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Abstract

Accurate change detection (CD) results in urban environments is of interest to a

diverse set of applications including military surveillance, environmental monitoring,

and urban development. Although CD approaches with hyperspectral imagery exist,

there is no comprehensive framework that describes existing approaches and provides

a foundation to generate new ones. This work presents a hyperspectral CD (HSCD)

framework. The framework uncovers the need for HSCD methods that resolve false

change caused by image parallax. Image parallax is the apparent motion of stationary

objects due to differing viewing geometries.

A Generalized Likelihood Ratio Test (GLRT) statistic for HSCD is developed

that accommodates unknown mis-registration between imagery described by a prior

probability density function for spatial mis-registration. Using a normal prior dis-

tribution for the mis-registration leads to a fourth order polynomial test statistic

that can be numerically minimized over the unknown mis-registration parameters. A

more computationally efficient closed-form solution is developed based on a quadratic

approximation derived through a second order Taylor series expansion and provides

comparable results to the numerical minimization for the investigated test cases while

running 30 times faster. The results indicate an order of magnitude reduction in false

alarms at the same detection rate for synthetically mis-registered test data, especially

in image regions containing edges and fine spatial features. Investigation of the model

parameters is also assessed, and the potential of the derived method to incorporate

more complex signal proccessing functions is demonstrated by the incorporation of a

parallax error mitigation component. The GLRT statistic is extended to account for

parallax errors and the visual results demonstrate the reduction of false alarms; also

evident in test statistic histograms and signal-to-clutter ratio (SCR) computations.
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(m̃, ñ) chosen as the minimum for the specified σp value. . . . . . . . . . . . . 100

46 Each entry shows the results for the specified σp value
using the DIRSIG data set. The first (upper left) test
statistic image is the baseline CC. The sequential test
statistic images derived from the parallax compensation
algorithm minimum are resulted from increasing σp.
These are developed by calculating the parallax
direction angle, φ = 86.6◦, using a stereo
correspondence algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xiii



Figure Page

47 Each map using the DIRSIG data set shows the
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REMOVING PARALLAX-INDUCED FALSE CHANGES IN CHANGE

DETECTION

I. Introduction

1.1 Overview

Change detection (CD) is the problem of discriminating significant changes from

insignificant changes between two images [6]. Traditional image-based CD methods

use red-green-blue color imagery. Due to the spectral limitations with these imaging

technologies, the remote sensing community often exploits hyperspectral (HS) im-

agery for the CD task. A literature review uncovers relatively few works that develop

novel CD approaches for use on HS imagery. Certainly there exist benefits of per-

forming HSCD over regular image-based CD, such as detecting imperceptible targets

in a complex background. However, challenges both in integrating the spectra into

the change detector and working with imagery derived by non-stationary platforms

makes HSCD particularly difficult.

Accurate CD in urban environments is of interest to a diverse range of communities

and a diverse range of applications to include: military surveillance, environmental

monitoring, and urban development. Manually processing of data for CD is daunting;

especially in the case of HS data, due to its hundreds of spectral channels. Therefore,

there is a strong need for methodologies that enable automated detection of changed

or interesting events in aerial imagery to alert an image analyst or operator. Such a

methodology could provide further support by identifying relevant regions of change.

The incentive for performing HSCD is to take advantage of all the possible change
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information available in the data providing a unique method for identifying subtle

changes in a complex environment.

1.2 Research question

A basic CD algorithm generates a change mask that identifies change between

pixels from a set of images acquired at different times. The reliability of the change

mask is influenced by factors such as camera motion, sensor noise, illumination vari-

ation, non-uniform attenuation, or atmospheric absorption. Radke et al. [6] illustrate

that detecting changes and determining their significance is complex and challenging.

Two common problems with the application of CD algorithms for airborne data are

image registration and parallax error [7] between the reference and test scenes caused

by different viewing geometries between the images. Registration errors between the

image pair causes pixel mis-alignment (mis-registration) and impacts pixel-based CD.

Parallax error, the apparent change in relative positions of stationary objects due to

different viewing geometries, is prevalent with taller objects in-scene and often causes

false change [8]. Image mis-alignment further impacts the ability to determine if im-

age parallax is the cause of false detections while image parallax makes the alignment

of previously present objects impossible, also resulting in false detections.

The significant impact of image mis-registration and image parallax on HSCD

leads to the following research question: Can one develop a HSCD method that si-

multaneously removes false changes caused by image mis-registration and parallax?

1.3 Methodology preface

The theory and phenomenology of hyperspectral processes that support change

detection is introduced. Specifically, derivations of common change detectors for hy-

perspectral data, chronochrome (CC) and covariance equalization (CE) are provided
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as current state-of-the-art. A new method to account for image mis-registration and

parallax-induced false detections in HSCD is presented. The general form of the bilin-

ear interpolation equation is used to account for estimates of image mis-registration

for the sub-pixel case, where a generalized likelihood ratio test (GLRT) is constructed

to provide a change test statistic for change at each pixel in the temporal hyperspec-

tral image pair. This approach is then modified to incorporate an estimate of the

parallax direction in order to mitigate false alarms due to parallax affects between

the same two hyperspectral image pairs.

1.4 Results preface

After outlining the practical implementation and data sets used, applications using

hyperspectral data are used to detail the GLRT-based algorithms presented and are

compared with current anomalous change detectors. The results of the implementa-

tions are discussed and performance of the GLRT-based algorithms is evaluated using

receiver operating characteristic (ROC) curves when applicable. Comparisons among

curves are evaluated in terms of area under the ROC curve (AUC) estimated on the

basis of available ground truth. The AUC for the mis-registration GLRT-based al-

gorithm (AUCGLRTCC
= 0.9981 and AUCGLRTCE

= 0.9954) is higher than the current

state-of-the-art baseline algorithms (AUCCC = 0.9972 and AUCCE = 0.9909) which

demonstrate the effectiveness of the methods established in this research. In relation

to a similar mis-registration approach, Local Co-Registration Adjustment (LCRA),

the GLRT-based algorithm provides comparable performance. Visually, test statistics

reveal that parallax mitigation reduces false alarms.
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1.5 Organization of dissertation

Chapter II presents the common processes used in CD and computer vision per-

tinent to this research. A process framework for HSCD is introduced in order to

frame the theoretical developments of this work. The new theoretical foundation for

addressing false detections due to image mis-registration is described. Furthermore,

Chapter III builds on this foundation to mitigate false detections due to image paral-

lax. Chapter IV provides detailed simulation results demonstrating the effectiveness

of the mitigation approaches. Finally, Chapter V summarizes the research presented

before highlighting the contributions and efforts for potential future research.
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II. Background

2.1 Introduction

Detection and characterization of geospatially coincident and temporally variant

imagery has been of interest to researchers for many years due in large part to the

number of applications across diverse disciplines. Automated image change detection

(CD) is the process of autonomously analyzing spatially coincident image pairs, and

identifying regions that have undergone significant spatial or spectral variation. CD

is an important process in monitoring and managing military applications because it

provides quantitative analysis of the spatial distribution of the population of interest.

Macleod and Congation [9] list four aspects of CD which are important when

performing a monitoring task: (1) detecting the changes that have occurred; (2)

identifying the nature of the change; (3) measuring the spatial area extent of the

change; and (4) assessing the spatial pattern of the change. CD results are further

processed by some means of characterization to filter the number of detections to a

more meaningful subset based upon some application specific requirement or a priori

information.

The basis of using remote sensing data for CD is that scene changes result in

radiance value differences that can be sensed remotely. Imaging spectroscopy, the

process of simultaneously acquiring data at multiple distinct spectral wavelengths, is

a passive remote sensing technology that is of specific interest to the study of ad-

vancing CD capabilities. Spectral sensor-related constraints that affect the quality of

the imagery and bound the options for processing image data include: bandwidth,

sampling interval (the spacing between two consecutive wavelengths), and data type

(i.e., the number of bits used to digitally represent the magnitude of the sensor re-

sponse). These, and other constraints, are typically referred to as sensor operating
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conditions (OCs) [5, 10]. Two commonly referenced classes of spectral imaging spec-

trometers are hyperspectral (HS) and multispectral (MS). The distinction between

these two classes of imagers are typically discriminated by the number of spectral

bands captured as well as the channel bandwidth; an acceptable benchmark for HS

sensors is the collection of hundreds of contiguous spectral bands while MS sensors

collect less than 20 generally non-contiguous spectral bands (Fig. 1). An additional

discriminator for an HS versus MS imaging system is the full width at half maximum

(FWHM). FWHM refers to the detector response derived from exposure to a source

and is assumed to be Gaussian. The FWHM contributes to the spectral channel

bandwidth, typically reported in microns or nanometers (Fig. 2) [11].

HS-based CD has many advantages over MS-based CD in detecting and discrimi-

nating surface materials because the former provides a continuous spectrum across a

wide range of wavelengths where the later does not. Typical gray-scale imagery (an

image in which the value of each pixel is a single intensity) has a limited capability

for detecting spectral change, but generally provides greater spatial resolution. These

gray-scale images often fail to provide sufficient information to discriminate low con-

trast targets that might be employing concealment techniques. Hyperspectral change

detection (HSCD) provides the added sensitivity to reveal camouflage, and in general,

camouflage, concealment, and deception (CC&D) targets. Here, HSCD is addressed

by means of a process framework developed from a thorough study of the CD liter-

ature. This CD framework focuses on passive remote sensors, in particular imaging

spectrometers that only measure radiation emitted or reflected into the sensor by the

object under scrutiny and/or its surroundings.
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Figure 1. A comparison of the NASA’s Airborne Visible/Infrared Imaging Spectrome-
ter (AVIRIS) 224 spectral channel sensor for a measured spectra from 400 to 2500 nm
at 10 nm intervals across the solar reflected spectrum and 6 of the multispectral bands
measured by the LANDSAT Thematic Mapper [1].

Figure 2. Illustration of full width at half maximum (FWHM) used to indicate spectral
resolution.

2.2 Hyperspectral change detection literature review

There are several methods for addressing HSCD in an end-to-end system; these

methods are organized into groups for examination: pre-processing, change detectors,
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thresholding, post-processing, and analysis/assessment. The major topics are exam-

ined to provide relevant background for the proposed framework. Although there is

a multitude of approaches in the literature as to the organization of CD, they con-

verge on the following recommendations: CD should involve data acquired by the

same sensor, with the same spatial resolution, same viewing geometry, same spectral

bands, same radiometric resolution, and acquired at the same time of day [7]. It is

also desirable to perform the change analysis at the same collection time to limit the

differences associated with sun angle and seasonal variations.

The simplest CD framework separates significant and non-significant changes that

generate a correspondence image from an image pair (Fig. 3). Images are typically

referred to as the reference image, the test image, and the change response. In the

CD routine, two corresponding pixels belonging to the same location in an image pair

are determined on the basis of a quantitative measure. Two temporal image frames

(or a pair of temporal images) are the minimum requirement to identify change.

Figure 3. Simple CD framework using a minimal processing schema. Here Image 1 is
referred to as the reference Image, Image 2 the test image, and image 3 the change
response.

Although CD can be performed in the simplest manner as depicted in Fig. 3,
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there is evidence that an extended form would improve HSCD performance. HSCD

results depend on many factors, and this section details these factors into a com-

prehensive framework. Jensen [12] introduces a CD procedure to monitor land CD

using remotely sensed data that consists of: (1) state the CD problem, (2) consid-

erations of significance when performing CD, (3) image processing of remote sensor

data to extract change information, (4) quality assurance and control program, and

(5) distribute results. Lu et al. [13] describe three major steps involved when imple-

menting a CD system: (1) image pre-processing, (2) selection of suitable techniques,

and (3) accuracy assessment. Similarly, Jianya et al. [14] discuss the problem of CD

and focus on the same three steps as in [13], but with the terms: (1) pre-processing,

(2) CD algorithms, and (3) accuracy assessment. These simplistic descriptions of the

CD processing chain lack robustness and do not capture many of the challenges in

image-based CD. These frameworks further do not take advantage of HS images.

