
 

 

NAVAL 

POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 

 

 

 

THESIS 
 

Approved for public release; distribution is unlimited 

THE ROTATED SPEEDED-UP ROBUST FEATURES 

ALGORITHM (R-SURF) 
 

by 

 

Sean M. Jurgensen 

 

June 2014 

 

Thesis Advisor:  Monique P. Fargues 

Co-Advisor: Roberto Cristi 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 

Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 

22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 2014 
3. REPORT TYPE AND DATES COVERED

Master’s Thesis 

4. TITLE AND SUBTITLE

THE ROTATED SPEEDED-UP ROBUST FEATURES ALGORITHM (R-SURF) 
5. FUNDING NUMBERS

6. AUTHOR(S)  Sean M. Jurgensen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School 

Monterey, CA  93943–5000 

8. PERFORMING ORGANIZATION

REPORT NUMBER    

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A 
10. SPONSORING/MONITORING

    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the Department of Defense or the U.S. Government. IRB protocol number ____N/A____. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT  
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)

Weaknesses in the Fast Hessian detector utilized by the speeded-up robust features (SURF) algorithm are examined in 

this research. We evaluate the SURF algorithm to identify possible areas for improvement in the performance. 

A proposed alternative to the SURF detector is proposed called rotated SURF (R-SURF). This method utilizes filters 

that are rotated 45 degrees counter-clockwise, and this modification is tested with standard detector testing methods 

against the regular SURF detector. Performance testing shows that the R-SURF outperforms the regular SURF 

detector when subject to image blurring, illumination changes and compression. Based on the testing results, the R-

SURF detector outperforms regular SURF slightly when subjected to affine (viewpoint) changes. For image scale and 

rotation transformations, R-SURF outperforms for very small transformation values, but the regular SURF algorithm 

performs better for larger variations. The application of this research in the larger recognition process is also 

discussed. 

14. SUBJECT TERMS SURF, speeded-up robust features, feature detector, feature detection, box

filtering, box filters, Fast Hessian 
15. NUMBER OF

PAGES 
135 

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF 

REPORT 
Unclassified 

18. SECURITY

CLASSIFICATION OF THIS 

PAGE 

Unclassified 

19. SECURITY

CLASSIFICATION OF 

ABSTRACT 

Unclassified 

20. LIMITATION OF

ABSTRACT 

UU 

NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)  

Prescribed by ANSI Std. 239–18



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited 

 

 

THE ROTATED SPEEDED-UP ROBUST FEATURES ALGORITHM (R-SURF) 

 

 

Sean M. Jurgensen 

Lieutenant, United States Navy 

B.S.E.E., University of Idaho, 2006 

 

 

Submitted in partial fulfillment of the 

requirements for the degree of 

 

 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

 

from the 

 

 

NAVAL POSTGRADUATE SCHOOL 

June 2014 

 

 

 

Author:  Sean M. Jurgensen 

 

 

 

Approved by:  Dr. Monique P. Fargues 

Thesis Advisor 

 

 

 

Dr. Roberto Cristi  

Co-Advisor 

 

 

 

Dr. R. Clark Robertson 

Chair, Department of Electrical and Computer Engineering 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v 

ABSTRACT 

Weaknesses in the Fast Hessian detector utilized by the speeded-up robust features 

(SURF) algorithm are examined in this research. We evaluate the SURF algorithm to 

identify possible areas for improvement in the performance. 

A proposed alternative to the SURF detector is proposed called rotated SURF (R-

SURF). This method utilizes filters that are rotated 45 degrees counter-clockwise, and 

this modification is tested with standard detector testing methods against the regular 

SURF detector. Performance testing shows that the R-SURF outperforms the regular 

SURF detector when subject to image blurring, illumination changes and compression. 

Based on the testing results, the R-SURF detector outperforms regular SURF slightly 

when subjected to affine (viewpoint) changes. For image scale and rotation 

transformations, R-SURF outperforms for very small transformation values, but the 

regular SURF algorithm performs better for larger variations. The application of this 

research in the larger recognition process is also discussed. 
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EXECUTIVE SUMMARY 

Automatic recognition of objects from images and video is a growing field designed to 

assist and ultimately replace tasks performed by humans (who require extensive training 

and familiarization) and provide the information in near-real time. For example, the 

United States Navy conducts counter-piracy and smuggling as well as an array of combat 

and non-combat operations that require the identification of vessels at sea. In order to 

make the recognition process automatic, a robust algorithm is required that is resistant to 

problems associated with computer vision, which includes object position, orientation, 

scale, intensity, surroundings, and partial occlusion. 

 There are four basic functions associated with feature-based algorithms such as 

the speeded-up robust features (SURF) or scale invariant feature transform (SIFT). They 

are (in order of occurrence) feature point detection, feature orientation assignment, 

feature descriptor generation, and feature matching [1], [2], [3]. SURF and SIFT are 

widely utilized as applications requiring feature extraction that are partially resistant to 

image rotation, affine (viewpoint) transformation, compression, illumination, and scale 

transformations [1], [2], [4]. Newer algorithms that use binary descriptors such as 

oriented fast and rotated brief (ORB), binary robust invariant scalable keypoints 

(BRISK), and fast retina keypoint (FREAK) provide slightly lower to comparable 

performance with significant computational speed improvement in both descriptor 

generation and matching [5], [6], [7]. 

 Since the original goal of this work was to find the best detector for maritime 

vessel recognition, the research focus was on non-binary detection algorithms that 

prioritize performance over speed. In evaluating SURF versus SIFT, SURF was a better 

option for a number of reasons. SURF has been determined to have comparable 

performance to SIFT in regards to image transformations, with some advantages going to 

both algorithms depending on the transformation and test conditions [8], [9], [10]. 

Second, an open-source version of SURF was available [11] with a liberal license that 

allowed us to modify and test the algorithm [12]. Last, SURF is much faster than SIFT 

[8], [9], [10]. Although speed is not our main concern, since the two algorithms have 



 xx 

comparable performance efficiency in the implementation could ultimately play a role in 

the effectiveness of a maritime image recognition implementation. In order to evaluate 

the SURF algorithm, a basic description of how it works is necessary. 

The SURF algorithm first converts an image to grayscale and computes an 

integral image [1], [2], [3], which is a cumulative summation of the rows and columns of 

the image matrix. From that point, the difference of Gaussians (DOG) scale-space 

representation is calculated by using larger versions of the Gaussian second derivative 

filter kernels [1], [2], [3]. A convolution filtering operation is then applied to the integral 

image utilizing a rapid method of four array accesses and calculations for each box filter 

[1], [2], [3]. The sampling location and different spatial sampling frequencies are used 

within each octave to form four DOG in each [1], [2], [3]. 

Using the second derivatives of Gaussians, Bay formed a Hessian matrix 

estimation (Fast Hessian) and assigned its determinant to the pixel at the filter center [1], 

[2], [3]. With the Fast Hessian determinants now represented in scale space, a three-

dimensional search is performed in space and scale space within each octave to find 

interest points that are local maxima and also exceed a user-defined threshold [1], [2], 

[3]. Following interest point determination, Bay used a curve-fitting operation to provide 

additional sub-pixel interest point location accuracy [1], [2], [3]. For each interest point, 

an orientation vector is determined by taking the Haar wavelet responses in the x  and y  

directions and determining the orientation with the highest concentration of Haar 

responses [1], [2], [3]. Lastly, Haar wavelet filter kernels are aligned with the orientation 

vector, and responses are determined within each sub-region [1], [2], [3]. The responses 

and their absolute values are summed within each sub-region to give four descriptor 

entries, and these are places in a vector for all 16 sub-regions to give a descriptor of 

length 64 [1], [2], [3]. 

We propose to use a new set of Fast Hessian detector filters obtained by rotating 

the original filter kernels 45  degrees counterclockwise. The main reason behind this 

choice is to introduce filters which orient the detector to an angle of rotational detection 

that is weak in the original SURF algorithm [8], [13]. A significant benefit of such a 



 xxi 

choice of filters rotated by 45  is the ability to retain the speed advantage designed into 

the original SURF algorithm [3], [14]. This detector version was named rotated SURF 

(R-SURF). The rotated detector versus regular detector for the xxD  kernel having filter 

size 15 is shown in Figure 1. 

 

Figure 1. Rotated SURF box filter kernels for xxD  kernel filter size 15 

(left side original SURF, right side rotated). 

A standard testing method for detectors developed by Mikolajczyk et al. was used 

to evaluate the modified detector [15]. Eight image test sets with known homography and 

evaluation MATLAB code were obtained, which allows evaluation of detectors for 

images with transformations in affine (viewpoint), illumination, scale and rotation, JPEG 

compression, and blurring [15], [16], [17]. 

Results show the R-SURF outperforms the original SURF detector in its 

invariance when subjected to image blurring, illumination changes and JPEG 

compression. Results also show the R-SURF detector outperforms regular SURF slightly 

when subjected to affine (viewpoint) changes. For image scale and rotation 

transformations, R-SURF outperforms SURF for very small transformation values only, 

and the regular SURF algorithm performs better for larger values. 

The method of rotating box filters in the Fast Hessian shows promise as a 

detection method. With testing showing performance increases, there may be additional 



 xxii 

improvements that can be obtained by adjusting the filter kernel size or proportions. A 

detector that provides maximum invariance to changes that result from image 

transformations is desirable because the follow-on portions of the recognition process are 

affected by the detector quality [3]. An application of high interest to the DOD is 

automated maritime vessel recognition, where such work could contribute to increased 

reliability in the overall process 

. 
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I. INTRODUCTION 

A. PROBLEM DESCRIPTION 

The United States Navy and Department of Defense are always looking for ways 

to identify either the enemy or items of interest. This process is crucial to almost all 

operations. Unit and asset geographical location restrict the reach of sensors and weapons 

and have traditionally required humans to conduct the identification and classification of 

items of interest. This problem gets much bigger when talking about oceans and 

waterways. The Earth's surface is 71% covered in water [1], and there are only a limited 

number of ships, aircraft, and submarines to provide sensor reach in such a vast region. 

With the ever more expanding of use of unmanned vehicles, cheap sensors, and 

interconnected networks, it is necessary to design algorithms that automatically perform 

operations that used to be performed by humans. Aside from freeing up human resources 

for more complex tasks and enhancing their productivity, the breadth of information 

being processed currently (and what will be in the future) make it impractical to perform 

these duties manually. 

This need for automation is particularly true for the U.S. Navy. The Navy’s ability 

to automatically identify and classify maritime vessels from images in harbors and at-sea 

is a major force multiplier and capability enhancement tool for any mission. The Navy is 

already fielding MQ-8C Firescout autonomous aircraft that are designed to carry 

reconnaissance and surveillance sensors with data links to other units [2]. It stands to 

reason that existing sensors or future modifications will provide images that will need to 

have algorithms that detect and classify objects of interest. Additional unmanned vehicles 

deployed by the Navy include the RQ-2A Pioneer UAV [3], sub-surface MINI-ROVs [4], 

and sub-surface MAGNUM-ROVs which could all be utilized for gathering of sensor 

image data from their respective domains. 

The problem with using images for this task is a need for the ability to 

discriminate using limited information. For example, if a 256 256 3   color scheme with 

an uncompressed image is used, each visual pixel has a possibility of 3256  combinations 
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[5]. There are essentially 5256  (or over a trillion) different combinations that make up an 

image of fairly small size. Not all images come from color sensors, and a lot of 

algorithms utilize only greyscale image representations due to colors having high 

correlation with the intensity [6]. 

It is clear that an algorithm is needed to identify intensity patterns through 

common image transformations and also to provide a representation of an object so that it 

is useable for a follow-on matching algorithm. The speeded-up robust features (SURF) 

algorithm is an efficient and effective tool for describing interest points [7], [8], [9], [10]. 

There are many algorithm choices available, but the combination of robustness and 

efficiency provided by SURF make it a desirable algorithm to use as a baseline. Since 

SURF has been shown to not always perform as well as an earlier feature algorithm 

called scale invariant feature transform (SIFT) in its invariance to certain image 

transformations [8], [9], [10], there exists an opportunity to evaluate the algorithm and 

possibly propose changes that may result in a more effective feature detector and 

descriptor. 

B. IDENTIFICATION OF NEED FOR RESEARCH 

Image recognition and computer vision are important topics with a wide range of 

applications ranging from medical industry to security. In order for this technology to 

develop, multiple issues have to be addressed. The problem with video and camera 

images data is the bandwidth required to carry the data. There are multiple questions that 

arise when assessing the image recognition problem, including whether all frames or 

images need to be transmitted and whether the recognition algorithm needs to be applied 

to each frame. 

Rainey et al. from the Space and Warfare Center (SPAWAR) Systems Pacific 

produced a brief for the 2012 National Geospatial Agency symposiums and workshops 

which presented an evaluation of feature-based detectors of satellite-based imagery of 

maritime vessels [11]. The authors employed the SIFT together with a bag of words 

(BOW) algorithm for images where the maritime vessel orientations between the two 

images are geometrically aligned [11]. A main take-away point from the authors was the 
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necessity for more research on feature extraction methods [11]. This conclusion seems 

especially true if the goal is to deliver useful data to algorithms like BOW or another 

learning algorithm that is used to classify images or objects based on feature descriptors 

and accompanying information. 

Feineigle et al. analyze the process of optical ship recognition for harbor 

surveillance [12]. The focus of this work was in using the SIFT detector-descriptor 

combination to evaluate the feasibility of harbor surveillance with a geometric 

verification process to filter out false matches. The authors' geometric process involves 

taking each pair of matched features change in position, orientation, and scale and 

applying an iterative least-square fitting procedure to determine if the interest point affine 

translation was consistent with the database values [12]. The authors concluded that there 

was promise in using SIFT features for harbor surveillance, but results showed issues 

with lighting differences and scale changes [12]. This work, especially the geometric test 

used to determine false matches, was a very good start for developing automated 

maritime recognition methods. The progress of computer vision, with many new methods 

for detection, description, and matching, allows us to build on this work and develop 

methods that are best suited to a maritime environment. 

Given the importance of a system that can identify and classify objects of interest 

from an image, there is a great need to continue to perfect current processes and devise 

new ones. A large portion of advances in computer vision and image processing work 

currently underway is occurring for civilian applications. There is a large need to 

translate this work into a form that is of interest to the United States Navy (and other 

services) so that algorithms can be adapted or developed to fit military-based needs of 

future forces. This goal of this research is to improve the descriptor in the SURF 

algorithm, which is a small part of the larger system of image recognition. 
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II. BACKGROUND 

The goal of this section is to present an introduction to SURF, a widely-used 

feature detection and descriptor algorithm that is the focus of this research. This 

algorithm, introduced by Bay et al. in [6], is well known not only for its effectiveness in 

identifying image features but also for efficiency in practical applications [8], [9], [10]. In 

the remainder of this thesis, SURF is the algorithm modified and tested, but feature-based 

algorithms that preceded SURF as well as those that developed after are discussed to 

assist in gauging the applicability to maritime recognition. Common methods for SURF 

and other algorithm feature matching are covered to provide an end-state for the 

algorithm modifications. The consolidated descriptions in this chapter are also intended 

to assist in future work related to this topic. 

The goal of a feature extraction algorithm is to deliver descriptors of features to a 

follow-on matching algorithm. The desire is for these features to be robust to change in 

the image characteristics so that they are repeatable and useful in matching, with the goal 

to identify specific objects present in an image. 

