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Abstract— Today’s activities in cyber space are more con-
nected than ever before, driven by the ability to dynamically inte-
ract and share information with a changing set of partners over a 
wide variety of networks. To support dynamic sharing, computer 
systems and network are stood up on a continuous basis to sup-
port changing mission critical functionality. However, configura-
tion of these systems remains a manual activity, with misconfigu-
rations staying undetected for extended periods, unneeded sys-
tems remaining in place long after they are needed, and systems 
not getting updated to include the latest protections against vul-
nerabilities. This environment provides a rich environment for 
targeted cyber attacks that remain undetected for weeks to 
months and pose a serious national security threat. To counter 
this threat, technologies have started to emerge to provide conti-
nuous monitoring across any network-attached device for the 
purpose of increasing resiliency by virtue of identifying and then 
mitigating targeted attacks. For these technologies to be effective, 
it is of utmost importance to avoid any inadvertent increase in the 
attack surface of the monitored system. This paper describes the 
security architecture of Gestalt, a next-generation cyber informa-
tion management platform that aims to increase resiliency by 
providing ready and secure access to granular cyber event data 
available across a network. Gestalt’s federated monitoring archi-
tecture is based on the principles of strong isolation, least-
privilege policies, defense-in-depth, crypto-strong authentication 
and encryption, and self-regeneration. Remote monitoring func-
tionality is achieved through an orchestrated workflow across a 
distributed set of components, linked via a specialized secure 
communication protocol, that together enable unified access to 
cyber observables in a secure and resilient way. 

Keywords: cyber security, federated access, semantic web, 
middleware  

I.  INTRODUCTION 
System administrators and cyber defenders continue to face 

challenges in securing systems in enterprise environments as 
attacks keep increasing in the level of sophistication and as the 
number of connected systems keeps increasing. To support and 
automate manual activities associated with obtaining informa-
tion about systems and taking corrective action in response to 
suspicious activities, an increasing number of technologies for 
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remote monitoring are becoming available with the premise of 
increasing resiliency by decreasing the time-to-detect and time-
to-mitigate targeted attacks.  

While the functional benefit of new protocols and tools that 
support continuous monitoring and incident response is clear, it 
is quite common for these tools to fail on the security front by 
either (1) providing inadequate security, e.g., by adding to the 
attack surface and thereby enabling adversaries to remotely 
monitor / manage critical infrastructure or (2) requiring a very 
stringent set of security controls that are prohibitively difficult 
to implement, thereby limiting adopting in the market place. 
Versions 1 and 2 of the Simple Network Management Protocol 
(SNMP) [1] provide inadequate security and are widely 
adopted, while version 3 has started to provide acceptable secu-
rity but has a limited deployment footprint. WS-Security [2] 
and the Common Secure Interoperability Protocol Version 2 
(CSIv2) [3] are examples of protocols that started out with 
complex security controls and did not achieve anticipated mar-
ket penetration and adoption. 

As a motivating example, consider an attack progression in 
a remote monitoring system built on a web services stack as 
displayed in Fig. 1. The base system consists of a client appli-
cation (left) interacting with an application server (right), 
which in turn accesses internal state of the monitored device.  

 
Fig. 1. Attack Surface of an Exemplar Remote Monitoring System  
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An adversary can start out by gathering sensitive informa-
tion through network sniffing (attack 1) and perform target 
identification through port scanning and remote operating sys-
tem (OS) fingerprinting (attack 2). Once the list of open ports 
and OS type is determined, a variety of off-the-shelf attacks, 
such as SYN flooding [4] can be employed against older ver-
sions of operating systems to cause denial of service or privi-
lege escalation on systems that have not been hardened or 
patched appropriately. Advancing up the network stack, the 
adversary can attack the TCP connection handling code of the 
event listeners (attack 3) by establishing and maintaining a 
large number of TCP connections [5], causing thread resource 
bottlenecks and denying service to legitimate clients. A more 
sophisticated adversary can attack the Java Virtual Machines 
(JVMs) on which the services and applications are running 
(attack 4), e.g., by creating maliciously crafted serialized ob-
jects to execute arbitrary code during de-serialization [6]. Simi-
larly, creating specific XML documents can cause SOAP pro-
cessors to crash. Furthermore, attackers may devise applica-
tion-level attacks, such as floods targeted at registry services to 
deny access to legitimate clients by overloading registry 
processing (attack 5), brute-force password combinations (at-
tack 6), and mapping out critical URLs that get returned 
through error pages and modifying input used to generate the 
errors to inject SQL, XPATH, or XQUERY commands (attack 
7). Once compromised, the adversary can use components to 
corrupt the target and/or exfiltrate information, including ac-
cessing sensitive data that should not be made available re-
motely and disseminating it to unauthorized external receiver 
endpoints. 