The literature is in common agreement that a CD algorithm requires additional

processes beyond the simple frameworks described previously. However, there is no

consensus as to a single universally applicable processing chain. The choice of routines

within each method in the framework must be navigated based on the application

and the needs of the end-user. Once the areas of the framework are determined, an

understanding of specific data processing requirements is easily assessed.

Relatively few works support HSCD and most do not define the entire processing

chain. Eismann et al. [15, 16] propose the use of an affine transformation to eliminate

errors associated by multiple algorithms during the pre-processing stage. An affine

transformation is a linear transformation and translation between two domains – for

CD this is the reference domain to the test domain. Eismann et al. [15, 16] assume the

same sensor is utilized, images are acquired under similar environmental conditions,

and that image matching or cropping has already occurred. Ortiz-Rivera et al. [17]
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also present general steps for HSCD to include pre-processing for the estimation

of the change mask, which indicates the pixels that reflect a change. The steps

are application specific to an extent and should be further developed to include all

pre-processing possibilities such as feature extraction and dimensionality reduction.

Ultimately the environmental setting plays an important role in the ability to identify

change; as the setting becomes more complex (i.e., heavy vegetation surrounding a

city) the accuracies of CD techniques suffer. The literature often focuses on a single

physical environment limiting the impact of their analysis in evaluating different CD

methods across a variety of background conditions [9, 18, 19]. Incorporating post-

processing into the CD processing chain may enable a more diverse study by level

setting results due to various background conditions.

2.3 Organization of CD methods

Table 1 provides a basis for discussing a unified CD processing chain. It lists five

foundational methods: pre-processing, change detector, post processing, thresholding,

and analysis/assessment and summarizes typical routines within each overarching

method with applicable supporting citations.
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Table 1. A table of CD methods with supporting routines and literature references.

Change Detection Methods
Pre-
processing

Change
detector

Post-
processing

Threshold Post-
processing

Analysis
assessment

•Geometric
registration
•Radiometric
correction
(or normal-
ization)

Radke [6],
Jensen [12],
Eis-
mann [15],
Rosen-
feld [20]

•Local-
based
methods
•Pixel-
based
methods

Lu [13],
Marce-
naro [21]

•HSV
Trans-
formation
•Contextual
information

Knud-
sen [22],
Zhang [23]

•Empirically
•Theoretical

Rosin [24],
Sahoo [25],
Sezgin [26]

•False
alarm mit-
igation

Radke [6],
Lee [27]

•Visual
•Quantitative
•ROC curve
•Confusion
matrix

Radke [6],
Rosin [24],
Sezgin [26]

The pre-processing stage adds distinct benefits to the CD process. Precise reg-

istration of multi-temporal imagery is a critical prerequisite of accurate pixel-level

CD. The change detector is the heart of the change detection method and a vari-

ety of change detectors are available. A threshold scheme is typically employed to

distinguish a separation between significant and insignificant changes. The selec-

tion of an appropriate threshold value for discriminating unchanged pixels from the

changed pixels is also a key factor in most CD methods [28]. A binary change mask

is created by classifying those pixels with a value above the threshold as being a

valid change. Unfortunately, there are a number of factors that make obtaining high

accuracy change masks a difficult task. Two common examples include changing il-

lumination conditions and image pair mis-alignment. Post-processing those changes

can improve the change mask result.

Post-processing, though rarely mentioned in the HSCD literature, is used to refine

CD results and can be viewed as a false-alarm mitigation method. Rudimentary

approaches post-process the change mask with standard binary image processing
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operations [6]. Other approaches build binary classifiers based on training data from

the change response to produce a more accurate change result [29]. Table 1 includes

post-processing as a capability before or after the thresholding stage.

Lu et al. [13] provide factors that influence the accuracy of CD results, including:

(1) precise geometric registration between multi-temporal images, (2) calibration or

normalization between multi-temporal images, (3) availability of quality ground truth,

(4) the complexity of the landscape and environment of the study area, (5) CD

methods or algorithms used, (6) classification and CD schemes, (7) analyst’s skills

and experience, (8) knowledge and familiarity of the study area, and (9) time and cost

restrictions. The performance of a CD algorithm, including the necessary pre- and

post- processes, can be evaluated visually and quantitatively depending on the goal.

Subcomponents of the CD framework can also be evaluated individually [6]. Assessing

the accuracy of CD products is an important step in assessing the validity of the

method. In assessing changes based on remotely sensed data, the major impediment is

that the estimate values are difficult to compute due to the complexity of the processes

involved and more often the truth data is not available for computing accuracy. When

the inherent limitations are appropriately dealt with, pre-processing is adequately

incorporated, and appropriate CD algorithms are selected, the assessment will reveal

adequate results.

Analysis of the literature provides ample evidence to support the conclusion that

HS data can be effectively used to detect and monitor changes. However there is

an agreement with the observation of [30] that one of the challenges confronting the

community is to develop an improved understanding of the CD process on which to

build an understanding of how to match applications and methods. Our CD frame-

work provides an improved understanding based on careful analysis of the literature

and moves the community closer to matching applications and methods for improved
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CD results.

2.4 Change detection framework

The framework presented in this dissertation document provides a foundation for

comparing HSCD systems [2]. The framework provides categories of methods that

must be acknowledged when analyzing HSCD and is presented in Fig. 4. It begins

with two temporal HS image cubes, a reference image and a test image. The first

step is to pre-process both image cubes to suppress undesired distortions and enhance

image features important for the rest of the processing change. The pre-processed

image cubes are supplied to the CD step which then outputs a CD response map

with the raw detector results. The CD response map can either be post-processed

or proceed to a threshold step in order to identify significant changes and represent

them as a change mask. The change mask can then be enhanced in an additional

post-processing step. The final change mask is then used to analyze CD performance.

Figure 4. CD framework process [2].

2.4.1 Pre-processing

The form of pre-processing depends on the data under analysis. For example, if the

HS image data is “raw” (obtained directly from the sensor), then atmospheric com-

pensation and band reduction (related to specific atmospheric distortion windows)

should be performed. Typical pre-processing steps include: georegistration [31], or-
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thorectification [32], atmospheric compensation (e.g., flat field correction, empirical

line calibration, QUick Atmospheric Correction (QUAC) and Fast Line-of-sight At-

mospheric Analysis of Spectral Hypercubes (FLAASH) [33]). Dimensionality reduc-

tion [34–37] and resolution enhancement [38].

Georegistration is the alignment of an unreferenced image with geodetic imagery.

In general, this process aligns two images and correlates the images to a physical

location by examining a set of distinguishable points. If not performed properly it

can have a negative effect on the performance of the CD system. For example, if

the accuracy of the georegistration degrades substantially, it may not be possible to

correlate spatial pixels in the imagery to known points on the ground. It would then

become nearly impossible to obtain an accurate location change result referenced to

a ground position.

Orthorectification is the process of registering data pixels to a map grid. The

end result is that the often visually-distorted data cubes captured from a HS sensor

are spatially re-sampled so that they may be overlaid on a common set of ground

coordinates. It then becomes possible to measure distances between objects in the

imagery since the location of every pixel is known. The drawback to orthorectification

is that the spatial interpolation routines alter the spectral content of the HS vectors

within the image cube which may degrade detection performance. Fig. 5 demonstrates

a notional orthorectification scenario. The left image displays an object as seen on the

ground, known to be a square. The middle image is the raw image with the object as

captured by the sensor to include geometric distortion (thus the square is distorted).

The right image is representative after orthorectification; the image is transformed so

that the sensor captured the object from a perpendicular view.
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Figure 5. (left) Square object as it appears on the ground, (middle) square object sam-
pled with a pushbroom sensor (horizontal distortion), (right) resulting orthorectified
imagery.

Atmospheric scattering, absorption, and reflections as well as local environmental

reflections contaminate the radiance received at the sensor (Fig. 6). The interpre-

tation of surface features is enhanced by correcting for these effects. Atmospheric

compensation is a technique used to remove the effects of the gases, aerosols, and

water vapor present in the atmosphere on the spectra observed by the HS sensor.

This is particularly important for interpreting temporal changes in imagery taken at

a different time of day or a different time of year. For a visible to near infrared/short

wave infrared (VNIR/SWIR) HS sensor, there are five intervening atmosphere/envi-

ronment effects to the spectral radiance that are ultimately received by the sensor [39]:

1. Direct solar irradiance reflected off the object and transmitted through the

atmosphere to the sensor;

2. Indirect solar irradiance scattered by the atmosphere, reflected off the object,

and transmitted through the atmosphere to the sensor;

3. Scattered irradiance from the ground and local objects reflected off the object

and transmitted through the atmosphere to the sensor;

4. Ground scattered radiance scattered further by the atmosphere, reflected off

the object, and transmitted through the atmosphere to the sensor, also known

as adjacency effect; and
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5. Upwelling path radiance scattered by the atmosphere directly to the sensor.

The effect of the atmosphere on the solar irradiance spectrum is illustrated in Fig. 7.

Note the relative loss in intensity at several wavelengths between 900 nm and 1100 nm

due to gas and vapor absorption. Also note that two major absorption features

centered around 1400 nm and 1900 nm are predominantly due to atmospheric water

vapor.

Figure 6. Solar reflective effects described by (1) Direct solar reflectance, (2) Indirect
solar reflectance, (3) Local object scattering, (4) Adjacency effect, and (5) Scattered
path radiance.
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Figure 7. Solar irradiation curves: (dashed) blackbody radiator at 5900K (estimate of
the suns solar radiation), (solid attenuated) solar irradiation curve at sea level, (solid
non-attenuated) solar irradiation curve at the top of the atmosphere (energy from the
sun entering the atmosphere) [3].

Dimensionality reduction plays a role in reducing processing time [34, 37], im-

proving visualization [35, 36], and improving accuracy results in the assessment [37].

It is often desirable to remove some of the bands from the HS data cube that have

low Signal-to-Noise Ratio (SNR); the bands corresponding to atmospheric water ab-

sorption are commonly among those with low SNRs as the gases and vapor in the

atmosphere between the (airborne) sensor and the ground plane tend to absorb light

at those wavelengths.

2.4.2 Change detectors

2.4.2.1 Overview

A comprehensive survey of image CD algorithms is presented in [6]. A variety

of change detectors have been developed, and many have been summarized and case
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studied [12, 13, 40–42]. Many of the documented algorithms can be modified for

use with HS images, though few actually develop the detector specifically for HSCD.

Deer [43] categorizes CD methods based on the notion of pixel-, feature-, and object-

level CD. With the advent of HS images a fourth category of change detectors has

emerged, namely spectral-based change detectors. A summary of these four categories

of CD are listed in Table 2.

Table 2. Change detectors.

Pixel-based Feature-based Object-based Spectral-based
−Image
differencing
−Image rationing
−Image regression
−Change vector
analysis (CVA)
−Endmember
analysis

−Principal
components
analysis (PCA)
−Local texture
−Shape analysis
−Vegetation index
differencing
(NDVI) −Wavelet

−Artificial
intelligence
−Artificial neural
networks
−Direct multidate
classification
−Fuzzy
post-classification
comparison
−Post-classification
comparison

−Spectral angle
mapper
−Spectral
correlation mapper
−Model-based
chronochrome
−Model-based
covariance
equalization

Pixel-level CD requires additional processes as the computations involve numeric

values of each image band (e.g., taking image differences or performing image ratios).

