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Abstract.  The United States Navy is actively researching techniques for creating 
high-fidelity, real-time simulations of antiship cruise missiles (ASCM) in order to 

develop improved defensive countermeasures for Navy ships. One active area of 
investigation is the combined use of OpenMP and MPI to reach real-time 

constraints on stand-alone cluster computers with high-speed interconnect fabrics.  

The separate compute nodes of the supercomputer calculate the successive 
responses of a single cruise missile to successive reflections of the RF transmitter 

radar returns from the target ship in a pipeline fashion using MPI.  Numerically 

intensive portions of the calculation of the missile-ship system behavior for an 
individual RF pulse can be calculated in parallel simultaneously on the individual 

nodes of the supercomputer using OpenMP.  The speed at which these portions 

can be calculated directly determines the length of the pipeline and thus the total 
number of computing nodes required.  This approach incurs some approximations 

into the simulation that are proportional to the length of the pipeline because there 

is a feedback from the ship-radar response back to the missile guidance.  While 
this use of OpenMP has proven effective, it is limited by the number of cores 

available at each node.  This code, however, presents opportunities for parallelism 

well beyond the available computational resources at each node.  Additionally, the 
ratio of computation to data transfer for this portion of the simulation is very high.  

These two factors have led us to investigate executing the most compute-intensive 

portion, the calculation of the RF responses of the individual ship scatterers, on 
Graphics Processing Units (GPUs).  
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Introduction 

The Naval Research Laboratory (NRL), located in Washington, DC, is the US Navy 

corporate R&D center, executing basic and applied programs over a broad range of 

science, technology and mission applications.  This paper focuses on work being done 

in an NRL project to investigate and exploit Graphics Processing Unit (GPU) 

technology for the benefit of compute intensive Naval applications.  As part of this 

work, a large physics-based computer simulation model of ship missile defense 

systems, known as CRUISE_Missiles (Ref. 1), was chosen as a GPU prototyping 

application (see Figure 1).  CRUISE_Missiles is apropos because the US Navy has 

been actively researching techniques for achieving real-time simulation to help develop 
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improved defensive countermeasures for Navy ships.  One active area of investigation 

for simulation performance enhancement has been the use of computer clusters 

communicating via Message Passing Interface (MPI) over high-speed interconnect 

fabrics such as InfiniBand. 

 

 
Figure 1.  System elements of CRUISE_Missiles simulation. 

 

Separate computer central processing units (CPUs) model the behavior of the cruise 

missile at discrete instants in time at the frequency of the pulse repetition of the 

missile’s active radar.  Each CPU calculates the behavior of the missile for its 

particular pulse repetition interval (PRI) and passes the resulting state of the missile to 

the CPU simulating the missile for the subsequent PRI.  After handing off this state 

information, the CPU calculates the response of the target to the radar frequency (RF) 

energy that was just transmitted.  The response calculation is the most compute 

intensive portion of the simulation and currently consumes twenty to thirty times more 

wall-clock time to compute than the missile update on modern multi-core CPUs.   

Fortunately, the time required to model changes in the state of the missile from one PRI 

to the next can be kept to less than the pulse repetition interval, so the simulation is 

able to run in real-time if there is a sufficient number of CPUs in the cluster and if the 

required fidelity of the simulation can tolerate the effective delay in the computed state 

of the RF return signal.  The target response is calculated independently on each CPU 

(using the latest missile state information available to the CPU) but this response is not 

communicated with the other CPUs.  Instead, this computed target response is used 

twenty to thirty PRIs later when the CPU is required to compute its next missile state 

update.  This effective lag of twenty to thirty PRI in the perceived state of the target by 

the missile is acceptable because the rate of change of the target is much less than that 

of the missile. 

The parallelism inherent in this target response calculation is currently being 

exploited using OpenMP.  While OpenMP has proven effective, it is limited by the 

number of cores available at each node relative to the number of independent ship 

scatterer elements.  That, and the fact that the ratio of computation to data transfer load 

for this portion of the simulation is very high, has led us to focus our current effort on 

studying how General Purpose Computation on Graphics Processing Units (GPGPU) 

techniques can be applied to speed up the target signature calculation to reduce the size 

of the MPI ring of processors in our simulation. 



