
Iterative Goal Refinement for Robotics

Mark Roberts1, Swaroop Vattam1, Ronald Alford2,

Bryan Auslander3, Justin Karneeb3, Matthew Molineaux3,

Tom Apker4, Mark Wilson5, James McMahon6, and David W. Aha5

1NRC Postdoctoral Fellow; Naval Research Laboratory, Code 5514; Washington, DC
2ASEE Postdoctoral Fellow; Naval Research Laboratory, Code 5514; Washington, DC

3Knexus Research Corporation; Springfield, VA
4Exelis Corporation; Alexandria, VA

5Navy Center for Applied Research in Artificial Intelligence; Naval Research Laboratory, Code 5514; Washington, DC
6Physical Acoustics Branch; Naval Research Laboratory, Code 7130; Washington, DC

1,2first.last.ctr@nrl.navy.mil | 3first.last@knexusresearch.com | 4thomas.apker@exelisinc.com | 5,6first.last@nrl.navy.mil

Abstract

Goal Reasoning (GR) concerns actors that assume the
responsibility for dynamically selecting the goals they
pursue. Our focus is on modelling an actor’s decision making
when they encounter notable events. We model GR as an
iterative refinement process, where constraints introduced for
each abstraction layer shape the solutions for successive
layers. Our model provides a conceptual framework for
robotics researchers and practitioners. We present a goal
lifecycle and define a formal model for GR that (1) relates
distinct disciplines concerning actors that operate on goals,
and (2) provides a way to evaluate actors. We introduce GR
using an example on waypoint navigation and outline its
application, in three projects, for controlling simulated and
real-world vehicles. We emphasize the relation of GR to
planning, and encourage PlanRob researchers to collaborate
in exploring this exciting frontier.

1. Introduction

Robotic systems often act using incomplete models in

environments that are dynamic, partially observable, and

non-deterministic. One consequence is that they will

encounter notable events. Appropriate responses to notable

events can be designed a priori or learned by the actor.

During execution, robots deliberate on their responses to

notable events and can choose to adjust their expectations or

world model, repair their current plan, replan, or regoal (i.e.,

change their current goal(s)). In each case, they take steps

toward achieving goals. We refer to this capability of

reasoning about ones goals as goal reasoning (GR), which

involves dynamically assessing the tradeoffs within the

space of goals. We argue that GR is of particular value to

robotic systems, as it supports more autonomous behavior.

We present a preliminary formal model that frames GR

as an iterative refinement process similar to planning as

refinement search (Kambhampati et al., 1995) and iterative

repair (Chien et al., 2000). Our model provides a common

language for defining GR actors and complements recent

foundational perspectives on planning and acting (Ghallab

et al., 2014) and deliberation functions (Ingrand & Ghallab,

2014). We present a motivating example (§2), provide

background (§3), detail our model and two instantiations

(§4), provide a proof of minimal agency (§5), introduce goal

memory (§6), define the GR problem (§7), and describe its

application to three robotics-related tasks (§8). We integrate

our discussion of related work throughout the paper,

although this does not constitute a thorough survey on goals

in the literature on planning, robotics, agents, and actors.

Our projects span GR actors at the coach, team, and single

system levels. Like other research on robotics, a cross-

cutting concern is eliciting robotic behavior that is

consistent, reliable, trustworthy, verifiable, explainable, and

predictable. We invite researchers and practitioners to join

our ongoing dialog on the topic of goal reasoning.

2. Waypoint Navigation Example

Figure 1 depicts a simple waypoint navigation task where

the robot’s goal is at(y). This example could apply to

controlling an underwater or micro-aerial vehicle in the

context of water currents or wind, respectively, as shown as

vectors. Dashed curves indicate the bounds of the expected

trajectory (i.e., a soft constraint) while the outer box

represents a hard constraint that the actor should avoid

violating. The actual trajectory of the robot is given by the

solid arc that starts at x and ends at y. The deviating path is

due to the difference between the expected flow (dashed

vectors) and actual flow (solid vectors).

 From the example it is evident that we assume a dynamic

environment, exogenous events, and interruptible actions.

We also assume that both the environment and the actor’s

actions have temporal extent.

 Below the plot is a representation of the vehicles timeline,

which is inspired by the work of Smith et al. (2000). The

time window of the plan indicates that the plan should start

executing no earlier than the earliest start time (i.e., the

leftmost vertical bar) and finish by the latest finish time (the

rightmost vertical bar). The large block in the middle

indicates the expected transit duration. Inside the timeline

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Iterative Goal Refinement for Robotics

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Knexus Research Corporation,9120 Beachway
Lane,Springfield,VA,22153

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
In Proceedings of the Second Workshop on Planning and Robotics at ICAPS 2014, 22-23 June 2014,
Portsmouth, NH.

14. ABSTRACT
Goal Reasoning (GR) concerns actors that assume the responsibility for dynamically selecting the goals
they pursue. Our focus is on modelling an actor?s decision making when they encounter notable events. We
model GR as an iterative refinement process, where constraints introduced for each abstraction layer
shape the solutions for successive layers. Our model provides a conceptual framework for robotics
researchers and practitioners. We present a goal lifecycle and define a formal model for GR that (1) relates
distinct disciplines concerning actors that operate on goals, and (2) provides a way to evaluate actors. We
introduce GR using an example on waypoint navigation and outline its application, in three projects, for
controlling simulated and real-world vehicles. We emphasize the relation of GR to planning, and
encourage PlanRob researchers to collaborate in exploring this exciting frontier.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

are dots corresponding to what we call a “notable event,”

which we define as an event (usually resulting in a state

change) that impacts the agent in some way. For this

example, the notable events correspond to soft and hard

constraint violations; the first two points indicate where the

vehicle violates the preferred trajectory while the last two

points indicate eminent and actual violation of the hard

constraint. These points express possible places and where

a decision must be made concerning vehicle behavior.

 A GR actor may resolve (i.e., respond to) these events

using various strategies (e.g., adjust its expectations, adjust

or replace its plan, adjust or change its goal). GR actors

differ in the strategies they can apply and how they apply

them. In §4, we will use this example to illustrate some of

these strategies, after providing some background.

3. Preliminaries

The models and algorithms used for planning in robotics is

staggering (e.g., (LaValle, 2006; Ghallab et al., 2014)). We

will show how GR can be viewed as a process of refining

the constraints on goals. This perspective synthesizes and

unifies planning for robotics. First, we define goals and

review planning as refinement search.

3.1 Goals

Our robotics control applications focus on achieving goals,

which we define as states an actor desires to achieve (or

maintain). To define states, we leverage some elements of

the classical planning formalism by Ghallab et al. (2004).

Let 𝐿 be the language for representing world states, 𝑆 ⊆ 2𝐿

be the set of world states, and 𝑔 ⊆ 𝐿 be a goal. Then 𝑆𝑔 =
{𝑠 ∈ 𝑆|𝑔 ⊆ 𝑠} represents the set of states that achieve 𝑔.

