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Modeling metabolism and stage-specific growth
of Plasmodium falciparum HB3 during the
intraerythrocytic developmental cycle†

Xin Fang, Jaques Reifman* and Anders Wallqvist

The human malaria parasite Plasmodium falciparum goes through a complex life cycle, including a roughly

48-hour-long intraerythrocytic developmental cycle (IDC) in human red blood cells. A better understanding

of the metabolic processes required during the asexual blood-stage reproduction will enhance our basic

knowledge of P. falciparum and help identify critical metabolic reactions and pathways associated with

blood-stage malaria. We developed a metabolic network model that mechanistically links time-dependent

gene expression, metabolism, and stage-specific growth, allowing us to predict the metabolic fluxes, the

biomass production rates, and the timing of production of the different biomass components during the IDC.

We predicted time- and stage-specific production of precursors and macromolecules for P. falciparum

(strain HB3), allowing us to link specific metabolites to specific physiological functions. For example, we

hypothesized that coenzyme A might be involved in late-IDC DNA replication and cell division. Moreover,

the predicted ATP metabolism indicated that energy was mainly produced from glycolysis and utilized for

non-metabolic processes. Finally, we used the model to classify the entire tricarboxylic acid cycle into

segments, each with a distinct function, such as superoxide detoxification, glutamate/glutamine processing,

and metabolism of fumarate as a byproduct of purine biosynthesis. By capturing the normal metabolic

and growth progression in P. falciparum during the IDC, our model provides a starting point for further

elucidation of strain-specific metabolic activity, host–parasite interactions, stress-induced metabolic

responses, and metabolic responses to antimalarial drugs and drug candidates.

Introduction

Malaria constitutes a major human health threat, with more than
207 million clinical cases and 627 000 deaths annually.1 Despite
the success of current anti-malarial efforts, including vector control,
the improvement of diagnostic testing, and drug development, the
complete control and elimination of this disease is hindered by
an emerging resistance to existing drugs and lack of effective
prophylactic vaccines.1 Thus, efforts to develop truly novel treat-
ment options for this disease warrant basic research into the
different mechanisms used by Plasmodium falciparum, the most
virulent causative agent of malaria, to survive and proliferate in
host-based physiological environments.2

One important feature of this process is the organism’s life
cycle, during which it adopts distinct and radically different
morphological stages.3 The malaria parasite invades the host
through the bite of an infected mosquito. The infective sporozoite
rapidly moves to the liver, where it initially proliferates into
merozoites, largely asymptomatically to the host. Subsequently,
the merozoites enter the bloodstream. While some merozoites
develop sexual forms that re-infect mosquitoes, others begin a
roughly 48 hour-long intraerythrocytic developmental cycle (IDC)
of asexual reproduction. This allows the parasites to infect many
more red blood cells and leads to the well-known malarial
symptom of recurring fever. During this cycle, the parasites are
susceptible to drug treatments, and efforts to elucidate essential
biological activities such as metabolism, the focus of this study,
provide a foundation for developing novel therapies.

Experimental studies of P. falciparum metabolism can be
classified into two categories as focused either on single pathways
or on more comprehensive ‘‘omics’’-based studies. In the former
category, studies have shed light on how P. falciparum during
the IDC satisfies its energy demand by oxidizing the bulk of the
taken-up glucose into lactate through the glycolysis pathway.4

Although the organism has all the enzymes to execute a fully
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functional tricarboxylic acid (TCA) cycle, its role is not fully
elucidated, as only a fraction of the glucose is processed in this
pathway.5,6 However, these studies could not comprehensively
capture all aspects of P. falciparum metabolism during the
IDC. Conversely, the latter studies include high-throughput
‘‘omics’’ profiling, e.g., genome-scale transcriptomics profiling
in P. falciparum during different stages of its life cycle.7,8 Of
particular interest for IDC studies, the expression data for nearly
all genes (including metabolic genes) have been collected at each
hour during the IDC, providing a continual transcriptomics
readout of stage-specific developments.9,10 Again, these data
have primarily been analyzed in terms of individual metabolic
pathways and not from a fully integrated metabolic analysis that
takes into account the entire IDC.11,12 Here, we performed a
systems-level investigation of IDC metabolism using a combi-
nation of the high-throughput gene expression data with in silico
metabolic network modeling to systematically connect altered
genetic transcriptions to enzymes and metabolic activities.

