

High-fidelity Real-time Antiship Cruise

Missile Modeling on the GPU

Christopher SCANNELL
a,1

, Jonathan DECKER

a
 , Joseph COLLINS

a

and William SMITH

b

a
 Naval Research Laboratory, Washington, DC

b
 ITT Defense & Information Solutions, Mclean, VA

Abstract. The United States Navy is actively researching techniques for creating
high-fidelity, real-time simulations of antiship cruise missiles (ASCM) in order to

develop improved defensive countermeasures for Navy ships. One active area of
investigation is the combined use of OpenMP and MPI to reach real-time

constraints on stand-alone cluster computers with high-speed interconnect fabrics.

The separate compute nodes of the supercomputer calculate the successive
responses of a single cruise missile to successive reflections of the RF transmitter

radar returns from the target ship in a pipeline fashion using MPI. Numerically

intensive portions of the calculation of the missile-ship system behavior for an
individual RF pulse can be calculated in parallel simultaneously on the individual

nodes of the supercomputer using OpenMP. The speed at which these portions

can be calculated directly determines the length of the pipeline and thus the total
number of computing nodes required. This approach incurs some approximations

into the simulation that are proportional to the length of the pipeline because there

is a feedback from the ship-radar response back to the missile guidance. While
this use of OpenMP has proven effective, it is limited by the number of cores

available at each node. This code, however, presents opportunities for parallelism

well beyond the available computational resources at each node. Additionally, the
ratio of computation to data transfer for this portion of the simulation is very high.

These two factors have led us to investigate executing the most compute-intensive

portion, the calculation of the RF responses of the individual ship scatterers, on
Graphics Processing Units (GPUs).

Keywords. GPU, OpenCL, antiship, cruise, missile

Introduction

The Naval Research Laboratory (NRL), located in Washington, DC, is the US Navy

corporate R&D center, executing basic and applied programs over a broad range of

science, technology and mission applications. This paper focuses on work being done

in an NRL project to investigate and exploit Graphics Processing Unit (GPU)

technology for the benefit of compute intensive Naval applications. As part of this

work, a large physics-based computer simulation model of ship missile defense

systems, known as CRUISE_Missiles (Ref. 1), was chosen as a GPU prototyping

application (see Figure 1). CRUISE_Missiles is apropos because the US Navy has

been actively researching techniques for achieving real-time simulation to help develop

1
 Corresponding Author. Tel.: +202-767-1127; fax: +202-767-1122.

Email: Christopher.Scannell@nrl.navy.mil

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
High-fidelity Real-time Antiship Cruise Missile Modeling on the GPU

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,4555 Overlook Avenue
SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
2011 International Conference on Parallel Computing, 30 Aug ? 2 Sep, Ghent, Belgium.

14. ABSTRACT
The United States Navy is actively researching techniques for creating high-fidelity, real-time simulations
of antiship cruise missiles (ASCM) in order to develop improved defensive countermeasures for Navy
ships. One active area of investigation is the combined use of OpenMP and MPI to reach real-time
constraints on stand-alone cluster computers with high-speed interconnect fabrics. The separate compute
nodes of the supercomputer calculate the successive responses of a single cruise missile to successive
reflections of the RF transmitter radar returns from the target ship in a pipeline fashion using MPI.
Numerically intensive portions of the calculation of the missile-ship system behavior for an individual RF
pulse can be calculated in parallel simultaneously on the individual nodes of the supercomputer using
OpenMP. The speed at which these portions can be calculated directly determines the length of the pipeline
and thus the total number of computing nodes required. This approach incurs some approximations into
the simulation that are proportional to the length of the pipeline because there is a feedback from the
ship-radar response back to the missile guidance. While this use of OpenMP has proven effective, it is
limited by the number of cores available at each node. This code, however, presents opportunities for
parallelism well beyond the available computational resources at each node. Additionally, the ratio of
computation to data transfer for this portion of the simulation is very high. These two factors have led us to
investigate executing the most compute-intensive portion, the calculation of the RF responses of the
individual ship scatterers, on Graphics Processing Units (GPUs).

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

improved defensive countermeasures for Navy ships. One active area of investigation

for simulation performance enhancement has been the use of computer clusters

communicating via Message Passing Interface (MPI) over high-speed interconnect

fabrics such as InfiniBand.

Figure 1. System elements of CRUISE_Missiles simulation.

