
ADAPT Agile in Government
© 2013 Carnegie Mellon University

Why Should Government Care

About Technical Debt and Software

Architecture?

Ipek Ozkaya
(ozkaya@sei.cmu.edu)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
13 MAR 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Why Should Government Care About Technical Debt and Software
Architecture?

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University ,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
presented at the Agile for Government Summit webinar on 13 Mar 2014.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ADAPT Agile In Government
© 2013 Carnegie Mellon University

Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense
under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation
of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed
in written or electronic form without requesting formal permission. Permission is required
for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

DM-0000765

ADAPT Agile In Government
© 2013 Carnegie Mellon University

Objective

Understand what technical debt is

Provide a different perspective on software development
and architecture through managing technical debt

ADAPT Agile In Government
© 2013 Carnegie Mellon University

Current State

Desired State

State of

agile team

support

Time

Preparation Preservation

Support for Delivery Over Time

Projects should not simply produce a product design;
they should plan a desired state that enables teams to quickly deliver
releases that stakeholders value (or in terms of lean practices, design a
profitable operational value stream for rapidly delivering that product).

F. Bachmann, R. L. Nord, I. Ozkaya, “Architectural Tactics to Support Rapid and Agile Stability.”

CrossTalk 25, 3 (May/June 2012): 20-25.

ADAPT Agile In Government
© 2013 Carnegie Mellon University

Technical Debt*

A design or construction approach that's expedient in the
short term but that creates a technical context in which the
same work will cost more to do later than it would cost to do
now (including increased cost over time) S. McConnell

Some examples include:

• Continuing to build on a foundation of poor quality legacy code

• Prototype that turns into production code

• Increasing use of "bad patches", which increases number of related
systems that must be changed in parallel

Term first used by Cunningham, W. 1992. The WyCash Portfolio Management System. OOPSLA '92 Experience

Report. http://c2.com/doc/oopsla92.html.

ADAPT Agile In Government
© 2013 Carnegie Mellon University

Technical Debt –

Steve McConnell

McConnell, S. 2007. Technical Debt. 10x Software Development [cited 2010 June 14];

http://blogs.construx.com/blogs/stevemcc/archive/2007/11/01/technical-debt-2.aspx.

Typel Type2

unintentional, non-strategic; intentional and shategic: optimize
poor design decisions, poor for the present, not for the fuhue.
coding 2.A &hort-term: paid off quickly

(refactorings, etc.)
2.B long-term

Implemented features (\~sible and invisible) =assets = non-debt

• smtware Engineering Institute I ~MeUon

ADAPT Agile In Government
© 2013 Carnegie Mellon University

Technical Debt –

Jim Highsmith

Highsmith, J. 2009. Agile Project Management: Creating Innovative Products , Addison-Wesley.

• Only on far right of curve, all

choices are hard

• If nothing is done, it just gets worse

• In applications with high technical

debt estimating is nearly impossible

ADAPT Agile In Government
© 2013 Carnegie Mellon University

Technical Debt Analogy

When and how was the debt signed under?

What is the interest rate?

What is the payback strategy?

ADAPT Agile In Government
© 2013 Carnegie Mellon University

First more capabilities

First more infrastructure

Then, more infrastructure

Then, more capabilities

underestimated

re-architecting costs

neglected cost of

delay to market

need to monitor

technical debt to gain

insight into life-cycle

efficiency

Brown, N., Nord, R., Ozkaya, I. 2010. Enabling Agility through Architecture, Crosstalk, Nov/Dec 2010.

 Taking on Debt

ADAPT Agile In Government
© 2013 Carnegie Mellon University

Standard iteration management in agile development

 functional, high-priority stories allocated first.

Tracking and monitoring mechanism is solely based on
customer features delivered.

inability to

keep the

tempo

12

10

8

6

4

2

0
1 2 3 4 5 6 7

C
a
p
a
b
ili

ti
e
s
 d

e
liv

e
re

d

Focus on Value

Accumulated suboptimal
architecture and need to wait
for assurance impacts overall
capability to reach the field.

