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Abstract
In this paper we presentACTIVE a tool and framework
to semantically integrate independently-developed analy-
sis plugins in OSATE, a tool for modeling systems in
the Architecture Analysis and Design Language (AADL).
In the paper we analyze the problems that occur when
independently-developed analysis pluging are executed on
an AADL model and how these problems can lead to in-
valid analysis results. We show how our framework model
plugin interactions in a formal way in order to enable au-
tomatic verification. These interactions are captured in an
analysis contract that describes inputs, outputs, assump-
tions, and guarantees. The input and outputs in the con-
tract allow us to determine the correct order in which plu-
gins must execute. The assumptions and guarantees, on the
other hand, capture the conditions that must be valid to ex-
ecute a plugin and the one that are expected to be valid
afterwards. TheACTIVE framework allows the inclusion of
any generic verification tool (e.g. model checkers) to ver-
ify these conditions. To coordinate all these activities uses
two components: theACTIVE EXECUTER and theACTIVE

VERIFIER. The ACTIVE EXECUTER executes the plugins
in the required order calling theACTIVE VERIFIER every
time assumption and guarantees need to be verified. The
ACTIVE VERIFIER, in turn identifies and executes the ver-
ification tool that needs to be invoked based on the target
formula. Together, they ensure that the plugins are always
executed in the correct order and under the correct condi-
tions guaranteeing a sound verification process. To the best
of our knowledgeACTIVE is the first extensible framework
able to integrate independently-developed analysis plugins
guaranteeing their correct interaction and execution.

Keywords analysis contracts, cyber-physical systems,
model checking, virtual integration

1. Introduction
The development of Cyber-Physical Systems (CPS) relies
on analysis tools that use their own specialized abstrac-

tions. These abstractions, however, interact with each other.
Neglecting these interactions leads to incorrect analysisre-
sults and design choices. For instance, selecting an other-
wise valid scheduling policy may violate the assumptions
of a functional correctness analysis (e.g., model checking)
and lead to a deadlock-prone system being declared safe.
Alternatively, such a scheduling policy could violate the
assumptions of a processor frequency scaling analysis and
lead to a non-schedulable allocation of tasks. Similarly,
modifying the algorithm of a controller may alter its ex-
ecution time and periodicity, thereby affecting the schedu-
lability of the system [3].

Verification tools are particularly sensitive to their un-
derlying domain abstractions, and incorrect application of
these abstractions leads to invalid results. For instance,
the original schedulability equations for Rate-Monotonic
Scheduling (RMS) [6] use task abstractions that both re-
strict these tasks to be independent of one another and to
forbid them to pause their computation. The application of
this abstraction to tasks that do not honor these restrictions
leads to incorrect schedulability results via RMS.

The process of virtual integration aims at addressing the
issue of dependent abstractions by providing methods to re-
solve dependencies and conflicts among tools and models
used in CPS engineering [7]. In our recent work we de-
veloped an approach for virtual integration based on the
specification and verification ofcontractsbetween analy-
sis tools [8]. Our approach allows us to describe and verify
the interactions between analyses from different scientific
domains.

Our approach relies on specification of averification do-
main – a set of symbols and their interpretation that en-
ables us to express the contracts of analyses belonging to
that domain in a precise manner. Examples of domains are
“scheduling” and “battery,” which are concerned with anal-
yses of properties of real-time threads (e.g., schedulability),
and batteries (e.g., thermal runaway), respectively. A veri-
fication domain serves as a signature to a mixed-logic lan-
guage in which dependencies, assumptions, and guarantees
of each analysis from this domain are specified in the form
of a contract. These contracts are then algorithmically eval-
uated against a particular system architecture to verify ifthe
system satisfies the assumptions of the analyses, and if the
contracts of the analyses are compatible with one another.

The theoretical constructs from our prior work are help-
ful, but, unfortunately, insufficient to support practicalin-
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tegration of analysis tools. CPS analysis and verification
tools have many peculiarities in terms of how they are ini-
tialized and executed. For example, many user-facing tools
may not provide adequate ways to execute them from a
virtual integration tool. At the same time, specifications
of verification domains and contracts need to be, on the
one hand, reused to avoid unnecessary duplication, and, on
the other hand, may need to be adjusted correctly to each
model’s context. A missing part is a virtual platform that
can manage tool interactions at a practical level. One key
requirement for such a platform is extensibility: the afore-
mentioned challenges of adding new tools and verification
domains have to be minimized in order to achieve the the-
oretical promises of analysis integration.

