
A Framework for Resilient Remote Monitoring

Michael Atighetchi, Aaron Adler
Raytheon BBN Technologies

Cambridge, MA
{matighet, aadler}@bbn.com

Abstract— Today’s activities in cyber space are more con-
nected than ever before, driven by the ability to dynamically inte-
ract and share information with a changing set of partners over a
wide variety of networks. To support dynamic sharing, computer
systems and network are stood up on a continuous basis to sup-
port changing mission critical functionality. However, configura-
tion of these systems remains a manual activity, with misconfigu-
rations staying undetected for extended periods, unneeded sys-
tems remaining in place long after they are needed, and systems
not getting updated to include the latest protections against vul-
nerabilities. This environment provides a rich environment for
targeted cyber attacks that remain undetected for weeks to
months and pose a serious national security threat. To counter
this threat, technologies have started to emerge to provide conti-
nuous monitoring across any network-attached device for the
purpose of increasing resiliency by virtue of identifying and then
mitigating targeted attacks. For these technologies to be effective,
it is of utmost importance to avoid any inadvertent increase in the
attack surface of the monitored system. This paper describes the
security architecture of Gestalt, a next-generation cyber informa-
tion management platform that aims to increase resiliency by
providing ready and secure access to granular cyber event data
available across a network. Gestalt’s federated monitoring archi-
tecture is based on the principles of strong isolation, least-
privilege policies, defense-in-depth, crypto-strong authentication
and encryption, and self-regeneration. Remote monitoring func-
tionality is achieved through an orchestrated workflow across a
distributed set of components, linked via a specialized secure
communication protocol, that together enable unified access to
cyber observables in a secure and resilient way.

Keywords: cyber security, federated access, semantic web,
middleware

I. INTRODUCTION
System administrators and cyber defenders continue to face

challenges in securing systems in enterprise environments as
attacks keep increasing in the level of sophistication and as the
number of connected systems keeps increasing. To support and
automate manual activities associated with obtaining informa-
tion about systems and taking corrective action in response to
suspicious activities, an increasing number of technologies for

Distribution Statement “A” (Approved for Public Release, Distribution Unli-
mited). This work was supported by the US Defense Advanced Research
Project Agency (DARPA) under contract FA8750-14-C-0028. The views,
opinions, and/or findings contained in this article/presentation are those of the
author/presenter and should not be interpreted as representing the official
views or policies, either expressed or implied, of the Defense Advanced Re-
search Projects Agency or the Department of Defense.

remote monitoring are becoming available with the premise of
increasing resiliency by decreasing the time-to-detect and time-
to-mitigate targeted attacks.

While the functional benefit of new protocols and tools that
support continuous monitoring and incident response is clear, it
is quite common for these tools to fail on the security front by
either (1) providing inadequate security, e.g., by adding to the
attack surface and thereby enabling adversaries to remotely
monitor / manage critical infrastructure or (2) requiring a very
stringent set of security controls that are prohibitively difficult
to implement, thereby limiting adopting in the market place.
Versions 1 and 2 of the Simple Network Management Protocol
(SNMP) [1] provide inadequate security and are widely
adopted, while version 3 has started to provide acceptable secu-
rity but has a limited deployment footprint. WS-Security [2]
and the Common Secure Interoperability Protocol Version 2
(CSIv2) [3] are examples of protocols that started out with
complex security controls and did not achieve anticipated mar-
ket penetration and adoption.

As a motivating example, consider an attack progression in
a remote monitoring system built on a web services stack as
displayed in Fig. 1. The base system consists of a client appli-
cation (left) interacting with an application server (right),
which in turn accesses internal state of the monitored device.

Fig. 1. Attack Surface of an Exemplar Remote Monitoring System

Monitored DeviceFirewall FirewallRemote
Monitoring
Console

Remote
Monitor
Client
JVM

Outsider
Threat

Insider
Threat

Monitoring Traffic

Cyber
Defender

interact

Remote Monitoring
Server

Security R
M

I R
eg

is
try

[6][5][4]

[7]
DB

Connector

TCP IP Stack

[3]
[2]

FI Bean

4. Serialization Attacks
Take control over JVM

5. Application Level Floods
Overload Registry

6. Password Cracking
Determine passwords through
brute-force trial and error

7. SQL Injection
Circumvent authentication
Loss of confidentiality and integrity

1. Network Sniffing
Break confidentiality

2. Port Scanning
Identify TCP/IP ports

3. TCP Connection
Flooding
Deny service to clients

[1]

Infiltration

Exfiltration

Data

Sensitive
Data

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
A Framework for Resilient Remote Monitoring

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Raytheon BBN Technologies,10 Moulton Street,Cambridge,MA,02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
2nd International Symposium on Resilient Cyber Systems, August 19-21, 2014, Denver, CO. U.S.
Government or Federal Rights License