These techniques evaluate only the difference between corresponding pixels between

the reference and test images. Pixel-level CD requires less computation since only one

pixel is considered at a time. However, it is very sensitive to noise and illumination

differences since it does not exploit local structure information.

Feature-level CD involves a transformation of the spectral or spatial properties of

the image (e.g., principal component analysis, texture analysis, or vegetation analy-

sis).

Object-level CD requires the most advanced processing (e.g., post-classification
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processing or neural networks analysis). The use of machine-learning algorithms,

artificial neural networks, and decision tree classifiers have gained attention in recent

years, has become an alternative to conventional CD approaches [44, 45]. Increased

classification accuracy is often cited as the primary reason for developing and applying

these techniques; however, these approaches are computationally complex and can

require a considerable number of trusted training samples. Advantages of object-

level CD routines include: no need for post-CD filtering and smoothing; less impact

of slight geometric offsets between image datasets; and the ability to include context

relationships to improve CD results [46]. The disadvantages are that the processes

are laborious and usually require previous knowledge of the study area as well as

accurate definition of the changes to be identified.

Spectral-based detectors make a direct comparison between spectra utilizing the

entire spectrum of information to provide areas of change. There exists the potential

to implement a spectral matching change detector using techniques typically formu-

lated for spectral detection [47]. Here one exchanges the spectral library for a spectra

signature at each corresponding spatial pixel in the test image. However, these meth-

ods inherently assume perfect registration since they perform pixel-level CD.

Junior et al. [48] explore the spectral angle mapper (SAM) and spectral correlation

mapper (SCM) classification methods and use them as spectral change detectors

(SCD). SCD, such as the Chronochrome (CC) and Covariance Equalization (CE) [49]

algorithms, perform model-based CD through signature prediction.

2.4.2.2 Chronochrome change detector

The chronochrome change detector is a fundamental component of this disserta-

tion and a derivation of that method is provided here. In general, the chronochrome

provides the linear least mean squares solution to the prediction error, commonly
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known as the optimal Wiener filter solution [50]. The chronochrome requires the

cross-covariance between the image pair because it is a pixel-to-pixel computation

forcing precise registration which is difficult to achieve. It does, however, use the

generalized likelihood ratio test (GLRT), which is well understood in the detection

community, and unknown parameters are replaced with their maximum likelihood es-

timates. Covariance equalization is an alternative to chronochrome by approximating

the cross-covariance through whitening in order to eliminate the cross-statistics [51].

Under similar environment conditions and perfect registration where no parallax

exists then the CD hypothesis test is

H0 : t = r,

H1 : t ̸= r,

where H0 is the null hypothesis of no change, H1 is the alternative hypothesis of a

change, and r and t are two measurements from a reference image and test image.

In the formulation, lower-case boldface characters represent vectors, and upper-case

boldface characters represent matrices. However, in reality, the respective signatures

can be slightly different as a result of intrinsic variability. As a result, the measure-

ment for a given pixel at time-one (r) may be significantly different than that at

time-two (t), even when the underlying material associated with the pixel has not

changed. Thereby, the measurements are assumed to have a linear transformation,

and thus, the hypothesis test is

H0 : t = Ar+ b+ n,

H1 : t ̸= Ar+ b+ n,

where A is the unknown gain matrix, b is an unknown offset vector, and n is additive
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Gaussian noise. The unknown parameters are assumed space-invariant such that

the global sample statistics of r and t are sufficient to estimate the transformation

parameters.

The estimated gain matrix Â and offset vector b̂ are determined from a mini-

mum mean-squared error perspective following the standard Wiener filter derivation

requiring the error to be orthogonal to the reference spectra r, or

E

[t− (Ar+ b)]rT


= 0. (1)

Additionally, the residual error is required to be zero mean,

E {[t− (Ar+ b)]} = 0. (2)

The estimate for b is first found in terms of A as

E {[t− (Ar+ b)]} = 0

E[t]−AE[t]− b = 0

b̂ = E[t]−AE[r]

b̂ = m̂t −Am̂r (3)

where m̂r and m̂t are the sample mean vectors from time-one and time-two. The
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estimate of A is

E

trT −ArrT − brT


= 0

FE[trT]−AE[rrT]− bE[rT] = 0

E[trT]−AE[rrT]− (m̂t −Am̂r)E[rT] = 0

E[trT]−AE[rrT]− m̂tE[rT] +Am̂rE[rT] = 0

E[trT]− m̂tE[rT] = AE[rrT]−Am̂rE[rT]

E[trT]− m̂tE[rT] = A(E[rrT]− m̂rE[rT])

Â =
E[trT]− m̂tm̂

T
r

E[rrT]− m̂rm̂T
r

=
Ctr

Cr

(4)

where Cr is the sample covariance matrix of the time-one data and Ctr is the sample

cross-covariance of the time-one and time-two data.

After applying the transformation to the test image using the estimates derived,

an error matrix is formed via differencing the reference and prediction images [51].

In order to address registration concerns and create an algorithm that is more

robust to registration errors, the covariance equalization algorithm was developed [52].

Covariance equalization, which is based on the whitening principle, was introduced

as an approximation to the chronochrome algorithm, and it has a number of practical

advantages in terms of implementation.

To derive the covariance equalization algorithm, follow chronochrome derivation

and then begin with Eq. (4), restated here,

Â =
Ctr

Cr

.

The cross-covariance can be approximated as the covariance of Ct [52]. Each image

is brought into a new whitened space based on their own covariance matrix. By doing
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this, registration is less of a concern in the prediction stage because it does not require

the cross-covariance.

Eigenvalue decomposition refers to the factoring of a matrix into a diagonal ma-

trix of eigenvalues, and corresponding eigenvectors. Since Ct and Cr are covariance

matrices and by definition are square, symmetric, and positive semi-definite, they can

be written as,

Ct = ΦtΛtΦ
T
t = ΦtΛ

1/2
t ΦT

t ΦtΛ
1/2
t ΦT

t ,

Cr = ΦrΛrΦ
T
r = ΦrΛ

1/2
r ΦT

r ΦrΛ
1/2
r ΦT

r ,

where Φt and Φr are orthogonal eigenvector matrices and Λt and Λr are diagonal

matrices of eigenvalues resulting from the eigenvalue decomposition of the covariance

matrices. Then, the symmetric square root of the covariance matrices can be whitened

through the transformation ΦΛ−1/2ΦT

Ct = ΦtΛ
1/2
t ΦT

t ,

Cr = ΦrΛ
1/2
r ΦT

r .

The estimate for covariance equalization of A is then

Â =
Ct

Cr

(5)

Â =
ΦtΛ

1/2
t ΦT

t

ΦrΛ
1/2
r ΦT

r

(6)

Â =
Ct

1/2

Cr
1/2

(7)

Â = Ct
1/2Cr

−1/2 (8)

To equalize the mean vectors, the estimate for b̂ is given again by Eq. (3).
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2.4.2.3 Local co-registration adjustment

To account for co-registration errors between the reference and test images, Theiler

and Wohlberg [53] describe a method that extends any test statistic for anomalous

change and minimizes that test statistic for pixels in the reference image that are in the

neighborhood of the test image pixel under evaluation. It does so by comparing the

measurement of vector r in the reference image with a 3x3 window of its correspond-

ing vector t in the test image. Then, the nearest neighbor with the most anomalous

relationship is the mis-registered compensated pixel. Local Co-Registration Adjust-

ment (LCRA) includes both symmetric (independent of the direction of minimization)

and sub-pixel variants of the algorithm. It assumes that a true anomalous change

is independent of the direction of the minimization and therefore the minimization

is performed in both directions (i.e., r to t, or vice versa) where the maximum of

the resulting minima is selected as the final results. Finally, the sub-pixel LCRA

redefines the optimization windows to include fractional pixel shifts. This is applied

using interpolation to resample the images at higher resolution prior to processing.

2.4.2.4 Change detector summary

The notions of changes that are significantly different or unimportant vary by

application, which makes it difficult to directly select one from the plurality of CD

routines. There is no optimal CD routine and the procedure that is most appropriate

depends upon the application (persistent ISR, target tracking, etc.) and the data

(image quality, geography of study area, etc.). In addition, the choice of CD routine

for the application should include a priori knowledge of the OCs in order to define

the appropriate techniques that reveal significant change. This aspect is important

for CD as it eventually determines if the data, the features, or the detector are cost

effective.
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2.4.3 Thresholding

Thresholding is a fundamental method applied in many image processing and

detection methods. If the change output level exceeds a given threshold, the pixel is

regarded as a change pixel. Setting the threshold is a crucial step. If set too high,

it will suppress the detection of significant changes. If set too low it will swamp

the change map with spurious changes. A typical thresholding routine is modeled in

Fig. 8.

Figure 8. Typical thresholding routine.

Per the framework diagram in Fig. 4, responses from the detector optionally un-

dergo a thresholding stage directly or after post processing. When accomplished

directly after the detector, it serves to reduce the amount of information processed in

the post-processing stage. If accomplished after the first stage of post-processing, it is

used to refine a filtered response (due, e.g., to classification) for potentially improved

results. Regardless of when the threshold is applied, before or after post-processing,

the method produces a binary change mask. As such, potential objects of interest

(significant changes) are separated from the background. The binary image mask
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(B) identifies the changed region [6] where

B =

 1 if significant change,

0 otherwise.

For most CD methods in the literature, the threshold routine is not explicitly

defined and there is no theoretical way for setting it ahead of time because of the

complexity of the background clutter. Thresholds are typically computed globally

or locally and often based on hypothesis testing. Global threshold routines operate

on all pixels in the image whereas local threshold routines operate on a subset of

the change information. Both approaches use spatial and/or spectral information for

the assessment. However, the spectral information tends to be more robust in high

noise environments. Ortiz-Rivera et al. [17] demonstrated that the local thresholding

methodology improved CD results in their HSCD experiment.

Knowing what to look for in an image might simplify estimating the threshold,

but trial-and-error is the most common approach. Several thresholding methodolo-

gies have been proposed in the literature; however, few of them are specific to CD.

Rosin [24] describes four different methods for selecting CD thresholds; either the

noise or the signal is modeled, and the model covers either the spatial or intensity

distribution characteristics. Spatial features, such as texture and local variance, can

help with establishing the CD threshold [54], but this implies that user objectives are

determined prior to the design of the change analysis problem. Rosin does conclude

that the most promising methods are spatial but adds more extensive testing and

quantitative assessment is required.

Regardless of the specific technique used, a priori knowledge regarding the data

and the application is helpful in selecting a relevant threshold. Approaches to de-

termine the threshold values are still an active area of research and are most often
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integrated into the post-processing stage.

2.4.4 Post-processing

Post-processing can occur on the change output prior to thresholding or after

thresholding on the filtered change responses (Fig. 3). Post-processing accomplished

at either point serves to improve the candidate change mask. The initial binary mask

generated after thresholding can highlight insignificant changes and post-processing

refines the results potentially improving accuracy.

The simplest techniques post-process the change mask with standard binary image

processing operations. Morphological operations are commonly used as a tool for

extracting information from an image to describe regional shapes; morphology is a

way of giving meaning to a certain region in an image [6]. Post-processing applied

to the binary image has the advantage of reducing false alarm probabilities at low

computational cost. However, standard binary image processing operations may not

always be valid in CD [55].

Zhang et al. [23] use the minimum noise fraction (MNF) to post-processing the

raw CD response in order to separate signal from noise. The change output is then

processed with a Markov Random Field (MRF) model [56] for the threshold step in-

corporating contextual information to improve accuracy and reliability. Lee et al. [27]

investigate the feasibility of incorporating symbolic reasoning to remove insignificant

changes due to shadows, clouds and partial occlusion of existing objects. Their over-

all CD system concept includes a change interpretation node which applies rules in

a hypothesis-driven fashion to the change output to determine the relevance of that

change. In general, the symbolic reasoning concept is not well defined, nor does it

represent a variety of applications.