In this paper, we present our toolACTIVE 1 (Analysis
Contract IntegrationVerifier), which implements the de-
scribed analysis integration approach. Developed on top of
the OSATE22 toolkit, ACTIVE uses the AADL [4] archi-
tectural description language because AADL offers a con-
venient way to represent the structural, design-time aspect
of the system. In particular, the syntactic core of AADL
is tailored for embedded systems, and AADL annexes al-
low us to add a specialized sublanguage for the needs of a
specific analysis. In addition to AADL, in order to verify
properties that vary during runtimeACTIVE uses a mixed
specification language that includes Linear Temporal Logic
[9] along with a model checker to perform the verification.

Since our goal is to develop an extensible platform for
virtual integration of CPS analyses,ACTIVE already in-
corporates several analysis tools (e.g., a bin packing algo-
rithm for thread-to-processor allocation) and contract veri-
fiers (like SMT and Spin). To this end,ACTIVE includes (i)
a language to describe analysis contracts, (ii) a mechanism
to execute analyses in the correct order, and (iii) a contract
verification engine to verify if the analysis contracts hold.
All three parts are extensible with new verification domains
(e.g., controller simulation) and types of verification (e.g.,
probabilistic model checking).

The rest of the paper is organized as follows. In Section
2 we break down and discusses the problem of managing
analysis tool interactions. Section 3 focuses on the repre-
sentation, while Section 4 and 5 demonstrate our solutions
to behavioral challenges of using multiple analysis and ver-
ification tools. Section 6 concludes this paper.

2. Managing Interaction of CPS Analysis
Plugins

AADL provides a description language to capture the main
structures and components of a CPS (e.g., threads and pro-
cessors), and the sub-systems they belong to, along with the
connections between them. Components are annotated with
properties from various engineering domains. Examples
of properties include thread period, processor frequency,
and scheduling policy (all from the real-time scheduling
domain), and required battery voltage (from the thermal
analysis domain). The system designer defines component

1 Can be downloaded at [url provided in the final version].
2https://wiki.sei.cmu.edu/aadl/index.php/Osate_2

types along with their subcomponents, interconnections,
and properties to create what is known as theAADL declar-
ative modelof a system. This model is then transformed
into anAADL instance model– an XML-based representa-
tion of the actual system, rather than component types.

In OSATE, analysis algorithms are implemented as plu-
gins that have access to both the declarative and the in-
stance AADL models. AADL allows the augmentation of
these models with tool-specific descriptions known as an-
nexes that define sublanguages embedded in AADL de-
scriptions. For example, the error model plugin [4] relies
on an annex to specify error sources and propagations. It
reads components and properties from the instance model
and error annex specifications from the declarative model
to produce, for example, a fault impact report.

While OSATE supports the rapid development of anal-
ysis plugins, it does not support controlling undesirable
interactions between different plugins in order to prevent
incorrect results. In particular, OSATE provides extension
points to add annexes and invocation actions (via toolbar
buttons or menu items). Once a plugin is invoked, it is given
access to AADL models to carry out the desired operations
and return the control back to the user. Each analysis plugin
thus tends to focus on a specific technical concern, access-
ing components, properties, and annex clauses relevant to
that concern, but ignoring the effects of other plugins.

The lack of support to capture and control the effects
that plugins have on each other can lead to incorrect exe-
cutions of these plugins. For instance, a plugin that modi-
fies the thread-to-processor allocation might invalidate the
result of any prior schedulability plugin applied to the af-
fected threads and processors. Similarly, if a plugin de-
pends on the scheduling policy of a processor (say Rate-
Monotonic Scheduling) and another plugin modifies this
policy (to, say, Earliest-Deadline First) the results could be
invalidated. Worst of all, more often than not, these errors
go unnoticed given the lack of an infrastructure to capture
and verify these plugin interactions. Unfortunately, OSATE
currently lacks ways to manage the co-operative execution
of analyses, let alone verify their assumptions formally.

To address the issue of analysis interaction systemati-
cally, an integration toolneeds to manage analysis plugins
at the level of the abstractions that these analyses use. We
identify three parts of this problem: (i) describing plugin
interactions with enough details that not only captures real
conflicts but also avoids signaling false ones; (ii) execut-
ing plugins in a right sequence and at a right time; and (iii)
verifying applicability assumptions of analysis plugins.All
three parts need to be addressed in anextensible wayso as
to not lose the benefits of the OSATE design. We go deeper
into each part of the problem below.