This paper describes an innovative framework for remote 
monitoring that (1) strengthens overall security by limiting 
unintentional increase to the resulting attack surface and (2) 
can operate in contested network environments, including tran-
sient and high-latency network links. We argue that such a re-
mote monitoring framework is a key enabler for the larger con-
cepts of reactive and proactive cyber resiliency, as cyber deci-
sion making is inevitably driven by sensor information captur-
ing the effects of both attacks and defender-initiated actions. 
The framework is currently being developed under the Gestalt 
project in support of DARPA’s Integrated Cyber Analysis Sys-
tem (ICAS) [7] program. The objective of Gestalt is to provide 
federated access to a large diverse set of cyber observables to 
enable detection of targeted cyber attacks. Gestalt automatical-
ly discovers available data sources, unifies access to obser-
vables via a comprehensive common ontology, and automati-
cally decomposes and federates queries and semantically inte-
grates the results. The implementation status of framework is at 
a Technology Readiness Level (TRL) of 4, with basic functio-
nality tested in the development environment.  

The Gestalt system eliminates tedious manual inspection by 
providing access to all data sources on the network via a fede-
rated query interface. Using a new Cyber Defense Language, a 
single query can access data residing on multiple devices, 
across disparate device types and data formats, and return the 
query results in a semantically integrated and immediately use-
ful format. Gestalt allows the cyber defender to focus on the 
forensic data itself by abstracting away the actual methods and 
techniques required to access that forensic data. Through its 

Semantic Query Decomposition capabilities, Gestalt infers the 
types of data sources that can be used to satisfy a given query, 
and identifies where instances of those data source types can be 
found on the network. Next, it dispatches native queries to the 
device containing each data-source instance to process the re-
quest. The results are semantically integrated and returned to 
the cyber defender. Gestalt provides a single interface to the 
cyber defender, dramatically improving their effectiveness and 
allowing them to focus their time and expertise on forensic 
analysis of the results of their search queries, rather than on the 
laborious process of data collection and processing.  

The paper is organized as follows: Section II describes re-
lated work. Section III provides a high-level overview of the 
security architecture in relation to a threat model. Section IV 
dives into network-level security arguments while Section V 
provides more details on process-level security arguments. Sec-
tion VI concludes the paper. 

II. RELATED WORK 
The remote monitoring framework presented in this paper 

relates to work performed in cyber event monitoring, network 
monitoring, and stream processing/big data platforms. 

A number of commercially available solutions exist in the 
Security Information and Event Management (SIEM) and cy-
ber monitoring product space today, including ArcSight [8] and 
the Host Based Security System (HBSS) [9]. While Gestalt 
provides detailed access to the current system state, SIEMs 
provide extended summary information at a coarse granularity. 

A number of solutions exist for network and grid monitor-
ing [10], including Ganglia [11], Nagios [12], and Zabbix [13]. 
These systems specialize on performance monitoring and pro-
vide operators with dashboard views on the current availability 
state of the overall network system. Similar to Gestalt, many of 
these systems perform monitoring through a distributed set of 
nodes that report to a centralized monitoring dashboard. Gan-
glia in particular uses daemons installed on all monitored de-
vices and meta-daemons that poll XML over TCP from dae-
mons and meta-daemons. While similar, Gestalt is designed 
with a stronger focus on security rather than performance, in-
cluding mandated use of TLS, no-listening sockets (analogous 
to meta-daemons), and process-level isolation. 

Finally, a number of big data platforms exist for distributed 
processing of information. Splunk [14][15] is a well-known 
instance of a big data processing capability that makes it easy 
for cyber defenders to establish correlations between discon-
nected pieces of text information through a specialized query 
language. Unlike Gestalt, Splunk is based on an information 
model that requires raw observables to be aggregated in a cen-
tral database before they can be queried. For instance, Splunk 
requires forwarders to be installed on data source devices, 
which establish connections outbound to indexers and commu-
nicate a large amount of data to those connections. In contrast, 
Gestalt reaches into data sources in a controlled way, leading to 
a much reduced attack surface. 

