
Iterative Goal Refinement for Robotics 

Mark Roberts1, Swaroop Vattam1, Ronald Alford2,  

Bryan Auslander3, Justin Karneeb3, Matthew Molineaux3,  

Tom Apker4, Mark Wilson5, James McMahon6, and David W. Aha5 
 

1NRC Postdoctoral Fellow; Naval Research Laboratory, Code 5514; Washington, DC 
2ASEE Postdoctoral Fellow; Naval Research Laboratory, Code 5514; Washington, DC 

3Knexus Research Corporation; Springfield, VA 
4Exelis Corporation; Alexandria, VA  

5Navy Center for Applied Research in Artificial Intelligence; Naval Research Laboratory, Code 5514; Washington, DC 
6Physical Acoustics Branch; Naval Research Laboratory, Code 7130; Washington, DC 

1,2first.last.ctr@nrl.navy.mil | 3first.last@knexusresearch.com | 4thomas.apker@exelisinc.com | 5,6first.last@nrl.navy.mil  

 

Abstract 

Goal Reasoning (GR) concerns actors that assume the 
responsibility for dynamically selecting the goals they 
pursue. Our focus is on modelling an actor’s decision making 
when they encounter notable events. We model GR as an 
iterative refinement process, where constraints introduced for 
each abstraction layer shape the solutions for successive 
layers. Our model provides a conceptual framework for 
robotics researchers and practitioners. We present a goal 
lifecycle and define a formal model for GR that (1) relates 
distinct disciplines concerning actors that operate on goals, 
and (2) provides a way to evaluate actors. We introduce GR 
using an example on waypoint navigation and outline its 
application, in three projects, for controlling simulated and 
real-world vehicles. We emphasize the relation of GR to 
planning, and encourage PlanRob researchers to collaborate 
in exploring this exciting frontier. 

1. Introduction 

Robotic systems often act using incomplete models in 

environments that are dynamic, partially observable, and 

non-deterministic. One consequence is that they will 

encounter notable events. Appropriate responses to notable 

events can be designed a priori or learned by the actor. 

During execution, robots deliberate on their responses to 

notable events and can choose to adjust their expectations or 

world model, repair their current plan, replan, or regoal (i.e., 

change their current goal(s)). In each case, they take steps 

toward achieving goals. We refer to this capability of 

reasoning about ones goals as goal reasoning (GR), which 

involves dynamically assessing the tradeoffs within the 

space of goals. We argue that GR is of particular value to 

robotic systems, as it supports more autonomous behavior. 

We present a preliminary formal model that frames GR 

as an iterative refinement process similar to planning as 

refinement search (Kambhampati et al., 1995) and iterative 

repair (Chien et al., 2000). Our model provides a common 

language for defining GR actors and complements recent 

foundational perspectives on planning and acting (Ghallab 

et al., 2014) and deliberation functions (Ingrand & Ghallab, 

2014). We present a motivating example (§2), provide 

background (§3), detail our model and two instantiations 

(§4), provide a proof of minimal agency (§5), introduce goal 

memory (§6), define the GR problem (§7), and describe its 

application to three robotics-related tasks (§8). We integrate 

our discussion of related work throughout the paper, 

although this does not constitute a thorough survey on goals 

in the literature on planning, robotics, agents, and actors.  

Our projects span GR actors at the coach, team, and single 

system levels. Like other research on robotics, a cross-

cutting concern is eliciting robotic behavior that is 

consistent, reliable, trustworthy, verifiable, explainable, and 

predictable. We invite researchers and practitioners to join 

our ongoing dialog on the topic of goal reasoning. 

2. Waypoint Navigation Example 

Figure 1 depicts a simple waypoint navigation task where 

the robot’s goal is at(y). This example could apply to 

controlling an underwater or micro-aerial vehicle in the 

context of water currents or wind, respectively, as shown as 

vectors. Dashed curves indicate the bounds of the expected 

trajectory (i.e., a soft constraint) while the outer box 

represents a hard constraint that the actor should avoid 

violating. The actual trajectory of the robot is given by the 

solid arc that starts at x and ends at y.  The deviating path is 

due to the difference between the expected flow (dashed 

vectors) and actual flow (solid vectors).  

 From the example it is evident that we assume a dynamic 

environment, exogenous events, and interruptible actions.  

We also assume that both the environment and the actor’s 

actions have temporal extent. 

 Below the plot is a representation of the vehicles timeline, 

which is inspired by the work of Smith et al. (2000). The 

time window of the plan indicates that the plan should start 

executing no earlier than the earliest start time (i.e., the 

leftmost vertical bar) and finish by the latest finish time (the 

rightmost vertical bar). The large block in the middle 

indicates the expected transit duration. Inside the timeline 
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are dots corresponding to what we call a “notable event,” 

which we define as an event (usually resulting in a state 

change) that impacts the agent in some way. For this 

example, the notable events correspond to soft and hard 

constraint violations; the first two points indicate where the 

vehicle violates the preferred trajectory while the last two 

points indicate eminent and actual violation of the hard 

constraint.  These points express possible places and where 

a decision must be made concerning vehicle behavior.   

 A GR actor may resolve (i.e., respond to) these events   

using various strategies (e.g., adjust its expectations, adjust 

or replace its plan, adjust or change its goal). GR actors 

differ in the strategies they can apply and how they apply 

them. In §4, we will use this example to illustrate some of 

these strategies, after providing some background. 

3. Preliminaries 

The models and algorithms used for planning in robotics is 

staggering (e.g., (LaValle, 2006; Ghallab et al., 2014)). We 

will show how GR can be viewed as a process of refining 

the constraints on goals. This perspective synthesizes and 

unifies planning for robotics. First, we define goals and 

review planning as refinement search. 