2.1 Representing Plugin Interactions

In order to enable the analysis of plugin interactions we
must model these interactions. In particular, first, we need
to represent data flows between the plugins and the AADL
models. In other words, we need to identify the parts of
the model that the different plugins change. This dataflow
description allow us to prevent the incorrect order of plugin



execution where the output from one plugin is invalidated
by the output from another plugin executed afterwards.

The second aspect that needs to be represented is the as-
sumptions a plugin makes about the model under analysis.
For example, there are several implementations of schedu-
lability tests that rely on rate-monotonic assumptions with-
out stating them explicitly. More importantly, plugin as-
sumptions may be related to the system behavior rather
than its structure. Thus predicates over only the structural
models in AADL are inadequate for expressing such as-
sumptions. For example, one plugin may assume that a
task may only be preempted by others with shorter dead-
line than its own. This assumption is trivially satisfied if we
used Deadline Monotonic Scheduling. However, it could
also be satisfied with other scheduling policies under cer-
tain specific system configurations. This can only be dis-
covered with enough information about the behavior of the
system with the different policies.

Finally, the way an analysis is identified in a specifica-
tion must reflect the operations performed by the analysis
on a model precisely. Since many plugins come with sev-
eral related operations; for example, a resource allocation
plugin provides three operations: allocation of threads to
processors (what we further call bin packing), a utilization-
based schedulability test, and a priority inversion test. Just
mentioning the name of the resource allocation plugin does
not differentiate the operations properly.

One of the biggest challenges to represent plugin inter-
actions come from the extensibility requirement. First of
all, we must be able to change the plugin interaction spec-
ification independently from the plugin implementation.
This is because the AADL semantics allows different plu-
gins to have slightly different interpretations of the prop-
erties. For instance, we have seen AADL models where
threads are assumed to be periodic by default while other
models explicitly require the use of thePeriodic value
in the Dispatch_Protocol property, and yet others
use theHybrid value for the same property.

Another important aspect of the extensibility is the sup-
port of new domains that may introduce new types of com-
ponents, properties, or even behavioral specification con-
structs. For example, to introduce analyses for multi-cell
reconfigurable batteries, one would have to introduce a new
device type, with new AADL properties (such as size), and
runtime properties to capture the cell connectivity. These
changes must affect only AADL models, and not the plu-
gin integration tool.

2.2 Correct Plugin Execution

To ensure the correct execution of a plugin it is necessary
to respect its data dependencies and ensure that its assump-
tions are never violated as different plugins are executed.
In practice, acorrect plugin executionimplies the follow-
ing steps: (i) before the plugin is called we need to ensure
that all the other plugins have finished their work and com-
mitted their changes to the AADL model; (ii) the plugin
assumptions must be validated on the model on which the
plugin will be run; (iv) if an analysis plugin ends with an
error, the sequence of execution has to be stopped.

Many OSATE plugin are made with human user inter-
action in mind: they expect to be run from toolbars and
menus. Since OSATE discourages plugin interaction, it is
challenging to invoke plugins programmatically. Once a
plugin has been invoked, monitoring its progress is a chal-
lenge as well: many plugins use tools external to OSATE,
without any feedback. The limited feedback mechanisms
in OSATE were also designed with a human user in mind,
making it difficult to monitor analysis execution and deter-
mine the time when it is safe to start the next analysis.

Like the specification, correct plugin execution needs to
be achieved with minimal changes to existing plugins and
the OSATE tool. Plugins still need to run individually on
user’s command, and major changes to their control flow
are not acceptable. OSATE cannot be profoundly modified
either. In particular, it is important to leave the option open
to run plugins without the proper integration in cases when
specifications have not been completed, or they do not hold.

2.3 Extensible Assumption Verification

An analysis plugin integration tool needs to use state of
the art verifiers to ensure that analyses are only used when
they are known to produce correct results. Since the anal-
ysis plugin integration problem manifests itself in multiple
domains that contribute to CPS, verifiers need to be tai-
lored to domain-specific abstractions and applied in their
corresponding contexts. For example, a dynamic model of
a thread scheduler cannot be used to verify assumptions
about a flight controller behavior. In addition, given the ex-
istence of specifications involving static and dynamic prop-
erties of the system it is necessary to enable the verification
of both types of properties in a scalable way.