14. ABSTRACT
Today?s activities in cyber space are more connected than ever before, driven by the ability to dynamically
interact and share information with a changing set of partners over a wide variety of networks. To support
dynamic sharing, computer systems and network are stood up on a continuous basis to support changing
mission critical functionality. However, configuration of these systems remains a manual activity, with
misconfigurations staying undetected for extended periods, unneeded systems remaining in place long after
they are needed, and systems not getting updated to include the latest protections against vulnerabilities.
This environment provides a rich environment for targeted cyber attacks that remain undetected for weeks
to months and pose a serious national security threat. To counter this threat, technologies have started to
emerge to provide continuous monitoring across any network-attached device for the purpose of increasing
resiliency by virtue of identifying and then mitigating targeted attacks. For these technologies to be
effective it is of utmost importance to avoid any inadvertent increase in the attack surface of the monitored
system. This paper describes the security architecture of Gestalt, a next-generation cyber information
management platform that aims to increase resiliency by providing ready and secure access to granular
cyber event data available across a network. Gestalt?s federated monitoring architecture is based on the
principles of strong isolation, leastprivilege policies, defense-in-depth, crypto-strong authentication and
encryption, and self-regeneration. Remote monitoring functionality is achieved through an orchestrated
workflow across a distributed set of components, linked via a specialized secure communication protocol,
that together enable unified access to cyber observables in a secure and resilient way.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

An adversary can start out by gathering sensitive informa-
tion through network sniffing (attack 1) and perform target
identification through port scanning and remote operating sys-
tem (OS) fingerprinting (attack 2). Once the list of open ports
and OS type is determined, a variety of off-the-shelf attacks,
such as SYN flooding [4] can be employed against older ver-
sions of operating systems to cause denial of service or privi-
lege escalation on systems that have not been hardened or
patched appropriately. Advancing up the network stack, the
adversary can attack the TCP connection handling code of the
event listeners (attack 3) by establishing and maintaining a
large number of TCP connections [5], causing thread resource
bottlenecks and denying service to legitimate clients. A more
sophisticated adversary can attack the Java Virtual Machines
(JVMs) on which the services and applications are running
(attack 4), e.g., by creating maliciously crafted serialized ob-
jects to execute arbitrary code during de-serialization [6]. Simi-
larly, creating specific XML documents can cause SOAP pro-
cessors to crash. Furthermore, attackers may devise applica-
tion-level attacks, such as floods targeted at registry services to
deny access to legitimate clients by overloading registry
processing (attack 5), brute-force password combinations (at-
tack 6), and mapping out critical URLs that get returned
through error pages and modifying input used to generate the
errors to inject SQL, XPATH, or XQUERY commands (attack
7). Once compromised, the adversary can use components to
corrupt the target and/or exfiltrate information, including ac-
cessing sensitive data that should not be made available re-
motely and disseminating it to unauthorized external receiver
endpoints.

This paper describes an innovative framework for remote
monitoring that (1) strengthens overall security by limiting
unintentional increase to the resulting attack surface and (2)
can operate in contested network environments, including tran-
sient and high-latency network links. We argue that such a re-
mote monitoring framework is a key enabler for the larger con-
cepts of reactive and proactive cyber resiliency, as cyber deci-
sion making is inevitably driven by sensor information captur-
ing the effects of both attacks and defender-initiated actions.
The framework is currently being developed under the Gestalt
project in support of DARPA’s Integrated Cyber Analysis Sys-
tem (ICAS) [7] program. The objective of Gestalt is to provide
federated access to a large diverse set of cyber observables to
enable detection of targeted cyber attacks. Gestalt automatical-
ly discovers available data sources, unifies access to obser-
vables via a comprehensive common ontology, and automati-
cally decomposes and federates queries and semantically inte-
grates the results. The implementation status of framework is at
a Technology Readiness Level (TRL) of 4, with basic functio-
nality tested in the development environment.

The Gestalt system eliminates tedious manual inspection by
providing access to all data sources on the network via a fede-
rated query interface. Using a new Cyber Defense Language, a
single query can access data residing on multiple devices,
across disparate device types and data formats, and return the
query results in a semantically integrated and immediately use-
ful format. Gestalt allows the cyber defender to focus on the
forensic data itself by abstracting away the actual methods and
techniques required to access that forensic data. Through its

Semantic Query Decomposition capabilities, Gestalt infers the
types of data sources that can be used to satisfy a given query,
and identifies where instances of those data source types can be
found on the network. Next, it dispatches native queries to the
device containing each data-source instance to process the re-
quest. The results are semantically integrated and returned to
the cyber defender. Gestalt provides a single interface to the
cyber defender, dramatically improving their effectiveness and
allowing them to focus their time and expertise on forensic
analysis of the results of their search queries, rather than on the
laborious process of data collection and processing.