Systems biology representations of metabolism use the consti-
tuent components (genes, metabolites, and reactions) to predict
metabolic activity and growth phenotypes of organisms.13 Genome-
scale metabolic networks consist of interconnected biochemical
reactions, each processing particular metabolites spontaneously or
through enzyme(s) encoded by gene(s), which, when they were
analyzed under certain constrained conditions, such as limited
nutrient uptake, can predict cellular growth (biomass accumulation)
and other phenotypic functions related to metabolism.13 For
instance, metabolic networks for P. falciparum have been developed
and used to identify essential genes/reactions that represent candi-
dates for target-based anti-malarial drug discovery.14–19 Importantly,
these networks were integrated with gene expression data at
different stages of the IDC, generating static models of stage-
specific P. falciparum metabolic activities and correctly predicting
metabolite exchanges between the parasite and the host.16,17

A limitation with this approach is that these models did not capture
the parasite’s stage-specific growth, failing to link genotypic

Fig. 1 Schematic description of integrating a metabolic network with time-series gene expression data. We constructed a set of metabolic states over a
time course based on time-series gene expression data by altering nominal fluxes obtained from a metabolic network that represent average and typical
fluxes through each reaction. The example network contains five metabolites (A–E), two uptake reactions, three enzymatic reactions, and one biomass
reaction. In Step I, we obtained the set of nominal fluxes that satisfy the mass balance of each metabolite and the typical biomass composition. In Step II,
we mapped the time-series gene expression data to their corresponding reactions. In Step III, given the nominal fluxes and gene expression data, we
calculated a set of time-series fluxes. For each reaction, the time-dependent pattern of these fluxes followed that of the corresponding gene expression
data, while the average of the fluxes was equal to (or as close as possible to) the nominal flux. In Step IV, we determined the time-series biomass
production rate, by adding the production rates of all biomass components. We finally constructed time-series metabolic states that showed time-
dependent alterations of reaction fluxes, biomass production, and net production of each biomass component.
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alterations and phenotypic growth of P. falciparum during the
IDC. These models used fixed biomass functions, and, thus,
were not able to capture the distinct time-dependent synthesis
of each biomass component and relate these components to
stage-specific cellular activities.

To overcome these limitations, we created an integrated ‘‘global’’
P. falciparum metabolic network model that can predict metabolic
fluxes, biomass production rates (representative of specific growth
rates),20 and the production of biomass components at each hour
during the IDC. We validated our model by comparing the predicted
production of the biomass and its components with the experimen-
tally observed stage-specific growth and macromolecular syntheses.
In addition, we analyzed the predicted net production of small
metabolites, the ATP production and consumption, and the fluxes
through the TCA cycle, providing a rationale for the stage-specific
functions of these molecules, energy metabolism, and metabolic
pathways. Thus, our model provides a framework to link gene
expression, metabolic fluxes, and growth phenotypes that can be
used to model and interpret P. falciparum metabolism under
different conditions, including drug treatments and other
physiological stress conditions.

Results and discussion
Metabolic model of P. falciparum during the IDC

We created a model that describes all metabolic activities in
P. falciparum HB3 during asexual reproduction in red blood cells,
by estimating (1) the distribution of metabolite flows (or fluxes), (2)
an overall biomass production rate, and (3) the production rate of
each component of the organism’s biomass at each hour of the IDC.
We used a modified metabolic network reconstruction16 (see Experi-
mental section for details) combined with hourly gene expression
data from the highest time-resolution experiment available to date.9

This approach used the time-series gene expression data9 to alter
a set of ‘‘nominal’’ metabolic fluxes, representing the average
physiological reaction fluxes of P. falciparum in the IDC.

Despite the lack of a reliable correlation between gene transcrip-
tion levels and enzyme activities, a number of methodologies have
demonstrated the ability to capture condition-specific metabolic
behaviors via the integration of a metabolic network with either
absolute gene transcriptional data21–23 or differential gene expres-
sions compared to particular reference conditions.24,25 Here, we
constructed a hybrid version of these approaches, as the gene
expression data represent gene transcriptional differences between
the sample at a particular time point and a mixed pool of samples
from all time points.9 Importantly, we used a semi-continuous
approach to account for gradual changes in metabolite fluxes and
growth phenotypes rather than considering metabolic reactions in a
binary manner (active or inactive depending on predefined stage-
specific metabolic states).26,27 This approach represents a data-
driven methodology in which the time-dependent state of the
metabolic network (and organism) is driven and determined by
alterations in gene transcription.

Fig. 1 schematically outlines the major steps we used to perform
the integration of the metabolic network with time-series gene

expression data. In this exemplar, we used a set of time-series gene
expression data and a metabolic network containing five meta-
bolites (A–E), two uptake reactions, three enzymatic reactions, and
one biomass reaction. In Step I, we initially used the network to
construct a nominal flux distribution that satisfied the mass
balance of each metabolite and the average biomass composition.
In Step II, we mapped the gene expression data into reactions.
Given the nominal fluxes and relative expression data, we generated
a set of time-series metabolic fluxes that fluctuated around their
nominal value (Step III). For each reaction, the time-dependent
pattern of these fluxes followed, as closely as possible, that of the
corresponding expression levels. Using these fluxes, we could
determine the syntheses and net production of all biomass com-
ponents (B, C, and E in Fig. 1), which when summed up yielded the
overall time-series biomass production rate (Step IV).

The malaria model also incorporated mass conservation
constraints to account for the growth from one organism to
16–32 organisms through four to five cell division cycles during the
IDC. Furthermore, given that there is no one-to-one mapping
between gene expression levels and enzyme activity, we introduced
time shifts in the model to account for the time difference
between when a gene is transcribed (the available data) to when
the synthesized proteins appear and are active in the organism
(metabolic activity as discussed in the paper). This procedure
resulted in time-series metabolic states that indicated time-
dependent alterations of reaction fluxes, the biomass produc-
tion, and the synthesis of each biomass component. We provide
a detailed description of these steps and their implementation in
the Experimental section.