AADL models are organized hierarchically: a set of
threads may be composed in a thread group, which in turn
contributes to a software subsystem. A software subsystem
is part of a computational subsystem, which also includes
processors and memory devices. Finally, the computational
subsystem is part of the whole system, which also includes
physical devices (such as rotors), and properties (such as
mass). The hierarchy is left up to the engineer, allowing
multiple ways to describe the same system.

Unfortunately, many verifiers rely on their own system
decomposition, which may not agree with AADL. Tools for
timed automata verification, such as UPPAAL [5], use the
refinement relation rather than an arbitrary composition.
Hence, our challenge is to create mechanisms that uses
(yet unknown) verifiers for a custom-built AADL model
at a proper level of hierarchy. Domain-specific verifiers,
for instance, need to access their own abstractions without
being aware of other components.

The three following sections present our solutions in
ACTIVE to the aforementioned problems. We view our so-
lutions from two positions: functionality – achieving their
goal correctly – and extensibility – allowing addition of
new elements, such as analyses and verifiers, to the tool.



3. Contract Language as AADL Annex
The location of the specification of the analysis interactions
is a decision that affects the extensibility of our framework.
We evaluated three potential locations: (i) inside the plugin
itself; (ii) in the OSATE tool; or (iii) in the AADL model.
Encapsulating the specification inside the plugin has the
benefit that the description always travels with the plugin.
On the other hand, storing the specification in a central
database of specifications inside the OSATE tool facilitates
collaboration and reuse of contracts. Unfortunately, both
of this options diminishes extensibility given that the exact
specification of the interactions may change depending on
the project and the plugins used in it, as discussed in Sec-
tion 2. That is, semantic variations in the interpretation of
AADL in a particular model need to accounted for without
changing the plugin.

In ACTIVE we use an AADL annex (like many analy-
sis plugins do) to represent analysis dependencies and as-
sumptions. In this case, an annex instance is attached to a
declarative AADL model and can be used whenever this
model, or any derived instance model, is used. We refer
to our analysis interaction specification as ananalysis con-
tract. An analysis contract has the following parts:

• Name: names the analysis contract as well as the anal-
ysis plugin wrapper to be called when an analysis is in-
voked (see Section 4 for more information on analysis
wrappers).

• Input : a comma-separated list of elements: AADL
component types (e.g.,thread) and property names
(e.g.,thread.Period). The property names have to
be prefixed with a component type to identify the depen-
dency more precisely. By including a component type in
its input, an analysis plugin declares that it accesses the
set of components; and by including a property, a plugin
declares that it reads the property values. If a property is
included as part of the input or output, the related com-
ponent is assumed to be included as well.

• Output : a list of same type of elements as that of the
input. The only difference is semantic: the analysis de-
clares that it changes the set of components or the val-
ues of a property. Although the specification of inputs
and outputs is in terms of AADL types, the changes are
meant to be done to the instance model.

• Assumes: a set of assumptions that have to hold for an
analysis to be applicable. Each assumption is a logical
formula, as explained below. Given that sometimes we
may not have a complete definition of when an analysis
is applicable, we need to make sure that it is applica-
ble at least under the assumptions included here. If an
analysis is always applicable, this part can be omitted.

• Guarantees: a set of formulas that must be true on the
model after the analysis has been executed. These for-
mulas are syntactically equivalent to the assumption for-
mulas. Guarantees can fix conditions that are expected
to be true after an analysis plugin runs. These conditions
can then be used to satisfy the assumptions of other con-

tracts. In such a case, the assumption of these contracts
do not need to be reverified. However, if the guarantee
cannot be met, the assumptions of the contracts that de-
pend on it must be reverified.

Assumes and guarantees contract formulas have the fol-
lowing syntax inACTIVE:

(
[’forall’ | ’exists’]
(<Var>:<Type> ’,’)+
(
’|’ <PredicateExpression>

)?
’:’

)?
<LTLExpression>

Here,<Var> introduces a quantified variable name of
an AADL component having typeType. Variables are
quantified over<PredicateExpression>, which is
a logical predicate over the AADL’s model components
and properties with the usual logical operatorsand, or,
and not. The <LTLExpression> encodes a domain-
specific behavioral property using a combination of log-
ical operators above and the LTL modalities GloballyG,
EventuallyF, and UntilU. However, if necessary,<LTL-
Expression> can be limited to predicate logic.

