing the fidelity as needed. The standard queuing components of OMNET++
were modified to support this dynamic reconfiguration. Furthermore, the server com-
ponent was modified to simulate the latency of enlisting a server.

5.3. Results
We ran the simulation with the same parameters used for the SMG analysis, as de-
scribed in 4.3. The horizon used for the algorithms was computed so that if the system
was running with one server, it had a horizon large enough to be able to compute the
effect of adding the three remaining servers. For that reason, the horizon was cal-
culated as 3λτ + 1, the number of periods needed to enlist three servers plus one more
period to consider the impact on utility of the change. For each combination of parame-
ters, the simulation was run 1000 times to obtain the statistics shown in Table III. On
average, the latency-aware algorithm outperformed the non-latency-aware one. The
LA algorithm obtained on average about 5% more utility when the tactic latency was
equal to the evaluation period, and 10% for latencies two and three times larger than
the evaluation period. The standardized effect size measure statistic Â12 [Arcuri and
Briand 2012] shows that LA outperforms NLA 66% to 81% of the times, depending
on the parameters. For several combinations of parameters, the minimum percentual
utility difference ∆U(%) was negative, meaning that NLA did better. This is due to a
limitation of the queueing model used by the algorithms to estimate the response time
of different configurations, because it computes the steady-state response time, and,
therefore, ignores the effect of arrival spikes that may leave a backlog of arrivals to be
processed in later periods. The LA algorithm avoids adaptation when there are tran-
sient increases in load if the cost of enlisting a server will be higher than the negative
impact of not adding it. Because of the limitation of the queueing model, it sometimes
underestimates that negative effect. Since the NLA algorithm does not account for the
latency of the tactic, it is more prone to add servers, and that gives it an advantage in
these cases. These situations were not very common in our experiment runs, as indi-
cated by the 10% quantile, which, except for the cases with the lowest tactic latency,
was positive. Furthermore, it is worth noting that this is a limitation of the U(c, e)
function used by the algorithm, and not a problem with the algorithm itself.

Table III: Simulation results for Znn
MAX TIME Latency Latency-Aware Non-Latency-Aware ∆U(%)

(s) (s) min. avg. max. min. avg. max. Â12 min. 10% quant. avg. max.
TAU 39.18 67.29 84.41 33.80 62.63 84.49 0.66 -27.15 -0.65 6.73 31.32

100 2*TAU 44.66 69.33 84.55 36.33 62.31 83.20 0.73 -23.86 3.10 10.34 37.69
3* TAU 48.05 69.40 84.55 31.14 62.48 83.20 0.72 -0.88 3.12 10.24 38.66

TAU 81.99 133.20 167.20 82.48 125.00 156.90 0.69 -15.63 -0.96 5.98 21.70
200 2*TAU 105.90 138.10 167.20 80.46 124.40 160.00 0.81 -7.82 4.89 10.05 30.53

3* TAU 106.20 138.40 167.20 85.81 124.70 160.00 0.81 0.00 4.85 10.01 28.32

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have described an analysis technique based on model checking of
stochastic multiplayer games that enables the quantification of the potential benefits

remained in the system from a previous period with higher traffic intensity. Hence, we found the general
distribution model was a better fit.
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that different types of algorithms for decision making in adaptation can yield. We have
shown how this technique can be used in the context of comparing proactive adaptation
algorithms that consider information about tactic latency for decision-making, against
those that do not account for it. We have used Znn.com to illustrate our approach.

Our results show that latency-aware proactive adaptation always performs better
than non-latency-aware adaptation both in the worst- and best-case scenarios, with
progressively increasing improvements with higher tactic latencies. Moreover, results
indicate that not considering latency information in decision-making can potentially
inhibit the selection of tactics available in the adaptation model which could help im-
prove the performance of adaptation algorithms.

A current limitation of the approach is that its scalability is limited by PRISM-
games, which currently uses explicit-state data structures and is to the best of our
knowledge the only tool supporting model-checking of SMGs. In our case, the largest
SMG model employed for Znn has of the order of 106 states, whereas the results pre-
sented in [Chen et al. 2013b] show that the current version of the tool can handle
models of up to 107 states in a common desktop PC. However, the authors of PRISM-
games are developing a symbolic (BDD-based) version of the tool that will improve
scalability.

We have also proposed a latency-aware proactive adaptation algorithm that is able
to exploit predictions about the future behavior of the environment. We have compared
our algorithm against the proactive algorithm presented in [Poladian et al. 2007],
which does not consider latency, showing that latency-aware adaptation achieves
higher utility.

Regarding future work, we plan to instantiate our adaptation analysis technique
in different contexts. In particular, we are working on applying this approach to self-
protecting systems, studying how different adaptation alternatives can minimize the
damage that an attacker can inflict. We also aim at refining the approach to do run-
time synthesis of proactive adaptation strategies based on SMGs. Concerning latency-
aware adaptation, we aim at exploring how tactic latency information can be further
exploited to attain better results both in proactive and reactive adaptation (e.g., by
parallelizing tactic executions). We will also generalize the algorithm to consider mul-
tiple tactics with different latency, as well as prediction and tactic latency uncertainty.
Moreover, we will implement our algorithms in Rainbow/Znn.
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