III. SECURITY ARCHITECTURE 
To better understand the security implications of adding 

systems like Gestalt to an already existing IT infrastructure, we 



first look at the overall architecture of the resulting system. Fig. 
2 shows the main components involved in remote monitoring 
performed by cyber defenders (on the right) of devices (on the 
left). The figure shows how the Gestalt system introduces two 
primary system components: the Discovery and Query Nodes 
(DQNs) and the Query Management Service (QMS). 

The DQNs provide the interface between the devices on the 
network and the Gestalt system. Rather than adding new proto-
cols to be implemented by end devices, the DQNs leverage 
existing protocols where possible (Fig. 2 left), including the 
Simple Network Management Protocol (SNMP) v3 [1], SSH, 
and the Distributed Management Task Force (DMTF) Web 
Services for Management (WS-MAN) [16] technologies, to 
communicate with individual devices and to catalog the data 
sources each manages. The QMS provide the main interface to 
cyber defenders and interacts with multiple DQNs through 
query dispatch and response interpretation logic. 

The overall resiliency argument for this architecture con-
sists of two main parts: network and process arguments. By 
constructing a sound network argument, we ensure integrity 
and confidentiality of the data transmitted over the network as 
well as a robust means for authenticating various actors, includ-
ing processes and humans. The network argument is con-
structed using three different types of network protocols: 

Device Access Protocols: In the cases where a single data 
source can be reached by multiple access protocols, the DQN 
will automatically select the strongest access protocol available 
by preferring authenticated and encrypted protocols. In addi-
tion, the DQN will enforce policy control over the choice of 
access protocols to be used to block use of protocols that are 
known to be unsafe and where the risk of using the protocol 
exceeds the benefits of getting observables from the data 
source through the protocol. For instance, the DQN might be 
configured to avoid communicating with TLS endpoints that 
are vulnerable to the Heartbleed [17] attack vector in order to 
protect the DQN’s client process from compromise. Finally, to 
achieve availability, the DQN may fail over between accepta-

ble access methods to achieve visibility in degraded mode. 

Gestalt Management Protocol (GMP): The GMP speci-
fies interactions between the QMS and the DQNs in a way that 
minimizes the attack surface in the DQNs and ensures opera-
tion in contested network environments through asynchronous 
polling semantics. Since this protocol is added to the existing 
system, it is constructed with strong security controls and prin-
ciples in mind, including the use of TLS v1.2 [18] tied in with a 
robust PKI infrastructure, e.g., maintained by DISA for the 
DoD. Firewalls restrict allowable GMP communication to a 
dedicated QMS per DQN. 

QMS Access Protocol: The QMS offers a RESTful [19] 
API that enables access by modern Web Browsers and external 
applications. Traffic is protected at the highest level supported 
by Web Browsers and external applications, e.g., currently TLS 
v1.2 for a selected subset of browsers. Firewalls restrict allow-
able communication to a set of known IP addresses. 

The result of the network argument is a management proto-
col that can be added to existing IT infrastructure as a solid 
foundation for other resiliency techniques to build upon. The 
process argument for DQNs implements resiliency at the appli-
cation-level through the following means. 

Process Isolation: The DQN is split into two main compo-
nents – a long-lived Manager process and multiple transient 
Bridge processes.  

Process Rejuvenation: The Manager can temporally con-
strain the effects of compromised Bridge processes by killing 
the process as soon as its intended functionality is complete, 
where intended functionality can be defined over a set of re-
quests. 

Adaptive Monitoring: The Manager controls the lifecycle 
of Bridges by spawning them, observing their state, and killing 
them if they deviate from the norm. Anomaly detection is 
based on simple statistical methods, based on variance analysis 
of usage patterns on underlying resources.  

Process Restrictions: Mandatory policy enforcement is 
enabled (e.g., using SELinux [20]) to explicitly allow the mi-
nimal set of interactions required for the process to function 
following a default-deny paradigm. 

User Input Filtering: Any data resource from data sources 
is filtered and sanitized by transcribing it into a different repre-
sentation format. Filtering includes checking maximum data 
size and sanitization includes turning the inputs from their na-
tive representation format into RDF/XML. 

The process arguments for the QMS are similar and omitted 
from this paper for the sake of brevity. 