The operator “:” is implicative when used in a
forall formula (where it denotes that “all variable valua-
tions that satisfy condition<PredicateExpression>
should also satisfy<LTLExpression>”) and conjunc-
tive when used in aexists formula (where it de-
notes that “all variable valuations that satisfy condition
<PredicateExpression> should also satisfy<LTL-
Expression>”). We do not use Quantified LTL [9]
because it prevents a cleaner split of formulas between
general-purpose SMT solvers and domain-specific verifiers
(see details in Section 5), and brings in unnecessary com-
plexity.

Let us illustrate the application of contracts with exam-
ples from the scheduling domain. Figure 1 shows a contract
for a processor frequency scaling analysis. The goal of this
analysis is to minimize the processor frequency to limit en-
ergy expenditure of the system. The analysis reads threads,
processors, thread deadlines, and thread bindings (alloca-
tions) to processors. The output is the CPU frequency. An
implicit but important assumption of this analysis is that
the tasks in the system run under the deadline monotonic
scheduling policy. This is captured in a formula stating that
“every pair of distinct threads allocated on the same proces-
sor should behave as if scheduled by a deadline-monotonic
policy.” The first part of the formula (before the colon) in-
dicates the condition for which all possible pairs of threads
should be evaluated. The second part (after the colon) is an
LTL expression that features a domain-specific predicate
CanPreempt, which is true in any state during runtime if
and only ift_1 is executing butt_2 is ready to execute,
but not executing.

Another example of an analysis is verification of safe
concurrency based on the tool LLREK [1]: the tool takes



Figure 1: Contract for frequency scaling analysis.

Figure 2: Contract for the LLREK analysis.

Figure 3: Annex subclause specifying which analyses to
use.

source code of each thread annotated with safety asser-
tions and determines whether the assertions are met. A con-
tract for the LLREK analysis is shown in Figure 2. The
analysis reads a number of thread properties and outputs
whether the system was found to be safe w.r.t. its annotated
assertions. LLREK assumes fixed-priority scheduling, i.e.,
thread pre-emption is acyclic. In other words, if threadx1
preempts threadx2, thenx2 never preemptsx1.

To improve convenience and reuse of contracts, we sep-
arate the definition of contracts (as in Figures 1–2), which
we call a library of contracts, from the application of these
contracts (shown in Figure 3) to a system, which we call a
usage subclause. Usage subclauses enable the association
of analyses to models. In this way a user can control ap-
plicability of analyses at a macro-level reusing the same
contracts across different models.

Our approach explained in [8] relies not only on the
specification of contracts (where the mapping between con-
ceptual and practical aspects is more straightforward), but
also on verification domains that define the formal under-
pinnings for both the specification and the analysis of the
contracts within a verification tool (e.g., SPIN). Formally,
a verification domainσ is comprised of domain atomsA,
static functionsS, runtime functionsR, execution seman-
ticsT , and domain interpretation for atoms and static func-

tions [[. . .]]σ. These elements are augmented by an archi-
tectural model that provides the interpretation[[. . .]]M. The
existence of verification domain with a semantics defined
within a verification tool that automatically explores its be-
havior guarantees correctness of our analysis contracts ap-
proach.

In ACTIVE, verification domains are not specified in one
place, but are comprised of various elements of AADL and
contract annexes. For some atomsa ∈ A, [[a]]σ is provided
by OSATE. For example, integers, booleans, and reals are
standard types in AADL. Other elements ofA are specified
by the [[. . .]]M, e.g., threads, processes, memory elements,
processors, systems, and other sets of components.

Static functionsS map directly to AADL’s properties,
some of which are standard and some of which are defined
by users in a declarative model. Only static functions can be
used in<PredicateExpression> so that the seman-
tics of <PredicateExpression> could be fully con-
structed based on the AADL instance model values. Star-
dard types have a default value, which contributes to[[S]]σ.
For the most part, however, interpretation of static func-
tions comes from[[S]]M in the form of values that properties
have in a particular AADL instance model.

Runtime functions R are domain-specific, e.g.,
CanPreempt. Their interpretation comes from a domain-
specific verifier and, as far as AADL models are concerned,
these functions do not exist. Finally, the execution se-
manticsT is defined by a combination of static function
specified by the model (e.g., thread periods and deadlines)
and verifier-specific runtime behavior (e.g., how the state
of system changes when a new thread arrives). Thus, all
formal elements ofσ are covered inACTIVE, to which the
formal conclusions of correctness can now be transferred.