Decision fusion is also used in post-processing to mitigate false alarms. Decision
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fusion is the combination of two or more algorithms and is most often applied to the

change detector. The results of each CD routine are compared and their contribution

to the final decision is weighted to be more or less significant than the others. A

decision fusion step logically combines the final change/no change locations then cor-

relates those from each change detector. All weighted outputs are then thresholded,

at which point additional false alarms, and perhaps some true detections, are filtered

out. Fig. 9 provides an illustration of a conventional decision fusion system. For

each pixel in the change image there is consensus as to whether or not it contains

significant change from the reference image. (This concept and figure was motivated

by Hall and Llinas’s [4] tutorial on data fusion.)

Figure 9. Conventional decision fusion schema. Image motivated by Hall and Lli-
nas’s [4].

Other post-processing false alarm mitigation routines use geographic information

system (GIS) data [57, 58] to enable the delivery of quantified or stratified change

maps that are consistent with change product delivery [40]. (A GIS is a system that

captures, stores, analyzes, manages, and presents data that are linked to location.)

The advantage of using GIS is the ability to incorporate different data sources into

change analysis methods, thereby providing a better understanding and identification

of the changes that have occurred in a geographic area of interest. The more promi-

nent work by Zhang et al. [58] puts forward a holistic strategy of CD based on remote
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sensed images and GIS data and claims it addresses the shortcomings of traditional

methods, such as the error accumulation and error transfer caused by pre-processing

techniques such as data co-registration and feature extraction. The result is improved

accuracy and reliability of the change results.

Post-processing can also be in the form of visual-quality improvement to aid the

image analyst in assessing CD results. Much of the filtering and post-processing is per-

formed to enhance visual characteristics of images. HS visualization is a distinct but

related problem to band reduction. Visualization techniques render either enhanced

true color or false color images derived from the HS image, typically in an unsuper-

vised manner [36]. Resolution enhancement aims to compensate for the typical low

spatial resolution of HS sensors, primarily by fusing additionally available imagery

or performing spatial superresolution [59]. The result is a HS cube with increased

spatial resolution which greatly aids visualization for inquiry of the performance in

CD results.

2.4.5 Analysis/Assessment

2.4.5.1 Overview

Analysis and assessment is important when developing a CD system and that

assessment occurs by comparing results with a truth image mask (a verified ground

truth pixel map). Accuracy assessment techniques in CD originate from those of

remote sensing image classification. It is natural to extend the accuracy assessment

techniques for processing a temporarily stationary image to that of multi-temporal

images.

Rosin [60] comments that accurate ground truth is essential either through the

use of synthetic imagery or annotation and an image analyst. However, it is often

difficult, if not impossible, to collect reliable ground reference due to cost, time,
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and accessibility of the study site. Three general approaches to obtain ground truth

references are field survey, acquisition of airborne high-resolution imagery (HRI),

and visual interpretation. The first two approaches incur a large cost and the third

may not be accurate. Since the ground truth data provides a reference point, the

thresholding aspect in CD can be tested for correctness of the change results. As

described previously, incorporating GIS information can improve the end-to-end CD

system results. GIS further provides convenient tools for multi-source data processing

and is effective in handling the CD analysis using multi-source data [13].

2.4.5.2 Error matrix, receiver operating characteristic (ROC) curve,

and area under the ROC curve (AUC)

The performance of a CD algorithm can be evaluated visually and quantitatively

based on application needs. The truth reference and a visual interpretation com-

bination can provide a sense of performance. However, an image analyst may find

that the change map requires extensive examination of imagery to assess the relation

of the true change. Among the quantitative assessment techniques for analysis of

change masks, the most efficient and widely used are the error matrix [13], the re-

ceiver operating characteristic (ROC) [61] curve, and the area under the ROC curve

(AUC) [62].

Oort [63] describes the common change/no change error matrix used in analyzing

results. Here, CD is equivalent to a two-class classification problem. A typical error

matrix for a two-class classification problem is illustrated in Fig. 10. As shown, the

error matrix is compiled into a table with two rows and two columns that report the

number of false positives, false negatives, as well as the complementary true positives

and true negatives.

30



Figure 10. Typical change detection error matrix.

The error matrix provides a means to calculate accuracy from both the perspective

of the system and the consumer. The accuracy rate refers to the percentage of correct

predictions when compared with the actual classifications in the test data. Addition-

ally accuracies, such as producer’s and consumer’s accuracy, are easily computed from

the error matrix. Producer’s accuracy is an expression of errors of omission, or false

dismissals (for example, from the perspective of CD, labeling a pixel classified as no

change when in fact it is change). Consumer’s accuracy is an expression of errors of

commission, false alarms (for example, again from the perspective of CD, labeling a

pixel as change when in fact it is not).

ROC’s (Fig. 11) are generally interpreted in one of two ways. If ROC one domi-

nates ROC two, then system one performs better than system two across the entire

operating range [64, 65]. If ROC one and ROC two cross, the interpretation is that

system one performs better than system two over different portions of the operating

range [66]. ROC curves are obtained from binary hypothesis testing by using several

threshold values [7, 67].

Bradley in [62] (and others) suggest using the area under the ROC curve (AUC).

The ROC is generated in the normal way and the area is estimated using techniques

such as the trapezoidal integration method [62]. The AUC is not without its problems.
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Namely, it summarizes the ROC curve with a single number and loses the ROC’s

granularity. It does, however, provide a way to distinguish between two systems

when the ROC of one system crosses the ROC of another system (i.e., one ROC does

not dominate the other ROC).

Figure 11. Three hypothetical ROC curves. The probability of detection (PD) is plotted
against the probability of false alarm (PFA) based on changes to a detection threshold.
A value of 0.5 (blue line) suggests random guesses while a value of 1 indicates correct
classification; as the curves (red and green) approach the value of PD = 1 and PFA = 0,
the detector performance is said to improve.

In order to evaluate the quality of a change mask independent of the choice of

thresholding, the evolution of the detection probability as a function of the false

alarm probability may be evaluated against the ground truth data. The ground

truth is scored against the binary threshold image and can include different scoring

methodologies such as proximity, touch, target centroid, blob centroid, vote and pixel-

level (Fig. 12).
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Figure 12. Possible scoring methodologies used during assessment [5].

Accuracy assessment provides benefits in the CD framework including the decision

of choosing the specific methodologies of each segment of the processing chain and

reporting the overall reliability of the CD system. There is still a need for research in

accuracy assessment for CD, especially where the ground reference data is insufficient

or impossible to obtain.

2.4.6 Discussion

The contribution of the framework presented here is another step toward under-

standing the design space of CD systems by extracting the crucial processing steps

in each processing stage. From both a research and implementation perspective, the

analysis shows how each stage can be decomposed and implemented as part of an

end-to-end CD system. For the researcher, the framework enables one to understand
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and compare their individual CD research efforts (within a specific method specified

in the framework) in different end-to-end CD systems. For the user, the framework

helps the analyst choose specific methods for each process in the CD processing chain

to achieve best results.

2.5 Stereo geometry

Stereo vision is often considered a form of image registration because the aim is to

correlate a secondary image (change image) with a reference image and both require

some form of correspondence algorithm. The distinction is that in the image regis-

tration case, the process lies in estimating a transformation that spatially aligns two

images. However, in stereo vision the aim is to utilize the stereo geometry to locate

the disparity between corresponding points, allowing the creation of 3-Dimensional

(3D) data. Similar to image registration, stereo vision encounters its fair share of diffi-

culties during correspondence matching. Some problems commonly endured by stereo

algorithms include occlusions, perspective distortion, and illumination variation.

Stereo vision refers to the ability to infer information on the 3D structure and

distance of a scene from two or more images taken from different viewpoints. Typical

stereo vision systems solve two problems: correspondence and reconstruction [68].

Stereo correspondence is a well-understood problem in computer vision, with numer-

ous applications including the previous mentioned image registration problem. The

reconstruction problem, given a number of corresponding points in both images and

geometry of the stereo pair, permits development of a 3D map of the scene.

Stereo matching methods try to solve the stereo correspondence problem. This

dissertation aims to use stereo matching to identify all homologous pixels in the

reference and change image pair to yield a parallax approximation [69, 70]. The

stereo correspondence problem is solved by matching points between a stereo pair
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of images. For every point in the reference image of the stereo pair, a matching

point is found in the test image of the stereo pair. This match is described by a

translation vector from the reference pixel in the reference image to the test pixel in

the test image (Fig. 13). Typical depth applications devise a disparity map from the

translation vectors.

Figure 13. Depiction of residual displacement or parallax.

Matching corresponding points in each image can be a computational burden

within a 2-Dimensional (2D) array. In order to simplify the search, epipolar geometry

is often exploited. Epipolar geometry interprets the projective relationship for the

stereo pair. Hartley [71] describes the epipolar geometry of two views where a point

in one view defines an epipolar line in the other view on which the corresponding

point lies. Fig. 14 depicts the epipolar geometry for a stereo pair. The 3D point

p is imaged in two views, at pr in the reference image and pt in the test image.

The epipoles are designated by er and et which is defined by the intersection of the

line joining the image centers, cr and ct. Thus the matching of points is somewhat

simplified as the epipolar geometry enables the search for corresponding points only

along corresponding image lines. The epipolar constraint restricts the search for the

match of a point in one image along the corresponding epipolar line in another image.

Thus the search for correspondences is reduced to a 1-dimensional (1D) problem.
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Alternatively, false matches due to occlusions can be rejected by verifying whether or

not a candidate match lies on the corresponding epipolar line.

Figure 14. Depiction of the epipolar geometry for a stereo pair. The 3D point p is
imaged in two views, at pr in the reference image and pt in the test image. The epipoles
are designated by er and et which is defined by the intersection of the line joining the
image centers, cr and ct.

Correspondence algorithms aim to describe a pixel, or area, from the image data

that can be used to efficiently perform a similarity measure between the multi-view

imagery. There are two steps in establishing a stereo correspondence: (1) select

(manually or automatically) image pixel locations to match and (2) determine the

similarity of that match. There are a large number of proposed descriptors for auto-

matic pixel selection and associated similarity measures which utilize different local

image features (e.g., pixel intensities, color, texture, edges, etc).

In performance comparison of different descriptors, [72] shows that (SIFT) is one

of the most stable and reliable feature detection algorithms. An overview of the SIFT

keypoint descriptor’s construction is provided where a complete description of the

SIFT algorithm can be found in [73]. The SIFT descriptor is based on a monochro-

matic or gray-scale image representation. SIFT features are local histograms of gra-

dient directions computed over different parts of the keypoint region. It computes

the gradient vector for each pixel in the keypoint’s pixel neighborhood and builds
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a normalized orientation histogram of gradient directions to create a 128-dimension

vector for feature correspondence. Orientation invariance is achieved by estimating

the dominant orientation of the local image patch and is normalized for invariance

to changes in illumination. The SIFT process of generating keypoints is performed

in two steps: (1) feature detection and (2) feature extraction. Feature detection

or keypoint detection is simply the process of locating salient points and/or regions

from images, in order to construct useful local image descriptors. Other important

attributes of a reliable and meaningful salient keypoint is that it must be invariant

to image transformation, such as scale, rotation, and affine transform, in addition

to perspective transformation, illumination, and brightness variations. Feature ex-

traction is that local descriptors are computed on the region around each keypoint

detected by the keypoint detection process. The local invariant feature descriptors

are formed by the local image gradients measured at the selected scale in the re-

gion around each keypoint. In general, extracted features must be highly distinctive

and tolerant to image noise, changes in illumination, uniform scaling, rotation, and

changes in viewing direction.