Prediction of the overall biomass production

Using the developed model, we predicted the overall biomass
production rate m of P. falciparum at each of the 48 hours during

Fig. 2 The predicted overall biomass production rates m of Plasmodium
falciparum during the intraerythrocytic developmental cycle. The whole
intraerythrocytic developmental cycle was classified into ring, trophozoite, and
schizont stages.10 The unit of the biomass production rate m is g h�1 gDW�1,
denoting gram biomass per hour per gram dry weight of the P. falciparum
merozoite at the beginning of the cycle.
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the IDC (see Fig. 2). The prediction shows an overall qualitative
agreement with the experimentally observed growth pheno-
types of the parasite during the three stages (ring, trophozoite,
and schizont) throughout the cycle. We predicted that the
biomass production rate started from a very low level and
increased during the ring stage (first 18 hours). The relatively
low production rate is consistent with the experimental slow-
growth phenotype in the ring stage,28 during which the primary
activity of the organism is remodeling its internal structures.29

Further, we predicted sustained biomass production rates at
relatively high levels during the trophozoite stage (18–30 hours),
during which P. falciparum is observed to grow rapidly by con-
suming most of the cytoplasm of its host red blood cells.30 Finally,
the biomass production rates after 30 hours decreased, which is
compatible with the observed schizont-stage P. falciparum shift in
focus from growth to cell division.29 In particular, the predicted
biomass production rate at the end of the IDC was close to that at
the beginning, suggesting that the metabolic program goes back to
its original state after one round of the cycle and readies itself for
another round of infection.29

Prediction of time-dependent macromolecule biomass-
component synthesis

P. falciparum accumulates biomass by taking up nutrients and
synthesizing required components, such as DNA, RNA, protein,
and phospholipids. However, these processes are not uniformly
active during the IDC and instead exhibit time- or stage-specific
dependencies indicative of tightly controlled metabolic processes
during merozoite asexual reproduction. We used our model to
predict the net amounts of each of these macromolecules produced
during different time intervals throughout the IDC, and compared
the predicted results with the corresponding HB3 strain-specific
experimental data.31,32 This comparison was especially relevant as
the measured levels from the experimental system of P. falciparum-
infected erythrocytes are not obscured by difficulties in separating
host and parasite components. Mature human red blood cells
contain no nucleus to synthesize DNA and RNA,33 are thought not
to synthesize protein,33 and have negligible phospholipid syntheses
and metabolism.34 Hence, the measured syntheses of these mole-
cules are attributable to P. falciparum and not to the erythrocytes.

Fig. 3 Macromolecule syntheses in Plasmodium falciparum during the intraerythrocytic developmental cycle. The synthesized amount of RNA (A),
protein (B), DNA (C), and phospholipids (D) during a given time interval was equal to the amount of material synthesized during the interval normalized by
the maximum amount produced during the entire cycle. The predicted amounts were compared with the corresponding experimental data for DNA and
RNA,31 and for phospholipids.32 The horizontal bars indicate the length of the time intervals. The colors of these bars represent the simulation results
(blue) and experimental data (green).
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Fig. 3A and B show that the predicted syntheses of RNA and
protein, respectively, peaked during the mid-IDC. Specifically, both
the prediction and experimental data showed that the net amount
of RNA synthesized was relatively high between 12 and 36 hours
after infection, with the highest amount produced at around
24 hours.31 Fig. 3B shows that our prediction results for the
synthesized amount of protein were relatively high between
18 and 40 hours and at the highest level between 24 and 36 hours.
Although no quantitative experimental measurements of protein
synthesis were available, our predictions were qualitatively
supported by the experimental data from polyacrylamide gel
electrophoresis, which showed that the synthesized amounts of
soluble proteins were relatively high between 24 and 36 hours,
while those for antigens were high between 18 and 40 hours.31

Fig. 3C and D show that our predictions and experimental
results indicate that DNA and phospholipids, respectively, were
mainly synthesized in P. falciparum during the late IDC. Fig. 3C
shows that the predicted DNA synthesis amount was the highest
between 36 and 40 hours, compared to the maximum experimental

amounts, which occurred a few hours earlier during the 30- to
36-hour time interval. Fig. 3D shows that both the predicted
and experimental synthesized amounts of phospholipids
during the 30- to 43-hour time intervals were higher compared
to the earlier intervals. Although the predicted and experimental
amounts32 reached their maximums at different time intervals, the
trends in both sets of data showed general increases from the early
to the late IDC, confirming that phospholipids were mainly synthe-
sized during the late stage of the cycle. The timing of the DNA and
phospholipid syntheses prepares the organism for cell division
during the schizont stage by generating the needed genomic
materials and cellular membranes to support cell replication.