3.1 Goals  

Our robotics control applications focus on achieving goals, 

which we define as states an actor desires to achieve (or 

maintain). To define states, we leverage some elements of 

the classical planning formalism by Ghallab et al. (2004).  

Let 𝐿 be the language for representing world states, 𝑆 ⊆ 2𝐿 

be the set of world states, and 𝑔 ⊆ 𝐿 be a goal. Then 𝑆𝑔 =
{𝑠 ∈ 𝑆|𝑔 ⊆ 𝑠} represents the set of states that achieve 𝑔.  

The world is assumed to exist externally to the actor, and a 

plan is a sequence of actions for transforming an initial state 

𝑆0 into 𝑆𝑔.   For much of our discussion we focus on a single 

goal, but the use of a goal set is appropriate for some 

applications; the model easily extends to goal sets. 

 We assume that a set of temporal, resource, and ordering 

constraints apply to goals as well as states and actions, but 

the exact nature of these constraints is a design decision.  

Researchers have used a variety of ways to represent such 

constraints (e.g., as a constraint satisfaction problem (Scala, 

to appear), in PDDL (Vaquro, to appear), or NDDL (Rajan 

et al. 2013)).  We also assume that completing (or 

maintaining) goals has intrinsic value for an actor; we return 

to this assumption in §6 and §7. 

 For GR to occur the actor must perform actions for 

transitioning among both its external and internal state. To 

exemplify these, a goal to achieve external state in Figure 1 

might be at(y), while a goal to satisfy internal state might 

be finished(at(y)). So we expand and partition the 

language of the GR actor into 𝐿𝐺𝑅 = 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ∪ 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 . 

We similarly partition the set of goals into 𝑆𝑔 = 𝐸𝑔 ∪ 𝐼𝑔.  In 

𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  the actor selects actions to achieve 𝐸𝑔. In 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  

the actor selects actions to achieve 𝐼𝑔 and some internal 

actions may be conditioned on external goals. Primitive 

goals cannot be decomposed into subgoals.   

3.3 Planning as Refinement Search 

Our model’s theoretical foundation builds from Planning as 

Refinement Search (Kambhampati, 1994; 1997; 

Kambhampati et al., 1995), which models planning in a 

generic way to distinguish planners by their design choices 

and facilitate their comparison. Refinement planning 

employs a split and prune model of search, where plans are 

drawn from a candidate space 𝐾.  Let a search node 𝑁 be a 

constraint set that implicitly represents a candidate set 

drawn from 𝐾.  Refinement operators transform a node 𝑁𝑖 

at layer 𝑖 into 𝑚 children 〈 𝑁𝑗1, 𝑁𝑗2,, … , 𝑁𝑗𝑚〉 at layer 𝑗 = 𝑖 +
1 by adding constraints which further restrict the candidate 

sets in the next layer.  If the constraints are inconsistent then 

the candidate set is empty.  The authors initially provided 

two kinds of constraints that can be added by refinement 

operators: (1) interval constraints ensure a variable (i.e., a 

proposition) maintains a property (i.e., it remains true, false, 

or unchanged) over an interval; and (2) truth point 

constraints ensure a variable is true at a specific point in 

time. Kambhampati (1994) conjectured that these 

constraints could be extended to include behavioral 

constraints or desires. Kambhampati and Srivastava (1995) 

extend plan refinement to state-space planning with 

contiguity constraints ensuring, for two actions 𝑖 and 𝑗, no 

new action can intervene.   

 Let 𝑁∅ represent an initial node whose candidate set 

equals 𝐾 and results from only the initial constraint set 

provided in the problem description (from the perspective of 

the search process, the refined constraints are empty, thus 

the subscript ∅).  The REFINEPLAN algorithm begins with 

𝑁∅ and recursively applies refinements to add constraints 

until a solution is found.  A desirable property of 

refinements is that each layer of search results in smaller 

candidates subsets as REFINEPLAN proceeds. Thus the 

Figure 1:  Navigating from x to y 



constraints aid search by identifying inconsistent nodes and 

providing backtracking points.  An optional step is to apply 

forward consistency checking to further prune candidate 

nodes, usually at considerable computational cost. 

Instantiations of REFINEPLAN correspond to different 

versions of classical planning.  

The original model of refinement planning focused on 

Partial Order Planning, but extensions to the kinds of 

constraints allowed the refinement framework to 

incorporate other forms of planning and clarify issues in the 

Modal Truth Criterion (Kambhampati & Nau, 1994).  

Unfortunately space limitations prevent a full exposition of 

these ideas. Briefly, plan refinement allows us to equate 

different kinds of goal decomposition methods in plan-space 

and state-space planning. More recent formalisms such as 

Angelic Hierarchical Plans (Marthi et al., 2008) and 

Hierarchical Goal Networks (Shivashankar et al., 2013) can 

also be viewed as leveraging this concept. The focus on 

constraints in plan refinement also allows a natural 

extension to the many integrated planning and scheduling 

systems that use constraints for temporal and resource 

reasoning.  

