A WEIGHTED DIFFERENCE OF ANISOTROPIC AND ISOTROPIC TOTAL
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Abstract. We propose a weighted difference of anisotropic and isotropic total variation (TV) as a regularization for
image processing tasks, based on the well-known TV model and natural image statistics. Due to the difference form of
our model, it is natural to compute via a difference of convex algorithm (DCA). We draw its connection to the Bregman
iteration for convex problems, and prove that the iteration generated from our algorithm converges to a stationary
point with the objective function values decreasing monotonically. A stopping strategy based on the stable oscillatory
pattern of the iteration error from the ground truth is introduced. In numerical experiments on image denoising, image
deblurring, and magnetic resonance imaging (MRI) reconstruction, our method improves on the classical TV model
consistently, and is on par with representative start-of-the-art methods.
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1. Introduction. Many image processing tasks can be formulated as an inverse problem, in
which the data f is assumed to be obtained approximately by applying a linear operator A on an
image u with additive noise. For example, A is the identity matrix for image denoising, a convolution
matrix for deblurring, and subsampling of Fourier transform for a magnetic resonance image (MRI)
reconstruction problem. In most scenarios, solving u from Au = f is ill-posed in the sense that directly
inverting A would result in bad and possibly multiple solutions. It is necessary and even desirable to
constrain the solutions through regularization, with the help of prior knowledge of images that one
wants to reconstruct. A general model for such inverse problem is

@ := argmin,, J(u) + %HAU — fl3, (1.1)

where J(u) is the regularization term, p is a positive parameter to balance J(u) and the data fidelity
term |[Au — f||3, and @ is an optimal solution of the model or a reconstructed result. A classical
regularization is the total variation (TV) proposed by Rudin-Osher-Fatemi [33]. It is widely used in
image processing applications, such as deconvolution [7,16,25], inpainting [6] and super-resolution [26],
just to name a few. The TV model originated in [33] is isotropic, and later an anisotropic formulation
has been addressed in the literature [10,30] among others. We give mathematical definition for both
the isotropic and anisotropic TV in the discrete setting. Denoting u as the column vector by a
lexicographical ordering of a 2D image, we have

Jiso(u) := [Vullz = |[y/|Dzul? + | Dyul?||1, (1.2)
Jani(u) := [ Daully + | Dyully , (1.3)

where D,, D, denote the horizontal and vertical partial derivative operators. Throughout this paper,
we shall use notations ||Vu||2 and ||\/|Dyul? + |Dyul?||1 interchangeably.

Another interpretation of TV can be given from the perspective of compressive sensing (CS)
[3,12], which is to reconstruct a signal from an under-determined system provided that the signal is
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sufficiently sparse or sparse in a transform domain. For example, a natural image is mostly sparse
after taking gradient. Mathematically, it amounts to minimizing the Ly norm of the image gradient,
i.e., J(u) = ||Vullo. To bypass the NP-hard Ly norm, the convex relaxation approach in CS is to
replace Ly by L1, and L; on the gradient is the total variation. The restricted isometry property
(RIP) condition [3] theoretically guarantees the exact recovery of sparse solutions by L;. The RIP
regime is where the sensing matrix is incoherent, such as a random Gaussian matrix. Several non-
convex penalties have been proposed and studied as alternatives to Lq, [19]. A few notable examples
are LP for p € (0,1) [8,21,39], L1/Ly (scale invariant L1) and L; — Lo [13,22,23,40,41]. In particular,
L, — Ly penalty is found to be the best among existing methods for recovering sparse solutions when
the sensing matrix is highly coherent or significantly violating the RIP condition [23,41].

