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Objective 

Understand what technical debt is 

Provide a different perspective on software development 
and architecture through managing technical debt 
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Current State 

Desired State 

State of 

agile team 

support 

Time 

Preparation Preservation 

Support for Delivery Over Time 

Projects should not simply produce a product design;  
they should plan a desired state that enables teams to quickly deliver 
releases that stakeholders value (or in terms of lean practices, design a 
profitable operational value stream for rapidly delivering that product). 

 

F. Bachmann, R. L. Nord, I. Ozkaya, “Architectural Tactics to Support Rapid and Agile Stability.”  

CrossTalk 25, 3 (May/June 2012): 20-25. 
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Technical Debt* 

A design or construction approach that's expedient in the 
short term but that creates a technical context in which the 
same work will cost more to do later than it would cost to do 
now (including increased cost over time)  S. McConnell 

 

Some examples include: 

• Continuing to build on a foundation of poor quality legacy code 

• Prototype that turns into production code 

• Increasing use of "bad patches", which increases number of related 
systems that must be changed in parallel 

 

 

 
Term first used by Cunningham, W. 1992. The WyCash Portfolio Management System. OOPSLA '92 Experience 

Report. http://c2.com/doc/oopsla92.html. 
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Technical Debt –  

Steve McConnell 

McConnell, S. 2007. Technical Debt. 10x Software Development [cited 2010 June 14]; 

http://blogs.construx.com/blogs/stevemcc/archive/2007/11/01/technical-debt-2.aspx. 

Typel Type2 

unintentional, non-strategic; intentional and shategic: optimize 
poor design decisions, poor for the present, not for the fuhue. 
coding 2.A &hort-term: paid off quickly 

(refactorings, etc.) 
2.B long-term 

Implemented features (\~sible and invisible) =assets = non-debt 

• smtware Engineering Institute I ~MeUon 
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Technical Debt –  

Jim Highsmith 

Highsmith, J. 2009. Agile Project Management: Creating Innovative Products , Addison-Wesley. 

• Only on far right of curve, all 

choices are hard 

 

• If nothing is done, it just gets worse 

 

• In applications with high technical 

debt estimating is nearly impossible 
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Technical Debt Analogy 

When and how was the debt signed under?  

What is the interest rate? 

What is the payback strategy? 
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First more capabilities 

First more infrastructure 

Then, more infrastructure 

Then, more capabilities 

underestimated  

re-architecting costs 

neglected cost of 

delay to market 

need to monitor 

technical debt to gain 

insight into life-cycle 

efficiency 

Brown, N., Nord, R., Ozkaya, I. 2010. Enabling Agility through Architecture, Crosstalk, Nov/Dec 2010. 

       Taking on Debt  
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Standard iteration management in agile development  

 functional, high-priority stories allocated first. 

 

 

 

 

 

 

 

 

Tracking and monitoring mechanism is solely based on 
customer features delivered.  
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Focus on Value 

Accumulated suboptimal 
architecture and need to wait 
for assurance impacts overall 
capability to reach the field. 

Velocity 

      Understanding the interest rate – 1 
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Standard iteration management in architecture-centric 
development processes  

 up-front requirements and design tasks allocated first. 

 

 

 

 

 

 

 

 
No explicit and early tracking and monitoring mechanisms that 
is development artifact specific.  
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Focus on Cost 

Cost of over-architecting,  
and assuring with unneeded 
activities delays capabilities 
to reach the field. 

Velocity 

      Understanding the interest rate – 2 
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Only Three Strategies 

Do nothing, it gets worse 

 

Replace, high cost/risk 

 

Incremental refactoring, commitment to invest 
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Tactics to consider 

Align feature and 
system decomposition. 

 

 

Create an 
architectural runway. 

 

Use matrix teams 
and architecture. 

 

 



Why Should 
Government Care About 

Technical Debt and 
Software Architecture? 

Practical Approaches from the Ground 

 

Warren Ellmore                                                - 



Technical Debt is good (as long as it’s managed) 

 
• Technical Debt is essentially the result of trade-offs - deferred decisions, 

deferred priorities, deferred capabilities, deferred skills. 

• Technical Debt arises when current sprint work is unblocked by a 
decision on what can be implemented now and what can be deferred. 

Example:  You know you need security but decide to defer that for a later sprint 
so that functional capability can continue to be developed/implemented. 

Example:  You need to interface with a legacy system but that API isn’t ready yet 
so you decide to hack a quick stub just for now. 

Government Context:  Unfortunately, Technical Debt is often misunderstood by 
business owners and frequently ignored in favor of business functionality.  
Managing and resolving Technical Debt is often more difficult because of 
contract terms, size and complexity, and a general lack of skills and experience in 
risk management as it relates to Agile development.  

© 2013 Everware-CBDI 



Technical Debt can be Managed 

• Requires more than just logging a “ToDo” or adding to the 
backlog 

• All parties must be involved and have insight – PMO responsibility 

• Establish and refine an understanding of: 
• Scope of impact and the accumulated risk curve 
• “Value” and priority within the release strategy 
• Dependencies of scheduled functionality on resolution (partial or full)  
• Ongoing decisions can ease or exacerbate a particular debt 

• Choose Technologies, Architectures and Frameworks that meet 
the business/mission requirements and minimize Technical Debt 
impact  

• Available skills, known technologies vs. new “shiny objects” 
• Leverage componentization – separation of concerns, service 

architecture 
• Reuse existing capability – services, components, models, patterns, 

specifications … 

© 2013 Everware-CBDI 



Technical Debt can be addressed 
in Sprints  
• Plan for periodic refactoring sprints 

• Run parallel Architecture/Technical Capability sprints 

• Run parallel Integration sprints targeting releases 

• Start running functional/performance testing asap and scale with codebase 
 

© 2013 Everware-CBDI 



Architecture can Reduce the Accumulation 
and Impact of Technical Debt 

• Aim for a “Fuller-stack” Service Architecture 
• Provides isolation reducing change impact scope 

• Provides abstraction for new/untested technology 

• Provides for asset/capability reuse and extension 

• Leverage Architectural Models 
• Impact analysis, traceability, knowledge 

management 

• More easily identify separation points for dividing 
the work across multiple 
teams/contracts/providers 

• Evolve to Model-Driven Architecture/Development 
• Business Process Orchestration 

• Code generation, injectable architectural framework 

 

© 2013 Everware-CBDI 



Key Takeaways 

• Technical debt is unavoidable and can be good – if managed 
• Make architecture features and technical debt visible. 

• Plan for its resolution – increase for new/unknown 
• Different kinds of technical debt call for different approaches, e.g. 

new technology versus low code-quality 

• Bridge the gap between the business and technical sides. 
• Associate technical debt with risk. 

• Reduce technical debt impact with architecture – sufficient 
upfront, add capability in parallel sprints. 

• Discover unseen technical debt as early as possible by 
starting continuous integration and system testing following 
Sprint 1 

• Integrate technical debt into planning and standard operating 
procedures (e.g., planning, reviews, retrospectives). 
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