IV. THE GESTALT MANAGEMENT PROTOCOL 
The GMP specifies the connection behaviors and message 

exchanges between the QMS, the DQN Manager, and the DQN 
Bridge processes. The GMP was designed based on the follow-
ing goals aimed at keeping the protocol vendor independent, 
secure, and implementable. 

Type centric: GMP specifies the message structure rather 
than the programming. This enables the use of Transmission 

Fig. 2. Gestalt High-level Architecture 
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Control Protocol (TCP)/IP-based load balancers and also 
achieves central processing unit (CPU) architecture, operating 
system, and programming language independence. 

Network friendly: GMP works through firewalls that per-
form Network Address Translation (NAT) and optimizes net-
work usage by virtue of using HTTP response codes, avoiding 
unnecessary round trip paths. 

Secure: GMP uses a mutually authenticated Public Key In-
frastructure (PKI) and TLS for encryption. 

Pragmatic: GMP is designed to be implemented on top of 
a strong commercial and open-source community. 

The overall architecture of GMP is displayed in Fig. 3. The 
figure shows a QMS process (QMS) on the right, a DQN Man-
ager (MGR) process in the middle, and a DQN Bridge (BRI) 
process on the left. The Manager requests commands from the 
QMS and sends them to the Bridge processes for execution. 
The Manager checks for response messages from the Bridge 
and sends them to the QMS. The Bridge, Manager, and QMS 
implement a GMP-compliant interface in addition to their in-
ternal functions.  

The GMP specification defines interactions between QMS, 
MGR, and BRI. As shown in Fig. 3, the QMS and BRI host 
HTTP servers, while the MGR incorporates a li-
brary/component that participates as an HTTP client. The MGR 
connects to the QMS by establishing a mutually authenticated 
TLS connection to the QMS’s HTTP server. This methodology 
ensures the MGR is not exposed to direct network attacks be-
cause it does not provide a listening network socket. Listening 
network sockets open up a significant amount of kernel code to 
remote attack because packets need to be read in from the net-
work and interpreted before authentication is performed. By 
switching to outbound-only connections, the MGR not only 
minimizes the resources set aside in their TCP/IP stack but also 

causes early failures if responses do not match up with re-
quests. Also note that the communication between MGR and 
BRI is routed over the DQN’s trusted loopback network. The 
Bridge must bind its HTTP server to the loopback network 
only. Therefore, the DQN does not provide any externally re-
solvable listening socket. Also, since the loopback network is 
trusted, the connection between the MGR and the BRI goes 
over plain TCP connections.  

The reason for selecting HTTP between MGR and BRI 
over other local communication means, e.g., JAVA RMI, is 
that (1) HTTP does not introduce any other dependencies (such 
as registry components) that need to be secured and (2) also 
allows for dedicated connection per request interaction patterns 
that tradeoff increased security with performance. The reason 
for favoring a polling approach between MGR and QMS over 
push approach, e.g., Bidirectional-streams Over Synchronous 
HTTP (BOSH) [21], is as follows. First, polling with a connec-
tion per request model works better in disruptive environments, 
where constant network connectivity cannot be assumed, e.g., 
monitoring of cyber assets close to the tactical edge. Second, 
polling requests can be used as an active measurement of con-
nectivity between the clients and the server (like a heartbeat 
protocol) to detect issues before data sharing is required with-
out the need to add heartbeat protocols on top of HTTP. Third, 
limiting the lifespan of active connections leads to a reduced 
attack surface. Finally, the overhead associated with polling is 
small given the number of DQNs involved and the strategic use 
of HTTP 204 response codes. Conversely, requirements on 
end-to-end latencies for queries are to reduce access time from 
days to minutes, which make sacrificing some end-to-end la-
tency for increased security and robustness worthwhile.  

Note that if firewalls get in the way of allowing inbound 
connections to the QMS, a different optional GMP interaction 
pattern can be developed and deployed which includes a Gate-

 
Fig. 3. The Gestalt Management Protocol (GMP) Architecture 

 
Fig. 4. GMP deployment in a Demilitarized Zone (DMZ) of a Network Operations Center (NOC) 
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way process placed into the QMS’s Demilitarized Zone 
(DMZ). This Gateways process, shown in Fig. 4, allows both 
the DQN and the QMS to make outbound-only connections 
through their respective firewalls. The Gateway logic is simply 
to forward GMP messages between the two endpoints. To pre-
vent against corruption of the Gateway due to its exposed loca-
tion in the DMZ, GMP messages may optionally be protected 
via signatures implemented through XML Signature and en-
crypted using XML Encryption. 

