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COMMUNITY DETECTION IN SPARSE RANDOM NETWORKS

Nicolas Verzelen! and Ery Arias-Castro?

We consider the problem of detecting a tight community in a sparse random network. This is
formalized as testing for the existence of a dense random subgraph in a random graph. Under
the null hypothesis, the graph is a realization of an Erdés-Rényi graph on N vertices and with
connection probability pg; under the alternative, there is an unknown subgraph on n vertices
where the connection probability is p1 > po. In (Arias-Castro and Verzelen, 2012), we focused on
the asymptotically dense regime where pg is large enough that log(1 V (npo)~') = o(log(N/n)).
We consider here the asymptotically sparse regime where pg is small enough that log(N/n) =
O(log(1V (npo)~1)). As before, we derive information theoretic lower bounds, and also establish
the performance of various tests. Compared to our previous work (Arias-Castro and Verzelen,
2012), the arguments for the lower bounds are based on the same technology, but are substantially
more technical in the details; also, the methods we study are different: besides a variant of the scan
statistic, we study other statistics such as the size of the largest connected component, the number
of triangles, the eigengap of the adjacency matrix, etc. Our detection bounds are sharp, except in
the Poisson regime where we were not able to fully characterize the constant arising in the bound.

Keywords: community detection, detecting a dense subgraph, minimax hypothesis testing, Erdos-
Rényi random graph, scan statistic, planted clique problem, largest connected component.

1 Introduction

Community detection refers to the problem identifying communities in networks, e.g., circles of
friends in social networks, or groups of genes in graphs of gene co-occurrences (Bickel and Chen,
2009; Girvan and Newman, 2002; Lancichinetti and Fortunato, 2009; Newman, 2006; Newman
and Girvan, 2004; Reichardt and Bornholdt, 2006). Although fueled by the increasing importance
of graph models and network structures in applications, and the emergence of large-scale social
networks on the Internet, the topic is much older in the social sciences, and the algorithmic aspect
is very closely related to graph partitioning, a longstanding area in computer science. We refer the
reader to the comprehensive survey paper of Fortunato (2010) for more examples and references.
By community detection we mean, here, something slightly different. Indeed, instead of aiming
at extracting the community (or communities) from within the network, we simply focus on deciding
whether or not there is a community at all. Therefore, instead of considering a problem of graph
partitioning, or clustering, we consider a problem of testing statistical hypotheses. We observe
an undirected graph G = (£,V) with N := |V| nodes. Without loss of generality, we take V =
[N] := {1,...,N}. The corresponding adjacency matrix is denoted W = (W; ;) € {0,1}V*N,
where W; ; = 1 if, and only if, (¢,j) € £, meaning there is an edge between nodes i,j € V. Note
that W is symmetric, and we assume that W;; = 0 for all ¢. Under the null hypothesis, the
graph G is a realization of G(IV, pg), the Erdos-Rényi random graph on N nodes with probability of
connection py € (0, 1); equivalently, the upper diagonal entries of W are independent and identically
distributed with P(W; ; = 1) = po for any i # j. Under the alternative, there is a subset of nodes
indexed by S C V such that P(W; ; = 1) = p; for any 4, j € S with i # j, while P(W; ; = 1) = po for
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any other pair ¢ # j. We assume that p; > pg, implying that the connectivity is stronger between
nodes in S, so that S is an assortative community. The subset S is not known, although in most
of the paper we assume that its size n := |S| is known. Let Hj denote the null hypothesis, which
consists of G(NV,pg) and is therefore simple. And let Hg denote the alternative where S is the
anomalous subset of nodes. We are testing Hy versus H; := UI S|=n Hg. We consider an asymptotic
setting where

N — 00, n=n(N)—oo, n/N—-0, n/logN — oo, (1)

meaning the subgraph is small, but not too small. Also, the probabilities of connection, pg = po(N)
and p; = p1(N), may change with N — in fact, they will tend to zero in most of the paper.

Despite its potential relevance to applications, this problem has received considerably less at-
tention. We mention the work of Wang et al. (2008) who, in a somewhat different model, propose a
test based on a statistic similar to the modularity of Newman and Girvan (2004); the test is evalu-
ated via simulations. Sun and Nobel (2008) Rukhin and Priebe (2012) consider a test based on the
maximum number of edges among the subgraphs induced by the neighborhoods of the vertices in
the graph; they obtain the limiting distribution of this statistic in the same model we consider here,
with pg and p; fixed, and n is a power of N, and in the process show that their test reduces to the
test based on the maximum degree. Closer in spirit to our own work, Butucea and Ingster (2011)
study this testing problem in the case where py and p; are fixed. A dynamic setting is considered
in (Heard et al., 2010; Mongiov1 et al., 2013; Park et al., 2013) where the goal is to detect changes
in the graph structure over time.

Our previous work. We recently considered this testing problem in (Arias-Castro and Verze-
len, 2012), focusing on the dense regime where log(1 V (npg)~!) = o(log(N/n)) or equivalently
po > n"Y(n/N)°M. (For a,b € R, a Ab denotes the minimum of a and b.) We obtained information
theoretic lower bounds, and we proposed and analyzed a number of methods, both when py is
known and when it is unknown. (None of the methods we considered require knowledge of p;.) In
particular, a combination of the total degree test based on

W= Z Wi (2)

1<i<j<N
and the scan test based on

W := max W, Wg = Z Wi, (3)

|S|=n L=
1,JE€S,i<j

was found to be asymptotically minimax optimal when pg is known and when n is not too small,

specifically n/log N — oo. This extends the results that Butucea and Ingster (2011) obtained

for pp and p; fixed (and py known). In that same paper, we also proposed and studied a convex

relaxation of the scan test, based on the largest n-sparse eigenvalue of W2, inspired by related work

of Berthet and Rigollet (2012).

Also in (Arias-Castro and Verzelen, 2012), we separately considered the very special case where
p1 = 1, meaning that the anomalous subgraph S is a clique. This is the case that Sun and Nobel
(2008) consider motivated by a data mining application. We confirmed the intuition that the clique
test, which is based on the size of the largest clique, is asymptotically minimax optimal. We note
that the special case where pg = 1/2 and p; = 1 is often called the ‘planted clique problem’ and has
received substantial attention in recent times (Alon et al., 1998; Dekel et al., 2011; Feige and Ron,
2010), where the main goal has been on designing polynomial-time algorithms that can detect (or
even extract) the clique with high confidence. No such algorithm is known when the clique is of



size n = o(v/ N), even though in this setting the clique test can detect cliques of size n > clog N if
¢ > 2/log?2 is fixed.
Continuing our work, in the present paper we focus on the sparse regime where

— log(npo) > colog(N/n) for some constant ¢y > 0. (4)
Obviously, (4) implies that npy < 1. We define
Ao = Npo, A1 = npr, (5)

and note that \g and A\; may vary with N.

This paper. Compared to our previous work (Arias-Castro and Verzelen, 2012), the derivation
of the various lower bounds here rely on the same general approach. Let G(N, po;n,p1) denote the
random graph obtained by choosing S uniformly at random among subsets of nodes of size n,
and then generating the graph under the alternative with S being the anomalous subset. When
deriving a lower bound, we first reduce the composite alternative to a simple alternative, by testing
Hy : G(N,po) versus Hy := G(N,po;n,p1). Let L denote the corresponding likelihood ratio,

ie., L = (]Z)_l Z‘S‘:n Lg, where Lg is the likelihood ratio for testing Hy versus Hg. Then
these hypotheses merge in the asymptote if, and only if, L — 1 in probability under Hy. A
variant of the so-called ‘truncated likelihood’ method, introduced by Butucea and Ingster (2011),
consists in proving that Eo(L) — 1 and Eq(L?) — 1, where L is a truncated likelihood of the form

L= (]T\L[ )_1 Z| S|=n Lglrg, where I'g is a carefully chosen event. An important difference with our
previous work is the more delicate choice of I'g, which here relies more directly on properties of
the graph under consideration. We mention that we use a variant to show that Hy and H; do
not separate in the limit. This could be shown by proving that the two graph models G(N, pg)
and G(N, po;n,p1) are contiguous. The ‘small subgraph conditioning’ method of Robinson and
Wormald (1992, 1994) — see the more recent exposition in (Wormald, 1999) — was designed for
that purpose. For example, this is the method that Mossel et al. (2012) use to compare a Erdos-
Rényi graph with a stochastic block model® with two blocks of equal size. This method does not
seems directly applicable in the situations that we consider here, in part because the second moment
of the likelihood ratio L tends to infinity at the limit of detection.

Again compared to our previous work (Arias-Castro and Verzelen, 2012), the methods we pro-
pose and study here are different. Although the total degree test (2) remains a contender, scanning
over subsets of size exactly n as in (3) does not seem to be optimal anymore, all the more so when
po is small. Instead, we scan over subsets of a wider range of sizes, using

*
wi= slip TE (©)

k=n/un

where uy = loglog(N/n). We call this the broad scan test.

Our results. In analogy with our previous results in (Arias-Castro and Verzelen, 2012), we find
that a combination of the total degree test (2) and the broad scan test based on (6) is asymptotically
optimal when Ao — o0, in the following sense. Reparameterize A\g = (N/n)* with 0 < o <1 — the
case \g > N/n being settled in (Arias-Castro and Verzelen, 2012) — and consider n = N* with

0 < k < 1. Then, if kK > %I—g, the total degree test is asymptotically powerful when A; > %
1+a)/2
and the two hypotheses merge asymptotically when \; < N;%i/ When k < éi—g, that is for

3This is a popular model of a network with communities, also known as the planted partition model. In this model,
the nodes belong to blocks: nodes in the same block connect with some probability pin, while nodes in different blocks
connect with probability pous.



Table 1: Detection boundary and near-optimal algorithms in the regime Ao = (IV/n)® with 0 < a <
1 and n = N* with 0 < k < 1. Undetectable means that that the hypotheses merge asymptotically,
while detectable means that there exists an asymptotically powerful test. Here, a < b (resp. a > b),
means that there exists a positive constant C' such that a < Cb (resp. a > Cb).

K K< ;i—g K > i—g
1 . N(+a)/2
Undetectable || Ay < (1 — «)™*; Exact Eq. in (54) M << T
Detectable || A\; = (1 —a)~!; Exact Eq. in (13) A1 > NSEQJ/Q
Optimal test BROAD SCAN TEST TOTAL DEGREE TEST

Table 2: Detection boundary and near-optimal algorithms in the regimes A\g — oo and Ag — 0 and
n = N* with 0 < k < 1/2. For 1/2 < r < 1, the detection boundary accurs at A\; < N'/2/n? and
is achieved by the total degree test.

Undetectable Detectable Optimal test

1<\ < (%)0(1) limsup \; < 1 liminf A\; > 1 BROAD SCAN TEST

1 B . log(A7 1) .. elog(ATh)
N < Ao =o0(1) || limsup log(/\;‘l) > K | liminf log(/\(ljl) < k | LARGEST CC TEST

smaller n, there exists a sequence of increasing functions v, (defined in Theorem 1) such that the
broad scan test is asymptotically powerful when lim inf(1— ), (A1) > 1 and the hypotheses merge
asymptotically when lim sup(1 — «), (A1) < 1. See Table 1 and the first line of Table 2 for a visual
summary.

When N~ < \g < (N/n)°M) and n = N* with 1/2 < & < 1, the total degree test is optimal,
in the sense that it is asymptotically powerful for A?/\g > n?/N, while the hypotheses merge
asymptotically — meaning all tests are asymptotically powerless — for A\?/\g < n?/N. This is
why we assume in the remainder of this discussion that n = N* with 0 < k < 1/2.

The Poissonian regime where \g and \; are considered as fixed is depicted on Figure 1. When
A1 > 1, the broad scan test is asymptotically powerful. When Ay > e and A; < 1, no test is able
to fully separate the hypotheses. In fact, when A\g is bounded from above, and A; is bounded from
below away from 0, then the test based on the number of triangles has some nontrivial power,
implying that the two hypotheses do not completely merge in this case. The case where \y < e is
not completely settled. No test is able to fully separate the hypotheses if A\; < y/Ag/e. The largest
connected component test is optimal up to a constant when A\g < 1 and a test based on counting
subtrees of a certain size bridges the gap in constants for 1 > A9 < e, but not completely. When
Ao is bounded from above and A\; = o(1), the two hypotheses merge asymptotically. Finally, when
Ao — 0, the largest connected component test is asymptotically optimal (See Table 2).

We also discuss tests that can be computed in polynomial time. Besides the total degree test, the
test based on the largest connected component and the number of triangle test, already mentioned,
we discuss the maximum degree test, a test based on counting simple cycles of given (small) length,
and also some spectral methods. We find that, in the regime where Ay — 00, no test seems to come
close to the broad scan test.

Content. The remaining of the paper is organized as follow. In Section 2 we introduce some
notation and some concepts in probability and statistics, including concepts related to hypothesis
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Figure 1: Detection diagram in the poissonian asymptotic where g and \; are fixed and n = N*
with 0 < k < 1/2. “No powerful test” means that no test is able to fully separate the hypotheses.

testing and some basic results on the binomial distribution. in Section 3 we study some tests that
are near-optimal in different regimes. In Section 4 we state and prove information theoretic lower
bounds on the difficulty of the detection problem. In Section 5 we study various tests that run in
polynomial-time. In Section 6 we discuss the situations where py and/or n are unknown, as well as
open problems. Section 7 contains some proofs and technical derivations.

2 Preliminaries

In this section, we first define some general assumptions and some notation, although more notation
will be introduced as needed. We then define and discuss some basic concepts on hypothesis testing
and decision theory, and in particular describe our strategy for obtaining information theoretic lower
bounds. Finally, we list some general results that will be used multiple times throughout the paper.

2.1 Assumptions and notation

We recall that N — oo and the other parameters such as n,pg,p1 may change with N, and
this dependency is left implicit. We assume that pg is bounded away from 1, which is the most
interesting case by far, and that N?py — oo, the latter implying that the number of edges in the
network (under the null) is not bounded. Similarly, we assume that n?p; — oo, for otherwise there
is a non-vanishing chance that the community does not contain any edges. Unless stated otherwise,
we assume that n and py are both known.

Define oo A
0g Ao
- _ 7
* loa(N/n) "
in such a way that pg = % with A = (%)a The dense regime considered in (Arias-Castro

and Verzelen, 2012) corresponds to liminfa > 1. Here we focus on the sparse regime where
limsup a < 1. The case where a — 0 includes the Poisson regime where \q is constant.

Recall that G = (V, ) is the (undirected, unweighted) graph that we observe, and for S C V,
let Gg denote the subgraph induced by S in G.



We use standard notation such as ay ~ by when ay/by — 1; ay = o(by) when ay/by — 0;
ay = O(by) when ay /by is bounded; ay =< by when ay = O(by) and by = O(an); ay < by when
there exists a positive constant C such that ay < Cby and any = by when there exists a positive
constant C' such that ay > Cby. We extend this notation to random variables. For example, if
Apn and By are random variables, then Ay ~ By if Ay/Bx — 1 in probability.

For z € R, define 2 = V0 and z_ = (—z) V 0, which are the positive and negative parts of

x. For an integer n, let
n n(n —1)
n® — (2) S (3)

Because of its importance in describing the tails of the binomial distribution, the following
function — which is the relative entropy or Kullback-Leibler divergence of Bern(gq) to Bern(p) —
will appear in our results:

Hy(q) = qlog (;) +(1—q)log G_;) . pac(0,1). 9)
We let H(q) denote Hp,(q).

2.2 Hypothesis testing

We start with some concepts related to hypothesis testing. We refer the reader to (Lehmann and
Romano, 2005) for a thorough introduction to the subject. A test ¢ is a function that takes W as
input and returns ¢ = 1 to claim there is a community in the network, and ¢ = 0 otherwise. The
(worst-case) risk of a test ¢ is defined as

IN(¢) =Po(¢p=1) + ggwsw =0),

where Py is the distribution under the null Hy and Pg is the distribution under Hg, the alternative
where S is anomalous. We say that a sequence of tests (¢n) for a sequence of problems (Wy) is
asymptotically powerful (resp. powerless) if yn(¢n) — 0 (resp. — 1). We will often speak of a test
being powerful or powerless when in fact referring to a sequence of tests and its asymptotic power
properties. Then, practically speaking, a test is asymptotically powerless if it does not perform
substantially better than any method that ignores the adjacency matrix W, i.e., guessing. We say
that the hypotheses merge asymptotically if

i = inf(6) 5 1

and that the hypotheses separate completely asymptotically if 3, — 0, which is equivalent to
saying that there exists a sequence of asymptotically powerful tests. Note that if liminf~3, > 0,
no sequence of tests is asymptotically powerful, which includes the special case where the two
hypotheses are contiguous.

2.3 Some general results

Remember the definition of the entropy function in (9). The following is a simple concentration
inequality for the binomial distribution.

