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ABSTRACT

A fundamental challenge in river analysis and modelling is the lack of readily available and reliable information on river bank geometry.
Traditional survey methods are expensive and time consuming and often difficult to execute in many river systems because of hazardous terrain
or lack of access. However, as high quality aerial and satellite imagery becomes available for more of the globe, it is increasingly possible to extract
these bank locations directly from imagery. The most direct method of doing this involves manually designating edges based on visual criterion.
This, however, is often prohibitively time consuming and labour intensive, and the quality is dependent on the individual doing the task. This paper
describes a quick and fully automated method for locating water surface and river banks in high resolution aerial imagery without recourse to any
multispectral information, by segmenting based on the local entropy of the image. Thismethod is demonstrated on imagery of several rivers and its
advantages and limitations are discussed. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
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INTRODUCTION

Efforts to develop accurate two and three dimensional river
models (see e.g. Pasternak et al., 2003; Novikov and
Bagtzoglou, 2006; Yang et al., 2006) are often hampered
by the lack of high quality surveyed river bank geometries.
Unlike for coastlines, there is no readily accessible database
of river bank locations and what information is available is
often outdated and of questionable accuracy and resolution.
Many rivers of interest are often located in inaccessible
areas where traditional surveying techniques are of limited
use or where access is otherwise denied.
In recent years, the public availability of high quality

aerial and satellite imagery has greatly increased, and ever
larger swaths of the globe are covered with high resolution
imagery. This has opened up many avenues for using
remotely sensed imagery to monitor, and develop models
of, remote or unsurveyed rivers (see e.g., Winterbottom
and Gilvear, 1997; Westaway et al., 2003; Gilvear et al.,
2004; Legleiter et al., 2004; Marcus and Fonstad, 2007;
Vericat et al., 2009). The most commonmethod of converting
these photographs into discreet river edges is to have a trained
technician carefully trace the edges on the basis of visual cues.
This, however, can be quite time consuming and labourious,
and the quality of the final result is controlled by the skill and
biases of the individuals involved.

The automated detection and extraction of features in
remotely sensed imagery, including water and shorelines, is a
major topic of ongoing research and development. Many
methods have been proposed through the years, all of which
perform well in certain circumstances and have certain
limitations. One of the most common approaches is to use
information encoded in multispectral imagery to, for instance,
separate the differences in infrared reflectivity between different
surfaces, such as water and land (Kelley et al., 1998).
Many of these techniques, unfortunately, are tied to certain

spectra and thus to certain sensors and observation platforms.
When such data are not available, as in cases where only visual
spectrum imagery is available, other methods have been devel-
oped. The most common of these rely on segmenting the image
based on differences in colour, hue, saturation or intensity
between the features of interest (Gilvear et al., 2004; Legleiter
et al., 2004; Tanaka, 2006). These methods are generally
considered to be supervised classification techniques in that
they require the active input of a trained analyst to define the
characteristics of the regions of interest.
Often, however, only one image band is available, as in

the case of greyscale imagery, or the features of interest
are such that even a trained analyst has difficulty in defining
the criteria for segmenting the image. For these cases,
certain automated, unsupervised (or minimally supervised),
image classification schemes have been developed using
the high resolution information encoded in a single channel
image to segment it into finer blocks than a human can
segment it.
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Segmentation by image clustering, the location and defi-
nition of regions of similar characteristics, is quite common,
especially using the K-Mean or Iterative Self-Organizing
Data Analysis techniques. But these techniques suffer limi-
tations in requiring significant operator input in the setup
phase, requiring significant computation time and in having
difficulty in identifying geometrically straight features
(Jensen, 1996). Although these techniques have been used
successfully to segment water and land and determine the
shoreline (Alphan, 2005), their use has been limited by
speed and by the need for a trained operator. Certain more
automated techniques, for example the Syneract method
(Huang, 2002), have been developed to reduce the need
for operator input, but they are still slow and have generally
been used in segmenting land use and vegetation rather than
in developing a shoreline.
The machine vision community has developed a number of

powerful techniques based on the field of texture analysis
(Tuceryan and Jain, 1998) that have seen some adoption by
the remote sensing community. Images may be segmented
by breaking them down into fundamental units, or tokens,
(Tuceryan and Jain, 1990) or by comparing statistics of image
ÒroughnessÓ based on frequency domain transformation
(Viyas and Rege, 2006), moment-based segmentation
(Tuceryan, 1994), image entropy (Singh and Singh, 2008;
Pharwaha and Singh, 2009) or a combination of techniques
(Awate et al., 2006).
This paper describes a new technique, developed at the

Naval Research Lab, which automatically extracts river and
river bank locations from arbitrarily sourced high resolution
(~1m ground sample distance) single channel imagery
without recourse to multi-spectral or even colour information.
This method relies on quantifying the difference in image
texture between the relatively smooth surface of the river
water and the rougher surface of the vegetated land or built
environment bordering it and then segmenting the image into
high and low roughness regions. The interface between the
low and high roughness areas defines the river banks.
In the paper to follow, the Method Section will discuss the

method and its implementation. The Validation Section will
validate the technique on images of several rivers. Finally,
the Discussion Section will discuss its uses and limitations.