The paper is organized as follows: Section II describes re-
lated work. Section III provides a high-level overview of the
security architecture in relation to a threat model. Section IV
dives into network-level security arguments while Section V
provides more details on process-level security arguments. Sec-
tion VI concludes the paper.

II. RELATED WORK
The remote monitoring framework presented in this paper

relates to work performed in cyber event monitoring, network
monitoring, and stream processing/big data platforms.

A number of commercially available solutions exist in the
Security Information and Event Management (SIEM) and cy-
ber monitoring product space today, including ArcSight [8] and
the Host Based Security System (HBSS) [9]. While Gestalt
provides detailed access to the current system state, SIEMs
provide extended summary information at a coarse granularity.

A number of solutions exist for network and grid monitor-
ing [10], including Ganglia [11], Nagios [12], and Zabbix [13].
These systems specialize on performance monitoring and pro-
vide operators with dashboard views on the current availability
state of the overall network system. Similar to Gestalt, many of
these systems perform monitoring through a distributed set of
nodes that report to a centralized monitoring dashboard. Gan-
glia in particular uses daemons installed on all monitored de-
vices and meta-daemons that poll XML over TCP from dae-
mons and meta-daemons. While similar, Gestalt is designed
with a stronger focus on security rather than performance, in-
cluding mandated use of TLS, no-listening sockets (analogous
to meta-daemons), and process-level isolation.

Finally, a number of big data platforms exist for distributed
processing of information. Splunk [14][15] is a well-known
instance of a big data processing capability that makes it easy
for cyber defenders to establish correlations between discon-
nected pieces of text information through a specialized query
language. Unlike Gestalt, Splunk is based on an information
model that requires raw observables to be aggregated in a cen-
tral database before they can be queried. For instance, Splunk
requires forwarders to be installed on data source devices,
which establish connections outbound to indexers and commu-
nicate a large amount of data to those connections. In contrast,
Gestalt reaches into data sources in a controlled way, leading to
a much reduced attack surface.

III. SECURITY ARCHITECTURE
To better understand the security implications of adding

systems like Gestalt to an already existing IT infrastructure, we

first look at the overall architecture of the resulting system. Fig.
2 shows the main components involved in remote monitoring
performed by cyber defenders (on the right) of devices (on the
left). The figure shows how the Gestalt system introduces two
primary system components: the Discovery and Query Nodes
(DQNs) and the Query Management Service (QMS).

The DQNs provide the interface between the devices on the
network and the Gestalt system. Rather than adding new proto-
cols to be implemented by end devices, the DQNs leverage
existing protocols where possible (Fig. 2 left), including the
Simple Network Management Protocol (SNMP) v3 [1], SSH,
and the Distributed Management Task Force (DMTF) Web
Services for Management (WS-MAN) [16] technologies, to
communicate with individual devices and to catalog the data
sources each manages. The QMS provide the main interface to
cyber defenders and interacts with multiple DQNs through
query dispatch and response interpretation logic.

The overall resiliency argument for this architecture con-
sists of two main parts: network and process arguments. By
constructing a sound network argument, we ensure integrity
and confidentiality of the data transmitted over the network as
well as a robust means for authenticating various actors, includ-
ing processes and humans. The network argument is con-
structed using three different types of network protocols:

Device Access Protocols: In the cases where a single data
source can be reached by multiple access protocols, the DQN
will automatically select the strongest access protocol available
by preferring authenticated and encrypted protocols. In addi-
tion, the DQN will enforce policy control over the choice of
access protocols to be used to block use of protocols that are
known to be unsafe and where the risk of using the protocol
exceeds the benefits of getting observables from the data
source through the protocol. For instance, the DQN might be
configured to avoid communicating with TLS endpoints that
are vulnerable to the Heartbleed [17] attack vector in order to
protect the DQN’s client process from compromise. Finally, to
achieve availability, the DQN may fail over between accepta-

ble access methods to achieve visibility in degraded mode.

Gestalt Management Protocol (GMP): The GMP speci-
fies interactions between the QMS and the DQNs in a way that
minimizes the attack surface in the DQNs and ensures opera-
tion in contested network environments through asynchronous
polling semantics. Since this protocol is added to the existing
system, it is constructed with strong security controls and prin-
ciples in mind, including the use of TLS v1.2 [18] tied in with a
robust PKI infrastructure, e.g., maintained by DISA for the
DoD. Firewalls restrict allowable GMP communication to a
dedicated QMS per DQN.

QMS Access Protocol: The QMS offers a RESTful [19]
API that enables access by modern Web Browsers and external
applications. Traffic is protected at the highest level supported
by Web Browsers and external applications, e.g., currently TLS
v1.2 for a selected subset of browsers. Firewalls restrict allow-
able communication to a set of known IP addresses.