The TV-regularization has been a very active research topic in the past two decades. Though a
gradient descent approach in the original paper can be slow to converge, a projection algorithm is later
proposed by Chambolle [5] to speed up convergence based on duality. More recently, the Bregman
and split Bregman methodology [9,15,29] offers another line of fast algorithms equivalent to the role
of alternating direction method of multipliers (ADMM) and Douglas-Rachford splitting algorithm in
the optimization literature dating back to the 1970’s. There are also a few approaches to solve the
Ly minimization directly. In [38], a special alternating minimization strategy with half-quadratic
splitting is adopted for image smoothing. Image restoration via Ly is considered in [31], which uses
hard shrinkage for L as opposed to soft shrinkage for L;. In addition, the Ly on the gradient can be
interpreted as the length of the partition boundaries, which leads to the classical Potts model [32] or
piece-wise constant Mumford-Shah model [28] for image segmentation or partition. Recently, Storath
et. al. [34] propose a hybrid ADMM and dynamic programming method to solve the Potts model.

Motivated from L; — Lo minimization of coherent CS [23,41], we propose the following weighted
difference of convex regularization,

J(u) = Jani — Jiso = [|Dgully + | Dyully = all\/|Dzul? + [Dyul|1 (1.4)

where o € [0,1] is a parameter for a more general model. When o« = 1, J(u) is to apply L1 — Lo
on the gradient vector. Two advantages of L; — Lo over other nonconvex measures are its Lipschitz
regularity, and guaranteed convergence via the difference of convex algorithm (DCA) [35,36]. We find
that the DCA requires solving the L; type of minimization as a subproblem, which can be handled
efficiently by utilizing the split Bregman technique. We prove that the DCA approach converges to
stationary points, a typical situation for nonconvex problems. In practice, the DCA iterations, when
properly stopped, are often close to global minima and produce excellent results. The stopping issue
is discussed later based on the oscillatory pattern of the iteration errors.

The rest of the paper is organized as follows. Section 2 describes our model in detail including
numerical algorithms and convergence analysis. Section 3 is devoted to numerical experiments, where
three image processing applications (denoising, deblurring and MRI reconstruction) are examined.
Finally, discussions and conclusions are given in Section 4 and Section 5 respectively.

2. Our model. Let (ujz,u;,) be gradient vector at pixel j. Then equation (1.4) can be rewritten

J() = 37 (Jugel + ugy| = ay/ud, +43,) - (2.1)

J

as

This point-wise formulation suggests that sparsity is enforced on every gradient vector. More specifi-
cally, we encourage the gradient to be 1-sparse at every pixel, which implies that horizontal or vertical
edges are more preferable in this model. In order to understand the image gradient and 1-sparsity, we
plot the histogram of gradient angles over the range of [0,90] degree in Figure 2.1 for a large number
of natural images. The angle distribution in other quadrants is similar. As shown in Figure 2.1, the
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F1G. 2.1. The histogram of gradient angles over 300 images from Berkeley segmentation dataset [27]. Two largest
peaks are at 0 and 90 degrees, indicating that gradient vectors are mostly 1-sparse.

two largest peaks are at 0 and 90 degrees, which implies that gradient vectors are 1-sparse at a fairly
good chance, with non-sparse occurrences also at positive probability. Hence we insert a constant «
in (1.4) to reflect such behavior in the histogram. In Figure 2.2, we plot the level lines of Ly norm on
the gradient, whose value is 0 at origin, 1 at axes, and 2 elsewhere. The level lines corresponding to
a < 1in (1.4) is closer to Lo than that of & = 1 in the sense that the latter yields 0 at both axes.

Let us derive the value of a based on the gradient distribution. Suppose that the gradient value
D,u follows the distribution [21], ﬁe“”'p where T'(t) = f0+oo x'~le~®. It is Gaussian distribution
for p = 2, Laplacian distribution for pp: 1, and hyper-Laplacian for 0 < p < 1. We have

—+o0 » 1 “+ o0 ]_" 2
By = E|Dyu| = —2 / e 171" |z|dx = 71/ e~itr Nt = (’1’) , (2.2)
or (%) —o0 I'(;) Jo NG
—+00 v 1 —+o00 . ]_" 3
Eo = E|Dyul? = —L / e 17" |2|2dz = 71/ e~ itrldt = (f) . (2.3)
or (%) —oo I'(5) Jo I'(;)
The value of a corresponds to the ratio of Ly and Lo, i.e.,
E I'(2
o= 2/p) (2.4)