METHOD

The new image segmentation technique to be described
exploits the fact that in imagery of many rivers there is a
clear difference in the roughness of the surface of the water
and the roughness of the vegetated or built environment
surrounding it. This difference is intuitively obvious to a
human observer, allowing a human to perceive the river
regardless of whether the imagery is in true colour, false

colour, infrared, greyscale or any other colour space. This
technique requires no information other than that contained
in a single channel (i.e. greyscale) image. It is designed to
work with high resolution imagery from any source,
including such publicly available sources as Google Earth,
Worldwind or Terraserver with no a priori requirements as
to image format, size, colour space or sensor used. It is
further designed to run automatically, with no operator
supervision, and quickly.

Image entropy

Roughness in an image is represented by the local variance
in the image colour or grey level and can be expressed in
several forms. Shannon entropy (Shannon, 1948) is a metric
commonly used in information theory and texture analysis
that lends itself well to classifying this sort of image. The
concept of Shannon entropy was developed for use in data
compression techniques and is a measure of the
unpredictability in a variable across a discreet set of values.
It is defined, mathematically, as

H ¼ �∑
N

i¼1
p Xið Þlog2p Xð Þ (1)

where H is the entropy of the variable with discreet values
X1�XN, N is the number of discreet values, and p is the
probability mass function of X. The probability mass
function is the probability that a random variable will
exactly equal a discreet value, that is, the fraction of the total
number of variables with any given value. In information
theory, this number, H, represents the number of bits needed
to encode a string, whereas in image analysis, it is a measure
of the randomness inherent in an image region.
In our case, we have chosen to work with greyscale

imagery with 128 discreet grey levels running from 0 to
127. The ‘roughness’ then associated with any pixel in the
image is related to the Shannon entropy of that pixel and
the pixels that surround it. Consider the case of a pixel with
a grey value of 2 surrounded by 8 pixels with grey values of
1, 1, 1, 2, 3, 4, 5, 5. The calculated Shannon entropy for that
9 pixel region is then

H ¼ ��
0:333log2 0:333ð Þð Þþ 0:111log2 0:111ð Þð Þ

þ 0:222log2 0:222ð Þð Þ…þ 0:111log2 0:111ð Þð Þ
þ 0:111log2 0:111ð Þð Þ þ 0:111log2 0:111ð Þð Þ�

(2)

and H= 2.41938. Normalizing by the number of values
involved, (9) gives a normalized Shannon entropy of
0.26882. This value describes the level of variability in the
set but does not address the range of variability. An image
segment where the values vary over a small grey range is
likely to depict a less rough area than one where the values
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vary over the entire grey range. Thus, we normalize this
value by multiplying by the range of values in the sample,
here 5, and dividing by the maximum possible value range,
128, to define a normalized Shannon entropy or Hn. This
gives us a value of Hn= 2.41938 × (1/9) × (5/128) = 0.0105
as the field and range normalized Shannon entropy. This
value serves as a good indication of local variability and
thus roughness.
Our final formulation then is for a field and range normalized

Shannon entropy defined as

Hn ¼ �∑
N

i¼1
p Xið Þlog2p Xð Þ 1

s

� �
rl
rm

� �
(3)

where s is the number of pixels being analyzed, rl is the local
range of values across the pixels and rm is the maximum
possible range of values.

Algorithm

Imagery must first be obtained from some source. This
imagery must be of high enough resolution that the rough
surface of the land can be readily observed. This required
resolution will vary depending on the location of the area
of interest, but it will generally be in the range of 1–3m
per pixel. If the imagery is not already georeferenced, there
must be sufficiently defined features in the image such that
the locations of two points (three if the image has not been
orthorectified) are known precisely both in image
coordinates and in geographic coordinates (i.e. Universal
Transverse Mercator or lat/lon). This is necessary to map
the extracted data back to Earth coordinates. Figure 1 shows
an example of imagery, which meets these criteria. This
image is 1m resolution visual spectrum imagery of the Pearl
River near Stennis Space Center from the Louisiana State