The world is assumed to exist externally to the actor, and a

plan is a sequence of actions for transforming an initial state

𝑆0 into 𝑆𝑔. For much of our discussion we focus on a single

goal, but the use of a goal set is appropriate for some

applications; the model easily extends to goal sets.

 We assume that a set of temporal, resource, and ordering

constraints apply to goals as well as states and actions, but

the exact nature of these constraints is a design decision.

Researchers have used a variety of ways to represent such

constraints (e.g., as a constraint satisfaction problem (Scala,

to appear), in PDDL (Vaquro, to appear), or NDDL (Rajan

et al. 2013)). We also assume that completing (or

maintaining) goals has intrinsic value for an actor; we return

to this assumption in §6 and §7.

 For GR to occur the actor must perform actions for

transitioning among both its external and internal state. To

exemplify these, a goal to achieve external state in Figure 1

might be at(y), while a goal to satisfy internal state might

be finished(at(y)). So we expand and partition the

language of the GR actor into 𝐿𝐺𝑅 = 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ∪ 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 .

We similarly partition the set of goals into 𝑆𝑔 = 𝐸𝑔 ∪ 𝐼𝑔. In

𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 the actor selects actions to achieve 𝐸𝑔. In 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

the actor selects actions to achieve 𝐼𝑔 and some internal

actions may be conditioned on external goals. Primitive

goals cannot be decomposed into subgoals.

3.3 Planning as Refinement Search

Our model’s theoretical foundation builds from Planning as

Refinement Search (Kambhampati, 1994; 1997;

Kambhampati et al., 1995), which models planning in a

generic way to distinguish planners by their design choices

and facilitate their comparison. Refinement planning

employs a split and prune model of search, where plans are

drawn from a candidate space 𝐾. Let a search node 𝑁 be a

constraint set that implicitly represents a candidate set

drawn from 𝐾. Refinement operators transform a node 𝑁𝑖

at layer 𝑖 into 𝑚 children 〈 𝑁𝑗1, 𝑁𝑗2,, … , 𝑁𝑗𝑚〉 at layer 𝑗 = 𝑖 +
1 by adding constraints which further restrict the candidate

sets in the next layer. If the constraints are inconsistent then

the candidate set is empty. The authors initially provided

two kinds of constraints that can be added by refinement

operators: (1) interval constraints ensure a variable (i.e., a

proposition) maintains a property (i.e., it remains true, false,

or unchanged) over an interval; and (2) truth point

constraints ensure a variable is true at a specific point in

time. Kambhampati (1994) conjectured that these

constraints could be extended to include behavioral

constraints or desires. Kambhampati and Srivastava (1995)

extend plan refinement to state-space planning with

contiguity constraints ensuring, for two actions 𝑖 and 𝑗, no

new action can intervene.

 Let 𝑁∅ represent an initial node whose candidate set

equals 𝐾 and results from only the initial constraint set

provided in the problem description (from the perspective of

the search process, the refined constraints are empty, thus

the subscript ∅). The REFINEPLAN algorithm begins with

𝑁∅ and recursively applies refinements to add constraints

until a solution is found. A desirable property of

refinements is that each layer of search results in smaller

candidates subsets as REFINEPLAN proceeds. Thus the

Figure 1: Navigating from x to y

constraints aid search by identifying inconsistent nodes and

providing backtracking points. An optional step is to apply

forward consistency checking to further prune candidate

nodes, usually at considerable computational cost.

Instantiations of REFINEPLAN correspond to different

versions of classical planning.

The original model of refinement planning focused on

Partial Order Planning, but extensions to the kinds of

constraints allowed the refinement framework to

incorporate other forms of planning and clarify issues in the

Modal Truth Criterion (Kambhampati & Nau, 1994).

Unfortunately space limitations prevent a full exposition of

these ideas. Briefly, plan refinement allows us to equate

different kinds of goal decomposition methods in plan-space

and state-space planning. More recent formalisms such as

Angelic Hierarchical Plans (Marthi et al., 2008) and

Hierarchical Goal Networks (Shivashankar et al., 2013) can

also be viewed as leveraging this concept. The focus on

constraints in plan refinement also allows a natural

extension to the many integrated planning and scheduling

systems that use constraints for temporal and resource

reasoning.

4. Goal Reasoning as Goal Refinement

To build on plan refinement, we distinguish between a

GR process and the actor that is running it because there may

be additional processes in the actor such as meta reasoning,

learning, etc. We assume a goal is achieved through the

execution of some expansion (i.e., plan). A GR process

refines a set of goal nodes 𝐺 until they can be achieved

through execution. For a goal 𝑔 ∈ 𝐺, a goal node 𝑁𝑔 =
〈𝐶𝑔, 𝑋𝑔, 𝑥, 𝑜〉 is a tuple of constraints 𝐶𝑔, possible

expansions that could achieve the goal 𝑋𝑔, the currently

selected expansion 𝑥 ∈ 𝑋𝑔, and goal lifecycle mode 𝑜. A GR

process begins with 𝑁∅
𝑔

, which consists of the candidate

space of all possible executions achieving 𝑔, and makes

decisions that refine its goals 𝑆𝑔 or 𝐼𝑔 through a series of

refinements 𝑅 on goal nodes until it selects one expansion

𝑥 ∈ 𝑋 for execution. Similar to plan refinement, goal

refinement takes a Least Commitment (Weld, 1994)

approach. Further, planning and learning (Veloso et al.,

1995) could be incorporated in certain parts of the system,

but learning is not a requirement for goal refinement.

Defining GR as goal refinement allows us model GR in a

generic way to distinguish planners by their design choices

and facilitate their comparison

4.1 Constraints (𝑪𝒈)

We partition the constraints 𝐶𝑔 = 𝐶𝑔
𝑔𝑖𝑣𝑒𝑛

∪ 𝐶𝑔
𝑎𝑑𝑑𝑒𝑑 into (1)

those given to the GR process from the process that invoked

it (e.g., human operator, meta-reasoning process, coach) and

(2) those that it adds during refinement.

 Constraints can be temporal (finish by a certain time),

ordering (do x before y), maintenance (remain at a certain

depth), resource (consider only one goal at a time), or

computational (only use so much CPU or memory). Top-

level constraints can be pre-encoded or based on drives (e.g.,

(Coddington et al., 2005; Young & Hawes, 2012)). Hard

constraints in 𝐶𝑔 must be satisfied at all times (stay within

the box in the waypoint example), while soft constraints

should be satisfied if possible (follow a preferred trajectory).

4.2 Expansions (𝑿𝒈)

To distinguish goal refinement from planning, we define

the set of possible expansions 𝑋𝑔 as the means of achieving

𝑔. A goal 𝑆𝑔 or 𝐼𝑔 can be achieved by executing an

expansion. We call 𝑥 ∈ 𝑋𝑔 a selected expansion that is

currently slated for execution.

