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1.0  ABSTRACT 

Of interest to the U.S. Air Force is the ability to develop and characterize the level of 
workload that operators are under at any given point. When an operator’s cognitive resources 
exceed demands, a ‘red line’ of performance may be crossed after which performance breaks 
down. What is needed is an estimate of operator state; a ‘dipstick’ for the operator in order to 
assess the level of ‘resources’ available, in order to avoid performance problems. Traditional 
approaches use secondary tasks (e.g., mental arithmetic) or secondary physiological measures 
(e.g., heart rate variability) for state assessment. However, the current work was motivated by 
dynamic systems theory which indicates that there are meaningful patterns of variability in 
‘primary’ behaviors (e.g., required activities) which might provide a measure of operator state. 
The present work uses eye gaze as a primary measure in a visual puzzle task. The link between 
eye gaze and attention is generally accepted as is the link between attention and performance 
outcomes. The goal of Experiment 1 was to determine if performance changes in a visual puzzle 
task were reflected in eye gaze, as measured in multiple ways: Conventional (e.g., average 
fixation length) & dynamic (e.g., β values, measures derived from a recurrence matrix). These 
relationships were explored in relation to task difficulty, time on task, as well as spare capacity. 
The results of Experiment 1 suggest that there are impacts of task demands on gaze patterns, for 
both conventional and dynamic gaze metrics. There were also significant of practice on eye gaze 
patterns in Experiment 1 that could be interpreted as learning or strategy shifts. The impact of 
learning on eye gaze was explored in a follow up experiment. The results of Experiment 2 show 
a significant improvement in performance in the task accompanied by change in gaze patterns 
when repeating the same puzzle; and that the dynamic measure of diagonal recurrence was 
systematically related to this performance change. This suggests that non-conventional measures 
of dynamic structure provide additional & complimentary information about operator state. 
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2.0 INTRODUCTION 

The nature of military operations is often one of high complexity and high demand on the 
operators.  Of interest to the U.S. Air Force is the ability to develop and characterize the level of 
workload that operators are under at any given point.  The issue is one of overall performance: 
Successful performance requires a balance between available resources or capacity of the 
operators, and expected demands in order to maintain desirable levels of performance.  Periods 
of high workload are to be expected, and therefore some spare capacity of the operator is 
desirable to deal with unexpected events.  Additionally, sustained periods of high workload are 
likely to result in negative performance outcomes.  A conceptual diagram of one type (the Cusp 
Catastrophe model, Gustello et al, 2011) of interaction of resource availability task demands, and 
performance is depicted in Figure 1. 

 

 

Figure 1.  A conceptual diagram of the red line for workload and performance. Y axis represents a generic 
increase in all variables.  The x-axis represents a passage of time.  Performance may stay steady as resources 
are depleted (dotted line) with increasing demands (dashed line), but at some point a red line will be crossed 
after which performance decreases below acceptable levels (falls outside of blue boundaries). 
 
 

Conceptually, operators have limited resources (e.g., perceptual limitations, processing 
limitations) to deal with their tasks, but will manage well most of the time.  However, as 
diagramed in Figure 1, a combination of limited resources (dotted line) and increasing demands 
(dashed line) can create a situation in which performance drops (grey & black lines) outside the 
range of acceptable performance (blue lines). As resources become strained, performance can 
often be maintained for some indefinite period of time, but eventually a qualitative breakdown in 
performance outcomes (e.g., mission failure) will occur.  This point after which a breakdown in 
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performance is inevitable can be characterized as a ‘red line’ (Grier et al., 2008).  Avoiding the 
‘red line’ is critical; typical military tasks are in domains in which performance failures are at a 
minimum undesired (e.g., transportation delays) and potentially catastrophic (e.g., air traffic 
control accident, loss of life or critical equipment).  What is needed is a ‘dipstick’ for the 
operator; some way to gain information about the level of ‘resources’ available at any given 
point. 

 
The issue is certainly multifaceted, and there has been a large body of work in this area 

(e.g., Tsang & Vidulich, 2006).  However, the focus of the present work is not to classify or 
model the source(s) of workload, but rather to approach the problem more generally in regards to 
how the state of the operator might be influenced by task demands in a way that is detectable by 
some parameter or measurement from the operator.  This could provide an objective indication 
of operator state, as opposed to a subjective indicator derived via questionnaires (e.g., NASA 
Task Load Index; Hart and Staveland, 1988).  At a minimum, a signal needs to be loosely 
coupled to performance outcomes. In order to be useful from an operational standpoint, it also 
needs to be relatively unobtrusive to collect. Ideally, this measurement would allow for a 
prediction of a future qualitative change in performance outcomes. 

 
The research strategy adopted by the Applied Neuroscience Branch of the Air Force is 

the Sense-Assess-Augment framework (Parasuraman & Galster, 2013).  First, provide adequate 
sensor capability to measure the appropriate phenomena or parameters to detect the underlying 
state (Sense); analyze the data in such a way as to gain insight into the underlying state of the 
operator in relation to performance (Assess); and finally provide corrective action or intervention 
if needed (Augment).  The general goal is to find a signal which is ‘loosely coupled’ to 
performance:  For predictive purposes, quantitative changes in the signal should be evident even 
if overall performance is remaining constant.  Prior to the red line, a critical value in the signal 
should readily identify an upcoming qualitative performance change.  For the present work, the 
term operator state assessment will be used to represent this idea; to measure a parameter or 
signal from the operator which relates the availability of ‘resources’ in order to predict 
performance. 

 
A common approach to assessment is the addition of a secondary task (e.g., mental 

arithmetic, tracking tasks, etc.) to the primary task of interest.  A dual-task paradigm allows for 
measurement of performance for both primary & secondary tasks and by manipulating the 
difficulty of one of the tasks, changes in the other can be used to estimate levels of spare 
capacity.  While this method has been shown to be effective in laboratory settings, (e.g., Ogden 
et al, 1979; O’Donnell & Eggemeier, 1986) the ability to make assessments of operator state 
comes at the cost of adding more work for the operator, which is undesirable in typical 
operational settings. 

 
Physiological signals represent another type of measurement that has been hypothesized 

to reflect to the state of the operator, and multiple physiological signals have been studied.  A 
short list, certainly not all inclusive, includes heart rate variability (HRV; reviewed by Jorna, 
1992), brain activity as measured by electro encephalogram (EEG; Wilson, 2002), and cerebral 
blood flow velocity (reviewed by Warm, Parasuraman, & Matthews, 2008).  Each has been 
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shown to be related with performance outcomes in some way (e.g., vigilance decrement and 
blood flow velocity), but these relationships are not definitive.  Drawbacks in regards to lack of 
sensitivity to workload changes (HRV), signal/noise problems (EEG), and intrusiveness or 
feasibility of implementation (cerebral blood flow) have limited the overall success in both 
laboratory and operational settings.  With additional research and technological innovation these 
limitations may be overcome; however at present research in the field of complexity and 
nonlinear dynamics may provide an alternative way to assess the state of the operator from 
primary measures of behavior, rather than ‘secondary’ physiological measures or tasks. 

 
Consider ‘raw performance’ diagrammed in Figure 1 (grey line).  Mean performance 

(black line) may be stable, but there will be variability in performance.  Assumptions of central 
tendency consider this variability as error (i.e. variability carries little information about the 
source).  However, measures of variability in a wide variety of natural and manmade phenomena 
(e.g., forest fires, avalanches, water levels in lakes, traffic patterns on the road, traffic on 
telephone lines; Jensen, 1998; Newman, 2005) indicate that there are specific patterns of 
variability in ‘primary’ measures of phenomena that represent underlying states of the overall 
system (e.g., day to day variability in water levels provides insight into the overall properties of 
the lake, such as drought conditions).  Research in dynamic systems suggests that variability is 
not necessarily random; in the examples mentioned above there are meaningful, complex 
patterns in behavior which are often revealed by time series analyses (a time series is the time 
ordered series of repeated measurements for an entire data collection epoch).  Key to the issue of 
state assessment is that variability patterns measured in a primary signal (e.g., a primary task 
performance activity) can reflect the qualitative state of the system as a whole (such as 
approaching the red line). 

 
From a dynamical systems perspective, the assumption is that any type of complex 

system will have interactions between underlying components and processes that will influence 
the measured outcome (e.g., Takens 1981).  The effects of these interactions only become 
apparent when data is observed across time (rather than collapsed in time as with an average).  In 
general terms from complexity theory, dynamic systems exhibit a variable, yet globally stable 
‘macrostructure’ (e.g., performance or behavior) coupled to a highly variable ‘microstructure’ 
(e.g., components or processes) (Kelso, 2005, Kloos and Van Orden, 2010).  Note that 
complexity theory is somewhat agnostic to what the components are; analyzing data across time 
often reveals properties of the coupling and interactions between components and processes 
without identification of the components themselves. 

 
Motivated by these broader patterns in nature (e.g., self-organization and spontaneous 

order; Kugler, Kelso & Turvey, 1982), Kelso demonstrated that qualitative ‘phase shifts’ in 
performance can be measured by quantitative analysis of variability patterns over time.  Kelso 
demonstrated these complex phase-shift relationships with a model system: finger tapping.  
Participants were asked to move both their left and right index fingers with a metronome.  
Participants tended to exhibit one of two stable tapping states between their fingers: Either in-
phase (both index fingers ‘up’ then both ‘down’) or anti-phase (one finger up, the other down).  
Participants were allowed to move their fingers in whichever orientation was ‘comfortable’. As 
the metronome speed was increased, fluctuations, or phase shifts, between the two patterns began 
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to occur.  Each phase shift was preceded by spikes in variability (critical fluctuations), or a 
regularity or periodicity (critical slowing down) in the variability patterns of the primary time 
series (Kelso, 1995). 

 
Kelso’s body of work on phase transitions has motivated and informed other areas of 

human performance. For example, qualitative shifts in movement (e.g., from walking to 
running), can be measured by the variability patterns in the coordination of limbs (Harrison & 
Richardson, 2009). When two individuals are “harnessed” together, a qualitative shift into 
organized quadrupedal movement between the two individuals is established, as quantified by a 
change in variability in the limb movements between the two individuals (Harrison & 
Richardson, 2009).  Crites and Gorman (2013) report different patterns of variability in novel vs. 
existing skill acquisition.  In addition to motor control research, Van Orden et al (2005) show 
that primary measures of reaction time exhibit specific patterns of variability, which is thought to 
be inherent to normal cognitive performance. Taken together, there is evidence suggesting that 
critical patterns of variability in primary measures can describe qualitative shifts in behavior, and 
furthermore that changes in variability patterns may precede these shifts. If future qualitative 
shifts in operator state can quantified by patterns of variability exhibited in the behavior itself it 
may provide an alternative approach for state assessment. 

2.1  Dynamic Approaches to Assessment 

Regardless of the choice of signal, an important analytical question is how to quantify the 
signal in a way that represents the state of the operator in a meaningful way.  As previously 
mentioned, conventional approaches to this problem quantify signals in some type of average 
value (e.g., average HRV in a frequency band (Jorna, 1992); average EEG activity (Wilson, 
2002)).  Certainly measuring average values will be important information for state assessment 
(or any type of data analysis), but given the potential benefit of time series analyses it makes 
sense to also measure patterns over time. 