The result of the network argument is a management proto-
col that can be added to existing IT infrastructure as a solid
foundation for other resiliency techniques to build upon. The
process argument for DQNs implements resiliency at the appli-
cation-level through the following means.

Process Isolation: The DQN is split into two main compo-
nents – a long-lived Manager process and multiple transient
Bridge processes.

Process Rejuvenation: The Manager can temporally con-
strain the effects of compromised Bridge processes by killing
the process as soon as its intended functionality is complete,
where intended functionality can be defined over a set of re-
quests.

Adaptive Monitoring: The Manager controls the lifecycle
of Bridges by spawning them, observing their state, and killing
them if they deviate from the norm. Anomaly detection is
based on simple statistical methods, based on variance analysis
of usage patterns on underlying resources.

Process Restrictions: Mandatory policy enforcement is
enabled (e.g., using SELinux [20]) to explicitly allow the mi-
nimal set of interactions required for the process to function
following a default-deny paradigm.

User Input Filtering: Any data resource from data sources
is filtered and sanitized by transcribing it into a different repre-
sentation format. Filtering includes checking maximum data
size and sanitization includes turning the inputs from their na-
tive representation format into RDF/XML.

The process arguments for the QMS are similar and omitted
from this paper for the sake of brevity.

IV. THE GESTALT MANAGEMENT PROTOCOL
The GMP specifies the connection behaviors and message

exchanges between the QMS, the DQN Manager, and the DQN
Bridge processes. The GMP was designed based on the follow-
ing goals aimed at keeping the protocol vendor independent,
secure, and implementable.

Type centric: GMP specifies the message structure rather
than the programming. This enables the use of Transmission

Fig. 2. Gestalt High-level Architecture

Gestalt
External

Apps

Cyber
Defender

Workstations

Existing
Devices and

Data Sources

Discovery
And Query

Node(s)

Query
Management

System

DQN

DQN

QMSExisting
Secure
Access

Protocols

Mutually
Authenticated

HTTPS

Gestalt
Management

Protocol
(GMP)

• Process Isolation
• Process Rejuvination
• Adaptive monitoring
• Process Restrictions
• User Input Filtering

… …

Queries
Responses

Network Security Arguments

Process Security Arguments

Control Protocol (TCP)/IP-based load balancers and also
achieves central processing unit (CPU) architecture, operating
system, and programming language independence.

Network friendly: GMP works through firewalls that per-
form Network Address Translation (NAT) and optimizes net-
work usage by virtue of using HTTP response codes, avoiding
unnecessary round trip paths.

Secure: GMP uses a mutually authenticated Public Key In-
frastructure (PKI) and TLS for encryption.

Pragmatic: GMP is designed to be implemented on top of
a strong commercial and open-source community.

The overall architecture of GMP is displayed in Fig. 3. The
figure shows a QMS process (QMS) on the right, a DQN Man-
ager (MGR) process in the middle, and a DQN Bridge (BRI)
process on the left. The Manager requests commands from the
QMS and sends them to the Bridge processes for execution.
The Manager checks for response messages from the Bridge
and sends them to the QMS. The Bridge, Manager, and QMS
implement a GMP-compliant interface in addition to their in-
ternal functions.

The GMP specification defines interactions between QMS,
MGR, and BRI. As shown in Fig. 3, the QMS and BRI host
HTTP servers, while the MGR incorporates a li-
brary/component that participates as an HTTP client. The MGR
connects to the QMS by establishing a mutually authenticated
TLS connection to the QMS’s HTTP server. This methodology
ensures the MGR is not exposed to direct network attacks be-
cause it does not provide a listening network socket. Listening
network sockets open up a significant amount of kernel code to
remote attack because packets need to be read in from the net-
work and interpreted before authentication is performed. By
switching to outbound-only connections, the MGR not only
minimizes the resources set aside in their TCP/IP stack but also

causes early failures if responses do not match up with re-
quests. Also note that the communication between MGR and
BRI is routed over the DQN’s trusted loopback network. The
Bridge must bind its HTTP server to the loopback network
only. Therefore, the DQN does not provide any externally re-
solvable listening socket. Also, since the loopback network is
trusted, the connection between the MGR and the BRI goes
over plain TCP connections.