The term “expansion” highlights GR as any process that

performs goal refinement. Planning (in the classical sense)

is one kind of expansion, but not all possible expansions of

𝑆𝑔 are plans. Robotics systems are often integrated in layers

that operate on distinct granular models of the world. So

expansions can include, but are not limited to: a simple rule,

a richly detailed goal or task network, a (state-based) plan,

the switching of behaviors, a change in parameters for an

adjoining deliberation layer, an algorithm for learning new

or revising existing knowledge, a recipe for unlearning, or,

for a team of robots, a specially crafted algorithm.

Expansions can be provided at different times to an actor:

designed expansions are declared as part of the actor’s

specification (i.e., as part of 𝐿𝐺𝑅), while learned expansions

are new ways of problem solving derived from the actor’s

experience and investment in capturing or revising new

knowledge (i.e., 𝐿𝐺𝑅, which may grow or change to

incorporate this new knowledge). This knowledge can be

captured online during execution, during the actor’s

deliberation, or offline prior to execution.

4.3 Modes (𝒐)

The modes of a goal indicate successively smaller candidate

sets towards eventual execution. We label each set with a

mode from {Formulated, Selected, Expanded, Committed,

Dispatched, Finished}. Transitions between these modes

lead toward eventual execution (Clement et al., 2007). We

present two views of these modes. In the goal refinement

view, each mode can be a strict subset of the next in the

candidate space of goals:

Reading this from right to left (due to the subset relation):

After an actor formulates and selects a goal, planning

involves searching through candidate expansions and

selecting one. Finally, the dispatch step dispatches a plan for

execution, monitors its trajectory (making corrections as

needed), and marks the goal as achieved if execution went

well. Each transition to a new mode reduces the candidate

set, increases the level of commitment the actor has made to

a goal, and increases its degree of refinement. Refinements

follow naturally from the view of actors that are performing

deliberation (Ingrand & Ghallab, 2014). We invest the next

section discussing a left-to-right view of the modes.

4.4 The Goal Lifecycle

The lifecycle for a goal (Figure 2) captures the possible

decision points of a GR actor and complements a plan’s

lifecycle (e.g., (Pollack & Horty, 1999; Myers, 1999).

Decisions consist of applying a strategy (denoted using an

arc in Figure 2; boldfaced in this section) that transitions a

goal among modes (denoted using large or small rounded

boxes) in the lifecycle. The g’s in the goal lifecycle

correspond to goals and x’s correspond to expansions.

Transitions are verbs and modes qualify a goal’s mode (e.g.,

select(𝑆𝑔) transitions 𝑆𝑔 from formulated to selected mode).

 Goals in an active mode are those that have been

formulated but not yet dropped. The formulate strategy is

the first decision point. In many actors, this decision is

carefully (implicitly, statically) encoded (e.g., an

observation may fire a trigger to achieve some goal).

Vattam et al., (2013) describe goal formulation strategies.

The drop strategy causes a goal to be “forgotten” and can

occur from any active mode. This decision can be

sophisticated and involve learning from the execution or

attempted expansion of a selected goal. To select a goal

indicates intent. A selection strategy depends on which

goals were formulated and effects the selection of a goal for

further refinement. The expand strategy decomposes a goal

into subgoal(s) or a primitive goal. The commit(𝒙) strategy

chooses the best expansion for execution; we assume

domain-specific quality metrics can assess expansion

quality. The dispatch(𝒙) strategy slates the best expansion

for execution and places the goal in an executing mode. In

both single- and multi-agent systems, a plan may undergo

further refinement (i.e., scheduling) prior to execution. Prior

refinements could favor a least commitment approach on

temporal/resource constraints to allow for flexible dispatch

(Conrad et al., 2009).

 Because we assume an online dynamic world, goals in an

executing mode are subject to transitions that result from

expected or unexpected external state changes during

execution. The monitor strategy can be passive (i.e., do

nothing) or proactive (i.e., monitor periodically) while a

goal is dispatched. As long as its plan’s execution does not

encounter any notable events, goal execution follows a

normal path toward achievement. If no notable events occur

and the dispatched expansion completes, then the finish

strategy marks the goal as finished, which may store the goal

to aid future deliberation. Not all goals may reach this mode

because goals can be dropped.

 When notable events occur, the evaluate strategy

determines how they impact goal execution (positively or

negatively). An evaluated mode does not imply that

execution of the current expansion is stopped. If the

evaluation does not impact the goal, it can continue with the

execution. However, if the event impacts the current goal,

the set of resolve strategies define a suite of paths toward

goal achievement. An obvious choice is to change the world

model using adjust(𝑳), but adjusting its model does not

resolve the current goal and further refinements are required.

In the waypoint example, we can imagine that the GR actor

could decide to adjust the bounds on the preferred trajectory

using the variance of the actual path. However, this is only

an “internal” adjustment, and it does not subsequently

communicate the adjusted expectations to its execution

system. The GR would simply ignore any future bounds

violations that fall within the new expectations. Rather than

adjust its expectations, the GR might apply a repair(𝒙)

strategy by repairing 𝑥 so that it meets the new context; this

is the so-called replanning approach. In the waypoint

example, this might involve communicating new bounds,

allowing more time, or selecting behaviors more appropriate

to the current conditions. This resolution repairs but does

fundamentally alter the current plan. If no repair is possible

(or desired) then the GR can apply the re-expand(𝒈)

strategy to reconsider the original plan from scratch. In the

Figure 2: A proposed goal lifecycle.

waypoint example, this might occur if an obstacle is found

to exist en route. The defer(𝒈) strategy instead postpones

the goal for further processing. In the example, this may

happen if current conditions are deemed as unfavorable for

achieving 𝑔, but the GR decides to retain 𝑔 as worth

pursuing in the future. A final option occurs in

formulate(𝒈′), which abandons 𝑔 in favor of a newly

formed goal 𝑔′.
 We very recently discovered the work on goal lifecycles

in the Autonomous Agents literature that is closely related

to the goal lifecycle proposed in this paper. Harland et al.

(2014) extend their earlier work (Thangarajah et al., 2010)

to present a goal lifecycle for BDI agents, provide

operational semantics for their lifecycle, and demonstrate

the lifecycle on a Mars rover scenario. Work by Winicoff

et al. (2010) has also linked Linear Temporal Logic to the

expression of goals that the project we discuss in §8.3 may

be able to leverage. We plan to fully explore these

approaches in future work.