" VE: JTE/pI(/p)

Table 2.1 lists the values of « based on gradient distributions for p = 0.5,1,2. We analyze the gradient
distribution in Figure 2.3 which shows that the distribution of image gradient data matches the p = 1/2
distribution better than classical Gaussian (p = 2) or Laplacian (p = 1) distribution. This observation
is consistent with the choice of hyper-Laplacian [4,21] for image processing (p € [0.5,0.8]). In the
rest of the paper, we shall fix the weighting coefficient & = 1/2 to approximate the desired value in
Table 2.1.
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F1G. 2.2. Level curves of different metrics. The level lines corresponding to o < 1 in (1.4) is closer to Lo than
that of a =1 in the sense that the latter yields 0 at both azes.

TABLE 2.1
The value of o based on the gradient distribution.

D (67
0.5 [ 0.5477
1 ]0.7071
2 107979

2.1. Numerical algorithms. To solve (1.1) with J(u) defined in (1.4), we apply the technique
of difference of convex algorithm (DCA) by linearizing the isotropic term

= argmuin | Dyullr + || Dyull1 — a(Vu,q") + %HAu — f||§ , (2.5)

for ¢" = (¢}, q)) = (Deu™, Dyu™)/+/|Dyu? + |[Dyun[? at step u™. Note that ¢" is a point-wise
calculation; and if the denominator is zero at some point, the corresponding ¢™ value is set to be zero.
Each DCA subproblem, eq. (2.5), amounts to solving a TV type of minimization. We employ the split
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Fic. 2.3. The plot of log probability v.s. gradient in comparison with different distributions, indicating that the
gradient distribution of a large natural image dataset matches Ly,o or the p = 1/2 hyper-Laplacian distribution better
than classical Gaussian or Laplacian distribution.

Bregman technique [15] to do the job. Specifically, we introduce two auxiliary variables and split the
anisotropic term in the following way,

ut = arg min ||do[ly + lldy[ — o(d - 4} +dy - qy)

7 A A
2w £+ 2 — Dol + 5y Dyl (26)
in which d, dy can be updated via soft shrinkage, defined as
shrink(s,y) = sgn(s) max{|s| — v, 0} . (2.7)

The pseudo-code is summarized in Algorithm 1. The algorithm is efficient for many applications where
the matrix to be inverted is diagonal or can be diagonalized by Fourier transform, which is true for
image denoising, deconvolution, and MRI reconstruction.

Algorithm 1 for solving unconstrained problem (2.5)
Define u = ¢, = ¢y = 0,2 = f and MaxDCA, MaxBregman
for 1to MAXDCA do
by =b, =0
for 1 to M AX Bregman do
u=(uATA - A\A)"Y(uAz + ADT(d, — b,) + )\Dg(dy —by))
d, = shrink(Dyu + by + agqe /A, 1/A)
dy = shrink(Dyu + by + agy /X, 1/X)
by = by + Dyu+d,
by = by + Dyu +dy

end for
(42, ay) = (Dzu, Dyu)/\/|Dyul? + [Dyul?
end for

For the corresponding constrained problem,
min || Dyully + || Dyull1 — ol Vull2 s.t. Au=f, (2.8)
the DCA is expressed as

u"tt = argnbin{HDg;qu + | Dyully — a(Vu,q") st. Au=f}. (2.9)
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Each DCA subproblem could be reduced to a sequence of unconstrained problems of the form

upsr = axgmin | Dyl + Dyl — (V. q%) + L 4u — 53 (2.10)
Zk4+1 = 2k + f— Auk+1 . (211)

Again the first equation can be solved by the split Bregman method. Algorithm 2 for solving the
constrained problem (2.9) is almost the same as Algorithm 1, except for an additional update on z.

