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LONG-TERM GOALS

My long-term goal is to continue to test and refine a similarity-based method for the extraction of
marine atmospheric boundary layer (MABL) fluxes from synthetic aperture radar (SAR) wind imagery
of the sea surface.  Thus far, I have implemented this method on seventeen SAR wind images from off
the east coast of the United States using bulk-derived statistics from coincident buoy data as ground-
truth.  Agreement is encouraging.  The rate of acquisition of SAR wind imagery available to me has
increased.  Imagery is available over the Gulf of Alaska as well as off the east coast of the United
States, in conjunction with the National Oceanic and Atmospheric Administration (NOAA)-sponsored
Storm Watch / Alaska SAR Demonstration (http://fermi.jhuapl.edu/sar/stormwatch/index.html).    

Therefore, the potential for robust testing of the method will continue.  Questions I wish to address
include the influence of the surface wave state, the synoptic and mesoscale meteorological
environment, pixel size, and the averaging window size of the SAR wind imagery on the performance
of the method.

OBJECTIVES

Young et al. (2000) presents a method based on Monin-Obukhov and mixed-layer similarity theory
that uses the variance of SAR-derived wind imagery in the presence of statically unstable MABLs to
generate diabatic wind imagery and, in the process, calculate several MABL statistics including the
Obukhov length (L) and the surface buoyancy flux (B).  Young et al. (2000)’s data set is limited to low
wind speed and small air-sea temperature difference environments.  My objective is to extend the work
of Young et al. (2000) to environments with a larger range of wind speeds and air-sea temperature
differences.  No in situ turbulence data are concurrent with the SAR data set used my research.
However, several NOAA National Data Buoy Center (NDBC) buoys are present in the imaged areas.
Therefore, my objective is to compare SAR-derived MABL statistics to those produced by the Tropical
Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (COARE) 2.5 Bulk
Flux method (Fairall et al. 1996) which uses the buoy data as input.  In this light, my research should
be viewed as a test of a method that, if successful, can compete with COARE 2.5-buoy estimates of
MABL statistics.
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APPROACH

The key variable used as input for the SAR method is the variance of the wind imagery resulting from
MABL convection.  This variance (σu

2), combined with the SAR-derived MABL depth estimate (zi)
(via the technique presented in Sikora et al. (1997)) and the SAR-derived friction velocity (u*) (via the
wind imagery, the log wind law, and the Charnock relation), is used to calculate an L in the convective
limit;
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L is in turn used to calculate a diabatic drag coefficient (cd) via
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In Eq. 2, k is von Karman’s constant (0.4), z is the instrument height, zo is surface roughness length
calculated following Smith (1988), and Ψm is the stratification function given by Paulson (1970).  cd is
combined with u* to produce a diabatic wind speed image.  The family of equations are solved by
iteration, with refined values of L resulting in refined values of the wind speed.  Convergence is rapid.
B is obtained by solving the formal definition of L for that quantity,
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where Tv is the surface virtual temperature in absolute units and g is the acceleration of gravity.

The SAR imagery are converted to wind imagery using the technique described in Thompson and Beal
(2000).  Caution must be taken during the transfer from normalized radar cross section (NRCS) to
wind imagery.  For one, the relationship between NRCS and wind speed is highly dependent on the
near-surface wind direction.  The near-surface wind direction over the ocean can be quite variable,
especially at high resolution in convective environments.  Moreover enhanced or decreased backscatter
due to oceanographic, as well as speckle noise can contaminate the SAR wind estimate (Mourad et al.
2000).  Thus, when converting SAR imagery to wind imagery, it is usually desirable to apply some
spatial smoothing.  This smoothing minimizes contaminating variance while still providing a
resolution high enough to preserve MABL convective signatures.  I adopt the recommendation found
in Thompson and Beal (2000) and Mourad et al. (2000) of smoothing to a 300-m pixel size; however,
additional research is needed to test the validity of the choice.

All buoy averaging times for the data used in the COARE 2.5 method are 8 min and are calculated just
prior to the top of an hour.  Therefore, the buoy averages correspond almost identically in time with the
SAR overpasses.  Using the 8-min average buoy wind speeds and invoking Taylor’s hypothesis,
portions of each resulting wind image are cropped in such a way that the spatial data from the resulting
sub-scene can be compared to the temporal data of the buoy.  These square sub-scenes range in size
from 17.6 to 51.8 km2 and are used as input for the SAR method.



WORK COMPLETED

Task 1. Select appropriate SAR-derived wind imagery from in-house collection at The Johns Hopkins
University Applied Physics Laboratory (JHU/APL).

Task 2. Cross reference SAR-derived imagery with collocated buoy data.

Task 3. Generate comparisons of SAR and bulk-derived marine atmospheric boundary layer statistics

Task 4. Present current research and preliminary results at International Geoscience and Remote
Sensing Symposium, 2000

RESULTS

I have exhausted the original east coast RADARSAT SAR data set that I proposed to employ.  That
data set spanned 1996 to 1997.  Preliminary results can be found in Sikora et al. (2000).  Figure 1
shows expanded results from that research.
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Figure 1.  Comparisons of SAR- and COARE 2.5-derived -L and B.

As can be seen, agreement between the two methods is encouraging.  More scatter exists in the
comparison of -Ls than Bs.  In general, the SAR method underestimates the results of the COARE 2.5
method at smaller –Ls and Bs while at larger –Ls and Bs, the opposite is true. Future work will address
questions designed to reveal the causes for the observed differences.

IMPACT/APPLICATIONS

The above-mentioned SAR-MABL similarity theory techniques have the potential to provide accurate
MABL flux measurements at a very high resolution.  Verification of the usefulness of these techniques
is important to those communities that would benefit from their implementation such as synoptic-scale
and mesoscale operational numerical weather prediction.



TRANSITIONS

Pierre D. Mourad and I have recently been awarded a grant from NASA to extend this research to the
equatorial Pacific.  The NASA research will therefore compliment my ONR-funded work.  The
potential exists for examining SAR imagery coincident with in situ turbulence data.  Therefore, there is
the potential to reveal errors in both the SAR and COARE 2.5 method associated with the breakdown
of Monin-Obukhov similarity theory due to the presence of young seas and swell (Donelan et al.
(1997).

RELATED PROJECTS

The research described herein is also being reported under a separate ONR grant number, namely
N0001400WR20192.

The continuation of my research relies on RADARSAT SAR imagery collected as part of the Storm
Watch / Alaska SAR Demonstration.  Much of this imagery is already in-house at JHU/APL and freely
available to me.  Additional imagery is archived each day.  Scientists at JHU/APL convert these SAR
images to wind speed images.  In this respect, my research is coordinated with that of Dr. Donald R.
Thompson of JHU/APL.  His ONR-funded research is focused on scattering issues related to the
extraction of wind speed from SAR imagery.  Dr. Thompson has found cases where SAR-derived wind
spectra differ significantly from corresponding in situ spectra.  It is believed that some of the observed
differences are due to the fact that fluctuations in the SAR imagery, especially at the shorter spatial scales,
can be caused by complicated scattering and surface-wave hydrodynamic processes as well as by direct
wind variation. These non-direct wind-related fluctuations in the SAR imagery are produced, for example,
by pixel-to-pixel changes in the surface tilt or by changes in the spectral density of short surface waves
due to hydrodynamic modulation that varies across the phase of the longer waves.  Dr. Thompson is
attempting to understand how to more accurately characterize and isolate these two different processes as
well as to research other possible mechanisms for the observed differences.
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