4.5 Strategies and Strategy Composition

Strategies can be simple or complex. For example, select(𝑔)

could be implemented as a simple rule (e.g., automatically

select any goal that is formulated) or it could be

implemented as a learned policy that considers knowledge

about the environment, which goals are currently executing,

and their priority. Similarly, the drop strategy could be very

simple (e.g., in Figure 1, drop any goal when hard

constraints are violated), or the drop strategy could attempt

to learn long-term knowledge from the information gathered

in the goal node as it transitioned through the life cycle (e.g.,

in Figure 1, adjust future expectations for this region to

account for greater flow).

 Strategies can be composed, of which the resolve strategy

in Figure 2 is one example. A composition representing

classical planning demonstrates goals that are formulated by

an external process to the actor. Let 𝑔2 be a goal and

FINDPLAN be a planning algorithm producing one expansion

𝑥 that equates to a plan for achieving 𝑔2. Then a classical

planning strategy is composed:

 plan(𝑔2) => formulate+select(𝑔2),

𝑥 = FINDPLAN (𝑔2).

 Another strategy composition can relate the goal lifecycle

to partial satisfaction planning (PSP) and soft goals for

planning (Benton et al., 2010). PSP is closely aligned with

GR for the project discussed in §8.2. In that framework

planning proceeds on an oversubscribed set of goals where

a penalty is assessed for not meeting goals; the planner

constructs a plan that maximizes the utility (i.e., the payoff)

while minimizing the penalty. Let 𝐺3 be an oversubscribed

goal set and PSPPLAN be a planning algorithm that selects

the subset of goals and a plan 𝑥 to achieve them given the

objective criteria. Then a PSP planning strategy is

composed:

 psp-plan(𝐺3) => formulate(𝐺3),

𝑥 = PSPPLAN (𝐺3)

It may seem psp-plan(𝐺3) is identical to plan(𝑔2), however

PSPPLAN(𝐺3) performs goal selection, expansion and plan

selection, while FINDPLAN (𝑔2) only performs expansion

and plan selection.

4.6 Instantiations of Goal Reasoning

We next demonstrate how the full GR model can instantiate

two existing GR systems. The first is a replanning system,

which is a common approach to solving online dynamic

planning (e.g., (Yoon et al., 2007)). Figure 3 (top) shows

how the GR model can instantiate such replanning systems.

As shown, formulation is presumed (designed) in this model

and we have used the “plan(𝑔)” composition of §4.5.

 Figure 3 (bottom) shows one instantiation of the GR

model for Goal-Driven Autonomy (GDA); GDA agents

perform online planning and execution (Klenk et al., 2013).

A GDA agent consists of an intelligent controller that not

only interacts with a planner and the execution environment,

but also includes components for GR, separating the

planning process from those for goal formulation and

management. The controller takes as input an initial

planning problem and sends it to the planner. The planner

returns (1) a plan, which is a sequence of actions, and (2) a

corresponding sequence of expectations consisting of the

states expected to result after executing each action in the

plan. The controller dispatches the plan’s actions to the

execution environment and then runs a sophisticated

evaluate strategy. While a plan is dispatched, the controller

evaluates new information by (1) comparing observations

with expectations to discover discrepancies. For a

discrepancy, it (2) may generate an explanation, which takes

the discrepancy plus a history of past actions and

observations to propose one or more possible causal

Figure 3: Contrasting replanning (top) with

GDA (bottom) instantiations of the GR model.

explanations. Depending on the explanation, the controller

(3) may adjust(L) to correct its model or expectations of the

world, formulate a new goal in response to the discrepancy,

and then drop the existing goal. Finally, (4) this new goal

moves through the goal lifecycle (selected, expanded, etc.)

and is weighed against other goals for execution.

4.7 Instantiations of Strategies

We now detail two possible instantiations of the strategies

for the GDA architecture from Figure 3 (bottom). The M-

ARTUE system (Wilson et al, 2013) takes a direct approach

to the goal formulation step, in which all possible goals are

considered by the agent according to a set of domain-

independent heuristics that assess a goal's fitness in three

different dimensions: social, exploration and opportunity.

The fitness of each goal in these three dimensions is

weighted by the urgency of each of the respective needs to

come up with a single score by which all goals are

compared. A preliminary study of M-ARTUE showed that

it reached performance comparable to the use of domain-

specific knowledge for guiding goal selection in a test

domain.

 The FoolMeTwice agent (Molineaux & Aha, to appear)

employs a monitor and integrate strategies that incorporate

the environment to effect the agent's knowledge of what

events are possible. The FoolMeTwice agent is “surprised”

when it cannot explain (i.e., find a history of events

consistent with) its observations of the environment. When

surprised, FoolMeTwice hypothesizes a new model of a

previously unknown event that caused its surprise. These

models are thereafter use both monitor and integrate

strategies to improve the agent's performance at these tasks.

5. A Proof of Minimal Agency

Decision is a key element of agency. The degree to which

the actor’s decisions depend on dynamic deliberation rather

than pre-encoded knowledge determines its agency. Clearly,

if a single rule (i.e., a design) covers all contingencies for

any strategy that arises during execution, then the actor need

not make a decision. Decision points are noteworthy

because – assuming the agent acts on a single external goal

𝐸𝑔 – the actor’s goal switches from achieving 𝐸𝑔 to

achieving some internal decision goal 𝐼𝑑 ∈ 𝐼𝑔. Agency is an

increasing function of the number and kind of decision

goals. Further, we can prove:

Proposition 1: The number of primitive active goals for a

deliberative agent must be at least two, one of which must

be a decision goal, 𝐼𝑑.

Proof sketch: We can reason about any transition in the

lifecycle without loss of generality. Suppose the actor must

decide on one of two possible paths for 𝑠𝑒𝑙𝑒𝑐𝑡(𝑆𝑔) for a

primitive goal 𝑆𝑔. There are two cases to consider regarding

whether the agent deliberates on this decision. Let a rule be

a provided (or learned) sequence of steps to achieve some

goal. (1) Suppose the actor applies a rule to decide (even

non-deterministically), then the agent did not deliberate,

which contradicts our assumption of a deliberative actor. (2)

If there is no such rule, then the agent must formulate an

internal decision goal 𝐼𝑑 =is-selected-Sg (i.e., the

mode of 𝑆𝑔 is selected) and switch to the goal is-

achieved-𝐼𝑑. We can imagine many different ways the

actor might achieve this new goal (e.g., it can explore to

generate knowledge or exploit its existing knowledge). At

this point, we have already shown that at least two primitive

goals were required. Q.E.D.

Corollary 1: An actor will be unable to resolve a decision

goal if it tries to deliberate without enough designed (or

learned) knowledge.

Corollary 2: The number, kind, and frequency of primitive

decision goals defines a spectrum of deliberation and

agency for actors.

6. Goal Memory

In addition to moving goals through a lifecycle toward

achievement, a decision-making actor assesses tradeoffs

between various criteria (e.g., priority, domain-specific

quality functions, global utility, long term payoff). We use

the goal lifecycle in conjunction with a goal memory to

characterize a goal management process that simultaneously

addresses both.