The second step is determining the match through a similarity measure to pro-

vide spatial correspondence. Various similarity measures exist (e.g., sum of absolute

differences, cross-correlation coefficient, mutual information) for typical feature cor-

respondence methodologies. The objective of the present work is to improve HSCD

by eliminating the false parallax change. As such, stereo correspondence is utilized,

not for image registration in the pre-processing stage of the CD processing chain, but

to account for parallax thus eliminating false change. Specifically, a correspondence

search is made between the reference and test image pair to measure the parallax

or the apparent shift of a 3D point, p, above the ground plane against the ground

plane. The difference between the position of the pixel in the reference image and the
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position of the pixel in the test image on the ground plane identified as the coordi-

nates of the corresponding point of p provide an estimate of the parallax shift. The

parallax direction associated with this estimate is a key component in the parallax-

compensation algorithm developed in this research.
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III. Change Detection Accounting for Mis-registration and

Parallax Errors

This chapter presents a new method to account for image mis-registration and

parallax-induced false detections in HSCD. A generalized likelihood ratio test (GLRT)

is constructed to provide a change test statistic for change at each pixel in the tempo-

ral hyperspectral image pair, and the unit square restricted form of bilinear interpo-

lation [74] is used to account for estimates of image mis-registration for the sub-pixel

case. This baseline approach is then modified to incorporate an estimate of the par-

allax direction in order to mitigate false alarms due to parallax effects between the

same two hyperspectral image pairs. The organization of this chapter follows this

same basic construction.

3.1 Accounting for image mis-registration

3.1.1 Deriving the mis-registration generalized likelihood ratio test

(GLRT)

In the following derivations, lower-case boldface characters represent vectors, and

upper-case boldface characters represent matrices. Consider a hyperspectral sensor

that makes two observations of a scene in the form of a hyperspectral image composed

of K-element spectra made at spatial locations defined by an image coordinate (x, y).

The image coordinate can be characterized in any domain, such as ground plane

or angular coordinates, but (x, y) is used to represent spatial pixel indices in this

dissertation. The reference image is denoted as r(x, y) and the test image as t(x, y)

where r(x, y) ∈ ℜK , t(x, y) ∈ ℜK . Typically, hyperspectral images are indexed as

matrices where the two-dimensional spatial nature is collapsed into one dimension;

however, the two-dimensional spatial relationships are explicitly maintained here in
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order to capture spatial mis-registration impacts.

Define the set of local sub-pixel mixtures using the unit square restricted form of

the bilinear mixture model around a reference spectrum [74] r(x, y) as

{m[(x, y);αx, αy] : |αx| ≤ 1, |αy| ≤ 1}, (9)

where

m[(x, y);αx, αy] =



r(x, y) if αx = αy = 0

(1− αx)(1− αy)r(x, y) + (1− αx)αyr(x, y + 1)

+αx(1− αy)r(x+ 1, y) + αxαyr(x+ 1, y + 1) if αx > 0, αy > 0

(1 + αx)(1− αy)r(x, y) + (1 + αx)αyr(x, y + 1)

−αx(1− αy)r(x− 1, y)− αxαyr(x− 1, y + 1) if αx < 0, αy > 0

(1 + αx)(1 + αy)r(x, y)− (1 + αx)αyr(x, y − 1)

−αx(1 + αy)r(x− 1, y) + αxαyr(x− 1, y − 1) if αx < 0, αy < 0

(1− αx)(1 + αy)r(x, y)− (1− αx)αyr(x, y − 1)

+αx(1 + αy)r(x+ 1, y)− αxαyr(x+ 1, y − 1) if αx > 0, αy < 0

Assume (αx, αy) are unknown but can range from zero to one pixel. Also assume that

a specific test spectrum t(x, y) maps to a specific reference spectrum r(x, y) within

some unknown mis-registration (∆x,∆y).

Consider the situation where there is some unknown mis-registration (∆x,∆y)

between the reference and test images such that the prediction image is required to

be of the form

p(x, y|∆x,∆y) = Ar(x+∆x, y +∆y) + b. (10)

The assumption is that the amount of mis-registration can vary from pixel to pixel

according to some known or assumed statistics defined by a probability density func-

tion (PDF) f∆X,∆Y (∆x,∆y). Letting n represent the sensor noise, the hypothesis
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test corresponding to CD is written as

H0 : e(x, y) = t(x, y)− p(x, y|∆x,∆y) + n = 0,

H1 : e(x, y) = t(x, y)− p(x, y|∆x,∆y) + n ̸= 0. (11)

The GLRT test statistic for this detection problem is given by the maximum likelihood

ratio [75] defined as

l(x, y) =
max

A,b,∆x,∆y
fe[e(x, y;A,b,∆x,∆y)|H1]

max
A,b,∆x,∆y

fe[e(x, y;A,b,∆x,∆y)|H0]
(12)

where fe ( · ) is the probability density function for the residual error (e) in Eq. (12).

Under the alternative hypothesis, for anomalous CD, there is no a priori information;

therefore, the maximum likelihood estimates are the measurements themsleves and

the numerator in Eq. (12) is constant. Eq. (12) is written as

fe[e(x, y;A,b,∆x,∆y)|H0] = fe[e(x, y;A,b)|H0,∆x,∆y]f∆X,∆Y (∆x,∆y). (13)

The assumption is n ∼ N(0,Cn), as such

fe[e(x, y;A,b)|H0,∆x,∆y] = 1

(2π)K/2
1

|C|1/2
e−

1
2
[t(x,y)−p(x,y|∆x,∆y)]C−1

n [t(x,y)−p(x,y|∆x,∆y)],(14)

where Cn is the expected sensor noise covariance matrix in the resulting difference

image. Further, let (σx, σy) be the root mean squared mis-registration errors and as-

sume a normal prior PDF for the unknown residual spatial mis-registration f∆X,∆Y ( · )

f∆X,∆Y (∆x,∆y) =
1

2πσxσy

e
−∆x2

2σ2
x e

−∆y2

2σ2
y . (15)
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The transformation parameters A and b determined by chronochrome (CC) are

assumed to represent the maximum likelihood estimates, or the covariance equal-

ization (CE) estimates are used as a substitute. The change test statistic can be

transformed into the log-likelihood by d(x, y) = ln l(x, y). Substituting the results

from Eq. (12) to Eq. (15) into this log-likelihood test statistic and ignoring constant

terms that are not data-dependent, the GLRT test statistic becomes

d(x, y) = min
∆x,∆y


[t(x, y)− p(x, y|∆x,∆y)]TC−1

n [t(x, y)− p(x, y|∆x,∆y)] + ∆x2

σ2
x
+ ∆y2

σ2
y


.

(16)

Performing the minimization dictated by the GRLT CD statistic in Eq. (16) is

straightforward for integer pixel mis-registration. This minimization provides the

exact same result as the CC test statistic when the sample covariance matrix of

the difference image Ce is used as an estimate of the noise covariance matrix Cn,

but with a minimization over different test-to-reference pixel associations. For non-

integer pixel mis-registration increments, some interpolation procedure is needed.

In the general case where the mis-registration could be more than one pixel, the

minimization needs to be performed over integer pixel shifts and performed over

the interpolation between integer pixel shifts. The assumption is that the image-to-

image registration step preceding CD can provide a residual mis-registration better

than one pixel (which is typically the case) and only explicitly deal with the case of

sub-pixel shifts, which makes the mathematics more transparent. It should be noted,

however, that the method developed under this assumption is easily generalized to

scenarios with mis-registration errors of multiple pixels by applying it over multiple

pixel regions. This generalization is useful for extending the methods described to

address other phenomenon such as resampling errors introduced during image-to-

image registration or parallax errors caused by different viewing geometries (addressed

later in this Chapter).
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The prediction p(x, y|∆x,∆y) is estimated in two dimensions from a bilinear

mixture of the four nearest neighbors of p(x, y). The ∆x and ∆y provide the abso-

lute measures of the mis-registration, which can be positive or negative, and include

both full pixel and fractional pixel shifts. However, if the cost function is limited to

fractional mis-registration and adjusted for each quadrant around the pixels then α

= |∆x| and β = |∆y|, thus the estimate is given by

p̂(x, y;Q|∆x,∆y) = (1− α)(1− β)pQ
00 + α(1− β)pQ

10 + (1− α)βpQ
01 + αβpQ

11.(17)

where pQ
00,p

Q
10,p

Q
01, and pQ

11 are the bilinear mixtures using the restricted form for

quadrant Q (Table 3) around a center pixel. Note in Table 3 that the location of the

four pixels mixed in the bilinear interpolation are merely changed to maintain α and

β between zero and one.

Table 3. Definition of the bilinear mixture spectra in each of the four quadrants.

Quadrant II (Q=II) Quadrant I (Q=I)
p00 = Ar(x, y) + b p00 = Ar(x, y) + b
p10 = Ar(x− 1, y) + b p10 = Ar(x+ 1, y) + b
p01 = Ar(x, y + 1) + b p01 = Ar(x, y + 1) + b
p11 = Ar(x− 1, y + 1) + b p11 = Ar(x+ 1, y + 1) + b

Quadrant III (Q=III) Quadrant IV (Q=IV)
p00 = Ar(x, y) + b p00 = Ar(x, y) + b
p10 = Ar(x− 1, y) + b p10 = Ar(x+ 1, y) + b
p01 = Ar(x, y − 1) + b p01 = Ar(x, y − 1) + b
p11 = Ar(x− 1, y − 1) + b p11 = Ar(x+ 1, y − 1) + b

Defining q(x, y; ∆x,∆y) as the function within the braces minimized in Eq. (16),

q(x, y; ∆x,∆y) = [t(x, y)− p̂(x, y|∆x,∆y)]TC−1
n [t(x, y)− p̂(x, y|∆x,∆y)]

+
∆x2

σ2
x

+
∆y2

σ2
y

, (18)

the test statistic is found by minimizing q(x, y;α, β) over each quadrant Q=1...4
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independently subject to the constraints, 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

Inserting Eq. (17) into Eq. (18), then multiplying and collecting terms, the cost

function is rewritten as

q(x, y;α, β,Q) = aQα2β2 + bQα2β + cQαβ2 + dQαβ + eQα2

+fQβ2 + gQα + hQβ + kQ, (19)

where Q again denotes the quadrant (note that the f above is a coefficient and not a

PDF) and the coefficients of the cost function are data-dependent defined as

aQ = [pQ
01 + pQ

10 − pQ
00 − pQ

11]
T
C−1

n [pQ
01 + pQ

10 − pQ
00 − pQ

11]

bQ = −2[pQ
10 − pQ

00]
T
C−1

n [pQ
01 + pQ

10 − pQ
00 − pQ

11]

cQ = −2[pQ
01 − pQ

00]
T
C−1

n [pQ
01 + pQ

10 − pQ
00 − pQ

11]

dQ = 2[t(x, y)− pQ
00]

T
C−1

n [pQ
01 + pQ

10 − pQ
00 − pQ

11] + 2[pQ
10 − pQ

00]
T
C−1

n [pQ
01 − pQ

00]

eQ = [pQ
10 − pQ

00]
T
C−1

n [pQ
10 − pQ

00] +
1

σ2
x

fQ = [pQ
01 − pQ

00]
T
C−1

n [pQ
01 − pQ

00] +
1

σ2
x

gQ = −2[t(x, y)− pQ
00]

T
C−1

n [pQ
10 − pQ

00]

hQ = −2[t(x, y)− pQ
00]

T
C−1

n [pQ
01 − pQ

00]

kQ = [t(x, y)− pQ
00]

T
C−1

n [t(x, y)− pQ
00]

Since Eq. (19) is a fourth order polynomial, numerical methods are required to

perform the constrained minimization in each quadrant. Such methods depend on

computing the gradient vector and Hessian matrix, defined as (dropping the quadrant

44



index Q for notational ease)

∇q =

 ∂q
∂α

∂q
∂β

, (20)

H =

 ∂2q
∂α2

∂2q
∂βα

∂2q
∂αβ

∂2q
∂β2

. (21)

The first order partial derivatives are defined as

∂q

∂α
= 2aαβ2 + 2bαβ + cβ2 + dβ + 2eα + g ,

∂q

∂β
= 2aα2β + bα2 + 2cαβ + dα + 2fβ + h. (22)

The second order partial derivatives are defined as

∂2q

∂α2
= 2aβ2 + 2bβ + 2e,

∂2q

∂β2
= 2aα2 + 2cα + 2f, (23)

∂2q

∂αβ
= 4aαβ + 2bα + 2cβ + d,

∂2q

∂βα
= 4aαβ + 2bα + 2cβ + d.