Lemma 1 (Chernoff’s bound). For any positive integer n, any q,p € (0,1), we have

P (Bin(n,p) = qn) < exp (—nHp(q)) - (10)



Here are some asymptotics for the entropy function.

Lemma 2. Define h(x) = zlogx —x + 1. For 0 <p < q <1, we have

2

0 < Hy(q) —ph(g/p) < 0(1(1_ p

).

The following are standard bounds on the binomial coefficients. Recall that e = exp(1).

Lemma 3. For any integers 1 < k < n,

(1) <(1)=(7)" ()

Let Hyp(NN,m,n) denotes the hypergeometric distribution counting the number of red balls in
n draws from an urn containing m red balls out of N.

Lemma 4. Hyp(N,m,n) is stochastically smaller than Bin(n, p), where p := ™.

3 Some near-optimal tests

In this section we consider several tests and establish their performances. We start by recalling the
result we obtained for the total degree test, based on (2), in our previous work (Arias-Castro and
Verzelen, 2012). Recalling the definition of A\g and A; in (5), define

P el D Aon/N)* n? (12)
’ Po N2 )\0 N '

Proposition 1 (Total degree test). The total degree test is asymptotically powerful if { — oo, and
asymptotically powerless if ( — 0.

In view of Proposition 1, the setting becomes truly interesting when ¢ — 0, which ensures that
the naive total degree test is indeed powerless.

3.1 The broad scan

In the denser regimes that we considered in (Arias-Castro and Verzelen, 2012), the (standard) scan
test based on W) defined in (3) played a major role. In the sparser regimes we consider here, the
broad scan test based on Wi defined in (6) has more power. Assume that liminf A\; > 1, so that
Ggs is supercritical under Hg. Then it is preferable to scan over the largest connected component
in Gg rather than scan Gg itself.

Lemma 5. For any A > 1, let n\ denote the smallest solution of the equation n = exp(A(n — 1)).
Let Cp, denote a largest connected component in G(m, A\/m) and assume that A > 1 is fized. Then,
in probability, |Cp,| ~ (1 —nx)m and We,, ~ %(1 —n3)m.

Proof. The bounds on the number of vertices in the giant component is well-known (Van der
Hofstad, 2012, Th. 4.8), while the lower bound on the number of edges comes from (Pittel and
Wormald, 2005, Note 5). O



By Lemma 5, most of the edges of Gg lie in its giant component, which is of size roughly
(I — mx,)n. This informally explains why a test based on W:{(lfml) is more promising that the
standard scan test based on W}.

In the details, the exact dependency of the optimal subset size to scan over seems rather intricate.
This is why in Wi we scan over subsets of size n/uy < k < n. (Recall that uy = loglog(N/n),

although the exact form of uy is not important.) For any subset S C V, let

Wig= max Wy
® TCS|T|=k

Note that W), = W} defined in (3). Recall the definition of the exponent « in (7).

Theorem 1 (Broad scan test). The scan test based on Wﬁ 1s asymptotically powerful if either

. .. n ES[WI:,S]
limsupa <1 and liminf (1 —«) sup ——= >1; (13)
k=n/un k
or
a—0 and liminfA; >1. (14)

We shall prove in the next section that the power of the broad scan test is essentially optimal:
if either limsup« < 1 and limsup (1 — «) sup’l;‘:n/uN ES[W,;"S]/k: <1,or a — 0 and limsup \; <
1, then no test is asymptotically powerful (at least when n? = o(IN), so that the total degree
test is powerless). Regarding (13), we could not get a closed-form expression of this supremum.
Nevertheless, we show in the proof that

Eg[W;

liminf sup kks] > liminf %(1 + 7)) (15)

k:n/uN
where 7, is defined in Lemma 5. Moreover, we show in Section 7 the following upper bound.

Lemma 6. B[
A
liminf sip — B <liminf S+ 14+ VT A (16)

k=n/un

Hence, assuming « and A; are fixed and positive , the broad scan test is asymptotically powerful
when (1 — a)’\Q—l(l +my,) > 1. In contrast, the scan test was proved to be asymptotically powerful
when (1 — a)% > 1 (Arias-Castro and Verzelen, 2012, Prop. 3), so that we have improved the
bound by a factor larger than 1+ 7,, and smaller than 1 + 2Af1(1 +v1+ A1). When a converges
to one, it was proved in (Arias-Castro and Verzelen, 2012) that the minimax detection boundary
corresponds to (1 — a)A;/2 ~ 1 (at least when n? = o(N)). Thus, for a going to one, both the
broad scan test and the scan test have comparable power and are essentially optimal. In the dense
case, the broad scan test and the scan test have also comparable powers as shown by the next result
which is the counterpart of (Arias-Castro and Verzelen, 2012, Prop. 3).

Proposition 2. Assume that pg is bounded away from one. The broad scan test is powerful if

nH (p1)

2log(N/n) > 1

lim inf

The proof is essentially the same as the corresponding result for the scan test itself. See (Arias-
Castro and Verzelen, 2012).



Proof of Theorem 1. First, we control Wg under the null hypothesis. For any positive constant
co > 0, we shall prove that

Po [(1—a)Wi =1+ =o(1). (17)

Consider any integer k € [n/uy,n], and let ¢ = 2(1 + ¢co)/[(k — 1)(1 — a)]. Recall that k(2 =
k(k — 1)/2. Applying a union bound and Chernoff’s bound (Lemma 1), we derive that

1 N
Py {WZJ > 1+Cok] < (k) exp |:_k(2)H(Qk‘)]

—

IN

exp [k{ log(eN/k) — kng(qk)}} .

We apply Lemma 2 knowing that gx/po — oo, and use the definition of « in (7), to control the
entropy as follows

k—1 k—1 qi
i ~ loo | 2&
5 (qx) 5 dk1og [po}

~ (1+co)log(N/n) ,
since log(uy) = o(log(N/n)). Consequently,

1
P, [W,j > 1+C°

k] < exp [—kcolog(N/n)(1+ o(1))] ,

where the o(1) is uniform with respect to k. Applying a union bound, we conclude that
n
P, [(1 Wi 1+ co} < Y exp[—heolog(N/n)(1 + o(1))] = o(1) .
k=n/un

We now lower bound Wi under the alternative hypothesis. First, assume that (13) holds, so
that there exists a positive constant ¢ and a sequence of integer k, > n/uy such that IES[WI; sl >
kn(1+¢)/(1 — a) eventually. In particular, Es[W} ¢] — oo. We then use (19) in the following
concentration result for W,: g 7

Lemma 7. For any integer 0 < k < n, we have the following deviation inequalities

o 2
P [Wis = Es[Wig] +1] < exp [—1 52 {m SEst;S] H cve>8(1v, [BsWi ) 5 (18)

k,S

It follows for Lemma 7 that, with probability going to one under Pg,

%% %%
Fn kn75>1+6/2.
kn = kn — 11—«

wh>
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Taking ¢y = ¢/4 in (17) allows us to conclude that the test based on W with threshold % is
asymptotically powerful.

Now, assume that (14) holds. Because Wi is stochastically increasing in A; under Pg, we may
assume that A\; > 1 is fixed. We use a different strategy which amounts to scanning the largest
connected component of Gg. Let C3.. be a largest connected component of Gg.

For a small ¢ > 0 to be chosen later, assume that (1 —c)n(1 —ny,) < |C3..| < (14+c)n(l—ny,)
and Wes > (1-— c)’%‘l(l - nil), which happens with high probability under Pg by Lemma 5. Note
that, because A; > 1, we have 1y, < 1, and therefore |C3
S

max?

ax| < n. Consequently, when computing

Wi we scan C implying that

Wi Ve o (9S00 1chy
Chaxl = A+ —m)n ~ 1+c 2
Since ¢ above may be taken as small as we wish, and in view of (17), it suffices to show that
A1(1+my,) > 2 . Since 7, converges to one when A goes to one, we have limy_,1 A(1 + 7)) = 2.
Consequently, it suffices to show that the function f : A +— A(1 + 7,) is increasing on (1,00). By
definition of 7y, we have 1, < 1/ (since e < 1/)) and i/(\) = nx(na—1)/(1—Any). Consequently,
/(N =2+ L Hence, f/(\) is positive if 7y < (2A —1)~! := ay. Recall that 7 is the smallest

1—-An

solution of the e(;uation x = exp[A\(x — 1)], the largest solution being = 1. Furthermore, we have
x > exp[A(z — 1)] for any = € [y, 1]. To conclude, it suffices to prove ay > eMax—1)  This last
bound is equivalent to

1

A——————— —log2A—1)>0

3 2o o8l )
The function on the LHS is null for A = 1. Furthermore, its derivative ?2(?:32 is positive for A > 1,
which allows us conclude. O

Proof of Lemma 7. The proof is based on moment bounds for functions of independent random
variables due to Boucheron et al. (2005) that generalize the Efron-Stein inequality.
Recall that Gg = (S5,&s) is the subgraph induced by S. Fix some integer k € [0,n]. For

any (i,7) € &g, define the graph gg’j) by removing (7, j) from the edge set of Gg. Let W:(Fi’j) be
defined as Wy but computed on QS’] ), and then let W,: (g;’] ) = Maxpcs,(T|=k W%w ). Observe that
0<Wig— W,: (;] ) < 1 and that W,: (éj ) is a measurable function of Eg’j ), the edges set of gg’j ),
Let T* C S be a subset of size k£ such that Wl;‘:s = Wp«. Then, we have

Z (Wis— W:,%j)) < Z (W~ — W#*’J)) =Wr=Wyg,

(i,7)€€s (i.4)€€s
where the first equality comes from the fact that Wy« — Wi(pi;j) =1 )eery-
Applying (Boucheron et al., 2005, Cor. 1), we derive that, for any real ¢ > 2,

[Es { Wék,s])i}] v
Bs { wis) )]

Take some ¢t > 8(1V /Eg[W} ¢]). For any ¢ > 2, we have by Markov’s inequality

W]:,S - ES

IN

( [ 2qEs[W; sl +4 ;
(Wi s — Es|

IN

2qEs[W; ] .

q
2qEs[Wy sl +q

t

Ps [Wis > Es[Wig] +1t] <
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The choice ¢ = i A WQWES] is larger than 2 and leads to (18). Similarly, if take some ¢t >

4, /Es[W} o], and apply Markov’s inequality, we get

29 Es[Wy ]

Ps [Wis < Es[Wig] —t] < ;

The choice ¢ = > 2 leads to (19). O

t2
8Eg [WI:,S}
3.2 The largest connected component
This test rejects for large values of the size (number of nodes) of the largest connected component
in G, which we denoted Cpax.
3.2.1 Subcritical regime
We first study that test in the subcritical regime where lim sup A\g < 1. Define
Iy=X—1-—1log(N) . (20)

Theorem 2 (Subcritical largest connected component test). Assume that limsup Ao < 1, loglog(N) =
o(logn) and I;()l log(N) — oo. The largest connected component test is asymptotically powerful
when either liminf A\ > 1 or

Iy log(n)
Ao + Iy, — Age™1 log(IN)

Ao < Me'™ forn large enough  and  liminf >1. (21)

If we further assume that n®> = o(N), then the largest connected component test is asymptotically
powerless when Ay < 1 for all n and

I log(n)
Ao + Iy, — Age™1 log(IN)

Ao > Mel™ for n large enough  or  limsup <1. (22)

If we assume that both A\g and A1 go to zero, then Condition (21) is equivalent to

.. . Iy, log(n)
liminf -2 >1,
I/\l log(N)

(23)

which corresponds to the optimal detection boundary in this setting, as shown in Theorem 4.

The technical hypothesis loglog(N) = o(logn) is only used for convenience when analyzing the
critical behavior A\; — 1. The condition I;()l log(N) — oo implies that Ag can only converge to zero
slower than any power of N. Although it is possible to analyze the test in the very sparse setting
where Ay goes to zero polynomially fast, we did not do so to keep the exposition focused on the
more interesting regimes.

Proof of Theorem 2. That the test is powerful when liminf A; > 1 derives from the well-known
phase transition phenomenon of Erdos-Rényi graphs.

Lemma 8. Let C,, denote a largest connected component of G(m, A/m) and assume that X € (0, 00)
1s fixed. Then, in probability,

Co I/\_llogm7 ifA<1;
" (1—n)m, fA>1.
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Proof. When A > 1, see (Van der Hofstad, 2012, Th. 4.8) — the result is actually contained in
Lemma 5. When A < 1, see (Van der Hofstad, 2012, Th. 4.4, Th. 4.5). O

Hence, under the null with limsup Ay < 1, the largest connected component of G is of order
log(N) with probability going to one. Under the alternative Hg with liminf A\; > 1, the graph
Gs contains a giant connected component whose size of order n with probability going to one.
Recalling that log(/N) = o(n) allows us to conclude.

Now suppose that (21) holds. We assume that the sequence \; is always smaller or equal to 1,
that I/\_l1 = O (log(n)/log(N)) and that log([/\_l1 V1) = o(logn), meaning that A\; does not converge
too fast to 1. We may do so while keeping Condition (21) true because the distribution of |Cpax]|
under Pg is stochastically increasing with A1, because limsup Ao < 1, Iy, +Xo— NoeP ~ T A (1—=2X0)
for A\ — 1, and because loglog(N) = olog(n).

By hypothesis (21), there exists a constant ¢’ > 0, such that

I)\o log(n)
(I)q + Ao — )\oeb‘l ) log(N)

7 := liminf >14c .

To upper-bound the size of Cp,.x under Py, we use the following.

Lemma 9. Let C,, denote a largest connected component of G(m,A\/m) and assume that A < 1 for
all m and log[[;l V1] = o(log(m)). Then, for any sequence u,, satisfying

umb\

logm

lim inf

>1,

we have
B(ICo| > ) = o(1) .

Proof. This lemma is a slightly modified version of (Van der Hofstad, 2012, Th. 4.4), the main
difference difference being that A was fixed in the original statement. Details are omitted. O

Define ¢ = (¢’ A1)/4. Applying Lemma 9, |Crax| < to := 1;01 log(N)(1 + ¢), with probability
going to one under Py.
We now need to lower-bound the size of Cyax under Pg. Define

ko = (1—c)log(n)[In, + o —doe™] ™", k= Tk,

1-— )\061)‘1

= (1—c¢)log(n , = .
w ( ) log( )D\l + Ao — doen 4= Lol
The denominator of kg is positive since /\oel*l <1 and
Iy, + X — )\oehl > I, + e (1 — eb‘l) = Iefl)\l >0. (24)

We note that & = O(logn), unless the denominator of ko goes to zero, which is only possible when
Iy, goes to zero (implying A\; — 1), in which case

k ~ log(n) Iy, (1= M) ™ = O |15 v 1] log(n) = O [log(N)] . (25)

since, in this case, (21) implies that I;ll = O (log(n)/log(N)), and limsup A\g < 1 by assumption.
So (25) holds in any case.
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We shall prove that among the connected components of Gg of size larger than ¢, there exists
at least one component whose size in G is larger than k. By definition of ¢, we have liminf k/tg >
7(1—¢)/(14¢) > (14)(1—c)/(14¢) > 1, and the connected component test is therefore powerful.
The main arguments rely on the second moment method and on the comparison between cluster
sizes and branching processes. Before that, recall that tg — oo, so that log(n) _—151 = ko — o0,
which in turn implies Iy, = o (log(n)). ‘

Lemma 10. Fiz any ¢ > 0. Consider the distribution G(m,\/m) and assume that \ satisfies
limsup A < 1, log [I/\_lvl] = o(log(m)) , I ' logm — oo .