 Our use of the term goal memory here is distinct from its

typical use in cognitive goal memory. In cognitive science,

goal memory is typically discussed as a mental construct

with representations and processes that are used to store and

manage goal-related requirements of the task that a

cognitive agent happened to be engaged in. While issues

such as interference level, strengthening and priming

constraints are key requirements to mimic human memory

(Altmann & Trafton 2002), we ignore any such

considerations because we are not concerned with the

cognitive plausibility of our model of the goal memory.

 Figure 4 shows the 𝑚 × 𝑛 goal memory in a table 𝑀,

where a cell 𝑀𝑖𝑗 represents the 𝑖𝑡ℎ goal 𝑔𝑖 (1 ≤ 𝑖 ≤ 𝑚), its

𝑗𝑡ℎ quality criteria 𝑞𝑖(1 ≤ 𝑗 ≤ 𝑛), and mode. We describe

these criteria in the following paragraphs.

 The priority criterion of a goal determines its importance

relative to other goals. Let 𝑓𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑔𝑖): 𝑔𝑖 → 𝕀, then 𝑀𝑖1 =

 𝑓𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑔𝑖). Priority depends on the agent’s current state,

and so may change dynamically.

 The inertia criterion of a goal 𝑔𝑖 characterizes the

strength of bias against changing its current mode because

of prior commitments. Let 𝑓𝑖𝑛𝑡𝑒𝑟𝑡𝑖𝑎(𝑔𝑖) ∶ 𝑔𝑖 → 𝕀, and let

𝑀𝑖2 = 𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎(𝑔𝑖). Inertia is defined as a function of 𝑔𝑖’s

mode, its number of expansions |𝑋𝑔|, its staleness (i.e., the

number of time steps since it last transitioned), the number

of transitions that have been applied to 𝑔𝑖, and the resources

committed to 𝑔𝑖.

The mode criterion of a goal 𝑔𝑖 determines its relative

importance based on how far along it is in the goal lifecycle.

For instance, if a goal is closer to execution, it has a higher

value because we want to move goals toward finished. Let

𝑓𝑚𝑜𝑑𝑒(𝑔𝑖): 𝑔𝑖 → 𝕀, then 𝑀𝑖3 = 𝑓𝑚𝑜𝑑𝑒(𝑔𝑖).

The remaining criteria express the quality (e.g., cost,

value, risk, reward) of achieving 𝑔𝑖 with the currently

selected expansion 𝑥 ∈ 𝑋𝑔. These are domain-specific

quality metrics, and we provide some examples when

discussing applications in §8. These metrics may also

include domain-independent quality metrics such as

minimizing makespan (i.e., parallel execution time) or

minimizing the plan length (i.e., number of plan steps).

In addition to the aforementioned criteria, we conjecture

that additional book-keeping columns may be necessary.

These include but are not limited to constraints, alternative

expansions, parent of goal, type of goal, etc.

7. The Goal Reasoning Problem

A GR agent examines its goal memory state 𝑀𝑡 at time 𝑡 and

chooses a strategy that maximizes its long-term rewards

using ∑ 𝛾𝑡𝑟𝑒𝑤𝑡
∞
𝑡 , where 𝛾𝑡 is a discount factor and 𝑟𝑒𝑤𝑡 is

the agent’s reward at 𝑡, which we model as 𝑟𝑒𝑤: 𝑀 × 𝑅 →
ℝ.

 For our formal model, we make some simplifying

assumptions that are too limiting for integrated robotics but

aid in explaining the model. In addition to the dynamic

environment and interruptible actions already assumed, we

assume for the exposition of the model:

 Markovian dynamics: The current choice for an actor

is based only on its last (known) state.

 Infinite horizon with discount: The actor is myopic; it

considers distant future states to be less important than

eminent future states, and may favor locally optimal

solutions that are globally suboptimal.

 Non-deterministic actions: An actor’s action may have

multiple possible outcomes.

 Under these assumptions, we can model GR as a Markov

Decision Process (MDP), given that the transition function

and the reward function are known. Given a current goal

memory state 𝑀, a GR strategy 𝑟 ∈ 𝑅 and a next goal

memory state 𝑀′, the mode transition function 𝑇(𝑀, 𝑟, 𝑀′)

is the probability of transitioning from 𝑀 to 𝑀′ using

strategy 𝑟. For MDPs, there exists an optimal deterministic

stationary policy (Kaelbling et al., 1996), implying the

existence of an optimal value function for a current goal

memory state 𝑀:

𝑉∗(𝑀) = 𝑚𝑎𝑥𝑝𝑜𝑙𝑖𝑐𝑦(𝐸(∑ 𝑦𝑡∞
𝑡=0 𝑟𝑒𝑤𝑡)) ,

where (0 ≤ 𝛾 < 1) is the discount factor. This optimal

value function is unique and reduces to ∀𝑀′ ∈ 𝑟(𝑀):

 𝑉∗(𝑀) = 𝑚𝑎𝑥𝑟(𝑟𝑒𝑤(𝑀, 𝑟) + 𝛾 ∑ 𝑇(𝑀, 𝑟, 𝑀′)𝑉∗(𝑀′)𝑀′).

Given this, we can specify the optimal policy as:

𝑝𝑜𝑙𝑖𝑐𝑦∗(𝑀) = arg 𝑚𝑎𝑥𝑟 (𝑟𝑒𝑤(𝑀, 𝑟) + 𝛾 ∑ 𝑇(𝑀, 𝑟, 𝑀′)𝑉∗(𝑀′)𝑀′).

If 𝑇 or 𝑟𝑒𝑤 are unknown, then GR can be modeled as a

reinforcement learning (Sutton & Barto, 1998) problem,

where deliberation results in a learned policy.

Reinforcement learning is a rich area of research that is out

of scope for this paper.

8. Applications of Goal Reasoning

Our group is working on two robotics and one simulated

robotics projects involving GR. We review these with a

focus on the expected value added by using GR, our

technical approach, and the GR research questions we are

addressing.

8.1 Unmanned Underwater Vehicle (UUV) Control

UUVs have been used for tasks such as inspection of

underwater structures (Antonelli et al., 2001), mine

countermeasures (LePage & Schmidt, 2002), and scientific

observation (Binney et al., 2010). These have engendered

work on motion planning (e.g., Tan et al., 2004), which can

guide vehicles to desired locations but cannot select goals.

These missions have short duration (at most eight to sixteen

hours) and operate over a small region.