A. REVIEW OF PAST RESEARCH 

Feature detection and matching approaches are fundamental in many different 

computer vision applications, such as image stitching and three-dimensional (3D) model 

reconstructions [13]. Although some algorithms have properties making them better 

suited for specific uses, it is necessary to have descriptors that are distinctive in relation 

to different features as outlined in [13], [14]. Additionally for detectors, a good 

repeatability of corresponding regions in the presence of variations in scale, viewpoint, 

illumination changes, compression, rotation, blurring, partial occlusion, and background 

clutter avoidance is desired as described in [13], [15]. 

1. Scale-Invariant Feature Transform  

The basic SIFT algorithm has four stages: scale-space extrema detection, keypoint 

localization, orientation assignment, and keypoint descriptor generation [16]. These are 
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the same general functions that the SURF algorithm performs, with the exception being 

the details within each portion [6], [17], [18]. 

Scale space, which is a technique designed to smooth images with repeated 

Gaussians to progressively remove smaller spatial frequency details, is used in order to 

establish a measure of scale invariance [19]. If there is an object, or feature, that is 

captured by a picture (say) four feet in distance away, the goal is to match the same 

feature with a picture taken 15 feet away. By intuition, one would expect that a closer 

image object would occupy more pixels than the object contained within an image 

obtained from a higher distance. Thus, a need to find a procedure which allows identical 

identification of the same objects at different scales is a motivating factor for the use of 

scale space.  

To achieve this goal, the SIFT algorithm uses a method drawn from Lindeberg’s 

scale-space theory work [16], [19]. The problem faced is that there is only access to an 

intensity image represented by a given scale for an individual image not known a priori. 

As a consequence, to make the extracted features scale invariant, a scheme is needed that 

effectively “searches” the image at varying scaling levels. The result is the representation 

of an object at different scale levels by removing spatial frequency components, 

“removing” smaller irrelevant details. This interest point is then used for follow-on 

orientation and descriptor generation [19]. 

This multiscale representation is obtained by convolving the image with a 

Gaussian kernel [16]. The main motivation for choosing a Gaussian kernel for 

convolution is that different scale representations are obtained just by changing the 

standard deviation parameter. Another reason behind choosing a Gaussian kernel is that it 

only removes unwanted image details without introducing artifacts [16], [19]. A Gaussian 

pyramid is built with the highest resolution at the base and lowest resolution at the top 

[16]. 

This pyramid scale space representation of an image is further enhanced by 

Lowe's use of a difference of Gaussian (DOG) kernel to generate the scale space [16], 

which preceded Bay’s SURF algorithm [6], [16]. In Lowe's scheme, different resolution 
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pyramid levels are grouped into octaves, as shown in in Figure 1 on the left [16]. To 

produce the final octave construct, adjacent scales are then subtracted to form the DOG 

assembly of scale space as shown in Figure 1 on the right [16]. 

 

Figure 1.  Difference of Gaussian (DOG) for SIFT algorithm, from [16]. 

For follow-on octaves, the image is down-sampled by a factor of two, and the 

Gaussian filtering and DOG process is repeated [16]. Additionally, Lowe doubles the 

base octave size in the scale-space pyramid through linear interpolation in order to retain 

higher spatial frequencies after smoothing [16]. At the end of this process, multiple 

octaves are obtained, each containing DOG spatial intensity image two-dimensional (2D) 

representations. The intent of the DOG is to approximate the scale-normalized Laplacian 

of Gaussian (LOG), which can then be used to detect interest points in scale-space [16]. 

At this point, the 3D search for extrema points is conducted using the 26 pixel 

neighbors on a 3 3 3   cube of scale space [16]. After the identification of extrema, sub-

pixel accuracy is determined using quadratic interpolation [16]. Interest points resulting 

from the DOG strong edge responses are removed according to 
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where H  is the Hessian matrix and the variable r  represents the desired ratio of the 

larger to the smaller eigenvalue [16]. The point of the thresholding operation is to ensure 

that the principal curvature is below a predetermined value, which allows discrimination 

between interest points that represent features. The result of thresholding is a removal of 

incorrect anomalies that occur at the DOG representation edges [16]. 

Next, a feature orientation assignment is performed after the selection of 

keypoints of interest. Based on the keypoint strength or scale, the Gaussian smoothed 

image with the closest scale is selected. Lowe uses the pixel immediately below and to 

the right of a sample pixel in equations that determine the gradient orientation and 

magnitude for that particular sample [16], [20]. These sample pixels are from locations in 

the region surrounding an interest point. From the calculated sample pixel gradient 

orientations, a 36 bin histogram is formed. The histogram maximum and any values 

within 80% of its maximum are used to create keypoints with corresponding orientations 

[16], [20]. If there is one detected interest point with a peak and two gradient bins that are 

within of 80% of peak magnitude, then three keypoints are created at the same location 

and different orientations [16]. Additionally, a parabola is fit to the peaks in order to 

interpolate the actual orientation for higher accuracy [16]. 

The last part in the SIFT algorithm is the generation of a local descriptor [16]. A 

region surrounding the interest point is constructed and divided into sub-regions [16]. A 

Gaussian blur is applied to the region based on the keypoint scale. The gradient 

magnitudes and orientations are obtained for all sub-regions, and a Gaussian weighting 

function is applied to avoid rapid changes between regions due to small positional shifts 

[16]. 

Each of the sample point gradients and the interest point location are rotated and 

aligned to the reference axis determined in the previous orientation step to achieve a level 

of rotation invariance for the feature [16]. The sample point gradient magnitudes and 

orientations are summed into orientation histograms to represent a sub-region. 
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Interpolation by distributing values from adjacent bins into neighbors is applied to the 

histogram bins to avoid steep sample boundary effects [16]. The region surrounding the 

interest point is divided into 4 4  sub-regions, or 16 total, each with eight histogram 

bins. This division and histogram representation results in a feature descriptor array of 

size 128 [16]. An example of this descriptor generation process for SIFT is shown in 

Figure 2. This example utilizes only a region of interest with 2 2  sub-regions (as 

opposed to 4 4  used in the SIFT algorithm) for ease of viewing [16]. 

 

Figure 2.  Generic SIFT keypoint descriptor generation for 2 2  sub-regions 

from 8 8  samples, from [16]. 

A proposed modification to the SIFT descriptor was proposed by Mikolajczyk 

and Schmid called the gradient location and orientation histogram (GLOH) [14]. In this 

approach, instead of using 4 4  sub-regions, the authors divide the descriptor generation 

area surrounding the interest point into three bins in the radial direction and eight 

different angular bins (except the central bin) for a total of 17 bins [14]. There are also 16 

different gradient bins within each location bin, so the total histogram for the descriptor 

has 272 bins [14]. Further, Mikolajczyk and Schmid reduced the descriptor size through 

PCA and testing, with the 128 highest value eigenvectors corresponding to bins being 

retained [14]. Finally, the authors use a Canny edge detector to find the position and 

orientation of edges in the region and quantize the descriptor down to nine bins as shown 

in Figure 3 [14]. The descriptor region shown has radius values equal six, 11, and 15 (on 
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a log-polar grid) in the figure for bin locations, each containing four orientation bins at 

angles 0 ,  45 ,  90 ,  and 135  [14]. This process results in a total descriptor of size 36 

(nine locations which each have four orientation bins) [14].  

 

Figure 3.  Orientation of GLOH descriptor location bins, from [14]. 

2. Speeded-up Robust Features 

A SURF algorithm overview, which is the principal focus of this study, with 

particular emphasis on the concepts of interest point detection and description is 

presented in this section. In SURF, most fundamental concepts are along the same lines 

as for SIFT [6], [16]. The main difference is a comparatively efficient implementation 

that makes the algorithm more suitable for near-real time applications or processing 

larger numbers of images. 

a. Interest Point Detection 

The first step in image classification is the detection and characterization of 

“points of interest” later used to characterize feature information [6]. In SURF, this 

requires a series of steps to be covered below. 

(1) Detection step one: conversion to grayscale. The SURF algorithm works 

with a 2-D image grayscale matrix; thus, any color image must be converted into the 

proper intensity format [6]. 

(2) Detection step two: integral image computation. The integral image's 

purpose is to facilitate rapid box filtering, which was first introduced in computer vision 
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by Viola and Jones in 2001 [21]. In images, the integral image step corresponds to a 

cumulative pixel intensity sum from locations left and above a target pixel in the image. 

The integral image at indices  ,x y  is defined as 

 
' , '

( , ) ( ', '),
x x y x

ii x y i x y
 

     (2) 

where ( ', ')i x y  represents the intensity of pixels located at all indices satisfying the 

inequalities 'x x  and 'y y  [21]. As shown in Figure 4, the integral image can be 

computed on the entire image very rapidly by cumulatively summing first all rows of an 

intensity image, then all columns. 

 

Figure 4.  Example of integral image summation. 

(3) Detection step three: box filtering. This method is an efficient process to 

calculate the Hessian matrix at a given pixel (and the follow-on Hessian determinant) as 

is described in the next step. The efficient box filtering process is also used to apply Haar 

wavelet kernels for the orientation and descriptor generation steps described later [6], 

[17], [18]. Box filters use a box (or boxes) defined relative to a given center pixel, with 

each box having given weights [18], [21], [22]. For this class of filters, the convolution 

operation linearly combines the pixel intensity sum for that box [23]. In each situation, 

the kernel is developed using boxes with each pixel in the box having equal weight in 

order to conduct the filtering on an image, with the center being the pixel of interest [23]. 

A basic example illustrating the use of a convolution kernel to filter an image is 

highlighted in Figure 5. This is not the box filter utilized in the SURF algorithm but 

rather is a basic example to visually show how a generic convolution kernel works [17]. 
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Figure 5.  Generic example of convolution filtering [23]. 

The problem with using a convolution kernel for filtering is that it is not 

computationally efficient. A 9 9  convolution kernel filter requires 81 array accesses and 

operations for every center pixel [18]. The regular convolution method computational 

load increases along with increasing filter sizes (increasing filters are necessary in the 

scale-space analysis which is discussed in Section II.A.2.a(4)) [24]. Since a more 

efficient method is desired, the integral image properties are used for a more efficient 

“box filter” kernel output calculation than provided by regular convolution with the 

intensity image. A visual reference describing a rapid method for calculating box 

integrals on an integral image [21] is provided in Figure 6. 

 

Figure 6.  Pixel accesses for rapid box filtering using integral image, from [21]. 
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Refer to Figure 6 and assume that areas labelled A, B, C, and D are adjacent non-

overlapping rectangular image sections in the integral image defined by Equation (2) 

[21]. The box labelled A of pixels includes the edge pixels on the top left. The variables 

1P , 2P , 3P , and 4P  represent the integral image pixel values at bottom right corner pixels 

of box A, B, C, and D, respectively [21]. The sum of all intensity pixel values contained 

in original intensity image box A can be obtained by the value at integral image pixel 1P . 

Similarly, the sum of all pixel values contained in box B is obtained by taking the 

difference 2 1P P . For box C, we use 3 1P P . Finally, for box D the formula is 

 4 2 1 3P P P P    [21]. This method allows for an efficient convolution process between 

the image and the box kernel [18], [21]. This result also shows that only four pixel 

accesses and operations are needed to calculate the convolution operation for a single box 

regardless of its size [21]. This approach makes the convolution box filtering operation 

invariant with respect to the filter kernel size and drastically reduces the computational 

complexity (the larger the filter kernel, the more the proportional decrease from baseline 

box filtering). As will be seen, this can easily be extended to box filtering kernels used in 

the SURF algorithm; multiple boxes with different weights can be used to represent a 

kernel. The computation requires only four array accesses and operations per box [6], 

[17], [18]. In the case where the box filter edge falls outside the integral image, values 

assigned to the points left and above the image are set to zero. The points to the right and 

below the images are set to the integral image closest edge pixel intensity [25]. 

An operation of interest in the SURF algorithm is the Hessian computation to 

determine points of interest. In particular, Fast Hessian is a term that was used by Bay 

when he first proposed the SURF algorithm to describe his method for determining the 

Hessian determinant of a center pixel using an integral image operation combined with 

the rapid box filtering convolution approach illustrated in Figure 6 [6], [17]. First, we 

describe how the Hessian is determined for a pixel and its surroundings and follow with 

the “Fast Hessian” approximation explanation. 

The Hessian matrix ( )H f  is defined as the square matrix of second-order partial 

derivatives of a function ( , )f x y , as proposed by Hesse [26]. Since the SURF algorithm 
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operates in 2D space (based on the 2D intensity image), the Hessian matrix is given by 

[26] 
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The Hessian matrix determinant is designed to measure pixel intensity level 

curvature in the region around a given point, which is used for detection of "blob-like" 

areas in the SURF approach [18]. In the particular SURF algorithm application, the 

function f  is the result of the image intensity level convolution with an approximated 

Gaussian [6], [17], [18]. Each second-derivative entry in the Hessian are constructed as a 

box filter that is applied directly to integral image sample points using the rapid method 

in Figure 6. The result of this filtering technique is to calculate surrounding responses 

about a given pixel for the original intensity image [6], [17], [18]. Ideally, the Hessian 

determinant value is larger for a pixel surrounded by regions with high Gaussian 

curvature, which is the product of two principal curvatures (i.e., 2D curvature) [15], [27]. 

The Hessian matrix determinant approximation (or Fast Hessian as termed by Bay), is 

used to determine the feature center location or interest point [6], [17], [18]. Bay 

describes this process as detecting “blob like structures” [6], [17], [18]. Additionally, the 

Laplacian   2 2 2 2L f f x f y      is calculated for faster matching but is not used in 

the descriptor generation or interest point discovery [6], [17], [18].  

We return to more specifics about scale-space for SURF in Section II.A.2.a(4). 

Now that it is established that the SURF algorithm uses an approximate Hessian matrix 

determinant of the second-derivative Gaussian-filtered image to determine an interest 

point, we introduce how the “Fast Hessian” works. Bay proposed using the previously 

described box filters as kernels for determining the second-order Gaussian partial 

derivatives included in the Hessian matrix [6], [17], [18]. Multiple 9 9  filter kernel 

examples are shown in Figure 7 with the actual discretized and cropped Gaussians on the 
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left and the box filter equivalent approximations used in SURF on the right [6], [17], 

[18]. 

 

Figure 7.  Example of Gaussian kernels (left) vs. box integral kernel 

approximations (right), from [18]. 

(4) Detection step three: scale space generation. As discussed in SIFT scale 

space generation in Section II.A.1, the structure of this multi-spatial representation is 

used in order to establish a measure of scale invariance in the SURF application [6], [17], 

[18]. We now do a brief comparison between the SURF and SIFT algorithm methods for 

generating scale space to highlight the differences in efficiency utilized by Bay for SURF 

[18]. 

In the SURF algorithm, the approach taken by Bay is slightly different from the 

one taken by Lowe. We do a comparison in the next two paragraphs to highlight the main 

differences, and then return to the SURF algorithm description. As shown on the left in 

Figure 8, Lowe reduced the image size for each octave before the Gaussian filter kernel is 

iteratively applied to scales within each octave to obtain the Gaussian smoothed intensity 

image representation [16]. Next, the DOG representation is obtained by taking the 

difference between two adjacent Gaussian filtered images within the octave to form the 

DOG representation [16]. In contrast, the SURF algorithm only up-scales the filter and 

applies each filter to the exact same integral image once (which is an approximation of 

constructing the DOG with lower octaves down-sampled after filtering) [6], [17], [18]. A 

good visual contrast between both scale space generation processes followed by the SIFT 

(left) and SURF (right) algorithms is highlighted in Figure 8. 
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Figure 8.  Comparison of SIFT (left) versus SURF (right) scale space 

generation, from [24]. 