For any sequence q¢ = alog(m) with a < I;l(l —¢), let Z>4 denote the number of nodes belonging
to a connected component whose size is larger than q. With probability going to one, we have

qu > mlfab\fo(l) ) (26)

Proof. This lemma is a simple extension of the second method argument (Equations (4.3.34) and
(4.3.35)) in the proof of (Van der Hofstad, 2012, Th. 4.5), where A is fixed, while here it may vary
with m, and in particular, may converge to 1. We leave the details to the reader. O

Observe that

(i1 < Dy = )\OI)\lehjl <1l-X Lot I)\lefl <1,
(1 — C)I)q log(n) I>\1 + Ao — Ape'M I)\1 4+ Ao — e

using the fact that xe®” —e® + 1 > 0 for any z > 0. Thus, we can apply Lemma 10 to Gg. And by
Lemma 9, the largest connected component of Gg has size smaller than 215 Yog(n) with probability
tending to one. Hence, Gg contains more than
—qI
niteWemthn oy, —ollog(n)
215, Nogn

connected components of size larger than ¢q. (We used the fact that log(I)Tl1 V1) = o(logn).) If
ko — qo < 1, then applying Lemma 10 to ¢ + 2 (instead of ¢) allows us to conclude that there
exists a connected component of size at least k. This is why we assume in the following that
liminf kg — qo > 1. By definition of kg and qg, kg — qo > 1, implies that

1 1
log(n)Ao > . e (I,\1 + Ao — )\oehl) > 1 %
—c

e_IMI —1Iy
—C e

1

by (24). Thus, liminf ky—qp > 1 implies that for n large enough log(n)Ag > A1 1y, e and consequently
I, < O(1) — log(Xo) < 0 (log(n)) + I, +log [, | = o(log(n)) (27)

since Iy, = o(log(n)), —log(Iy,) < o(log(n)) and I}, =0 [(e=]x —1)72] = O [I,?].

e Ix
Let {Cg), i € 7} denote the collection of connected component of size larger than ¢ in Gg. For
any such component Cg), we extract any subconnected component (fg) of size ¢q. Recall that, with
probability going to one:
1Z| > ntmoWe=ahy (28)
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For any node z, let denote C(x) the connected component of z in G, and let C_g(x) denote the
connected component of x in the graph G_g where all the edges in Gg have been removed. Then,
let

U; .= U C_S(.TJ) ,1€XL; V= Z]l{|UZ|Zk} .
;ve(fg) 1€L

Since V' > 1 implies that the largest connected component of G is larger than k, it suffices to prove

that V is larger than one with probability going to one. Observe that conditionally to |Z|, the

distribution of (|U;], i € Z) is independent of Gg. Again, we use a second moment method based

on a stochastic comparison between connected components and binomial branching processes.

Lemma 11 (Upper bound on the cluster sizes). Consider the distribution G(m,\/m) and a col-
lection J of nodes. For each k > |TJ|,

where T1,Ts, . .. denote the total progenies of i.i.d. binomial branching processes with parameters m
and \/m. For each |J| <k <m,

P[|Uses C(2)] > k] > Ppy_ajm [T1 + - + T 2 K]

where T1,T5, ... denote the total progenies of i.i.d. binomial branching processes with parameters

m —k and A\/m.

Lemma 11 is a slightly modified version of (Van der Hofstad, 2012, Th. 4.2 and 4.3), the only
difference difference being that | 7| = 1 in the original statement. The proof is left to the reader.
The following result is proved in (Van der Hofstad, 2012, Sec. 3.5).

Lemma 12 (Law of the total progeny). Let T, ..., T, denote the total progenies of r i.i.d. branching
processes with offspring distribution X. Then,

IP[T1+...+TT:/<;]:%P[X1+...+Xk:k—r] ,

where (X;), i =1,...,k are i.i.d. copies of of X.
Relying on these three lemmas, we control the conditional expectation and variance of V.

Lemma 13. The following bounds hold

E\F
Ps(Ui| > K] > () S ——

k—q
Z°¢?
Varg[V|Gs] < |Z|Ps[|Us| > k] + N Es[|Uil1{,>1y] 5 (29)
Eo\Fe
Ps(|Ui| 2 k] < Es[|UilLy,>x] < <k—q> e M0t Dolk=dlnelh), (30)

Before proceeding to the proof of Lemma 13, we finish proving that V > 1 with probability

k—q
going to one. Let define uy := (%_q) e~ 0a—1x(k=q) Applying Chebyshev inequality, we derive

from Lemma 13

V > |Z|n "M — Opg [(’I’,Uk)l/Q no(l)] — Opy [\I](Mk/N)l/Qno(l)] .



15

In order to conclude, we only to need to prove that |Z|uy, > n¢°() since (|I|;u€)1/2 JVZ (i /N2 =

V/N/|Z| > 1. First, we consider |Z|ug. Relying on (28), we derive

’I‘/J;k > nl—o(l ( ) _>\0q_q1/\1_lko (k_Q)
ko—qo
> plool) ( > e~ 2090—q0In; —Ixy (Fo—q0)—21x,
- ko — qo
> ploo(l)y k’o ) ,~Aogo—koIx, —Ix, (ko—qo)
> nl—O(l)e—ko)\o kolIx; oko—4o
> plmed) exp [—k‘o ()\0 + 1, — )\06[)‘1)] = peo)

where we use (27) T k_oqo = Ay 'e ™ in the third line, the definition I), = A\g — log(\g) — 1 in
the fourth line, and the definitions of ky and ¢y in the last line.

Proof of Lemma 13. Consider any subset J of node of size ¢. The distribution |U| = [U__s C-s()|
r&hs

is stochastically dominated by the distribution of Z := |J,c 7 C(x)| under the null hypothesis. Let
T, be sum of the total progenies of ¢ independent binomial branching processes with parameters
N —n+q—k and pg. By Lemma 11, we derive

Ps[|Uil > k] 2 PolZ > K] 2 PN—niq-kpo[Tg = k] 2 PN-ntg—kpo [Ty = k] -

Let X3, X5, ... denote independent binomial random variables with parameters N —n 4+ ¢ — k and
T T
po. Relying on Lemma 12 and the lower bound (7) > @ > (re)~! ((5277’)3> , we derive

PN —niq- k,po[ =k] = N—n+q—k,po[X1+---+Xk:k_9]

TR TR

— N B

E(N—-n+q—Fk _ gk —
( - q )>p10c 9(1 — po)EN—nta—k)—k+q

ek(N —n =2 = k)] (M _sk-romm
k—q N

|=

>
N

4 Iy (k—q),—A M —kO(n/N)
~ 12 M Ve Oq(k:—q) e

Eo\"e
< > e~ 0a—1xy (k=q),0(1) 7
k—q

where (25) with nlog(N)/N = o(log(n)) in the last line.

Let us now prove (30). The first inequality is Markov’s. For the second, by Lemma 11, U; is
stochastically dominated by T}, the sum of the total progenies of ¢ independent binomial branching
processes with parameters N and pg, so that

N 00 o)
Es [|[Uilliy,sry] =Y Ps[Us =] <Y Pupy[Ty > 1] =D rPuy[Ty =1] .
r=k r=k r=k

We use Lemma 12 to control the deviation of Tq. Below X1, X5, ... denote independent binomial
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random variables with parameter N and pyg.

o0 00
ZTPvaO[Tq:T] S ZT%PN:pO[X1++XT:T_q]
r=k r=k
S) r—q
< queXp [—NerO <M>] ; (31)
r=

by Chernoff inequality since

T—q>k—q>k‘0—%:)\0€hl>@
Nr = Nk — Nk N N

= Do -

By Lemma 2, H,,(a) > alog(a/po) — a + po. Thus, we arrive at

Es [[Uillw,>y] < 2qexp [—(r —q)log <7“>\o> +r—q- r)\o]

< quxp[Ar] i Api=—(r—q) I, —qho — (r —q)log <7‘;q) . (32)
r=k

Differentiating the function A, with respect to r, we get

A, - - k — k —
d = —I,\O—log(rq>—1+r qS—I,\O—log<kq)—1+q
r r

dr k

ko — ko —
< _Iz\o _10g< OkOqo) - OkOqo :_AO_I)\l +)‘061>\1 5

which is negative as argued below the definition of k. Consequently, A, is a decreasing function
of r. Define r as the smallest integer such that log((r — q)/r) > —1I,,/2. Since limsup A\g < 1, it
follows r; = O(q). Coming back to (32), we derive

Es [|Uil L, >ky] < a(ri — k)4 exp[Ai] + ¢ Z exp[A,]

r=r1

quk [(Tl —k)y+ Z e—(T—k)[IAO—log((T—Q)/T)]]

r=ri

IN

IN

qe* [(n —k)+ + Z e_(r_k)%ﬂ]

r=rq
< eM™O(k?) (33)
since limsup Ag < 1. From (25), we know that k& = O(log(N)) = n°("), which allows us to prove
(30).
Turning to the proof of (29), we have the decomposition
Varg[VIGs] < [Z|Ps[Ui = k] + > {Ps[|Ui| > k, [Uy| > k] — PL[|Us] > K]}
i#i'eT
< |ZIPs[Us > k1 + [IPPs U]l > k , UiNUy # 0]
HIP{Ps|Ui| > k, |Uy| = k ,UiNUy = 0] — P |U;| > K]} . (34)
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The last term is nonpositive. Indeed,

Ps [|Us] > k, |Uy| >k ,U; " Uy = 0] — P4 [|U;| > K]

N

= Y Ps Uil =] (Ps [|Us| >k, UinUy = 0| |Ui| = r] =P [|Us| > k])
r==k
N

< D P ([Uil =] (Ps [[Us| > k| UinUy =0, |Ui| = 7] = Ps[|Us| = K]) ,
r==k

where the last difference is negative, as the graph is now smaller once we condition on |U;| > 1 and
U; NU; = (). Consider the second term in (34):

N
Ps[|Ui| =k, UinUy # 0] =Y Ps[|Ui| = r|Ps[Ui N Uy # 0| |[Ui| = 1] .
r=k

By symmetry and a union bound, we derive
Ps[UiN Uy # 0| |Ui| = 7] < ¢*Psly € C_s() | Ui = 7],
for some x € ég) and y € ég/). Since the graph G_g is not symmetric, the probability that a fixed

node z belongs to C_g(z) conditionally to |C_g(z)| is smaller for z € S\ {i} than for z € S° It
follows that

C_s(z)—1
Psly € C_s(z) [|Ui| =] < Eg [|i/(_)’1’ Us| = 7“] -
Since [C_g(x)| <, we conclude
N Pr ¢
Ps[|Ui| >k, UnUy #0] <> Ps[|Us| = "1y = v BsllUilLwzm] -

r=k
L]

Let us continue with the proof of Theorem 2, now assuming that A\; < 1, that Condition (22)
holds, and that n? = o(IN). We assume in the sequel that I, < —log()\g), meaning that \;
is not too small. We may do so while keeping Condition (22) true, because the distribution of
|Cmax| under Pg is increasing with respect to A; and because for Iy, = —log(\g), (22) is equivalent
to limsuplog(n)/log(N) < 1, which is always true since n? = o(N). Similarly, we assume that
I, = o(log(n)) while keeping Condition (22) true since for Iy, going to infinity, (22) is equivalent

to lim sup% < 1 and since I/\_O1 log(N) — oo. By Condition (22), there exists a constant

¢ > 0 such that
Iy, log(n)
Ao+ In, — Age™1 log(IV)

lim sup <l-c. (35)

We shall prove that with probability Pg going to one, the largest connected component of G does
not intersect S. As the distribution of the statistic under the alternative dominates the distribution
under the null, this will imply that the largest connected component test is asymptotically powerless.
Denote A the event

A = {For all (z,y) € S, there is no path between x and y with all other nodes in S} .
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For any subset T', denote Cr(z) the connected component of x in Gr, and recall that C(z) is a
shorthand for Cy(x). By symmetry, we have

Ps[A] < n?Poly € C_s(x)] < Poly € C(2)]
since the probability of the edges outside Gg under Pg is the same as under Py. Again, by symmetry

IC(w)I] 1
N-1] - (N=D(1=X)’

Poly € C(2)] = Eo[Poly € C(@)]||C()]] < Eo [

as the expected size of a cluster is dominated by the expected progeny of a branching process with
parameters N and pp (Lemma 11) and the expected progeny of a subcritical branching process
having mean offspring u < 11is (1 — )~ (Van der Hofstad, 2012, Th. 3.5). Thus,

Ps[A°] = O(n*/N) = o(1) . (36)

Define
k= (1-0¢)'"?log(N)I, ! . (37)
Since limsup A\g < 1 and since loglog(N) = o[log(n)], it follows that k = log(N) = n°1). By

Lemma 10, |Cryax| is larger or equal to k with probability Pg (and Py) going to one. Thus, it suffices
to prove that Pg[V,es|C(x)| > k] — 0. Observe that

Ps[VaeslC(z)| = k] < nPs [{|C(z)| = k} N A] + Ps[AT

so that, by (36), we only need to prove that nPg[{|C(x)| > k} N A] = o(1). Under the event A,
C(xz) NS is exactly the connected component Cg(z) of x in Gg. Furthermore, C(z) is the union of
C_s(y) over y € Cg(x). Consequently, we have the decomposition

k—1
Ps[{[C(z)| > k}NA] < PsllCs(w)| = k] + Y Ps[|Cs(z)| = a] Ps [By | [Cs(x)| = q]
qg=1

where B, := {| Uyecg(a) C—s(y)| > k}. By Lemma 11, the distribution of |Cs(z)| is stochastically
dominated by the total progeny distribution of a binomial branching process with parameters
(n,A1/n). Denote by J any set of nodes of size ¢. Since, conditionally to |Cg(x)| = ¢, the event 5,
is increasing and only depends on the edges outside Gg, we have

Ps [By|[Cs(x)| = gl < Po[lUyes C(y)l = k] ,

which is in turn, by Lemma 11, smaller than the probability that the total progeny of ¢ independent
branching processes with parameters (N, \o/N) is larger than k. Relying on the law of the total
progeny of branching processes (Lemma 12) and Lemma 11, we get

Ps(Cs(z)| =] < ;P [Bin(ng, A1 /n) = ¢ — 1] ,

=R

Ps[B,]ICs() =a) < > LP[Bin(NrAo/N) =7 —q] .
r=k

Working out the density of the binomial random variable, we derive

_ 1
Ps[lCs(x)| =q) < [ "7 )pI7l(1 —pi)me et < —e e
qg—1 A



and for ¢ < (1 — A\g)k, we get

Pe(B[Cs(a)| =l < Lo [-vuat,, (E20)]

o

which is exacly the term (31), which has been proved in (33) to be smaller than

kf
0(k?) (k - ‘-’) T

Let define
By = e~ Dut=Do—(k=01, <k - g)
Gathering all these bounds, we get

L(1=Ao0)k]

—I\. k k—1 —I\,q 2
e 1 e 1 k
Ps[{|C(x)] >k} N A] < 3 + Z \ +O<)\> Z B,
L mramok Y L=
i3 K
R I, (1=20)k o(1)
< e ™M + B, <n sup By ,
/\1[ q\:/l Q] qE[O;k] q

where we observe that e i (1=20)k — Bk and we use k = n°M) and Iy, = o(log(n)).

differentiating log(B,) as a function of ¢, we obtain the maximum

sup B, <

{ e Fho | if  oeP >1;
q€[0;k]

e P exp [)\ok(el*l -1)] , else.
Recall that we assume \ge™1 < 1 so that

Ps[{|C(z)| = k}n Al < n0<1>;1 exp [k {Xo + I, — AoeP1 }] < (=)o)
by definition (37) of k and Condition (35). We conclude that nPg [{|C(z)| > k} N A] = o(1).

3.2.2 Supercritical regime

19

O

We now briefly discuss the behavior of the largest connected component test in the supercritical
regime where liminf A\g > 1. When A\g — log N — oo, the graph G is connected with probability
tending to one under the null and under any alternative (Van der Hofstad, 2012, Th. 5.5), which
renders the test completely useless. We focus on the case where )\ is fixed for the sake of simplicity.
In that regime, we find that, in that case, the test performs roughly as well as the total degree test

— compare Proposition 1.

Proposition 3 (Supercritical largest connected component test). The largest connected component

test is asymptotically powerful when Ay > Ao > 1 are fized and n? /N — co.

Proof. We keep the same notation. Under Py, we have |Ciax| = (1 — 75,)N + O(V'N) (Van der
Hofstad, 2012, Th. 4.16). Hereafter, assume that we are under Pg. Then, by the same token,

Coax| = (1 =) (N = n) + O(VN —n) and |CFu| = (1 —nz)n + O(v/n). Given Gs and Gse,
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the probability that CmaX and C3,, are connected in G is equal to 1 — (1 — 100)‘(3"1axl Chaxl — 1 in

probability, since polC ax| [ n in probability. Hence, with probability tending to one,

‘v
max

Comax| 2= [Coax| + [Cinaxd
= (L=mo)(N =n) + O(VN) + (1 = ny,)n + O(V/n)
= (1 - nAo)N + (77)\0 - 77)\1)71 + O(\/N) )

with 1y, — 1\, > 0 since A\ > Ao > 1 and 7, is strictly decreasing. Hence, because n > v N by
assumption, the test that rejects when |Crmax| > (1 — 15 )N + %(17,\0 — N N O

When \g > 1 is fixed, the largest connected component is of size |Cpax| satisfying

| max| (1 )\0)
— N(0,1), under Py,
\/N ( ) 0

by (Van der Hofstad, 2012, Th. 4.16), while |Ciax| increases by at most n under the alternative, so
the test is powerless when n = o(v/N).

3.3 The number of k-trees

We consider the test that rejects for large values of N, the number of subtrees of size k. This test
will partially bridge the gap in constants between what the broad scan test and largest connected
component test can achieve in the regime where )¢ is constant. Recall the definition of I in (20).

Theorem 3. Assume that A1 and Ao are both fized, with 0 < \/Ag/e < A1 < 1, and that

Iy, — 1T
, log(N/n?) Xie 20
lim < 38
1m sup log 7 ( ,\16)—7 ( )

Then there is a constant ¢ > 0 such that the test based on N;gree with k = clogn is asymptotically
powerful.