 
The following examples are methods for analyzing data via time series analysis, and are 

presented as demonstrations of their respective types of variability, or dynamic structure. It is 
generally expected that patterns of behavior emerge and change over the course of learning and 
experience (Warren, 2006; Davids et al, 2008) and are constrained by both intrinsic (internal) 
and extrinsic (task) dynamics (Holden, Choi, Amazeen, & Van Orden, 2011; Kloos and Van 
Orden, 2010; Kelso, 1995).  In other words, by manipulating external constraints in an 
experimental context, changes to internal constraints are likely to result, and these changes are 
likely to be measured by time series analyses of the signal.  For the present work, analyses in 
both the frequency and time domains were used in order to leverage multiple measures of 
dynamic structure. 

2.1.1 Frequency Measures of Dynamic Structure 

Frequency analyses assess the level of dynamic structure based on the amount of 
randomness vs. dependence that is present in the data.  Frequency analyses, specifically power 
spectral density (PSD) correlations of frequency to absolute power, as computed through the Fast 
Fourier Transform (FFT), make distinctions about the level of randomness and structure in a 
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time series.  When the PSD output is converted to logarithmic scales, a regression fit is 
computed.  The slope of the regression equation is a measure of the relationship between the 
frequency and power exhibited by the time series, which indicates the level of persistence 
observed in the time series.  Persistence can be thought of as the degree to which values depend 
on previous values (i.e. dependence).   For complex systems, the regression relationship is a 
power law fit.  The slope values reported are referred to as scaling exponents, or β values (Eke et 
al., 2002). 

 
Slopes (β values) calculated at or near zero are indicative of random processes, or white 

noise processes, in which all observed frequencies have equal power, as shown in Figure 2.  As 
the frequency to power relationship inverts, such that lower frequencies show proportionally 
higher power, negative slope values are observed.  Negativeβ values between -.5 to -1.5, are 
indicative of a specific type of persistence called pink noise or 1/f noise, shown in Figure 3.  
Rather than all frequencies exhibiting equal power, for 1/f noise power and frequency are 
inversely related such that lower frequencies show greater power and vice versa.  Figure 4  
depicts a time series with even greater dependence, as indicated by β values between -1.5 to -2.5 
which are often referred to as brown noise.  Most time series of human phenomena exhibit β 
values which can be described as fitting one of these three categories (white noise, 1/f noise, 
brown noise).  Note that in all cases presented here, the mean value for the time series is zero:  
The obvious qualitative differences between the examples are revealed by time series analysis, as 
opposed to averages. 

 
 

 

Figure 2. A randomly generated white noise time series (left) and Power Spectral Density Output (right). β = 
0 indicates no correlation among frequency (y axis) and power (x axis). Note that the time series has a mean 
of zero and a standard deviation of 1. 
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Figure 3. A randomly generated pink noise time series (left) and Power Spectral Density Output (right). β = -
1 indicates inverse 1/f correlation among frequency (y axis) and power (x axis). Note that the time series has a 
mean of zero and a standard deviation of 1. 
 
 

 

Figure 4.  A randomly generated brown noise time series (left) and Power Spectral Density Output (right). β 
= -2 indicates large inverse 1/f^2 correlation among frequency (y axis) and power (x axis). Note that the time 
series has a mean of zero and a standard deviation of 1. 
 
 

The three examples can also be defined in terms of constraints.  A system that is 
completely unconstrained will exhibit white noise properties.  Alternatively, brown noise 
systems are highly constrained and mechanical.  In the middle, 1/f systems exhibit a loose 
coupling that has been reported as a characteristic in a variety of dynamic systems (Newman, 
2005).  This 1/f noise has been described as a hallmark of systems that are interaction dominant; 
it represents a ‘meta-stable’ property of systems that are variable (but not random) and coupled 
(but not mechanical) (Jensen, 1998; Van Orden et al, 2005). 

2.1.2  Time Based Measures of Dynamic Structure 

In addition to frequency domain analyses, time domain methods exist to further explore 
the levels of dynamic structure exhibited by complex systems.  Recurrence Quantification 
Analysis (RQA) is one such method of determining the degree of patterning and dynamic 
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structure in a time series. Essentially, an N × N matrix plot (where N is the time series length; the 
simplest method plots a time series against itself) is generated.  As depicted in Figure 5a and b, 
any shaded area represents a “match” or recurrent point.  The ratio and locations of these 
recurrent points provide the basic units of analysis in this method.  The first of these metrics is 
percent recurrence (%REC) which is the ratio of recurrent points, to all possible points.  Percent 
recurrence represents the proportion of “states” that repeat or recur across the time series.  A 
second measure, percent determinism (%DET), is the percentage of recurrent states that repeat in 
the same order each time; deterministic points appear as diagonal line structures in the matrix.  
Note the large diagonal in the center which splits the plot into two identical halves.  For, RQA 
the plot is one to one on the time series to itself (i.e., the diagonal is not meaningful; a time series 
will always be identical with itself along the center diagonal) and only half of the plot is used for 
computation. 

 
Similar to the previous frequency analysis examples, RQA can describe the 

characteristics of the system that produced the time series.  Webber and Zbilut (2005) note that 
an unconstrained or white noise (e.g., random process; Figure 5a) system will show random 
levels of recurrence & determinism that are at chance levels.  Highly constrained systems (e.g., a 
sine wave; Figure 5b) will produce very high values for %REC and %DET as the system repeats 
the same patterns in the same order.  Between these two extremes, loosely constrained systems 
will show moderate patterning; they exhibit greater than chance levels of recurrence and 
determinism, but not at extreme levels that would be seen in highly mechanical systems.  

 
 

 

Figure 5. a.) A random process plotted against itself.  Shaded areas represent recurrent points; which occur 
as a matter of chance, as do diagonal line structures.  b.) A sine wave plotted against itself.  Shaded areas 
represent recurrent points, which always occur in the same period as the sine wave itself; nearly all points fall 
on a diagonal line structure. 
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A standard RQA provides an estimate of dynamic structure in a system using a single 
variable; however the mathematics are equally able to provide estimates of structure and 
coupling between two variables (or systems).  In this method, Cross Recurrence Quantification 
Analysis (CRQA; Weber & Zbilut, 2005), the same metrics from a standard RQA are computed, 
but for a matrix that compares two different time series (e.g., an N1 × N2 matrix), as shown in 
Figure 6 and Figure 7.  Rather than define self-similar patterns of dynamic structure (RQA), 
higher levels of cross recurrence (%CREC) indicate similarity between the two time series (e.g., 
when there is a dot in the matrix the two time series shared the same value) and %CDET is a 
general indicator of coupling between the two time series (still visible as diagonal lines in the 
matrix). 

 
CRQA provides a third way to further quantify the level of coupling between two time 

series.  Whereas a standard RQA has a diagonal that is not meaningful at a time lag of zero, a 
diagonal line at lag zero in a CRQA is a further indication of the level of synchronized coupling 
of the two time series (Dale, 2011).  Analysis of the Diagonal Recurrence Profile (DRP) is 
similar to an autocorrelation function.  The diagonal recurrence profile computes the percentage 
of values that recur along different levels of “lag”.  Lag 0 is computed along the diagonal (e.g., 
do the two time series have the same value at the same time). A lag of 1 would compute the 
proportion at +/- 1 measurement in the time series from time zero and so on (e.g., a state that 
occurs at time x in N1 recurs at time x + 1 in N2).  As shown in Figure 6, higher levels of diagonal 
recurrence (%DREC) along a lag of zero indicate a high level of synchronicity between the two 
time series.  Figure 7 shows a cross recurrence matrix for two times series that exhibit low levels 
of similarity and coupling.  Time series that are not strongly coupled will show low levels of 
%DREC at all lag values.  Although the present work will focus on a %DREC at a lag of zero, it 
should be noted that high %DREC at lag values other than zero could be indicators of coupling 
between the time series in a leader/follower relationship (Richardson & Dale, 2005). 
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Figure 6. An example cross recurrence plot for two time series: Series 1 (Y-Axis) and Series 2 (X-Axis).  
Shaded grey areas represent matching values between the two series (recurrence). Line structures (an 
example is circled in red) represent matching values in an order (determinism).  Diagonal Recurrence 
appears as a line structure along the diagonal. The high level of diagonal recurrence presented in this figure 
indicates high (but not total) coupling between the two time series. 
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Figure 7. An example cross recurrence plot for two time series: Series 1 (Y-Axis) and Series 2 (X-Axis).  
Shaded grey areas represent matching values between the two series (recurrence). Line structures (an 
example is circled in red) appear representing values that recur in order (determinism).  This plot shows low 
levels of diagonal recurrence which indicates low coupling between the two time series. 
 
 

2.2 Eye Gaze: Dynamic Measures 

Eye gaze has been shown to be important even in commonplace, everyday tasks (e.g., 
making tea, making a sandwich; Land & Hayhoe, 2001). The visual aspect of many current 
military operations (e.g., RPA operators, threat detection in surveillance video/images, cyber 
operations), lead to an expectation that eye gaze is relevant to operator performance via the 
generally accepted links between eye gaze and attention, and the further link to attention and 
performance (Galster & Parasuraman, 2013). 

 
Although the link between vision and attention is not absolute, (i.e., attention can be 

shifted around the visual field (Heinen et al, 2011)), typical operational settings described above 
require attention to small details (e.g., requiring fixations on the fovea).  Given this constraint, 
eye gaze may very well serve as a primary measure of performance.  This is not in and of itself a 
novel idea; the work domains may have changed, but the link between eye gaze and attention 
isn’t new.  Eye gaze has been theoretically linked to attention and cognition via the early 
foundational work in eye gaze measurement (Yarbus, 1967), other early work in instrument 
sampling in aviation (Carbonell et al, 1968), the ‘spotlight’ metaphor for eye gaze and attention 
(e.g., Posner et al, 1980), to more recent applications of eye gaze in reading (reviewed by 
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Rayner, 1998), and general work regarding eye movements (Kowler, 2011).  While the interest 
in eye gaze and the links to attention are not new topics, the capability to readily measure and 
record eye movements unobtrusively and in operation settings is a more recent capability that 
could be implemented for purposes of state assessment (Duchowski, 2002). 

 
In addition to the previous examples linking eye gaze to performance, eye gaze measures 

have been linked to operator workload.  May et al (1990) report a decrease in the number and 
range of eye movements during free view when participants performed a secondary counting 
task.  The range showed further reduction as secondary task difficulty was increased.  In a more 
applied setting, driving, a narrowing of visual attention, or “tunnel vision”, has been observed 
under high workload (e.g., Reimer, 2009).  Tunnel vision is often accompanied by an increase in 
the number of fixations, and a corresponding decrease in the length of fixation.  It would then be 
expected that by manipulating task difficulty in an experiment, that changes in gaze patterns will 
likely result. 