Despite the qualitative consistency in the timing of macro-
molecular production, the predicted and experimental results still
exhibited quantitative discrepancies. For example, the predicted
maximum in DNA synthesis occurred six hours later than experi-
mentally observed. These discrepancies are partly a reflection of our
limited consideration of post-transcriptional and post-translational
regulations.35 As outlined in the Experimental section, we did

Fig. 4 The predicted time-dependent production of biomass metabolites of Plasmodium falciparum. The heat map denotes the predicted time-
dependent production levels of each biomass metabolite of P. falciparum, in which orange, grey, and blue colors represent high, normal, and low
production levels, respectively. Based on the time-dependent production, we classified these metabolites into four groups. Groups I, II, and III include the
metabolites mainly produced during the early (ring stage), middle (trophozoite and early schizont stages), and late (schizont stage) periods of the
intraerythrocytic developmental cycle, respectively, while Group IV includes the metabolites for which the production levels were basically constant
throughout the intraerythrocytic developmental cycle. The vertical dashed lines indicate the boundaries between ring, trophozoite, and schizont stages.
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approximately account for these processes by shifting the
gene expression data by the average time delay derived from
comparing a set of bi-hourly time-series proteomics data with the
corresponding transcriptional levels.36 However, time delays might
vary non-linearly during the developmental stages, e.g., due to
synchronization switches or just a lack of available ribosomes. For
ribosomal proteins, their transcription levels peaked during the
ring and early trophozoite stages,9 whereas the corresponding
proteins were abundant only during the trophozoite and early
schizont stages.36 Thus, the variation in the number of ribosomal
proteins may also contribute to changes in protein synthesis rates
and in the time delay of the proteomics data compared to the
corresponding transcriptomics data throughout the IDC.

Prediction of time-dependent precursor synthesis

In addition to the production of macromolecules, P. falciparum
synthesizes a number of critical small-molecule precursors
which function as cofactors in different biological processes.16

Fig. 4 shows the results of our time-dependent prediction of the
precursor synthesis classified into four general groups. Groups I,
II, and III include the metabolites mainly produced during the
early (ring stage), middle (trophozoite and early schizont stages),
and late (schizont stage) periods of the IDC, respectively, whereas
Group IV includes the metabolites for which the production/
uptake rate was roughly constant throughout the IDC.

Group I. The early IDC synthesis included pyridoxal 5-phosphate,
the active form of vitamin B6, and NAD, a ubiquitous redox
intermediate. The timing of these syntheses suggests that they play
a key biological role during this period, although both molecules are
known to be important in a variety of biological processes. Pyridoxal
5-phosphate is a cofactor for more than 100 known enzymes,37

including 13 P. falciparum enzymes suggested as potential druggable
targets by Kronenberger et al.38 Given the predicted high production
levels of pyridoxal 5-phosphate in the ring stage, we examined the
stage-specific expressions of 11 out of the 13 enzymes for which the
related gene expression data were available.9 We could categorize all
enzymes into stage-specific activities, except for lysine decarboxylase
(PFD0285c), which peaked during 26–36 hours, i.e., overlapping with
the late trophozoite and early schizont stages. Thus, we found one,
five, and four enzymes linked to the ring, trophozoite, and schizont
stage, respectively. Table S1 (ESI†) provides information for each
enzyme. In particular, we could stage-match the production of
pyridoxal 5-phosphate with a cysteine desulfurase (encoded by
MAL7P1.150 [IscS]) at the late ring stage. This suggests an initial
functional link between pyridoxal 5-phosphate and the iron–
sulfur complex in the mitochondria, which potentially affects
electron transfer, catalysis, and regulatory processes.39

Group II. Concomitant with the RNA and protein syntheses
during the trophozoite and early schizont stages, a number of
precursors were also preferentially produced during this time,
suggesting a role for them in protein production or other activities
during the mid-IDC. For example, de novo-synthesized heme was
demonstrated to be a requirement for optimal protein syntheses.40,41

Fig. 4 also shows that the polyamines (spermidine and putrescine)
were predicted to achieve peak production levels during mid-IDC,
yet they are involved in a wide range of functions, including the

stabilization of DNA, RNA, and proteins.42 However, our prediction
of their preferential synthesis during mid-IDC is supported by the
experimental observation that inhibition of polyamine syntheses
had no visible effect during the ring stage but caused morphological
growth arrest in the trophozoite stage.42 Finally, our prediction
of the time-dependent synthesis of 10-formyltetrahydrofolate
coincided with protein synthesis, tied to its function of donating
its formyl moiety to produce formylmethionine, the initiator of
mRNA translation.43

Group III. Fig. 4 shows that the peak production of the precursors
included in this group roughly coincided with the enhanced
production of DNA and phospholipids during the schizont
stage. In this group, the predicted synthesis of ubiquinone was
confirmed by noting that the highest experimental ubiquinone
concentration occurred in the schizont stage.44

The observed time dependency among this group of mole-
cules also allowed us to hypothesize about their biological
role. For example, S-adenosyl L-methionine involves both the
trophozoite-stage polyamine syntheses42 and DNA methylation,