University Computer Aided Design & Geographic Informa-
tion Systems Lab, Baton Rouge, LA (http://atlas.lsu.edu) .
The image must be converted to greyscale, if needed, by

converting gamma values to intensity (Pratt, 1991). If the
image covers a large reach of river then it is likely to be a
mosaic of multiple images shot at different times and under
different conditions. This can result in discontinuities in
grey level at the seams between images, which can compli-
cate analysis. If this is the case then the image must first be
equalized using a random path, roving, patch equalization
filter. Once patch equalized the entire image must then be
equalized to occupy the entire grey range from 0 to 127.
We have chosen to analyze the images on the basis of 9

pixel kernels, that is, each pixel will be characterized by
its own value and those of the 8 pixels immediately adjacent
to it. This is the smallest kernel size available for centered
statistics and will yield the most accurate bank locations.
Increasing the kernel size would allow the technique to be
applied to areas with lesser roughness on the banks at the
sacrifice of location accuracy. For our 9 pixel kernels, the
image must be padded by adding an extra set of mirrored
pixels around the edge (Figure 2). This allows the centered
statistics of Equation 3 to be calculated along the edges of
the original image with no data loss.
Next, for every pixel in the original image, the local

normalized Shannon entropy (Equation 3) is calculated for
the nine pixel box surrounding, and including, the pixel of
interest. The padded pixels are then discarded. The normalized
Shannon entropy is plotted for the original image in Figure 3.
Here, the range of values (0 .. 1) has been expanded across
the entire greyscale range (0 .. 127) for visualization purposes.
The image is then binarized by thresholding such that all

pixels with normalized Shannon entropy levels greater than
a cut-off value are set to 1 and all others are set to zero. This
is shown in Figure 4. For initial purposes, this cut-off value
should be set to the median value among all pixels in the
image. It can be manually adjusted as needed on the basis
of the image and the experience of the analyst; however,
we have found this value to work in all of our cases.
At this point, the image will not be completely clean.

There can be holes in the water caused by small boats or

Figure 1. Example imagery of the Pearl River, LA. Image data dis-
tributed by ‘Atlas: The Louisiana Statewide GIS’. Louisiana State
University Computer Aided Design & Geographic Information
Systems Research Laboratory, Baton Rouge, LA, 2011 http://at-

las.lsu.edu

Figure 2. An example of image padding. The original image is
shown by the intensity levels depicted in the grey cells. The clear
cells represent mirrored image padding added around the edges

of the original image

AUTOMATED RIVER BANK EXTRACTION FROM IMAGERY
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islands or rough patches tied to sun glint or ship wakes.
Similarly, there can be small areas of speckle in the land due
to small regions of visually smooth land, pavement, vehicles
and the like. These must be eliminated. An automated
technique for removing these artefacts is based on two of the
basic operations of mathematical morphology: dilation and
erosion (Sera, 1983). These are operations whereby a binary
image is acted upon by a structuring element of some regular
size and shape. In erosion, pixels are removed from a binary
structure equivalent to those masked by the structuring
element with the element centre moving along the edges of
the original structure. Dilation is the opposite operation. These
form the basis of the operator pairs of closing and opening.
Closing involves dilating and then eroding an image, whereas
opening involves eroding and then dilating an image. Closing
serves to remove, or close, any small holes in the image,
whereas opening serves to despeckle or remove noise from
the image.
For this technique, we choose a circular element with a

diameter of 3 pixels. This size is selected to match the width
of the 9 pixel kernel used in the entropy calculation. We

have found that a single pass through, closing and opening,
serves to remove all significant artefacts in our imagery.
Multiple passes may be made with the understanding that
each pass also serves to smooth out and average the river
bank locations, removing small detail. This may or may
not be a concern depending on the desired use of the edge
locations later.
Figure 5 then shows the results of applying these two

morphological operations to the image in Figure 4. The
locations of the black (low entropy) pixels then can be returned
as the location of the water. The river edges are then located by
finding the interface between the low entropy (water) and high
entropy (land) pixels by examining the local gradient to find the
transition. These edges are plotted in white on Figure 6. As can
be seen, the plotted edges show very good agreement with the
edges as determined from visual inspection.

VALIDATION

In order to be of use in processing river images, the
technique must either be as accurate as other methods but
faster and/or more robust or else the same speed as other
techniques but able to handle a wider range of conditions.