4. ACTIVE EXECUTER

Ensuring that a set of analysis plugins are executed cor-
rectly requires more than the specification and verification
of individual analysis contracts. Specifically, it requires co-
ordination and proper sequencing of the execution of these
analysis and their verifiers. This section describesACTIVE

EXECUTER– a plugin execution controller. The purpose of
this controller is, on the one hand, to interact with the user
and, on the other hand, to coordinate the execution of anal-
yses. The scheme ofACTIVE EXECUTER is shown in Fig-
ure 4.

From the user interaction point of view, theACTIVE EX-
ECUTER identifies dependencies between analyses, builds
a dependency graph, and presents it to the user to allow him
to select an analysis to run. When invoked on an instance
model, theACTIVE EXECUTERparses all usage subclauses
that are in the scope of the system, retrieving the corre-
sponding contracts from annex libraries, and creating the
dependency graph. In this graph, each vertex represents a
contract with its corresponding analysis plugin. Edges in
this graph represent input-output dependences between two
contracts.

In this context we say that an analysis plugin depends on
another if the former reads a property or a component set



Figure 4: Operation ofACTIVE EXECUTER.

Figure 5: Analysis selection window inACTIVE.

that the latter modifies. Since inputs and outputs are speci-
fied in terms of component types and properties, any plugin
that writes a component type is dependent on any analysis
that reads a property of this type given that, formally speak-
ing, the former changes the domain of the function. The op-
posite is not true: changing a property does not constitute a
change in component.

The dependency graph is used by the user to select an
analysis to run. A screenshot of aACTIVE ’s selection win-
dow is shown in Figure 5: the rectangles represent analysis
plugins and the arrows show the dependency relationships.
Once a selection is made, theACTIVE EXECUTER finds a
correct sequence of analyses leading up to the selected one
(the formal details can be found in [8]). For example, for
the analyses in Figure 5, the execution of the frequency
scaling plugin would first require the execution of the se-
curity plugin followed by the binpacking plugin.

Currently,ACTIVE only supports acyclic dependencies.
In practice a cyclic dependency can be a symptom of in-
correct contract specifications. However, when this is not
the case and the cycle is not an error it may be possible
to execute each analysis in the cycle repeatedly till con-
vergence (i.e., executing any analysis in the cycle does not
change the system further, or in other words, a fixed point
is reached). We leave this investigation as future research.

Invoking the right analysis plugin is not as trivial as the
theory assumes. IfACTIVE ’s code were to call analysis plu-
gins directly,ACTIVE would have a direct dependency on a
concrete set of plugins and would not be deployable sepa-
rately from these plugins. Even further, plugins developed
for human user have external access points such as toolbar

Figure 6: A plugin wrapper’s command interface for bin-
packing analysis.

buttons and menus, that cannot be called programmatically
from another OSATE plugin.

To overcome these limitations and use analysis plugins
without substantial changes to their external interface, we
developedanalysis plugin wrappers– a method to execute
analysis plugins using the Eclipse Command Framework3.
A wrapper creates a command interface around the user
action. A command, unlike an action, can be called pro-
grammatically, and results in a call of an associated action.
Each plugin wrapper thus consists of a command interface
– which is an addition to the plugin configuration exempli-
fied in Figure 6 – and a direct command invocation that can
be exercised by theACTIVE EXECUTER.

Another factor that affects the correct execution of plu-
gins is understanding when it is safe to start the execution
of the next plugin in a dependency chain. Therefore, the
execution of every plugin needs to be monitored. Unfortu-
nately, there is no direct way to do so in the original im-
plementation of OSATE. OurACTIVE EXECUTER relies on
the plugin wrappers to perform this monitoring. Specifi-
cally, when a wrapper starts a command associated with
an action, the progress of this command is tracked using
the identity of the associated action. Then, once the wrap-
per reports that the plugin has finished, the next plugin is
safely started.

To check whether the assumptions of a plugin hold be-
fore its execution, or if its guarantees hold after its execu-
tion, theACTIVE EXECUTER calls theACTIVE VERIFIER–
another key component ofACTIVE– passing over a con-
tract and a formula to verify before and after the execution
of the plugin. We discuss the details of this process in the
next section.