 Long-duration missions, potentially lasting weeks or

months over much larger regions, present new challenges

for guidance systems, as the ocean environment is

unpredictable and partially observable. A UUV on a long-

duration mission must react competently to notable objects

and events. It may need to change its objectives or even

abort its mission due to unforeseen environmental hazards,

underwater barriers, encounters with other vehicles, or

Figure 4: A Goal memory of 𝑚 goals and 𝑛 quality metrics.

failures of onboard systems. A common approach in the face

of a dynamic environment would be replanning. Cashmore

et al (2013) confront the need for long-duration autonomy

in UUVs and examine the problem of modeling motion for

task-level mission planning. Their architecture reacts to

notable events (observations of the environment that differ

from assumptions) by remodeling the environment and

replanning for a fixed set of goals. In the language of our

GR model, their approach applies the adjust(L) strategy

followed by the re-expand(x) strategy. This is a case where

re-expand(x) equates to replanning.

 An alternative approach could allow the UUV to regoal.

Consider a UUV taking oceanographic measurements (e.g.,

water salinity) when it detects a nearby surface vessel.

While motion planning systems will likely continue the

measurement task, minimizing risk of collision while

maximizing data quality, they cannot consider the broader

implications of the vessel’s arrival and how best to respond.

Depending on the location, nature of the mission, and the

identity of the approaching vessel, the UUV may need to

communicate with it, attempt to avoid detection, or abort the

data-collection mission and return to notify its operator of

the surface vessel’s approach. An at-sea UUV has limited

communication with human operators, and must make such

goal decisions autonomously.

 To provide a UUV with the ability to reason about and

dynamically select goals while pursuing long-term

missions, we are applying GDA to guide a Bluefin

underwater vehicle, initially in simulation but with planned

execution on a real vehicle. GDA can generate appropriate

goals in response to unplanned situations and is therefore

well-suited to the control of unmanned vehicles at sea.

 We use MOOS-IvP (Benjamin et al., 2010) to provide

reactive navigation guidance. MOOS is a message-passing

system with a centralized publish-subscribe model. IvP

Helm is a behavior-based MOOS application that chooses

desired heading, speed, and depth for the vehicle in a

reactive manner to generate collision-free trajectories. IvP

Helm uses an interval programming technique that

optimizes over an arbitrary number of objective functions to

generate desired navigation values. The GDA agent

complements the IvP Helm’s reactive behaviors by enabling

the capacity for deliberative reasoning for longer missions.

Thus, we use the GDA agent to perform GR, IvP Helm to

provide navigation guidance, and Bluefin’s Huxley control

architecture for low-level control.

8.2 Unmanned Air Vehicle (UAV) Control

UAVs have been used frequently in military operations,

controlled via teleoperation in surveillance and targeting

missions, for example. As they become more autonomous

they will also be deployed in air combat operations in areas

that are highly dynamic, uncertain, and adversarial. In such

environments, UAVs will have to coordinate with manned

aircraft, which the USA military highlights as a critical

technical challenge (DoD, 2013). Our project’s objective is

to develop and demonstrate the utility of a GR agent for

controlling simulated UAVs in manned-unmanned air

combat teams, where the teamed pilots will manage the

UAVs’ activities.

 The air combat environment is highly complex with

stochastic, dynamic, adversarial, and partially observable

elements. Highly autonomous decision making in such an

environment requires agents to respond to situations for

which they lack pre-programmed responses. The UAVs

cannot rely solely on the pilot for constant oversight in these

situations because they must pilot their own vehicle.

For this task, we are integrating a novel GR agent in a

decision-making system called the TBM (Tactical Battle

Manager), which should advance the state-of-the-art in

several respects. This high-tempo environment requires

decisions to be made within seconds as indecision could lead

to loss of human life or destruction of expensive assets. The

human pilot must specify goals and preferences. Finally,

scenarios will consist of multiple vehicles, and actions by

the actor effect the pilots and other UAVs’ agents.

 Our GR model is inspired by Young and Hawes’s (2012)

model, in which desires are satisfied via a system of drives.

At any given time the desire monitor and state monitor

inspect the world state. If an event agitates a desire, then the

GR may formulate a new goal. For example, suppose a

manned vehicle in a manned-unmanned team of vehicles

was just shot down. This event would agitate an ENSURE

HUMAN SAFETY desire in the actor controlling the UAV, and

a drive would then formulate a DEFEND CRASH SITE goal.

 To evaluate GR we will use two modern air combat

simulations, namely the Next Generation Threat System

(NGTS) (2013) and the Analytic Network for Network-

Enabled Systems (AFNES). We have integrated a simple

GR agent with NGTS; it replaces plans to control air

vehicles when notable events occur. We will apply GR to a

set of simulated scenarios (with random variations) and

measure mission success with and without goal reasoning.

We hypothesize that the integration of GR in TBM will

increase the performance of mixed teams in air combat

missions, and that GR will reduce the amount of oversight

that pilots must provide to their UAV teammates, because

they will be able to reason and respond to unexpected

situations as they occur.

8.3 Control for Collaborative Sensing

Between the time of a tragic disaster (e.g., the Philippines

Typhoon) and the arrival of support operations, emergency

response personnel need information concerning the

whereabouts of survivors, the condition of infrastructure, a

suggested ingress and evacuation routes. Current practice

for gathering this information relies on drone operators and

human pilots of helicopters. We believe a hetealrogeneous

team of autonomous vehicles with sensor platforms can

automate many parts of the information gathering, thus

freeing humans to perform more critical tasks and

improving the response time for Humanitarian

Assistance/Disaster Relief operations.

 Planning trajectories for teams a priori to achieve a single

objective requires solving a high dimensional optimization

problem (Yilmaz et al., 2008) to compute optimal

trajectories that are tightly coupled to the initial

assumptions/goal. Bio-inspired and other reactive guidance

strategies simplify this problem by using more goal-directed

behaviors for area coverage (Liu & Hedrick, 2011) and

discrete target tracking (Haque et al., 2008; Kruecher et al.,

2007). These behaviors rely on local measurements and

instantaneous gradients to guide robots. Still, no behavior

or trajectory can handle all contingencies.

 A promising approach, inspired by animal behavior, uses

finite state automata (FSA) for mobile robot guidance

(Balch et al., 2006). Hand-coding an FSA for each execution

of a robot is tedious and error prone. Kress-Gazit et al.

(2009) instead synthesize an FSA using a Linear Temporal

Logic specification (LTL-spec) that views synthesis as

searching for a game-theoretic table in which the robot takes

actions to achieve its goals against actions taken by the

environment (i.e., the adversary). This strategy guarantees

correct behavior if the LTL-spec is never violated, but

synthesis is exponential in the number of (environmental

and sensing) goals. This is clearly intractable for large teams

of robots, and we use GR as a “coach” to select goals to

maintain tractable synthesis for individuals within the team.

Our technical approach draws on the goal refinement

process of decomposing a high-level goal into predicates

that then guide LTL-to-FSA synthesis. As the potential

number of predicates is large for a multi-vehicle, multi-goal

mission, we developed a hierarchical approach that

separates GR, planning/scheduling, and vehicle guidance

tasks into discrete processes. Our approach converts active

goals into an LTL specification for the mobile agents. If a

specification is unsatisfiable, an error report is returned to

the GR actor.