Algorithm 2 for solving constrained problem (2.9)

Define u = g, = ¢y = 0,2 = f and MaxDCA, MaxBregmanlnner, MaxBregmanQuter
for 1to MAXDCA do
by =b,=0
for 1 to MaxBregmanOuter do
for 1 to M AX BregmanInner do
u=(pATA - \A) " (uAz + ADX(d, — b,) + /\Dg(dy —by))
d, = shrink(D,u + by + agz /A, 1/X)
d, = shrink(Dyu + b, + agy /A, 1/X)
by = by + Dyu+d,
by = by + Dyu +d,

end for
z=z+ f— Au
end for
(42+0y) = (Do, Dyu)//[Dyul? + [DyuP?
end for

2.2. Convergence analysis. We want to show that the sequence of {u"™} obtained from the
DCA iterations, i.e., eq. (2.5), converges to a stationary point. The standard DCA requires strong
convexity to prove convergence [35], here we can get rid of this requirement using the fact that L; is
convex (not strictly though), and its subgradient® is a close set. We first prove two lemmas saying
that the objective function is coercive and monotonically non-increasing for the minimizing sequence;
and then complete the convergence proof.

LEMMA 2.1. Suppose p > 0,0 < a < 1, and ker(A)(\ ker(D) = {0}, where D = [D,; D,]. Then
the objective function

1
F(u) := |Daully + [Dyully = ally/[Dzul® + [ Dyul[ly + Sl Au = f5

1S coercive.

Proof. Tt suffices to show that for any fixed u € R™ \ {0}, F(yu) — oo as v — co. We discuss two
cases separately.
o If u ¢ ker(D), then we have

F(yu) > (1 = a)y([[Dyully + |Dyullr) = 00 as v =00,

since |[\/[Daul® + [Dyul? |1 < [Dyully + | Dyully.

o If u € ker(D), then Au # 0, since ker(A) [ ker(D) = {0} and u # 0. Therefore, we have

(V[ Aull3  [I£]I3) = 00 asy— oo

1 1
F(yu) > §||’YAU —flI3 > 5

I'We say a vector g is a subgradient of f at x € dom(f) if f(2) > f(z) + g7 (2 — ) for all z € dom(f).
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LEMMA 2.2. If the sequence {u™} is generated by the DCA algorithm (2.5), i.e.,
n+1 . Vu" 1% 9
u"" = argmin || Dyully + [[Dyully — O<<W,VU> + 5[ Au = fllz

then

F(u™) — F(u"™) > 0. (2.12)

Proof. It follows from the first-order optimality condition at w"*! that there exist p"*! €
A||Du"™*1|; such that

p" T —ag" 4+ pAT (Aut — f) =0. (2.13)
A simple calculation shows that

F(u") = F(u"*)
= %”A(u” —u 3+ p(A” —um ), A" — ) + [ Du” [l — |Du = al[Vut s — [ Ve T2)

- %”A(u” —u 3 = " g™ w" — w4 [ Dut = [ Du = o[V = [[Vu T 2)

M n n n (s n n n n
= SlA@™ = D5+ ([Du"l = ™ u) + al[Ve s = (g7, Vu )

The second equality above is obtained from left multiplying (2.13) by (u"™ — u"*1)T, and third one
uses the fact that (p"*1 u"tt) = ||DunT;.
The chain rule of subgradient [18] suggests that 9| Dul|; = DT9| Dul|,, where

alr|y = { 11 r=0,

sign(r) otherwise .

It implies that || Du™||; — (p" ™1, u™) = || Du"|; — (p" T, Du™) > 0, since p"*! < 1 for each component.
Using the definition of subgradient and the fact that ¢" € 9||Vul|2, we have ||Vu"t|| — (g™, Vu"T1) >
0, which concludes the proof. O

THEOREM 2.3. Under the assumptions in Lemma 2.1, any non-zero limit point u* of {u™} satisfies
the first-order optimality condition, which means u* is a stationary point.