Velocity

 Understanding the interest rate – 1

ADAPT Agile In Government
© 2013 Carnegie Mellon University

Standard iteration management in architecture-centric
development processes

 up-front requirements and design tasks allocated first.

No explicit and early tracking and monitoring mechanisms that
is development artifact specific.

delayed

customer

delivery

12

10

8

6

4

2

0
1 2 3 4 5 6 7

C
a
p
a
b
ili

ti
e
s
 d

e
liv

e
re

d

Focus on Cost

Cost of over-architecting,
and assuring with unneeded
activities delays capabilities
to reach the field.

Velocity

 Understanding the interest rate – 2

ADAPT Agile In Government
© 2013 Carnegie Mellon University

Only Three Strategies

Do nothing, it gets worse

Replace, high cost/risk

Incremental refactoring, commitment to invest

ADAPT Agile In Government
© 2013 Carnegie Mellon University

Tactics to consider

Align feature and
system decomposition.

Create an
architectural runway.

Use matrix teams
and architecture.

Why Should
Government Care About

Technical Debt and
Software Architecture?

Practical Approaches from the Ground

Warren Ellmore -

Technical Debt is good (as long as it’s managed)

• Technical Debt is essentially the result of trade-offs - deferred decisions,

deferred priorities, deferred capabilities, deferred skills.

• Technical Debt arises when current sprint work is unblocked by a
decision on what can be implemented now and what can be deferred.

Example: You know you need security but decide to defer that for a later sprint
so that functional capability can continue to be developed/implemented.

Example: You need to interface with a legacy system but that API isn’t ready yet
so you decide to hack a quick stub just for now.

Government Context: Unfortunately, Technical Debt is often misunderstood by
business owners and frequently ignored in favor of business functionality.
Managing and resolving Technical Debt is often more difficult because of
contract terms, size and complexity, and a general lack of skills and experience in
risk management as it relates to Agile development.

© 2013 Everware-CBDI

Technical Debt can be Managed

• Requires more than just logging a “ToDo” or adding to the
backlog

• All parties must be involved and have insight – PMO responsibility

• Establish and refine an understanding of:
• Scope of impact and the accumulated risk curve
• “Value” and priority within the release strategy
• Dependencies of scheduled functionality on resolution (partial or full)
• Ongoing decisions can ease or exacerbate a particular debt

• Choose Technologies, Architectures and Frameworks that meet
the business/mission requirements and minimize Technical Debt
impact

• Available skills, known technologies vs. new “shiny objects”
• Leverage componentization – separation of concerns, service

architecture
• Reuse existing capability – services, components, models, patterns,

specifications …

© 2013 Everware-CBDI

Technical Debt can be addressed
in Sprints
• Plan for periodic refactoring sprints

• Run parallel Architecture/Technical Capability sprints

• Run parallel Integration sprints targeting releases

• Start running functional/performance testing asap and scale with codebase

© 2013 Everware-CBDI

Architecture can Reduce the Accumulation
and Impact of Technical Debt

• Aim for a “Fuller-stack” Service Architecture
• Provides isolation reducing change impact scope

• Provides abstraction for new/untested technology

• Provides for asset/capability reuse and extension

• Leverage Architectural Models
• Impact analysis, traceability, knowledge

management

• More easily identify separation points for dividing
the work across multiple
teams/contracts/providers

• Evolve to Model-Driven Architecture/Development
• Business Process Orchestration

• Code generation, injectable architectural framework

© 2013 Everware-CBDI

Key Takeaways

• Technical debt is unavoidable and can be good – if managed
• Make architecture features and technical debt visible.

• Plan for its resolution – increase for new/unknown
• Different kinds of technical debt call for different approaches, e.g.

new technology versus low code-quality

• Bridge the gap between the business and technical sides.
• Associate technical debt with risk.

• Reduce technical debt impact with architecture – sufficient
upfront, add capability in parallel sprints.

• Discover unseen technical debt as early as possible by
starting continuous integration and system testing following
Sprint 1

• Integrate technical debt into planning and standard operating
procedures (e.g., planning, reviews, retrospectives).

© 2013 Everware-CBDI