The reason for selecting HTTP between MGR and BRI
over other local communication means, e.g., JAVA RMI, is
that (1) HTTP does not introduce any other dependencies (such
as registry components) that need to be secured and (2) also
allows for dedicated connection per request interaction patterns
that tradeoff increased security with performance. The reason
for favoring a polling approach between MGR and QMS over
push approach, e.g., Bidirectional-streams Over Synchronous
HTTP (BOSH) [21], is as follows. First, polling with a connec-
tion per request model works better in disruptive environments,
where constant network connectivity cannot be assumed, e.g.,
monitoring of cyber assets close to the tactical edge. Second,
polling requests can be used as an active measurement of con-
nectivity between the clients and the server (like a heartbeat
protocol) to detect issues before data sharing is required with-
out the need to add heartbeat protocols on top of HTTP. Third,
limiting the lifespan of active connections leads to a reduced
attack surface. Finally, the overhead associated with polling is
small given the number of DQNs involved and the strategic use
of HTTP 204 response codes. Conversely, requirements on
end-to-end latencies for queries are to reduce access time from
days to minutes, which make sacrificing some end-to-end la-
tency for increased security and robustness worthwhile.

Note that if firewalls get in the way of allowing inbound
connections to the QMS, a different optional GMP interaction
pattern can be developed and deployed which includes a Gate-

Fig. 3. The Gestalt Management Protocol (GMP) Architecture

Fig. 4. GMP deployment in a Demilitarized Zone (DMZ) of a Network Operations Center (NOC)

QMS OSDQN OS

QMSManagerBridge

Internal
Functions

GMP API

HTTP
Server

GMP API

HTTP
Client

Internal
Functions

Internal
Functions HTTP

Client

GMP API

HTTP
Server

GMP API
XML MessagesXML Messages

HTTP GET/POST

Mutually Authn TLS

HTTP GET/POST

TCP

QMS OSDQN OS

QMSManager

Internal
Functions

GMP API

HTTP
Server

GMP API

HTTP
Client

Internal
FunctionsHTTP

Client

GMP API
XML Messages

HTTP GET/POST

Mutually Authn TLS

Gateway OS

Gateway

Forward
Logic

GMP API

HTTP
Server

HTTP
Server

GMP API
XML Messages

HTTP GET/POST

Mutually Authn TLS

NOC
Intranet

Monitored
Intranet

NOC
DMZ

NOC
Inside Firewall

NOC
Outside Firewall

Monitored Network
Firewalls

way process placed into the QMS’s Demilitarized Zone
(DMZ). This Gateways process, shown in Fig. 4, allows both
the DQN and the QMS to make outbound-only connections
through their respective firewalls. The Gateway logic is simply
to forward GMP messages between the two endpoints. To pre-
vent against corruption of the Gateway due to its exposed loca-
tion in the DMZ, GMP messages may optionally be protected
via signatures implemented through XML Signature and en-
crypted using XML Encryption.

A. Connection Management
Communication between MGR and the QMS must be via

HTTPS. In order to reduce the attack risks to the MGR, the
following constraints apply:

• All communications must be initiated by the MGR,
never the QMS. With respect to GMP, the MGR is a
client only and never a server.

• Both the MGR and QMS mutually authenticate all
communications via mutually authenticated certificate
exchange.

• Both the MGR and QMS must ensure that the certifi-
cates of the other device have not been revoked or ex-
pired.

The following interaction patterns are designed to optimize
network usage:

• For polling intervals in the minute range, TLS connec-
tions are created in a dedicated manner for the poll re-
quest. For short lived intervals (seconds), TLS connec-
tions may be reused.

• The QMS returns HTTP response 204 (no content) in
case no commands are available

B. Command Management
If the MGR polls the commandURI and receives an HTTP

204 message, there are no commands for that MGR at that time
and the cycle is complete until the next polling interval.

Linking responses to commands over multiple HTTP con-
nections is maintained by repeated use of a UUID attached to
the initial commandMessage. This UUID is referred to as the
commandMessage@ID and is referenced in each responseMes-
sage sent from the MGR to the QMS via the root_id element.
The one exception to the commandMessage@ID being equal to
responseMessage@root_id is when a nack response is sent,
informing the QMS that
the MGR was unable to
parse the content. Note that
the responseMessage con-
tains another optional id
element, called part_id,
which is used for two pur-
poses. First, some com-
mands, like the schedule-
Discovery command,
cause asynchronous
processing to happen mul-
tiple times, with a respon-
seMessage being generated
each time. In this case, the
root_id will point to the
commandMessage in
which the scheduleDisco-
very command was in-
cluded, and each respon-
seMessage will have a
unique part_id. The second

TABLE I. GMP COMMANDS

Command Description
getStatus() Instructs the MGR to respond with a

report that identifies the current runtime
state of the MGR, including all of the
runtime state of the BRI it manages.

abortCommand(id) Abort command identified by id.
setConfiguration
(configuration)

Apply configuration settings expressed
in configuration XML document.

executeQuery
(SPARQLquery)

Execute the query and return the results.

scheduleDiscovery
(min, hour, month,
dom, dow):

Sets up a schedule for running active
discovery, one time or repeating. Note
that the scheduling is similar to the Li-
nux or UNIX “cron” command.