 At runtime, we monitor the agents’ progress through their

FSAs, and constantly update the GR actor’s model of the

environment. Notable events occur when the actors: achieve

a substantial sub-goal; determine they cannot achieve their

current sub-goal; or their FSA does not specify how to

respond to an unexpected change in a vehicle’s state.

Candidate goals are evaluated using an approximate

environment and team model based on the MASON (Luke

et al., 2005) multi-agent simulator, which can perform some

FSA synthesis and apply the optimal or reactive guidance

algorithms. These produce the quality metrics the GR agent

uses to select which goals to activate.

9. Summary and Future Work

We observed that goal reasoning (GR) occurs when an actor

observes notable events and that it falls along a spectrum of

design to deliberation. The extent to which an actor takes

initiative to deliberate over its goals provides a measure of

autonomy. We presented the goal lifecycle to demonstrate

how modes act as constraints in the management of goals

and discussed how this lifecycle instantiates GR models: for

replanning and Goal-Driven Autonomy (GDA). We

formalized the GR problem by introducing a goal memory

and GR operators, casting the problem of GR in terms of

choosing a composition of GR operators to maximize an

actor’s future rewards. Although our model is general

enough to be agnostic about which approach is used for this

purpose, we then related the GR problem to a Markov

Decision Process (if states and the value function are

known) and Reinforcement Learning (if states or the value

function are unknown). Finally, we discussed three ongoing

robotics-related projects in which we are using a model of

GR for decision making and control.

 There are many benefits to our proposed GR model:

a. It provides a common language for discussing

deliberation in actors, and is rich enough to frame the

conversation among researchers who study robotics,

planning, or scheduling.

b. It is instantiable; it covers existing subclasses and can

grow to future knowledge/systems.

c. Strategies make the model composable and able to

incorporate the variety of design decisions of an actor.

Strategies can be empty (i.e., no-op), static/dynamic

policies, hand-coded (or learned) rules or cases, or

domain-specific algorithms.

d. From a software design perspective, the model allows

for rapid prototyping of systems. A team can begin with

handcoded/no-op strategies to determine a platform’s

viability, which provides a baseline for assessing

autonomy. This low-bar approach also aids in focusing

knowledge modeling on only the parts of the system

where decisions will be made, and thus helps with

knowledge engineering for robotics.

e. This model spans layers of deliberation at the

individual, team, and coach levels.

 We will soon extend the formal model of GR, instantiate

it in the projects described in §8, and analyze its advantages

and limitations by evaluating those actors’ performances.

We are especially interested in linking the GR lifecycle to

recent models of replanning (Talamadupala et al., 2013) and

continual planning (Scala, to appear).

 We described goal reasoning in terms of a lifecycle that

refines an actor’s goals and expansions, and summarized its

application to robotics-related tasks. Our research is in its

early stages, and we invite feedback on this model.

Acknowledgements

The authors for this project were funded by OSD. We also

thank the anonymous reviewers whose comments helped

improve the paper.

References

Altmann, E. M., & Trafton, J. G. (2002). Memory for goals:
An activation-based model. Cognitive Science, 26, 39-83.

Antonelli, G., Chiaverini, S., Finotello, R., & Schiavon, R.

(2001). Real-time path planning and obstacle avoidance

for RAIS: Aan autonomous underwater vehicle. IEEE

Journal of Oceanic Engineering, 26(2), 216-227.

Balch, T., Dellaert, F., Feldman, A., Guillory, A., Isbell,

C.L., Khan, Z., Pratt, S.C., Stein, A.N., & Wilde, H.

(2006). How multirobot systems research will accelerate

our understanding of social animal behavior.

Proceedings of the IEEE, 94(7), 1445-1463.

Benton, J., Do, M., & Kambhampati, S. (2009). Anytime

heuristic search for partial satisfaction planning. Artificial

Intelligence, 173(5-6), 562–592.

Benjamin, M., Schmidt, H., Newman, P., & Leonard, J.

(2010). Nested autonomy for unmanned marine vehicles

with MOOS-IvP. Journal of Field Robotics, 27(6), 834-

875.

Binney, J., Krause, A., & Sukhatme, G.S. (2010).

Informative path planning for an autonomous underwater

vehicle. In Proceedings of the 2010 IEEE International

Conference on Robotics and Automation, (pp. 4791-

4796). Anchorage, AK: IEEE Press.

Chien S., Knight R., Stechert A., Sherwood R., and

Rabideau, G. (2000) Using Iterative Repair to Improve

the Responsiveness of Planning and Scheduling.

Proceedings of the Conference on Automated Planning

and Scheduling (pp. 300-307). Menlo Park, CA: AAAI

Press.

Cashmore, M., Fox, M., Larkworthy, T., Long, D., and

Magazzeni, D. (2013). Planning Inspection Tasks for

AUVs. In Proceedings of MTS/IEEE OCEANS

2013. San Diego, CA: IEEE Press.

Clement, B.J., Durfee, E.H., & Barrett, A.C. (2007).

Abstract reasoning for planning and coordination.

Journal of Artificial Intelligence Research, 28, 453–515.

Coddington, A.M., Fox, M., Gough, J., Long., D., & Serina,

I. (2005). MADbot: A motivated and goal directed robot.

Proceedings of the Twentieth National Conference on

Artificial Intelligence (pp. 1680-1681). Pittsburgh, PA:

AAAI Press.

Conrad, P., Shah, J. & Williams, B. (2009) Flexible

execution of plans with choice. Proceedings of the

Conference on Automated Planning and Scheduling (pp.

74-81). Menlo Park, CA: AAAI Press.

DoD (2013). Unmanned systems integration roadmap:

FY2013-2038 (Reference Number 14-S-0553).

Department of Defense, Washington, DC.

Ghallab, M., Nau, D.S., & Traverso, P. (2004). Automated

planning: Theory and practice. San Mateo, CA: Morgan

Kaufmann.

Ghallab, M., Nau, D., & Traverso, P. (2014). The actor’s

view of automated planning and acting: A position paper.

Artificial Intelligence, 208, 1–17.

Harland, J., Morley, D., Thangarajah, J., & Yorke-Smith, N.

(2014). An operational semantics for the goal life-cycle

in BDI agents. Autonomous Agents and Multi-Agent

Systems, 28(4), 682–719.

Haque, M., Rahmani, A, & Egerstedt, M. (2010). Geometric

foraging strategies in multi-agent systems based on

biological models. In Proceedings of the 49th IEEE

Conference on Decision and Control. Atlanta, GA: IEEE

Press

Ingrand, F., & Ghallab, M. (2014). Robotics and artificial

intelligence: A perspective on deliberation functions. AI

Communications, 27(1), 63-80.

Kaelbling, L.P., Littman, M.L., & Moore, A.P. (1996).