 

 

The Physical System 

The real-world system of interest comprises several key interacting elements: the 

missile, one or more targets (i.e., ships) and a marine environment (ocean and 

atmosphere).  The missile includes several subsystems: radar emitter, receiver and 

video processor subsystems, and propulsion and guidance subsystems.  A target ship, 

as seen by the missile radar subsystem, is composed of multiple (thousands to millions) 

reflecting RF scatterer centers, which can be categorized according to physical 

structure (e.g. point, plane, cylinder, dihedral).  The ocean constitutes a reflecting and 

scattering surface to the radar RF waves, and the atmosphere a diffracting medium. 

Figure 1 illustrates the system elements. 

In operation, the system constitutes a closed loop process.  The missile emits 

consecutive radar pulses at times ti. Each pulse's energy propagates to the ship by direct 

and by indirect ocean-surface-reflected paths, then is reflected from the ship scatterer 

centers back to the missile, again by direct and indirect paths, where the received 

signals are processed by the video and guidance subsystems to steer the missile toward 

the target (see Figure 2).  The subset of scatterers on the ship that the missile 'sees' at a 

given ti is a function of the relative position and orientation of the ship with respect to 

the missile position. 
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Figure 2. Ship-missile behavioral data flow. 

The CRUISE_Missiles Simulation 

CRUISE_Missiles represents a body of models and computer codes that allows for the 

detailed physics-based modeling of multiple types of missiles, multiple types of targets, 

and their missile-target interactions.  The requirements of the simulation specify a high 

degree of realism by using physics-based modeling for the purpose of achieving valid 

predictions of missile-ship interactions in the marine environment.  The NRL 

CRUISE_Missiles missile-ship simulation model suite provides the base library of 

valid models for this purpose. 



 

 

The CRUISE_Missiles simulation system was developed under different names 

over a period of several decades for representing target, threat, and countermeasure 

platforms in a marine environment.  The system’s modularity allows one to simulate 

the platforms by executing simulation object state updates on very short timescales.  A 

simulation run entails many iterations of these short time-scale behaviors, where 

validity is maintained by making sure that the updates are executed in a causal 

sequence with correct dependencies observed.  The original execution model in 

CRUISE_Missiles was a serial execution model, that is, the tasks of updating the short-

time scale state updates are executed on a single serial processor. 

CRUISE_Missiles is an event-driven simulation advanced on a pulse-by-pulse 

basis, where a pulse is the active radar emission from the missile.  The PRI is typically 

in the sub-millisecond range. For each pulse, the target “image” or “video” scene, as 

perceived by the missile, is modeled by computing the responses of the target ship's 

visible scatterers to the pulse via direct and indirect propagation paths.  Additionally, 

the missile response to the “image” or “video” signal is also computed.  Signal 

representation and computations are in the discrete time-sampled domain.  Three stages 

of processing are required for computing the video signal: (1) convolution of the 

transmitted radar pulse function, Tr(ti), with the impulse response functions of each 

individual independent scatterer, Sk(ti), and its associated incident and reflected 

propagation path, Pik(ti) and Prk(ti), (2) application of the range gate windowing 

function Rg(ti) to select a common time subset (e.g., 100 samples) from the returned 

signal of every scatterer, and (3) coherent summation, over all the scatterers, of the 

range-gated samples to produce the “Composite video” signal V(ti). 

 

                                             

              

 

 

In the serial implementation of CRUISE_Missiles, the computation sequence repeats in 

a serial loop (figure 2 illustrates). 

CPU Cluster-Based Parallelization of the Model 

Prior to OpenMP parallelization, CRUISE_Missiles modeled missile/target interactions 

at a rate of a few percent of real-time.  NRL undertook increasing the performance of 

CRUISE_Missiles for the purposes of operating in a real-time environment where 

CRUISE_Missiles interacts with other models in a High-Level Architecture (HLA) 

federation (see Ref. 2).  Taking these requirements into consideration, NRL reviewed 

how one might address the fundamental problem of speeding up the simulation.  This 

multi-year effort consisted of various activities: discussions and design sessions 

between parallel programming and model experts, research of current literature 

describing hardware features relevant to speeding up CRUISE_Missiles, analysis and 

performance profiling of simulation code, and implementation and testing of code 

modifications to prove the feasibility of our proposed redesign. 