Fig. 5. Message Overview

TABLE II. GMP RESPONSES

Response Description
Ack Acknowledging the MGR has parsed a given com-

mandMessage and will take action per the ackRes-
ponse attribute. The ackResponse is exactly one of:
Working, Invalid, or Inappropriate. Working indi-
cates that the MGR is about to begin processing the
specified command block. Invalid indicates one or
more parsing errors in the commandMessage. In-
appropriate indicates that one or more commands
in the commandMessage are inappropriate for that
MGR, e.g., unsupported commands.

Nack When the MGR receives a commandMessage it is
unable to parse to retrieve a commandMes-
sage@ID, a Nack message is returned.

Success The MGR acknowledges that a given set of com-
mands successfully executed. The results is one of
(1) nothing, (2) a statusReport, or (3) a queryRe-
sult.

Failure The MGR notifies the QMS that a given com-
mandMessage failed to successfully process. Fail-
ure types supported include
• unreachableError: Reachability problems to

components critical for command execution
• storageExceededErrorType: Problems with

persistence store overrun on the DQN
• invalidStateErrorType: Problems with excep-

tions triggered by command
• interruptedErrorType: Problems with com-

mands timing out
• malformedContentErrorType: Problems with

parsing data supplied by the QMS

commandMessage (id=UUID1)

responseMessage (root_id=UUID1,
part_id=UUIDX)

commandList()

command (id=UUID2, args)

command (id=UUID3, args)

responseList ()

msgResponse (args)

cmdResponse (id=UUID2,args)

cmdResponse (id=UUID3,args)

use case involves a single query and response exchange in
which multiple reponseMessages are returned, each one con-
taining a partial result set. Again, the root_id will point to the id
attribute of the commandMessage carrying the query, while the
part_id attribute is unique to the specific responseMessage.

Similarly, each response chosen by the MGR to send to the
QMS is wrapped in a responseList. The MGR sends the res-
ponseMessage via HTTP POST to the responseURI of the
QMS. The same way the responseMessages are linked to
commandMessage at the message level (through shared use of
id values), responses and linked to commands at the command
level through shared use of id attributes. Graphically, these
XML structures can be depicted as shown in Fig. 5.

TABLE I lists the current set of commands, and TABLE II
lists the current set of responses.

V. PROCESS SECURITY ARGUMENTS
Given the strong security guarantees provided by network

protocols described earlier, the next level of constructing a resi-
liency argument deals with a threat model in which the adver-
sary has compromised one of the data sources that is being
accessed by the DQN, see Fig. 6.

For the purpose of evaluating potential threats and design-
ing mitigations, we created a threat model in the form of an

attack tree, shown in Fig. 7. From left to right, the attack tree
decomposes the high-level goal of “Exploiting Gestalt” into
five specific attack branches as
follows:

• Learn from Queries,
causing loss of confi-
dentiality by misusing
queries issued by Ges-
talt for attack recon-
naissance.

• Escalate Privilege,
causing loss of integrity in various Gestalt components
and loss of confidentiality for access credentials in the
process.

• Deny Service, causing loss of availability.

• Corrupt Data Source, causing loss of integrity of analy-
sis results by generating bad observables on the locally
compromised data source.

• Corrupt Processing, causing loss of integrity of analy-
sis results by externally spoofing data source obser-
vables.

Each branch is further refined into specific attacks. In addition,

Fig. 6. Starting Point: Corrupted
Data Source

Fig. 7. Threat Model

QMSDQNDS
A

(1) Recon (2) Spread
(2) Crash/Flood

DS

… …

we annotate mitigation mechanisms towards the leaves via spe-
cialized “mitigated by” branches.

A. Learn from Queries
Starting from a compromised monitored device, an adver-

sary observes specific queries issued by the DQN against that
device. For example, if the DQN issues commands against bi-
naries looking for a specific string S, the adversary knows that
attack binaries containing S will be detected easily going for-
ward and hence it would be prudent not to use S anymore if the
objective is to stay dormant. Even worse, the query contains
information containing other sensitive devices on the network,
e.g., show me all outbound connections from end systems to a
highly sensitive server. In this case, the adversary might learn
information about the highly sensitive server with only suffi-
cient privileges on a Gestalt-monitored edge device. In some
sense, Gestalt would do reconnaissance on behalf of the adver-
sary in this case.

While the data aggregation problem in very hard to solve in
general (e.g., two pieces of unclassified information becoming
highly classified), Gestalt mitigates against such attacks
through the following means:

1. The DQN can send a potentially large number of que-
ries to the device, hiding the real query among the set of all
queries. The benefit of hiding needs to be carefully balanced
with the increased load on the network and end system.

2. The DQN can send a more general query to the moni-
tored device, and then subset the responses internal to the
DQN. This pulls out more data from the actual device into the
DQN, which might expose it a little more through centraliza-
tion (something that ICAS is explicitly trying to avoid).