Fig. 5 Predicted energy production and consumption. (A) Schematic
description of energy production and consumption. Energy (in form of
ATP) was produced from glycolysis and other metabolic pathways, and
consumed by non-glycolytic metabolism and non-metabolic activity.
(B) Predicted time-dependent ATP production and consumption with respect
to metabolic and non-metabolic processes (excluding ATP used for RNA
synthesis). The unit of the production or consumption is mmol h�1 gDW�1,
denoting millimole per hour per gram dry weight of the P. falciparum
merozoite at the beginning of the intraerythrocytic developmental cycle.
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an important step in cell division during the schizont stage.45

Based on our predictions of an increased production of S-adenosyl
L-methionine during the late IDC, we hypothesized that the primary
function of this molecule might be involved in DNA methylation.
A further example was coenzyme A, whose inclusion in Group III
suggests that its function is related to schizont-stage activities.
Coenzyme A is reported to be necessary for DNA replication and
cell division in fission yeast,46 but its hypothesized role in DNA
replication of P. falciparum remains to be confirmed. Conversely,
coenzyme A biosynthesis is a valid antimicrobial drug target and,
based on its essentiality for P. falciparum in red blood cells
and different biochemical characteristics from its counterpart
in humans,47 may be considered as a potential anti-malarial
drug-development target.

Group IV. This group includes molecules for which we
predicted roughly constant production/uptake rates throughout
the IDC. Because the production/uptake rates were driven by
altered gene transcription profiles, our model did not capture
other time- and stage-specific processes. Similarly, any lack of a
direct gene–reaction relationship in our model would prevent

us from modeling such a reaction. For example, in the network
model, riboflavin was directly taken up by the parasite and used
for biomass production.16 However, as no gene was associated
with this process, we did not model any time-dependent varia-
tion in riboflavin accumulation.

Prediction of energy production and consumption

It has long been proposed that P. falciparum obtains energy by
anaerobically metabolizing glucose into lactate through
the glycolysis pathway.4 However, it remains unclear whether
other metabolic pathways contribute appreciably to energy
production and what biological processes use the produced
energy. Using our model, we calculated the time-dependent
ATP production from glycolysis, the production and consump-
tion by other metabolic pathways, and the consumption by
non-metabolic activities (i.e., conversion of ATP to ADP). Fig. 5
shows that compared to glycolysis, other metabolic pathways
produced negligible amounts of ATP, and that these non-glycolytic
pathways consumed much less ATP than non-metabolic activities.
In addition, these ATP production and consumption pathways

Fig. 6 Predicted metabolic fluxes through the tricarboxylic acid cycle. (A) Reactions in the Plasmodium falciparum tricarboxylic acid (TCA) cycle. The
arrows represent the directions of the predicted fluxes and different line styles indicated our classification of the TCA cycle into several segments, each of
which had a distinct function. (B) The predicted time-dependent flux profiles of these reactions during the intraerythrocytic developmental cycle (IDC).
(C) The rescaled flux profile of aconitate hydratase (ACONT), citrate synthase (CS), and isocitrate dehydrogenase (ICDH) during the IDC. The unit of the
fluxes is mmol h�1 gDW�1, denoting millimole per hour per gram dry weight of the P. falciparum merozoite at the beginning of the IDC. AKGDH, a-
ketoglutarate dehydrogenase; FUM, fumarase; MDH, L-malate dehydrogenase; SUCD, succinate dehydrogenase; and SUCOAS, succinate-coenzyme A
ligase.
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reached their highest levels during the trophozoite and late
schizont stages, indicating that P. falciparum relied almost
exclusively on the glycolysis pathway to generate energy
during the IDC, most of which was used for non-metabolic
activities, such as RNA production, protein syntheses, and
cellular growth.

Prediction and analysis of metabolite fluxes in the TCA cycle

P. falciparum possesses a mitochondrial compartment and
encodes all of the enzymes in the TCA cycle,5 indicating the
presence of a fully functional TCA cycle. However, the function of
the cycle still remains unclear, because P. falciparum does not
generate the bulk of its energy by processing glucose through the
TCA cycle.5,6 Instead, P. falciparum metabolizes glucose into
lactate, which is subsequently secreted.5,6 Here, we predicted
the time-series fluxes for all the reactions in P. falciparum during
the IDC to clarify the metabolic role of the TCA cycle.

The predicted fluxes through the TCA reactions shared some
common features. For example, Fig. 6A shows that all reaction
fluxes were in the oxidative direction, which was consistent
with isotope profiling experiments.5,6 In addition, Fig. 6B and C
show that the predicted flux profiles for all the reactions in the
TCA cycle peaked during the schizont stage (30–48 hours),
indicating the importance of these reactions for this stage of
the IDC.