4. Goal Reasoning as Goal Refinement 

To build on plan refinement, we distinguish between a 

GR process and the actor that is running it because there may 

be additional processes in the actor such as meta reasoning, 

learning, etc.  We assume a goal is achieved through the 

execution of some expansion (i.e., plan). A GR process 

refines a set of goal nodes 𝐺 until they can be achieved 

through execution. For a goal 𝑔 ∈ 𝐺, a goal node 𝑁𝑔 =
〈𝐶𝑔, 𝑋𝑔, 𝑥, 𝑜〉  is a tuple of constraints 𝐶𝑔, possible 

expansions that could achieve the goal 𝑋𝑔, the currently 

selected expansion 𝑥 ∈ 𝑋𝑔, and goal lifecycle mode 𝑜. A GR 

process begins with 𝑁∅ 
𝑔

, which consists of the candidate 

space of all possible executions achieving 𝑔, and makes 

decisions that refine its goals 𝑆𝑔 or 𝐼𝑔 through a series of 

refinements 𝑅 on goal nodes until it selects one expansion 

𝑥 ∈ 𝑋 for execution. Similar to plan refinement, goal 

refinement takes a Least Commitment (Weld, 1994) 

approach.  Further, planning and learning (Veloso et al., 

1995) could be incorporated in certain parts of the system, 

but learning is not a requirement for goal refinement. 

Defining GR as goal refinement allows us model GR in a 

generic way to distinguish planners by their design choices 

and facilitate their comparison 

4.1 Constraints (𝑪𝒈) 

We partition the constraints 𝐶𝑔 = 𝐶𝑔
𝑔𝑖𝑣𝑒𝑛

∪ 𝐶𝑔
𝑎𝑑𝑑𝑒𝑑 into (1) 

those given to the GR process from the process that invoked 

it (e.g., human operator, meta-reasoning process, coach) and 

(2) those that it adds during refinement.  

 Constraints can be temporal (finish by a certain time), 

ordering (do x before y), maintenance (remain at a certain 

depth), resource (consider only one goal at a time), or 

computational (only use so much CPU or memory). Top-

level constraints can be pre-encoded or based on drives (e.g., 

(Coddington et al., 2005; Young & Hawes, 2012)).  Hard 

constraints in 𝐶𝑔 must be satisfied at all times (stay within 

the box in the waypoint example), while soft constraints 

should be satisfied if possible (follow a preferred trajectory).   

4.2 Expansions (𝑿𝒈)  

To distinguish goal refinement from planning, we define 

the set of possible expansions 𝑋𝑔 as the means of achieving 

𝑔. A goal 𝑆𝑔 or 𝐼𝑔 can be achieved by executing an 

expansion. We call 𝑥 ∈ 𝑋𝑔 a selected expansion that is 

currently slated for execution.   

The term “expansion” highlights GR as any process that 

performs goal refinement.  Planning (in the classical sense) 

is one kind of expansion, but not all possible expansions of 

𝑆𝑔 are plans. Robotics systems are often integrated in layers 

that operate on distinct granular models of the world. So 

expansions can include, but are not limited to: a simple rule, 

a richly detailed goal or task network, a (state-based) plan, 

the switching of behaviors, a change in parameters for an 

adjoining deliberation layer, an algorithm for learning new 

or revising existing knowledge, a recipe for unlearning, or, 

for a team of robots, a specially crafted algorithm. 

Expansions can be provided at different times to an actor: 

designed expansions are declared as part of the actor’s 

specification (i.e., as part of 𝐿𝐺𝑅), while learned expansions 

are new ways of problem solving derived from the actor’s 

experience and investment in capturing or revising new 

knowledge (i.e., 𝐿𝐺𝑅, which may grow or change to 

incorporate this new knowledge). This knowledge can be 

captured online during execution, during the actor’s 

deliberation, or offline prior to execution.   

4.3 Modes (𝒐) 

The modes of a goal indicate successively smaller candidate 

sets towards eventual execution.  We label each set with a 

mode from {Formulated, Selected, Expanded, Committed, 

Dispatched, Finished}.  Transitions between these modes 

lead toward eventual execution (Clement et al., 2007).  We 

present two views of these modes.  In the goal refinement 

view, each mode can be a strict subset of the next in the 

candidate space of goals: 

  

Reading this from right to left (due to the subset relation): 

After an actor formulates and selects a goal, planning 

involves searching through candidate expansions and 



selecting one. Finally, the dispatch step dispatches a plan for 

execution, monitors its trajectory (making corrections as 

needed), and marks the goal as achieved if execution went 

well.  Each transition to a new mode reduces the candidate 

set, increases the level of commitment the actor has made to 

a goal, and increases its degree of refinement. Refinements 

follow naturally from the view of actors that are performing 

deliberation (Ingrand & Ghallab, 2014).  We invest the next 

section discussing a left-to-right view of the modes. 

4.4 The Goal Lifecycle 

The lifecycle for a goal (Figure 2) captures the possible 

decision points of a GR actor and complements a plan’s 

lifecycle (e.g., (Pollack & Horty, 1999; Myers, 1999). 

Decisions consist of applying a strategy (denoted using an 

arc in Figure 2; boldfaced in this section) that transitions a 

goal among modes (denoted using large or small rounded 

boxes) in the lifecycle. The g’s in the goal lifecycle 

correspond to goals and x’s correspond to expansions. 

Transitions are verbs and modes qualify a goal’s mode (e.g., 

select(𝑆𝑔) transitions 𝑆𝑔 from formulated to selected mode).  

 Goals in an active mode are those that have been 

formulated but not yet dropped. The formulate strategy is 

the first decision point. In many actors, this decision is 

carefully (implicitly, statically) encoded (e.g., an 

observation may fire a trigger to achieve some goal).  

Vattam et al., (2013) describe goal formulation strategies. 

The drop strategy causes a goal to be “forgotten” and can 

occur from any active mode. This decision can be 

sophisticated and involve learning from the execution or 

attempted expansion of a selected goal. To select a goal 

indicates intent. A selection strategy depends on which 

goals were formulated and effects the selection of a goal for 

further refinement. The expand strategy decomposes a goal 

into subgoal(s) or a primitive goal. The commit(𝒙) strategy 

chooses the best expansion for execution; we assume 

domain-specific quality metrics can assess expansion 

quality. The dispatch(𝒙) strategy slates the best expansion 

for execution and places the goal in an executing mode. In 

both single- and multi-agent systems, a plan may undergo 

further refinement (i.e., scheduling) prior to execution. Prior 

refinements could favor a least commitment approach on 

temporal/resource constraints to allow for flexible dispatch 

(Conrad et al., 2009). 