Separate computer central processing units (CPUs) model the behavior of the cruise

missile at discrete instants in time at the frequency of the pulse repetition of the

missile’s active radar. Each CPU calculates the behavior of the missile for its

particular pulse repetition interval (PRI) and passes the resulting state of the missile to

the CPU simulating the missile for the subsequent PRI. After handing off this state

information, the CPU calculates the response of the target to the radar frequency (RF)

energy that was just transmitted. The response calculation is the most compute

intensive portion of the simulation and currently consumes twenty to thirty times more

wall-clock time to compute than the missile update on modern multi-core CPUs.

Fortunately, the time required to model changes in the state of the missile from one PRI

to the next can be kept to less than the pulse repetition interval, so the simulation is

able to run in real-time if there is a sufficient number of CPUs in the cluster and if the

required fidelity of the simulation can tolerate the effective delay in the computed state

of the RF return signal. The target response is calculated independently on each CPU

(using the latest missile state information available to the CPU) but this response is not

communicated with the other CPUs. Instead, this computed target response is used

twenty to thirty PRIs later when the CPU is required to compute its next missile state

update. This effective lag of twenty to thirty PRI in the perceived state of the target by

the missile is acceptable because the rate of change of the target is much less than that

of the missile.

The parallelism inherent in this target response calculation is currently being

exploited using OpenMP. While OpenMP has proven effective, it is limited by the

number of cores available at each node relative to the number of independent ship

scatterer elements. That, and the fact that the ratio of computation to data transfer load

for this portion of the simulation is very high, has led us to focus our current effort on

studying how General Purpose Computation on Graphics Processing Units (GPGPU)

techniques can be applied to speed up the target signature calculation to reduce the size

of the MPI ring of processors in our simulation.

The Physical System

The real-world system of interest comprises several key interacting elements: the

missile, one or more targets (i.e., ships) and a marine environment (ocean and

atmosphere). The missile includes several subsystems: radar emitter, receiver and

video processor subsystems, and propulsion and guidance subsystems. A target ship,

as seen by the missile radar subsystem, is composed of multiple (thousands to millions)

reflecting RF scatterer centers, which can be categorized according to physical

structure (e.g. point, plane, cylinder, dihedral). The ocean constitutes a reflecting and

scattering surface to the radar RF waves, and the atmosphere a diffracting medium.

Figure 1 illustrates the system elements.

In operation, the system constitutes a closed loop process. The missile emits

consecutive radar pulses at times ti. Each pulse's energy propagates to the ship by direct

and by indirect ocean-surface-reflected paths, then is reflected from the ship scatterer

centers back to the missile, again by direct and indirect paths, where the received

signals are processed by the video and guidance subsystems to steer the missile toward

the target (see Figure 2). The subset of scatterers on the ship that the missile 'sees' at a

given ti is a function of the relative position and orientation of the ship with respect to

the missile position.

RF Multi-Path

Propagation

Missile Video

Processing

Missile Guidance

Correction

Missile Radar Reflection Received

Missile Position/

Orientation Update

Scatterer

Responses

Computed and

Summed

Ship Position/

Orientation Update

RF Multi-Path

Propagation

Missile Radar Pulse Transmitted

Figure 2. Ship-missile behavioral data flow.

The CRUISE_Missiles Simulation

CRUISE_Missiles represents a body of models and computer codes that allows for the

detailed physics-based modeling of multiple types of missiles, multiple types of targets,

and their missile-target interactions. The requirements of the simulation specify a high

degree of realism by using physics-based modeling for the purpose of achieving valid

predictions of missile-ship interactions in the marine environment. The NRL

CRUISE_Missiles missile-ship simulation model suite provides the base library of

valid models for this purpose.

The CRUISE_Missiles simulation system was developed under different names

over a period of several decades for representing target, threat, and countermeasure

platforms in a marine environment. The system’s modularity allows one to simulate

the platforms by executing simulation object state updates on very short timescales. A

simulation run entails many iterations of these short time-scale behaviors, where

validity is maintained by making sure that the updates are executed in a causal

sequence with correct dependencies observed. The original execution model in

CRUISE_Missiles was a serial execution model, that is, the tasks of updating the short-

time scale state updates are executed on a single serial processor.

CRUISE_Missiles is an event-driven simulation advanced on a pulse-by-pulse

basis, where a pulse is the active radar emission from the missile. The PRI is typically

in the sub-millisecond range. For each pulse, the target “image” or “video” scene, as

perceived by the missile, is modeled by computing the responses of the target ship's

visible scatterers to the pulse via direct and indirect propagation paths. Additionally,

the missile response to the “image” or “video” signal is also computed. Signal

representation and computations are in the discrete time-sampled domain. Three stages

of processing are required for computing the video signal: (1) convolution of the

transmitted radar pulse function, Tr(ti), with the impulse response functions of each

individual independent scatterer, Sk(ti), and its associated incident and reflected

propagation path, Pik(ti) and Prk(ti), (2) application of the range gate windowing

function Rg(ti) to select a common time subset (e.g., 100 samples) from the returned

signal of every scatterer, and (3) coherent summation, over all the scatterers, of the

range-gated samples to produce the “Composite video” signal V(ti).