The TCA reaction fluxes also showed different time-dependent
profiles, suggesting that we could identify individual segments
with different biological functions. Fig. 6B shows that the
fluxes through the reactions catalyzed by citrate synthase
(CS), aconitate hydratase (ACONT), and isocitrate dehydro-
genase (ICDH) were much lower than other reactions. This
segment of the TCA cycle involves the detoxification of super-
oxide leaked from the mitochondrial respiration chain where
the leaked superoxide is converted by dismutase into hydrogen
peroxide, which is subsequently reduced to water.48 This
reduction of hydrogen peroxide oxidizes NADPH into NADP,
which, in turn, is reduced by ICDH.48,49 Furthermore, the
similarity in the flux profiles of a-ketoglutarate dehydrogenase,
succinate-coenzyme A ligase, and succinate dehydrogenase
(AKGDH, SUCOAS, and SUCD in Fig. 6, respectively) enabled
us to group these reactions into one segment, which we linked
to oxidation of 2-oxoglutarate generated from glutamate and
glutamine.5 This oxidation is continued by fumarase (FUM in
Fig. 6),5 which also metabolizes fumarate from the purine
pathway.50 Finally, we predicted that part of the produced
L-malate was transported out of mitochondria while the
remaining L-malate was converted in the TCA cycle into oxalo-
acetate by L-malate dehydrogenase (MDH in Fig. 6).

Conclusion

The IDC represents the major growth-through-replication phase
of malaria parasites in humans, and its roughly 48-hour cycle
corresponds to the well-known recurring host-fever attacks.
During this phase, the merozoite undergoes three distinct

transformations that allow it to absorb nutrients from the
infected blood cell and undergoes four or five cycles of replica-
tion to produce 16 or 32 new merozoites, respectively. To
examine how P. falciparum executes and adjusts its metabolism
during this replication phase, we created a genome-scale meta-
bolic network model that predicted metabolic fluxes, the bio-
mass production rate, and the production of each biomass
metabolite at each hour during the IDC. This work builds on
and extends the capabilities of the existing metabolic models of
blood-stage P. falciparum.16,17 In particular, we have extended
the metabolic network models to (1) predict time-dependent
biomass production and (2) allow for a time-variable biomass
function, so that we could correctly model and capture
the stage-specific synthesis of each biomass metabolite and
capture stage-specific growth phenotypes. Our results indicate
that the model provides detailed mechanistic links between
transcriptomics, metabolism, and phenotypically distinct
organism development. This lays the foundation for the future
interpretation and exploration of P. falciparum metabolism
under a wide variety of stress conditions.

Experimental
Metabolic network of P. falciparum

From the two recently developed metabolic networks of
P. falciparum,16,17 we started our model development using
the iTH366 gene–protein–reaction formulations, stoichiometric
representations of all reactions, and biomass objective functions.16

Although equivalent in scope, the iTH366 network differentiates
the reactions catalyzed by isozymes from those by multiple-unit
protein complexes,16 while the PlasmoNet network assumes
that all of these reactions are catalyzed by isozymes.17 The more
extensive gene–protein–reaction formulation theoretically
allows for a finer distinction when integrating the gene expres-
sion data with the individual metabolic reactions.

Modifications. We made modifications to the existing iTH366
set of reactions by changing the compartment of glutathione
reductase from mitochondria to cytosol,48,51 adding the genes
encoding phosphoethanolamine methyltransferase,52 and the
enzymes associated with the hemoglobin degradation.30,53

We also added a new set of reactions, including serine
decarboxylase,54 methylenetetrahydrofolate reductase,55 cardio-
lipin synthase,56 the polymerization of hemoglobin-generated
heme, the degradation of the heme by glutathione, mito-
chondrial thioredoxin reductase, and mitochondrial peroxire-
doxin.48,51,57 We only allowed uptake and secretion for the set of
metabolites that were found to be transported by P. falciparum
during the IDC (see the complete list in Table S2 in ESI†).8,30,48,58–70

We also assumed free secretion of CO2 and free transports of H2O
and H+, and we added sulfate uptake and urea secretion to avoid a
zero biomass production rate.

We redefined the original biomass objective function into a
new set of biomass functions (denoted by B) to allow for
monitoring biomass metabolite production at different times
during the IDC. Thus, the new formulation B of the biomass
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function describes the biological activities necessary for the
biomass production in P. falciparum, through the following
equations:

AAa + tRNAa - AA–tRNAa, a = 1,. . .,20 (1)

cAA1AA–tRNA1 + � � � + cAA20AA–tRNA20

- cAA1tRNA1 + � � � + cAA20tRNA20 + Protein (2)

cATPATP + cCTPCTP + cGTPGTP + cUTPUTP

- RNA + (cATP + cCTP + cGTP + cUTP)Diphosphate
(3)

cdATPdATP + cdCTPdCTP + cdGTPdGTP + cdTTPdTTP

- DNA + (cdATP + cdCTP + cdGTP + cdTTP)Diphosphate
(4)

cPCPC + cPEPE + cPSPS + cPIPI + cSPHSPH + cCLCL - f (5)

ciMi - f (for each metabolite i that was a polyamine,

a cofactor, or an inorganic ion) (6)

cenergyH2O + cenergyATP

- cenergyADP + cenergyPhosphate + cenergyH+ (7)