 
Yarbus’ (1967) work on eye gaze patterns in complex scene viewing provides further 

foundation for the expectation that simple changes in experimental context can produce vast 
differences in gaze patterns.  Yarbus was one of, if not the first, to measure gaze patterns using 
an eye tracking apparatus.  Yarbus showed participants a series of images, while tracking eye 
gaze.  Yarbus provided different questions about the image for participants to ‘keep in mind’ 
while viewing the images.  A sample image, “The Unexpected Visitor”, is depicted in Figure 8 
illustration adapted from Yarbus, 1967; figure from Land & Tatler, 2009).  
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Figure 8. Eye gaze traces from Yarbus (1967).  Each represents data for one participant examining a picture 
(The Unexpected Visitor) with different questions in mind. (a) Free examination. (b) Estimate the material 
circumstances of the family in the picture. (c) Give the ages of the people. (d) Surmise what the family had 
been doing before the arrival of the ‘unexpected visitor’. (e) Remember the clothes worn by the people. (f) 
Remember the position of the people and objects in the room. (g) Estimate how long the unexpected visitor 
had been away from the family. 
 
 

By asking different questions, such as “Estimate the material circumstances of the family 
in the picture” (Figure 8b) or “Give the ages of the people” (Figure 8c), participants gaze 
patterns were clearly different, based on their qualitative patterns.  When asked about wealth, 
participants scanned objects in the image, when asked about ages of people participants looked at 
faces.  While this discrepancy in scan patterns may seem obvious, the potential ability to 
quantify these types of qualitative changes in gaze pattern provides a potentially informative way 
to measure operator state. 
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Again, conventional approaches to quantifying eye movements in tasks that involve 
active participation of the participant (e.g., active tasks) include average fixation length or 
average movement velocity (e.g., May et al, 1990; Hayhoe et al, 1998; Kowler, 2011).  As has 
been stated, this type of approach likely misses potentially informative information from 
variability patterns in eye gaze time series. 

 
Initial research using time history analyses (utilizing measures of dynamic structure) has 

been conducted by Aks et al. (2002). Similar to other complex systems, visual search involves 
many interacting processes and components, including the influences of the experimental task, 
leading Aks et al. to hypothesize that eye gaze time series would exhibit dynamic structure in a 
visual search task. The task used was searching for a target (uppercase T) among distracters 
(upper case E). The results indicate that Euclidian distance between subsequent measurements 
(X1-X2 and Y1-Y2 pixel position) recorded in visual search tasks exhibit temporal structure in 
the range of brown noise (β ≈ -2).  This initially suggested a high level of dependence between 
fixations.  There was some concern that position data alone could produce spurious brown noise, 
due to constraints that the screen size imposed on the gaze time series.  This led the researchers 
to further analyze an additional metric, angular change between eye movements.  Angular 
change measures the difference between subsequently tracked positions in angular units rather 
than distance units.   When the raw gaze time series were converted to angular changes between 
positions, the analysis revealed a 1/f (β ≈ -1) correlation. 

 
Stephen and Anastas (2011) re-analyzed data from an earlier publication (Stephen and 

Mirman, 2010) and confirmed findings of Aks et al. (2002), in regards to dynamic structure 
observed in eye movement time series.  However, Stephen and Anastas (2011) went a bit further, 
by analyzing the relationship between dynamic structure and reaction time using growth curve 
modeling.  The data suggests that dynamic structure for angular-change time series that exhibit 
patterns of 1/f noise are related to decreases in reaction time; an improvement in the performance 
measure for the task. 

 
Frequency analyses provide a general classification of eye gaze (e.g., random vs. 

structured), but this general classification is likely complimented by more explicit measures of 
coupling and similarity from time domain measures of cross recurrence.  Richardson and Dale 
(2005) used cross recurrence of eye gaze time series as a way to understand the coupling 
between speakers and listeners when telling a story.  Two participants had separate screens with 
identical depictions of characters from a popular television show. One participant told a 
predetermined story about an episode of the television show (speaker).  The listener had to 
respond to a series of questions about this story.  Both participants’ gaze was tracked while the 
story was told, and was analyzed via cross recurrence.  Listeners whose gaze patterns showed 
higher coupling with gaze patterns of speakers (as measured through % Diagonal Recurrence) 
also exhibited better retention when asked questions about the story.  Figure 9 depicts a sample 
cross recurrence plot for a listener/speaker dyad as presented in Richardson and Dale (2005) with 
relatively strong coupling in their eye gaze patterns.  
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Figure 9. Cross recurrence plot for one listener (Y-Axis) and speaker (X-Axis) dyad from the experiment 
conducted by Richardson & Dale, (2005).  Shaded grey areas represent the two individuals looking at the 
same location on their respective screens.  This pair shows a relatively high level of diagonal recurrence, 
indicating a high level of time synchronized coupling between listener and speaker. 
 
 

3.0 EXPERIMENT 1 

3.1 Introduction 

Overall, there is evidence to suggest not only are dynamic patterns exhibited by eye gaze 
time series, the same dynamic patterns can show relationships with some performance outcome 
(e.g., reaction time, Stephen & Anastas (2011), learning or comprehension, Richardson & Dale 
(2005)).  Combined with general findings relating changes in eye gaze under low and high 
workload, there is potential for time series analyses to categorize dynamic patterns of variability 
in eye gaze that is potentially informative for operator state assessment.  This project is an 
exploration of this idea; the goal is to learn if additional information about operator state can be 
gained by dynamic measures of eye gaze when task demands are manipulated in an experimental 
context. 

 
In the current project, it was expected that participants’ gaze patterns would exhibit 

dynamic structure, as measured via time series analyses.  Changes in dynamic structure observed 
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in eye movement time series are likely indicative of the underlying organizational and structural 
changes within the cognitive and visual systems.   Both frequency and time based measures of 
dynamic structure were tested. These alternative indices were expected to provide additional 
information when compared to conventional (average based) measures of eye gaze behavior 
(e.g., average fixation time). As task demands shift, and participants adapt, qualitative gaze 
behavior is likely to shift (e.g., Kelso, 2005, Kloos & Van Orden, 2012). This is likely to be 
reflected in the properties of dynamic patterns; resulting in different, but stable patterns of 
variability (e.g., β & Cross Recurrence values change). 

 
The current study measured eye gaze in a visual task with a cognitive component.  

Specifically, the task was a visual puzzle task in which participants were asked to unscramble an 
image.  Given the nature of the task, eye gaze is considered a primary measure of performance.  
This type of task provided a way to manipulate task demands by changing the constraints of task 
difficulty, practice, and the addition of a secondary task.  Task difficulty was manipulated by 
changing the way in which the image can be scrambled; in one condition puzzle pieces had the 
potential for rotation. This manipulation provided a way to control for any potential difficulty 
effects of any individual image, while still manipulating task difficulty (i.e. the information 
content of each piece of the puzzle) in a significant way.  Multiple trials of the same difficulty 
level allowed for potential changes in dynamic structure due to learning or strategy (i.e., practice 
effects) to be observed.  Finally, aside from general task difficulty, a secondary task was 
implemented to further tax participants’ attention and capacity. 

 
As a first step in using eye gaze for state assessment, the current project tested discrete 

levels of task difficulty (as opposed to a continuous increase in difficulty), as a way to determine 
if differences in eye gaze exist that could be representative of a ‘pre’ and ‘post’ red line situation.  
Rather than stipulate explicit directional hypotheses, the current questions are explicitly two 
tailed.  It is difficult to specify a direction of the changes in dynamic structure at the outset of this 
project.  Changes in task demands could create disruptions (i.e. critical fluctuations add noise to 
the system) and as a result randomness (e.g., a ‘whitening’ of the time series) could be observed.  
Alternatively, changes in task demands could further constrain the possibilities for action; this 
would result in higher levels of dynamic structure in eye movements (i.e. critical fluctuations; 
system becomes more periodic).  Either direction provides insight into underlying processes, and 
potential classification of the operator.  

 
Practice effects may also further influence dynamic patterns observed, however it is also 

difficult to specify a specific direction of change in dynamic structure.  A serial or other highly 
structured scan path could be implemented early in learning, and with learning participants could 
shift to a less constrained scan path.  Alternatively, scan paths could initially exhibit more 
randomness, and show an increase in structure.  Again, either direction could provide insight into 
the underlying state of the operator. 
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3.2  Methods 

3.2.1 Participants 

Thirty-two total participants with ages ranging from 18-30 years from a Midwestern 
university population were recruited to participate and were compensated with course credit or 
were paid $30.  One participant was dropped due to a calibration error with the eye tracking 
equipment.  Thirty-one total participants are included in the subsequent analysis.  Biographic 
information was collected via self-report questionnaire.  There were 14 male and 17 female 
participants with a median age of 23. All reported normal or corrected to normal vision.  Highest 
education level completed was as follows:  High School (15), associate’s degree (3), bachelor’s 
degree (7), and graduate degree (6).  Experience with video games was assessed, with a range of 
0 to 16 hours per week reported, with an average of 3.16 (SD = 3.2) hours of video game play 
per week. 

3.2.2 Materials & Apparatus 

Eye gaze was measured via a Facelab4 “off the head” eye tracker, hosted on a Dell 
Latitude D830 laptop computer (2.2 GHz processor, 2 GB RAM).  This combination allowed for 
+/- 1 degree of visual angle eye tracking capability at a collection rate of 60Hz.  Facelab API 
v4.6 (reference) was integrated with custom software written to display images for this 
experiment.  The output of the tracking software was the X and Y pixel location of participants’ 
gaze every 16.7 ms. The participant station was an HP Compaq DC80 desktop computer (2.3 
GHz processor, 3.5 GB RAM) & a LCD monitor (Samsung 940BX) with a screen area of 30cm 
by 37.5cm (48cm diagonal), and a resolution of 1280 x 1024 pixels. 

 
Images were sized at 1020 x 1020 pixels, which at a viewing distance of approximately 

60cm, is approximately 27 degrees of visual angle.  When subdivided into 36 equal sized square 
pieces for the puzzle each piece was 170 pixels square.  At a 60cm viewing distance, each puzzle 
piece subtended approximately 4.5 degrees of visual angle. 

3.2.3 Image Selection 

Initial images were selected from public domain sources (e.g., Wikipedia). Images 
containing human faces were excluded.  In addition, all images were selected to contain a 
“natural” correct orientation.  Early pilot testing of “non-oriented” still life images suggested that 
a participant in the rotated condition could solve the puzzle such that the pieces appeared to be 
correctly matching yet the entire puzzle was rotated (i.e. the puzzle was put together in a way 
that all the pieces ‘matched’, but were all upside down).  Twelve images meeting these criteria 
were initially selected. 

 
In order to select the five images needed for Experiment 1, the 12 images were pilot 

tested by 4 participants meeting the recruitment requirements described above.  Participants 
unscrambled all 12 images in a randomized order for the standard puzzle condition (see below).  
Images were then ranked based on average time to completion. Time series analyses require a 
minimum number of samples for a valid analysis, therefore the five images that had the longest 

17 
Distribution A: Approved for public release; distribution unlimited.   

88 ABW Cleared 09/08/2014; 88ABW-2014-4229. 



completion times were chosen, provided they were solved by all pilot participants.  To determine 
if there were any rank differences between participants, these five images were subjected to a 
nonparametric Friedman rank order test.  No significant differences were observed. 