Thus, even in the supercritical Poissonian regime with 1 < Mg < e, there exist subcritical
communities A; < 1 that are asymptotically detectable with probability going to one. The condition
A1 > y/Ao/e will be shown to be minimal in Theorem 5. Condition (38) essentially requires that
n?/N does not converge too fast to zero. In particular, when n = N*, (38) translates into an upper
bound on k. We show later in Theorem 5 that such an upper bound is unavoidable, for when & is
too small, no test is asymptotically powerful. Nevertheless, Condition (38) is in all likelihood not
optimal.

Proof of Theorem 3. We first compute the expectation of N under Py using Cayley’s formula.
Since k? = o(n) = o(N) and k — oo, we derive

Eo[NFe] = Z Py[Gc is a tree]
|C|=k
N 2)_
_ (]{;)kk 2pk=1(1 — pg)k® —k+1

1
k
N e,
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where we used the fact any k-tree has exactly k — 1 edges. The last line comes from an application
of Stirling’s formula. We then bound the variance of N under Py in the following lemma, whose
lengthy proof is postponed to Section 7.3.

Lemma 14. When A\ < e, we have

N
Varo[Nl‘;ree] =< kf)\o(e)\o)ker Xo/e )

By Chebyshev’s inequality, under Py,

N]gree =&, N}‘Zree + O(VarO(ngree))l/Q '

Fix S C V of size |S| = n, and let ¢ be an integer between 1 and k chosen later. We let N, ,grgfé
denote the number of k-trees in Gge, and let IV, ,‘;rgeq as the number of subsets C of size k£ such that

|C N S| = ¢ and both Geng and Go are trees. We have N > Njree N,';rgeq. Therefore, by
Chebyshev’s inequality, under Pg

N > Eg (N12) + Es (Ni75,) + O(Varg(Ng) '/ + O Vars(Nig,)) 2 .

Noting that Gge ~ G(N — n, pg), and letting A\ = (N — n)pg, Lemma 14 implies that

ree N—n ! e N P
VarS[N£7SC]<T)\6(6)\6)k€2k Ao/ NTM(GAO)k€2k Ao/ :

because nk = o(IN). Thus, we only need to show that, for a careful choice of ¢,

Es[Ni'§,) > EolNy] - Es[N§E) (39)

ESINES,) > Vars[Npgl , (40)
N

E3[NiE,] > —)\O(e)\o)ke%\//\o/e>Var0[N,§ree]. (41)

From now on, let ¢ = k — L;‘—l‘)ekj
We use the following lemma, whose lengthy proof is postponed to Section 7.4.

Lemma 15. When g =k — |22 k|, we have

Ale
A\k—12k—g L Do
ES[ngfg?q] - an = n(el;)¥erte SWER (42)
and s -
g B) k
Vars[N,gfg?q] < nk:Q)\%k 91 4k=29o2% g | Tnkfkﬂx\oe‘lk%q : (43)

We first prove (39), bounding

. - N N —n _9 k— @_
Eo[ngee]—Es[N,Z:Sc] = <<k)_< L >)k/€ 2pl§ 1(1_p0)k2 k+1

< (o) 5 ()

=< n()\oe)kk:_5/2 ,
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since [1 — (n 4+ k)/N]¥ = 1+ kn/N + o(kn/N) by the fact that k = o(n) and kn = o(N). We also
used Stirling’s formula again. Using this bound together with (42), we derive

Es[N{'E,] o <A1>’“€k;loe XN
Eo[ Ny — Es[Nf ] = k/*A1 \ Ao DY

exp[kIAo]%oo,

Ale

since \g and \; are fixed such that Ao/ e < 1, implying that I, > 0 is fixed.
Are
Second, we prove (40). Using (42) and (43), we have

Varg [ngfg'?q} kj)\l—q€2@q + k;713
BINEE) N

kS )\0 k13
< Zexp 2]{3(1—)\716)]@ +W ;
and the RHS goes to 0 as long as
1

< .
n) 2( _)\)\7103)‘[@

e

li i
s

im sup Tog(

Finally, we prove (41). Using Lemma 14 and (42), we have

k
Varg[N] ~ NE° (AN 2k 20 —ak+2q
E%[N/ree,] n? \eXg

5
Note that I \/E — I, < 0 is fixed, since our assumptions imply that )f\—l()e < % < 1 and the

A
Ale

Nk
< —exp [2k(]\/§—1
Are

e

function I is decreasing on (0, 1). Thus, the RHS above goes to 0 as long as

1
log(N/n?) - 2(1 _I\/E) '

Ale

lim inf

3.4 The number of triangles

We recall that this test is based on the number T of triangles in G. This is an emblematic test
among those based on counting patterns, as it is the simplest and the least costly to compute. As
such, the number of triangles in a graph is an important topological characteristic, with applications
in the study of real-life networks. For example, Maslov et al. (2004) use the number of triangles to
quantify the amount of clustering in the Internet.

Proposition 4. The triangle test is asymptotically powerful if either
limsup g < oo and A — 00 ; (44)

or
A2 Ao \ 23

liminfAg >0 , A< N/n and —>1V|— . 45

‘ o <N/ Ao (W) (45)
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When Ao and \1 are fixed, T' converges in distribution towards a Poisson distribution with parameter
A\3/6 under the null and (\§ + \3)/6 under the alternative hypothesis. In particular, the test is not
asymptotically powerless if

limsupAg < oo and liminfA; >0 . (46)

Proof of Proposition 4. Let T be the number of triangles in G. For S C V, let Tg denote the
number of triangles in Gg. We have T' > Tgc 4+ TY.
The following result is based on (Bollobés, 2001, Th. 4.1, 4.10). We use it multiple times below

without explicitly saying so.
Lemma 16. Let T, be the number of triangles in G(m, \/m). If X is fived, then Ty, = Poisson(A\3/6).

If X — oo with log A = o(logm), then T%“ = N(0,1) where p:=ET = () (%)3 ~ %3.

Assume that (44) holds. Applying Lemma 16, 7" — 0 under Py, while 7' > T's — oo under Pg.
(For the latter, we use the fact that T is stochastically increasing in A;.)

Assume that Ao and A; are fixed. Applying Lemma 16, 7" = Poisson()\3/6) under Py, while
T = Poisson(A\3/6) under Py, while under Pg, Tse + Ts = Poisson((A3 + A1)3/6) since Tse ~
G(N —n,po) and Ts ~ G(n,p1) are independent, and n = o(N). Define Tg gc :=T — Tg — Tsc as
the number of triangles in G with nodes both in S and S¢. We have

Es[Ts 5] < N*npj +n*Npipg < %Ag + %AM% =o(1),

so that T g = opg(1), and by Slutsky’s theorem, T' = Poisson((A3 + A1)3/6) under Pg.

Assume that (46) holds. By considering a subsequence if needed, we may assume that A\g < oo
is fixed. And since T is stochastically increasing in A1 under the alternative, we may assume that
A1 > 0 is fixed. We have proved above that T' = Poisson(\3/6) under Py, T = Poisson(\3/6+ )3 /6)
the alternative; hence the test {T" > 1} has risk

Po(T > 1) + Pg(Tg = 0) — 1 — e 20/0 4 ¢ 2/6-2/6 1|

Finally, assume that (45) holds. Using Chebyshev’s inequality, to prove that the test based on
T is powerful it suffices to show that
EsT —EqT
\/Varg(T) V Vary(T)

— 00 . (47)

Straightforward calculations show that Eq T = (]g ) pg, and

N
Van(T) = 3V~ 3)(1~ sl + (1 - ) (3 )
= N'pj+N°pj .

And carefully counting the number of triplets with 2 or 3 vertices in S gives

N —n n\ (N —n n\ /(N —n n
EeT = 3 3 2 3
= (V)= () (Y5 ") () (Y s+ ()t

while counting pairs of triplets with a certain number of vertices in S, shared or not, we arrive at
the rough estimate

Varg(T) =< N4pg + nQNQpépl + n?’Np(Q)pi)’ + n4p? +EgT .
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Note that

EsT-EoT = <Z) <N1_n>p%(p1 —po) + (g) (v} —pj)

= n%(p1 — po) [NpZ + np?]
= Nn’pip1 +np} , (48)

since by condition (45), npp < 1 and np; = A; > 1. and
Varg(T) < Varg(T) < N4p5 + n2N2pop1 + nngOpl +n'pd + N3p3 + n3p?

We only need to prove that the square root of this last expression is much smaller than (48). Since
(np1)? > Npg and np; — oo, we first derive that

n® Npgp? + n pl + N°pj +n’pl =0 [(npl)6] .

Similarly, we get n? N2pgp1 = o [n*pIN?p{]. Finally, (45) entails that A} > Mo(Ao/V/N)?/? which
is equivalent to N*pj = o [(npl)G] O

4 Information theoretic lower bounds

In this section we state and prove lower bounds on the risk of any test whatsoever. In most cases,
we find sufficient conditions under which the null and alternative hypotheses merge asymptotically,
meaning that all tests are asymptotically powerless. In other cases, we find sufficient conditions
under which no test is asymptotically powerful.

To derive lower bounds, it is standard to reduce a composite hypothesis to a simple hypothesis.
This is done by putting a prior on the set of distributions that define the hypothesis. In our setting,
we assume that pg is known so that the null hypothesis is simple, corresponding to the Erdos-Rényi
model G(N,py). The alternative Hy := U\S|:n Hg is composite and ‘parametrized’ by subsets of
nodes of size n. We choose as prior the uniform distribution over these subsets, leading to the
simple hypothesis H; comprising of G(N, po;n, p1) defined earlier. The corresponding risk for Hy
versus Hj is

() = Po(6 = Z Ps(¢=0)

ISI

Note that yn(¢) > An(¢) for any test ¢. Our choice of prior was guided by invariance consid-
erations: the problem is invariant with respect to a relabeling of the nodes. In our setting, this
implies that v}, = 75, or equivalently, that there exists a test invariant with respect to permutation
of the nodes that minimizes the worst-case risk (Lehmann and Romano, 2005, Lem. 8.4.1). Once
we have a simple versus simple hypothesis testing problem, we can express the risk in closed form
using the corresponding likelihood ratio. Let P; denote the distribution of W under H;, meaning
G(N,po;n,p1). The likelihood ratio for testing Py versus Py is

> Ls, (49)
) |S|=n

where Lg be the likelihood for testing Py versus Pg. Then the test ¢* = {L > 1} is the unique test
that minimizes 7y, and

— * — % 1
7N(¢):7N:1_§E0|L_1|‘
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For each subset S C V of size n, let I's be an event, i.e., a subset of adjacency matrices, and define
the truncated likelihood as

L= (le) > Lol . (50)

We have

Fo|L—1] < Eo|L—1|+Eo(L—-L)

< VBolE2) — 1+ 2(1 — EolL)) + (1 ~ Eo[L]) .

using the Cauchy-Schwarz inequality and the fact that Eg L = 1 since it is a likelihood. Hence, for
all tests to be asymptotically powerless, it suffices that Eq[L?] < 1+ o(1) and Eg[L] > 1 + o(1).
Note that 1

Eo[L] = = > Ps(Ts) .

In all our examples, Pg(I'g) is independent of S, so that Eo[L] > 1+0(1) is equivalent to Pg(I's) — 1.

4.1 All tests are asymptotically powerless

We start with some sufficient conditions under which all tests are asymptotically powerless. Recall
a in (7) and ¢ in (12). We require that ( — 0 below to prevent the total degree test from having
any power (see Proposition 1).

Theorem 4. Assume that ( — 0. Then all tests are asymptotically powerless in either of the

following situations:
I, logn

Ao —+0, A —0, 1l - <1; 51
0 ) 1 » 11msup T, log N ) (51)
0 < liminf A\g <limsup\g < 00, A —0; (52)
Ao — oo with o — 0, limsupA; <1 ; (53)
. . . n ES[Wl;k,S]
0 <liminfa <limsupa <1, limsup (1 —a) sup —— < 1. (54)
k=n/un k

We recall here the first few steps that we took in (Arias-Castro and Verzelen, 2012) to derive
analogous lower bounds in the denser regime where liminfa > 1. We start with some general
identities. We have

Lg := exp(6Ws — A(0)n?)) (55)
with ( )
q(1 —po )
0:=6,, 6,:—log (Lo PV 56
p1 q g <p0(1 N q) ( )
and

A(9) :=log(1 — po + poe?) ,

which is the moment generating function of Bern(py).
In all cases, the events I'g satisfy

Ts C () {Wr <wg, VT C S such that |T| = k} (57)
k>kmin
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where ki, and wy vary according to the specific setting.
To prove that Eq L? < 1 + o(1), we proceed as follows. We have

W - LY )
() 1512 |Sal=n

T ; | Z|: Eo [exp (6(Ws, +Ws,) — 200)n® ) 1 o, | -
n Si|=n|S2|=n

Define

1
WSXT:§' Z Wl,] )
i€S,jeT

and note that Wg = Wg«g. We use the decomposition

Ws, + Ws, = We, 5 (51\55) T Weox(52\51) + 2Wsins, (58)

and the independence of the random variables on the RHS of (58), to get

Eo (exp (G(ng + W) — 2A(0)n(2)> ]1F310F32) <I.11-111, (59)
where K = |S1 N Sy,

=B [ (W5 - 2200 R - 1)) =1

A(O
_— [exp <HWSQX s~ 2D - )+ K - 1))} 1,

111 = K, [exp (20W51052 - 2A(0)K(2)) Ir,, QFSJ .

The first two equalities are due to the fact that the likelihood integrates to one.

Assuming that ¢ — 0, we prove that all tests are asymptotically powerless in the following
settings:

limsup Ao < 00, A} =o0(\o) ; (60)
: Iy, log(n) 2
A 0, A 0, 1 2022 L <] =0o(N) ; 61
0—0, A\ —0, 1msupI)\110g(N)< , n“=o(N); (61)
limsupA; <1, AN — o0, limsupa<1; (62)
Es[Wp sl

liminf \; > 1, 0<liminfa <limsupa <1, limsup (1 —«) sup

<1l. (63)
k=n/un k

This implies Theorem 4. Indeed, (60) includes (52). Assume that (51) holds. Consider any
subsequence n?/N converging to x € RT U {occ}. If = 0, then (61) holds. If z # 0, then { — 0
implies that (A\; —Aon/N)?/Xo = o(1). If, in addition, A\; > 2\on/N, this implies that A2 /\g = o(1).
If, otherwise, A\; < 2Xon/N, then A2 /X < 4\g(n/N)? = o(1) since A\g = o(1). Thus, in both cases,
(60) holds. Finally, (62) includes (53) and also (54) when limsup A\; < 1, while (63) includes (54)
when liminf \; > 1. We note that (63) implies that limsup A\; < co because of (15).
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4.1.1 Proof of Theorem 4 under (60)

The arguments here are very similar to those used in (Arias-Castro and Verzelen, 2012), except for
the choice of events I'g. Define
I's :={Gg is a forest} .

When I'g holds, for any T" C S, Gr is also a forest, and since any forest F with k nodes and ¢
connected components (therefore all trees) has exactly k — ¢t < k edges, we have Wp < |T|. Hence,
(57) holds with wy, := k.

Lemma 17. Pg(I's) is independent of S of size n, and Pg(I's) =1+ o(1).
Proof. The expected number of loops of size k in Gg under Pg is equal to

S 4
(n—k)2k = 2% (64)

Summing (64) over k, we see that the expected number of loops in Gg under Pg is smaller than
A3/(1—X1) = o(1). Hence, with probability going to one under Pg, Gs has no loops and is therefore
a forest. O

In order to conclude, we only need to prove that Eg[L?] < 1+ o(1). We start from (59) and we
recall that K = |S1 N Sa|. We take kpin as the largest integer k satisfying.

2 pi(l—po)
k=37 po(1—p1)?’

with the convention 2/0 = oo, so that kyin > 3. Let ¢ = 2/(k — 1). Recall that p = n/(N —n)
and define kg = [bnp], where b — oo satisfies b*¢ — 0.

e When K < kyi,, we will use the obvious bound:
Ml < Egexp (20W5m52 — 2A(9)K<2>) — exp (AK<2>) ,

where

A := A(20) — 2A(6) = log (1 + M) . (65)

e When K > kyin, we use a different bound. Noting that I's, NT's, C {Wg,ns, < wk}, for any
¢ € (0,20), we have

I < E [exp <§Wslm32 + (20 — g — 2A(9)K<2>) Lws, g, <wic)
< Ky [exp <5W51m52 + (29 — f)’w[( — 2A(9)K(2))1| ,

so that
111 < exp (A KK<2>> :

where

A = 53[10{1210] A(§) + (20 — &)ar — 2A(0) . (66)
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Using the fact that Eo[L?] < Eo[III], we have

Eo[L?]