A. Connection Management 
Communication between MGR and the QMS must be via 

HTTPS. In order to reduce the attack risks to the MGR, the 
following constraints apply: 

• All communications must be initiated by the MGR, 
never the QMS. With respect to GMP, the MGR is a 
client only and never a server. 

• Both the MGR and QMS mutually authenticate all 
communications via mutually authenticated certificate 
exchange. 

• Both the MGR and QMS must ensure that the certifi-
cates of the other device have not been revoked or ex-
pired. 

The following interaction patterns are designed to optimize 
network usage: 

• For polling intervals in the minute range, TLS connec-
tions are created in a dedicated manner for the poll re-
quest. For short lived intervals (seconds), TLS connec-
tions may be reused. 

• The QMS returns HTTP response 204 (no content) in 
case no commands are available 

B. Command Management 
If the MGR polls the commandURI and receives an HTTP 

204 message, there are no commands for that MGR at that time 
and the cycle is complete until the next polling interval.  

Linking responses to commands over multiple HTTP con-
nections is maintained by repeated use of a UUID attached to 
the initial commandMessage. This UUID is referred to as the 
commandMessage@ID and is referenced in each responseMes-
sage sent from the MGR to the QMS via the root_id element. 
The one exception to the commandMessage@ID being equal to 
responseMessage@root_id is when a nack response is sent, 
informing the QMS that 
the MGR was unable to 
parse the content. Note that 
the responseMessage con-
tains another optional id 
element, called part_id, 
which is used for two pur-
poses. First, some com-
mands, like the schedule-
Discovery command, 
cause asynchronous 
processing to happen mul-
tiple times, with a respon-
seMessage being generated 
each time. In this case, the 
root_id will point to the 
commandMessage in 
which the scheduleDisco-
very command was in-
cluded, and each respon-
seMessage will have a 
unique part_id. The second 

TABLE I. GMP COMMANDS 

Command Description 
getStatus() Instructs the MGR to respond with a 

report that identifies the current runtime 
state of the MGR, including all of the 
runtime state of the BRI it manages.  

abortCommand(id) Abort command identified by id. 
setConfiguration 
(configuration) 

Apply configuration settings expressed 
in configuration XML document. 

executeQuery 
(SPARQLquery) 

Execute the query and return the results. 

scheduleDiscovery 
(min, hour, month, 
dom, dow): 

Sets up a schedule for running active 
discovery, one time or repeating. Note 
that the scheduling is similar to the Li-
nux or UNIX “cron” command. 

 

 
Fig. 5. Message Overview 

TABLE II. GMP RESPONSES 

Response Description 
Ack Acknowledging the MGR has parsed a given com-

mandMessage and will take action per the ackRes-
ponse attribute. The ackResponse is exactly one of:
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Nack When the MGR receives a commandMessage it is 
unable to parse to retrieve a commandMes-
sage@ID, a Nack message is returned. 

Success The MGR acknowledges that a given set of com-
mands successfully executed. The results is one of
(1) nothing, (2) a statusReport, or (3) a queryRe-
sult. 

Failure The MGR notifies the QMS that a given com-
mandMessage failed to successfully process. Fail-
ure types supported include  
• unreachableError: Reachability problems to

components critical for command execution 
• storageExceededErrorType: Problems with

persistence store overrun on the DQN 
• invalidStateErrorType: Problems with excep-

tions triggered by command 
• interruptedErrorType: Problems with com-

mands timing out 
• malformedContentErrorType: Problems with

parsing data supplied by the QMS 
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use case involves a single query and response exchange in 
which multiple reponseMessages are returned, each one con-
taining a partial result set. Again, the root_id will point to the id 
attribute of the commandMessage carrying the query, while the 
part_id attribute is unique to the specific responseMessage. 

Similarly, each response chosen by the MGR to send to the 
QMS is wrapped in a responseList. The MGR sends the res-
ponseMessage via HTTP POST to the responseURI of the 
QMS. The same way the responseMessages are linked to 
commandMessage at the message level (through shared use of 
id values), responses and linked to commands at the command 
level through shared use of id attributes. Graphically, these 
XML structures can be depicted as shown in Fig. 5. 

TABLE I lists the current set of commands, and TABLE II 
lists the current set of responses. 