 Because we assume an online dynamic world, goals in an 

executing mode are subject to transitions that result from 

expected or unexpected external state changes during 

execution. The monitor strategy can be passive (i.e., do 

nothing) or proactive (i.e., monitor periodically) while a 

goal is dispatched. As long as its plan’s execution does not 

encounter any notable events, goal execution follows a 

normal path toward achievement. If no notable events occur 

and the dispatched expansion completes, then the finish 

strategy marks the goal as finished, which may store the goal 

to aid future deliberation. Not all goals may reach this mode 

because goals can be dropped. 

 When notable events occur, the evaluate strategy 

determines how they impact goal execution (positively or 

negatively). An evaluated mode does not imply that 

execution of the current expansion is stopped. If the 

evaluation does not impact the goal, it can continue with the 

execution. However, if the event impacts the current goal, 

the set of resolve strategies define a suite of paths toward 

goal achievement. An obvious choice is to change the world 

model using adjust(𝑳), but adjusting its model does not 

resolve the current goal and further refinements are required. 

In the waypoint example, we can imagine that the GR actor 

could decide to adjust the bounds on the preferred trajectory 

using the variance of the actual path. However, this is only 

an “internal” adjustment, and it does not subsequently 

communicate the adjusted expectations to its execution 

system. The GR would simply ignore any future bounds 

violations that fall within the new expectations. Rather than 

adjust its expectations, the GR might apply a repair(𝒙) 

strategy by repairing 𝑥 so that it meets the new context; this 

is the so-called replanning approach. In the waypoint 

example, this might involve communicating new bounds, 

allowing more time, or selecting behaviors more appropriate 

to the current conditions. This resolution repairs but does 

fundamentally alter the current plan. If no repair is possible 

(or desired) then the GR can apply the re-expand(𝒈) 

strategy to reconsider the original plan from scratch.  In the 

Figure 2: A proposed goal lifecycle. 



waypoint example, this might occur if an obstacle is found 

to exist en route. The defer(𝒈) strategy instead postpones 

the goal for further processing. In the example, this may 

happen if current conditions are deemed as unfavorable for 

achieving 𝑔, but the GR decides to retain 𝑔 as worth 

pursuing in the future. A final option occurs in 

formulate(𝒈′), which abandons 𝑔 in favor of a newly 

formed goal 𝑔′.   
 We very recently discovered the work on goal lifecycles 

in the Autonomous Agents literature that is closely related 

to the goal lifecycle proposed in this paper.  Harland et al. 

(2014) extend their earlier work (Thangarajah et al., 2010) 

to present a goal lifecycle for BDI agents, provide 

operational semantics for their lifecycle, and demonstrate 

the lifecycle on a Mars rover scenario.  Work by Winicoff 

et al. (2010) has also linked Linear Temporal Logic to the 

expression of goals that the project we discuss in §8.3 may 

be able to leverage.  We plan to fully explore these 

approaches in future work.  

4.5 Strategies and Strategy Composition 

Strategies can be simple or complex. For example, select(𝑔) 

could be implemented as a simple rule (e.g., automatically 

select any goal that is formulated) or it could be 

implemented as a learned policy that considers knowledge 

about the environment, which goals are currently executing, 

and their priority.  Similarly, the drop strategy could be very 

simple (e.g., in Figure 1, drop any goal when hard 

constraints are violated), or the drop strategy could attempt 

to learn long-term knowledge from the information gathered 

in the goal node as it transitioned through the life cycle (e.g., 

in Figure 1, adjust future expectations for this region to 

account for greater flow).   

 Strategies can be composed, of which the resolve strategy 

in Figure 2 is one example.  A composition representing 

classical planning demonstrates goals that are formulated by 

an external process to the actor.  Let 𝑔2 be a goal and 

FINDPLAN be a planning algorithm producing one expansion 

𝑥 that equates to a plan for achieving 𝑔2. Then a classical 

planning strategy is composed:  

  plan(𝑔2)  =>  formulate+select(𝑔2),  

𝑥 = FINDPLAN (𝑔2).  

 Another strategy composition can relate the goal lifecycle 

to partial satisfaction planning (PSP) and soft goals for 

planning (Benton et al., 2010).  PSP is closely aligned with 

GR for the project discussed in §8.2.  In that framework 

planning proceeds on an oversubscribed set of goals where 

a penalty is assessed for not meeting goals; the planner 

constructs a plan that maximizes the utility (i.e., the payoff) 

while minimizing the penalty.  Let 𝐺3 be an oversubscribed 

goal set and PSPPLAN be a planning algorithm that selects 

the subset of goals and a plan 𝑥 to achieve them given the 

objective criteria. Then a PSP planning strategy is 

composed:  

  psp-plan(𝐺3)  =>  formulate(𝐺3),  

𝑥 = PSPPLAN (𝐺3)  

 

It may seem psp-plan(𝐺3) is identical to plan(𝑔2), however 

PSPPLAN(𝐺3) performs goal selection, expansion and plan 

selection, while FINDPLAN (𝑔2) only performs expansion 

and plan selection.  

4.6 Instantiations of Goal Reasoning  

We next demonstrate how the full GR model can instantiate 

two existing GR systems. The first is a replanning system, 

which is a common approach to solving online dynamic 

planning (e.g., (Yoon et al., 2007)). Figure 3 (top) shows 

how the GR model can instantiate such replanning systems. 