The minimization problem requires a suitable optimization algorithm to solve but

the convergence rate can be slow; hence in the next section an analytical solution is

derived to support an inexpensive computational approximation.
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3.1.2 Derivation of a quadratic approximation to the GLRT test statis-

tic

A second order Taylor series expansion of the nonlinear cost function q(x, y;α, β)

can be used to support an analytical minimization and closed-form test statistic that

should support a more computationally efficient change detector. For each of the four

quadrants, first find the unconstrained minimum based on a quadratic approxima-

tion about the center of the quadrant (approximated by assuming the center pixel),

α = β = 1
2
. If this unconstrained minimum, designated as (α∗, β∗), falls within the

constraint boundaries (0 < α∗ < 1 and 0 < β∗ < 1), it is accepted as the constrained

minimum. Otherwise, the minimum among each of the four boundaries of the quad-

rant is determined, and the smallest value of the four is accepted as the constrained

minimum. No approximation is required along these quadrant boundaries as the cost

function is quadratic for a fixed α or β.

The two-dimensional function q(x, y;α, β) can be expanded about a point (α
′
, β

′
)

into a second order Taylor series as

q(x, y, α
′
, β

′
) = q(x, y, α

′
, β

′
) +

∂q

∂α


α′ ,β′

1

1!
(α− α

′
) +

∂q

∂β


α′ ,β′

1

1!
(β − β

′
)

+
∂2q

∂α2


α′ ,β′

1

2!
(α− α

′
)2 +

∂2q

∂β2


α′ ,β′

1

2!
(β − β

′
)2

+
∂2q

∂α∂β


α′ ,β′

2

2!
(α− α

′
)(β − β

′
) + . . . (24)

(25)

Taking the derivatives with α
′
= β

′
= 1

2
and keeping only the terms explicitly shown
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in Eq. (25), the quadratic approximation is

q(x, y;α
′
, β

′
) ≈


a

16
+

b+ c

8
+

d+ e+ f

4
+

g + h

2
+ k



+


a+ c

4
+

b+ d

2
+ e+ g


α− 1

2


+


a+ b

4
+

c+ d

2
+ f + h


β − 1

2



+


a

4
+

b

2
+ e


α− 1

2

2

+


a

4
+

c

2
+ f


β − 1

2

2

+ [a+ b+ c+ d]


α− 1

2


β − 1

2


(26)

where the variables a, b, c, d, e, f, g, h, k are defined in Section 3.2.1. Setting the deriva-

tives of this quadratic approximation with respect to both α and β to zero, the

unconstrained minimum is located at α∗ and β∗ per Eq. (27) and Eq. (28).

α∗= (8d+8c+8b+8a)h+(−16f−8c−4a)g+(4c+8b+8a)f+(−4c−2b−4a)d−2c2+(−2b−3a)c−2b2−4ab−2a2

(32e+16b+8a)f+(16c+8a)e−8d2+(−16c−16b−16a)d−8c2+(−8b−12a)c−8b2−12ab−6a2

(27)

β∗=− (16e+8b+4a)h+(−8d−8c−8b−8a)g+(−8c−4b−8a)e+(2c+4b+4a)d+2c2+(2b+4a)c+2b2+3ab+2a2

(32e+16b+8a)f+(16c+8a)e−8d2+(−16c−16b−16a)d−8c2+(−8b−12a)c−8b2−12ab−6a2

(28)

The minima along the four boundaries are computed directly per Eq. (23). For

(α0, 0):

∂q

∂α


(α0,0)

= 0 → α0 = − g

2e
(29)

For (0, β0):

∂q

∂α


(0,β0)

= 0 → β0 = − h

2f
(30)
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For (α1, 1):

∂q

∂α


(α1,1)

= 0 → α1 = − (c+ d+ g)

2(a+ b+ e)
(31)

For (1, β1):

∂q

∂α


(1,β1)

= 0 → β1 = − (b+ d+ h)

2(a+ c+ f)
(32)

The minimum test statistic for a given quadrant Q = 1 . . . 4 is then given by

dQ(x, y) =


q(x, y;α∗, β∗, Q) 0 ≤ α∗ ≤ 1 and 0 ≤ β∗ ≤ 1

min {q(x, y;α0, 0, Q), q(x, y; 0, β0, Q), q(x, y;α1, 1, Q), q(x, y; 1, β1, Q)} otherwise
(33)

The test statistic d( · ) is then the overall minimum over the four quadrants:

d(x, y) = min d(x, y;Q) for Q = 1 . . . 4.

3.1.3 Comparison with local co-registration adjustment

The foundation for both the LCRA and the GLRT quadratic approximation is

based on an anomalous change detector. The LCRA performs an interpolation of

the test statistic, which becomes quadratic. The GLRT results in a fourth-order

(quartic) test statistic that is approximated as a quadratic using a second order

Taylor series expansion. Both algorithms seek to improve detection performance

for mis-registered data. Unlike LCRA (Section 2.4.2.3), the GLRT-based approach

developed in this dissertation incorporates a prior probability density function for the

residual mis-registration, which might be critical in inhibiting the local optimization

from finding minima that are improbable relative to the statistics of the actual mis-

registration between images. The GLRT further allows one to incorporate additional

prior information regarding the image mis-registration statistics, as might be available

to compensate for other image acquisition or image preprocessing errors. The GLRT
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formulation results in a closed form solution for the test statistic that is minimized

relative to the unknown local shift parameters. One major downfall of LCRA from the

perspective of this research is that it does not provide a basis to extend it to address

the parallax problem. The GLRT approach provides the generality to incorporate a

priori information about the expected direction of parallax errors.

3.2 Accounting for image parallax

To account for parallax, there is first a need to explicitly extend the method to

handle multiple pixel shifts. In this case, let

∆x = m̃+ α,

∆y = ñ+ β,

where (m̃, ñ) are whole pixel shifts and 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. As such, the

Quadrant I algorithm is used in all cases (see Section 3.1.1) with the addition of the

(m̃, ñ) pixel shift. That is, the sub-pixel part of (∆x,∆y) is always assumed to be in

the positive x and y direction from the full-pixel (m̃, ñ) part. Following Eq. (10), the

prediction then becomes

p̂(x, y; |ñ, m̃, α, β) = (1− α)(1− β)p00 + α(1− β)p10 + (1− α)βp01 + αβp11, (34)
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where, per Table 3

p00(x, y, m̃, ñ) =Ar(x+ m̃, y + ñ) + b,

p10(x, y, m̃, ñ) =Ar(x+ m̃+ 1, y + ñ) + b,

p01(x, y, m̃, ñ) =Ar(x+ m̃, y + ñ+ 1) + b,

p11(x, y, m̃, ñ) =Ar(x+ m̃+ 1, y + ñ+ 1) + b.

Note that m̃ and ñ can be positive or negative.

Let φ be the direction of the observed parallax, σp the RMS parallax error, and

σm the RMS residual mis-registration, both measured in pixels. The expected RMS

parallax error can be estimated by the change in viewing geometry and the 3-D scene

structure. This is shown in Fig. 15 where d̃r is the occlusion from incidence angle

θr and d̃t is the occlusion from incidence angle θt. Thus d̃t − d̃r can be estimated

as the parallax error, σp, due to the height, h, of the building structure. The mis-

Figure 15. Image depicting geometry of acquiring a test and reference image.

registration is assumed to be direction-independent such that σm = σx = σy. This
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assumption is made for two reasons. First, a priori estimates of the misregistration

parameters σx and σy are unavailable and the values are difficult to determine without

extensive studies. Second, there is convenience in making the mathematics cleaner

given the assumption. In the principal point coordinates (∆ξ,∆η) where ∆ξ is along

the parallax direction and ∆η is orthogonal to it, the prior PDF for the local mis-

registration is

f∆ξ,∆η(∆ξ,∆η) =
1

(2π)

1

σm


σ2
m + σ2

p

e
− ∆η2

2(σ2
m+σ2

p) e
− ∆ξ2

2(σ2
m) . (35)

In Fig. 16(left), the ∆x and ∆y axes represents the zero parallax case which is

rotated about the origin through an acute angle φ resulting in the ∆ξ and ∆η axes

corresponding to the direction of parallax (ξ) and the orthogonal direction (η). The

angle φ is the direction of parallax relative to the x-axis. Thus, a given point p has

coordinates (∆x,∆y) in the image coordinate system and (∆ξ,∆η) in the parallax-

oriented coordinate system. In Fig. 16(right), the line from the origin to the the

point p has magnitude r and angle θ in the (∆ξ, ∆η) coordinate system. Using this

observation, the relationship between ∆ξ and ∆η to ∆x and ∆y (as illustrated in

Fig. 16(right)) is given by

∆ξ = r cos θ ∆η = r sin θ,

∆x = r cos(φ+ θ) ∆y = r sin(φ+ θ).

Using the addition formula for the cosine and sine functions, ∆x and ∆y are expressed
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Figure 16. The relationship between coordinates as they describe the same point, p in
the plane. (left) The ∆x and ∆y axes have been rotated about the origin through an
angle φ (the parallax direction angle) to produce the ∆ξ and ∆η axes. (right) ∆ξ and
∆η are related to ∆x and ∆y through the blue line from the origin to point P .

in terms of ∆ξ and ∆η as

∆x = r cos(φ+ θ) = r(cosφ cos θ − sinφ sin θ),

∆x = (r cos θ) cosφ− (r sin θ) sinφ,

∆x = ∆ξ cosφ−∆η sinφ. (36)

and

∆y = r sin(φ+ θ) = r(sinφ cos θ + cosφ sin θ),

∆y = (r cos θ) sinφ− (r sin θ) cosφ,

∆y = ∆ξ sinφ+∆η cosφ. (37)

Solving for ∆ξ and ∆η in Eq. (36) and Eq. (37) yields

∆ξ = ∆x cosφ+∆y sinφ, (38)

∆η = −∆x sinφ+∆y cosφ. (39)

After expressing the new coordinates from axis rotation, an evolution of the normal
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prior PDF is formulated to include an expected parallax orientation (φ) and RMS

parallax error (σp). Thus, substituting Eq. (38) and Eq. (39) into Eq. (35) yields

f∆x,∆y(∆x,∆y) =
1

(2π)

1

σm


σ2
m + σ2

p

e
− (∆x cosφ+∆y sinφ)2

2(σ2
m+σ2

p) e
− (−∆x sinφ+∆y cosφ)2

2(σ2
m) . (40)

The original cost function in Eq. (18) then becomes

q(m̃, ñ, α, β) = [t(x, y)− p(x, y|∆x,∆y)]TC−1
n [t(x, y)− p(x, y|∆x,∆y)]