For the SURF algorithm, the box filter property combined with an integral image 

allows each box of a given weight in the filter kernel to be calculated with only four pixel 

accesses and operations for each sample pixel as discussed in Section II.A.2.a(3). This 

step greatly reduces the computational cost associated with generating the image scale-

space representation [6], [17], [18], [24]. To summarize differences between the two 

algorithms, SIFT requires an intensity image first to be up-sampled by two, then the 

image has a Gaussian filter applied iteratively five times. After each Gaussian filer 

application, a resulting image is retained [16]. Next, the differences between adjacent 

Gaussian filtered images are computed to create four DOG approximations within a 

single octave as illustrated in Figure 1 [16]. This step is then repeated for higher scale 

octaves by down-sampling the intensity image and again applying Gaussians to the scales 

within the octave [16]. In contrast, SURF uses the integral image of the intensity image 

and applies four increasing size box filtering operations with the rapid calculation method 

shown in Figure 6. No subtraction of filtered intensity images is needed [6], [17], [18]. 

For the higher octaves, two previous filter sizes are used (of four), so only two additional 

image filtering operations are needed to form an octave. Each successive scale level has 

the Fast Hessian box filter kernel applied at half the sampling (both vertically and 

horizontally) [6], [16], [17], [18]. A large portion of the computational cost savings in 

SURF over SIFT is accounted for in the differences in how the scale space DOG 

approximations to the LOG are generated [16], [18]. 
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Continuing with SURF, and referring to Figure 7, we see that the Gaussian kernel 

box filter approximation is not an exact representation of a Gaussian. In order to 

compensate for this difference, Bay proposed a formula for calculating the Fast Hessian 

matrix determinant that weights the diagonal second derivative with a factor of 0.9 

 2det( ) (0.9 )approx xx yy xyH D D D  , (4) 

where xxD  is the horizontal second derivative box filter response for a given integral 

image center pixel, 
yyD  is the vertical filter response, and 

xyD is the diagonal filter 

response [6], [17], [18]. 

The equivalent scale for each second-order derivative Gaussian kernel 

corresponds to the base scale or smallest Gaussian kernel by the approximation 

 BaseFilter
approx CurrentFilterSize

BaseFilterSize


   ,  (5) 

where   is the Gaussian standard deviation represented in the second-order Gaussian 

derivative approximation box filters in the SURF algorithm [18]. 

 

Figure 9.  Generic two-dimensional Gaussian example, from [28]. 
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The base 9 9  SURF algorithm filter corresponds to a Gaussian scale (standard 

deviation) of 1.2 [6], [17], [18]; thus, the equivalent Gaussian scale for any filter can be 

determined by using Equation (5). Refer to Figure 9 for a visual representation of a 

generic two-dimensional Gaussian as a reference. This is not the exact Gaussian used in 

SURF; rather the SURF algorithm contains three filter kernels that are Gaussian second-

order derivatives approximations [6], [17], [18]. As box filter scale or standard deviation 

is increased in the SURF algorithm, the Gaussian function estimation becomes larger in 

order to compute the image at lower resolution [18]. 

In order to maintain a consistent ratio of box filter Gaussian kernel height and 

width as the filter increases in size, care must be taken to ensure everything is 

proportionally increased given that the SURF algorithm is operating on discrete pixels 

[18]. The reason behind desiring filters that maintain equivalent size ratios is to enable 

generation of a scale space so that each level corresponds to an equivalent Gaussian 

approximation [18]. The increase in filter sizes is shown in Figure 10 and represents a 

Gaussian scale approximation of 1.2 (left filter size nice) and a scale of two (right filter 

size 15) for the second-order Gaussian derivative filter in the vertical  y  direction [18]. 

 

Figure 10.  Growth of a box filter for 
yyD  Gaussian kernel approximation, from 

[18]. 
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Next, the algorithm creates octave DOG approximations with the results from 

filtering the image with increasing size box filters. These can be represented as 3D 

pyramids where a 2D image is represented at different Gaussian scales as in Figure 8. 

Each octave is constructed with a 2D integral image blurred by filters of increasing size 

to create each of the four scale levels internal to the octave, with the third dimension 

variable considered the second-order derivative Gaussian standard deviation (scale) used 

to blur the image [6], [17], [18]. Each octave is sampled at half the rate of the previous, 

resulting in a smaller number of samples for higher octaves [6], [17], [18]. For example, a 

downsampling by two of an image representation being sampled at every pixel means 

that every other column is sampled horizontally and every other row is sampled 

vertically. The filter sizes used to construct the DOG representation for the octaves are 

highlighted in Table 1 (note that the initial sampling rate is user-selected) [25]. 

Table 1.   Box filter kernel size used to generate octave DOG 

representation in SURF, after [6]. 

 Gaussian Approximation Box 

Filter Size 

 

Octave 1 9 15 21 27 Sampled @ Initial Sampling Rate 

Octave 2 15 27 39 51 Sampled @ 2  Initial Sampling Rate 

Octave 3 27 51 75 99 Sampled @ 4  Initial Sampling Rate 

Octave 4 51 99 147 195 Sampled @ 8  Initial Sampling Rate 

Octave 5 99 195 291 387 Sampled @ 16  Initial Sampling Rate 

Now that octaves are generated and DOG approximations within each octave 

have been created by the SURF algorithm, a 3D search for the local Hessian determinant 

maxima for “interest points” location can be performed [6], [17], [18]. 
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(5) Detection step five: 3D search for interest points. This search is conducted 

using a non-maximum suppression (NMS) approach over the neighbors from 2D space 

on the two middle scales of each octave and also the adjacent scale-space neighborhood 

[18]. When focusing the search around a single pixel, a 3 3 3   scale space neighborhood 

is used to determine if the sample is a local maximum within that search region [6], [17], 

[18], [24]. A pictorial representation of the adjacent pixels in space and scale space is 

provided in Figure 11. The center pixel is considered a local maximum if it has the 

highest intensity in the search region [18]. The center pixel is then compared to a user-

defined threshold, and if it exceeds the threshold and is a local maximum, then the pixel 

is considered to be an interest point [18]. 

 

Figure 11.  Example of 3D scale-space search around pixel of interest, from 

[24]. 

Next, we introduce NMS, which is applied as part of the local maximum search 

process [18]. In the SURF algorithm the local maximum is found by "searching" a 3D 

region (again ,x  ,y  and scale ) surrounding the center pixel with dimensions 

      2 1 2 1 2 1N N N     , (6) 

where N  is the number of pixel directly in any axis direction ( , ,x y  or  ) contained in 

the search box, where  is the scale axis variable [18]. As shown in Equation (6) and 

Figure 11, the smallest possible neighborhood of nearest neighbors to the pixel of interest 

is with 1N  , which yields a neighborhood of size 3 3 3   as used in the SURF 

algorithm [18]. A straightforward implementation of this algorithm in computationally 

expensive since the search requires more calculations than desired or necessary, so SURF 
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uses an efficient algorithm to search through scale-space instead. This fast method is 

highlighted by Bay [18] and Neubeck and Van Gool in [29]. This more-efficient version 

of NMS is referred to as a “block algorithm.” This algorithm divides the search area into 

blocks with sizes      2 1 2 1 2 1N N N      [18]. These non-overlapping blocks are 

searched to find a single local maximum. If a local maximum in the block is found, then 

all other pixels can be ignored in future searches because that pixel already has been 

determined to have the largest value in its neighborhood [29]. The complexity savings 

from using this technique are displayed in Table 2. 

Table 2.   3D search method efficiency comparison, from [18]. 

 

The NMS approach result is that all local maxima retain their values, all other 

points are set to zero, and any local maximum not exceeding the user-defined threshold 

value is also set to zero [18]. In the SURF algorithm, there are four DOG representations 

per octave from the Fast Hessian filtered results as described in the previous section [18]. 

The top and bottom (highest and lowest scale) DOG within an octave are only used for 

reference in the interest point search for the two middle scales [18]; thus, only the second 

and third layers in each octave can determine a point of interest, but a higher Hessian 

determinant value in the first and fourth layers can eliminate an interest point from being 

identified as local maximum [18]. 

(6) Detection step six: sub-pixel accuracy determination. The attainment of 

sub-pixel accuracy takes place via a quadratic interpolation method [6], [17], [18]. The 

interest point direct neighbors are considered (in both the image and scale space) and an 
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interpolated position is found [6], [17], [18]. From the previous search algorithm, it is 

already known that the 3D neighborhood of Hessian determinant values are lower than 

the value obtained for the interest point, so the conclusion is that the interpolated value 

falls within a 0.5 pixel range of the original interest point location and not closer to an 

adjacent pixel [18]. A one-dimensional parabolic fitting function used between adjacent 

pixels is seen in Figure 12. 

 

Figure 12.  Example of one dimensional sub-pixel interpolation of an interest 

point, from [18]. 

In the example case in Figure 12, the original local maximum was found at pixel 

0p , and the neighboring pixels 1p  and 1p  along the axis are used for quadratic fitting. 

The interpolated maximum can be offset from the original interest point pixel location. 

The maximum is determined to be at point m  on the parabola, which is located at a 

fractional distance between 0p  and 1p  [18]. A new sub-pixel position is assigned to the 

detected interest point based on the interpolated location .m  The same method is used for 

the y direction to achieve a sub-pixel position for the interest point [18]. 

At the conclusion of the interpolation steps described above, each interest point 

with its corresponding strength (represented by the Fast Hessian determinant value) and 

sub-pixel location have been determined. 
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b. Interest Point Description 

For each point of interest identified in the previous subsection, we need to define 

set of descriptors which characterizes the area surrounding each point. The process used 

in the SURF algorithm is described in the steps below.  

(1) Description step one: orientation assignment. The orientation step goal is 

to provide a directional value for each feature that can be used to assist in calculating a 

partially rotationally-invariant descriptor. The orientation value is also an algorithm 

output for optional matching scheme use [18], [25]. In the regular SURF algorithm, 

feature orientation is calculated for the area surrounding the interest point in order to 

achieve some degree of detected feature rotation invariance. In order to attain an 

orientation value, a region of radius 6s (with s  representing the Fast Hessian determinant 

value at a given interest point) around the interest point location is defined [6], [17], [18]. 

Haar wavelets are generated as shown in Figure 13. During filtering, these kernels are 

applied with the same fast box filter convolution process shown previously in Figure 6 

[6], [17], [18], [25]. 

Next, the SURF algorithm uses the Haar filter kernels to determine responses in 

the  ,x y  plane [6], [17], [18]. Furthermore, the search region size is dependent on the 

variable s  previously defined, and the Haar filter kernel size is also dependent on s  with 

each square kernel side having length equal to 4s  [18]. Additionally, specific pixel 

responses used for orientation determination are sampled at vertical and horizontal 

spacing s  [6], [17], [18], [24]. A Haar filter visual example is provided in Figure 13. 

 

Figure 13.  Haar box filters used for SURF, after [24]. 



 24 

The left and right Haar filters shown in Figure 13 are used to determine the 

responses in the x  and y  directions, respectively [6], [17], [18]. When the integral image 

method for box filtering discussed in Section II.A.2.a(3) is used to compute the response 

at each sample, the Haar convolution filters take only six operations to compute [24]. The 

resulting responses have a Gaussian weight applied that is centered at the interest point 

with a 2.5s  standard deviation. The original SURF algorithm called for 2s , but the 

OpenSURF version used here has a standard deviation value equal to 2.5s  [6], [17], [18], 

[24]. After the responses are plotted on the  ,x y  plane according to their filter responses 

in the corresponding direction, a 60 region (by SURF algorithm convention [18], [24]) is 

rotated around the origin, and the responses that fall within that area are summed [18]. 

The angle with the highest value of summed responses is selected as the orientation [24]. 

A visual display of this process is shown in Figure 14. 

 

Figure 14.  Orientation search and determination example for the SURF 

algorithm, from [24]. 

An example illustrating the orientation process followed within the search area 

surrounding the interest point is highlighted in Figure 15 with the Haar-wavelet kernel 

being applied. 
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Figure 15.  Example of Haar filtering during orientation assignment, after [18]. 

To understand what is measured by the Haar wavelet filters, refer to the work 

conducted on object detection by Papageorgiou et al. [30]. The simple wavelets used in 

SURF encode the differences in average intensities between regions [30]. Therefore, for 

the Haar kernels that measure responses in the x  direction, a high response (magnitude) 

occurs if there is a change between pixel intensities in the corresponding direction of 

either increasing or decreasing magnitude. For high frequencies, the sum of absolute 

values is large. Visual examples illustrating these concepts are presented in Figure 18. 

At this point in the algorithm, the orientation parameter has been calculated. So 

far, the interpolated  ,x y  coordinates, the Fast Hessian determinant scale s , and the 

feature orientation represent the cumulative knowledge obtained for each feature. At this 

point, the algorithm's next step can be executed to determine the descriptor for each 

feature (or the region surrounding each interest point). 

(2) Description step two: computation of the sum of Haar wavelet descriptor. 

The descriptor is used by the SURF algorithm to describe the properties of a feature that 

surrounds an interest point [6]. As previously stated, “blob-like” regions are detected by 

the Hessian-based detector, so the follow-on step is to define characteristics that describe 

those regions. Such description is obtained by drawing a square around the associated 

interest point and tilting it so the new x-axis lines up with the orientation line found in the 

algorithm's previous step [6], [17], [18]. 
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The square regions' orientation around interest points and their associated 

orientation vectors are illustrated in Figure 16 on a graffiti image. 

 

Figure 16.  Example of SURF orientation and associated descriptor regions 

centered on interest points, from [17]. 

All square regions shown in Figure 16 have sides of length equal to 20s , where s  

is (as before) the corresponding interest point's Fast Hessian determinant value [18]. 

Next, Haar-wavelet kernels are constructed for fast convolution filtering with side length 

equal to 2s  [24]. The square region is then broken into 4 4  sub-regions [18], and each 

sub-region is assigned side length 5s  (16 comprising the total square area) and 

convolutional filtering using Haar kernels is applied within each sub-region. Spatial 

information in the final descriptor is maintained by filtering the sub-regions 

independently [18]. Recall that the Haar filters and resulting responses are oriented along 

the new axes that were determined in the algorithm's orientation portion, so the new 'x  

and 'y  directions now dictate the descriptor generation axis alignment. Note that 'x  is 

now aligned with the orientation vector and 'y  is perpendicular to 'x  [18]. The resulting 

responses from each sub-region are weighted with a Gaussian of standard deviation equal 

to 3.3s  to increase robustness to geometric deformations and localization errors [24]. 
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Since the main region surrounding the interest point is divided into a 4 4  block 

of sub-regions, there are a total of 16 sub-regions for the area of interest surrounding a 

given interest point [18]. In addition to the two Haar filter wavelet responses being 

summed within each sub-region, the absolute value of each Haar wavelet filter sample is 

also computed for future summation [6], [17], [18]. This process leads to four 

summations within each sub-regions used to characterize patterns as shown in Figure 18. 

Since there are 16 sub-regions, the overall descriptor is a vector that contains 

4 16 64categories subregions     different entries [6], [17], [18], [24]. An example is 

provided in Figure 17 that contains a generic region of interest where each sub-region is 

has two samples in each direction (four total). 

 

Figure 17.  SURF descriptor generation example, after [18]. 