IN

E[HUQ%Mexp(AKﬂm>}
+E []l{kOJrlSKSkmin} xp (AK (2))}

+E []l{kmi,,HSKSn} exXp (AK K@))}
= A+ A+ A3,

where the expectation is with respect to K ~ Hyp(N,n,n). By Lemma 4, K is stochastically
bounded by Bin(n, p). Hence, using Chernoff’s bound (see Lemma 1), we have

P(K > k) < PHyp(N,n,n) > k) <P(Bin(n, p) > k) < exp (—nH,(k/n)) . (67)
e When K < kg, we proceed as follows. If kg = 1, we simply have
Ai=P(K<1)<1.

If ko > 2, we use the expression (65) of A to derive

— 2 12,4
Ay < exp [AkG] < exp [0(1) (p1 —po)” b°n

po(1—po) N2 ] = [0F0] =1+

e When ko + 1 < K < kpin, we use (67) and the identity (1 — z)log(l — z) > —=z, to get

b 5w [SHN (1))

k=ko+1
iy k-1 k

< Z exp [k‘ <A2 — log (W) + 1>} .
k=ko+1

The last sum is equal to zero if knin < ko; therefore, assume that ki, > kg. For a > 0
fixed, the function f(z) = ax — logz is decreasing on (0,1/a) and increasing on (1/a,c0).
Therefore, for kg + 1 < k < kmin,

k—1 k /—1 {N
A—— — 1 — ) < A— —1 — .
2 % (np) = ee{iﬁi’;m}{ 2 ® <n2>}

We know that A(kg — 1) = o(1), so that

ko —1 k
A% —log (0> <o(l) —logh — —o0 .
2 np

Therefore, it suffices to show that

kmin -1 kmin
——A —log < ) — —00 .

If kmin > 3, observe that

N W

kmin -1 kmin - 2
TA < (1 + 23> log (1 + m(l + 0(1))> < -log3+o0(1),
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while log(kmin/(np)) > log(ko/(np)) — oco. If we have kmin = 3, then we have

3 A
A~ log (np) < log(p? /po) — log(N/n?) + O(1) < log (A) +0(1) = —o0
0
because of (60).
e When kpin < K < n, we need to bound Ag. Remember the definition of the entropy function
H, in (9), and that H(q) is short for H,,(q). It is well-known that H is the Fenchel-Legendre
transform of A; more specifically, for ¢ € (pg, 1),

H(q) = zglg[w —A(0)] = a0 — A(0,) . (68)

Hence, the minimum of A(§) + (20 — &)gr — 2A(0) over £ > 0 is achieved at { = 6,, as soon
as 260 > 6,, . Moreover, by definition of § in (56), our choice of g, and the fact that & > kmin,

we have 2( )
pi(l —po) 2 >
20 -0, =1lo >0.
" g(?a(l—m)Qk—i’) -

Hence, we have
Ap = —H(qk)+20g; — 2A(0)
= —2Hy, (qr) + H(qx) - (69)

Using the definition of the entropy and the fact that pg = o(1), we therefore have

B p? (1—p1)?
A, = qlog <C]k:}190> + (1 —gx)log <(1 — qk)(ll_p0)>

2 NNk —1)
< 1 L 1
= k—10g< 2Aon? >+O()’

where the O(1) is uniform in k. Hence,

toe 3 o frfion(2) e (Y5 o (M) o)

k:kmin"l‘l
< Z exp [k: {log ()\0> + O(l)H =o(1),
k:kmin+1
since A} /Ao = o(1).

This concludes the proof of Theorem 4 under (60).

4.1.2 Proof of Theorem 4 under (61)

Let ¢ be a positive constant that will be chosen small later on. Define
fni=(0+¢) I/(ll log(n) .
We consider the event
I's = {Gs is a forest} N {|Cimax,s| < fn} -

When I'g holds, for any T' C S, Gr is also a forest, with |T'| — Wy connected components. Since the
size of each connected component is at most f,,, there are at least [|T'|/f,] connected components.
Hence, (57) holds with wy, =k — [fﬁn]
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Lemma 18. Pg(I's) is independent of S of size n, and Pg(I's) =1+ o(1).
Proof. This is a straightforward consequence of Lemmas 9 and 17. 0

To conclude, it suffices to show that Eg[L?] < 1 + o(1). For this, we will need the following.

Lemma 19. Let F}; stand for the number of forests with j trees on k labelled vertices. For any
k>2andany j <k, Fj; < kF—2,

Proof. Fix k > 2. By Cayley’s formula, we have Fj,; = k*=2. Therefore, it suffices to prove that
Fyj > Fyjt1 for all j > 1. If we take a forest with j trees and erase any of its k — j edges, we
obtain a forest with j + 1 trees. And there are exactly ) £t ksk: such ways of obtaining a given
forest with j + 1 trees of sizes k1 < --- < kj41. Since

> ki > ki(k—ky) > k-1,
s#£t

it follows that Fk’j(k —j) > FkJJrl(k‘ — 1) Thus, FkJ > FkJJrl. ]

Starting from (59), and using the fact that, under I's, N\I's,, Gs,ns, is a forest with Wg,ng, < wi
edges, we have

Eo [L2] < Eo (exp (29WS1OSQ - 2A(0)K(2)> ]1{951052 is a forest, W, nsy SWK}) .

Note that the exponential term is smaller than 1 when [S; N S2| < 1. Recall that p = ™ and
that A(6) =log [(1 —po)/(1 — p1)]. We derive

n W
Bo[L?) -1 < > Y P[K =k Wsns, =14,Gs,ns, is a forest] exp [2if — 2A(0)k?]
k=2 1=1
n Wk n\ p%i 1— o 2(7L—k(2))
< ZZ (k)P Fk—i o (1 —p1>

N )\0 ’I’Lk

j=1 i=
2. [ne Xe s, 7
< ;(N[l\/)\o] ) . (70)

In the second inequality, we used the fact that K is stochastically bounded by Bin(n,p) (see
Lemma 4). In the third inequality, we used the fact that po < p1 and i < wi < k, as well as the
fact that n? = o(V), which implies that p* ~ (n/N)*. In the fourth inequality, we used Lemma 19
and the lower bound k! > (k/e)¥. The fifth inequality comes from a change of variables and uses
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the definition of wg. When A2e < ), since n? = o(IN), this sum is O(n?/N). When Ae > )\, this

sum is equal to
1 N Me

So it suffices to show that A,, — oco. Since we are working under (61), there is ¢ > 0 such that,
eventually,

Iy, logn < 1-c¢

IyylogN — 1+¢’

Then, using the fact that Ao V A1 = o(1), we have

\2e logn
o log (Al) = (1+0) Ig (201 — 21, + I, — o)
0 A1

< —(1+c+o(1)log(n?) + (1 —c)logN
< log(N/n) = clog(N) ,

eventually. This implies that A, > —1 4+ clog N — oc.
This concludes the proof of Theorem 4 under (61).

4.1.3 Proof of Theorem 4 under (62)

Recall that p = n/(N — n) and define ko = [bnp], where b — oo satisfies b2¢ — 0. Let kyin be the

integer part of 1+ % (1 \% %) Define

n
Is= () {Wr<uw VT C S such that |T| =k},
k:kmin+1
where wy, := k here.
Lemma 20. For any k > kpyin and any subset S of size n, we have Pg[I's] =1+ o(1).

This takes care of the first moment. In order to conclude, it suffices to control the second
moment, specifically, to prove that E[LQ] < 1+ o(1). Arguing as before, we have

Eo[L?] < E []I{ngo} exp (AK(”H
+E {1{k0+1gngmm} exp (AK(2)>]

+Eo |:]l{k0+1§KSkmin} exp (20W51052 - 2A(9)K(2)) ]l{WS1ﬂ52 <wi}
= A1 + A2 —+ A3 .

e Arguing exactly as we did before, we have 47 =1 + o(1).
e Arguing as before, we also have

k .
min k _ 1 k:
Ay < E exp [k <A 5~ log (> + 1)]

n
k=k20+1 ,0

ks

o (-1 (N
< > 1+40(1 A—— —log ( — .
- o [’“( o ”ee{%;?‘k’;m}{ 2 g(n)})}

k=ko+1
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First, we have A(ky — 1)/2 — log(koN/n?) — —oc. This is true if kg = 1, and when kg > 1,
we have N/n? < b, so that

(p1—po)® N?.  N® ,
———~ —(=—=5bC—0
po(l—po) nt ¢ ’
by definition of b, and therefore
ko—1 N2
9 = n4
We also have A(kmin — 1)/2 — log(kminN/n?) — —oco. To show this, we divide the analysis
into two cases. When N'=% < n2~? this results from

A (—<b2§—>0.

kpin — 1 n2-«o p2 A2
AT~ < (1+40(1)——L =(1+0(1 L -0
5 < (o) e o = (L o)) =001
together with
minN 2N“

where we used the definition of kuy;, and the fact that Ao = (N/n)®. When N1~@ > n2-2,
this results from

kmin — 1 1 p%
A—— < = 1 14+ — 1
2 - QLI—QJ og( +p0>+0()
1 92 lea
< slyo Jlog[1+)\2 }+o(1)
1 9 5 Nl—a
< = s
< sltos |4 ] o)
: ) o [ —r%log(n) if a>1/3
< 11—«
< _alog(1+/\1)+0(1)+10g(N/n){—alog(N/n) if a<1/3 7

where in the last line, we have used the identity |2/(1 —a)| =1 for o < 1/3.

And we also have

kmin N
log< 3 ) > log (N/n?) , (73)
so that

Fmin — 1 Fmin N 2 - IOg (n) if a> 1/3
- - < -«
AT 10g< n2 ) = 1—0410g(1+A ) - { —alog(N/n) if a<1/3 °

which goes to —oo since A\; = O(1) and alog(N/n) = A\g — oco. Hence, we have Ay = o(1).

It remains to prove that Az = o(1). If we assume that p; < 2pp, then Ap < A < pg(1+ 0o(1))
and we can prove that A3 = o(1) arguing as for Ay above:

- [ k—1 k
< - -
Az < E exp _k <A 5 log <np> + 1)]

k:kmin+1

- [ (-1 2%
§ 1 1 A —log [ —
P _k ( o)+ fe{kﬁ?ﬁl,n} { 2 o8 ( n? ) })}

k=Kkmin+1

IN

n

> exp k: <1+0( )—i—A—log(kaanN))] .

k=kmin+1

IN
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On one hand, we have An < npg = (n/N)!=® = o(1). On the other hand, log(kmyinN/n?) —
co. Indeed, when N'=® < n?7° we have (72); and when N'=® > n?~® then N/n?> >
n®/(1=%) — o0 and we use (73). We conclude that A3z = o(1) when p; < 2pg. In the following,
we suppose that p; > 2pg. Leaving w;, unspecified, so we can use the same arguments later,
we have

A3 = [Eg []l{ko+1§}<§kmm} exp (29W31052 - 2A(9)K(2)> ]l{WSIOSQSwK}:|
n W

= 3 S BlISiN Sel =k, Weyns, = il exp [me - zk@)A(e)}
k_kmln"rl i=1

Z Z() (Z.)pé(l—po)kz) exp [2zlog<p0)+2(k()—i)log<1:£;>]

int+1 =1

= Z ZBi,k .

k=kmin+1 =1

IN

Furthermore, since 0 <1 —py <1 and 1 —p; < 1— pg, we have

k 27.(2) ‘
n\ k2 i % o(k) en? epik
< < N
Big < (k)p ( i Po(p1/po)™ < ¢ kN Dot ’ (74)

using the standard bound (}) < (en/k)".

We now specify the calculations when wy = k. Considering the sums over i = 1,...k/2 and
over i = k/2+ 1,...k separately, we get

k o k| Lk/2] 21.(2) ¢ k 21.(2) i
k epsk
S By < eo® <€"> 3 (epl >+ 3 ( 1 )
i=1 kN i=1 po Lk/2]+1 pok/2
k k/2 k
co(k) (6”2> k |1+ epth® + enth®
- kN Po pok/2
k
L eolb) (6%2)’“+ e2npy +<62n2p2>k
kN N/2po Npo

First, 2711\/ < e”N = o(1) by definition of ky. Next, ﬁfpﬁl < 2(7)\1/J’U) ”WQ = 2,/C — 0, by the fact

that p; > 2pg. Finally, n?p?/(Npo) = A3/Ag — 0 since \g — oo and A\; = O(1). Hence, we

conclude that i
> Y Bix=o(1). (75)
k=Kkmin+1 i=1

This immediately implies that Az = o(1).
This concludes the proof of Theorem 4 under (62).

Proof of Lemma 20. Let us consider the event

's :== {no connected component of Gg has more than one loop}



34

Under I', a connected component of Gg has at most as many edges as vertices. Consequently,
I's C Ty and we only need to prove that Pg(I'y) = 14 o(1). Since limsupA\; < 1 and Pg(I') is
nondecreasing in Aj, we may assume that A; is fixed in (0, 1).

As a warmup for what follows, we note that the number Ly of loops of size k in Gg satisfies

ok n! Ak
Eg[Lg] —p1m ST

since there are n!/[(n — k)!2k] potential loops of size k. Now, if a connected component contains
(at least) two loops, there are two possibilities:

e The two loops have at least one edge in common. In that case, there is a loop (say of length
k) with a chord (say of length s < k). Let Lj . denote the number of such configurations,
There are n!/[(n — k)!2k| potential loops of size k Given a loop of size k, there are less than
(g) starting and ending nodes possible for the chord. Once these two nodes are set, there
remains less than n!/(n — s+ 1)! possibilities for the other nodes on the chord. Thus, we have

! k n! A\ e k
EolLl 1< pkts n < (2 Epkts—l < \ktsl
sl < p1 (n—k)12k\2) (n—s+1)! — \n " )

Summing this inequality over s and k, we control the expected number of loops with a chord:

oo k—1

k)\k+1 1
22 ElL; Zl_hvn:om,

k=3 s=1

since limsup A1 < 1. Hence, this event occurs with probability going to 0.

e The two loops have no edge in common. Since there are in the same connected component,
there is a path that goes from a vertex in the first loop to a vertex in the second loop. Let
us note L;Cl ko.s the number of loops of size k; and ko that do not share an edge and are
connected by a path of length s. Observe that there are less % possible configurations

for the first loop, less than m possible configurations for the second loop, and less than

k1kan!/(n — s + 1)! possibilities for the chord. Thus, we get

! n! n!
E[L] < phthets__ T kik
Lhikas] < 21 (n— k1)12k;y (n — ko)12ky 2 (n— s+ 1)

ki+ko+s ki1i+ko+s
<A1> pkitkats—1 _ Al

n n

IN

so that the expected number of such configurations is bounded as follows

IDIDMIAWETD DD D) BT ET O

k1>3 ko>3 s>1 k1>3ko>3 s>1
Hence, this second event occurs with probability going two zero

All in all, we have proved that Pg(I'g) = 1+ o(1), implying that Pg(I's) =1 + o(1). O
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4.1.4 Proof of Theorem 4 under (63)

We follow the arguments laid out for the case (62). We define I'g in the same way, except that

wy = [k:%}, where ¢ is a positive constant (to be chosen small later) such that ¢ < a and,
eventually,
1 1-2¢c
wp L EglWigl < 1 (76)
nj/un<k<n

Lemma 21. For any k > kmin and any subset S of size n, we have Pg[I's] =1+ o(1).

For the second moment, we proceed exactly as in the case (62), and we start from (75). In
fact, when wy < k, the proof is complete. So we assume that ¢ is small enough that w; > k, and
bound the sum over k + 1 < i < wy. For ¢ > k, we use the bound (74), together with the fact that

= (N/n)* and k < i, to derive

2\ k 21.(2) ‘
k
B < oot (€Y [ ep
vk € <k:N Poi
P ONOE Ade
) (=)
)k i( ()\%e)
)k i( < >
k—(1—)wy [ N\2e
o(k)+k o
wy, €° (N) ( 2 \/1>
(1—c)1/2

E(1—(1—c)'/? 2 k=g
< keotk)tk (%) (i )</\1€v1)

VAN
o
[
N
ES)
=z
7 N\
)
o

This allows us to control the sum

Wi
Z B; i,

1=k+1

IN

2
— exp [O(k)—k(l—(l—c)”Q)log(N/n)} :

where in the second line we used the fact that wy = O(k) since limsupa < 1, and in the third line
we used the fact that Ay = O(1). Thus,

Z Z Bi,k = 0(1) 3

k=kmin+1i1=k+1

which together with (75) allows us to conclude that Az = o(1).
This concludes the proof of Theorem 4 under (63).