+ (∆x cosφ+∆y sinφ)2

(σ2
m+σ2

p)
+ (−∆x sinφ+∆y cosφ)2

σ2
m

(41)

For each (m̃, ñ) the polynomial is of the same form as before but the penalty terms

are different. They are found by expanding two quadratic equations

(∆x cosφ+∆y sinφ)2, (42)

(−∆x sinφ+∆y cosφ)2. (43)
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The coefficients used in the cost function described in Eq. (19) now become

a = [p01 + p10 − p00 − p11]
TC−1

n [p01 + p10 − p00 − p11]

b = −2[p10 − p00]
TC−1

n [p01 + p10 − p00 − p11]

c = −2[p01 − p00]
TC−1

n [p01 + p10 − p00 − p11]

d = 2[t(x, y)− p00]
TC−1

n [p01 + p10 − p00 − p11] + 2[p10 − p00]
TC−1

n [p01 − p00]

−
σ2
p

σ2
m

2 cosφ sinφ

σ2
m + σ2

p

e = [p10 − p00]
TC−1

n [p10 − p00] +
σ2
m + σ2

psin
2φ

σ2
m(σ

2
m + σ2

p)

f = [p01 − p00]
TC−1

n [p01 − p00] +
σ2
m + σ2

pcos
2φ

σ2
m(σ

2
m + σ2

p)

g = −2[t(x, y)− p00]
TC−1

n [p10 − p00]

+
2 cosφ(m̃ cosφ+ ñ sinφ)

σ2
m + σ2

p

+
2 sinφ(m̃ sinφ− ñ cosφ)

σ2
m

h = −2[t(x, y)− p00]
TC−1

n [p01 − p00]

+
2 sinφ(m̃ cosφ+ ñ sinφ)

σ2
m + σ2

p

− 2 cosφ(m̃ sinφ− ñ cosφ)

σ2
m

k = [t(x, y)− p00]
TC−1

n [t(x, y)− p00] +
(m̃ cosφ+ ñ sinφ)2

σ2
m + σ2

p

+
(m̃ sinφ− ñ cosφ)2

σ2
m

Calculating the parallax direction through stereo correspondence was described

previously in Section 2.5. The stereo correspondence method utilized in this work is

based on matching SIFT descriptors. The SIFT descriptors are computed and com-

pared using a similarity measure to determine correspondence points. The similarity

is defined as the cosine of the angle between SIFT vectors in the reference image and

test image as

sim(pr,pt) =
pr ·pt

||pr|| ||pt||
(44)

where pr and pt are SIFT descriptor vectors from the reference and test images, re-

spectively, and || · || denotes the Euclidean norm. Matching descriptor points between
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the reference and test images is accomplished by computing the similarity measure

between all feature pairs where the two feature pairs are declared a match when their

similarity is within a threshold. For a set of correspondence points, the maximum

is the most likely shift for parallax. This eliminates small shifts likely from slight

mis-registration. The parallax direction is computed in terms of the coordinate shift,

expressed in pixels, by selecting the correspondence points with the largest Euclidean

distance between index values,

k = argmax
i

(xt,i − xr,i)
2 + (yt,i − yr,i)

2 , (45)

where i is the pair of correspondence points under consideration, (xr,i, yr,i) and (xt,i, yt,i)

are the indices of correspondence point i in the reference and test images respectively,

and k is the reference and test correspondence point used to determine the parallax

angle. Next, the parallax direction angle (φ) (shown in Fig. 17) for the given corre-

Figure 17. Calculating the parallax direction angle, φ, from the calculated correspon-
dence point shift.

spondence point is calculated as

φ = atan


yt,k − yr,k
xt,k − xr,k


. (46)
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If the denominator is zero then φ = 90◦.

The correspondence points allow a parallax direction angle estimate, φ, then to

be used in Eq. (41) for computation of the test statistic.

3.3 Summary

This chapter defined two algorithms used to address the problems of image mis-

registration and image parallax as they pertain to the CD problem. The mis-registration

algorithm incorporates a spatial mis-registration model into a GLRT-based change

detector leading to a fourth order polynomial test statistic. A second order Taylor

series expansion of the nonlinear cost function is then used to derive a closed-form

test statistic to support a more computationally efficient change detector. The second

algorithm leveraged the inherent relationship between the reference and test image

views and pixel correspondence matching to perform parallax mitigation. This re-

quires a search for correspondence points in order to calculate the parallax angle, φ,

to determine if in the pixel-level change detector, a true change pixel exists even along

the parallax direction.

Chapter IV describes the test data used in algorithm analysis. Algorithm perfor-

mance of both proposed algorithms are compared to existing anomalous CD schemes.
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IV. Experimentation and Results

4.1 Overview

The previous chapters presented necessary background material and derived novel

hyperspectral change detection (HSCD) algorithms. In this chapter, hyperspectral

data used to detail the algorithms are presented and described. The generalized

likelihood ratio test (GLRT) mis-registration compensation algorithm presented in

Chapter III is compared with current state-of-the-art anomalous change detection

(CD) algorithms, namely chronochrome (CC) and covariance equalization (CE), as

well as the local co-registration adjustment (LCRA). The GLRT-based parallax-

compensation algorithm is compared to CC, and parameter sensitivity is explored

for both GLRT-based algorithms. All of the results presented in this chapter were

developed and applied in the MATLAB R⃝ software environment.

4.2 Data description

There are two data sets used to evaluate the mis-regristration algorithm, the Air

Force Research Lab (AFRL) tower data and the Civil Air Patrol (CAP) Airborne

Real-time Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) [76] Mojave

data sets. In particular, a simulated change to the CAP ARCHER [76] Mojave data

set is used to compare mis-registration compensating change detector results with

LCRA. An additional data set is presented and is used for evaluating the parallax

compensation algorithm, a synthetic data set generated by the Digital Imaging and

Remote Sensing Image Generation (DIRSIG) system [77].
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4.2.1 Data to evaluate mis-registration-compensating change detec-

tion algorithm

4.2.1.1 Tower data

The tower data shown in Fig. 18, used for testing the proposed detector, was

collected in a controlled manner from a tower using a visible to near infrared (VNIR)

hyperspectral imaging spectrometer mounted on a pan and tilt assembly. The spectral

range of the imager is 0.46− 0.9µm and the spatial resolution is approximately 4 cm.

The tower data was collected at Wright Patterson Air Force Base, Ohio. While the

data collection effort extended from August 2005 through May 2006, this particular

pair was collected on October 14, 2005 near solar noon [78]. Less than one half

hour passes between collecting the test and reference image pair thereby limiting

illumination and vegetation changes between images. In doing so, any degradation

in performance that may occur can be attributed mostly to prediction error due to

artificially introduced mis-registration rather than errors introduced by shadowing or

vegetation changes [79]. The top two images in Fig. 18 are a color composite of

the data. The scene is composed of mostly grass and trees with coated aluminum

panels placed along the treeline. One change of interest is identified in the scene,

corresponding to a small green tarp bundle added to the test image. The challenge

for the CD algorithm is to detect the small change in the presence of mis-registration.

A pixel-level truth map for the spatial pixel dimensions (126x126) tower data is

extracted manually based on the CC test statistic to evaluate the results and is

displayed in Fig. 18 (bottom). The truth image represents pixels as black (0) for

no change and white (1) for true change. The change target in the truth mask is

a rectangular grid of 3x5 pixels with a one pixel ignore mask along the outer edge

of the change target. An ignore mask identifies pixels around the periphery of the

change target that are ignored during scoring to keep them from biasing the results
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because the ground truth for these pixels is uncertain. The background consists of

15,841 pixels.

Figure 18. Change pair tower data set used for mis-registration analysis (top). These
false color composites are produced from the hyperspectral data cubes by selecting
respective red, green and blue bands. Binary target truth mask for the tower data set
(bottom).

To test the proposed algorithms, the test image is artificially mis-registered by

translating the original high resolution data then mean filtering to simulate fractional

pixel shifts as shown in Fig. 19. The test data is shifted one pixel in both the positive

x and negative y direction with respect to the reference spatial scene to simulate mis-

registration. A sub-pixel mis-registration was introduced by resampling both images

(reference and test) with a 2x2 pixel mean filter to create the sub-pixel mis-registration

shift. In order to eliminate edge artifacts, the images are cropped to ensure the same

number of samples is used to estimate test statistics. Shifting integer pixel amounts

for the original high resolution imagery and then synthetically reducing resolution by
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averaging full pixel blocks avoids potential spectral interpolation artifacts.

Figure 19. An example of the simulated mis-registration process. The images on
the left represent high resolution imagery. The bottom-left image is shifted prior to
performing block averaging. The images on the right represent the new images at a
coarser spatial resolution where the bottom image also reflects a simulated 1/2 pixel
shift in the positive x and negative y directions.

4.2.1.2 Mojave data

CAP ARCHER [76] hyperspectral images were captured at the collection con-

ducted at the National Test Pilot School in Mojave, California. The objective of the

collection was to demonstrate the operational utility and baseline the performance

of a VNIR hyperspectral sensor for a search and rescue mission. The images with a

spatial pixel dimension size of 238x208 are displayed in Fig. 20. Again, a synthetic

mis-registration is introduced in order to perform an analysis on the mis-registration

compensation algorithm. The same approach for synthetically mis-registering the

data is used for this change pair as was described for the tower data. Specific spatial

portions of the synthetically mis-registered data were swapped to simulated change
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occurring between the reference and test images. Fig. 20 shows a synthetic change

for testing the algorithms that is created by interchanging a square 9x9 block of pix-

els from one spatial location in the image to another (see red circled image chips in

Fig. 20 right). This provides known true change pixels for algorithm evaluation which

can be seen in the truth mask (bottom) where target pixels are represented as white.

Figure 20. Top images show CAP ARCHER data set with synthetic change. The
swapped pixels are shown in red circles on the right image. Bottom image shows the
target truth mask.

4.2.2 Data to evaluate parallax-compensating change detection algo-

rithm

4.2.2.1 Synthetic DIRSIG data

The parallax GLRT algorithm is tested on synthetic imagery generated using the

DIRSIG system [77]. DIRSIG is a software suite started in the late 1980s at the
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Rochester Institute of Technology (RIT) in Rochester, NY. The program predicts

imager radiance values using a physics model and ray tracing. The physics model

takes into account thermal characteristics, atmospheric properties and distortion, HS

imager features and noise, the sensor platform, and the surface composition [77].

The DIRSIG modeler uses actual end-member spectra for in-scene materials, and

calculates the spectral response as seen by the sensor for the specific environmental

conditions. The software is used by civilian, academic, and defense agencies for

various scientific and engineering studies [2, 29, 80–83]. The use of synthetic imagery

provides the advantage of having complete truth information and exact positions of

the change targets within the scene.

An artificial scene that mimics an Airborne Visible InfraRed Imaging Spectrom-

eter (AVIRIS) sensor with 224 spectral channels ranging from approximately

400 - 2500 nm is constructed to represent an urban scene with elevated structures.

The spatial resolution is approximately 0.3m and the image spatial size is 311x259.

The synthetic scene was constructed to introduce image parallax. The rendered scenes

were simulated to collect at 10,000 ft with two different viewing angles: 10◦ and 20◦.

The reference and test images are formed with a vehicle departure change occurring

between instances (red circles, top of Fig. 21).

The parallax direction is estimated by manually evaluating the building edges.

The different off-nadir view angles between the reference and test images results in

parallax and this is the manually estimated parallax direction from “building lean”

where the sides of the buildings become more visible with an increase in off-nadir

viewing angle. The manually estimated parallax direction average is approximately

4 pixels in the upward direction (90◦, see Fig. 22).