In Figure 17, all 16 sub-regions (in this case with four samples each) represent a 

spatial location within the area around the interest point. The four summation responses 

from each sub-region are placed in a consistent position in the descriptor vector, which 

allows the descriptor to carry the feature's spatial information [18]. The resulting 

descriptor vector associated with a given feature is generated from 
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where the input to each entry in the descriptor is ,nd  with n  being the index [6], [17], 

[18]. The smaller square with four sample points shown in Figure 17 is an example of a 

sub-region. 

In order to understand how this approach effectively defines common patterns, the 

SURF algorithm Haar response summation values for a few sample pixel patterns are 

shown in Figure 18. 

 

Figure 18.  Example of Haar filters wavelet responses, from [18]. 

For example, high spatial frequency components lead to large values obtained 

when summing Haar response absolute values and small values for the regular 

summations.  

In contrast, a gradual change in intensity along the x  or y  axis corresponds to an 

increase in both summations in the corresponding axis (again refer to Figure 18). The 

four summed values allow for feature characteristic differentiation within the sub-region. 

Note that if the pixel intensities are inverted with the same pattern (replace dark and light, 
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and vice versa), the sum of responses value is the opposite polarity with no sum of 

absolute values response change. 

c. Sign of Laplacian Descriptor 

Bay proposed calculating the Laplacian sign (polarity) for each interest point as a 

low-cost approach to increase speed for later fast indexing and matching [17], [18]. Since 

the Laplacian sign can indicate a blob that is darker or lighter than the background, it can 

also be used for quick matching [17], [18]. Bay proposed to use the sign of the Laplacian 

in k-dimensional (k-d) trees as a meaningful way to split the data [17]. This value is 

calculated at the same point in the algorithm as the Fast Hessian determinant and can be 

used for a possible matching algorithm [25]. 

d. SURF Algorithm Summary 

The main steps present in the SURF algorithm are given by [6], [17], [18], [24], 

[25]: 

 converting intensity image to grayscale, 

 computing integral image, 

 creating octaves and scale levels for scale space representation consisting 

of: 

1. fast box filtering to create Gaussian second-order derivative 

approximations applied to the image, 

2. increasing second-derivative approximation filter sizes to create scale 

levels, 

3. computing Hessian determinant for each sampled pixel from the three box 

filter responses to be used in the scale DOG approximations in the 

octaves, 

4. saving the sign of the Laplacian for each interest point for future use, 

5. using four filter sizes to create a single octave’s scales, with the next 

octave utilizing the second and fourth filter size in the previous for its first 

two scale levels, 

6. downsampling each successive octave by two, 
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 conducting a 3D search for interest points in scale space and using NMS, 

 determining sub-pixel accuracy location of interest points by quadratic 

interpolation, 

 determining feature orientation using Haar wavelet response dominant 

direction, and 

 generating descriptor on axis aligned to the feature orientation using Haar 

wavelet responses and their absolute values summed within 16 sub-

regions [6], [17], [18] . 

The SURF algorithm output includes a 64 length descriptor,  ,x y  location, 

orientation angle, Fast Hessian determinant value (region size), and sign of Laplacian for 

each interest point [25]. 

e. Variations of SURF 

Several SURF algorithm variations have been proposed, with two common ones 

listed below. 

(1) Upright-SURF (U-SURF.) This is a version of SURF used for applications 

that do not require rotation invariance. This version removes the algorithm's orientation 

step. After calculating the Fast Hessian determinant and completing the 3D search, the 

algorithm moves directly into the interest point descriptor generation [6], [17], [18]. 

(2) SURF with varying size descriptors. This alternative allows for varying 

the size of a descriptor for either computational efficiency or to provide more feature 

characteristic details. In Section II.A.2.b(2), we saw that dividing the region of interest 

around the interest points into a 4 4  group of sections with four summed response 

values in each results in a 64 length descriptor. If the goal is lower resolution with higher 

matching speed, the interest area can be divided into a 3 3  group of sub-regions (for a 

total of nine), which gives a 36 length descriptor (nine times four) [6] [17] [18]. A 

commonly used descriptor with more detail is obtained in what is referred to as SURF-

128 (128 length descriptor) [18], [25]. In order to generate twice as many feature entries 

as in the original algorithm, quantities 
0dy

dx


  and 
0dy

dx


  are computed separately from 
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0dy

dx


  and 
0dy

dx


 . Similarly, the quantities 
0dx

dy


  and 
0dx

dy


  are computed separately 

from 
0dx

dy


  and 
0dx

dy


  [18], [25]. So, each of the 16 sub-regions has eight summations 

defined providing eight descriptor values leading to a descriptor of length16 8 128   

[18]. 

f. OpenSURF algorithm implementation 

The baseline algorithm used for analysis in this thesis is a MATLAB 

implementation covered by the open-source BSD license [25]. The MATLAB version is 

a copy of the OpenSURF C# code by Evans and was downloaded from MathWorks [25]. 

This implementation has the option to choose a 64 or 128-size descriptor SURF and U-

SURF [24], [25]. Additionally, it allows the user to select a threshold value for interest 

point detection, number of octaves, and initial sampling size used during the box-filtering 

step as well as a user-selected visual display of orientation Haar responses and the 

descriptor's responses for interest points [24], [25]. 

The output of this algorithm is contained in a MATLAB structured array Ipts with 

the interpolated coordinates  ,x y , scale value from the Fast Hessian determinant, 

Laplacian, orientation angle (in radians), and descriptor for each interest point [25]. The 

algorithm comes with a display function that accepts the Ipts structured array and the 

original image and visually displays the SURF points with their location, scale level as 

circles, and orientation vector overlaid on the original image. The MATLAB OpenSURF 

code output is identical to the implementation proposed by Evans [24], [25]. 

The library implementation of SURF, as originally developed, is available for 

download but is closed-source and not available for commercial use [31]. There are a few 

open-source implementations including OpenSURF [25] and versions for dlib and Pan-o-

matic [7]. Gossow et al. conducted performance testing [7] on the listed open-source 

versions and compared results to those obtained with the original SURF implementation 

[7]. The authors tested the performance in terms repeatability, recall, and precision as 

defined in [13], [14], [15]. The authors' comparison testing was based on the Mikolajczyk 
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et al. software framework [14], [15] (using the same testing process used by Bay et al. in 

the original SURF paper [17]) and utilized image sequences from [32]. Results showed 

the Pan-o-matic algorithm tracking almost exactly with the original SURF algorithm, 

followed by OpenSURF and then dlib [7]. Although the OpenSURF algorithm was 

slightly lower in repeatability for changes in viewpoint, blurring, dimming, zoom, and 

JPEG compression than that obtained from the original SURF implementation, the two 

implementation's results follow the same trend [7]. Since the algorithm performance is 

only slightly lower than that obtained from the original implementation, retains the same 

test result characteristics and is implemented open-source in MATLAB, OpenSURF fits 

the thesis goal to evaluate the modified algorithm performance [7], [25]. 

g. SURF Limitations 

We described the different algorithm parts to include integral image, interest point 

detection in scale space, orientation assignment, and descriptor generation. One problem 

is that the algorithm is heavily dependent on the Fast Hessian determinant. This 

determinant value is used in the region size determination for both orientation and 

descriptor generation, the Haar filter kernel size, and in the Gaussian weighting functions 

[6], [17], [18]. If the detector Fast Hessian determinant value of this algorithm is not 

invariant to image characteristic changes, then the resulting orientation, descriptor, and 

matching algorithm may not necessarily be effective in matching features. 

3. Comparisons of SURF and SIFT 

Luo and Oubong compared the performance of SIFT, PCA-SIFT, and SURF 

using K-nearest neighbor and random sample consensus (RANSAC) for images that vary 

in scale, rotation, blur, illumination, and affine transformations [8]. 

Principal component analysis (PCA) SIFT, which the authors tested, is first 

introduced before discussing test results. The PCA-SIFT technique was developed by 

Yan and Sukthankar as an alternative way to determine the feature vector for the SIFT 

algorithm [33]. While the SIFT algorithm uses image gradient magnitude and orientation 

to create histograms in patches or sub-regions around the keypoint to develop the interest 

point descriptor, PCA-SIFT uses principal component analysis to create a descriptor. 
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Sub-pixel interest point determination, scale, and orientation are determined by following 

the same process as for original SIFT algorithm [33]. 

The first criterion measured was processing time using OpenCV algorithms2 [33]. 

The SURF algorithm greatly outperforms SIFT and PCA-SIFT by almost four orders of 

magnitude [33]. The results are listed in Table 3. 

Table 3.   SURF, SIFT, and PCA-SIFT algorithm speed comparison, 

after [8]. 

Items SIFT PCA-SIFT SURF 

Total matches 271  18  186  

Total time (ms) 72.15378 10  72.13969 10  3362.86  

10 match time (ms) 72.14806 10  72.09696 10  3304.97  

Scale invariance tests show that the SIFT and SURF algorithms are comparable, 

while PCA-SIFT does not perform as well. The SURF algorithm performs poorly with 

regards to rotation invariance as can be seen in the data from Figure 19. 

 

Figure 19.  Test of SURF, SIFT and PCA-SIFT algorithm repeatability versus 

rotation, from [8]. 
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SURF outperforms both in low to moderate image blurring, and also for 

illumination changes. For affine transformation (representing changes in viewpoint), the 

SURF algorithm performs the best for smaller changes, while the SIFT algorithm 

overtakes SURF for medium changes and PCA-SIFT for the largest changes [8]. A 

testing summary from Luo and Oubong's is shown in Table 4. The SURF algorithm 

appears to be more computationally efficient and robust to illumination changes. From 

the results in Figure 19, the authors discovered a SURF rotation invariance deficiency 

with improvement possible in scale, blur, and affine transformation invariance. 

Table 4.   A performance summary for invariance to image 

deformation for SURF, SIFT, and PCA-SIFT, from [8]. 

 

Comparing the SURF and SIFT algorithms with various descriptor sizes was also 

performed by Khan et al. on multiple larger benchmark datasets using a k-d tree for 

nearest-neighbor matching of individual features [9]. Their results conclude that the 

SURF and SIFT algorithms have similar performances for all tests with the exception of 

scaling, large blur, and viewpoint invariance [9]. The authors’ proposed 64-dimension 

SIFT descriptor outperforms the original 128-dimension SIFT descriptor in both 

algorithm speed and viewpoint invariance [9]. 

Bauer et al. conducted another SURF and SIFT algorithm comparison test with 

both open-source and the original library implementations [10]. The authors tested for 

image transformations including rotation, scale, noise, illumination, and affine or 

viewpoint on outdoor and natural object images [10]. They used the criteria of total 

correct matches and the ratio of correct to incorrect matches as determined by a tool they 

wrote in Python [10]. Their conclusion was that SIFT has slightly better performance 

than SURF, but the results are very close for all tests. SIFT has a tendency to detect more 

interest points, which the authors saw as a computational disadvantage because there was 
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not a corresponding increase in correct matches. Overall, the authors concluded that 

SURF was a better choice given the computational efficiency and comparable 

performance [10]. 

4. Other Feature Detecting Algorithms 

SURF and SIFT are commonly used to describe the complete detection and 

descriptor generation process; however, the SURF detector and SURF descriptor can 

function separately as long as the needed scale information is passed to the SURF 

descriptor algorithm from another detection algorithm. The following algorithms may 

include the detector-descriptor combination or just a detector. The function performed is 

specified for each algorithm. Note that we test these algorithms in this section as we are 

only testing SURF and the modified versions of SURF; however, these alternatives can 

also be used and are utilized for comparisons made in Chapters VI and VIII. 

a. Harris Corner Detector 

The Harris corner detector, proposed by Harris and Stephens in 1988 [34], is a 

widely used feature detection algorithm that focuses on the detection of corner regions. 

The main application targeted was camera motion and tracking designed to address the 

limitations of edge detection [34]. The author's goal was to start with the Moravec edge 

detector as the baseline, analyze its limitations, and design a more robust corner detection 

method [34]. 

The Moravec corner detection method computes the sum of square differences 

around a candidate pixel in various directions [34]. The Harris method uses the same 

approach but uses second-order derivative approximations to form a Hessian matrix 

estimate [34]. The difference of the Hessian determinant and square of the trace are 

computed at a given sample to characterize a corner region from 

 
2det( ) ( )R H Tr H  ,  (8) 

where H  represents a Hessian matrix approximation [34]. If the resulting value of R  is 

positive and a maximum with respect to the same calculation for its neighbors, then it is 

defined as a corner [34], [35]. 
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b. Features and Accelerated Segment Test Corner Detector 

The features and accelerated segment test (FAST) corner detection method was 

proposed by Rosten and Drummond to produce a computationally efficient approach 

compared to the SIFT and Harris corner detection algorithms for use on real-time video 

[35]. The FAST corner detector takes a circular region of 16 pixels (see Figure 20) 

surrounding a test candidate pixel and checks to determine if there is a set of n  touching 

or adjacent pixels that are either of higher or lower intensity than the pixel of interest 

[35]. The number used for n  can be any number, but the authors use 9n   and 12.n   

For faster computation, the algorithm first checks the four pixels on the outside circular 

region in Figure 20. The left, right, bottom, and top (labeled 1, 5, 9, 13) in relation to the 

candidate pixel are checked to determine if three of four have all higher intensity or all 

lower intensity than the candidate. If three of four conditions are met, then all pixels 

contained in the region are checked [35]. 

 

Figure 20.  FAST image patch example used for corner detection, from [35]. 

The authors then use machine learning tools to develop a fast classifier [35]. In 

the authors' tests, they compare FAST with 9n   and 12,n   the Harris corner detector, 

the Shi and Tomasi corner detection algorithm, the DOG used by Lowe for SIFT, and the 

SUSAN corner detector [35]. Results show the FAST detection with 9n   outperforms 
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all other detectors in repeatability vs. corners per frame and speed on the four test sets 

used. The downside, as Rosten and Drummond point out, is that the FAST algorithm is 

sensitive to added noise [35]. 

c. Binary Robust Independent Elementary Features Descriptor 

Calonder et al. proposed a feature descriptor called binary robust independent 

elementary features (BRIEF) that is binary for faster matching as an alternative to the 

efficiency techniques that had traditionally attempted to reduce descriptor length [36]. 

The authors take single pixel sample points contained within a region and apply 

smoothing kernels to reduce noise-sensitivity using a Gaussian kernel of size 9 9  [36]. 

The ultimate random sampling pattern was chosen after multiple tests were performed to 

determine the better resulting descriptor characteristics as shown in [36]. The authors 

then calculate an intensity comparison between selected pairs of points to determine the 

binary descriptor values. From this, they develop BRIEF-16, BRIEF-32, and BRIEF-64 

algorithms, where the number after BRIEF represents the number of bytes needed to store 

the binary descriptor (corresponding to a descriptor size of 128, 256 and 512, 

respectively) [37]. 

BRIEF has a high sensitivity to feature rotation as it does not contain an 

orientation step in the algorithm; thus, the authors note that it should be compared to 

those obtained from U-SURF [36]. The authors do note that their algorithm outperforms 

SURF on small rotations in their single test, with the crossing point in recognition rate 

around 15  [36]. They use the same test set previously used by Bay in the original testing 

of SURF [18], [32], [32] (and the same used for this work) less the images test sets that 

vary orientation and scale. The authors conclude that the BRIEF-64 algorithm 

outperforms the SURF approach with the exception of the graffiti test set of Figure 33 

and has significant speed increases in descriptor computation and matching when 

compared with SURF-64 [36]. The tests were conducted using the criterion of 

recognition rate, which is the number of correct matches divided by the total number of 

interest points detected by an algorithm between a pair of images [36]. 
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d. Oriented FAST and ROTATED BRIEF 

Rublee et al. produced an alternative to SURF and SIFT called oriented FAST and 

rotated BRIEF, with the goal of making a rotation invariant and noise resistant version of 

the BRIEF descriptor from Section II.A.4.c [38]. The authors used the FAST corner 

detector described in Section II.A.4.b to locate interest points with added orientation 

information in the algorithm [38]. 