Proof. 1t follows from Lemma 2.1 and Lemma 2.2 that the objective function F' is coercive,
monotonically decreasing, and convergent. As a result, the sequence {u"} is bounded, and

|A(u™ —u" )]s =0, (2.14)
[Vu" T2 — (¢", Vu™) = 0. (2.15)

We start our algorithm from u® = 0, and u' is obtained from
1_ : I 2
u" = argmin || Dul|; + §HAu — 15 .

If u! is a constant vector, we stop our algorithm; otherwise F(u') < F(v) for any constant vector v.
Since F' monotonically decreases, any subsequent solution u™ for n > 1 is not constant. Then we can
properly define

(Vun, Vuntl)
IVur 2| Vurttz -

c" =
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Eq. (2.15) suggests that (1 — ¢")||Vu™!|| — 0. Therefore, ¢® — 1. It follows from the minimiz-
ing sequence that ||[Vu"|; — |[Vu"*!|; — 0, and so V(u™ — u"*!) — 0. Combining (2.14) and
ker(A) (N ker(D) = {0}, we get u™ — u"Tt — 0.

This implies that there exists a subsequence of {u™} converging to u*, denoted as {u™*}. The
optimality condition at the ny—th step of DCA reads

nkfl

0 € 9| Du"* Ve AT (Au™ — 2.16
€ || u ||1+O& ||Vu”k_1H2 +ILL ( u f) I ( )
or
Vel
Su, A f) € 3l Du™ |y (2.17)

We can show Du™* converges to Du*, as

|Du™ — Du*|| < | D] - |lu™ —u*|| = 0 as ni — oo .
When ny, is sufficiently large, supp(Du*) C supp(Du™) and sign(Du™) = sign(Du*). Using the chain
rule of subgradient, we have d|Du™ |, C d|Du*|;, and DT9|Du™|; C DTd|Du*|;. Consequently, it
follows from (2.17) that

Va1

-V e — uAT(Au™ — f) € D|Du*|; .
We assume ngl\ = 0 if || Vu|| = 0 at some points. Letting ni — oo, we obtain
Vu*
v U AT (4w — f) € DIDus
[Vur]|

which means that u* satisfies the first-order optimality condition. O

3. Experiments. We apply the proposed method to three applications: image denoising, decon-
volution, and the MRI construction. The matrix A in these examples can be diagonalized by Fourier
transform, and hence Algorithm 1 or Algorthm 2 can be efficiently implemented. We compare L; and
Ly — aly for @« = 0.5 or 1 with some existing methods, such as Ly for image smoothing in [38], Ly
n [31], L, for p =2/3 in [21], and L; + L3 in [2] for image deblurring. We use structural similarity
(SSIM) index [37] as a quantitative measure for image quality. Let us first define local similarity index
computed on windows x and y,

(2pzpiy + 1)(204y + c2)

ssim(z,y) = ,
)= e+ a) @+ +a)

(3.1)

where pu,, p1,, are the average of z,y, o2, O’Z are the variance, o,, is covariance of z,y, and ci, cy are

two variables to stabilize the division with weak denominator. The overall SSIM is the mean of local
similarity indexes, i.e.,

N
SSIM(X,Y) := % > " ssim(aq, yi) | (3.2)
i=1

where X is a reference image, Y is a distorted one, x;,y; are corresponding windows indexed by ¢, and
N is the number of windows. Here we consider windows of size 8 x 8.

Image denoising. We examine the problem of image denoising using an artificial piece-wise
constant image in Figure 3.1 and a Lena image in Figure 3.2. We assume zero-mean additive Gaussian
noise with standard deviations being 0.2 and 0.05 respectively. Not only does our method work
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noisy, SSIM = 0.140

Lo, SSIM = 0.148 Ly + L3, SSIM = 0.943

Ly, SSIM = 0.881 — Ly, SSIM = 0.962 Ly —0.5Ls, SSIM = 0.928

Fic. 3.1. Denoising results with comparison to Lo in [38] and Ly + L3 in [2].