 
To minimize order effects and properties of a specific image images were 

counterbalanced in pairs (see below).  Figure 10 depicts image pair 1; an image of a mountain 
lake (left) and an image of sunflowers (right).  Figure 11 depicts image pair 2; an image of the 
skyline of the city of Cleveland (left) and an image of an antique printing press (right).  Figure 
12 is the image used for the fifth trial (see below) which is an image of trees along a walkway.  

 
 

 

 

 
 

 

 

 
 

Figure 10.  Image pair 1 (Mountain Lake, Left; Sunflowers, Right) was always presented in trials 1 & 2 and 
was counterbalanced such that across participants both images were seen in standard and complex 
configurations and in different presentation orders. 

Figure 11. Image pair 2 (Cleveland skyline, Left; Antique Printing Press, Right) was always 
presented in trials 3 & 4 and was counterbalanced such that across participants both images 
were seen in standard and complex configurations and in different presentation orders. 

  

18 
Distribution A: Approved for public release; distribution unlimited.   

88 ABW Cleared 09/08/2014; 88ABW-2014-4229. 



 

 
 
 

3.2.4 Procedure & Design  

Participants received computer-based training about task procedures and how to 
manipulate puzzle pieces.  Participants were then given two 5 x 5 training puzzles to familiarize 
themselves with the task.  The first puzzle appeared with non-rotated pieces and the second 
puzzle included rotated pieces (see description of rotation below).  Participants had an unlimited 
time to complete the training puzzles and could ask questions at any time.  

 
Between trials, participants were then shown a black target dot on an otherwise white 

screen.  Participants were asked to fixate on the dot and after doing so, initiate the task by left 
clicking the mouse. The intact image was then displayed for 5 seconds.  Then the image was split 
into 36 (6 x 6 grid) equal sized squares.  These squares were scrambled randomly such that all 
pieces changed position.  The participants’ task was to rearrange the squares back into the 
original image, within a 15 minute time limit.  Once an image was completed (or timed out at 15 
minutes) the fixation screen came up and participants proceeded to the next trial at their own 
pace.   

 
The difficulty manipulation was implemented by changing the attributes of puzzle pieces 

that were needed to solve the puzzle correctly.  In the standard condition, images were 
scrambled by x-y location only.  In the complex condition, image pieces could be rotated in 
addition to the x-y location manipulation.  Rotation was in 90 degree intervals, leaving 4 
potential orientations (0, 90, 180, 270 degrees from horizontal).  Each orientation was fixed to 
25% of pieces (9 pieces per orientation), but the selection of pieces was random across 
participants.  This ensured that all participants had the same level of rotation, with random 
variation in the exact puzzles seen. 

 

Figure 12. The image used for trial 5 was presented with a between subjects manipulation of puzzle 
type.  All participants in the respective conditions saw the same standard & complex puzzle 
configurations. 
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Images were counterbalanced in pairs in which the first two trials had the same two 
images and the last two trials used the same images.  Images were counterbalanced such that 
each image was seen in both standard and complex versions across participants. In all cases 
participants used the mouse to interact with the image, with a left click for location manipulation 
and a right click for rotation manipulation (when implemented). 

 
 

  

Figure 13. A diagram of the first four experimental trials, in one of two counterbalanced configurations. 
Specific comparisons are annotated.  The design allows for multiple comparisons of task demands, as well as 
practice effects. 
 

An overview of the experimental procedure for one counterbalanced configuration, with 
descriptions of the task parameters is presented in  

 
Table 1.  A subset for trials 1 through 4 is diagrammed in Figure 13.  The design was a 

mixed design, with a within subjects manipulation of task demands. The first four trials were 
counterbalanced in an A-B-B-A / B-A-A-B blocked design across participants.  Each A-B block 
was further counterbalanced across two images.  This facilitated both a task demand comparison 
(standard to complex; trials 1 to 2 and 3 to 4) as well as multiple tests of practice in trials 1 & 4, 
as well as a repeated difficulty comparison in trials 2 & 3. 

 
Table 1. An example of the experimental implementation for the first counterbalance type in 
Experiment 1. 

Trial Number 
 

Puzzle Type 
(A-B-B-A (+1) counterbalance) 

Task Description 
 

Instructions & Training (unlimited 
time to complete training puzzles) 

Sample Standard & Complex 
Image 

5 x 5 Randomized  

Trial 1 (15 minute time limit) Standard Puzzle, Image Pair 1 6 x 6 Randomized, x-y position 
change  

Trial 2 (15 minute time limit) Complex Puzzle Image Pair 1 6 x 6 Randomized, x-y position 
change + rotated pieces 

Trial 3 (15 minute time limit) Complex Puzzle Image Pair 2 6 x 6 Randomized, x-y position 
change + rotated pieces 

Trial 4 (15 minute time limit) Standard Puzzle Image Pair 2 6 x 6 Randomized, x-y position 
change 

Standard Complex Complex Standard

Standard to Complex Comparison 1

(Task Demands) 

First to Fourth Trial Comparison
(Practice 2)

Standard to Complex Comparison 2
(Task Demands) 

Second to Third Trial Comparison 
(Practice 1)
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Trial 5 (15 minute time limit) Standard or Complex Image 
(Between Subjects) 

6 x 6 Fixed Scramble + 
Secondary Audio Task   

 
 
The fifth trial consisted of a between subjects manipulation of standard or complex 

puzzle, with the addition of a secondary audio task.  There were 16 participants in the standard 
puzzle condition and 15 participants in the complex puzzle condition.  Unlike the previous 
randomized puzzles, the specific order of the scramble was fixed for the final trial.  One puzzle 
was used for both conditions (fitting with randomization parameters described above). 

The secondary audio task was a radio monitoring task, in which participants were 
required to listen to a series of messages containing a “call sign” and a specific color/number 
code (e.g., Ready Tiger go to Red 7 Now). Participants responded to messages containing a 
specific call sign by pressing the space bar on a keyboard to activate the microphone and 
repeating the entire critical message. There were five distracter call signs:  Arrow, Charlie, 
Eagle, Ringo, & Tiger.  The critical call sign was Barron.  There were four color coordinates 
(Blue, Red, White, and Green) and seven number coordinates (1 through 7), creating a pool of 28 
potential critical signals among 140 possible distracter messages. All messages were 2 seconds in 
duration.  All messages were male speakers, randomly selected from a pool of 6 possible 
speakers (recordings were available for all 168 possible combinations for all 6 speakers).   

All participants received the same message order which was randomized according to the 
following parameters.  Messages were presented in pairs that were programmed to overlap each 
other by 1 second.  Beginning at 10 seconds from the start of the trial, message pairs occurred 
approximately every 5-6 seconds thereafter. A critical message was programmed to occur once 
for every 30 second time period.  For the 15 minute trial, half of the critical signals were “cut 
ins” (the signal began in the middle of a distracter) and half were “interrupted” (the signal was 
interrupted by a distracter). 

3.2.5 Dependent Variables 

Multiple DV’s will be explored for their potential utility in distinguishing between task 
difficulty and time on task manipulations.  Table 2 summarizes the dependent variable, 
description of calculation, and it’s classification of “conventional” or “dynamic” in regards to 
variability over time. 

Table 2. Summary of dependent variables in Experiment 1. 
Variable Name 
 

Description Classification 
 

Average Fixation Time Average length of all fixations in a 
trial  

Conventional  

Fixations per Minute Number of fixations divided by Trial 
Time 

Conventional 

β Value Frequency response of Scan Path Dynamic  
Cross Recurrence 
(Piece vs. Position) 

Percentage of Recurring States Dynamic 

Cross Determinism 
(Piece vs. Position) 

Percentage of Recurring States that 
Recur in an order 

Dynamic 

Diagonal Recurrence (Piece vs. 
Position) 

Percentage of recurring states that 
recur at the same point in time 

Dynamic   
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3.2.6 Calculation of Fixations 

Fixation duration and location was determined using dispersion based techniques from 
Salvucci and Goldberg (2000).  At a collection rate of 60 Hz, a minimum of 6 consecutively 
tracked points with a maximum dispersion of 1 degree (for all 6 points) was considered the 
minimum criterion for a fixation.  The calculated centroid of the fixation points was considered 
the location of the fixation.  The resulting location of fixation was used in conjunction with the 
location of the puzzle pieces to create a time series of which pieces were fixated upon, and which 
position on the grid that piece was in (see below).  This method also yields duration for each 
fixation, which is then used for calculations of average fixation time. 

3.2.7 Quantification of Dynamic Structure 

As previously mentioned, dynamic structure in a time series can be assessed using 
multiple analytical tools.  The present analysis will utilize two different mathematical techniques 
to analyze dynamic structure in eye gaze time series.  The first is β values observed from angular 
change time series as used by Aks et al, (2002) and Stephen and Anastas (2011).  The angular 
difference between each measured X-Y position was computed and the subsequent “gaze step” 
time series was then submitted to a Fast Fourier Transform variant optimized for characterizing 
the noise category of a time series (Eke et al, 2002).  

 
Specifically, the Power Spectral Density Low (PSDlow) method (Eke et al, 2002) was 

used to calculate the spectral slope. The first 8192 angular change values calculated for each trial 
were normalized to a mean of zero and a standard deviation of 1. Normalized values were then 
bridge detrended (a line connecting the first point and the endpoint is subtracted from the time 
series).  The Fast Fourier Transform (FFT) was conducted on 7 data windows of 2048 data 
points.  Four of these windows were adjoining and therefore unique (i.e. the 8192 points are 
divided into four adjoining sets of 2048 points), three windows overlapped the ‘borders’ of the 
sequential windows.  The FFT values for all windows were then averaged, yielding the power 
spectral density profile (e.g., relative frequency to absolute power).  Finally the slope was 
calculated on only the center of the frequency ranges (excluding the lowest 1/8 and highest 1/8 of 
the frequency range); this eliminates whitening of the frequency response often seen at the 
lowest and highest frequencies of the data (Eke et al, 2002). The resulting (log10) spectral 
density plot was then fit with a standard regression in which the slope is the β value. 

 
A second technique was used to evaluate dynamic structure in the order alignment of 

piece and position fixations.  As previously mentioned, Cross Recurrence Quantification 
Analysis (CRQA) provides multiple dependent variables which quantify the level and types of 
dynamic structure seen between two time series (Webber and Zilbut, 2005; Dale et al, 2011).  
This type of analysis was instantiated for nominal or categorical time series in accordance with 
practices from Richardson & Dale (2005).  In the present analysis, two categorical time series of 
fixations were generated: A time series of the positions of the board and a time series of the 
pieces of the puzzle that were the focus of the fixation.  Each time series was windowed in 
increments of 400 fixations; for CREC and CDET the average values across windows were used 
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for subsequent inferential analysis.  Subsequent to the initial CRQA analysis, diagonal 
recurrence profiles were calculated across the entire time series in accordance with Richardson 
and Dale (2005) to determine the coupling observed between position and piece of fixation. 