V. PROCESS SECURITY ARGUMENTS 
Given the strong security guarantees provided by network 

protocols described earlier, the next level of constructing a resi-
liency argument deals with a threat model in which the adver-
sary has compromised one of the data sources that is being 
accessed by the DQN, see Fig. 6. 

For the purpose of evaluating potential threats and design-
ing mitigations, we created a threat model in the form of an 

attack tree, shown in Fig. 7. From left to right, the attack tree 
decomposes the high-level goal of “Exploiting Gestalt” into 
five specific attack branches as 
follows: 

• Learn from Queries, 
causing loss of confi-
dentiality by misusing 
queries issued by Ges-
talt for attack recon-
naissance. 

• Escalate Privilege, 
causing loss of integrity in various Gestalt components 
and loss of confidentiality for access credentials in the 
process. 

• Deny Service, causing loss of availability. 

• Corrupt Data Source, causing loss of integrity of analy-
sis results by generating bad observables on the locally 
compromised data source. 

• Corrupt Processing, causing loss of integrity of analy-
sis results by externally spoofing data source obser-
vables. 

Each branch is further refined into specific attacks. In addition, 
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we annotate mitigation mechanisms towards the leaves via spe-
cialized “mitigated by” branches.  

A. Learn from Queries 
Starting from a compromised monitored device, an adver-

sary observes specific queries issued by the DQN against that 
device. For example, if the DQN issues commands against bi-
naries looking for a specific string S, the adversary knows that 
attack binaries containing S will be detected easily going for-
ward and hence it would be prudent not to use S anymore if the 
objective is to stay dormant. Even worse, the query contains 
information containing other sensitive devices on the network, 
e.g., show me all outbound connections from end systems to a 
highly sensitive server. In this case, the adversary might learn 
information about the highly sensitive server with only suffi-
cient privileges on a Gestalt-monitored edge device. In some 
sense, Gestalt would do reconnaissance on behalf of the adver-
sary in this case. 

While the data aggregation problem in very hard to solve in 
general (e.g., two pieces of unclassified information becoming 
highly classified), Gestalt mitigates against such attacks 
through the following means: 

1. The DQN can send a potentially large number of que-
ries to the device, hiding the real query among the set of all 
queries. The benefit of hiding needs to be carefully balanced 
with the increased load on the network and end system. 

2. The DQN can send a more general query to the moni-
tored device, and then subset the responses internal to the 
DQN. This pulls out more data from the actual device into the 
DQN, which might expose it a little more through centraliza-
tion (something that ICAS is explicitly trying to avoid). 

Specific choices can be customized based on what is known 
by the DQN about the monitored device before it is actually 
accessed. For instance, if a device looks suspicious based on its 
network behavior, it might make sense to employ either strate-
gy 1 or 2 for this specific device, while maintaining a default 
behavior of sending specific queries to devices otherwise. 

B. Escalate Privilege 
Since we assume that monitored devices are compromised 

and the DQN needs to interact with those devices, there is a 
clear path for adversaries to spread out to other devices through 
Gestalt. One attack would be to gain access to a larger set of 
credentials used in the DQN to gain remote access to other 
devices, either through the same access protocol or different 
access protocols. This can be achieved, for instance, by sending 
some input to the data interpreter on the DQN that causes a 
buffer overflow. Along the same lines, attacks might directly 
target the DQN functionality and metadata information to ei-
ther blind cyber defenders or to misdirect efforts. Finally, the 
attacker’s next logical step would be escalating privileges to 
the QMS, and from there, compromising the browser used by 
cyber defenders to access the QMS. 

Gestalt mitigates these attacks using a strong containment 
strategy throughout the DQN, isolating adapters that interact 
directly with the devices from extractors and management 
components. Isolation is done on a per process basis with cus-
tom SELinux policies written for each process restricting 

access down to individual files and network resources. Persis-
tent storage is also fragmented into per process files (e.g., key 
stores), a metadata index database, and a configuration store. 
Finally, interactions between components are controlled by 
application-level filters for user input validation. Corruption is 
limited by process rejuvenation techniques, e.g., starting new 
processes and limiting the amount of time they are allowed to 
linger before disappearing after not being used. Depending on 
the level of security paranoia required to interact with devices, 
the following configurations for adapter processes: 

• Per device adapter processes, with dedicated access to 
only the credentials available to access that device, 

• Per domain adapter processes, where a domain can be 
a grouping over devices along administrative domains, 

• Per protocol adapter processes, where all SNMP devic-
es are handled through a single SNMP adapter instance 
with a single credential file. 