5. ACTIVE VERIFIER

The verification of analysis assumptions is the most com-
plex aspect ofACTIVE given that it requires the combina-
tion of abstractions coming from diverse scientific fields
into a common logic. Its goal is to take a contract formula
and verify it against the currect AADL instance model.
This verification is, however, not limited to the AADL
model, which abstracts away most of the behavioral system
dynamics given its architectural nature. A further compli-
cation comes from assumption formulas with abstractions
and properties from different verification domains, which

3http://wiki.eclipse.org/Platform_Command_
Framework



manifest at different levels of the hierarchy in an AADL
model. Last but not least, the addition of new verification
tools and models, which is at the core of virtual integration,
needs to be facilitated minimizing changes to theACTIVE

or verifier structure.
To address the challenges of multi-domain verification,

we created the componentACTIVE VERIFIER. The first step
in the verifier’s operation is to deconstruct the contract for-
mula to pieces that can be processed by an individual ver-
ifier. The variable quantification and the<Predicate-
Expression> can be processed with a general-purpose
SMT solver since, as we showed in Section 3, all atoms
and operators of<PredicateExpression> are deter-
mined from the AADL models, thus rendering quantified
<PredicateExpression> amenable to an efficient
validity check. The practical purpose of<Predicate-
Expression> is to identify the part of a model that the
formula should apply to, thus providing a convenient ac-
cess to the hierarchy and bypassing irrelevant parts. This
way, the frequency scaling plugin,for instance, can indicate
that it targets only pairs of threads running on the same pro-
cessor (Figure 1), even if the processor is located in a hard-
ware subsystem, separated from threads by several AADL
hierarchy levels.

The ACTIVE VERIFIER reduces the search for variable
valuations that satisfy<PredicateExpression> (as
well as a validity check for<LTLExpression> with-
out domain-specific atoms or LTL operators) to a SMT for-
mulaϕ generated from the AADL components and prop-
erties with an added assertion of negated<Predicate-
Expression>. To constructϕ, ACTIVE VERIFIER only
explores the subset of the AADL model that includes the
components and properties mentioned in the contract for-
mula. It then checks the satisfiability ofϕ using an off-the-
shelf SMT solver (currently Z3 [2]). Ifϕ is satisfiable, the
solution is recoded and blocked for the next run. Ifϕ is UN-
SAT, the search is stopped, and the verification moves to
process the<LTLExpression>. Thus, by using “block-
ing clauses” incrementally,ACTIVE VERIFIER generates all
solutions ofϕ.

The verification of <LTLExpression>, however,
cannot rely on a general-purpose SMT solver since<LTL-
Expression> may contain domain-specific runtime
functions likeCanPreempt and modal LTL operators.
Thus, an<LTLExpression> needs to be matched with
a domain-specific verifier, based on a verifiers’ fitness.
Specifically, we say that a verifiermatches a formulaif
and only if this verifier can give an interpretation to ev-
ery atom (such as set or function) and every operator in
the formula. Typically matching is somewhat known to en-
gineers familiar with particular verifiers, but not explic-
itly documented in a machine-readable form. Without a
proper representation of matching, verifier selection deci-
sions would risk an error of running a verifier on an in-
appropriate formula producing invalid results. For exam-
ple, a non-preemptive scheduler model would report non-
schedulability on many systems where a preemptive sched-
uler would report schedulability.

The problem of matching verifiers to contract formulas
led us to develop an abstraction ofverification engines
– an abstraction to simplify the access to verifiers and
determine formula matching. Each verifier is augmented
with a verification engine that governs the application and
execution of the verifier through the following functions:

• The verifier’s initialization and parameter selection. For
instance, to run the Spin verifier, used in the scheduling
domain, it is necessary to translate AADL properties
into Promela instructions to complete the template of
a Promela program for preemptive schedulers.

• The declaration of atoms and operators that can
be interpreted by the managed verifier. For exam-
ple, in the scheduling Spin verification engine reports
CanPreempt as an atom and LTL operatorsG, F, and
U.

• The declaration of the AADL model parts that are re-
quired to achieve full a semantic interpretation ofT .
For example, to generate traces of a thread scheduler,
a Spin program needs to read thread periods from an
AADL model.