Eqn (1) and (2) represent the addition of amino acids for
protein syntheses, where AA denotes an amino acid, a repre-
sents its index, tRNAa denotes tRNA used to transport amino
acid a, AA-tRNAa indicates the complex of amino acid a and its
corresponding tRNA, and cAAa

is the corresponding stoichio-
metric coefficient for amino acid a. Similarly, eqn (3) and (4)
represent the use of nucleotides for the syntheses of RNA
and DNA, respectively. Eqn (5) accounts for the addition of
the phospholipids phosphatidylcholine, phosphatidylethanol-
amine, phosphatidylserine, phosphatidylinositol, sphingomye-
lin, and cardiolipin (denoted as PC, PE, PS, PI, SPH, and CL in
eqn (5), respectively), which are all necessary components of
cellular membranes.34,71 Eqn (6) and (7) denote the utilization
of other metabolites (Mi) and energy consumption for the
biomass production, respectively. In the above equations,
c represents the coefficient of a metabolite in the original
biomass objective function. One should note that carbo-
hydrates are not part of the original biomass objective function,
primarily because there are no experimental data available.
This omission should not be a major limitation for the meta-
bolic network formulation for blood-stage malaria, as the
parasites do not store energy reserves during this stage, but
instead rely heavily on glucose uptake (G. Plata, personal
communication). Once experimental data are available for
other metabolites, such as carbohydrates, one could add their
compositions into the biomass objective function.

We have provided the constructed model representing
P. falciparum metabolism during the IDC (in MATLAB format)
in the Protocol S1 in ESI.†

Gene expression data for P. falciparum during the IDC

To capture time-dependent metabolism as accurately as
possible, we used the time-series gene expression data at the

highest time resolution, collected hourly from synchronized
populations of P. falciparum HB3 during the IDC.9,10 This data
set is measured using two-channel microarrays in which the
treatment channel contained the sample at one time point,
while the control channel contained a mixed pool of samples
from all time points.9,10 Basing our model construction
and calculations on data for the HB3 strain9 enabled us to
validate our results using experimentally measured synthesis
rates of DNA, RNA, and protein that are only available for
this strain.31

Calculation of metabolic fluxes in P. falciparum at each hour
during the IDC

Fig. 1 shows the overall scheme for calculating metabolic fluxes
of P. falciparum at each time point of the IDC. We used a
stepwise approach to construct a set of time-series reaction
fluxes that fluctuated around their nominal values based on
corresponding time-series gene expression data.

Step I. We calculated a set of nominal fluxes that were equal
to the most parsimonious metabolite flow through the meta-
bolic network, based on the assumption of the most efficient
utilization of nutrients.72 This was done by solving two mini-
mization problems, the first of which was the minimization of
the overall nutrient uptake rate,

min
X

j2T
vj
�
aj

s:t: S � v ¼ 0

lb � v � ub

vj ¼ mN for each j 2 B;

(8)

where v denotes the flux vector with element vj indicating
the flux through reaction j in units of mmol h�1 gDW�1,
or millimole per hour per gram dry weight of the original
merozoite (the asexual form of P. falciparum capable of infect-
ing erythrocytes); T represents the set of nutrient uptake reac-
tions; aj denotes the human serum concentration73 of the
nutrient taken up by reaction j; S indicates the stoichiometric
matrix; lb and ub denote the lower and upper bounds of the
fluxes, respectively; and mN represents the average growth rate
of P. falciparum during the IDC.

The coefficients (1/aj) in the objective function ensure a
preference to uptake nutrients associated with high concentra-
tions. We set the average growth rate based on the observation
that during the IDC, the organism undergoes an average of four
to five cell divisions.30 Because the total number of divisions is
not controlled under experimental conditions, the total mass at
the end of the IDC is 1

2 � (24 + 25) or 24 times the initial
merozoite mass. This sets the value for mN to (24 � 1)/48 or
0.48 gram new biomass per hour per gram dry weight of the
original merozoite weight (g h�1 gDW�1). By setting the con-
straints vj = mN (for j A B), we fixed a certain flux through each
biomass function, which ensures that the mass of each bio-
mass component at the end of the IDC is 24 times its initial
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mass, corresponding to the observation that, on average, one
merozoite generates 24 copies of itself during the IDC.

Given minimum nutrient uptake, we subsequently minimized
the sum of intracellular fluxes by solving the following problem:

min
X

j=2T
vj
�� ��

s:t: S � v ¼ 0

lb � v � ub

vj ¼ mN for each reaction j 2 B

vj � vj
� for each reaction i 2 T ;

(9)

where vj* represents the minimum nutrient uptake rates
obtained in eqn (8), and the inequalities vj r vj* (for j A T)
indicate that the nutrient uptakes are constrained by the
corresponding minimum values vj*.

After the two minimizations, we obtained a set of nominal
fluxes vN representative of typical physiological fluxes through
the reactions. For example, fluxes through the glycolysis pathway
(including lactate production and secretion) were among the
largest, consistent with the well-established fermentative glucose
utilization by the parasite.4

Step II. Next, we processed the time-series gene expression
data of P. falciparum during the IDC9 to obtain an expression level
r t

j for each reaction j at each time point t. After first smoothing the
original gene expression data using the locally weighted scatterplot
smoothing (LOWESS) method with a span parameter of 30%,9

we subsequently mapped the resultant gene expression data
to reactions by established methods.21,22 If a single enzyme
catalyzed a reaction, we assigned the corresponding expression
level of that gene to that reaction. If a reaction was catalyzed by
multiple isozymes, we assigned their maximum gene expres-
sion level to that reaction. If a reaction was catalyzed by a
protein complex composed of multiple subunits, we assigned
their minimum gene expression level to that reaction.