Specific choices can be customized based on what is known
by the DQN about the monitored device before it is actually
accessed. For instance, if a device looks suspicious based on its
network behavior, it might make sense to employ either strate-
gy 1 or 2 for this specific device, while maintaining a default
behavior of sending specific queries to devices otherwise.

B. Escalate Privilege
Since we assume that monitored devices are compromised

and the DQN needs to interact with those devices, there is a
clear path for adversaries to spread out to other devices through
Gestalt. One attack would be to gain access to a larger set of
credentials used in the DQN to gain remote access to other
devices, either through the same access protocol or different
access protocols. This can be achieved, for instance, by sending
some input to the data interpreter on the DQN that causes a
buffer overflow. Along the same lines, attacks might directly
target the DQN functionality and metadata information to ei-
ther blind cyber defenders or to misdirect efforts. Finally, the
attacker’s next logical step would be escalating privileges to
the QMS, and from there, compromising the browser used by
cyber defenders to access the QMS.

Gestalt mitigates these attacks using a strong containment
strategy throughout the DQN, isolating adapters that interact
directly with the devices from extractors and management
components. Isolation is done on a per process basis with cus-
tom SELinux policies written for each process restricting

access down to individual files and network resources. Persis-
tent storage is also fragmented into per process files (e.g., key
stores), a metadata index database, and a configuration store.
Finally, interactions between components are controlled by
application-level filters for user input validation. Corruption is
limited by process rejuvenation techniques, e.g., starting new
processes and limiting the amount of time they are allowed to
linger before disappearing after not being used. Depending on
the level of security paranoia required to interact with devices,
the following configurations for adapter processes:

• Per device adapter processes, with dedicated access to
only the credentials available to access that device,

• Per domain adapter processes, where a domain can be
a grouping over devices along administrative domains,

• Per protocol adapter processes, where all SNMP devic-
es are handled through a single SNMP adapter instance
with a single credential file.

Finally, the DQN host itself is installed and administered
using best-practice secure host techniques, exposes only those
services absolutely necessary for the operation and mainten-
ance of the system, and uses only the highest level of security
applicable for those services (i.e., Public Key credentials for
authentication, encrypted network protocols, IP source address
filtering for new connections, and so forth.)

C. Deny Service
With the specific attack objective to cause loss of availabili-

ty, adversaries might crash various main components (DQN,
QMS) or sub-components of them (adapter processes). Another
way to deny service is to overload shared resources, e.g., return
a large amount of data to the DQN to cause out-of-memory
exceptions. A more intricate version of causing denial on the
discovery component of the DQN is to create conditions that
cause the discovery algorithm to spin out of control, e.g., by
creating unexpected loops in observables.

Gestalt mitigates these attacks by explicitly and actively
managing the lifecycle of processes and jobs that these
processes need to perform. Processes are monitored for activity
and functionality, and information about problems is relayed
back from the DQN to the QMS. Query and discovery jobs are
explicitly tracked through IDs and can be started, stopped, and
referred to for fetching completion results. These jobs will also
be granted access to only those resources (disk, memory, etc.)
deemed necessary for their functioning and will be terminated
before a resource exhaustion issue could affect the operation of
the overall system.

D. Corrupt Data Source
This part of the attack tree captures the fact that devices can

lie to the DQN if the reporting mechanism used by the device is
also corrupted (which is generally assumed). Put this way, the
benefit of using a DQN to access state reported by the cor-
rupted device itself needs to be treated differently from infor-
mation obtained from other devices (e.g., NIDS) about that
device.

Gestalt mitigates these attacks by keeping track of prove-
nance information associated with observables to enable high-

er-level reasoning and deconfliction by cyber defenders. Prov-
enance information is assembled by various components of
Gestalt, including the DQN and the QMS, in a crypto-strong
way that allows for integrity checks in the QMS.

E. Corrupt Processing
The overall goal of this attack is to use Gestalt against the

defender by corrupting its functionality in various ways. For
instance, traffic replay (at various points, not just the device
access protocols) might make it look to Gestalt as if the world
either did not change (although it changed) or did just signifi-
cantly (although it did not). The goal of the first case is to hide
within the Gestalt monitoring framework, while the second
case is to cause cyber defenders to go down rat holes that take
focus and attention away from the real issues at hand. An inter-
esting case involves corruption in the form that causes the Ges-
talt operators to actively do work on behalf of the adversary. If
a DQN is corrupted, can it, by reporting certain values back to
the QMS, get the defenders to execute queries on other DQNs
and then feed back the results of those queries into the cor-
rupted DQN? Such a setup could also be used for an amplified
denial-of-service attack, where the results reported back from a
single corrupted DQN could warrant a wide range of QMS
initiated interactions with other DQNs and devices.