After FAST interest point computation, the authors utilize a method of corner 

orientation by intensity centroid, which relies on computations of moments [38]. This 

algorithm assumes the bulk of the corner intensity not at the centroid, and the vector that 

defines the direction from the centroid to the intensity is utilized as an orientation. The 

centroid is quickly determined by four moments and the angle of orientation by two 

moments, with further details provided in [38]. From this orientation, the BRIEF 

descriptor is steered to the orientation with pre-computed lookup table of sample patterns 

in angular increments of 12  apart [38]. Last, to mitigate the loss of desired variance 

between sample pair comparisons in the steered version of BRIEF, they use a large 

training set to find the binary features that are uncorrelated and have high variance for 

their rotated lookup tables [38]. Variance is desired in a descriptor to provide 

characteristic uniqueness that allows for maximum differentiation between features [36], 

[38]. The detector-descriptor combination achieves a level of rotation invariance while 

still maintaining a speed advantage and comparable performance [38]. 

e. Binary Robust Invariant Scalable Keypoints 

Binary robust invariant scalable keypoints (BRISK) was developed by 

Leutenegger et al. for use as a detector, descriptor, and descriptor matching algorithm 

[37]. The motivation behind BRISK was to push the usual tradeoff of detector and 

descriptor performance under image distortions versus computational speed [37]. The 

algorithm consists of two main stages: scale-space keypoint detection and keypoint 

descriptor generation followed by efficient matching due to a binary descriptor [37]. 

The first portion of the BRISK algorithm begins with scale space creation [37]. 

The BRISK algorithm then creates a predetermined number of octaves (usually four) by 
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downsampling the original image by two and then computing the same number of intra-

octaves by first down-sampling by 1.5 to create the first intra-octave. After the first, 

following intra-octaves are downsampled by two rather than 1.5 [37]. The BRISK 

algorithm uses a FAST detector variant to create the values in the octaves used to find 

interest points [37]. A NMS and interest point sub-pixel interpolation is also applied [37]. 

The algorithm calculates object orientation around the interest point and then constructs a 

descriptor from uniform radius samples around an interest point, each with Gaussian 

smoothing applied [37]. The binary descriptor generation is accomplished in a similar 

way as for BRIEF with pairwise sample comparisons, but the BRISK algorithm uses 

fewer samples with deterministic spacing to reduce complexity with more pairwise 

comparisons than sample points [37]. The descriptor is 512 bits in length and binary, 

which matches the BRIEF-64 descriptor size [36], [37]. A BRISK sampling pattern 

example is seen in Figure 21. 

 

Figure 21.  BRISK sampling pattern with 60 sample points, from [37]. 
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The authors of the BRISK algorithm compared performance with the SURF 

algorithm, which was obtained by using the Mikolajczyk et al. testing framework for both 

detector and descriptor performance (adding SIFT just for the detector tests) [14], [15], 

[37]. Results show that the BRISK algorithm provides comparable performance with an 

increase in interest point detection and matching times [37]. 

f. Fast Retina Keypoint 

Fast retina keypoint (FREAK) is a keypoint detector-descriptor proposed by Alahi 

et al. The authors claim that FREAK is computationally faster than the BRISK, SURF, 

and SIFT descriptors while being more robust [39]. In this approach, the descriptor is 

designed based on the human retina's behavior. Alahi et al. use a circular search region 

around the interest point [39]. The interest region sampling pattern has the highest 

concentration of samples close to the interest point with fewer the further away in the 

search area [39]. The regions around the samples are overlapping for better performance 

and weighted with increasing size Gaussian kernels for smoothing as shown in Figure 22. 

 

Figure 22.  FREAK example of sampling with weighted Gaussian around 

interest point as related to the retina [39]. 
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The FREAK descriptor is generated by comparing the smoothed intensity of pairs 

of sampled regions [39]. Instead of using distance between pairs as a criterion to compare 

two points, the authors conducted a test of close to 50,000 keypoints and matched pairs of 

samples to find those with the most distinctive and least correlated pairs [39]. The result 

is a binary FREAK descriptor with ordered entries based on the sample’s Gaussian 

smoothing kernel scale (coarse to fine) [39]. The authors used the adaptive and generic 

accelerated segment test (AGAST) detector utilized by BRISK and compared FREAK, 

BRISK, SURF, and SIFT with the recall versus 1-precision graphs [39]. Their results 

showed that FREAK outperformed the other algorithms in the presence of a number of 

perturbations such as viewpoint changes, rotation, scale, blur, JPEG compression, and 

illumination changes. The authors also concluded BRISK was the second best performing 

in all tests. The SURF and SIFT algorithms alternated depending on the test and the 

images used [39]. The algorithm speed comparison results obtained for SIFT, SURF, 

BRISK and FREAK as determined by the authors of FREAK are provided in Table 5. 

Table 5.   SIFT, SURF, BRISK, and FREAK descriptor generation 

and matching speeds for approximately 1500 detected 

keypoints on Intel duo single-core 2.2 GHz processor, from 

[39]. 

  

5. Interest Point Matching 

Interest point matching is a key portion of any detection or classification 

algorithm. If the descriptors are too big or too complex, matching is costly and the 

algorithm slow. Conversely, performance suffers if descriptors are too small and do not 

contain enough descriptive information. Additionally, in order to develop more efficient 

and effective methods for recognition in cluttered backgrounds and complex images, 

there is a need to understand how feature descriptors are organized and grouped and what 

those parameters represent. At each stage, understanding the interest point detector and 
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feature extraction algorithm capabilities and limitations is essential to evaluating how 

well it applies to the given matching scheme. In this section, some commonly used 

matching schemes for image features are described. 

a. Nearest Neighbor Matching 

We briefly introduce nearest neighbor (NN), nearest neighbor distance ratio 

(NNDR), and kd-tree matching. Both NN and NNDR require a distance metric [13]. The 

most commonly used metric is the Euclidean distance, but use of weighted distance 

metrics or Mahalanobis distance is also an option [13]. 

In multi-dimensional space, the Euclidean distance is the sum of squares of the 

distance between dimensional entries [13]. So, for the 64-point SURF descriptor, the sum 

of squares of all 64 elements between two descriptors gives the Euclidean distance in 

feature space. In addition, there are multiple ways to weight the variables, resulting in 

weighted Euclidean distances [13]. 

For NN matching, two neighboring features match when there are no other 

neighbors with smaller distances and their distance metric falls below a predetermined 

threshold [13]. In NN matching, a feature can have at most one match [13]. 

An alternative to the NN approach is NNDR matching, which uses a distance ratio 

of pixel to its nearest neighbor divided by distance to the second nearest neighbor [13]. 

The point of interest and its nearest neighbor are considered a match when this ratio falls 

below a predetermined threshold [13]. 

The most commonly used algorithm for nearest neighbor searching is the kd-tree, 

or a multi-dimensional search tree [13]. This algorithm divides the dimensions along 

axis-aligned hyperplanes and organizes the tree to allow for faster search efficiency [13]. 

This algorithm works well in lower-dimensional searches but does not perform as well 

with increased dimensionality [40]. 

b. Threshold Matching 

Threshold matching evaluates two descriptors, and descriptors are considered a 

match when the distance between them is below a predetermined threshold [13]. With 
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threshold matching, a descriptor can have several matches [14], which are not all correct. 

Additionally, the threshold is difficult to set properly and has varying usefulness 

depending on the feature space matching properties [13]. 

c. Bag of Visual Words Method 

Sivic and Zisserman proposed this method to classify image feature descriptors 

into visual words [41]. Here the goal is to group features in a way that allows similar 

techniques commonly used in database word retrieval [41]. In order to build the “visual 

vocabulary” in the image recognition application, feature descriptors are first quantized 

into clusters that represent the visual words [41]. This step can be carried out by any 

clustering scheme. Sivic and Zisserman used K-means clustering for their bag of visual 

words (BOVW) algorithm [41]. These clusters of features are independently defined 

using aggregated covariance matrices [41]. 

Once the "visual" word database is constructed, words can be weighted by 

standard techniques. These weights help to give higher values to frequently used words 

associated with a particular image while giving a lower weight to words that often appear 

in the overall database across many unrelated images [41]. Weighting also allows visual 

words that are highly specific to the image to be assigned a greater value, making the 

descriptor more effective as a classifier. 

The main benefit of creating a database that is organized in similar fashion to a 

word database is that it allows for rapid object or image matching [41]. A time-

consuming part of image recognition is the matching stage so optimization can result in 

recognition process efficiency improvement. 

d. Interest Point Groups 

The purpose of this approach is for fast database searching similar to that 

available from the BOVW method, with the exception that spatial information is 

consolidated and retained [42]. Lei Yu et al. proposed a technique that takes existing 

interest points from a given feature extraction algorithm (SIFT, SURF, etc.) and grouped 

all interest points inside circular regions with radius equal to a dedicated interest point’s 
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scale [42]. From those interest points, the scale values are divided into bins, and only the 

interest points in the same bin as the original one are retained. From these, a weighted 

BOVW algorithm is applied to classify the interest point group to a visual word [42]. 

Ng and Kingsbury used pairwise spatial constraints between images to match 

interest point groups [43]. The authors first took a group of interest points and formed a 

pairwise spatial relationships matrix between each [43]. They then compared the spatial 

relationship similarity between two groups and also compared the pairwise similarity of 

orientations and features between the two interest groups [43]. The authors tested their 

algorithm and evaluated it against SIFT. Results showed higher correspondence of 

matched pairs is obtained along with a 25% increase in computational time [43]. 

Additional work was carried out by Brown and Lowe on using interest point 

groups to develop invariant features [44]. The authors use geometrical methods from an 

interest point group in scale space to resample the image for new interest points along a 

determined plane [44]. The author's method rejects false matches using first the Hough 

transform and next a RANdom Sample Consensus method (discussed in the next section) 

[44]. In testing, the author's claim repeatability and accuracy are improved by this 

technique but conclude that future work should include more efficient implementations 

targeted towards making this method practical for use [44]. 

e. RANdom Sample Consensus 

The RANdom Sample Consensus (RANSAC) algorithm was proposed by Fischer 

and Bolles [45]. The basic algorithm function is outlined below: 

 Select random sample of minimum size required to fit model 

 Compute a model from the sample set 

 Compute the set of “inliers” from the data set for points that lie within a 

predetermined threshold of that model 

 Repeat until model with the most inliers over all samples is discovered 

[45] 

For SURF applications, the feature descriptors are the data set and the RANSAC 

algorithm attempts to make the best data model or curve fit. Outliers, which are 
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considered to be noise or objects of no interest, are discarded by this algorithm [45]; thus, 

the model described represents features that characterize the object of interest. Although 

a perfect model is the ideal case, in reality RANSAC is better suited to remove outliers 

from still backgrounds when faster moving objects are the target. The combination of 

RANSAC and SURF has been used successfully in video stabilization [46] but may not 

be as useful in specific image recognition applications where high clutter is present. 

B. AREA OF INVESTIGATION 

In order to better understand and improve the SURF algorithm functionality, we 

first analyzed how the algorithm steps worked to process images and generate interest 

points, orientations and descriptors. 

1. SURF’s Suitability as a Feature Detector 

Ideally, a feature descriptor should be completely invariant to object position, 

orientation, scale, intensity, surroundings, partial occlusion, viewpoint (affine 

transforms), image compression, and operate in near real time. While it is impossible to 

fully achieve this in practice, the goal is to approach as closely as conceivable. Issues 

with the SURF algorithm were introduced in Sections II.A.2.g and II.A.3. Previous 

studies showed that SURF performs well relative to the other feature-based algorithms in 

speed, scale invariance, intensity changes, and object location but could use improvement 

in rotation invariance and large viewpoint changes [8], [9]. Additionally, enhancement in 

the ability to discriminate an object of interest from the background is desirable. Last, 

improvement in the invariance to all image transformations is a goal. 

In Section II.A.5, methods that are commonly used to take groups of features and 

perform grouping or matching leading to classification were discussed. In order for the 

SURF features to be useful to those algorithms, they need the SURF detector-descriptor 

to be as invariant as possible to all changes that can occur between images. Although 

SURF is currently ranked near the top of comparison testing on feature detection 

techniques [7], [8], room for improving the algorithm to provide increased invariance to 

orientation and large affine transforms exists. As long as no compromising of algorithm 

efficiency or speed results from algorithm modification, a more robust feature extraction 
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algorithm results and is more useful and accurate in an efficient image recognition 

process. 

2. Improvement in the Interest Point Detection 

We focused effort on the SURF algorithm interest point detection. As previously 

described, the interest point detection and resulting Fast Hessian determinant scale are 

key to producing both the orientation and descriptor region. Although the algorithm is 

designed to detect “blob-like” structures, SURF was applied to basic shapes to determine 

performance in these detection scenarios. All tests were run in MATLAB with the 

OpenSURF algorithm. Five octaves, initial sample size two, and the default threshold is 

used for all tests unless otherwise specified. 

a. Circular Shape 

For the first basic shape, the SURF algorithm was applied to a basic circle image. 

The image was JPEG compressed of size equal to 570 572.  The results of this algorithm 

is shown in Figure 23. The circular shape has SURF circle overlays centered at the 

interest point coordinates, with interest point strength represented by the circle size and a 

green orientation vector in each. 

 

Figure 23.  OpenSURF algorithm applied to a basic circle shape. 
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As previously stated, although the SURF algorithm is not designed to detect edges 

or corners specifically, the result is expected to be consistent regardless of the specific 

object's size and orientation. With the circle in Figure 23, it is seen that there are few 

interest points detected around the cardinal directions of rotation. Additionally, more 

interest points are detected located around the 45  and 225  directions as compared to 

those detected in the 135  and 315 directions. The inconsistent detection in these 

directions is due to the box filter orientation (specifically the 
xyD  filter). In computing the 

Fast Hessian determinant, the 
yyD  kernel detects circle's upper and lower parts, while the 

xxD  gets a zero response. The opposite is true for the left and right edges. The SURF 

filter responses for the individual kernels using filter size equal to nine are shown in 

Figure 24. 

 

Figure 24.  Fast Hessian box filter responses for circle image using a filter size 

equal to nine ( ). 

It can be seen in Figure 24 that the xxD  box filter responses on the circle's top and 

bottom and the 
yyD  filter responses on left and right are weak. Since the Fast Hessian 

determinant multiplies xxD  and 
yyD  responses together, a small or zero response from 

either of these values results in their product being zero and the point of interest falling 

below the threshold in the interest point 3D search algorithm. 

, ,xx yy xyD left D middle D right  
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b. Hexagon Shape 

Next, the SURF algorithm is applied to a hexagon shape to investigate the effect 

of corners with non-right angles and different orientations. There are also straight-edged 

sides with orientations along cardinal directions and ones that are offset. The hexagon in 

Figure 25 has JPEG compression and is of size equal to 276 250.  

 

Figure 25.  OpenSURF algorithm applied to a basic hexagon. 

The SURF algorithm response obtained for the hexagon image shows the same 

inconsistencies as those observed for the circle, with non-vertical and horizontal edges 

receiving the majority of SURF points. In addition, there is also inconsistent detection for 

the corners. 

c. Square Shape 

We now move to a square that has four corners that ideally receive the same 

SURF points and four straight edges that are aligned with the cardinal directions. The 

square image in Figure 26 has JPEG compression and is of size equal to 751 722.  
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Figure 26.  OpenSURF applied to a basic square. 