Reinforcement learning: A survey. Journal of Artificial

Intelligence Research, 4, 237-285.

Kambhampati, S. (1994). Design tradeoffs in partial order

(plan space) planning. Proceedings of the Second

International Conference on Artificial Intelligence

Planning Systems (pp. 67-97). Chicago, IL: AAAI Press.

Kambhampati, S. (1997). Refinement Planning as a unifying

framework for plan synthesis. AI Magazine, 18(2), 67-97.

Kambhampati, S., Knoblock, C.A., & Yang, Q. (1995).

Planning as refinement search: A unified framework for

evaluating design tradeoffs in partial-order planning.

Artificial Intelligence, 76, 168-238.

Kambhampati, S. & Nau, D. (1994). On the nature of modal

truth criteria in planning. Proceedings of the 12th

National Conference on Artificial Intelligence (pp. 67-

97). Seattle, WA: AAAI Press.

Kambhampati, S., & Srivastava, B. (1995). Universal

classical planner: An algorithm for unifying state space

and plan space planning. New Directions in AI Planning

(pp. 261-271). IOS Press.

Klenk, M., Molineaux, M., & Aha, D.W. (2013). Goal-

driven autonomy for responding to unexpected events in

strategy simulations. Computational Intelligence, 29(2),

187-206.

Kress-Gazit, H., Fainekos, G.E., & Pappas, G.J. (2009).

Temporal logic based reactive mission and motion

planning. IEEE Transactions on Robotics, 25(6), 1370-

1831.

Kreucher, C.M., Hero, A.O., Kastella, K.D., & Morelande,

M.R. 2007. An Information-Based Approach to Sensor

Management in Large Dynamic Networks. Proceedings

of the IEEE 95(5), 978-999

LaValle, S., M. (2006). Planning Algorithms, Cambridge

University Press.

LePage, K.D., & Schmidt, H. (2002). Bistatic synthetic

aperture imaging of proud and buried targets from an

AUV. Journal of Ocean Engineering, 27(3), 471-483.

Liu, S-Y., & Hedrick, J.K. (2011). The application of

domain of danger in autonomous agent team and its effect

on exploration efficiency. In Proceedings of the IEEE

American Control Conference. San Francisco, CA: IEEE

Press.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., &

Balan, G. (2005). Mason: A multiagent simulation

environment. Simulation, 81.7(2005), 517-527.

Marthi, B, Russell, S., & Wolfe, J. (2008). Angelic

hierarchical planning: Optimal and online algorithms.

Proceedings of the International Conference on

Automated Planning and Scheduling (pp. 222-231).

Menlo Park, CA: AAAI Press.

Molineaux, M., and Aha, D.W. (to appear). Learning

Unknown Event Models. In Proceedings of the Twenty-

Eighth AAAI Conference. Quebec City, Quebec, Canada.

Myers, K.L. (1999). CPEF: A continuous planning and

execution framework. AI Magazine, 20(4), 63-69.

NGTS (2013). Next Generation Threat System.

[www.navair.navy.mil/nawctsd/Programs/Files/NGTS-

2013.pdf]

Pollack, M.E., & Horty, J. (1999). There’s more to life than

making plans: Plan management in dynamic, multiagent

environments. AI Magazine, 20, 71-83.

Rajan, K., Py, F., & Barreiro, J. (2013). Towards

deliberative control in marine robotics. In Marine Robot

Autonomy (pp. 91–175). Springer.

Scala, E. (to appear). Continual planning via reconfiguration

and goal revision. In Working notes of the ICAPS

Workshop on Planning and Robotics.

Shivashankar, V., Alford, R., Kuter, U., & Nau, D. (2013).

The GoDeL planning system: A more perfect union of

domain-independent and hierarchical planning.

Proceedings of the 23rd International Joint Conference

on Artificial Intelligence (pp. 2380-2386). Beijing, China:

AAAI Press.

Smith, D., Frank, J., & Jonsson, A. (2000). Bridging the gap

between planning and scheduling. Knowledge

Engineering Review, 15, 61-94.

Sutton, R.S., & Barto, A.G. (1998). Introduction to

reinforcement learning. Cambridge, MA: MIT Press.

Talamadupula, K., Smith, D. E., Cushing, W., &

Kambhampati, S. (2013). A Theory of Intra-Agent

Replanning. Working notes of the ICAPS Workshop on

Distributed Multiagent Planning.

Tan, C.S., Sutton, R., & Chudley, J. (2004). An incremental

stochastic motion planning technique for autonomous

underwater vehicles. In Proceedings of IFAC Control

Applications in Marine Systems Conference (pp. 483-

488). Ancona, Italy: Elsevier.

Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N.

(2011). Operational behaviour for executing, suspending,

and aborting goals in BDI agent systems. In Declarative

Agent Languages and Technologies VIII (pp. 1–21).

Toronto, Canada: Springer.

Tan, C.S., Sutton, R., & Chudley, J. (2004). An incremental

stochastic motion planning technique for autonomous

underwater vehicles. In Proceedings of IFAC Control

Applications in Marine Systems Conference (pp. 483-

488). Ancona, Italy: Elsevier.

Vattam, S., Klenk, M., Molineaux, M., & Aha, D. W. (2013,

December). Breadth of Approaches to Goal Reasoning: A

Research Survey. In Goal Reasoning: Papers from the

ACS Workshop (p. 111).

Vaquero, T., Nejat, G., & Beck, J.C. (to appear). Planning

and scheduling single and multi-person activities in

retirement home settings for a group of robots. In

Working notes of the ICAPS Workshop on Planning and

Robotics.

Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E.,

& Blythe, J. (1995). Integrating planning and learning:

The PRODIGY architecture. Journal of Experimental &

Theoretical Artificial Intelligence, 7(1), 81-120.

Weld, D.S. (1994). An introduction to least commitment

planning. AI Magazine, 15, 27-61.
Wilson, M., Molineaux, M., & Aha, D.W. (2013). Domain-

Independent Heuristics for Goal Formulation. In
Proceedings of the Twenty-Sixth International Florida
Artificial Intelligence Research Society Conference. St.
Pete Beach, Florida.

Yilmaz, N.K, Evangelinos, C., Lermusiaux, P., &

Patrikalakis, N.M. (2008). Path planning of autonomous

underwater vehicles for adaptive sampling using mixed

integer linear programming. IEEE Journal of Oceanic

Engineering, 33(4), 522–537.

Yoon, S.W., Fern, A., & Givan, R. (2007). FF-Replan: A

baseline for probabilistic planning. Proceedings of the

Seventeenth International Conference on Automated

Planning and Scheduling (pp. 352-359). Providence, RI:

AAAI Press.

Young, J., & Hawes, N. (2012). Evolutionary learning of

goal priorities in a real-time strategy game. In

Proceedings of the Eighth AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment.

Stanford, CA: AAAI Press.