 
In order to determine whether or not any dynamic structure observed is a product of 

chance, all dynamic structure analyses were subjected to surrogation tests.  Time series were 
randomly shuffled and re-analyzed.  In the surrogated analyses, any significant temporal 
structure present in the original time series should be lost, e.g., β values should approach zero, 
%CREC & %CDET should approach chance levels.  In all cases for all dynamic variables, the 
surrogated measures’ values were statistically different from measures calculated from the 
original time series, as measured by paired samples t-tests (p >. 05). 

3.3 Results 

3.3.1 Results for Trials 1 through 4  

For trials 1 to 4, all dependent variables were subjected to a 2 x 2 x 2 mixed ANOVA 
with 2 levels of task demands (within subjects factor of standard or complex puzzle), 2 levels of 
practice (within subjects factor of first presentation or second presentation) and 2 levels of 
counterbalance (between subjects presentation order of Standard-Complex-Complex-Standard 
(SCCS) or Complex-Standard-Standard-Complex (CSSC)).  Aside from completion time, which 
had a directional expectation, the statistical tests for Experiment 1 were explicitly two tailed. 

 
Completion time had a significant main effect of task demands such that complex puzzles 

took longer to complete than standard puzzles as shown in  

Table 3.  There was no indication of a performance difference with practice (i.e. no 
difference between presentations 1 & 2), nor were any other main effects or interactions 
significant for completion time.  The differences in completion time were also reflected in the 
ability of participants to solve the puzzles in the allotted time.  For standard puzzles, 57 of 62 
puzzles were successfully solved (92%), with 5 of 62 (8%) puzzles unsolved.  For complex 
puzzles 29 of 62 puzzles (47%) were successfully solved, and 33 of 62 puzzles (53%) unsolved.  
Separate 2 x 4 chi squared analyses (one for each difficulty) were performed to address any 
potential differences in solve rates between the four images used.  In both cases there were no 
significant differences in solve rates between images:  Standard puzzles χ2(3) = .58, p > .05.; 
Complex puzzles χ2(3) = 6.94, p > .05.  Taken together, these results confirm the expectation that 
complex puzzles were more difficult when compared to standard puzzles, and that difficulty 
differences were driven by the puzzle type manipulation and not aspects any individual image. 

 
Conventional gaze metrics included in the present analysis were fixations per minute and 

average fixation length.  There was a main effect of task demands for fixations per minute, as 
shown in  

Table 3.  The number of fixations per minute was lower for complex puzzles than for 
standard puzzles.  Average fixation length exhibited a significant main effect of task demands, as 
shown in  
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Table 3.  The length of the average fixation in a complex puzzle was longer than the 
average fixation for a standard puzzle.  Figure 14 shows an unexpected significant two way 
interaction between counterbalance and practice for average fixation length F (1, 29) = 9.924 p < 
.05. When standard puzzles were presented on trials 1 & 4 (SCCS counterbalance) average 
fixation decreased for the second presentation while the inverse was true when complex puzzles 
were presented on trials 1 & 4. 

 
 

Table 3. Summary of significant main effects of Task Demands for trials 1-4. 

DV Standard 
Mean (SD) 

Complex 
Mean (SD) 

F values 

Completion Time 
(minutes) 

8.68 (3.15) 12.9 (2.8) F(1,29) = 115.22 p < .05 

Fixations per Minute 
(count) 

235 (18.3) 229 (16.8) F(1,29) = 7.57 p < .05 

Average Fixation 
Length 
(milliseconds) 

184.0 (10.99) 198.53 (13.95) F(1,29) = 81.58 p < .05 

Percent Cross 
Determinism 

55.1 (.05) 57.7 (.05) F(1,29) = 15.78 p < .05 
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Figure 14. Average Fixation Length (Y-Axis) by Presentation (X-Axis) for two Counterbalanced Orders 
(dashed vs. solid lines).  When collapsed across Task Demands, Presentation1 and 2 show divergent 
relationships depending on the counterbalanced order. Error bars represent +/- 1 standard error. 
 
 

Non-conventional metrics of dynamic structure were explored with the expectation that 
dynamic structure (reflecting underlying organization of cognitive & motor systems) would 
change as a function of task demands and/or practice.  The first test of this expectation was for β 
values.  There were no significant main effects for β values for task demands or practice. 
However there was an unexpected three way interaction of Task Demands x Practice x 
Counterbalance for β values: F (1, 29) = 4.66, p <. 05.  As shown in Figure 15, β values for 
complex puzzles do not differ with practice (Figure 15a), while β values for standard puzzles 
(Figure 15b) either do not change (separated presentations; e.g., trials 1 and 4) or increase (if 
presented back to back; e.g., trials 2 and 3). 
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a.)  b.)  

Figure 15. a.) β values (Y-Axis) by presentation (X-Axis) for Complex puzzles in two Counterbalanced Orders 
(dotted vs. solid lines).  β values did not change across presentations or differ based on the order of the 
counterbalance. Error bars represent +/- 1 standard error. b.) β values (Y-Axis) by Presentation (X-Axis) for 
Standard puzzles in two Counterbalanced Orders (dashed vs. solid lines).  When the two presentations were 
separated (solid line) β values were unchanged, however when the two presentation occurred back to back β 
values increase from Presentation 1 to Presentation 2. Error bars represent +/- 1 standard error. 

 
 

In addition to frequency-based measures, metrics of dynamic structure derived from a 
cross recurrence matrix of piece and position of fixation were tested.  For the most basic of these, 
cross recurrence, there were no significant main effects or interactions.  However, cross 
determinism had a significant main effect of task demands ( 

Table 3) and practice (Table 4).  Cross determinism increases by around 2% for both 
Complex Puzzles (vs. Standard) and the Second Presentation (vs. First). 

 
There was a significant effect of practice for diagonal recurrence as shown in Table 4.  

Diagonal recurrence increases by around 4% from the first to the second presentation.  In this 
context, diagonal recurrence represents an increase in fixations upon pieces that are in the correct 
positions.  Note that this explicit relationship between piece and position is due to the 
measurement of diagonal recurrence at zero lag.   

 
 

Table 4. Summary of significant main effects of Practice for trials 1-4. 

DV First Presentation 
Mean (SD) 

Second Presentation 
Mean (SD) 

F values 

Diagonal Recurrence 
Profile 

18.9 (10.4) 23.2 (11.9) F(1,29) = 4.66 p < .05 

Percent Cross 
Determinism 

55.6 (.05) 57.2 (.04) F(1,29) = 5.99 p < .05 
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3.3.2 Results for Trial 5 

For the inferential analysis of the final trial, which included a secondary audio task, the 
dependent variables were subjected to a one-way between-subjects ANOVA for Task Demands 
(Standard vs. Complex).  The significant results can be seen in Table 5.  The general expectation 
for Trial 5 was that secondary task performance would not change, but the addition of a 
secondary task could alter puzzle performance and/or gaze behavior by reducing spare capacity 
of the participants.  

 
For the primary task of solving the puzzle, there was a main effect of Completion Time, 

as shown in Table 5.  As expected, the Complex puzzle took longer to complete than the 
Standard puzzle.  This was consistent with the results for trials 1-4. 

 
The secondary audio task was scored for accuracy of responses to critical signals.  The 

values were percentages, since the number of critical signals heard by the participant was 
determined by their performance time.  As expected, there were no significant differences in the 
percentage of correct signals between levels of Task Demands. The mean percentage for 
Standard puzzles was 85.6% correct with a standard deviation of 27%. For Complex puzzles the 
mean was 82.5% correct with a standard deviation of 29.9%.  

 
Average Fixation Length had a significant relationship with Task Demands, with 

Complex puzzles exhibiting an average length approximately 14 ms longer than Standard 
puzzles.  This was the same direction as was seen in trials 1-4. 

 
β values did not differ for different Task Demands.  The average β for Standard puzzles 

was -1.29 (SD = .13) and was -1.31 (SD = .13) for Complex puzzles.  This did not support the 
expectation that β values would be sensitive to changes in task demands.  

 
Recurrence-based metrics show a significant increase in Percent Cross Recurrence as 

well as Percent Cross Determinism.  Cross Recurrence was 1.1% higher for Complex Puzzles as 
compared to standard puzzles, and Cross Determinism was 8% higher for Complex Puzzles. 
Diagonal Recurrence was not different across Task Demands.  These results support the 
expectation of a change in dynamic structure under different Task Demands.  Cross Recurrence 
and Cross Determinism both indicate increasing structure with higher task demands, similar to 
what was observed for trials 1-4. 

 
 

Table 5. Summary of significant results for Trial 5. 
DV Standard 

Mean (SD) 
Complex 
Mean (SD) 

F values 

Completion Time 
(minutes) 

6.89 (2.88) 11.19 (2.89) F(1,29) = 115.22 p < .05 

Average Fixation 
Length 
(milliseconds) 

192.69 (12.05) 206.66 (10.77) F(1,29) = 11.52  p < .05 
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Percent Cross 
Recurrence 

4.2 (.64) 5.3 (1.2) F(1,29) = 9.6  p < .05 

Percent Cross 
Determinism 

55.16 (6.3) 63.0 (3.7) F(1,29) = 17.35 p < .05 

 
 
In order to determine the impact of the secondary audio task completion time, an analysis 

was conducted which compared completion time for Trial 5 to the second presentation (i.e., Trial 
3 or 4) of the corresponding difficulty condition to that presented in Trial 5.  The main effects of 
this analysis are presented in Table 6.  Overall, the secondary task shows very little impact; there 
was no difference in completion time between the paired trials.  The only significant differences 
point to effects of Practice, similar to what was observed for trials 1-4. 

 
 

Table 6. Summary of significant main effects for paired difficulty comparisons with and without the 
secondary task. 

DV Presentation 2 
Mean (SD) 

Trial 5 
Mean (SD) 

F values 

Diagonal Recurrence 
(percent) 

22.04 (12.5) 35.09 (13.07) F(1,27) = 15.976 p < .05 

Average Fixation 
Length 
(milliseconds) 

191.6 (11.77) 199.4 (13.31) F(1,27) = 39.714  p < .05 

 

3.4 Discussion 

At the outset of Experiment 1, it was hypothesized that the manipulation of Task 
Demands would cause a change in Completion Time; the primary question was if eye gaze 
measures would be sensitive to the changes, and furthermore if a distinction occurred between 
the types of eye gaze measures (conventional and dynamic).  This question was also presented in 
regards to Time on Task, as well as spare capacity (Trial 5).  The manipulation of Task Demands 
had the expected effect on Completion Time, which was an important manipulation check. The 
findings of Experiment 1 supported the expectation that eye gaze would reflect differences in 
Completion Time. 