Results shown in Figure 26 indicate that the detector ignores edges for the same 

reasons as noted for the circle. The algorithm is more consistent for corner detection on 

the square, but the number of interest points, size, and orientation are not identical for all. 

d. Star Shape 

The last basic shape considered is the star, which presents more complexity than 

the previous basic shapes considered. The star image in Figure 27 has JPEG compression 

and is of size equal to 571 494.  

 

Figure 27.  OpenSURF algorithm applied to a basic star shape. 
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The star shape shown in Figure 27 results in the highest number of SURF points 

for the basic shape examples considered. This is expected because the star has the highest 

number and concentration of “blob-like” regions; however, inconsistencies in the SURF 

points are still observed. Note that some of the strongest SURF points are inconsistent 

with regards to detection, orientation, and region size. 

The second-derivatives, which are approximated in the Fast Hessian, give strong 

responses to blobs and ridges at certain angles. One problem is that a function based on 

the Hessian determinant does not detect long structures when the second-derivative is 

small [15]. This result can be useful to discriminate between possible objects with more 

complex shapes and edges but only when the detector is consistent regardless of object 

orientation. 

C. EXPLANATION BEHIND ALGORITHM MODIFICATION CHOICE 

In taking a deep look at the SURF algorithm, which is considered a comparison 

benchmark for many new feature detection algorithms [10], [36], [37], [39] , some 

consistency issues were discovered that led to efforts focused on modifying the algorithm 

in this work. The main reason behind such proposed modification is to obtain a more 

consistent detection process and Fast Hessian determinant values for image features. 

More detail is covered in the following sections. 

1. Fast Hessian Determinant Weakness to Image Characteristic Changes 

As seen in Section II.C.1, the Fast Hessian determinant gives different values for 

similar features in an image which is translated, rotated, or subject to other common 

transformations. This is apparent in the inconsistent detection results obtained for the 

similar features contained in the basic shapes shown in Section II.B.2. 

In SURF, the algorithm's orientation step is designed to compensate for feature 

rotation effect by determining the Haar wavelet filter alignment for use in the region 

surrounding the interest point [6] by aligning the x  response filter with the orientation 

vector. Since the orientation search region size, Haar filters size, and Gaussian smoothing 

kernels standard deviation are dependent on the Hessian determinant value, it is 
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important that consistent values be obtained under various image orientations and 

transformations. Additionally, the feature extraction results might not be reliable when 

some lines or edges are not properly or consistently detected. 

2. Generating a Fast Algorithm Modification that Improves SURF 

Image Transformation Invariance 

From Section II.A.3, it was seen that SURF compares favorably with other feature 

detection algorithms. This is especially true when accounting for algorithm speed versus 

the SIFT algorithm [8], [9], [10]. Although there are very slight advantages in 

performance to SIFT, the results for scale, illumination, compression, and blurring 

invariance for SURF are all very close to the best [7], [8], [9], [10]. Due to the fast 

convolution method of box filtering [6], [17], [18], SURF is consistently a faster 

algorithm than SIFT [8], [9] [10], with some programming implementations better 

optimized than others. This indicates that the SURF algorithm has a good basis for 

defining image features. 

With the speed and effectiveness of SURF in mind, there are four main 

components to the algorithm which in principle we could improve: scale space formation, 

3D interest point search, orientation assignment, and feature descriptor generation [6], 

[17], [18]. The main benefit of attempting to advance the interest point search is speed, 

which is beyond the scope of this work. The algorithm's orientation and feature descriptor 

generation stages which are based on Haar wavelets do well in defining the feature region 

details. As was described in Section II.A.2, the actual region and other tools are 

dependent on the Fast Hessian determinant value. Using integral images and box filters 

for fast convolution filtering is an extremely efficient approach to generate scale space 

difference of Gaussian approximations [6], [21], so this speed is an algorithm property 

that is desirable to maintain. Thus, what is left is integral image box filter modification. 

Therefore, improving the repeatability of the Fast Hessian determinants is focused on in 

this work, and this focus leads to the development of a possible solution for the SURF 

algorithm interest point detection limitations, which are discussed in the next chapter. 
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III. OPENSURF ALGORITHM DEVELOPMENT AND TESTING 

METHODOLOGY 

In this chapter we present a SURF algorithm variation which makes detected 

features less sensitive to image transformations. As seen in the previous chapters, the box 

filters used for the standard SURF implementation are not omnidirectional and tend to 

favor certain directions based on their static alignment with the image. We extend this 

class of filters by changing the "box" orientation by a 45  counterclockwise rotation. 

A. DEVELOPMENT, MODIFICATION, AND USE OF ALGORITHMS 

In this development, the algorithm described in Section II.A.2.f is utilized as the 

baseline for proposed modification. The algorithm chosen is covered under the Berkeley 

software distribution (BSD) 3-clause license, which allows for modification and 

redistribution as long as the license follows the code. It does not allow using the 

copyright owner’s name to promote products and states that the code is provided as is 

[47]. An open-source license allows us the most flexibility for modification and future 

use. Note that a MATLAB testing environment does not provide the best results if speed 

is a required component of result for evaluation. However, MATLAB is a very effective 

tool in assessing the feature detector-descriptor performance in comparison to a baseline 

SURF implementation, which is the outcome desired for this work. 

1. Modifications to the OpenSURF algorithm using MATLAB 

We had two goals in modifying the OpenSURF algorithm to fit the testing needs. 

The first and primary one is to create a more robust interest point detector that is more 

invariant to rotation and other deformations than the original SURF. Second, a user-

selected option is desired that provides the ability to visualize the integral image box 

filtering kernel responses for all of the different filter sizes. This option allows for a more 

detailed analysis as to why the algorithm detects certain features in some images but not 

others in order to give insight into the limitations and areas for improving the SURF 

algorithm. 
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2. Algorithm Additions for Troubleshooting and Visual Exploration 

The OpenSURF algorithm has visual tools for both the orientation and descriptor 

for each interest point but lacks a visual tool to assess how the responses of each Fast 

Hessian filter affect interest point detection [25]. The integralFilter function from the 

MATLAB 2013b computer vision toolbox was utilized, with filters carefully generated 

(both rotated and regular) using the integralKernel function. A user-selected option to 

display the filter responses from the integral image for the ,xxD ,yyD and 
xyD  filters as 

well as the results from Equation (4) for one filter is provided. Additionally, the user can 

select to display the image response results of Equation (4) for all filter sizes. This option 

provides the opportunity to deeply analyze how individual filters affect the SURF 

algorithm interest point generation and gain insights as how to improve the feature 

detection portion. 

For the single filter option, the algorithm also displays the box filter in a version 

that can be analyzed down to the pixel level. The 9 9  Fast Hessian box filter responses 

on the Lena image provided with the OpenSURF algorithm [25] is seen in Figure 28. 

 

Figure 28.  xxD  (left), 
yyD  (middle), and 

xyD  responses from SURF Fast 

Hessian box filtering with size 9 9  kernels. 

3. Rotated SURF and Combined SURF Algorithm Additions 

The primary method developed to improve consistency in the Fast Hessian 

determinant value to common rotation image changes was to use rotated box filters. The 

rotated filters can be designed in a fashion that is computationally as efficient as those in 
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the original SURF algorithm. The combined version requires twice as many calculations 

in the box filtering stage (though the combined version is optimal for parallel processing 

with no loss in computational efficiency). Additionally, time savings is achieved in 

reducing calculations associated with orientation, descriptor generation, and matching of 

undesired or noisy keypoints if the algorithm provides more discrimination in detecting 

only useful interest points. 

a. Rotated SURF 

The rotated SURF (R-SURF) development for the 45  rotated box filter 

implementation is presented in this section. Recall, three filters (named xxD , 
yyD , and 

xyD ) are used to generate the DOG approximations at different octaves in scale space. In 

order to maintain the proper second-derivative Gaussian standard deviation kernels that 

generate the approximated DOG within the octaves, care needs to go in to maintaining 

kernel proportions (length and width) that are close to those in the original Fast Hessian. 

With these constraints in mind, rotated box filters were generated with a 45

counterclockwise rotation. Examples of size 15 filters are shown in Figure 30. The 45  

amount of angle rotation was chosen for two reasons. The first is that Hessian-based 

detectors were shown weakest in their repeatability at odd multiples of 45  rotation 

between images [18]; thus, we hypothesized that responses more robust to image rotation 

and other transformations could be obtained if the box filter kernels were oriented in a 

direction of low repeatability observed in the original SURF algorithm. A second reason 

for choosing this rotation angle is that it corresponds to box filters that can be applied as 

efficiently as those used in the original SURF algorithm. 

One SURF algorithm benefit is that it contains an extremely fast four-array access 

lookup for computing the box filter results of integral images as described in Sections 

II.A.2.a(2) and (3), and the speed advantage of four array lookups per box filter can be 

maintained if the SURF filters are rotated by 45 . Lienhart and Maydt proposed a four-

index lookup for a 45  offset rectangle of pixels that have had the integral image 

operation performed [48]. From Figure 29, the four array indices required to obtain the 
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sum of pixel values for a rotated box region is seen. The formula for computing the sum 

of all image elements subjected to the rotated box filter is defined as 

 4 1 2 3A L L L L    , (9) 

where A  is the sum of the pixel values prior to integral image and nL  are the pixel values 

at indicated locations after the integral image computation is performed [49]. 

   

Figure 29.  Rotated summed area table (RSAT) example [49]. 

Although the original second-derivative Gaussian filter kernel’s ratio of length 

and width were not exactly maintained due to the difference in individual pixel diagonal 

corner to corner length (when compared that from the horizontal and vertical side to 

side), care was taken to approximate the filter kernel dimensions as closely as possible. 

Rotated Fast Hessian filter kernels of size equal to 15 are displayed in Figure 30. 

b. Combined SURF 

The combined SURF (C-SURF) algorithm is a simple modification using both the 

regular SURF Fast Hessian responses from each filter size and adding them together. 

Next, the sum is divided by two. Additionally, a stochastic version was developed where 

the regular to rotated variable ratio for the summation is determined by a uniform random 
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variable. The goal of this detector was to improve the rotation invariance, but from 

testing both the combined and combined stochastic detectors did not perform as well as 

the rotated and regular detectors. We assess that the rotated and regular filters are not as 

closely related as originally anticipated. This appears to result from either the filter kernel 

pixel structure or the rotated kernel length to width ratio not exactly matching that of the 

regular Fast Hessian filters. The pixel differences are most pronounced for the smaller 

filter sizes. 

 

Figure 30.  Rotated SURF box filter kernels for filter size 15 (Left side original 

SURF, right side rotated). 
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B. TESTING PLAN METHODOLOGY 

The performance of the proposed rotated SURF algorithm was compared to that 

obtained with the original SURF 64-point descriptor algorithm with the same settings. 

The different image transformations presented below are tested: 

 Affine (viewpoint) 

 Blurring 

 Illumination 

 JPEG compression 

 Scale with rotation 

The test set was utilized by Mikolajczyk and Schmid and also Bay in his initial 

testing of the SURF algorithm [6], [17], [18]. The set consists of MATLAB test files 

obtained from the Katholieke Universiteit Leuven visual geometry group website where 

files are open source for use [32]. These tests use known homography between images 

displayed in Figure 32 through Figure 39. The homography is used as a testing algorithm 

input with the interest points and descriptor regions to investigate how well the detector-

descriptor combinations performed through different image transformations [14], [15]. 

Note that the reason behind utilizing images that are homographically related is 

the ability to apply a matrix and the detector and descriptor results to a performance 

evaluation algorithm. Then, test results for detector region overlap and descriptor 

performance versus changes in viewpoint, rotational, or other image properties can be 

accurately obtained [15]. Mikolajczyz et al. reported their evaluation methods in two 

published papers: one for detectors and one for descriptors [14], [15]. A major goal in 

this thesis is detection testing on affine regions to measure the modified detector 

performance, so the detector testing methodology was selected [15]. Repeatability is one 

is a primary parameter used to evaluate a detector's performance, which is defined as the 

number of detected true positive (TP) correspondences between two regions under 

different geometric and image transformations [13] [15]. Another important factor is the 

location and follow-on descriptor region accuracy [15]. In this testing methodology, 
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repeatability is determined by a threshold value of overlap error o  between the resulting 

interest point and area resulting from the strength of the interest point. The threshold o  

is applied to 
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where the variables a  and b  are indexes for the original and homographic-related image 

respectively. The elliptic region R  is defined by 1.Tx x   The homography between 

the images H  is a 3 3  matrix for each image pair in the test set [32]. Repeatability is 

then defined as the number of region-to-region correspondences that meet the threshold 

value of o  divided by the smaller number of total interest points between the two images 

[15]. The illustration in Figure 31 shows the effect overlap occurring between two 

regions has on the overlap error value. 

 

Figure 31.  Examples of overlap error o  between corresponding regions, from 

[15]. 

A second criterion for detector evaluation is the matching score. A region match 

is defined as the number of correct detector matches where regions exceed the criteria 

0.4o   or 40%,  with only a single match allowed per region. The matching score is the 

ratio of correct matches to the smaller number of detected points between the two images 

[15]. A match is determined by using the nearest neighbor concept in descriptor space 

with a Euclidean distance metric. The goal in this test is evaluate feature distinctiveness 
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[15]. While the repeatability focuses on the two region's location and overlap, the 

matching score metric takes into account the descriptor and how well it works with the 

detector to identify a matching region [15]. 

In addition to the differences in the image characteristics, the data set images are 

designed to presents a contrast between structured homogeneous scenes with distinctive 

edge boundaries and various types of textured scenes [14]. Each test set contains six 

images with different transformation levels applied, but for ease of viewing only four are 

displayed. 

1. Affine (Viewpoint) Transformation Invariance 

Affine invariance is another important characteristic for a feature detector and 

descriptor. An unpredictable factor for an incoming image is the viewpoint of a camera or 

sensor in relation to objects and features. For example, there is 360  of possible 

viewpoint range on land or sea and another 180  vertically in the case of maritime 

vessels. Viewpoint changes ranging from 20  to 60  were applied in both image sets 

from Figure 32 and Figure 33. Note, the brick wall is considered a textured scene while 

the graffiti is considered a structured scene [14]. 

 

Figure 32.  Brick wall test set with affine (viewpoint) changes, after [32]. 
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Figure 33.  Graffiti wall test set with affine (viewpoint) changes, after [32]. 

2. Image Blurring Invariance 

The sequence starts with the original image in the upper left of Figure 34 and 

Figure 35, and blurring distortion is progressively introduced. Five blurred versions are 

used in the tests in additional to the original image. Blurring invariance is important 

because it is usually not known whether the images received are from a clear day, one 

with high fog, a lot of rain, or from a camera with a dirty lens. The bikes present a 

structured scene, while the trees are a textured scene [14]. 

 

Figure 34.  Bikes test set with varying of blurring, after [32]. 
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Figure 35.  Trees test set with varying of blurring, after [32]. 

3. Illumination Change Invariance 

Illumination change invariance is a critical part of a feature detection algorithm. A 

given object of interest can appear quite different when it is in the shade, recorded during 

a very bright and sunny day, or during dark and cloudy evening. The car and building 

data set shown in Figure 36 illustrate the potential changes in the image when camera 

settings are modified for the same image view, scale, and rotation. The car and building 

test set is considered a structured scene [14]. 