Pearl River, LA

The case presented in Figures 1 and 6 represents an ideal
case for demonstrating the algorithm in that the surface of
the water appears uniform and nearly perfectly smooth,
whereas the land is uniformly vegetated and rough;
however, it is also one where a human operator would have
no trouble similarly segmenting the land and the water. In
order to validate this technique, these results were compared

Figure 3. The distribution of Shannon entropy calculated from Fig-
ure 1 using Equation 1. Dark colours represent low entropy values
(smooth regions), whereas light colours represent high entropy

values (rough regions)

Figure 4. Thresholded and binarized version of Figure 3
Figure 5. Figure 4 after cleaning by using the mathematical mor-

phology operations of opening and closing
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with the edge as selected by a human operator tracing pixels.
The automated technique was coded as a MATLAB script
and run on a MacBook Pro with a 2.4GHz Intel Core 2
Duo processor and 4GB of random-access memory. The
script ran in 1min 27 s to process the 600 x 1400 pixel
image. A human operator loaded the image in the open
source Quantum GIS programme and traced the edges to
create a ESRI shape file, which was exported for edge
extraction. The process of tracing the edges took 28min
with another 8 min required to write the shape file and
then extract the edges from the shape file into MATLAB
(MathWorks, Nantick, MA, USA).
The two techniques produced substantially the same

contour. In order to examine the difference between them,
a spline was fit to each one, and for each point in the
computed edge, the nearest point in the traced edge was
located and the error was taken as the separation between
the two in x and y. Considering the entire image, the root
mean square (RMS) error between the two techniques was
0.56 pixels. The maximum error was 3 pixels where trees
overhung the river bank. The automated approach traced
the inside of the curve, that is, it picked up the tree tops
and connected them, whereas the human operator was able
to recognize this and estimate the proper bank location
despite the overhang. Recognizing that 1m resolution is
not needed for most monitoring or modelling efforts, we
down sampled the bank locations from the both processes
to 5m resolution and compared them. In this case, the
RMS error between them dropped to 0.43 pixels.

Atchafalaya River, LA

Figure 7 shows an image of a section of the Atchafalaya
River, LA, extracted from Google Earth and converted to
greyscale. Visible edges are clearly seen between the image
tiles, which make up the larger image and must be dealt with
by the patch equalization filter. The river largely winds

through a forest, but there are nearby roads and it comes
within 10m of an urban built environment. The span of
the river is much greater than in the Pearl River case. The
ground sample distance is 2m and image size is
6000 x 8000 pixels. This represents a more challenging case
to the automatic processor but one which would still be easy
for an operator to define
We processed the image exactly as described previously.

The automated routine took 86min and 48 s to finish, whereas
a human operator took 5 h and 13min. Although the automated
process did not scale uniformly with the operator, it was still
much faster. This discrepancy in scaling is due to the fact that
a human operator can choose to ignore all of the pixels outside
of the area of interest while the automated routine must address
them all. Judicious preprocessing of the image by flagging
areas away from the river to be ignored by the analysis routine
will serve to speed up the automated processing if desired.
Alternately, the routine can be allowed to run overnight or
when no human operator is available.
Despite the lower resolution and the tile edges in the

image, the two techniques produced essentially the same
contour with an RMS error of 0.73 pixels between the
two. The extracted edges for a zoomed detail of the river
are shown in Figure 8. The roadways and built environment
were picked up as being morphologically smooth and
tagged as water. The 6m (3 pixels) structuring element used
in the dilation and erosion filter removed the road automat-
ically. The built area was too large to be removed, but it
was clearly separated from the river and can easily be
deleted when the results are reviewed.

Figure 6. Edge pixels, shown in white, superimposed on the original
image from Figure 1

Figure 7. Image of a section of the Atchafalaya River, LA. Map
Data: Google, United States Department of Agriculture Farm Ser-

vice Agency, Europa Technologies

AUTOMATED RIVER BANK EXTRACTION FROM IMAGERY

Published 2013. This article is a U.S. Government work and is in the public domain in the USA. River Res. Applic. (2013)

DOI: 10.1002/rra



Snohomish River, WA

Figure 9 shows an image of a section of the Snohomish
River, WA again from Google Earth and converted to
greyscale. Areas outside of the immediate vicinity of the
river have been set white and have been flagged with a value
of �9999 indicating that the entropy processing routine
should ignore them. This is carried out to increase the speed
of processing when the river moves diagonally across the
square image space. The ground sample distance is 1m,
and the reduced image has a total of 2.5E6 pixels. In this
case, the processing is complicated by the fact that the river
runs through a mixture of urban and agricultural area rather
than forested area. The land near the river has several small
ponds and smoothly mown fields and structures. Paved

roads follow closely along the bank. There is also some
amount of sun glint on the water in places as well as some
small boat traffic not visible at this scale but represented in
the 1m imagery.
Processing the image as described previously, the automated