 
Previous work suggested that the addition of secondary task might change gaze behavior 

(e.g., May et al, 1990), however the data from Trial 5 seems to suggest that there were no 
significant impacts of spare capacity on gaze behavior.  When the eye gaze measures from Trial 
5 were compared to the corresponding puzzle type from the second presentation (i.e. Trial 3 or 
Trial 4 depending on the counterbalance) the trends observed in trials 1-4 are unchanged when 
participants completed a radio monitoring task while completing the puzzle.  This may be due to 
different resources required for both tasks, (i.e., visual vs. auditory; Wickens, 2002).  This would 
create a situation in which the two types of tasks used here would be least likely to impact one 
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another.  However, two different task types were required so that the visual display would be 
unchanged with the addition of the secondary task. 

 
Generally, measures of eye gaze were sensitive to the different puzzle types. However 

there was no clear distinction between conventional and dynamic measures of gaze; measures of 
averaged fixation activity and recurrence measures both showed significant effects of Task 
Demands.  Average Fixation Length (with a corresponding decrease in Fixations per Minute) and 
Cross Determinism were both higher in Complex puzzles.  In the present context, Cross 
Determinism represents a relationship between piece and position of fixation that is consistent in 
time, although not necessarily the correct piece/position placement.  Taken together, there was a 
tendency to fixate for longer periods of time (and a fewer number of times) in a more structured 
sequence in Complex Puzzles.  Longer fixations are likely due to the time it takes to orient pieces 
when rotated.  Deterministic sequences of fixations suggest there is an increase in repeated 
fixations for pieces in the same piece/position configuration for complex puzzles. This likely 
reflects looking from one piece to another and then back in order to determine where/if the piece 
should be moved. 

 
In regards to practice or learning effects, it was expected that learning or strategy shifts 

could be seen in Completion Time and also reflected in gaze patterns at different presentations. 
While there were no changes in Completion Time, there were main effects of Practice for the 
recurrence-based metrics of Percent Cross Determinism and Diagonal Recurrence.  In this case, 
it’s likely that the increase in Percent Determinism is directly related to the increase in Diagonal 
Recurrence; Determinism quantifies all sequential fixations, and Diagonal Recurrence quantifies 
a subset of those sequential fixations, specifically those in which piece and position are exact 
matches in time.  As previously mentioned, the increase in Diagonal Recurrence suggests that 
participants are learning about the task; they are increasing the number of fixations on pieces in 
the correct positions.  In terms of looking at the images, it could be the case that participants 
were using pieces that had been correctly placed as references or anchors from which to select 
and place other pieces.  However, there was no effect of Completion Time for Practice, so this 
change in gaze patterns did not result in a faster performance outcome. 

 
While only dynamic measures showed significant main effects, Average Fixation Length 

had an interaction with Time on Task and Counterbalance, suggesting that the order of the puzzle 
presentations had an effect on the length of fixation.  Specifically, the two counterbalance types 
show a divergent relationship. Participants in the SCCS counterbalance show an increase in 
fixation lengths from the first to the second presentation, whereas those in the CSSC 
counterbalance shows decreasing fixation lengths on the second presentation.  It would only be 
speculative to interpret this finding, other than to interpret some form of transfer in gaze strategy 
that is different between the two presentation orders. 

 
It was expected that the frequency patterns in the scan path, as measured by β values, 

would be classified as 1/f patterns, as has been reported in previous work (Aks et al, 2002 and 
Stephen & Anastas, 2011), and this was the case.  It was further expected that β values would be 
sensitive to changes in task demands, based partially on the results from Stephen and Anastas 
(2011) which link increases in β values to faster reaction times.  However, β values did not 
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change with Task Demands, or at least not in a straightforward manner.  Rather than respond to 
Task Demands alone, β values for Experiment 1 suggest some type of transfer of gaze patterns 
between the two presentations that is dependent on which type of puzzle was seen first.  At this 
point there is not an explanation for this pattern and it would be extremely speculative to 
interpret further. 

4.0 EXPERIMENT 2 

4.1 Introduction 

Overall, the results from Experiment 1 provide mixed answers for the research questions 
of interest at the outset. On one hand, eye gaze metrics were sensitive to the manipulation of task 
demands, a demonstration of the link between gaze behavior and performance outcomes.  On the 
other hand, this was the case for both types of eye gaze metrics (conventional and dynamic).  
Expanding the view to the Practice measures, there is an indication that the dynamic measures 
may be sensitive to a shift in gaze strategy in ways that conventional measures of eye gaze are 
not, but this distinction should be given further study since there was an interaction with 
counterbalance type.  It was unexpected that the counterbalance type would show significance in 
the inferential tests; the counterbalancing of an experimental design is undertaken to nullify 
interactions between manipulations.  The interactions suggest that the changes over time that 
may be due to practice or learning may have been interrupted by the manipulation of task 
demands in some way that is unclear at this time. 

 
In an attempt to better understand changes of gaze strategy with Practice, a short (e.g., 

pilot), follow-up experiment was conducted which did not include manipulations of Task 
Demands.  Experiment 2 was a test of repeated presentations of the same image and puzzle type.  
The expectation was that Completion Time would improve with repeated presentations of the 
same puzzle/image combination.  The goal of the Experiment 2 was to initiate systematic 
learning improvements in participants’ completion times, and to determine the degree to which 
these changes are reflected in different measures of eye gaze (e.g., Average Fixation Length, β 
values, and Diagonal Recurrence). 

4.2 Methods 

4.2.1 Participants 

All participants in Experiment 2 had successfully completed Experiment 1 (see above for 
requirements).  Although 6 participants were initially tested, one participant’s data was excluded 
due to a calibration error, resulting in data from 5 participants being included in the analysis for 
Experiment 2. 

4.2.2 Image Selection 

Two images were selected for Experiment 2; both images had previously been included 
in either the image selection process or in data collection for Experiment 1.  One image, a sport 
utility vehicle (Figure 16, left) was used from the pilot image selection process in Experiment 1.  
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Another image (Figure 16, right) was re-used from Experiment 1, the image of sunflowers.  
Images were randomly assigned to participants. 

 
 

 

Figure 16. The two images used between subjects in Experiment 2.  The Vehicle (left image) was used in the pilot testing 
of Experiment 1; the Sunflowers (right image) image was used for data collection in Experiment 1.   

 
 

4.2.3 Apparatus 

Workstation and eye tracking apparatus were the same as those used for Experiment 1. 
Eye tracking was conducted via a Facelab4 “off the head” eye tracker, hosted on a Dell Latitude 
D830 laptop computer (2.2 GHz processor, 2 GB RAM).  This combination allows for +/- 1 
degree of visual angle eye tracking capability at a collection rate of 60Hz.  Facelab API version 
4.6 was integrated with custom software written to display images for this experiment.  The 
output of the tracking software was the X and Y pixel location of participants’ gaze. 

The participant station was an HP Compaq DC80 desktop computer (2.3 GHz processor, 
3.5 GB RAM) & a LCD monitor (Samsung 940BX) with a height of 30 cm and a width of 
37.5cm (48cm diagonal), at 1280 x 1024 resolution. 

Images were sized at 1020 x 1020 pixels, and at a viewing distance of approximately 
60cm, which is approximately 27 x 27 degrees of visual angle.  When subdivided for the puzzle 
into 36 equal sized square pieces (170 pixels width/height), each piece was approximately 4.75 x 
4.75 degrees of visual angle. 

4.2.4 Procedure and Design 

Participants were given verbal instructions about the task procedures and how to 
manipulate the puzzle pieces.  Following instructions, participants completed one 5 x 5 practice 
image to familiarize themselves with the task.  Once participants solved the practice image, 
participants were presented a series of 9 trials of the same test image in the rotated condition. 
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Rotation was in 90 degree intervals, leaving 4 potential orientations (0, 90, 180, 270 
degrees from horizontal).  Each orientation was fixed to 25% of pieces (9 pieces per orientation).  
Between trials, participants were shown a black target dot on an otherwise white screen.  
Participants were asked to fixate on the dot and after doing so, initiate the task by clicking the 
left mouse button. The intact image was then displayed for 5 seconds.  Then the image was split 
into 36 (6 x 6 grid) equal sized squares.  The puzzles were generated in a randomized way such 
that all pieces changed position. Each trial lasted until the participant completed the puzzle; there 
were no time limits in Experiment 2. 

4.3 Results 

In Experiment 2 all dependent variables were subjected to a one-way ANOVA for trial to 
explore potential relations to experience or learning.  It was expected that overall performance 
would improve over trials (i.e., Completion Time would decrease). A primary question was the 
degree to which conventional measures of eye gaze (Average Fixation Length or Fixations per 
Minute) and/or alternative measures derived from dynamical systems theory (β, Cross 
Recurrence, Cross Determinism, and Diagonal Recurrence) would provide additional insights 
into the performance changes. 

As shown in Figure 17, the expectation that Completion Time would decrease was 
supported; there was an overall effect of trial on Completion Time, as reported in Table 7.  This 
change was in the expected direction: Average Completion Time was reduced from 10.19 min on 
Trial 1 to 2.87 min on Trial 9.  Completion time sharply decreased after Trial 1, asymptoting 
around Trial 5. 

 
For all hypothesized effects, regression models were fit to the data to determine the type 

of trend observed.  Three model fits were chosen based on research in the domain of nonlinear 
dynamics and learning (Crites and Gorman, 2013):  linear, exponential, and power law.  As a 
first step, linear should be tested at it is the simplest model fit.  Both exponential and power were 
fit in order to discriminate between two; different types or categories of learning (Crites and 
Gorman, 2013).  Exponential models are associated with learning novel skills, while power law 
fits are associated with persistent learning (e.g., tuning or refining existing skills) (Stratton et al., 
2007). The R squared values for the model fits are summarized in Table 8.  The trajectory for 
Completion Time was best fit by a power law, which had a better fit than the exponential & 
linear models (Table 8).  Taken together, there is strong evidence that learning was taking place 
with repeated exposure to puzzles of the same image. 
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Figure 17. Average Completion Time (Y-Axis) by Trial (X-Axis).  Performance time decreased with repeated 
presentations of the same puzzle. Error bars represent +/- 1 standard error.  Three model fits were tested: 
linear (grey line), exponential (blue line), and power (red line). 