• The interpretation of the results from the verifier. While
theoretically a verifier could have only two answers⊤
and⊥, in practice other options are possible: a verifier
may detect a syntax error or run out of memory. These
results do not necessarily constitute a violation of con-
tract, and verification engines report those as “verifica-
tion not possible,” thus making user interaction more
transparent.

The verification engine abstraction allowsACTIVE to
handle diverse verifiers using a common interface.

The pseudocode of the end-to-end algorithm of verify-
ing a contract formula is shown in Listing 7. In this algo-
rithm theACTIVE EXECUTER, first calls the function VER-
IFY, with a contract formula and a model. If the SMT solver
can fully handle the formula (i.e., there are no domain-
specific atoms or operators), theACTIVE VERIFIER takes
a shortcut and delegates the verification exclusively to the
SMT. If this shortcut is not possible, theACTIVE VERI-
FIER searches for a matching verifier (function MATCH)
and runs the selected verifier on every valuation of the vari-
ables (function RUN).

Up to this point we have discussed our approach to coor-
dinate the application of a set of verifiers. However, another
important problem that we need to address to simplify the
addition of new verifiers is the access to the parts of the
model referenced by contract formulas. In particular, with-
out a generic model access approach it would be necessary
to write custom code for each verifier to access parts of the
model located at different levels of its hierarchy. To sim-
plify data collection for verifiers, we introduced theshared-
data interfacethat helps to decouple domain-specific veri-
fiers from the hierarchy of the AADL model. The data in-
terface provides SMT and domain-specific verifiers with
SQL-based access to the AADL instance model data. All
components are given unique identifiers and stored in sepa-
rate tables. Each AADL property is represented with a table



1: function VERIFY(Formulaf , Modelm)
2: if SMT.canSolve(f) then
3: return ¬ SMT.isSat(¬f)

4: v ← MATCH(f,m)
5: if v 6= null then
6: return RUN(f, v)
7: else
8: return error
9: function MATCH(Formulaf , Modelm)

10: for all VerificationEnginev do
11: if v.canInterpretAtoms(f.atoms)

∧v.canInterpretOperators(f.operators)
∧v.hasFullInterpretation(m) then

12: return v

13: return null
14: function RUN(Formulaf , VerificationEnginev)
15: if <Var> ∈ f then
16: varEvals←

SMT(f.<PredicateExpression>,m)
17: if f.quan = exists then
18: res = false
19: for all ve ∈ varEvals do
20: res← res∨

v.verify (f.<LTLExpression>,m)
21: else iff.quan = forall then
22: res = true
23: for all ve ∈ varEvals do
24: res← res∧

v.verify (f.<LTLExpression>,m)
25: return res

26: else if
then

Figure 7: Algorithm of ACTIVE VERIFIER

of the same name that lists the values in a format appropri-
ate for the property type, as well as the owner component of
this property. This way, all components and properties are
easily accessible to verifiers without the need to traverse
levels of hierarchy in AADL. The downside of the shared-
data interface is that it does not support composition of data
types of arbitrary depth (e.g., a sequence of records, each
having a field that is a set of other records). However, we
are yet to see a plugin that uses more than three levels of
recursion. We use a MySQL database to implement the in-
terface.

6. Conclusion
In this paper we presentedACTIVE, a tool for addressing
the problem of AADL analysis plugin interactions. In par-
ticular, we discussed how analysis plugin integration errors
pose the risk of invalidating analysis results without user’s
knowledge. Solving this problem entails, first of all, rep-
resenting the analysis interactions in a formal way to en-
able automatic reasoning. The specification of these inter-
actions, in the form of inputs, outputs, assumptions, and
guarantees, also allow us to determine the correct order in
which plugins must execute. Finally, the assumptions and

guarantees need to be verified using a potentially wide va-
riety of verification tools. The representation of the anal-
ysis interactions with an AADL annex-based contract lan-
guage allows theACTIVE EXECUTER to manage the proper
startup and monitoring of the analysis plugins, making
the appropriate calls to theACTIVE VERIFIER which in
turn invokes a general-purpose SMT solvers (e.g., Z3) and
domain-specific model checkers (e.g., Spin) for in-depth
behavioral verification. These majorACTIVE components
were designed to be extensible to accommodate new verifi-
cation domains, analysis plugins, and domain-specific ver-
ifiers. To the best of our knowledgeACTIVE is the first ex-
tensible framework able to integrate analysis plugins guar-
anteeing their correct interaction and execution.
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