As shown, formulation is presumed (designed) in this model 

and we have used the “plan(𝑔)” composition of §4.5. 

 Figure 3 (bottom) shows one instantiation of the GR 

model for Goal-Driven Autonomy (GDA); GDA agents 

perform online planning and execution (Klenk et al., 2013). 

A GDA agent consists of an intelligent controller that not 

only interacts with a planner and the execution environment, 

but also includes components for GR, separating the 

planning process from those for goal formulation and 

management. The controller takes as input an initial 

planning problem and sends it to the planner. The planner 

returns (1) a plan, which is a sequence of actions, and (2) a 

corresponding sequence of expectations consisting of the 

states expected to result after executing each action in the 

plan. The controller dispatches the plan’s actions to the 

execution environment and then runs a sophisticated 

evaluate strategy.  While a plan is dispatched, the controller 

evaluates new information by (1) comparing observations 

with expectations to discover discrepancies.  For a 

discrepancy, it (2) may generate an explanation, which takes 

the discrepancy plus a history of past actions and 

observations to propose one or more possible causal 

Figure 3: Contrasting replanning (top) with 

GDA (bottom) instantiations of the GR model. 



explanations.  Depending on the explanation, the controller 

(3) may adjust(L) to correct its model or expectations of the 

world, formulate a new goal in response to the discrepancy, 

and then drop the existing goal.  Finally, (4) this new goal 

moves through the goal lifecycle (selected, expanded, etc.) 

and is weighed against other goals for execution. 

 

4.7 Instantiations of Strategies 

We now detail two possible instantiations of the strategies 

for the GDA architecture from Figure 3 (bottom). The M-

ARTUE system (Wilson et al, 2013) takes a direct approach 

to the goal formulation step, in which all possible goals are 

considered by the agent according to a set of domain-

independent heuristics that assess a goal's fitness in three 

different dimensions: social, exploration and opportunity. 

The fitness of each goal in these three dimensions is 

weighted by the urgency of each of the respective needs to 

come up with a single score by which all goals are 

compared. A preliminary study of M-ARTUE showed that 

it reached performance comparable to the use of domain-

specific knowledge for guiding goal selection in a test 

domain. 

 The FoolMeTwice agent (Molineaux & Aha, to appear) 

employs a monitor and integrate strategies that incorporate 

the environment to effect  the agent's knowledge of what 

events are possible. The FoolMeTwice agent is “surprised” 

when it cannot explain (i.e., find a history of events 

consistent with) its observations of the environment. When 

surprised, FoolMeTwice hypothesizes a new model of a 

previously unknown event that caused its surprise. These 

models are thereafter use both monitor and integrate 

strategies to improve the agent's performance at these tasks. 

5. A Proof of Minimal Agency 

Decision is a key element of agency.  The degree to which 

the actor’s decisions depend on dynamic deliberation rather 

than pre-encoded knowledge determines its agency. Clearly, 

if a single rule (i.e., a design) covers all contingencies for 

any strategy that arises during execution, then the actor need 

not make a decision. Decision points are noteworthy 

because – assuming the agent acts on a single external goal 

𝐸𝑔 – the actor’s goal switches from achieving 𝐸𝑔 to 

achieving some internal decision goal 𝐼𝑑 ∈ 𝐼𝑔. Agency is an 

increasing function of the number and kind of decision 

goals. Further, we can prove: 

Proposition 1: The number of primitive active goals for a 

deliberative agent must be at least two, one of which must 

be a decision goal, 𝐼𝑑. 

Proof sketch: We can reason about any transition in the 

lifecycle without loss of generality. Suppose the actor must 

decide on one of two possible paths for 𝑠𝑒𝑙𝑒𝑐𝑡(𝑆𝑔) for a 

primitive goal 𝑆𝑔. There are two cases to consider regarding 

whether the agent deliberates on this decision.  Let a rule be 

a provided (or learned) sequence of steps to achieve some 

goal.  (1) Suppose the actor applies a rule to decide (even 

non-deterministically), then the agent did not deliberate, 

which contradicts our assumption of a deliberative actor. (2) 

If there is no such rule, then the agent must formulate an 

internal decision goal 𝐼𝑑 =is-selected-Sg (i.e., the 

mode of 𝑆𝑔 is selected) and switch to the goal is-

achieved-𝐼𝑑. We can imagine many different ways the 

actor might achieve this new goal (e.g., it can explore to 

generate knowledge or exploit its existing knowledge). At 

this point, we have already shown that at least two primitive 

goals were required.  Q.E.D.  

Corollary 1: An actor will be unable to resolve a decision 

goal if it tries to deliberate without enough designed (or 

learned) knowledge.  

Corollary 2: The number, kind, and frequency of primitive 

decision goals defines a spectrum of deliberation and 

agency for actors.   

6. Goal Memory 

In addition to moving goals through a lifecycle toward 

achievement, a decision-making actor assesses tradeoffs 

between various criteria (e.g., priority, domain-specific 

quality functions, global utility, long term payoff). We use 

the goal lifecycle in conjunction with a goal memory to 

characterize a goal management process that simultaneously 

addresses both. 

 Our use of the term goal memory here is distinct from its 

typical use in cognitive goal memory. In cognitive science, 

goal memory is typically discussed as a mental construct 

with representations and processes that are used to store and 

manage goal-related requirements of the task that a 

cognitive agent happened to be engaged in. While issues 

such as interference level, strengthening and priming 

constraints are key requirements to mimic human memory 

(Altmann & Trafton 2002), we ignore any such 

considerations because we are not concerned with the 

cognitive plausibility of our model of the goal memory.  