routine finished in 31min and 27 s, whereas the human operator
took 2h and 46min. Flagging the points far from the area of
interest greatly improved run time for the automated processor.
Figure 10 shows the image processed for entropy, binarized,
opened and closed. Black areas represent smooth regions and
white ones rough (or flagged pixels). The river can be clearly
seen, but there are also a considerable number of other areas
highlighted representing ponds, fields and buildings. The effects
of boat traffic have been removed, and the extra roughness
associated with sun glint was below the threshold value and so
was cut off. Extracting the edges and superimposing them on a
detail from Figure 9, we see that while the automated processor
does a good job of picking out the river edges it also picks out
ponds and fields and bits of roadway, which are too large for
the 3 pixel structuring element of the filter to remove. Increasing
the element size, or adding multiple iterations of the filter, results
in excessive smoothing of the river bank edges. Prior to this
repeated filtering, the automated edges agree with the manually
extracted edgeswith anRMSerror of 0.45 pixels. After onemore
filtering operation, this error increases to 1.05 pixels. After a
second filtering operation, this error increases to 2.27 pixels,
and a number of the isolated smooth areas are still present and
must be edited out in post processing. This suggests that if high
fidelity river bank locations are required, this technique is of
limited use in heavily developed or built environments without
considerable manual or automated post processing to remove
image artefacts (Figure 11).

Figure 8. Edge pixels, shown in white, superimposed on a detail
section of the original image from Figure 7

Figure 9. Image of a section of the Snohomish River, WA. Map
Data: Google, US Geological Survey

Figure 10. Image in Figure 9 processed for entropy, binarized,
opened and closed
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DISCUSSION

We have presented a new method for extracting river bank
locations from high resolution aerial or satellite imagery
using image texture, as measured by a normalized form of
Shannon Entropy, as the metric to discriminate water from
land. This technique exploits the fact that in many rivers,
the surface of the flowing water appears noticeably
smoother than the surrounding land, allowing us to segment
them based purely on this fact. The technique represents an
improvement over prior art in that it requires only a sort of
least common denominator imagery, that is only greyscale
visual spectrum imagery, such as is available easily, and
often freely, from government and commercial providers. It
is not tied to any specific platform or sensor or to the availabil-
ity of any particular wavelength of spectral data. The only
requirement is that it is of sufficient clarity and resolution,
generally on the order of 1m ground sample distance, that
the surface texture can be clearly distinguished.
When working with high quality imagery in an area with

a clear difference between water surface texture and land
surface texture, the technique works quite well. On an ordi-
nary laptop, it processes the image and extracts the edges in
much less time than is required by a trained human operator,
with RMS errors between the two shorelines of less than 1
pixel. Given that in many images, the exact location of a
river bank can be difficult for even a human to determine
down to the pixel, this places the automatically extracted
banks within the error band of the human operator.
Areas of vegetation and tree canopy overhanging the river

banks will cause the channel to appear narrower than it
should be. This can be averaged out some by down sampling
the extracted bank data and fitting a curve to the sparse

points. The exact deviation of this from the true bank loca-
tion can not be determined because even a human extracted
bank is only an educated guess in areas where the bank is
not visible. The technique is robust for cleaning small boat
traffic as well as minor sun glint from the surface of the water
although it may have difficulty removing large ship traffic or
extensive glint from very low angle sunlight, such as is more
likely to be encountered in high latitudes. The technique
recognizes areas of urban or rural built environments, such
as mowed fields, roadways, structures and paved lots as
morphologically smooth and flags them as water. The mor-
phological opening and closing operations will automatically
remove the smaller of these features but repeated use of this
filter may smooth the river banks below what is considered an
acceptable resolution. This determination must be made on the
basis of the desired use of the bank information and the needed
end resolution. Larger of these features must be removed by in
post-processing. Because of this limitation, the technique may
not be suitable for use in heavily built environments where
these features approach, or even cross, the edges of the channel
as excessive post processing may be required. Similarly, it is
not suitable for rivers, which traverse morphologically smooth
landscapes including rivers in sand or ice.
Within these limitations, we hold that this technique rep-

resents a valuable tool for the quick and robust extraction of
river bank locations from imagery of a large majority of the
world’s rivers when traditional land based surveys are either
unavailable or unfeasible. The relative speed of image
processing and the lack of reliance of any sort of specialized
imagery make it suitable for times when project schedules or
operational requirements do not allow for waiting to acquire
more specialized imagery. Further, its fully automate nature
make it suitable for unattended processing during times
when human operators are unavailable.
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