particularly well on horizonal or vertical edges by design, it can deal with natural images as well. To
verify convergence analysis, the difference of 4™ and u™~! versus iterations is plotted in logarithm
scale for both denoising examples shown in Figure 3.3, which shows that L; — 0.5Ls converges faster
than Ly — Ly. As the ground-truth is available, we plot the relative errors versus cpu runtime for
Li,L1 — Ly, L1 — 0.5Ly in Figure 3.4. This figure implies that our solutions oscillate around the
ground truth due to the nonconvex nature of our model. Additionally we observe that the larger « is
(say approaching 1), the less well-behaved DCA becomes due to more weight on the nonconvex term.
On the other hand, Ly — Ly yields better results than Ly — 0.5L5 for the first few DCA iterates. The
denoising results presented in Figure 3.1 and Figure 3.2 are from stopping DCA after 2 iterations.

Image deblurring. In Figure 3.5, a binary image is vertically blurred by motion blur of 15 pixels
plus Gaussian additive noise with zero mean and standard deviation 0.1. Our method outperforms L
in [31], L, for p=2/3 in [21], L1 + Lo in [2], and the state-of-the-art deblurring method BM3D [11].
In Figure 3.6, we present deblurring results for a natural image: Cameraman. The original image is
blurred by 15 x 15 Gaussian blur whose standard deviation is 1.5 plus Gaussian additive noise with
zero mean and standard deviation 0.05. Although Lg, Ly/3 and BM3D are better than ours in terms
of SSIM, their results have some ringing artifacts. In both deblurring examples, our method is better
than the classical L; approach. The relative errors versus computational time is plotted in Figure 3.7
for both examples. It shows similar behavior as in the denoising problem that L; — Lo tends to
worsen beyond certain iterations while L; — 0.5Ls is more stable. The deblurring results presented in
Figure 3.5 and Figure 3.6 are from stopping DCA after 2 and 10 iterations for Ly —0.5Ly and L; — Lo
respectively. A discussion on stopping criterion is given later.

MRI reconstruction. In Figure 3.8, we investigate the MRI reconstruction problem using a
Shepp-Logan phantom from 7 and 8 radial projections. There is no noise when we synthesize the data.
Consequently we adopt the constrained formulation, i.e., Algorithm 2 for solving eq.(2.9). Due to the
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noisy, SSIM = 0.7317 Lo, SSIM = 0.875 Ly + L3, SSIM = 0.913

Ly — Lo, SSIM = 0.926 L1 — 0.5Lo, SSIM = 0.939

K L L L . L L I I : I I I . I . I L
1 2 3 4 5 5 7 8 ] 1 1 2 3 4 5 5 7 g 9 10
iterations iterations

FIG. 3.3. The difference of u™ and u"~' wersus iterations is plotted in logarithm scale for denoising examples in
Figure 3.1 (left) and Figure 3.2 (right). L1 — 0.5Ly converges faster than L1 — Lo.

presence of complex values in MRI reconstruction problem, SSIM is no longer applicable; instead we
use root-mean-square (RMS) error to measure the performance quantitatively. RMS between reference

and distorted images X, Y is defined as RMS(X,Y) = LMHX —Y||2 where M is the number of pixels

in images X,Y. Figure 3.8 shows that our method can get a perfect reconstruction using only 8
projections, while a similar work [8] reports that 10 projections are required. When the number of
projections is down to 7, L1 — 0.5Ly is much better than L, and L; — Ly visually as well as in terms
of RMS. The relative errors versus cpu time is plotted in Figure 3.9. The relative errors of Ly — Lo
iterations in the constrained formulation appear as stable oscillations in contrast to the unstable
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F1G. 3.4. The relative errors versus runtime for methods L1, L1—La, L1—0.5La for denoising examples in Figure 3.1
(left) and Figure 3.2 (right). Our model solutions are seen to oscillate around the ground truth due to nonconvexity.

oscillations in the unconstrained problems.

4. Discussions. Let us draw some connections of this work to two existing methods, Lysaker-
Osher-Tai (LOT) model [24] and Bregman iterations [29]. Additionally, we comment on the stopping
criterion.