 Figure 4 shows the 𝑚 × 𝑛 goal memory in a table 𝑀, 

where a cell 𝑀𝑖𝑗 represents the 𝑖𝑡ℎ goal 𝑔𝑖  (1 ≤ 𝑖 ≤ 𝑚), its 

𝑗𝑡ℎ quality criteria 𝑞𝑖(1 ≤ 𝑗 ≤ 𝑛), and mode. We describe 

these criteria in the following paragraphs. 

 The priority criterion of a goal determines its importance 

relative to other goals. Let 𝑓𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑔𝑖): 𝑔𝑖 → 𝕀, then 𝑀𝑖1 =

 𝑓𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑔𝑖). Priority depends on the agent’s current state, 

and so may change dynamically.   



 The inertia criterion of a goal 𝑔𝑖  characterizes the 

strength of bias against changing its current mode because 

of prior commitments. Let 𝑓𝑖𝑛𝑡𝑒𝑟𝑡𝑖𝑎(𝑔𝑖) ∶ 𝑔𝑖 → 𝕀, and let 

𝑀𝑖2 = 𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎(𝑔𝑖). Inertia is defined as a function of 𝑔𝑖’s 

mode, its number of expansions |𝑋𝑔|, its staleness (i.e., the 

number of time steps since it last transitioned), the number 

of transitions that have been applied to 𝑔𝑖, and the resources 

committed to 𝑔𝑖.  

The mode criterion of a goal 𝑔𝑖 determines its relative 

importance based on how far along it is in the goal lifecycle. 

For instance, if a goal is closer to execution, it has a higher 

value because we want to move goals toward finished.  Let 

𝑓𝑚𝑜𝑑𝑒(𝑔𝑖): 𝑔𝑖 → 𝕀, then 𝑀𝑖3 =  𝑓𝑚𝑜𝑑𝑒(𝑔𝑖). 

The remaining criteria express the quality (e.g., cost, 

value, risk, reward) of achieving 𝑔𝑖 with the currently 

selected expansion 𝑥 ∈ 𝑋𝑔. These are domain-specific 

quality metrics, and we provide some examples when 

discussing applications in §8. These metrics may also 

include domain-independent quality metrics such as 

minimizing makespan (i.e., parallel execution time) or 

minimizing the plan length (i.e., number of plan steps). 

In addition to the aforementioned criteria, we conjecture 

that additional book-keeping columns may be necessary. 

These include but are not limited to constraints, alternative 

expansions, parent of goal, type of goal, etc. 

7. The Goal Reasoning Problem 

A GR agent examines its goal memory state 𝑀𝑡 at time 𝑡 and 

chooses a strategy that maximizes its long-term rewards 

using ∑ 𝛾𝑡𝑟𝑒𝑤𝑡
∞ 
𝑡 , where 𝛾𝑡 is a discount factor and 𝑟𝑒𝑤𝑡  is 

the agent’s reward at 𝑡, which we model as 𝑟𝑒𝑤: 𝑀 × 𝑅 →
ℝ. 

 For our formal model, we make some simplifying 

assumptions that are too limiting for integrated robotics but 

aid in explaining the model.  In addition to the dynamic 

environment and interruptible actions already assumed, we 

assume for the exposition of the model:   

 Markovian dynamics: The current choice for an actor 

is based only on its last (known) state. 

 Infinite horizon with discount: The actor is myopic; it 

considers distant future states to be less important than 

eminent future states, and may favor locally optimal 

solutions that are globally suboptimal. 

 Non-deterministic actions: An actor’s action may have 

multiple possible outcomes.  

 Under these assumptions, we can model GR as a Markov 

Decision Process (MDP), given that the transition function 

and the reward function are known. Given a current goal 

memory state 𝑀, a GR strategy 𝑟 ∈ 𝑅 and a next goal 

memory state 𝑀′, the mode transition function 𝑇(𝑀, 𝑟, 𝑀′) 

is the probability of  transitioning from 𝑀 to 𝑀′ using 

strategy 𝑟. For MDPs, there exists an optimal deterministic 

stationary policy (Kaelbling et al., 1996), implying the 

existence of an optimal value function for a current goal 

memory state 𝑀: 

𝑉∗(𝑀) = 𝑚𝑎𝑥𝑝𝑜𝑙𝑖𝑐𝑦(𝐸(∑ 𝑦𝑡∞
𝑡=0 𝑟𝑒𝑤𝑡  )) , 

where (0 ≤ 𝛾 < 1) is the discount factor. This optimal 

value function is unique and reduces to  ∀𝑀′ ∈ 𝑟(𝑀): 

 𝑉∗(𝑀) = 𝑚𝑎𝑥𝑟(𝑟𝑒𝑤(𝑀, 𝑟) + 𝛾 ∑ 𝑇(𝑀, 𝑟, 𝑀′)𝑉∗(𝑀′)𝑀′  ).  

Given this, we can specify the optimal policy as:  

𝑝𝑜𝑙𝑖𝑐𝑦∗(𝑀) = arg 𝑚𝑎𝑥𝑟 (𝑟𝑒𝑤(𝑀, 𝑟) + 𝛾 ∑ 𝑇(𝑀, 𝑟, 𝑀′)𝑉∗(𝑀′)𝑀′ ). 

If 𝑇 or 𝑟𝑒𝑤 are unknown, then GR can be modeled as a 

reinforcement learning (Sutton & Barto, 1998) problem, 

where deliberation results in a learned policy. 

Reinforcement learning is a rich area of research that is out 

of scope for this paper.    