Proof of Lemma 21. Recall that uy = loglog(N/n). First we consider integers k satisfying kmin +
1 <k <n/uy. Define w) = k(1 — ¢)~1/2 (’\2—1 v 1) and ¢}, = w},/k®. Applying a union bound and
Chernoft’s bound for the binomial distribution, we derive that

* n .
s [Wig>w] < (k) P[Bin(k®), p1) > w)]

exp [k {log (T;:) - kglﬂpl(qz)}] :

IN
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Since k/n < 1/un = o(1), and since \; is bounded, we have ¢; /p1 — 0o, so that

k—1 k—1 q,
I / ~ 1 1k
1 (Qk) 5 108 <p1>

= a0 3] s (g2 {0 (1 )

> (1+0(1))(1—c)_1/210g(%) :

and therefore, since ¢ € (0, 1) is fixed,

tog ()~ E2 L ) < 14 [1 - (1 4+ 0(1)) (1~ €)% log(un) — —oo

We conclude that
njun
Y P [Wig>wi] =o(1).
k:kmin"l‘l

Let us now prove that wj < wy. Indeed, this inequality holds if, and only if, Ay < 2(1 —¢)/(1 — «)
and ¢ < a. The second inequality is by definition of ¢, while the first inequality is ensured by (76)
since
)\1 n—1 * *
5 = Eg[Wy s/n] < supEs[Wy s/k] < (1 —2¢)/(1 —a).
n k<n

Let us turn to integers k satisfying k > n/uy. Let ¢g = (1—¢)" /2 —1 and t = ¢ Es[W} ¢]. By
taking any fixed subset T C S of size |T'| = k, we derive

* A n
Es(Wis) 2 BsWr) = pik® 2 JHn/u)® = - = 00, (77)
N

so that ¢ satisfies the condition of Lemma 7 eventually. Using that lemma, we derive that

* . _ . 1log(2 c
Pg [Wk,s > Eg[Wi sl(1—c) 1/2} < exp [ ES[Wk,S]i()CO [1 A ;H
By Condition (76), wy, > Es[Wj ¢](1 — ¢)~1/2. Hence, there exists a positive constant x, such that

n

S Py [Wig>wp] < Y exp[-rEg[Wigl]

k=n/un k=n/un

< nexp {—HES [W*n SH
upn’

Because of (77) and the fact that log(N) = o(n), we have

and therefore the sum above goes to 0. O



37

4.2 No test is asymptotically powerful

When )\ is bounded away from 0 and infinity, the triangle test has some non-negligible power
as long as A1 is bounded away from 0 (see Section 3.4). This motivates us to obtain sufficient
conditions under no test is asymptotically powerful.

Our method is also based on bounding the first two moments of a truncated likelihood ratio L.
Indeed, it is enough to show that liminf Eg L > 0 and liminf Eq [EQ] < 0. This comes from the
following result.

Lemma 22. Let Py and Py be two probability distributions on the same probability space, with
densities fo and f1 with respect to some dominating measure. Let I be any event and define the
truncated likelihood ratio L = L 1p, where L = f1/fo is the likelihood ratio for testing Py versus Py.
Then any test for Py versus Py has risk at least

4 (EoL)?

jad )

27 Bo[L?]
where By denotes the expectation under Py, and by convention 0/0 = 0.

Proof. Assume Eq L # 0, for otherwise the result is immediate. The risk of the likelihood ratio test
{L > 1} — which is the test that optimizes the risk — is equal to

1 -
BZ:1*§E0|L*1|:1*E0(1*L)+Zl*Eo(l*L)+,
since L < L. For any t € (0,1), we have
Eo(1 - L); < (1 —t)Po(L >t) +Po(L <t)=1—tPy(L >1t) .

Moreover, using the Cauchy-Schwarz inequality, we have for any ¢ > 0

EoL = EolL1j ] +Eo[ll;. ]

t+ \/IEO[P] Po(L > t) ,

IN

so that, taking t < Eg L, we have

B T _ £\2
Po(E > 1) > B0 L1
Eqg L?

We conclude that

- Eo L — t)?
thPo(L>t)2tM
Eo L2

Y
and optimizing this over 0 < t < Eg L yields the result. O

Since we only need to focus on the case where \g is bounded from 0 and infinity, and where A\
is bounded from 0 (because the other cases are covered by Theorem 4), we may assume they are
fixed without loss of generality. In that case ¢ — 0 is equivalent to n?/N — 0, which is what we
assume in the following.
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Theorem 5. Write n = N® with 0 < k < 1/2, and assume that Ao and \1 are both fized. No test
1s asymptotically powerful in all the following situations:

M <1, Me<); (78)

1—-2k I)\l
()

Proof of Theorem 5. We use the same truncation as in Section 4.1.2, and still denote the resulting

truncated likelihood by L.
For the first moment, by symmetry,

A <1, Xe> )\, >1. (79)

Eo[L] = PS[FS] = PS[QS is a forest, |Cmax75‘ < fn] .

We already saw that Pg[|Cimax,s| < fn] = 1 (Van der Hofstad, 2012, Th. 4.4). Consequently,

Eo[L] = Ps[Gs is a forest] + o(1) .

Of course, Gg is a forest if, and only if, it has no cycles. By Takécs (1988), the number of cycles in
Gs converges weakly to a Poisson distribution with mean

1 1 AN
=1 _a A
a“()‘l) 92 Og<1_)\1> 92 40
when A; < 1 is fixed. As a consequence, Eq[L] = exp [—a(A1)] + o(1), which remains bounded away
from zero.

For the second moment, we start from (70):
©0 2 2 J
= n-e Afeqf
E[LQ]—1< L VRV FL I
: > (Fhva

with f, = (1 + (:)1';11 logn and c is a small positive constant. Under (78), we have A\?e < )¢ and
the RHS is O(n?/N) = o(1). Under (79), we have A2e > \g, and the RHS is, as before, equal to
(71). Here we have

)\2
A, = [1—2/{—(1—}—0)&log()\lj)]logN%oo,
1

when (79) is satisfied and ¢ is small enough. Hence, in any case, we found that Eg [EQ] <1+o(1).
O

5 Some tests running in polynomial time

There is a surge of interest in decision theory with computational constraints, the main question
being, what can be achieved with tests that can be computed in polynomial-time. An example is
the planted clique problem mentioned in the Introduction, where it is conjectured that there are no
polynomial-time algorithms that can detect with high confidence the presence of a clique of size k
added to G ~ G(N,1/2).

To focus the discussion, assume that the total degree test (which runs in O(N?) time at most)
is mot asymptotically powerful. In fact, to be even more specific, assume that limsup A\; < co and
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that n?/N = o(1). In this setting, the largest connected component test — which can be computed
in O(|&|+|V|) = O(N?) time — is powerful when liminf \g < 1 and \; is sufficiently large. And the
triangle test — which can be computed in O(N?%2) time (Alon et al., 1997) — is not asymptotically
powerful unless A\g — 0. Those are the only tests that we studied here which we can compute in
polynomial time. The k-tree test is powerful when Ag is sufficient small and A; is sufficiently large,
but we do not know how to compute it in polynomial-time. And, similarly, the broad scan test is
asymptotically optimal when Ay > e, but we do not know of any polynomial-time algorithm for
computing it.

In this section, we discuss a few other tests that can be computed in polynomial time. Here
is a brief summary of the best detection bounds and the corresponding tests. In the poissonian
asymptotic where A\g and A1 are both fixed, a polynomial time approximation of the number of
k-cycles (with k large) is powerful as soon as A\; > /Ao V 1. In the asymptotic A\g — oo with
log(N) < Ao < nlog(N), the test based on the second eigenvalue of W is powerful for A\; > /Ag.
For nlog(N) < Ao < N/n, a convex relaxation of the n-sparse eigenvalue problem is powerful for

Al»Wv )\Olog 1/4\/\/7< 2log ) 1/4

5.1 The maximal degree test

The test based on the maximum degree was examined in (Arias-Castro and Verzelen, 2012) un-
der the assumption that Ay > log N, and was shown to be asymptotically powerful when A; >
Volog N. We now concentrate on the case where \g < log N.

Recall the function h(r) = xlogx — x + 1 that appears in Lemma 2. Below, h~! refers to the
inverse of h : [1,00) — [0, 00), where it is strictly increasing. We will also use the fact that

h(ab) = ah(b) + bh(a) + (a—1)(b—1), Va,b>0. (80)

Proposition 5. Assume that n = N* with k € (0,1/2) fized, and that \g = Ylog N and A\ =
v1log N, where yo V y1 = O(1) and —log(yo A v1) = o(log N). Then the mazimum degree test is
asymptotically powerful if

em (14 1) le)

liminfé > 1, —K ,
Y0 h_l(vio)
and powerless if limsup & < 1. In particular, when v9 — 0, the test is powerful if
log(1
lminte' > 1, ¢ = 2o8l/00)
log(1/1)

and powerless if limsup &’ < 1.

The proposition implies that the test is powerless when Ay and A; are both fixed. The regime
where \g = O(N~%) for some ag > 0 fixed is excluded. However, in this very sparse regime, the
maximum degree converges to a constant — except for special circumstances, see (Bollobas, 2001,
Th. 3.2) — and the statement of Proposition 5 would have to be modified with careful rounding.

Proof of Proposition 5. Let A(H) denote the maximum degree of a graph H. Below A is a short-
hand for A(G). We first prove that, in probability under Py,

A
Y0h~t(1/70) log N
Let po = Ao/N and 7 = h~'(log(N)/Xo).

1. (81)
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o Upper bound. First, let k = [(1+¢)nAo|. The expected number of nodes with degree at least

k is equal to

NP [Bin(N — 1,po) > k] N exp[—N Hy, (k/N)]

<
< exp [log N — Ah((1+€)n) + O(A\gn*/N)]

using Lemma 1 and then Lemma 2, with the fact that H,, (k/N) > Hy,((1 + €)npo). Note
that A3n?/N = O(log(N)/N) = o(1) in our context. We then use (80), to get

log N = Ah((1 +¢€)n) < —glog N — —o0 .
We conclude with Markov inequality that Po(A > k) — 0.

Lower bound. For the lower bound, redefine k = | (1 — &)nAg|. We could use (Bollobas, 2001,
Th. 3.2), but we will derive the result ‘by hand’, because the same argument is used below.
Let Dy, denote the number of nodes with degree exactly k, so that Dy =), Lyw,=ky, where
W; is the degree of node i. Note that W; ~ Bin(IN — 1, pg) under Py. Using Stirling’s formula,
we have

EoD] = NE[Bin(N - 1po) =K
= oxp [log N — %logk (N~ 1)Hypy (k/(N — 1))]

Y

1
exp [log N — 3 log k — Ah((1 —)n) + O(AGn*/m)] ,

applying Lemma 2 in the third line. We note that A\2n?/N = o(1) as before, and

log N )
log(log(N')/X0))

so that log k = O(loglog N). Applying (80), we then get

kﬁn)\on(

= O(logN) ,

log N — Xoh((1 —¢€)n) > [e — %h(l —¢)]log N .

Letting ¢ = liminflog(N)/Ao > 0, we have n/h(n) < h~'(c)/c, and & — %h(l —g) >
— Wh(l —¢) > 0 for £ > 0 small enough. We therefore have that Ey[Dy] — co. We now
turn to the variance. Let g = P[Bin(N — 2,pg) = k]. For 4,5 € V distinct, conditioning on
Wij, we get
Po[W; = k,W; = k| = (1 — po)di + Podie—1 »

while
Po[Wi = k] = (1 — po)gk + Pod—1 ,
obtaining
Covo(Lgw,=k} Liw,=ky) = po(L — po) (ak — qr—1)”
Eventually,

Varg[Dy] < Eo[Di] + N(N — D)po(1 — po)(qk — qr—1)*
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so that
Varg[Dy,] < 1 N2po(qr — qr—1)?
2 — + 2 2
(Eo[Dx]) Eo[Dx] ~ N2((1 —po)ar + poqr—1)
1 Gy
= 0]
Eo[Dy] O (1 + @ )

2

- o) ot

—0,
Eo[Dy] p0N2)

2 2
since poq’;g L~ pok;Q =< (l(;\go ]X,) — 0. Hence, by Chebyshev inequality, Dy — oo under Py,

implying that Po(A > k) — 1.

The proof of (81) is now complete.

Henceforth, we work under the alternative Pg. Define AS = max;es W;. We have W; =
W2 + W5, where WT = > jer Wij for T C V. (Recall that W;; = 0.) Our arguments are parallel
to those we used under Py, the only difficulty being that W; is not binomial anymore. Indeed,
WS ~ Bin(n — 1,p1) and W ~ Bin(N — n,pg) are independent. Nevertheless, the resulting
Poisson binomial distribution is close to a binomial distribution.

Lemma 23. Suppose X; ~ Bin(m1,q1) and Xo ~ Bin(ma, q2) are independent. Let m = my + my
and q = %. Then, for k > mq,

P[X; + Xy > k] < P[Bin(m,q) > k| .
If 1 Vg2 < 1/2 and k < (m1 Amg)/2, we also have

(mq)? + k?

m

exp —qk:—( )
mi A\ mo

2+k2] - P[X; + X2 = k]

< B[Bin(m.q) = ] < exp [((h V g2)k +

Equipped with Lemma 23, we proceed with controlling Ag under Pg using the same arguments.
In fact, we prove that, under Pg,

As

— 1. (82)
=

e Upper bound. Let p = (nfl)p}\;l;(]lan)po and A\ = (N — 1)p. For ¢ > 0 small, consider

k= (1+4¢e)Ah~!(log(n)/X). As before, k = O(log N), and we have

Py [AS > k] nP [Bin(N —-1,p) > ]
nexp [ — (N —1)Hy(k/(N — 1))]
= exp [logn — Ah(k/X) + O(k*/N)]

exp[—slogn+0((log]\7) /N)] =0,

IA A

IN

The first line comes from the union bound and Lemma 23, the_second line from Lemma 1,
the third from Lemma 2, and the fourth from (80). Now, since A ~ A; + Ag, it is easy to see
that

AR (log(n)/A) ~ (A1 + Xo)h ™ (log(n) /(A1 + Ao)) ~ |(v1k + v0)h ™ ( )| log N .

Yo + Mk
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We conclude that, in probability under Pg,

A
lim sup s <1.
(716 +v0)h ™! (Vofym)} log N

e Lower bound. Let D,f denote the number of nodes in S with degree equal to k. Obviously,
A >k if D > 1. Fix € small, and redefine k = [(1 — e)Ah~*(log(n)/A)]. We have

S —ph— 22452 . B
Es[Dy] = nPsg[W; =k > ne n—1 P[Bin(N — 1,p) = K]

- % exp [ = (N = 1) Hy(k/(N — 1))]

1 _ _
= exp [logn — 5 logk = Ah(k/X) + O(K*/N)] — oo ,

where we used Lemma 23 in the first inequality; in the second the fact that pk + % =o(1)
since k = O(log N), A = O(log N), p < p1 = O(log(N)/n) and n = N*, as well as Stirling’s
inequality; we then applied Lemma 2. The divergence to infinity follows from the same
arguments that we used before. We now bound the variance of D,f . Redefine ¢ = P[X4+Y =
k] where X ~ Bin(n —2,p;) and Y ~ Bin(N — n,pg) are independent. Working exactly as
we did before, we get

Varg[D? 1 ar_
S[sk]z < 5 o1+ =50)
(Es[Dp])* — Es[Dy] a;
Let ¢ = P[Bin(N — 2,p) = k|, where p := (n_2)p}\}k_(év_n)p0, and also A\ = (N — 2)p. By
Lemma 23,
32 2 32 2
pe P < e < G et W ;
so that qr ~ G, and therefore
2 ~2 2 2
qi._1 qi._q k A1 (log N)
~ ~ < AT b1 .
b1 q;% b1 P plﬁQNz 2 n o(1)

Hence, N — oo under Pg, by Chebyshev inequality. This implies that Ag > k with prob-
ability tending to one under Pg. Then, arguing as for the upper bound, we conclude that

under Pg B
A
lim inf 5 >1.
[(71/1 +70)h ! (Vofw{)} log N
So we proved (82), and together with (81), we can conclude. O

Proof of Lemma 23. The upper bound is a special case of (Hoeffding, 1956, Th. 4). Letting A\; =
m;q; and A = mgq, the lower bound goes as follows:

PX1+Xo=k = Y PBin(mi,q)=k]PBin(mg,qn) = ko]
k1+ko=k
2,2 k 2,2 k
> Z 6_%6—)\1)\711 e_%e_)a)\—f
- k! ko!
k1+ka=k
_22482 2k
Z e miAmg 67

k!
—qk— <m¢1>2+k2

miime P[Bin(m, q) = k] ,

v
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using (Bollobds, 2001, Eq. 1.14) in the second line and (Bollobas, 2001, Eq. 1.13) in the fourth line.
The upper bound is obtained similarly. ]

5.2 A relaxation of the n-sparse eigenvalue problem

We also studied in (Arias-Castro and Verzelen, 2012) a test based on a convex relaxation of the n-
sparse eigenvalue problem. Formally, for a positive semidefinite matrix B € RV*Y and 1 < n < N,
define

A (B) = max [|Bs]| ,
|S|=n

where Bg denotes the principal submatrix of B indexed by S C {1,..., N} and ||B]|| the largest
eigenvalue of B. d’Aspremont et al. (2007) relaxed this to

SDP,(B) = max trace(BZ), subject to Z = 0, trace(Z) =1, |Z|; < n ,

where the maximum is over positive semidefinite matrices Z = (Zg) € RV*N and |Z1 = Y, | Zst]-
We considered in (Arias-Castro and Verzelen, 2012) the relaxed scan test, which rejects for large
values of SDP,,(W?). With the same method of proof that we used there, we can conclude that the
test is asymptotically powerful when n = N* with 0 < k < 1/2 fixed, \g < N and

1/4
A > /nlog(N) \/ (holog(N)4\/ v/ A0 (”213;75(N)> _

5.3 The number of k-cycles

Let Cy denote the number of simple k-cycles in the graph. To test against a stochastic block model
alternative, Mossel et al. (2012) use the test based on Cj, with k — oo slowly. Our arguments are
also based on the first two moments of C}, but controlling the variance is more involved.