In the serial implementation of CRUISE_Missiles, the computation sequence repeats in

a serial loop (figure 2 illustrates).

CPU Cluster-Based Parallelization of the Model

Prior to OpenMP parallelization, CRUISE_Missiles modeled missile/target interactions

at a rate of a few percent of real-time. NRL undertook increasing the performance of

CRUISE_Missiles for the purposes of operating in a real-time environment where

CRUISE_Missiles interacts with other models in a High-Level Architecture (HLA)

federation (see Ref. 2). Taking these requirements into consideration, NRL reviewed

how one might address the fundamental problem of speeding up the simulation. This

multi-year effort consisted of various activities: discussions and design sessions

between parallel programming and model experts, research of current literature

describing hardware features relevant to speeding up CRUISE_Missiles, analysis and

performance profiling of simulation code, and implementation and testing of code

modifications to prove the feasibility of our proposed redesign.

The ship scatterer and multipath RF pulse response modeling - that is, the target

response computation - constitutes the major portion of the computational loop load

and, therefore, the primary objective for speedup. There are many scatterers visible

and each scatterer may be composed of many components (e.g. dihedral, trihedral, N-

hedral). Since the calculation of the contribution to the target signal of these reflections

(for a particular position and orientation of the missile) can be performed entirely

independently of all other such calculations, there exists the potential to independently

evaluate component elements of the target response in parallel, prior to combining

them for the missile video process. Because the ship signature changes slowly with

respect to the radar pulse rate and the missile control dynamics, processes related to

this were identified which could be delayed to achieve real-time performance without

undue degradation in simulation fidelity. Other loop processes would have to be

completed without delay every pulse. To illustrate, figure 3 shows a basic

decomposition of the computation of the missile-target system showing the time

sequence of the missile update and target response functions.

Target Response

Target Response

Target Response

Target Response

Target Response

Target Response

Missile
t=to+(N-1)P

Missile
t=to

Missile

t=to+P

Missile

t=to+2P

Missile
t=to+NP

Missile
t=to+(N+1)P

Figure 3. Data flow diagram/Parallel decomposition diagram.

The missile update function computation must complete on each pulse, without delay,

in time to trigger the next missile update. However, the target response, due to the

slow change of the ship signature, can be delayed without degradation to simulation

fidelity. This means that a target response corresponding to time ti, instead of being

passed to the missile update function at time ti+1, can be passed to the missile update

corresponding to time t = ti+N, N pulse times later. So, instead of speeding up the

computation of each target response instance, N overlapped and delayed instances,

corresponding to successive pulse times, are computed independently and concurrently

(see Figure 3). N of these overlapped instances form a ring, with effective process

speedup of N and loop delay of N * PRI. Each of the MPI-connected nodes in the ring

are assigned to separate multi-core CPUs of a cluster computer with typically up to

thirty nodes required for a modest simulation scenario to maintain real-time

performance. Due to the independent nature of the calculation, considerable speedup

has been achieved (~80% of maximum linear speed up equal to the number of cores of

each node’s CPU) using OpenMP.

GPU-Based Parallelization of the Model

The aspect of the target response calculation that permits significant speedup using

OpenMP (i.e. the independent and compute-intensive nature of the computation of the

responses of the individual scatterers that compose the target) can be even more

aggressively exploited by the use of GPU technology. This is due largely to four

essential facts: 1) the response of thousands of independent scatterers need to be

calculated for each pulse, 2) very little pulse-to-pulse simulation state information

influences the calculation so little data needs to be transferred from the CPU to the

GPU per kernel invocation, 3) the output of the target response calculation can be

compactly represented as a short timeseries signal, so that very little data needs to be

transferred from the GPU to the CPU per kernel invocation and 4) significant time-

invariant data (e.g. attenuation factors for different scatterer materials, vertex

coordinates of plates shared by multiple scatterers) is shared by scatterers which allows

for GPU speedup techniques to be applied that involve coalesced loads of shared data

from global to local memory. Our initial CUDA and OpenCL implementations of the

target response calculation confirmed the GPGPU applicability of this computation

(see Results section). These implementations were tested and validated for accuracy,

with differences in the signature that were limited to the least significant bits. This is

of particular importance for this application area due to the high-fidelity requirements

of the model (confirmed using massive Monte Carlo test validation runs).