Finally, the DQN host itself is installed and administered 
using best-practice secure host techniques, exposes only those 
services absolutely necessary for the operation and mainten-
ance of the system, and uses only the highest level of security 
applicable for those services (i.e., Public Key credentials for 
authentication, encrypted network protocols, IP source address 
filtering for new connections, and so forth.)  

C. Deny Service 
With the specific attack objective to cause loss of availabili-

ty, adversaries might crash various main components (DQN, 
QMS) or sub-components of them (adapter processes). Another 
way to deny service is to overload shared resources, e.g., return 
a large amount of data to the DQN to cause out-of-memory 
exceptions. A more intricate version of causing denial on the 
discovery component of the DQN is to create conditions that 
cause the discovery algorithm to spin out of control, e.g., by 
creating unexpected loops in observables. 

Gestalt mitigates these attacks by explicitly and actively 
managing the lifecycle of processes and jobs that these 
processes need to perform. Processes are monitored for activity 
and functionality, and information about problems is relayed 
back from the DQN to the QMS. Query and discovery jobs are 
explicitly tracked through IDs and can be started, stopped, and 
referred to for fetching completion results. These jobs will also 
be granted access to only those resources (disk, memory, etc.) 
deemed necessary for their functioning and will be terminated 
before a resource exhaustion issue could affect the operation of 
the overall system. 

D. Corrupt Data Source 
This part of the attack tree captures the fact that devices can 

lie to the DQN if the reporting mechanism used by the device is 
also corrupted (which is generally assumed). Put this way, the 
benefit of using a DQN to access state reported by the cor-
rupted device itself needs to be treated differently from infor-
mation obtained from other devices (e.g., NIDS) about that 
device. 

Gestalt mitigates these attacks by keeping track of prove-
nance information associated with observables to enable high-



er-level reasoning and deconfliction by cyber defenders. Prov-
enance information is assembled by various components of 
Gestalt, including the DQN and the QMS, in a crypto-strong 
way that allows for integrity checks in the QMS.  

E. Corrupt Processing 
The overall goal of this attack is to use Gestalt against the 

defender by corrupting its functionality in various ways. For 
instance, traffic replay (at various points, not just the device 
access protocols) might make it look to Gestalt as if the world 
either did not change (although it changed) or did just signifi-
cantly (although it did not). The goal of the first case is to hide 
within the Gestalt monitoring framework, while the second 
case is to cause cyber defenders to go down rat holes that take 
focus and attention away from the real issues at hand. An inter-
esting case involves corruption in the form that causes the Ges-
talt operators to actively do work on behalf of the adversary. If 
a DQN is corrupted, can it, by reporting certain values back to 
the QMS, get the defenders to execute queries on other DQNs 
and then feed back the results of those queries into the cor-
rupted DQN? Such a setup could also be used for an amplified 
denial-of-service attack, where the results reported back from a 
single corrupted DQN could warrant a wide range of QMS 
initiated interactions with other DQNs and devices. 

VI. CONCLUSION AND NEXT STEPS 
The current enterprise IT infrastructure remains vulnerable 

to targeted cyber attacks that stay undetected for months, de-
spite the fact that a variety of low-level observables are availa-
ble, audited, and recorded. This establishes the need for a re-
mote monitoring framework that can integrate with existing 
data sources in a secure manner, dispatch queries from a uni-
fied presentation to specific data sources at hand, and securely 
integrate results back into a consistent and reliable cyber opera-
tional picture. 

This paper describes the security and resiliency architecture 
for the remote monitoring framework we are currently develop-
ing under the DARPA ICAS program. It describes how this 
framework strategically combines strong network resiliency 
and protection with process-level resiliency techniques, includ-
ing isolation, rejuvenation, and adaptive monitoring/response. 
The overall claim is designing security and resiliency into the 
architecture from the beginning and in a bottom-up way allows 
creation of the argument that the value of adding the new moni-
toring framework to an already existing IT infrastructure out-
weighs the risks associated with increasing the attack surface. 

Going forward, we plan to participate in an external evalua-
tion of the security argument performed by an adversarial part-
ner as part of the ICAS program. In addition, we plan to pro-
vide implementations for an increasing set of mitigations out-
lined in the attack tree, and further refine the tree by adding 
linking in integration tests via “verified by” leaf branches. 
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