The ship scatterer and multipath RF pulse response modeling - that is, the target 

response computation - constitutes the major portion of the computational loop load 

and, therefore, the primary objective for speedup.  There are many scatterers visible 

and each scatterer may be composed of many components (e.g. dihedral, trihedral, N-



 

 

hedral).  Since the calculation of the contribution to the target signal of these reflections 

(for a particular position and orientation of the missile) can be performed entirely 

independently of all other such calculations, there exists the potential to independently 

evaluate component elements of the target response in parallel, prior to combining 

them for the missile video process.  Because the ship signature changes slowly with 

respect to the radar pulse rate and the missile control dynamics, processes related to 

this were identified which could be delayed to achieve real-time performance without 

undue degradation in simulation fidelity.  Other loop processes would have to be 

completed without delay every pulse.  To illustrate, figure 3 shows a basic 

decomposition of the computation of the missile-target system showing the time 

sequence of the missile update and target response functions. 
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Figure 3. Data flow diagram/Parallel decomposition diagram. 

 

The missile update function computation must complete on each pulse, without delay, 

in time to trigger the next missile update.  However, the target response, due to the 

slow change of the ship signature, can be delayed without degradation to simulation 

fidelity.  This means that a target response corresponding to time ti, instead of being 

passed to the missile update function at time ti+1, can be passed to the missile update 

corresponding to time t = ti+N, N pulse times later.  So, instead of speeding up the 

computation of each target response instance, N overlapped and delayed instances, 

corresponding to successive pulse times, are computed independently and concurrently 

(see Figure 3).  N of these overlapped instances form a ring, with effective process 

speedup of N and loop delay of N * PRI.  Each of the MPI-connected nodes in the ring 

are assigned to separate multi-core CPUs of a cluster computer with typically up to 

thirty nodes required for a modest simulation scenario to maintain real-time 

performance.  Due to the independent nature of the calculation, considerable speedup 

has been achieved (~80% of maximum linear speed up equal to the number of cores of 

each node’s CPU) using OpenMP. 



 

 

GPU-Based Parallelization of the Model 

The aspect of the target response calculation that permits significant speedup using 

OpenMP (i.e. the independent and compute-intensive nature of the computation of the 

responses of the individual scatterers that compose the target) can be even more 

aggressively exploited by the use of GPU technology.  This is due largely to four 

essential facts: 1) the response of thousands of independent scatterers need to be 

calculated for each pulse, 2) very little pulse-to-pulse simulation state information 

influences the calculation so little data needs to be transferred from the CPU to the 

GPU per kernel invocation, 3) the output of the target response calculation can be 

compactly represented as a short timeseries signal, so that very little data needs to be 

transferred from the GPU to the CPU per kernel invocation and 4) significant time-

invariant data (e.g. attenuation factors for different scatterer materials, vertex 

coordinates of plates shared by multiple scatterers) is shared by scatterers which allows 

for GPU speedup techniques to be applied that involve coalesced loads of shared data 

from global to local memory.  Our initial CUDA and OpenCL implementations of the 

target response calculation confirmed the GPGPU applicability of this computation 

(see Results section).  These implementations were tested and validated for accuracy, 

with differences in the signature that were limited to the least significant bits.  This is 

of particular importance for this application area due to the high-fidelity requirements 

of the model (confirmed using massive Monte Carlo test validation runs). 