Time shift between gene transcription and protein translation.
In this article, we have discussed metabolism in terms of when
enzymatic reactions occur and when the model predicts synthesis
of biomaterials. As the available experimental data of gene
transcription levels do not directly give us protein levels, we
time-shifted the available transcription levels by a time difference
equal to the difference between peak expression levels and peak
protein abundance levels.36 For reactions associated with directly
measured time-dependent protein abundances, the time delays
were taken as the differences between the peak times of protein
abundances and those of the corresponding mRNA levels. If these
reactions were part of the same metabolic pathway and proteomic
data were unavailable for some enzymes in the same pathway, the
time delay for the reactions with missing data was assigned based
on the average peak-time differences of the reactions with experi-
mentally available data. For all remaining reactions, the time
delays were 11 hours, corresponding to the median of peak time
differences between all the measured protein abundances and the
corresponding transcriptomics data.36

Linear normalization of expression data. Finally, we normalized
the expression data linearly, so that the mean and minimum of
each reaction’s time-series expression values were one and zero,
respectively. This assumes that the minimum expression value
corresponded to complete inactivation of the reaction, and the
mean value corresponded to the nominal flux through the reaction.

Step III. Given the nominal fluxes vN
j (from Step I) and the

expression level r t
j for each reaction j at each time point t (from

Step II), we calculated the reaction fluxes at each time point by first
minimizing the difference J t between the reaction fluxes and the
product of their nominal fluxes and expression values as follows:

min Jt ¼
X

j2G
vtj � rtj � vNj
���

���

s:t: S � vt ¼ 0

lb � vt � ub;

(10)

where vt
j represents the flux through reaction j at time point t, and

G represents the set of intracellular irreversible reactions that can
be associated with gene expression data. Because the expression
data of transport (uptake or secretion) reactions are mapped to
transport fluxes for molecules involved in both metabolic (subject
to constraints in our model) and non-metabolic processes (not
subject to constraints), G does not include these reactions.
Examples of transport reactions for non-metabolic processes
include water for regulation of osmotic pressure74,75 and H+

transport for maintaining intracellular pH levels.76,77 G also
excludes reactions that can carry fluxes in both directions,
because we cannot unambiguously determine the directions of
their fluxes. In total, we excluded eight such reactions among the
317 intracellular reactions that were associated with gene expres-
sion data and not in dead-end pathways.

Given that the problem formulated in eqn (10) may have
multiple solutions, we selected the solution closest to the nominal
flux distribution, based on the assumption that reaction fluxes
minimally deviated from their nominal values. We did this by
solving the following additional optimization problem:

min
X

j

vtj � vNj

���
���

s:t: S � vt ¼ 0

lb � vt � ub

X

j2G
vtj � rtj � vNi
���

��� � Jt
�;

(11)

where Jt* is the optimal value for the objective function from
the previous optimization problem defined by eqn (10), and the
last constraint ensures that this solution is one of the optimal
solutions for eqn (10).

After solving eqn (10) and (11), we obtained metabolic flux
distributions for all time points during the IDC. These time-series
fluxes varied around their nominal values in time-dependent
patterns similar to those of the corresponding expression data.
If no gene expression data were available, we assigned the reaction
the time-independent value of the nominal flux distribution.
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The intent of the above approach was to be able to use the
relative gene expression level as a semi-quantitative indicator
that the cell is readying itself to transcribe the produced mRNA into
proteins to execute or affect some biological/metabolic process.
Thus, the metabolic model captures time-dependent aspects of
when the gene transcripts became available, as well as the relative
magnitudes of the expression levels. We further accounted for the
mRNA/protein mismatch by using the experimentally measured
time difference between when a gene was transcribed and when
the synthesized proteins appeared in the organism. The use of
relative expression levels around the average levels allows the
optimization procedure flexibility in determining metabolic fluxes
consistent with, but not equal to, gene expression levels.

Step IV. We determined the overall biomass production level
mt at each time point t from

mt ¼

P
j2B

vtjwj

P
j2B

wj
; (12)

where wj indicates the biomass fraction of the metabolite(s)
associated with the biomass function j. We defined wj as

wj ¼
X

i

cijWi

1000
; (13)

where cij represents the coefficient of metabolite i in biomass
function j, Wi denotes the molecular weight of the metabolite,
and the factor 1000 converts mol into mmol.

Simulation environment

We constructed the model and ran the simulations in MATLAB
(2012a, MathWorks, Natick, MA) using the COBRA toolbox.78 The
metabolic model of P. falciparum during the IDC (in MATLAB
format) is provided as Protocol S1 in ESI.†
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