 
 

Table 7. Summary of dependent variables tested in Experiment 2. 
DV 
 

Description F value 
 

Completion Time Average time to solve puzzle F(1,4) = 13.59, p <.05 
Average Fixation Length Average length of all fixations in a 

trial  
F(1,4) = 11.79, p <.05 

Fixations per Minute Number of fixations divided by Trial 
Time 

F(1,4) = 7.01 p > .05 

β Value Frequency response of Scan Path F(1,4) = 2.28, p > .05 
Cross Recurrence 
(Piece vs. Position) 

Percentage of Recurring States F(1,4) = 3.42 p > .05 

Cross Determinism 
(Piece vs. Position) 

Percentage of Recurring States that 
Recur in an order 

F(1,4) = 0.71 p > .05 

Diagonal Recurrence (Piece vs. 
Position) 

Percentage of recurring states that 
recur at the same point in time 

F(1,4) = 23.34, p <.05 

 
 
 
 

R² = 0.6698
R² = 0.8239
R² = 0.9674

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

Co
m

pl
et

io
n 

Ti
m

e 
(m

in
ut

es
)

Trial

Completion Time Across Trials

Completion Time
Linear
Exponential
Power

33 
Distribution A: Approved for public release; distribution unlimited.   

88 ABW Cleared 09/08/2014; 88ABW-2014-4229. 



Table 8. Summary of model fits for the hypothesized effects in Experiment 2. 
DV Linear R2 Exponential R2 Power R2 
Completion time .67 .82 .97 
Average fixation 
length 

.25 .26 .51 

Diagonal 
recurrence 

.67 .59 .81 

β Value .57 .58 .59 
 
 
For conventional eye gaze metrics, it was expected that there would be a significant 

relationship between Trial and Average Fixation Length in Experiment 2.  This expectation was 
based on the significant two way interaction (Practice x Counterbalance) for Average Fixation 
Length that was observed in Experiment 1.  This expectation was supported: Average Fixation 
Length increased over the first 5 trials and then seemed to level off at about 200 ms in the final 4 
trials as shown in Figure 18.  There was a significant effect of Trial for Average Fixation Length, 
as shown in Table 7.  When compared to Completion Time, as trial length decreased the length 
of the fixations increased. When fit with regression models, Average Fixation Length (Figure 18; 
Table 8) shows a moderate power law relationship.  Taken together, this indicates that while 
Average Fixation Length changes over the course of 9 trials, it is not necessarily changing 
systematically with Completion Time. 
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Figure 18. Average Fixation Length (Y-Axis) by Trial (X-Axis).  Average fixation length increased as a 
function of trial. Error bars represent +/- 1 standard error. Three model fits were tested: linear (grey line), 
exponential (blue line), and power (red line). 
 
 

β values were tested for change as a function of Trial, in an attempt to clarify 
relationships observed in Experiment 1.  There was not a significant change in β values with 
learning, as shown in Table 7.  Figure 19 depicts the absolute value of β values across 9 trials.  
Absolute values are plotted (rather than the original negative slope values) in order to model the 
data (power law fit cannot be computed for negative values).  As shown in Figure 19, β values 
are generally flat with an absolute mean value across trials of 1.14 (signed value is -1.14).  β 
values in this range are representative of 1/f noise, suggesting that ‘optimum’ dynamic structure 
is present in the scan path, but this measure of structure does not change as a function of learning 
in this task.  Regression fits for β values (Figure 19; Table 8) show that all models fit the data 
moderately well (e.g., ~ .57 R2 with no distinctions among the three).  Overall, this suggests that 
β Values are not diagnostic in terms of learning or strategy for this task. 
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Figure 19. Absolute β values (Y-Axis) by Trial (X-Axis).  β values did not change across Trials. Error bars 
represent +/- 1 standard error. Three model fits were tested: linear (grey line), exponential (blue line), and 
power (red line). 

 

There was a significant effect of Trial on Diagonal Recurrence Profile, as shown in Table 
7.  Diagonal Recurrence increased from 18.3% on Trial 1 to 42.24% on Trial 9, as shown in 
Figure 20.  Note that Diagonal Recurrence was computed at a time lag of zero; higher values of 
diagonal recurrence are indicative that participants are fixating on a higher percentage of puzzle 
pieces that are in the correct positions.  Regression models (Figure 20; Table 8) indicate that 
Diagonal Recurrence is best fit by a power law, similar to Completion Time. This is further 
evidence of learning; specifically attunement to the piece/position constraints of an image which 
resulted in a more efficient search strategy. 

 
 

R² = 0.5868

R² = 0.5847

R² = 0.5908

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

0 1 2 3 4 5 6 7 8 9 10

Ab
so

lu
te

 B
et

a V
al

ue
 (U

ni
tle

s)

Trial

Beta Values Across Trials

Beta

Linear

Exponential

Power

36 
Distribution A: Approved for public release; distribution unlimited.   

88 ABW Cleared 09/08/2014; 88ABW-2014-4229. 



 

Figure 20. Percent Diagonal Recurrence (Y-Axis) by Trial (X-Axis).  Diagonal Recurrence increases with 
repeated puzzle presentations. Error bars represent +/- 1 standard error. Three model fits were tested: linear 
(grey line), exponential (blue line), and power (red line).  
 
 

The results for the analyses of variance in Experiment 2 indicate that there was a 
significant drop in Completion Time, and that there were significant effects of Trial for two of 
the eye gaze metrics (Average Fixation Length, Diagonal Recurrence).  The model fits give some 
insight to relationships between the gaze measures and Completion Time.  However, to further 
quantify the relationships between eye gaze metrics and Completion Time, a correlation analysis 
was performed. 

 
The repeated measures design means that an omnibus correlation analysis (all 

participants and all trials in the same test) would be inappropriate.  To estimate the correlation 
across participants, correlations were computed for each participant and averaged in accordance 
with the procedures provided in Silver and Dunlap (1987).  Briefly, for each participant, a 
Pearson’s correlation between all eye gaze metrics and completion time was computed across 
trials. The computed r values were converted to Fisher’s z values and averaged across 
participants. The averaged z scores were then re-converted to Pearson r values and tested for 
significance.  This procedure is necessary due to the low sample size for Experiment 2, and bias 
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in the r statistic present at higher values that make it unsuitable to average the raw scores (Silver 
& Dunlap, 1987).  The average r values can be seen in Table 9. 

Given the low number of subjects for Experiment 2, an alpha of .1 was used for 
significance testing of correlations.  At the .1 level, Diagonal Recurrence had a strong negative 
correlation with performance time, r (3) = -.85, p < .10.  The correlation results (Table 9) along 
with the model fits (e.g., Figure 20, Table 8) indicate that Diagonal Recurrence had the strongest 
relationship with Completion Time.  Furthermore, Diagonal Recurrence provides complimentary 
information above and beyond other metrics:  Specifically, better puzzle performance (lower 
Completion Time) is seen when search behavior is more efficient (higher Diagonal Recurrence). 

 
Table 9. Average correlation coefficients for the dependent variables tested in Experiment 2. 

DV Completion 
time 

β 
value 

Diagonal 
recurrence 

Cross 
recurrence 

Cross 
determinism 

Average 
fixation 
length 

Fixations 
per 
minute 

Completion 
time --- -0.27 -0.85* 0.31 -0.07 -0.66 0.45 

β value  --- 0.26 0.0 -0.05 0.2 -0.2 

Diagonal 
recurrence   --- -0.08 0.12 0.62 -0.46 

Cross 
recurrence    --- 0.4 -0.07 0.14 

Cross 
determinism     --- 0.15 0.33 

Average 
fixation 
length      --- -0.61 

Fixations 
per minute       --- 

Note: *p<.1, critical r = .805 
 
 

No other correlations between eye gaze metrics or completion time were significant at the 
.1 level.  Although there was a significant result in the ANOVA, the moderate correlation 
between Average Fixation Length and Completion Time was not significant.  These results 
should include the caveat that because of the small sample size in Experiment 2, this correlation 
might reach statistical significance with a larger sample.  At the outset of Experiment 2, β was 
hypothesized to be related to Completion Time.  However, based on the outcome of the ANOVA 
as well as the regression model fits, it is not surprising that β values are uncorrelated with 
Completion Time.  This suggests that while there are 1/f dynamics exhibited in the scan path for 
this task, those dynamics are relatively stable and do not change, even as structure increases for 
fixations, specifically Diagonal Recurrence.  This could be interpreted as anchoring and 
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efficiency; much like a traditional puzzle in which one seeks out the important pieces for the 
puzzle (in a typical puzzle the “edge” pieces), in this task participants were likely seeking 
distinctive pieces of the puzzle.  For early trials, these pieces are not in the correct positions, but 
still provide an anchor from which to seek other matching pieces (e.g., structure in the scan 
path).  With multiple iterations of the puzzle, learning takes place.  The overall strategy is the 
same (seeking anchors) but with learning more of the pieces are placed in the correct positions 
earlier in the trial. 

5.0  GENERAL DISCUSSION 

The present work was undertaken to explore the possibility of eye gaze as a primary 
measure for state assessment by using alternative indices of dynamic structure. It was expected 
that eye gaze would be related to performance, but at the outset, it was not known the direction 
of the corresponding shift that might be seen in the dynamic patterns of eye gaze.  Also of 
interest was the degree to which measures of dynamic structure would correspond to more 
conventional measures of eye gaze.  Although the general expectations were addressed 
previously, further interpretation of the results will be organized around the general effects of 
Task Demands and Learning, along with general conclusions and future directions. 

5.1 Task Demands & Gaze Patterns 

At the outset of Experiment 1, a primary question of interest was the degree to which 
changes in the difficulty of the task, (standard vs. rotated puzzles) would influence performance 
outcomes, and if corresponding changes would also be reflected in gaze patterns.  The 
expectation for performance changes was supported by the data as complex puzzles took longer 
to complete than standard puzzles.  Essentially, the information (degrees of freedom) for each 
piece was increased when some of the pieces were rotated in the complex puzzle condition and 
this is reflected in the increased performance time.  This result was not surprising; however it 
was an important manipulation check. 

It was expected that changes in puzzle type would influence eye gaze metrics; and the 
expectation that eye gaze would be sensitive to difficulty changes in this task was supported. A 
second question concerned any potential differences between conventional and dynamic 
measures.  There was no distinction between conventional and dynamic measures in regards to 
task difficulty; both types showed significant effects.  Average fixation length was higher in 
complex puzzles, likely due to the need to fixate longer while pieces are rotated to their correct 
orientations.  Higher levels of determinism in complex puzzles could indicate an anchoring 
strategy, as previously mentioned. 

The expectation that spare capacity of the participants would alter gaze patterns was not 
supported.  When completing the secondary audio task, participants’ task performance and gaze 
patterns did not change in a measureable way.  There was a generally detectable difference 
between levels of Task Demands for Completion Time and Average Fixation Length, but no 
interactions or differences when compared to puzzles of the same type from trials 1-4.  
Comparison of matched puzzle conditions with and without the secondary task showed no 
difference in performance; and gaze patterns showed similar effects to trials 1-4. 
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It may be the case that the type of task, as well as the manipulation of task demands 
implemented in Experiment 1 were not robust enough to alter gaze patterns in a way that 
dynamic measures would be differentially sensitive.  The literature regards 1/f as a relatively 
stable phenomenon; deviations occur when systems are in a state of pathology or other 
significant duress that deviations are seen (Bassingthwaighte, 1994).  Although there was not an 
expected distinction between conventional and dynamic measures of gaze, there was support for 
the idea that gaze patterns reflect changes in Task Demands.  The current results lend support to 
the use of eye gaze as a measure of task difficulty for the purposes of state assessment in the task 
used.  However, eye gaze also appeared to be related to a different aspect of performance, 
specifically learning and strategy. 