 

Figure 36.  Cars and building test set with varying illumination levels, after [32]. 
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4. Joint Photographic Experts Group (JPEG) Compression Invariance 

JPEG Compression invariance is important in a feature detection algorithm. The 

impact resulting from increasing levels of JPEG compression is illustrated in Figure 37, 

where the original image shown at the top left and other images vary in compression up 

to over a 20-to-one compression ratio for the image contained in the bottom right of the 

figure. The detection and recognition of features should be robust to compression 

changes. The building images are considered structured scenes [14]. 

 

Figure 37.  Building and trees test set with varying of JPEG compression, after 

[32]. 

5. Scale Invariance with Rotation 

Next, two image sets used by Mikolajczyk and Schmid in their performance 

evaluation of multiple local descriptors are utilized. Both sets have six images and 

combine rotation and scale changes with rotation between 30  and 45  and scale changes 

between one and four. The bark scene in Figure 38 is a textured scene, and the boat scene 

in Figure 39 is a structured scene [14]. 



 64 

 

Figure 38.  Bark and leaves test set with rotation and a scale factor change, after 

[32]. 

 

Figure 39.  Boat test set with rotation and a scale factor change, after [32]. 
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IV. SIMULATION RESULTS 

The results obtained for the test scenarios discussed in Section III.B on all eight 

test sets are presented in this section [50]. All graphs in this section with the performance 

metric repeatability use a value for the overlap error 40%o  . More restrictive 

repeatability graphs with threshold value 20%o   and less restrictive graphs with 

threshold value 60%o   are provided in the Appendix for all detectors and test sets 

considered in this study. Recall the concept of overlap error ,o  which was discussed in 

Section III.B and illustrated in Figure 31. 

In all testing, identical settings were used for all OpenSURF algorithm detectors 

including the number of octaves (five), initial sampling size (two), and Fast Hessian 

interest point threshold value equal to 0.0002, which are default values for the original 

OpenSURF algorithm [25]. In addition to the original and rotate SURF version discussed 

earlier, a proposed combined algorithm was tested where the overall Fast Hessian 

determinant values used in that implementation is the averaged value obtained from the 

regular and rotated filters. Last, a proposed stochastic version of combined SURF 

algorithm was investigated. In the stochastic configuration, the two weighting parameters 

used to combine regular and rotated filters are randomly selected following a uniform 

density with values between 0 and 1. Specifically, the first coefficient is selected using 

the MATLAB rand function to weight each sample from the regular SURF filters, while 

1 rand  is applied to the rotated filter samples. The basic idea behind the stochastic 

methodology was to investigate whether a weighting other than basic averaging leads to 

better performance. 

1. NNDR Matches to Total Ipts Ratio Test for all Test Sets 

The first stage of our experiments investigated whether the rotated and combined 

algorithms performed well using a basic matching metric and test before moving into the 

testing to evaluate whether the matches were accurate. This test was to screen the 

detectors; if a detector is not able to provide matching criteria comparable to the original, 
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then it does not merit further testing. All eight image sets described in Section III.B were 

used for the first test. A MATLAB test function we created reshapes the Ipts structure 

data from all SURF algorithm outputs to a format that corresponds with the MATLAB 

matchFeatures function input requirements. This test function uses the NNDR matching 

approach and the Euclidian metric for the individual features. The cumulative results 

from the initial test in Figure 40 are displayed. Note that a larger value of NNDR is 

preferred; although, with this test it is not known whether the match is correct or 

incorrect. If the NNDR-to-Ipts ratio is equal to one, then every possible interest point is 

matched to another in the second image. 

 

Figure 40.  NNDR matches / total Ipts vs. test number for all eight affine 

covariant test sets. 

Matching test numbers indicated in Figure 40 are associated to the test images as 

follows: one through five the bark and leaves test set, six through 10 the bikes, 11-15 the 

boat 16-20 the graffiti, 21-25 the cars and building, 26-30 the trees, 31-35 the building, 

and 26-40 the brick wall. All four detectors follow the same matching behavior patterns, 

with the combined stochastic method being outperformed consistently during this 

evaluation. Results show a large positive trend in the rotated algorithm's ability to 
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calculate a larger percentage of matches using a ratio of NNDR to the total number of 

Ipts found than the regular SURF algorithm for the bike, building, and brick wall test sets 

and comparable results for the others. Now that we have established that the new rotated 

detector achieves a higher percentage of detected point and descriptor matches for some 

of the tests, we investigate whether those matches are “quality” matches with the testing 

criteria discussed in Section III.B. 

In the remaining tests, the repeatability graphs have an overlap error threshold o  

less than 40% . This specific threshold value is that used by Mikolajczyz et al. in their 

detector testing comparison and is used here to provide a good baseline for reference 

[15]. Tests results obtained at other threshold values are included in the Appendix. 

2. Affine Transformation Invariance 

The detector's response to affine (viewpoint) variance was tested on the brick wall 

and graffiti data sets, respectively, shown in Figure 32 and Figure 33. 

 

Figure 41.  Repeatability versus viewpoint changes for tested detectors on brick 

wall test set with o  threshold value equal to 0.4.  
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Results indicate the rotated detector has the highest repeatability factor through 

the range of viewpoint changes considered for the textured brick wall scene, as shown in 

Figure 41. The regular detector starts out with around a 10%  disadvantage in 

repeatability at a 20  viewpoint offset, with all detectors performing poorly at a large 60  

viewpoint change value. 

The same trend for matching scores as a function of viewpoint angle changes is 

observed in Figure 42 for the textured brick wall scene. The rotated detector performs 

better than the other detectors considered for viewpoint changes of 20  and 30 ,  with all 

detectors performing poorly at viewpoint changes larger than 40 .  

 

Figure 42.  Matching score % versus viewpoint changes for tested detectors on 

brick wall test set. 

Repeatability versus viewpoint changes for tested detectors on the brick wall test 

set with o  threshold value equal to 0.2 and 0.6 can be found in the Appendix in Figure 

73 and Figure 74. 
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Figure 43.  Repeatability versus viewpoint changes for tested detectors on 

graffiti test set with o  threshold value equal to 0.4.  

The only notable takeaway point which can be made from the repeatability results 

obtained from the structured graffiti scene in Figure 43 is that the rotated and combined 

detectors perform better than the other two at a smaller viewpoint angle change of 20 .  It 

is of note that the Fast Hessian based detectors all do very poorly at matching points on 

this textured scene at larger viewpoint changes. The results also show that the rotated 

detector performs better than the others considered when the overlap error threshold 

value o  increases to 60% as shown in Figure 66 of the Appendix. 

For the graffiti test set, all detectors show poor repeatability scores as shown in 

Figure 44. With the low matching results, there is not much that can be derived from 

these results except that a Fast Hessian based detector does not appear to work well 

through affine transformations of a structured scene with the graffiti image properties. 

Repeatability versus viewpoint changes for tested detectors on the graffiti test set 

with o  threshold value equal to 0.2 can be found in the Appendix in Figure 65 and 

Figure 66. 
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Figure 44.  Matching score % versus viewpoint changes for tested detectors on 

graffiti test set.  

3. Image Blurring Invariance 

The detector response to blurring changes was tested using the bikes data set 

shown in Figure 34, and the trees test set shown in Figure 35. 

 

Figure 45.  Repeatability versus blurring changes for tested detectors on bikes 

test set with o  threshold value equal to 0.4.  
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The results shown in Figure 45 indicate that the rotated detector performs the best 

for repeatability throughout the blurring range applied to the bikes image. The results in 

Figure 46 show the rotated detector has the higher matching scores than other detectors 

for the bikes test set. The regular and combined detectors track each other closely until 

the rotated detector degrades to their matching performance at higher blurring levels. 

 

Figure 46.  Matching score % versus blurring changes for tested detectors on 

bikes test set.  

 

Figure 47.  Repeatability versus blurring changes for tested detectors on trees 

test set with o  threshold value equal to 0.4.  
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Results obtained on the tree test set show the rotated detector has consistently 

higher repeatability results than the other detectors for all blurring levels considered, as 

shown in Figure 47. 

 

Figure 48.  Matching score % versus blurring changes for tested detectors on 

trees test set.  

Results shown in Figure 48 indicate the rotated detector has the highest matching 

scores throughout the blurring changes for the textured tree scene. Note the improvement 

is not as large as that observed for the repeatability tests shown in Figure 47. Further, the 

combined and regular detectors once again have very similar performances. 

Repeatability versus viewpoint changes for tested detectors on the bikes and trees 

test sets with o  threshold value equal to 0.2 and 0.6 can be found in the Appendix in 

Figures 61, 62, 69, and 70. 

4. Illumination Change Invariance 

The detector response to illumination variance was tested using the cars and 

building data set shown in Figure 36. 
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Figure 49.  Repeatability versus illumination changes for tested detectors on cars 

and building test set with o  threshold value equal to 0.4. 

Results from Figure 49 show the rotated detector having higher repeatability 

scores throughout the range of illumination changes applied to the structured car and 

building scene. This improvement is less than 5% over the combined detector throughout 

but ranges between 5 to 10% over performances obtained with the regular detector. 

 

Figure 50.  Matching score % versus illumination changes for tested detectors 

on cars and building test set.  
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The rotated detector again shows slightly better matching score performance 

throughout the range of illumination changes over the regular and combined detectors, as 

shown in Figure 50 for the structured car and building scene. Repeatability versus 

viewpoint changes for tested detectors on the cars and building test set with o  threshold 

value equal to 0.2 and 0.6 can be found in the Appendix in Figure 67 and Figure 68. 

5. Joint Photographic Experts Group (JPEG) Compression Invariance 

The detectors' response to JPEG compression variance was tested using the 

building data set in Figure 37. 

 

Figure 51.  Repeatability versus JPEG compression changes for tested detectors 

on building test set with o  threshold value equal to 0.4. 

Results show the rotated detector performs better with respect to repeatability 

throughout the range of JPEG compression levels considered as illustrated in Figure 51. 

The rotated detector appears to be more robust to increasing JPEG compression levels 

than the other three detectors considered. Finally, we note the rotated detector's matching 

score in Figure 52 follows the repeatability trends under JPEG compression variations for 

the structured building scene data set as those previously observed for repeatability. 
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Figure 52.  Matching score % versus JPEG compression changes for tested 

detectors on building test set.  

6. Scale Invariance with Rotation 

We utilized both the bark and leaves test set from Figure 38 and the boat test set 

from Figure 39 in testing for scale changes. 

 

Figure 53.  Repeatability versus scale changes for tested detectors on bark and 

leaves test set with o  threshold value equal to 0.4.  
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The results in Figure 53 show an initial higher repeatability for the rotated 

detector at small scale change value. However, the regular detector performs better for 

scale changes between 1.5 and two. Overall, the regular detector appears to be the best 

for this textured scene through transformations with larger scale changes and rotation. 

The regular detector again outperforms in matching score results though the range 

of scale changes for the textured scene shown in Figure 54, with very close scores 

obtained for all detectors at the lower and higher end of scale changes. 

 

Figure 54.  Matching score % versus scale changes for tested detectors on bark 

and leaves test set.  

The rotated detector again performs slightly better than the other three detectors 

on small scale change values, while the regular detector performs slightly better for 

higher scale change values on the structured scene in Figure 55. Note that the rotated 

detector has the best results for scale changes on this structured scene with the overlap 

error threshold set to 60% in Figure 64 of the Appendix in Figures 59, 60, 63, and 64. 



 77 

 

Figure 55.  Repeatability versus scale changes for tested detectors on boat test 

set with o  threshold value equal to 0.4. 

 

Figure 56.  Matching score % versus scale changes for tested detectors on boat 

test set.  
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The rotated detector's matching score in Figure 56 is superior for smaller scale 

structured boat test set scene change values. The regular detector becomes the best 

performing for the second and third scale change increases, and all detectors converge for 

the two highest levels of scale change. Repeatability versus viewpoint changes for tested 

detectors on the boat and the bark and leaves test sets with o  threshold value equal to 0.2 

and 0.6 can be found in the Appendix. 

7. Results Summary 

To summarize the results of this section, we state the following: 

 The rotated and regular detectors both have performance advantages over 

each other dependent on the type of image transformation, transformation 

level, and scene characteristics. 

 The combined and combined stochastic detectors appear to have weaker 

overall performance than the other two. 

 The rotated detector is clearly better in the test results for image blurring, 

illumination changes and JPEG compression. 

 The regular detector performs better for tests conducted when subjected to 

scale changes, though the rotated version is very good at low levels of this 

transformation. 

 Since the test images in Figure 38 and Figure 39 exhibit both rotation in 

and scale change transformations, any future test should be designed to 

isolate the rotation and scale variation. 

 For viewpoint or affine invariance the rotated detector clearly performs 

better on the texture brick wall scene of Figure 32. 

 Finally, no detector performs well on larger viewpoint changes for the 

graffiti scene shown in Figure 33. 
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V. ORIGINAL WORK PERFORMED IN THIS THESIS 

A. ALGORITHM DISPLAY AND TROUBLESHOOTING IMPROVEMENTS 

A basic functional description for the modifications performed to enhance 

troubleshooting capability in the OpenSURF algorithm is found in Section III.A.1. The 

modified algorithm requires user selected inputs when the algorithm is initially run. The 

unmodified algorithm requires the user to input options as a structured array, which 

includes the number of octaves, threshold for interest point detection, initial 2D sampling 

size for the first octave, selection of a 64 or 128 point descriptor, choice of SURF or U-

SURF versions, and a visual display of orientation responses and descriptor bins for each 

interest point. The user is given an option of either running the variations of SURF with 

default parameters (which defaults to the faster original algorithm), or selecting options 

using the pop-up shown in Figure 57. 

 

Figure 57.  The initial OpenSURF selection menu addition. 

When the “Select Options” button is chosen, a series of screens opens allowing 

the user to choose user-selected options as well as the option to generate visual responses 

for one or all filter sizes. 
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B. ROTATED SURF AND COMBINED SURF 

The R-SURF and C-SURF options were added to the MATLAB OpenSURF 

implementation. A basic description of the modification's purpose was described in 

Section III.A.3. In order to implement these algorithms, the OpenSURF code was 

modified to include conditional statements based on the user-selected options to execute 

either the regular, rotated, or combined SURF options. Refer to Figure 58 for an updated 

algorithm flow-chart, which contains the R-SURF and C-SURF additions as well as the 

filter response options described in Section V.A. 

 

Figure 58.  Modified OpenSURF algorithm flow diagram, after [25]. 
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VI. APPLICATION TO AUTOMATED MARITIME VESSEL 

RECOGNITION 

In order to correctly classify maritime vessels from images or video feeds, there 

needs to be a good combination of detector, descriptor, matching scheme, and finally 

filtering or organizing of results with a database, thresholding, or learning algorithm. 

Work by Rainey et al. was described in Section I.B. Additional work on integrating 

already existing detector, descriptor, and matching/learning algorithms for the purpose of 

ship detection (not recognition) was performed by Camp [51]. 

The research presented in this thesis focused on designing an improved feature 

detector by introducing rotated filters to the original SURF implementation. The resulting 

algorithm, called R-SURF, performed better than the regular SURF detector when facing 

JPEG compression and blurring degradations, which are two problems associated with 

image collection at sea. The R-SURF detector also performed well on viewpoint or affine 

invariance, which is crucial with all possible object or feature view angles. One weakness 

still present in the proposed R-SURF approach is image scale invariance. The rotated 

detector performs the best with smaller scale change on the tests conducted, which 

indicates that it may be well suited for the ranges that recognition would be performed 

between a maritime vessel and an image sensor on an aviation or surface platform; 

however, the proposed R-SURF approach is not suited for recognition of vessels at long 

distances in its current design. 