To-date our implementation is limited to one type of scatterer. We began with the

N-hedral scatterer because it constituted the majority of the computational load for the

target signature generation both in terms of numbers of scatterers and in scatterer

complexity. An N-hedral is composed of N plates that mutually reflect the RF energy

among themselves and back towards the radar through a prescribed and ordered set of

bounces. The radar cross section contribution of each N-hedral is very sensitive to the

exact relative position of the missile to the ship and is not calculated as a closed

algebraic computation but rather using ray-tracing techniques. For a given

azimuthal/elevation sector of the airspace relative to the target, pre-computed lists of

N-hedrals are identified as potentially contributing to the target signal. The N-hedrals

that are visible for given orientation of the ship relative to the incoming missile are

composed from a base set of plates. Because the size of this base set is significantly

smaller than the size of the set of visible N-hedrals, we can make efficient use of the

GPU local memory to simultaneously store the scatterer state data that underlies a

given set of N-hedrals. To take best advantage of this feature of N-hedrals we must

sort the N-hedrals according to their constituent plates to improve locality of reference

in the GPU local memory. Another shared attribute of scatterers that can be leveraged

through explicit GPU memory management is the material property characteristics that

are shared across all instances of scatterers.

Results and Future Work

An important objective of this in-house NRL research effort is to provide guidance to

Navy model experts in the use of effective GPGPU programming practices, including

the tradeoffs of using CUDA versus OpenCL. A direct CUDA implementation will

only run on NVIDIA graphics-hardware which is CUDA-complaint. OpenCL is very

similar in syntax, but can compile to a multitude of platforms, including multi-core

CPUs and AMD graphics hardware. However, CUDA has hooks that allow the

programmer to work closer to the specific hardware, which may incur additional speed-

ups. Additionally, CUDA development had a head start on OpenCL development, and

as a result there are a number of development libraries available which implement

various standard parallel algorithms.

The entire legacy implementation of the N-hedral scatterer computation for the

target response was ported to the GPU using both CUDA and OpenCL and the results

validated against the original CPU C/C++ implementation. There were two significant

elements of this effort. The first one involved the restructuring of the hierarchy of the

control loops of the C/C++ code so that outermost control loop was over scatterers. The

legacy code was organized as a series of numerous functions, each which was carried

out in turn over the entire set of scatterers. The second element was the restructuring of

the legacy data structures as one-dimensional buffers and the management of sending

and receiving these buffers between the CPU and GPU.

A naive port of the code would overwhelm the respective high-level language

compilers, since there is only so much hardware (memory and registers) available to

each individual thread on the GPU. CUDA proved to be easier to work with than

OpenCL because of its relative maturity and the convenience of being able to invoke

print operations directly from the kernel for debugging purposes. We accomplished

this by utilizing the cuPrintf capability demonstrated in the CUDA SDK. Figure 4

shows the comparative performance of the GPU implementations relative to a single-

core CPU.

Figure 4. Speedup achieved running scatterer calculations for CUDA and OpenCL.

This speedup displayed in figure 4 constituted the initial results of our study absent

any optimizations regarding explicit management of the memory hierarchy, scatterer

execution ordering, reduction of integer and branching operations, or use of constant

memory. Judging by the results of other GPGPU applications, we expect to achieve at

least an order of magnitude increase in speedup from these types of optimizations.

Additionally, there are a few other types of scatterers that remain to be addressed for

our current targets of interest. We have yet to implement the efficient summation of

the results of the individual scatterer responses, but techniques for performing such a

reduction operation are well understood. Finally, the video compositing portion of the

legacy CRUISE_Missiles software involving windowing the timeseries to account the

missile range gate needs to ported to the GPU.

The work to date has been performed using an NVIDIA GeForce GTX 285 on a

32-bit X86 platform running LINUX. We are currently collaborating with Dell Inc. to

investigate how we might we combine C2070 Tesla hardware (Tesla is a line of

hardware created by NVIDIA which is specifically designed to accelerate general-

purpose applications using CUDA) with our conventional MPI-connected CPU cluster

computing platform. We are interested in how the resulting hybrid architecture would

impact performance and fidelity as compared to the existing system.

References

[1] Goldberg, A. J. and Futato, R. J. “CRUISE_Missiles Electronic Warfare Simulation.” NRL Review

(1993): 123-126. Print.

[2] Dahmann, J. S., Fujimoto, R., Weatherly, R. M. “The Department of Defense High Level Architecture.
Winter Simulation Conference (1997): 142-149. Print.