To-date our implementation is limited to one type of scatterer.  We began with the 

N-hedral scatterer because it constituted the majority of the computational load for the 

target signature generation both in terms of numbers of scatterers and in scatterer 

complexity.  An N-hedral is composed of N plates that mutually reflect the RF energy 

among themselves and back towards the radar through a prescribed and ordered set of 

bounces.  The radar cross section contribution of each N-hedral is very sensitive to the 

exact relative position of the missile to the ship and is not calculated as a closed 

algebraic computation but rather using ray-tracing techniques.  For a given 

azimuthal/elevation sector of the airspace relative to the target, pre-computed lists of 

N-hedrals are identified as potentially contributing to the target signal.  The N-hedrals 

that are visible for given orientation of the ship relative to the incoming missile are 

composed from a base set of plates.  Because the size of this base set is significantly 

smaller than the size of the set of visible N-hedrals, we can make efficient use of the 

GPU local memory to simultaneously store the scatterer state data that underlies a 

given set of N-hedrals.  To take best advantage of this feature of N-hedrals we must 

sort the N-hedrals according to their constituent plates to improve locality of reference 

in the GPU local memory.  Another shared attribute of scatterers that can be leveraged 

through explicit GPU memory management is the material property characteristics that 

are shared across all instances of scatterers. 

Results and Future Work 

An important objective of this in-house NRL research effort is to provide guidance to 

Navy model experts in the use of effective GPGPU programming practices, including 

the tradeoffs of using CUDA versus OpenCL.  A direct CUDA implementation will 

only run on NVIDIA graphics-hardware which is CUDA-complaint.  OpenCL is very 

similar in syntax, but can compile to a multitude of platforms, including multi-core 



 

 

CPUs and AMD graphics hardware.  However, CUDA has hooks that allow the 

programmer to work closer to the specific hardware, which may incur additional speed-

ups. Additionally, CUDA development had a head start on OpenCL development, and 

as a result there are a number of development libraries available which implement 

various standard parallel algorithms. 

The entire legacy implementation of the N-hedral scatterer computation for the 

target response was ported to the GPU using both CUDA and OpenCL and the results 

validated against the original CPU C/C++ implementation.  There were two significant 

elements of this effort.  The first one involved the restructuring of the hierarchy of the 

control loops of the C/C++ code so that outermost control loop was over scatterers. The 

legacy code was organized as a series of numerous functions, each which was carried 

out in turn over the entire set of scatterers. The second element was the restructuring of 

the legacy data structures as one-dimensional buffers and the management of sending 

and receiving these buffers between the CPU and GPU.   

A naive port of the code would overwhelm the respective high-level language 

compilers, since there is only so much hardware (memory and registers) available to 

each individual thread on the GPU.  CUDA proved to be easier to work with than 

OpenCL because of its relative maturity and the convenience of being able to invoke 

print operations directly from the kernel for debugging purposes.  We accomplished 

this by utilizing the cuPrintf capability demonstrated in the CUDA SDK.  Figure 4 

shows the comparative performance of the GPU implementations relative to a single-

core CPU. 

 

 
Figure 4. Speedup achieved running scatterer calculations for CUDA and OpenCL. 

 

This speedup displayed in figure 4 constituted the initial results of our study absent 

any optimizations regarding explicit management of the memory hierarchy, scatterer 

execution ordering, reduction of integer and branching operations, or use of constant 

memory.  Judging by the results of other GPGPU applications, we expect to achieve at 

least an order of magnitude increase in speedup from these types of optimizations.  

Additionally, there are a few other types of scatterers that remain to be addressed for 

our current targets of interest.  We have yet to implement the efficient summation of 



 

 

the results of the individual scatterer responses, but techniques for performing such a 

reduction operation are well understood.  Finally, the video compositing portion of the 

legacy CRUISE_Missiles software involving windowing the timeseries to account the 

missile range gate needs to ported to the GPU. 

The work to date has been performed using an NVIDIA GeForce GTX 285 on a 

32-bit X86 platform running LINUX.  We are currently collaborating with Dell Inc. to 

investigate how we might we combine C2070 Tesla hardware (Tesla is a line of 

hardware created by NVIDIA which is specifically designed to accelerate general-

purpose applications using CUDA) with our conventional MPI-connected CPU cluster 

computing platform. We are interested in how the resulting hybrid architecture would 

impact performance and fidelity as compared to the existing system. 
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