Additionally, the computational load is a major concern for a detection-

descriptor-matching process applied to continuous video feeds. For that reason, SURF or 

SIFT may not be best suited for the initial screening process. A faster algorithm with 

binary descriptors can be used as a screening for continuous video feeds such as the ORB 

or FREAK approaches briefly described in Sections II.A.4.d and II.A.4.f. Both 

algorithms were designed for low complexity monitoring of continuous video feeds, and 

may be useful tools prior to applying more sophisticated detectors such as SURF or R-

SURF approaches for recognition. 
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 Another obstacle to recognition is background clutter, especially in a port that 

may contain clutter that resembles the ship features. It is a very difficult problem to 

segment objects of interest from a similar background. If looking towards recognition and 

identification of an unknown maritime vessel, then knowing the characteristics a priori to 

differentiate the object from the background interest points is not usually an option. For 

the problem of clutter, getting the most correct information from each stage is crucial. 

Detectors must be repeatable and develop useful regions, descriptors must take those 

useful regions and accurately identify it with some invariance to image scene changes, 

and the matching and decision algorithms must be able to separate useful from non-useful 

points and group them to allow for successful recognition.  

For the problem of automated maritime recognition, the most likely solution for 

aerial surveillance is 3D reconstruction of images and 3D image databases. 3D 

reconstruction is a computationally expensive solution that requires large databases but 

the only answer likely to result in quality recognition rates of maritime vessels in port 

scene. Bay, who developed the original SURF, did so with the goal of conducting 3D 

point and line correspondences for the purpose of reconstruction [18]. 3D reconstruction 

research can also be an extension of homography estimates derived from points of 

interest in for detector and descriptor evaluation of Mikolajczyz et al. [14], [15]. There is 

also a lot of other work in 3D reconstruction being accomplished by Google in Project 

Tango [52]. In the author’s opinion, using interest point detectors and descriptors along 

with a matching strategy to reconstruct 3D images in a database is the path to high 

recognition rates with low false positives.  
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VII. CONCLUSION 

In this research, the effectiveness of a scale space based computer vision 

algorithm, called SURF, has been investigated and a modification proposed to improve 

its performance. Particular attention was given to the detector, which need to identify a 

set of interest points to be characterized by the descriptor. This process needs to be robust 

to image transformations as outlined by Mikolajczyk et al. in their work on the 

performance of region detectors [15]. If a region detector does not provide an accurate 

region for orientation and descriptor generation, there is very little chance that a 

descriptor will be useful in follow-on matching schemes. 

Inconsistencies in the existing SURF detector have been identified which make 

the algorithm less robust to image rotation and other transformations. It has been 

determined that this is a consequence of the Fast Hessian implementation, which tends to 

have inconsistencies with regards to detection in the face of different feature orientation, 

location within the image, and other deformation factors. The proposed filter 

modification improves upon most of these issues, with the possibility of further advances 

in varying the rotated design and kernel proportions. 

In addition, we compared the performance of a number of SURF detectors under 

different perturbations, such as affine translations, varying illumination, JPEG 

compression, blurring, and scale transformations with rotation. The detectors tested 

include the regular SURF detector, a rotated SURF detector, a combination of equally 

weighted regular and rotated SURF detectors, and a combination of regular and rotated 

SURF detectors with each sample assigned a stochastic weighting. From these tests, the 

rotated detector clearly performs the best in the presence of blurring and JPEG 

compression of images. The regular detector appears to be the best performer in the 

presence of scale changes, but the rotated outperforms during smaller scale changes. 

Finally, the rotated detector performs the best for viewpoint or affine image changes on 

the textured scene, with all detectors performing poorly on the structured scene of 

graffiti. “ 
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As became apparent, computer vision with dynamic image characteristics is a 

difficult problem that has many area that require additional work. The design requires 

significant effort in order to arrive at an algorithm and system that is robust to input 

image characters changes and has success rates that make it useful in practice. The goal 

for maritime application should be to get an input video or picture from any feed, cell 

phone to high-end detector to satellite image and have information pop up on an 

operator's screen with all the known data about the vessel of interest from a database. 

With the current progress occurring in computer vision, this is an attainable goal but 

requires effort to continue to design a system that is tailored to the specific application 

and the factors and associated problems. The results from this thesis present an 

improvement in the detector, which can be applied to improving the overall recognition 

process. 
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VIII. FUTURE WORK RECOMMENDATIONS 

Computer vision and the associated fields are of great interest to the problem of 

automated recognition. There is work being accomplished in industry and the civilian 

sector that can be leveraged to apply to military applications, but there needs to be people 

dedicated to bringing that technology to a workable and cost-effective solutions that 

multiply force capabilities while reducing requirements for manning. In researching the 

topic, some areas have surfaced that are useful for future study and would greatly assist in 

the ultimate goal of maritime ship recognition. 

A. DETECTOR IMPROVEMENT 

In computer vision, the detection of points of interest locating features in an 

image, which was the focus of this thesis, is a wide-open research area in need of further 

development. The proposed modification to a 45  rotated Fast Hessian shows promise in 

multiple areas and should be further researched to see if different sizes can achieve better 

results. Also, the ability to match the original detector of SURF should be pursued. 

Another possible approach to detector improvement is to use the fast integral 

image and box filtering techniques used by Bay et al. for the SURF algorithm and attempt 

to improve the detector with a slight loss in computational efficiency but a large gain in 

performance [6]. Pires et al. presented the idea of using the fast box filtering technique 

combined with more accurate representations of kernels like the Gaussian, Laplacian, and 

Hessian [22]. This work could be directly applied to modifying the SURF algorithm with 

a follow-on evaluation of performance against the original SURF and the R-SURF 

modification. 

Additionally, many new, efficient algorithms use the FAST version of corner 

detection described in Section II.A.4.b. The BRISK [37], ORB [38], and FREAK [39] 

algorithms all use a version of the FAST detection method for interest points; while this 

technique may improve their computational efficiency, a corner detector is very different 

from the detectors used by SURF [6] and SIFT [16]. These differences merit 
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consideration when designing or using a detector for a particular application to ensure 

they are useful. 

B. INTEREST POINT ORIENTATION ASSIGNMENT 

Orientation assignment has a great impact on the performance of feature-based 

algorithms. The goal of this step is to properly align a detected feature so it can be 

described consistently under different image orientations. A consistent orientation results 

in a more accurate generation of descriptors for matching. 

In Section II.A.2.b(1), a discussion on how the SURF algorithm determines 

orientation using x  and y  Haar wavelet responses was given. The SIFT algorithm uses a 

histogram of gradient magnitudes around an interest point as described in Section II.A.1. 

The ORB algorithm uses a vector defined by intensity moments around their interest 

point as described in Section II.A.4.d. Both the BRISK and FREAK algorithms sum the 

estimated local gradients over selected pairs of samples around the interest points, with 

FREAK using fewer sample points due to their claimed descriptor tolerance to orientation 

error [39]. 

As important as orientation seems to be, especially with the goal of image 

recognition, we were unable to find a standard test criteria that isolated orientation away 

from the detector or descriptor. Mikolajczyk et al. have developed a widely used test that 

isolates the detector [15] and descriptor [14], but the algorithm's orientation portion is 

only evaluated indirectly in the test that measures how well the descriptor performs. A 

standard testing method for testing orientation performance in needed. Otherwise, it is 

difficult to determine whether the descriptor or the orientation is at fault in the algorithm 

matching performance. 

C. DESCRIPTOR IMPROVEMENT 

The descriptor is an important step as it characterizes the object properties, both 

spatially and with regards to intensity. The descriptor has to be distinctive and able to 

distinguish between different objects while repeatable through image transformations. In 

Section II.A.2, it was shown that the detector region size greatly affects how the 
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descriptor is generated. This means that the detector and descriptor design should be 

accomplished as a system, where their performances are both individually and jointly 

evaluated. 

We have shown how the SURF algorithm uses Haar wavelets that are rotated to 

correspond with the orientation to develop a descriptor in Section II.A.2.b(2). This 

descriptor captures intensity changes and can differentiate between low and high spatial 

frequency components. Additionally, it captures spatial information in the way the 

descriptor is generated [18]. One area for improvement is in performing empirical testing 

of different choices of wavelets that possibly might improve detection performance while 

maintaining computational efficiency. 

Another possible area of research is a more targeted sampling pattern for SURF 

similar to that used for binary descriptor generation in the BRIEF [36], BRISK [37], or 

FREAK [39] algorithms. Additionally, the gradient histograms generated for sub-regions 

in SIFT described in Section II.A.1 performed well in testing as shown in Sections II.A.3 

and 4. The SIFT descriptor can be improved by empirical testing as described for SURF. 

There is a balance of speed versus performance that needs to be obtained which is 

additionally affected by how fast the descriptor can be matched. As described in the 

summary and conclusion in Chapter VII, the binary descriptor may be better suited for 

filtering and monitoring, whereas the descriptors from SURF and SIFT may be more 

suited toward recognition. The end use must be considered when designing a descriptor 

to ensure it has the appropriate properties. The listed reasons signal that there is room for 

improvement in all descriptors that exist today, establishing a ripe area for research. 

D. INTEREST POINT AND DESCRIPTOR MATCHING 

We highlighted a few methods used for interest point matching in Section II.A.5. 

These range from individual descriptor matching methods such as basic threshold 

distance, nearest neighbor, and nearest neighbor distance ratio to methods that try to 

group points such as bag of visual words and interest point groups. There are also 

algorithms that attempt to identify particularly reliable and repeatable interest points such 

as RANSAC [45]. Additionally, work by Feineigle et al. that attempted to use spatial 
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information between interest points as a discriminatory method for interest points was 

covered in Section I.B. These are all methods deserving of additional research, especially 

with the application to automated ship recognition. 

E. NEURAL NETWORKS 

Neural networks have been shown to be very effective at discovering and 

recognizing patterns in data that human analysis may overlook. MATLAB provides a 

very user friendly interface for designing neural networks in their toolbox [53]. A topic 

for research could include how to organize the feature data, orientation, and spatial 

information to be applied to a neural network input layer and take advantage of pattern 

recognition capability. This technique can be applied to establish a framework for 

matching features or groups of features. 

F. 3D IMAGE RECONSTRUCTION USING FEATURES 

As described in Chapter VI, we believe 3D image reconstruction using 

correspondences between features can be a huge tool in achieving automated maritime 

recognition. This was the primary focus of Bay's work in [18]. Additionally, Google is 

working on 3D scene reconstructing in project Tango [52]. This type of reconstruction 

requires a sequence of images consistent with a video feed but provides depth and spatial 

context information for recognition that a 2D image does not capture. Additional work by 

Brown and Lowe with mapping a 2D plane to discover interest points along a planar 

surface also has promise in advancing the goal of 3D reconstruction [44]. 

G. BUILDING A MARITIME SPECIFIC IMAGE RECOGNITION 

DATABASE 

We utilized a data set that was designed to test detectors for performance in 

detecting corresponding regions for transformed images [32]. This dataset has known 

homography between images that can be utilized in detector and descriptor performance 

testing [14], [15]. A lot of information in the development of homographic testing 

methods is available in the work of Mikolajczyk et al. [14], [15]. Hartley and Zisserman 

published a large body of work in multiple view geometry in computer vision that is a 
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good reference point for establishing base knowledge related to this subject [27]. 

Additionally, quality work was accomplished by Dubrofsky on homography estimation 

[54]. While it is easy to find images of different perspectives of maritime vessels for use 

in the detector-descriptor-matching sequence, developing a database of image with 

known homographies and a standard testing method allows more in-depth research of 

feature detectors and descriptors on maritime vessels. This database could serve a dual 

purpose of testing as well as the groundwork for a database with the purpose of 3D 

reconstruction. 
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APPENDIX. AFFINE COVARIANT DATA SET TEST RESULTS 

A. BARK AND LEAVES TEST SET RESULTS 

 

Figure 59.  Repeatability versus scale changes for tested detectors on bark and 

leaves test set with o  threshold value equal to 0.2. 

 

Figure 60.  Repeatability versus scale changes for tested detectors on bark and 

leaves test set with o  threshold value equal to 0.6.  
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B. BIKE TEST SET RESULTS 

 

Figure 61.  Repeatability versus blurring changes for tested detectors on bikes 

test set with o  threshold value equal to 0.2.  

 

Figure 62.  Repeatability versus blurring changes for tested detectors on bikes 

test set with o  threshold value equal to 0.6.  
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C. BOAT TEST SET RESULTS 

 

Figure 63.  Repeatability versus scale changes for tested detectors on boat test 

set with o  threshold value equal to 0.2. 

 

Figure 64.  Repeatability versus scale changes for tested detectors on boat test 

set with o  threshold value equal to 0.6.  
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D. GRAFFITI TEST SET RESULTS 

 

Figure 65.  Repeatability versus viewpoint changes for tested detectors on 

graffiti test set with o  threshold value equal to 0.2.  

 

Figure 66.  Repeatability versus viewpoint changes for tested detectors on 

graffiti test set with o  threshold value equal to 0.6.  
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E. CARS AND BUILDING TEST SET RESULTS 

 

Figure 67.  Repeatability versus illumination changes for tested detectors on cars 

and building test set with o  threshold value equal to 0.2.  

 

Figure 68.  Repeatability versus illumination changes for tested detectors on cars 

and building test set with o  threshold value equal to 0.6.  
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F. TREES TEST SET RESULTS 

 

Figure 69.  Repeatability versus blurring changes for tested detectors on trees 

test set with o  threshold value equal to 0.2.  

 

Figure 70.  Repeatability versus blurring changes for tested detectors on trees 

test set with o  threshold value equal to 0.6.  
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G. BUILDING TEST SET RESULTS 

 

Figure 71.  Repeatability versus JPEG compression changes for tested detectors 

on building test set with o  threshold value equal to 0.2.  

 

Figure 72.  Repeatability versus JPEG compression changes for tested detectors 

on building test set with o  threshold value equal to 0.6. 
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H. BRICK WALL TEST SET RESULTS 

 

Figure 73.  Repeatability versus viewpoint changes for tested detectors on brick 

wall test set with o  threshold value equal to 0.2.  

 

Figure 74.  Repeatability versus viewpoint changes for tested detectors on brick 

wall test set with o  threshold value equal to 0.6. 
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SUPPLEMENTAL MATLAB CODE 

The OpenSURF coding modifications to the original OpenSURF version 1c file 

from the Mathworks website is available as an electronic document. The MATLAB files 

and test files are contained in a compressed file named 

14Jun_Jurgensen_Sean_Supplemental_MATLABCode.zip. The files contain 

modifications to the original OpenSURF program and testing programs and images 

obtained from open-source websites [25], [32] ,[50]. Contact the Dudley Knox Library at 

the Naval Postgraduate School to obtain a copy at (831) 656-2947 or circdesk@nps.edu. 

As requested in the OpenSURF program on the Mathworks website [25], the following 

statement is provided: 

Copyright (c) 2014, Oliver J. Woodford 

All rights reserved. 

Redistribution and use in source and binary forms, with or without 

modification, are permitted provided that the following conditions are met: 

* Redistributions of source code must retain the above copyright notice, 

this list of conditions and the following disclaimer. 

* Redistributions in binary form must reproduce the above copyright 

notice, this list of conditions and the following disclaimer in the 

documentation and/or other materials provided with the distribution. 

* Neither the name of the {organization} nor the names of its contributors 

may be used to endorse or promote products derived from this software 

without specific prior written permission. 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS 

AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED 

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT 

SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE [25].  
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