5.2 Learning & Gaze Patterns 

There was support for the idea that gaze patterns would change as a result of learning.  
Learning effects were more nuanced than the results for Task Demands.  In Experiment 1, there 
were significant interactions of Average Fixation Length and β values involving the 
counterbalance in the first experiment that are difficult to interpret, other than suggesting that 
there was a transfer of gaze strategy that was different depending on the order of puzzle type; 
and that trials 2 & 3 (repeating puzzle types) show different relationships than trials 1 & 4 
(separated presentations of the same puzzle type).  Addressing this issue was a primary 
motivation for Experiment 2, which showed a clear performance improvement as participants 
learned the particular aspects of each image.  Experiment 2 also provided insight into which gaze 
measures were sensitive to learning effects. 

Average Fixation Length had significant relationships with trial in both experiments; 
however the data from Experiment 2 suggest that over time an increase in the average fixation 
length occurs.  There are multiple reasons why this could be the case; it is difficult to 
discriminate with the present results.  In Experiment 2 all trials included complex puzzles; the 
increase in fixation time could be the result of more time spent studying individual pieces.  It 
could also be the result of learning the general features of individual pieces and making one 
fixation that allowed participants to “see” multiple pieces (i.e. attend to different areas within the 
visual field; Heinen et al., 2011). 

Data from Experiment 2 suggest that β values did not change significantly with learning; 
however they were in the range of 1/f phenomena.  This suggests that the scan path within each 
trial is characterized by a relatively stable power law (as stated previously 1/f frequency 
responses are indicative of power law relationships).  As previously stated, power law 
relationships are representative of tuning or refining existing learning, rather than learning new 
skills (Crites and Gorman, 2013).  It’s easy to see why visual search would fit these criteria; from 
early ages we are searching for objects in the environment, and the present task is a different spin 
on visual search.  The power law finding is consistent with research from Aks (2011), who 
determined 1/f patterns were present in visual search.  Both Aks et al. (2011) and Stephen and 
Anastas (2011) interpret 1/f patterns as efficient search.  The current data supports this idea; but 
provides further evidence via the cross recurrence based measure of diagonal recurrence. 
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In Experiment 1, a main effect of trial was observed for Diagonal Recurrence, which was 
higher for the second presentation of a puzzle.  This was interpreted as learning a more efficient 
search strategy.  This is because Diagonal Recurrence represents a specific type of structure in 
the pattern of fixations, specifically more fixations upon puzzle pieces in their correct positions.  
Note that for Experiment 1, the images seen in presentations 1 and 2 were counterbalanced; 
suggesting that participants’ strategy shift is not due to properties of a particular image.  This 
suggests that gaze strategy as measured by diagonal recurrence may precede performance 
changes in some cases. 

When repeating puzzles containing the same image, as in Experiment 2, the learning 
effect becomes more pronounced in gaze patterns, specifically those patterns measured by 
Diagonal Recurrence.  As properties of a specific image become apparent, a more efficient gaze 
strategy in which participants anchor their search on pieces in the correct positions results.  
Although there were significant effects for both conventional and dynamic measures of eye gaze, 
Experiment 2 has limited support for the idea that dynamic measures are more sensitive to 
changes in performance due to learning or strategy, since Diagonal Recurrence had the highest 
correlation with performance. 

5.3 General Conclusions & Future Directions  

Diagonal Recurrence was likely related to better task performance by learning a more 
efficient search strategy.  If this is the case, then differences in Diagonal Recurrence should be 
seen between participants who did and did not solve a puzzle.  A subset of the data from 
Experiment 1, specifically the 2nd presentation of the complex puzzle, was selected as a test of 
this idea.  From this subset, 13 participants solved the puzzle, 18 did not.  Three eye gaze metrics 
were tested: Diagonal Recurrence, β values, and Average Fixation Length.  The results of this 
analysis are presented in.  In this instance, there is a distinction between conventional and 
dynamic measures.  Diagonal Recurrence is lower for the group that did not solve the puzzle, and 
higher for the group that was successful.  β values are closer to 1 for the group that solved the 
puzzle and slightly higher for the group that did not solve the puzzle.  However, Average 
Fixation Length is unchanged between the two groups. 
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Table 10. Summary of results for a subset of data from the first experiment, split by successful puzzle 
completion 

 

 
 
 
Stephen and Anastas (2011) suggested that 1/f structure in eye gaze would be indicative 

of better performance in visual search tasks.  There is some support for this idea, based on the 
performance split; participants that solved the puzzle exhibited patterns in their scan paths that 
are closer to 1/f, whereas participants who didn’t solve the puzzle show a slightly more 
structured scan path.  However, the overall results suggest that 1/f was a general property of the 
scan path in this experiment, rather than diagnostic to performance. 

 
1/f structure was generally present in the scan path; and is thought to be ‘meta stable’ 

because it represents flexible or adaptable organization in the underlying systems, without 
exhibiting too much randomness (e.g., Holden et al, 2009).  Note that the methodology used here 
performs the frequency analysis on the angular displacement within the measured scan path (i.e. 
the macrostructure of eye gaze), and the recurrence analysis represents a subset of that scan path, 
fixations (e.g., part of the microstructure of eye gaze).  This discrepancy may account for the 
results here.  The macrostructure shows dynamic stability (e.g., 1/f), aspects of the microstructure 
were “re-organized” (e.g., fixation patterns change).  Only by using both types of dynamic 
measures was the distinction observed. 

 
The distinction can be seen when looking at two cross recurrence matrices for the same 

participant in Experiment 2.  Figure 21 shows the cross recurrence matrix for a subset of data 
from the initial stages of trial 1 (the first 600 fixations).  Figure 22 shows the cross recurrence 
matrix for all of the data from trial 9 (approximately 600 fixations).  However, there is a clear 
distinction in the two based on the levels of Diagonal Recurrence.  Diagonal recurrence is around 
1% early in trial 1 and around 45% for trial 9.  Note that for both of these trials, the overall scan 
path was classified as 1/f; suggesting that there is a great deal of flexibility in how 1/f variability 
can appear in the scan path. 

 

Dependent Variable 
Mean (SD) for 
Completed Puzzles [n 
= 13] 

Mean (SD) for 
Incomplete Puzzles [n 
= 18] 

F values 

Diagonal Recurrence 
(Percent) 29.2 (11.2) 19.2 (14.2) F(1,29) = 4.512 p < .05 

β Value (unit less) -1.25 (.12) -1.34 (.08) F(1,29) = 5.887 p < .05 

Average Fixation 
Length (milliseconds) 196.5 (14.3) 196.2 (12.8) F(1,29) = .003 p > .05 
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Figure 21. Puzzle piece (Y-Axis) by position (X-Axis) Cross Recurrence matrix for one participant in the first 
learning trial.  Shaded grey areas represent matching values between the two series (Recurrence). Line 
structures, represent matching values in an order (Determinism).  Diagonal Recurrence would appear as a 
line structure along the diagonal. This plot shows low levels of determinism and diagonal recurrence which 
indicates low coupling between puzzle piece and position, indicating that the participant has not learned 
about the piece/position relationships yet. 
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Figure 22. Puzzle piece (Y-Axis) by Position (X-Axis) Cross Recurrence matrix for one participant in the final 
learning trial. Shaded grey areas represent matching values between the two series (Recurrence). Line 
structures represent matching values in an order (Determinism).  Diagonal Recurrence appears as a line 
structure along the diagonal. The high level of diagonal recurrence presented in this figure indicates high 
coupling between puzzle piece and position, interpreted as a more efficient gaze strategy with practice.    

 

Overall, in terms of state assessment, there is evidence that eye gaze is not only related to 
task difficulty, but also to learning or strategy.  The results of these experiments suggest 
participants are learning about the relevant degrees of freedom and the overall constraint(s) for 
completing the puzzle (e.g., the piece/position relationships within the image).  That is, 
participants are tuning to the relevant constraints of the task, and becoming more efficient in 
their gaze patterns as a result.  In this case, the change in dynamic structure is uni-directional; 
higher diagonal recurrence is optimal in this task because it measures the sole constraint needed 
to complete the puzzle (pieces in the correct position).  In more complex tasks (i.e. more 
constraints on performance) and particularly novel tasks (e.g., novel skill vs. existing skills; 
Crites and Gorman, 2013), it is unlikely that the results would follow the same pattern. 

The conclusions about learning and the correlations between gaze metrics should be 
further explored, by collecting data from a larger sample of participants for Experiment 2.  
Experiment 2 was conducted as a follow up in order to clarify effects of practice that were seen 
in Experiment 1. While the small sample helped to make sense of these results, a larger sample 
would be more statistically robust, and further trends may be seen (e.g., a more rigorous 
statistical analyses of correlational relationships between gaze metrics).  This would allow for 
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inferences about shared relationships between variables used in the present work that show 
correlations with each other.  For example, Average Fixation Length and Diagonal Recurrence 
show a moderate correlation (r = .62) that might approach significance with a larger sample. 
These relationships could also be further explored via a hierarchical regression analyses to 
determine the overall contribution of each gaze metric to performance outcomes. 

The present studies limited the analyses to the performance outcome of completion time 
and the different eye gaze metrics.  From these analyses, interpretations about strategy were 
made.  The addition of puzzle piece selection and manipulation actions of the participant could 
provide further insights into operator state.  With this data determinations of the specific 
movement sequences could be assessed.  Furthermore, the series of actions could be crossed with 
eye gaze data, via a cross recurrence analysis, in a similar way as the piece/position cross was 
implemented here.  This could give insight into the coordination of a gaze and action, 
specifically the degree of coupling between participants’ eye gaze and puzzle manipulation 
strategies.  For example, one potential outcome of these analyses would be the lead/lag 
relationships between eye gaze and action. 

Although eye gaze was singled out in the present study, eye gaze is only one of the 
potential primary task measures that could be available in an operational setting.  Future work 
could utilize dynamic methods for additional primary measures.  For example, communication 
patterns are one area which has been shown to reveal dynamics of team coordination (Russell et 
al., 2012).  Holden et al.’s (2009; 2011) work on reaction time intervals could also be applied to 
more general aspect of operational activities (intervals between required actions).  Furthermore, 
variability in control mechanisms (e.g., button presses, flight stick movement) may provide 
another signal from which to assess operator state using dynamic measures (Strang et al., 2013). 

The current project was undertaken with the goal of determining if dynamic patterns of 
variability in eye gaze reflect underlying properties of an operator.  Initially the focus was on 
workload of the operator, and this project demonstrated the general sensitivity of eye gaze to 
workload effects.  Also demonstrated here was the relationship of dynamic structure to learning 
or strategy shifts.  Support for this idea was confirmed for effects of learning across trials, with 
some limited support for the idea that dynamic measures were more sensitive than conventional 
measures in regards to these learning effects.  This is not meant to be an indictment of average 
based measures, rather to stress that not all variability is error; dynamic analyses may provide a 
richer understanding of underlying states of the operator, but are not necessarily superior to 
conventional measures.  While measures of dynamic structure may be conceptually different 
from conventional averages, computationally they require little extra effort to compute.  Moving 
forward, both should be applied (where appropriate) to utilize the complimentary explanatory 
powers in making sense of human performance data in complex tasks. 
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