4.1. Relation to existing methods. At first, the iterative scheme (2.6) for « = 1 resembles
the work of denoising the normals, proposed by Lysaker-Osher-Tai [24],

u™ = argmin, |Vuls — ¢" - Vu + gHAu — flI2, (4.1)

Vu™

where ¢ = V] is the surface normal. Notice that the TV norm in (4.1) is isotropic, while the first
U

term in our model is the anisotropic TV; and hence L; — Ly applied to the gradient with linearized
Lo term is different from the LOT.

On the other hand, the LOT model leads to the discovery of Bregman iterations [29], which relates
to the DCA as well. Specifically, the Bregman distance [1] based on a convex functional J(-) between
two points u and v is defined as

DY (u,v) := J(u) — J(v) — (p,u —v) , (4.2)

where p € 9J(v) is the subgradient of J at the point v. Osher et. al. [29] suggest an iterative refinement
procedure to update u as follows,

w1 = argmin D’}n (u,u™) + gHAu — flI3, (4.3)
= argmin J(u) = (p",u) + 5| Au— I3 . (4.4)
which is referred to as the Bregman iterations. Let J(u) = ||Vu||2 be the isotropic TV as in the LOT
model, and its subgradient has the form —V - ﬁ Consequently, we rewrite the second term in Eq.
u
(4.4) as
Vu™ vu™
o) = (Vo) = (oo Vo) 4.5
0" = (- ) = (. V) (1)

which coincides with the second term in the LOT model (4.1).
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original noisy, SSIM = 0.2596 BM3D, SSIM = 0.917

Lo, SSIM = 0.879 Lyys, SSIM = 0.8871 Ly + L2, SSIM = 0.934
Ly, SSIM = 0.945 — Ly, SSIM = 0.974 Ly — 0.5L, SSIM = 0.967

:]O

FiG. 3.5. Deblurring results with comparison to Lo in [31], Ly for p = 2/3 in [21], L1 + L2 in [2] and the
state-of-the-art deblurring method BM3D [11].

:]O

Bregman iterations can be viewed as an optimization technique. Computing the optimality con-
dition for each subproblem (4.4), we obtain

4 pAT (AT — f) =0 (4.6)

Summing up to n + 1, we have p"t1 — AT (untl — 27) for p° = 0 and 2"+ = 2" + (f — Au™). Tt is
the optimality condition for solving u"*! from argmin J(u) + 4[[Au — 2"||3. In short, the Bregman
iterations can be rewritten as

w1 = argmin J(u) + gHAu — 2|3, (4.7)
2L = 2" (f — Au™) . (4.8)
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~noisy, SSIM = 0.5459 = 0.849

BM3D, SSIM

Lass, SSIM = 0.8317

Ly + L3, SSIM = 0.81

4
Ly, SSIM = 0.819 L; —0.5L,, SSIM = 0.828

FiG. 3.6. Deblurring results with comparison to Lo in [31], Ly for p = 2/3 in [21], L1 + L2 in [2] and the
state-of-the-art deblurring method BM3D [11].

The DCA for solving L; — Lo minimization can be derived from a similar way of the Bregman
iterations. Let p and ¢ be the subgradient of anisotropic J,,; and isotropic J;4, respectively. Lagging
the isotropic term gives us

Pt —p" —alq" — ") + pAT (A — f) =0 (4.9)
We apply the same summation technique as in (4.6) and obtain

P — g 4 pAT (Aun T — 2y =0 | (4.10)
2T =2 (f — Au™) . (4.11)
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relative errors
relative errors
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10 20 30 40 &0 B0 mn a0 0 20 40 B0 80 100 120
cputime cpu time

Fic. 3.7. The relative errors versus runtime for methods Li1,L1 — Lo, L1 — 0.5L2 for deblurring eramples in
Figure 3.5 (left) and Figure 3.6 (right).