Proposition 6. The test based on Cy, with k — oo and k = O(log N)1/4, s asymptotically powerful
when Ao and A1 are fized with Ay > v/ g V 1.

Although computing the number of simple k-cycles seems difficult, Alon and Gutner (2010)
provide an approximation that suffices for our purposes. They show that, for any § € (1,2), there
is a (deterministic) function Cj, that can be computed in less than g(k,d)N3log N time on graphs
with IV nodes, such that

~—

5—1 < ék’(H

<4
_Ck(H —= )

~—

for any fixed graph H. In fact, g(k) = eO(kloglogk—klog(1-9))

Proposition 7. Take § = 1 + exp[—log?(log(N))] (for example). The test based on Cj, with
k — oo and k = O(loglog N) runs in polynomial time and is asymptotically powerful when Ay and
A1 are fized with A1 > /Ao V 1.

Proof of Proposition 6. We aim at applying (47). Straightforward calculations show that

NN

EoCjy = ————pk ~ 20
0k = (N — k12K " 2

(83)
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since there are m possible cycles with k edges, and k? = o(NN). For the variance, arguing

as in (Bollobas, 2001, Eq. 4.2,4.4), which is based on bounding the number of pairs of cycles that
share at least one node, we get

NIp2k NN [0 KR et
BleG =Dl = w—zmzm*%@[@%} g
Nk 1/k 2k—1
< (i) e 2
< (Eo[Cl)* + N~ l/k()\o\/l)%(%)--
Hence,
Varo[Ck] = Eo[Ck]—}-Eo[Ck(Ck—l)}—(]E()[Ck])z
< Eo[Cl + N~Y* (N v 1) (2k)!
with

1
N=YE (N v 1)2(2k)! = exp —4 log(N) + O(klog k)

since k = O(log N)'/4. Hence, Varg[C)] < Eo[Ck] + 0(1). By Chebyshev’s inequality, it follows
that, under Py,
Ci — EolCi] < o(1) + O (N5 /k) 2. (84)
Let us turn to the alternative hypothesis. Let C’kS refer to the number of k-cycles whose nodes
are in S. We use the decomposition C, = C¥ + (Cy — C%). Note that Eo[CS] < (Agn/N)k = o(1),
so that C; = o(1) under Py by Markov inequality. Hence, since Cy — C,f is stochastically larger
under Pg, it follows from (84) and that, under Pg,

Cy, — CF > Eo[Cx] — o(1) — O(NE/K)'/? .
On the other hand, arguing as before, we derive that Eg[C}] ~ —If and, under Pg,

CS > Eg[CF] — o(1) — (/\’“/k)l/z.

Together, we find that, under Pg,

k

Cr — EolCr] > (1 + 0(1))A —o(1) — O(NE/K) > — O (Nk k) . (85)

2k
since A\; > 1. Comparing the control under the null (84) with the control under the alternative (85),

and using the fact that A\ > /g, allows us to conclude that the test rejecting for Cy, > Eo[Ck] + %
is asymptotically powerful. O
Proof of Proposition 7. For § = 1 + exp[—log?(log(N))] and k = O(loglog N),

g(k) = exp [O(log" log(N))] = N°U) |

and the test runs therefore in polynomial time. In order to analyze the power of the test, we use
Chebyshev’s inequality and follow the tracks of Proposition 6. Under the null hypothesis,

Cr=Ch<(6-1)Ck < (0= 1) [EoCil + Op, [VECH]| + 0my (1)] = 0m,(1) .

since (8 — 1) Eg[Cy] ~ e 18’ bg(N))‘—,f = o(1), as k = O(loglog(NN)). Under the alternative hy-
pothesis, we derive similarly that Cy, > §~1Cy > Cj, — opg(1). Thus, we can argue as in proof of
Proposition 6. O
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5.4 Spectral methods

‘Spectral methods’ are procedures that rely heavily on an eigen-decomposition of the adjacency
matrix, or related matrices like the (normalized) graph Laplacian. Since the adjacency matrix can
be recovered from its spectral decomposition, any method is in principle spectral, but the term is
reserved for methods that are computationally tractable (Alon, 1998; Arsi¢ et al., 2012; Chung,
1997; Pothen et al., 1990). We explore such methods here. Let $1(H) > --- > Oy (H) denote the
eigenvalues of a graph H on N nodes, meaning the eigenvalues of its adjacency matrix. Let 8; be
short for 5x(G).
We first prove a simple result for the test that rejects for large values of f;.

Proposition 8. The test that rejects for large values of By is asymptotically powerful when

log N
A A T
1> A0 > log log N

Proof. Krivelevich and Sudakov (2003) showed that, for G ~ G(m,\/m), $1(G) ~ /A(G) V A in
probability when the RHS goes to infinity, and when A% >> log(m)/loglog(m), A > \/A(G) by
Proposition 5 and the fact that h=!(z) ~ x/logz when z — oc.

Hence, under Py, 81 ~ Ao, while under Pg, 81 > p1(Gs) ~ A1. Based on that, we conclude. [J

Based on the result of Krivelevich and Sudakov (2003), and also the fact that 51 > %, we would
intuit that the test based on 81 would behave as the total degree test. However, the deviations of
B1 are rather intricate (Janson, 2005). A similar fine analysis would have to be obtained under the
alternative to really understand the power properties of this test.

The test based on (B, is particularly attractive within spectral methods because of its role in
clustering. We obtain the following asymptotic performance.

Proposition 9. The test that rejects for large values of Bo is asymptotically powerful when Ag >
log N and Ay > /Ao V (Aogy)-

Note that A\; > Ao is equivalent to p; > po, which is for example true when limsup o < 1.

Proof of Proposition 9. We start by controlling 2 under the null. For this, we use the following
result.

Lemma 24. When X = logm, Bo(G(m, A\/m)) = O(V/N).
Proof. When A = (logm)®, the proof of Fiiredi and Komlés (1981) works in exactly the same way,

to show that f2(G(m,\/m)) = O(v/A). This was observed by Feige and Ofek (2005), who then
extended the result to A > logm. O

Applying Lemma 24, we have the upper bound £ = O(v/\g) under Py. To lower-bound S
under Pg, we simply use the Courant-Fischer minimax theorem, which implies that

By > 1= min (1g+21g) "W (1g + 215¢c)
2= z€R H].S + .’L']_ScH2

I

where for T C V = {1,..., N}, 17 denotes the vector with 1’s in coordinates indexed by 7', and
0’s elsewhere. Straightforward calculations show that
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where . o
S nwge n
WS,SC = Z I/I/,U s A = — , p = )
i€S,jese Wsse (N —n)Wgge N—n
Elementary calculations show that
x+ A 1 1

zeR:c2+p 2 /21 p+ A

which is increasing in A. Noting that Wg ~ Bin(n@),pl), while Wge ~ Bin(N(2),p0) and Wg ge ~
Bin(n(N —n),pg), we see that I is stochastically increasing with A\, so that we may assume that
A1/Ao — 0. By Chebyshev’s inequality, under Pg,

Ws = n(n; Dy, +Ofn ) |
wee = ZWEIENZU L o)

Wsse = n(N —n)po+ O(v/nNpo) ,

using the fact that n = o(N). With this, we get

_n)?
. P4+ Omyp)  n U4 O(N )
n(N —n)po+ O(vnNpy) N —=nn(N —n)po+ O(v/nNpo)
np1 1 1 > 1 ( 1 1 >
= ———(1+0 +0 + 0 + 0
Q(N—”)Pt)( (n\/ﬁ) (\/ano) ( \ﬁ) (\/ano)
A1 )\1 )\1 1 1 1
= —+0 O —+0
2)\ * ()\ )+ ()\on\ﬁ) 2+ (\/TLNPQ)
1 A1 A1 1
= —+-—+0 O
2 + 2)\0 * ()\0 )+ (\/n/\o) ’
using the fact that n = o(N) and then A\; = o(Ao).
1 1 1 .\ 1
. . OV 7 P — (& -D+o(1+ .
2\/A2+p+ A 2/)( -4 (Ao ) +0( /m\//\T))
With this and the bounds provided by Chebyshev inequality, we find that
1 N —n 1 M 1
-1 = O 0 N) | —(— -1 O(l4+ ———
5 3P0+ OWR0) + [mpo + O/mpo/N)] | (50 = 1) +0(1+ =)
N-—-n A
= 2 Po)\*1+0(npo+\/Npo/n)
A
= 31+0nA0/N+\/AO/n

so that f2 > A\ +0(nAo/N++/Ao/n) under Pg. Comparing with the upper bound that we obtained
for fBs under Py, we conclude that, under the assumptions of Proposition 9, the test that rejects
when (9 > %)\1 is asymptotically powerful. O

We did not explore in detail methods based on the Laplacian, or normalized Laplacian, whose
eigenvalue perturbation analysis is, for example, carried in (Chung and Radcliffe, 2011).
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6 Discussion

6.1 Adapting to unknown py and n

In (Arias-Castro and Verzelen, 2012), we discussed in detail the case where py is unknown. In
this situation, the total degree test is not applicable, and we replaced it with a test based on the
difference between two estimates for the degree variance. On the other hand, the scan test (based
on (3)) can be calibrated in various ways without asymptotic loss of power — for example, by
plugging in the estimate pg = % in place of pg. We showed that a combination of degree variance
test and the scan test are optimal when pg is unknown, so that the degree variance test can truly
play the role of the total degree test in this situation. We believe this is the case here also. In
addition to that, the broad scan test (based on (6)) can also be calibrated without asymptotic loss
of power, and the same is true for all the other tests that we studied here, except for the largest
connected component test in the supercritical regime.

We also discussed in (Arias-Castro and Verzelen, 2012) the case where the size of the subgraph
n is unknown. This only truly affects the broad scan test, whose definition itself depends on n.
As we argued in our previous paper, it suffices to apply the procedure to all possible n’s, meaning,
consider the multiple test based on a combination of the statistics

Wi n=1,...,N/2

with a Bonferroni correction. The concentration inequalities that we obtained for W}L can accommeo-
date an additional logarithmic factor that comes out of applying the union to control this statistic
under Py, and from this we can immediately see that the test is asymptotically as powerful (up to
first order).

6.2 Open problems

The cases where A\ — 0 and where lim inf Ay > e are essentially resolved. Indeed, in the first situa-
tion, the largest connected component test is asymptotically optimal by Theorem 2 and Theorem 4
case (51), while in the second situation the broad scan test is asymptotically optimal by Theorem 1
and Theorem 4 cases (53) and (54), together with Theorem 5. The case where 0 < )y < e is
fixed is not completely resolved. Since the triangle test has non-negligible power as soon as A; is
bounded away from 0, consider 7 defined as the largest real such that no test for G(N, %) versus
G(N, ’]\V—O; n, %) is asymptotically powerful when limsup Ay < 7. Theorems 2 and 3 provide some
upper bounds on 7.

logn
log N *

Although we proved that the broad scan test was asymptotically optimal when liminf Ay > e,
its performance was described only indirectly in terms of A; in the case (13).

Open problem 1. Compute T as a function of Ag and k := limsup

Open problem 2. Compute, as a function of A1 and possibly k (defined above), the limits inferior
and superior of

n Es [WI:,S]
sup ————
k=n/un k

We also formulate an open problem that connects directly with the planted clique problem. We
saw that the broad scan test is powerful when A; is sufficiently large, but we do not know how to
compute it in polynomial time. Is there a polynomial-time test that can come close to that?

Open problem 3. Find a polynomial-time test that is asymptotically powerful for testing G(N, po)
versus G(N, po;n,p1) when n?/N = O(1), while A\g — oo and A\; = O(1).
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7 Proofs of auxiliary results

7.1 Proof of Lemma 6

Fix € > 0 and define z := 2 [(1 +6e)+ /(1462 +M(1+ e)} First, we control the deviations of

Wy 5. Define g = (M +2)/(k — 1) and notice that g > p; for n/uy < k < n. Since log(1+1t) <t
for any t > —1, we have

1 _
Hy, (qx) == qilog <qk> + (1 —qx)log <Qk> > qilog (%) —qr +p1 -
D1 I—pm D1

Applying an union bound and Chernoff inequality (10), we control the deviations of W' g:

% n
s [Wk75 = k@)qk} < <k> exp [_k(Q)le(Qk)] < explkAy] ,

en k—1
Ay log(k) —— <klog< )—qk+p1>.

Observe that x is larger than 2. As a consequence, we obtain

where

B n Al+zx n(A + x) )\1+:1c A(k—1)
A = Hlog(E)_ 5 o < —1)\1> T o
r M+x A+ k — k-1
< 1+—--— 1 1
< gt (M) - [ e (U0
2
z
< 1-—
- 4(\ + )

where we used in the last line the inequalities ¢t —logt — 1 > 0 and log(1 —t) < —t — ¢2/2, valid for
any t > 0. By definition of x, we have x2/(4(\; + x)) = 1 + €. In conclusion, we have proved that
for any integer k between n/uy and n

Wi A
IPS[ ]’;S 12”] < exp[—ke] . (36)

Let us now control the lower deviations of %W,j g using Lemma 7

Wi s Wi s Wis 2 g 8
< 2 — ! — | <277
e | =] - (5|5 ] <2

For k large enough, exp [—ke] < 1/2, which therefore implies that

Wis Wi s 1/2 8 M+
< 9
ES[ 5 ]—<ES[ i D a2 T 2

since k > n/uy. Taking the supremum over k and letting n go to infinity, we conclude that

Pg

n W*
lim inf \/ ES[ ;;’S}§liminf)\1;x:hminf)\21+(1—|—e)—|—\/(1—|—6)2+)\1(1—|—6).

k=n/un

Then letting € going to zero allows us to conclude.
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7.2 Some combinatorial results

We state and prove some combinatorial results.

Lemma 25 (Extension of Cayley’s identity). The number T, ’go of labelled trees of size £ containing
a given labelled tree of size k satisfies

79 = get=k-1

The number T,gf)ka of labelled trees of size £ containing a given labelled forest with tree components
of size k1, ..., k. satisfies

k T
Tlgf?...,kr < <r> ﬂ—k‘-i-r—l(g —k+4r— 1)7"—1 :

with k = 7_, k.

Proof. The proof relies on the double counting argument of Pitman (Aigner and Ziegler, 2010).
Noting 7 the fixed tree of size k, we count in two ways the number of labelled trees of size £ that
contain 7 and whose vertices outside 7 have been ordered. Straightforwardly, we have T}gZ) (£—F)!
such trees. Alternatively, we consider the following way of building such a labelled ordered tree:

1. Start from 7.

2. Choose any vertex g among the original tree 7" and any vertex 7y among the (/—k) remaining
vertices. Add an edge between g and 9. Root the given tree — now of size k + 1 — at 0.
Consider all the ¢ — k — 1 remaining vertices as rooted trees of size 1.

3. Then, perform the iterative construction of Pitman. At each step i =1,...,/—k — 1, add
an edge in the following way: choose any starting vertex w; among the ¢ vertices and note p;
the root of the tree containing u;. Choose any ending vertex v; among the (¢ — k — i) roots
other than p;. This so-obtained tree is rooted at p;.

4. Let vy_ denote the root of the final tree.

All in all, we have k¢‘~*~1(¢ — k)! such constructions and the sequence vy, ...,vs_j obtained in
Step 3 provides an ordering for the vertices not in 7.

Lemma 26. For any labelled tree T of size ¢ that contaz’nsNT and whose vertices outside T have
been ordered, there exists one and only one construction of T based on the algorithm above.

Comparing the two counts leads to the desired result.

Proof of Lemma 26. Let us slightly modify the iterative construction of Pitman by putting an
orientation on the added edges: the first edge is oriented from vy to %g. Forany i =1,...,/—k—1,
the edge between u; and v; is oriented from u; to v;. The so-obtained partially oriented tree is
noted 7 4.