8. Applications of Goal Reasoning 

Our group is working on two robotics and one simulated 

robotics projects involving GR. We review these with a 

focus on the expected value added by using GR, our 

technical approach, and the GR research questions we are 

addressing. 

8.1 Unmanned Underwater Vehicle (UUV) Control 

UUVs have been used for tasks such as inspection of 

underwater structures (Antonelli et al., 2001), mine 

countermeasures (LePage & Schmidt, 2002), and scientific 

observation (Binney et al., 2010).  These have engendered 

work on motion planning (e.g., Tan et al., 2004), which can 

guide vehicles to desired locations but cannot select goals.  

These missions have short duration (at most eight to sixteen 

hours) and operate over a small region. 

 Long-duration missions, potentially lasting weeks or 

months over much larger regions, present new challenges 

for guidance systems, as the ocean environment is 

unpredictable and partially observable. A UUV on a long-

duration mission must react competently to notable objects 

and events. It may need to change its objectives or even 

abort its mission due to unforeseen environmental hazards, 

underwater barriers, encounters with other vehicles, or 

Figure 4: A Goal memory of 𝑚 goals and 𝑛 quality metrics. 



failures of onboard systems. A common approach in the face 

of a dynamic environment would be replanning.  Cashmore 

et al (2013) confront the need for long-duration autonomy 

in UUVs and examine the problem of modeling motion for 

task-level mission planning. Their architecture reacts to 

notable events (observations of the environment that differ 

from assumptions) by remodeling the environment and 

replanning for a fixed set of goals. In the language of our 

GR model, their approach applies the adjust(L) strategy 

followed by the re-expand(x) strategy.  This is a case where 

re-expand(x) equates to replanning. 

 An alternative approach could allow the UUV to regoal. 

Consider a UUV taking oceanographic measurements (e.g., 

water salinity) when it detects a nearby surface vessel. 

While motion planning systems will likely continue the 

measurement task, minimizing risk of collision while 

maximizing data quality, they cannot consider the broader 

implications of the vessel’s arrival and how best to respond. 

Depending on the location, nature of the mission, and the 

identity of the approaching vessel, the UUV may need to 

communicate with it, attempt to avoid detection, or abort the 

data-collection mission and return to notify its operator of 

the surface vessel’s approach. An at-sea UUV has limited 

communication with human operators, and must make such 

goal decisions autonomously. 

 To provide a UUV with the ability to reason about and 

dynamically select goals while pursuing long-term 

missions, we are applying GDA to guide a Bluefin 

underwater vehicle, initially in simulation but with planned 

execution on a real vehicle. GDA can generate appropriate 

goals in response to unplanned situations and is therefore 

well-suited to the control of unmanned vehicles at sea. 

 We use MOOS-IvP (Benjamin et al., 2010) to provide 

reactive navigation guidance. MOOS is a message-passing 

system with a centralized publish-subscribe model. IvP 

Helm is a behavior-based MOOS application that chooses 

desired heading, speed, and depth for the vehicle in a 

reactive manner to generate collision-free trajectories. IvP 

Helm uses an interval programming technique that 

optimizes over an arbitrary number of objective functions to 

generate desired navigation values.  The GDA agent 

complements the IvP Helm’s reactive behaviors by enabling 

the capacity for deliberative reasoning for longer missions. 

Thus, we use the GDA agent to perform GR, IvP Helm to 

provide navigation guidance, and Bluefin’s Huxley control 

architecture for low-level control. 

8.2 Unmanned Air Vehicle (UAV) Control 

UAVs have been used frequently in military operations, 

controlled via teleoperation in surveillance and targeting 

missions, for example. As they become more autonomous 

they will also be deployed in air combat operations in areas 

that are highly dynamic, uncertain, and adversarial. In such 

environments, UAVs will have to coordinate with manned 

aircraft, which the USA military highlights as a critical 

technical challenge (DoD, 2013). Our project’s objective is 

to develop and demonstrate the utility of a GR agent for 

controlling simulated UAVs in manned-unmanned air 

combat teams, where the teamed pilots will manage the 

UAVs’ activities.  

 The air combat environment is highly complex with 

stochastic, dynamic, adversarial, and partially observable 

elements.  Highly autonomous decision making in such an 

environment requires agents to respond to situations for 

which they lack pre-programmed responses. The UAVs 

cannot rely solely on the pilot for constant oversight in these 

situations because they must pilot their own vehicle.  

For this task, we are integrating a novel GR agent in a 

decision-making system called the TBM (Tactical Battle 

Manager), which should advance the state-of-the-art in 

several respects. This high-tempo environment requires 

decisions to be made within seconds as indecision could lead 

to loss of human life or destruction of expensive assets. The 

human pilot must specify goals and preferences. Finally, 

scenarios will consist of multiple vehicles, and actions by 

the actor effect the pilots and other UAVs’ agents. 

 Our GR model is inspired by Young and Hawes’s (2012) 

model, in which desires are satisfied via a system of drives. 

At any given time the desire monitor and state monitor 

inspect the world state. If an event agitates a desire, then the 

GR may formulate a new goal. For example, suppose a 

manned vehicle in a manned-unmanned team of vehicles 

was just shot down. This event would agitate an ENSURE 

HUMAN SAFETY desire in the actor controlling the UAV, and 

a drive would then formulate a DEFEND CRASH SITE goal. 

 To evaluate GR we will use two modern air combat 

simulations, namely the Next Generation Threat System 

(NGTS) (2013) and the Analytic Network for Network-

Enabled Systems (AFNES). We have integrated a simple 

GR agent with NGTS; it replaces plans to control air 

vehicles when notable events occur. We will apply GR to a 

set of simulated scenarios (with random variations) and 

measure mission success with and without goal reasoning.  