VI. CONCLUSION AND NEXT STEPS
The current enterprise IT infrastructure remains vulnerable

to targeted cyber attacks that stay undetected for months, de-
spite the fact that a variety of low-level observables are availa-
ble, audited, and recorded. This establishes the need for a re-
mote monitoring framework that can integrate with existing
data sources in a secure manner, dispatch queries from a uni-
fied presentation to specific data sources at hand, and securely
integrate results back into a consistent and reliable cyber opera-
tional picture.

This paper describes the security and resiliency architecture
for the remote monitoring framework we are currently develop-
ing under the DARPA ICAS program. It describes how this
framework strategically combines strong network resiliency
and protection with process-level resiliency techniques, includ-
ing isolation, rejuvenation, and adaptive monitoring/response.
The overall claim is designing security and resiliency into the
architecture from the beginning and in a bottom-up way allows
creation of the argument that the value of adding the new moni-
toring framework to an already existing IT infrastructure out-
weighs the risks associated with increasing the attack surface.

Going forward, we plan to participate in an external evalua-
tion of the security argument performed by an adversarial part-
ner as part of the ICAS program. In addition, we plan to pro-
vide implementations for an increasing set of mitigations out-
lined in the attack tree, and further refine the tree by adding
linking in integration tests via “verified by” leaf branches.

REFERENCES
[1] W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2.

Addison-Wesley Longman Publishing Co., Inc., 1998.
[2] J. Rosenberg and D. Remy, Securing Web Services with WS-

Security: Demystifying WS-Security, WS-Policy, SAML, XML
Signature, and XML Encryption. Pearson Higher Education,
2004.

[3] OMG, “Common Secure Interoperability Protocol Version 2,”
Mar-2002. [Online]. Available:
http://www.omg.org/spec/SEC/1.8/PDF/.

[4] W. M. Eddy, “TCP SYN flooding attacks and common mitiga-
tions,” 2007.

[5] M. Atighetchi and J. Loyall, “Meaningful and flexible surviva-
bility assessments: approach and practice,” CrossTalk- J. Def.
Softw. Eng., vol. 23, no. 2, pp. 13–18, 2010.

[6] M. Schoenefeld, “Pentesting J2EE,” Blackhat, 2006. [Online].
Available: http://www.blackhat.com/presentations/bh-federal-
06/BH-Fed-06-Schoenefeld-up.pdf.

[7] DARPA, “Integrated Cyber Analysis System (ICAS) Home-
page,” 2014. [Online]. Available:
http://www.darpa.mil/Our_Work/I2O/Programs/Integrated_Cyb
er_Analysis_System_%28ICAS%29.aspx.

[8] D. Miller and B. Pearson, Security information and event man-
agement (SIEM) implementation. McGraw-Hill, 2011.

[9] DISA, “The Host Based Security System,” 2012. [Online].
Available: http://www.disa.mil/Services/Information-
Assurance/HBS/HBSS.

[10] S. Zanikolas and R. Sakellariou, “A taxonomy of grid monitor-
ing systems,” Future Gener. Comput. Syst., vol. 21, no. 1, pp.
163–188, 2005.

[11] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia dis-
tributed monitoring system: design, implementation, and expe-
rience,” Parallel Comput., vol. 30, no. 7, pp. 817–840, 2004.

[12] W. Barth, Nagios: System-und Netzwerk-Monitoring. No Starch
Press, 2008.

[13] R. Olups, Zabbix 1.8 network monitoring. Packt Publishing,
2010.

[14] J. Stearley, S. Corwell, and K. Lord, “Bridging the gaps: joining
information sources with Splunk,” in Proceedings of the 2010
workshop on Managing systems via log analysis and machine
learning techniques, 2010, pp. 8–8.

[15] Splunk.com, “Splunk for Security – Supporting a Big Data Ap-
proach for Security Intelligence,” 2014. [Online]. Available:
http://www.splunk.com/web_assets/pdfs/secure/Splunk_for_Sec
urity.pdf.

[16] DMTF, “Web Services for Management (WS-MAN) Specifica-
tion,” DSP0226, 2010.

[17] Mitre CVE, “CVE-2014-0160,” Heartbleed Vulnerability, 03-
Jul-2014. [Online]. Available: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-0160.

[18] T. Dierks, “The transport layer security (TLS) protocol version
1.2,” 2008.

[19] R. T. Fielding, “Architectural styles and the design of network-
based software architectures,” University of California, 2000.

[20] S. Smalley, C. Vance, and W. Salamon, “Implementing SELi-
nux as a Linux security module,” NAI Labs Rep., vol. 1, p. 43,
2001.

[21] I. Paterson, D. Smith, P. Saint-Andre, and J. Moffitt, “Bidirec-
tional-streams over synchronous http (bosh),” 2010.