Observe that except for v,_; which has no parents, all other nodes v; have one and only one
parent. Also, observe that except for the edge v9 — g, all edges between nodes in the subtree 7
and nodes in {vy,...vy_x} leave the subtree 7. By a simple induction, this leads us to the following
claim:
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Claim 1: All partially oriented tree ?u,v based on Pitman construction with sequences (u,v) =
(T, DOy ULy -+ s Up— 1, V15 - - -y Vg—k—1, Uy ) satisfy the following property

Any edge in T is undirected,
(P) Any edges on the unique path between vy_p and 7T is oriented towards T,
Any other edge (not in 7) is oriented in the opposite direction to 7.

In fact, this property characterizes the oriented partially trees ?u,v.

Claim 2: Conversely, for any sequence v = (v1,...,v,—_x) and any partially oriented tree ? of size
¢ satisfying (P), there exists a unique sequence, (g, Ug, U1, - - ., Us—g—1) such that ?WJ =T.

Proof of Claim 2. The uniqueness is straightforward. Given T, define 4y as the unique child
in 7 and define ¥y the parent of @ig. For any i = 1,...,¢ — k — 1, denote u; the parent of v;. These
sequences are lawful for the Pitman construction. Indeed, at step %, v; is not in the same connected
component as u; and v; is still a root of a connected component.

Then, the lemma proceeds from the fact that for any tree 7 of size £ and any sequence v =
(v1,...,v0-1), there exists one and only partially orientation of T satisfying (P). O

We now prove the second part of Lemma 25, relying on the same double counting argument.
Write k = k1 + ...+ k. Noting F the fixed forest with (labelled) connected components 71, ...,7,
of respective sizes k1, ..., k., we count in two ways the number of labelled trees of size £ that contain
F and whose vertices outside F have been ordered. Straightforwardly, we have 7, ,if) k, (L —k)! such
trees. Alternatively, we consider the following Pitman construction:

1. Start from F.

2. For any j = 1,...,r, choose any vertex w; € 7;. Root 7; at w;. Consider all the £ — k
remaining vertices as rooted trees of size 1.

3. Then, perform the iterative construction of Pitman: at each step ¢ =1,...,0 —k+1r — 1,
add an edge in the following way: choose any starting vertex u; among the ¢ vertices and
note p; the root of the tree containing u;. Choose any ending vertex v; among the remaining
(¢ — k +r —1i) roots other than p;. The resulting tree is rooted at p;.

4. Let vy_gy, denote the root of the final tree.

All in all, we have (H§:1 k)¢ =k+=1(¢ — k + r — 1)! such constructions. And the sequence
V1, ...,Vi—k+r Obtained in Step 3 provides an ordering of the vertices outside F if we ignore the

wj’s in that sequence.

Lemma 27. Any tree that contains F and whose vertices outside F are ordered by the sequence
(t1,...,te—k) can be constructed in this way.

Consequently we have

T,ﬁ”k (=)< ([Tka) 42— ke — 1)1,
=1

from which we derive the (crude) bound

¢ EN" o pir .
Tl;?...,kr < <7“> ﬂ k+ l(f—k—l—r—l) 1 )
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Proof of Lemma 27. Consider a tree T that contains F and whose vertices outside F are ordered
in the following sequence (t1,...,tp_).

Claim. There exists a (non-necessarily unique) orientation of the edges outside F such that any
node in ¢y, ...,ty_g_1 has exactly one parent, t;_; has no parent, and any tree 7; in F has exactly
one parent.

Proof of Claim 1: Collapse each of the trees 7; into a single node, to obtain the tree 7¢F+7
with ¢ — k 4+ r nodes. Then, we prove the result for 7¢%*" by a simple induction on the number
of nodes.

For any ¢ € {1,...,r}, define w; as the unique node in 7;. We define the sequence v :=
(Wiy... Wy, t1,...te_g). Finally, we define u; as the unique parent of v; for any i < ¢ —k+r—1. It
is straightforward to check that these sequences w, v and u are lawful for the Pitman construction
and allow to build F. ]

7.3 Proof of Lemma 14

By definition,

Varg[Ni™¢] = Z (Po[Gc, and Ge, are trees] — Pg[Ge, is a tree]Py[Ge, is a tree]) |
C1,C

where the sum ranges over subsets Cy, Cy of size k.

In the sequel, we let ¢ = |C1 N Cq| and let r denote the number of connected components of
C1 N (5. Note that, when g = 0, the corresponding terms in the sum above are zero. When g > 1,
we define

B, , =Py [QCI,QCQ are trees and Go,nc, has r connected components] ,

so that
q

Po[Ge, and G, are trees| = Z B, .
r=1
Note that Go, ¢, is a forest when G¢, and G¢, are trees.

We derive By 4 first. Under the event {G¢,, G, and Goync, are trees}, there are exactly 2k—1—¢g
edges in G¢, UG, among the potential 2k —¢?) edges. Let us count the number of configurations
compatible with this event. By Cayley’s identity, there are ¢?~2 configurations for the tree Go,nc,-
The tree Goyno, being fixed, we apply Lemma 25 to derive that there are gk*~9~1 configurations
for Go, and gk®~9~! configurations for Gg,. All in all, we get

— —q— 2k—1— (2) _g(2) _
Bl,q — qq 2[qk?k q 1}2p0 Q(l_p0)2k q 2k+14q .

Then, we upper bound B, , for r > 2. Under the event defined in B, g4, there are 2k —2 — g +r
edges in G¢, U G, among the potential 2k®@ — ¢ edges. By Lemma 19 , there are less than ¢ 2
configurations for the forest Go,nc, with r connected components. Go,nc, being fixed, Lemma 25
tells us that there are less than (%)T kk=atr=1(k — g +r —1)""! possible configurations to complete
Gc, and (independently) for Ge,. It then follows that

T 2
B,, < q(I*Q [(g) kqu+r71(k —gtr— 1)7'71 pgk’—lﬁ-?“—?(l _ pO)Qk(Q)fq(Q)kaJrqfrJrQ
r—1
< Bl,q < Po > kﬁrizl ’
L —po
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using the fact that ¢ < k. Summing over r leads to

q q 6 7r—1 8
> Brg<Bigk®> [ Pok ] < B, P o(Big)

- S —y
= = ll—po 1 —po — pok

2
since pok® = o(1). Thus, when |C; N Cs| = ¢ > 1, we obtain

Py[Ge, and Ge, are trees] = Bjg4+ O(Bl,q)
= qquk—Qq—ngkflfq .
We can now bound the variance. The number of subsets (C1, C3) of size k such that C1NCs = ¢

equals (],Z ) (];) (]Z:qk) Thus, we derive

tree : N k q 2k—2q—2, 2k—q—1
Varo[ Ny, =< Z .y k Do
1

q=
k 2k—2q—2
qk a 2k—2q—1
< N ——5 a
; q'(k — )"

by Stirling’s lower bound. By convention, Ay = 1. The function ¢ — Ay is easily seen to be
increasing over (0,ky/Ao/e) and decreasing over (ky/Ag/e,00). Thus, when Ay < e, we have
Ap—g < Ak\/—, and when Ao > e, we have A;_, < Ay; this is for allg =1,...,%k Then summing

over ¢, we obtain the stated bounds in each case.

7.4 Proof of Lemma 15

First, we deal with the expectation.
Eg [N,';rgeq] = Z Z Ps[Ge, and Geyue, are trees| .
61CS,|C1|:L] CQCS°,|CQ|:k—q

When Ge, and Go,uc, are both trees, there are ¢ — 1 edges in Go, and k — ¢ additional edges in
Goyuc,- The number of configurations for G, is ¢972 (Cayley’s Identity). By Lemma 25, when
Gc, is fixed, there remains qkk_q_l possible configurations for Go,uc,. As for the previous variance
computation, we apply to control this probability. Hence, we get

_ _ fe— (2) _ (2) _4(2) _
Ps[Ge, and Ge,yue, are trees] = q7 2gkF =07 1p0 I phm9(1 — p)? 7 T9HL(1 — po)FT 0T Tkt
- qq—lkk—q lpq lpk q

)

since (¢ — g+ 1)py < k?p1 < k?/n = o(1) and (k@ — ¢® — k + ¢)po < k%py =< k2/N = o(1).
Hence, using the fact that nk = o(IN) and the usual bound m! < /m(m/e)™, and we derive

. n\ (N—n\ .1, 5
Es[Nig,] = ( )( >qq A

q)\k—q
_ —g— —1\k—
. qq 1ka q 1)\? )\0 q
q'(k —q)!

(ed)* Aok \FY
"R \Un(k—q) ‘
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This quantity is maximized with respect to ¢ when (k—q)/k = A\o/(A1€), and taking q := k— L)\)‘—l"ekj
leads to .
=T (6/\1) Ao
ES[Nk,S,q] - TLW exp <)\lek> .

Let us turn to the variance. Again, we decompose it as a sum over (C1,C3) C S? and (C3,Cy) C
(5°)? depending on the sizes s = |C1 N Cs| and r = |C3 N C4|. By independence of the edges, only
the subsets such (r,s) # (0,0) play a role in the variance. We have

k—

q
Val"S [N]Z:ls"q] S Z Z Z Z PS [gcla gCQ? gclLJCga gCQUC4 are trees]

s=1r=0 ‘ClﬁCﬂ:S |CgﬁC4|:T

[}

k—q
+ Z Z PS[gC17 gCQ? g01U037 gCQUC4 are treeS]
r=2 |C1OCQ‘:O |CgﬂC4|:’r‘
= B1+B;>.

First we consider the sum By where r is positive. Therefore, fix C1,Cy C S and Cs,Cy C S¢ with
|C1] =1C2| =¢q, |C3] = |Csl =k —¢q, |C1NCal =s>1and |[C3NCyl=7>1,and for 1 <¢; <s
and 1 <ty <7+ s, define

A(tl,tg) = {ng gCQa gclLJC37 ngUC4 are trees}
N{Gc,nc, has t; connected components}

N {g(CmCz)u(Cng4) has ¢y connected components} .

(The dependency of A, ;,) on C1,Ca, C3, Cy is left implicit. )

We first control Ps[A(;1)]. Under the event A ;, the graph Ge, U G, contains 2¢ — 1 — s
edges and the graph Goyuc, U Go,ue, contains 2(k — ¢) — r additional edges. Indeed, the number
of edges in the last graph is equal to

(|01U03‘—1)+(’CQUC4‘—1)—(’(ClﬁCQ)U(CgﬂC4)’—1) = k—l‘i‘k—l—(?“‘i‘s—l) =2k—r—s—1

Applying Lemma 25, there are s°~2 possible configurations for G, ¢, and then [sq?=571]2 possible
configurations to complete Go, U Go,. The graph Go, U Go, been fixed, there are s(s + 7)1
configurations for G, nc,)u(csncy), since this is a tree with s + r nodes containing the given tree
Gcine, with s nodes. By the same token, Go,ucs is a tree with k£ nodes that includes the given tree
Geyu(esney) With ¢ + 7 nodes, and similarly for Go,uc,, there at most [(g + r)kF=4=7=1]2 possible
configurations to complete Go,uc, U Goyuc,- Thus, we obtain

Ps[Aqn) < 5 2[sq" 1 2s(s + 1) (g + )RR TR o 0T oy ()

Let us now control the probability of A, ;,) for 1 or ¢y strictly larger than one. First, observe
that whenever o < t1, A¢, ¢, is empty. Indeed, if to < ¢, there is a path in C'3 N Cy between two
connected components of Go,nc,. However, these two connected components are also related by a
different (since Cq N C5 = @) path in Cy (since G¢, is a tree), and that contradicts the fact that
Go,ucs is a tree. Hence, we may assume that to > ¢;. By Lemmas 25 and 19, there are at most

5572 possible configurations for the forest Go,nc,, and when this is fixed, there are at most

[(S/tl)thq—S'i'tl—l(q — s+ tl _ 1)t1—1:|2 é [sqq_sqg(tl_l)]Q
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possible configurations to complete Go, U Go,. With Go, U G, being fixed, the number of possible
configurations for G, ncy)u(csncy) 18 at most the number of trees that contain Goyne, — which is
at most

(s/t)(s + )T 5T s ppr — s 4 t; — 1)1 < sh1 (5 4 )T 2072

by Lemma 25 — times k27!, which bounds the number of ways of erasing ts — 1 edges in this
tree to obtain a forest with {2 components. The graph Ge,ucync,) contains t2 —¢1 + 1 connected
components. By Lemma 25, there are no more than

2

+ to—t1+1
q r kk—q—T+t2—t1 (k, —q—r 4 tQ o tl)tz—tl S [(q + r)kk—T—qkS(tz—tl)]Q
to—t1 +1

possible configurations to complete Goyucs U Goyue,- The number of edges in Go, U Ge, is 2(q —
1) — (s — t1), while the number of edges in Goyuc, U Goyuc, s

2k—q)—(r—(ta—t1))=2(k—q) —7r+ta—t1 .
All together, and with some elementary simplifications, we arrive at the following bound
PS[-A(tl,tz)] < A1’1k7(t2—t1)+9t1—Gptllflpngtl ]

Since k9 (pg 4 p1) = o(1), it follows that

s r+s

Z Z PS(Atl,tg) =< A171.

t1=1tx=1
Using the definition of A; ; in (87) and the definition of ¢, we bound By
Y\ (N —n g\ (k—q\/n—q\(N—-—n—-k+q A
= \4 k—q /) \s r q—Ss k—q—r 1
Ss+1q2(q—s—1) (S + r)r—1k2(k—q—r)—2(q + 7")2
risl(qg— s)12(k —q—r)!?

k—

M=

By <

S

2q—s—1\2(k—q)—r
)\111 )\0( q)

s,

T 2(qg—s 2(k—q—r
< nze2k—r—s <5‘7’:7“) < q ) X )<k—§—r> e ))\%Q*sfl)\g(ka)*r+1

q—Ss

r 2(qg—s 2(k—q—r
= ﬁ § :e4k72q73r73 s+ q (g=e) k — q (ka=r) )\Qk—QT—S—lAT‘
Al — r q— s k—q—r 1 0

2(q—s) 2(k—q—r)
ﬁ 4k—2q—3r q k — q )\2k72r7571)\r
A M;e <q—8) <k‘—q—?”) ! .

We have applied Stirling’s lower bound in the fourth line; we haved used the definition of ¢ to
control k/(k — q) in the fifth line

< k’ >2(k—q—r) B k' 2(k_q_r) - ()\16>2(k—q—r) (1 B )\16) —2k B 0(1) ()\16)2(16—(1—7’) ‘
k—q L%J ~\ o kAo Ao ’
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and we have upper-bounded (1 + s/r)" by e® in the last line. Note that

k—q—r o e3/2 20 2kmar) ok
e—3r k—q 2kmamr) )\721")\7’ — (k Q)e \/)1\70 63/2 AL 2(k=a)
k—q—r ! k—q—r Vo

is decreasing with respect to r since )\%e > Ag. As a consequence, we have

k< _ 2¢
B < %264’“—2%’“ "D, D= (4) M
=

The function ¢ — Dy is easily seen to be maximized at £ = ¢gy/A1/e. This allows us to conclude
that

2
nk _ v _
Bl < e4k 2q+2q )\1/6>\%k q .
1

Finally, we bound Bs following a similar strategy. First, we observe that the probability of the
event B := {Gc,, Gc,, Goyues, Gosue, are trees}) is equivalent to the probability of the event By :=
BN{Gcync, is a tree}. This follows from the fact that the event B, := BN{Gc,nc, contains r trees}
involves r — 1 more edges than B; while the number of possible configurations in B, is does not
increase more than by a factor k2" compared to B;.

k—q
B2 = Z Z Z ]P)S[gcla gCQ’ gC1U037 gCQUC4 are trees]

r=2 \CmCQ|:O ‘Cgﬂcﬂz’r‘

k—q
< Z Z Z PS[QC’U gC27 g01U037 gCQUC4 ) and gCSﬂCzl are trees]

r=2 ‘ClﬁCﬂ:O ‘C3ﬂC4‘:T’

k—q 2 2
+ 1) 2(k—q)—r
=< § :Tr72 (qq72)2 ((q : T> kk—qfrJrl(k —q—r+ 1)) p?(q 1)pg(k q)—r+1

O

q r k—q—r

) iij75Tzk‘*ki(q‘”Aé““‘q)""“e%’” <k_’§_)(“
< k6§?\j)\%k—2r—2)\6+164k2q3r (I{E;Ey)z(qu)
B Ii\fTﬂ)‘%k_Q)\oed‘k_Qq :

In the third line, we bound the probability by counting the number of edges involved in the event
and the number of possible configurations, as we did before. In the fourth line, we use the bound of
k/(k—q) to obtain a ratio of the form kf ;ﬁr. In the last line, we observe that the sum is decreasing
with respect to r and is maximized at r = 0.
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