We hypothesize that the integration of GR in TBM will 

increase the performance of mixed teams in air combat 

missions, and that GR will reduce the amount of oversight 

that pilots must provide to their UAV teammates, because 

they will be able to reason and respond to unexpected 

situations as they occur. 

8.3 Control for Collaborative Sensing 

Between the time of a tragic disaster (e.g., the Philippines 

Typhoon) and the arrival of support operations, emergency 

response personnel need information concerning the 

whereabouts of survivors, the condition of infrastructure, a 

suggested ingress and evacuation routes. Current practice 



for gathering this information relies on drone operators and 

human pilots of helicopters. We believe a hetealrogeneous 

team of autonomous vehicles with sensor platforms can 

automate many parts of the information gathering, thus 

freeing humans to perform more critical tasks and 

improving the response time for Humanitarian 

Assistance/Disaster Relief operations. 

 Planning trajectories for teams a priori to achieve a single 

objective requires solving a high dimensional optimization 

problem (Yilmaz et al., 2008) to compute optimal 

trajectories that are tightly coupled to the initial 

assumptions/goal. Bio-inspired and other reactive guidance 

strategies simplify this problem by using more goal-directed 

behaviors for area coverage (Liu & Hedrick, 2011) and 

discrete target tracking (Haque et al., 2008; Kruecher et al., 

2007). These behaviors rely on local measurements and 

instantaneous gradients to guide robots.  Still, no behavior 

or trajectory can handle all contingencies.   

 A promising approach, inspired by animal behavior, uses 

finite state automata (FSA) for mobile robot guidance 

(Balch et al., 2006). Hand-coding an FSA for each execution 

of a robot is tedious and error prone. Kress-Gazit et al. 

(2009) instead synthesize an FSA using a Linear Temporal 

Logic specification (LTL-spec) that views synthesis as 

searching for a game-theoretic table in which the robot takes 

actions to achieve its goals against actions taken by the 

environment (i.e., the adversary). This strategy guarantees 

correct behavior if the LTL-spec is never violated, but 

synthesis is exponential in the number of (environmental 

and sensing) goals. This is clearly intractable for large teams 

of robots, and we use GR as a “coach” to select goals to 

maintain tractable synthesis for individuals within the team. 

Our technical approach draws on the goal refinement 

process of decomposing a high-level goal into predicates 

that then guide LTL-to-FSA synthesis. As the potential 

number of predicates is large for a multi-vehicle, multi-goal 

mission, we developed a hierarchical approach that 

separates GR, planning/scheduling, and vehicle guidance 

tasks into discrete processes. Our approach converts active 

goals into an LTL specification for the mobile agents. If a 

specification is unsatisfiable, an error report is returned to 

the GR actor. 

  At runtime, we monitor the agents’ progress through their 

FSAs, and constantly update the GR actor’s model of the 

environment. Notable events occur when the actors: achieve 

a substantial sub-goal; determine they cannot achieve their 

current sub-goal; or their FSA does not specify how to 

respond to an unexpected change in a vehicle’s state. 

Candidate goals are evaluated using an approximate 

environment and team model based on the MASON (Luke 

et al., 2005) multi-agent simulator, which can perform some 

FSA synthesis and apply the optimal or reactive guidance 

algorithms. These produce the quality metrics the GR agent 

uses to select which goals to activate.   

9. Summary and Future Work 

We observed that goal reasoning (GR) occurs when an actor 

observes notable events and that it falls along a spectrum of 

design to deliberation.  The extent to which an actor takes 

initiative to deliberate over its goals provides a measure of 

autonomy. We presented the goal lifecycle to demonstrate 

how modes act as constraints in the management of goals 

and discussed how this lifecycle instantiates GR models: for 

replanning and Goal-Driven Autonomy (GDA). We 

formalized the GR problem by introducing a goal memory 

and GR operators, casting the problem of GR in terms of 

choosing a composition of GR operators to maximize an 

actor’s future rewards. Although our model is general 

enough to be agnostic about which approach is used for this 

purpose, we then related the GR problem to a Markov 

Decision Process (if states and the value function are 

known) and Reinforcement Learning (if states or the value 

function are unknown). Finally, we discussed three ongoing 

robotics-related projects in which we are using a model of 

GR for decision making and control. 

 There are many benefits to our proposed GR model:  

a. It provides a common language for discussing 

deliberation in actors, and is rich enough to frame the 

conversation among researchers who study robotics, 

planning, or scheduling.   

b. It is instantiable; it covers existing subclasses and can 

grow to future knowledge/systems.  

c. Strategies make the model composable and able to 

incorporate the variety of design decisions of an actor. 

Strategies can be empty (i.e., no-op), static/dynamic 

policies, hand-coded (or learned) rules or cases, or 

domain-specific algorithms.  

d. From a software design perspective, the model allows 

for rapid prototyping of systems. A team can begin with 

handcoded/no-op strategies to determine a platform’s 

viability, which provides a baseline for assessing 

autonomy. This low-bar approach also aids in focusing 

knowledge modeling on only the parts of the system 

where decisions will be made, and thus helps with 

knowledge engineering for robotics. 

e. This model spans layers of deliberation at the 

individual, team, and coach levels. 

 We will soon extend the formal model of GR, instantiate 

it in the projects described in §8, and analyze its advantages 

and limitations by evaluating those actors’ performances.  

We are especially interested in linking the GR lifecycle to 

recent models of replanning (Talamadupala et al., 2013) and 

continual planning (Scala, to appear). 

 We described goal reasoning in terms of a lifecycle that 

refines an actor’s goals and expansions, and summarized its 

application to robotics-related tasks. Our research is in its 

early stages, and we invite feedback on this model. 
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