Ly, RMS = 0.481 Ly — Ly, RMS = 0.384 Ly — 0.5Ly, RMS=0.355

Ly, RMS = 0.23 — Ly, RMS = 4e-4 —0.5Ly, RMS=5¢-4

F1G. 3.8. MRI reconstruction using 7 (top) and 8 projections (bottom). The root-means-error (RMS) is provided
for comparison.

for p° = ¢° = 2 = 0. The subproblem (4.10) is equivalent to
utt = a'rgmin Jani(u) - a<qnvu> + %HAU - Zn”g ) (412)

which looks very similar to applying the DCA for a constrained problem, eq. (2.5). The algorithm
derived from the Bregman iterations is summarized in Algorithm 3. Its difference to Algorithm 2 lies
in the update of z and ¢. For Algorithm 2, z is updated MaxBregmanQuter iterations and then
q is updated, while Algorithm 3 is to update z and ¢ simultaneously. The comparison between the
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FiG. 3.9. The logarithm of relative errors versus runtime for methods L1, L1 — L2, L1 —0.5Lg in MRI reconstruction
problem using 7 (left) and 8 (right) projections. All are solved under constrained formulation.

Bregman and DCA iterations for solving such constrained nonconvex problems is a subject of further
study.

Algorithm 3 for solving constrained problem (2.9) using Bregman method
Define v = g, = ¢, = 0,2 = f and MaxDCA, MaxBregman
for 1to MAXDCA do
by =b,=0
for 1 to MaxBregman do
u=(pATA - A\AN) " (uAz + A\DI(d, — b,) + )\Dg(dy —by))
d; = shrink(D,u + by + agy /A, 1/X)
d, = shrink(D,u + by + agy /A, 1/N)
by = by + Dyu+d,
by = by + Dyu +dy

end for

z=z4+ f—Au

(42+0y) = (Do, Dyu) //[Dul? + [ DyuP?
end for

4.2. Stopping criterion. We discuss the stopping conditions of Algorithm 1 and Algorithm 2
for unconstrained and constrained problems respectively. Both algorithms have an outer DCA loop,
which iteratively updates ¢, and inner iterations for updating u. We use u™ and uy, to specify the outer
and inner outputs of u.

The inner loop is easier to impose a proper stopping criterion for, because the inner loop solves
a convex subproblem. Some standard stopping criteria are either the relative error being small or
objective function being stagnant or both i.e.,

|F'(ugt1) — F'(ug)|
| (u)|

[[trtr — ui
|

<€, and/or < €p (4.13)

with pre-defined tolerance values €, er. In this paper, we choose to stop the inner iteration when the
relative error is smaller than 1le=5.

As for the outer iterations, Figures 3.4, 3.7, and 3.9 show that the relative error develops an
oscillatory pattern. One can estimate the onset time ¢; of the oscillation stage of the error based on
training images. In the denoising (deblurring) example, ¢, = 2 (= 10). Hence, a good stopping time
for the outer iteration is at the end of an inner loop when the cpu time exceeds t;.
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More generally, if the error does not follow a clear oscillatory pattern, one could inject random
perturbations with slowly reduced magnitudes to steer away from unstable stationary points or direc-
tions to help convergence towards the ground truth [17]. This approach is closely related to simulated
annealing [14, 20].

5. Conclusion. We proposed a weighted difference of anisotropic and isotropic total variation as
a regularization term for image processing applications. We presented a difference of convex algorithm
(DCA) for both the constrained and unconstrained formulations. We proved the convergence of the
algorithm to ensure that each limiting point is a stationary point and the values of the objective function
monotonically decrease. The behavior of the iterations was observed numerically to be oscillatory
around the ground truth. The deviation occurs at the beginning of outer loops of DCA. A stopping
criterion was introduced based on such oscillatory pattern of the errors.

In the numerical experiments, we examined three particular applications: image denoising, deblur-
ring and MRI reconstruction. By design, our method works particularly well for piecewise constant
images. For natural images, it improved the classical TV model, and is comparable to the state-of-
the-art methods. In future work, we plan to carry out a detailed comparison between the DCA and
Bregman methods, and further study the error pattern and the resulting stopping criterion for other
imaging science problems.
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