In addition, the synthetic data allows a controlled environment for knowable

ground truth. DIRSIG supports per-pixel truth maps that provide important im-
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age formation parameters [77]. The true parallax in this imagery can be calculated

from the per-pixel truth maps provided by DIRSIG. The displacement or true pixel

shift (tps), in pixels, can be determined by knowing the collection angle, the height

of the buildings, and the ground sampling distance (GSD) (Fig. 15). Therefore, a

truth mask is developed from the pixel truth information furnished by DIRSIG by

calculating Eq. (47) at every pixel

tps =
h tan θr
GSD

− h tan θt
GSD

, (47)

where h is the building height and θr and θt are the reference and test viewing angles.

The parallax truth mask is shown in Fig. 23, where the colorbar on the right

reflects the true value of the local shift. There are a total of 1,562 true parallax

pixels. An ignore mask was created for pixels above the ground plane but not on

the edge of a structure and are the gray pixels in Fig. 23 . The buildings where

the parallax does not occur are considered to be ignore pixels because although the

building reveals a shift in the parallax truth map, the algorithm sees ‘no change’ as it

is still of the same material. The ignore pixels account for 8,807 pixels out of the total

80,549 pixels in the image. The background pixels (ground plane pixels) experience

no height difference thus is zero and account for 70,180 pixels.
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Figure 21. Synthetic reference image of an urban scene with elevated structures and a
stationary red vehicle (red circle) taken at a 10◦ viewing angle is displayed upper left.
On the upper right is the synthetic test image, captured from an alternate angle (20◦

viewing angle) with the vehicle no longer in scene.

64



Figure 22. In-scene building edge from the synthetic reference image (collected at a
10◦ viewing angle) used to manually estimate the parallax direction between images
(left images). Synthetic test image (right images) of the same in-scene building but
captured from an alternate viewing angle of 20◦ displaying an increase in visibility of
the building side with an appraised parallax shift of 4 pixels in the upward direction
(90◦). Labels on both image chips are pixel values.

4.3 Algorithm implementation details

4.3.1 Mis-registration algorithm implementation

Both the CC and CE anomalous change detectors rely on a linear prediction of

the reference image using the statistics from the test image. Assuming this linear

relationship exists, a gain matrix (Â) and offset vector (b̂) are estimated and applied

to the reference image to match conditions of the test image. Upon applying the

65



Figure 23. Depiction of parallax truth mask. The parallax effects reside along the
building edges. The gray pixels reflect ignore masks so that top pixels of elevated
structures are ignored during analysis.

predictor, the difference image between the prediction and test images is obtained,

followed by an anomaly detector to determine if a change has occurred. This is the

typical process for anomalous CD and is shown in the dotted box in Fig. 24. The

remaining blocks in Fig. 24 show the CD process based on the derived GLRT in

Section 3.1 where the minimization block corresponds to minimizing the objective

function (described in Eq. (19) through a numerical optimization technique or the

quadratic approximation in Eq. (26)). This minimization is performed for each of the

four quadrants (refer to Table 3) where the minimum over the four quadrants is the

minimized test statistic. In Fig. 24, Cn is the covariance matrix of the difference image

based on the CC predictor and σx, σy are user-specified parameters characterizing the

root mean squared (RMS) mis-registration.
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The minimization problem defined in this dissertation requires a suitable opti-

mization algorithm to solve. In general, there are two categories of approach: deriva-

tive and non derivative. Derivative approaches are based on either the gradient or

Hessian (first and second derivatives respectively). Gradient-based approaches, such

as steepest/gradient descent (a greedy method), are popular due to ease of prob-

lem formulation but tend to converge slowly since movement towards the (possi-

bly local) minimum is linear. Convergence rate is improved through various algo-

rithmic enhancements, such as the addition of a momentum term in back propa-

gation neural networks [84]. Hessian-based approaches generally follow Newton’s

method (see e.g., [85]), which has a quadratic convergence rate and hence converges

much quicker than gradient-based approaches. Variants of Newton’s method (e.g.,

Broyden-Fletcher-Goldfarb-Shanno [86] and Gauss-Newton [87]) are used to overcome

certain limitations such as the requirement of the Hessian being positive definite and

non-singular. The nature of the problem may require one to seek non derivative-

based approaches. Such search algorithms include the class of genetic algorithms and

stochastic algorithms (e.g., Simulated Annealing [88]) to name a few. The search

literature is vast and myriad good options exist, each with its merits and demerits.

A constrained variant [89] of the Nelder-Mead simplex method [90] (a direct search

approach) that transforms the constraints and uses the standard unconstrained form

for the minimization task, is used in this dissertation.

For a function with n = 2 variables, the Nelder-Mead method creates a simplex

of n + 1 points (a triangle for the spatial problems explored in this research), and

performs a search that compares function values at each of the vertices. The vertex

where the function takes its largest value is rejected and replaced with a new vertex. A

new triangle is formed and the search is continued. The process generates a sequence

of triangles, for which the function values at the vertices decrease and the size of the
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triangles is reduced locating the coordinates of the minimum point [91].

4.3.2 Parallax-compensation algorithm implementation

The parallax-compensation flow diagram in Fig. 25 is similar to that of the mis-

registration flow diagram in Fig. 24 in Section 4.3.1 where the anomalous CD process

remains unchanged but the minimization process is noticeably different. In Fig. 25

the minimization block minimizes the objective function with the parallax-derived

coefficients described in Section 3.2 to include integer pixels shifts.

This minimization is performed for multiple (m̃, ñ) values where (m̃, ñ) is estab-

lished based on φ. The search region was set manually for this experiment based on

the fact that φ is in the vertical direction. Thus, m̃ is small and restricted to (−1, 0)

while ñ is bounded by an assumed σp = 4 pixels (−2σp ≤ ñ ≤ 2σp).

Note that the search region can very easily be established over a square search

region bounded by −2σp ≤ (m̃, ñ) ≤ 2σp (illustrated in Fig. 26), however the prior

PDF allows the cost function with lower cost in the φ direction. Therefore, choosing

the search region according to the φ estimate would be appropriate (see Fig. 26

illustration for ‘low-cost’ and ‘high-cost’ search direction).
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Figure 26. Parallax-compensation algorithm search space defined for parameters (m̃, ñ).

4.4 Scoring methodology

Pixel-level scoring (described in Section 2.4.5.2) is used to generate the ROC

curves describing pixel-level success. For a CD system, the ROC analysis consists of

measuring the binary response of the detection system by calculating the probability

of detection as

PD =
D

T
, (48)

where D are properly matched pixels and T are true change target pixels and the

probability of false alarm with

PFA =
M −D

N − T
(49)

where N is the total number of pixels in the image and M is the declared changed pix-

els at a particular threshold. The (PFA, PD) pair is one point on the ROC curve. This

process is repeated for multiple thresholds where M and D will vary with different

thresholds.
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At each decision threshold, PD and PFA are calculated by comparing a binary

detection image with a ground-truth mask. In practice, the simplest way to compare

the detection image and the truth mask is to make a pixel-level comparison exactly

fitting the definitions of PD and PFA. The manually derived ground-truth mask can be

difficult to define and skew performance if not accurate. In particular, edge pixels may

be either uncertain or contain a mixture of target and background, especially if mis-

registration errors are present. Thus, after deriving the ground-truth pixels based on

the baseline CC test statistic, the change target(s) are surrounded with non-penalizing

pixels around the change target borders (the ignore mask). The performance is further

examined when the ignore mask extends into the target mask to reduce the effect of

uncertain edge pixels.

4.5 Experiments and results

Performance analysis occurs in two ways in this dissertation. First is a visual

analysis of the detection image. The visual analysis, when combined with the truth

mask and knowledge of the CD scenario, helps provide insights into what the change

detector is doing on the given set of imagery. It further provides visual confirmation

that the algorithms are performing in a manner that makes logical sense. Second

is a quantitative analysis by way of the ROC curve and the AUC derived from the

ROC curve. The ROC curve is the standard method of performance assessment in

the detection literature and is used in this dissertation. In the case there are non-

dominating ROC curves, the AUC provides another measure to comapre performance.

An exception is for the DIRSIG imagery, where the Signal-to-Clutter Ratio (SCR) is

used to show how the clutter from the edge artifacts is reduced by increasing σp.

Other performance analysis approaches exist and include histogram-based meth-

ods and simply plotting intensity versus a 1-D pixel index. A common histogram-
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based method uses a histogram of the change image to determine if modes exist within

the detection image that can be post-processed to identify change versus no change.

The latter approach is not as common and may be difficult to interpret. These are

not pursued in this dissertation.

4.5.1 Mis-registration algorithm

This section describes the results from the mis-registration GLRT algorithm de-

rived in Section 3.1.1 almost exclusively on the tower data before considering the

Mojave data. First, using the CC predictor, the nonlinear optimization results are

analyzed to provide evidence that the algorithm and its quadratic approximation are

functioning as derived. Second, using the CC predictor, the quadratic approximation

results are compared to the nonlinear optimization approach to demonstrate the ef-

ficacy of the estimate. Third, using the CE predictor, performance of the quadratic

approximation is compared to the CC results. Fourth, the quadratic approxima-

tion using the CC predictor is compared with LCRA [53]. Finally, model parameter

performance impact is explored using the quadratic approximation.

4.5.1.1 Nonlinear optimization

An inspection of the unthresholded detection image, using the CC predictor,

for the mis-registration GLRT algorithm using nonlinear optimization is shown in

Fig. 27. After experimenting, the RMS mis-registration parameters were chosen as

σx = σy = 0.05 for computing the test statistic image results for the tower data set.

The arrows indicate the mis-registration artifacts; the test statistic is visibly lower in

Quadrant II which is expected because the mis-registration shift is in that direction.

A common scale is used where black and white pixels in the change mask correspond

to a test statistic dmin{Q1,Q2,Q3,Q4} (x, y) = 56.9 and dmax{Q1,Q2,Q3,Q4} (x, y) = 745.5,
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respectively. The detection image can take values in the range [0,∞). Experiments

show that Quadrant II suppresses the edge effects due to the mis-registration and

is the correct direction in which the actual mis-registration shift of ∆x = 1/2 and

∆y = −1/2 occurred. Therefore, by choosing the minimum test statistic over the

four quadrants detected change caused by mis-registration is reduced.

The uncompensated CC test statistic image (bottom left), test statistic using

minimum nonlinear optimization (top), and the test statistic using the known mis-

registration (bottom right) are compared in Fig. 28. Uncompensated CC (Fig. 28

bottom left) highlights the impact of the mis-registration effect on CD. This impact

is indicated by the two bright white vertical lines on the left and right side of the panel

that result in a false declaration of change. When using the GRLT with nonlinear

optimization (Fig. 28 top), there is visual evidence that false changes caused by mis-

registration are alleviated (note the darker appearance corresponding to a lower test

statistic, indicative of being non change pixels). The test statistic using the known

mis-registration (Fig. 28 bottom right) represents the minimum of the average pixel

spectra for each of the four quadrants as input to the CC algorithm. The edges

here offer a lower test statistic and are accomplished using the known (true) mis-

registration.

ROC curves are shown in Fig. 29 and it is evident that the false alarm rate is

reduced using the proposed GLRT-based method. For similar false alarm rates, the

GLRT-based approach provides two to three times the detection performance. For

similar detection results, the GLRT-based approach provides one to two orders of

magnitude reduction in false alarms. AUC is used to compare the curves in Fig. 29

with the test statistic maps displayed in Fig. 28. A higher value indicates a better

quality test statistic map, meaning it is more capable of providing higher accuracy

change results. As is seen in Table 4, the AUC for the nonlinear optimization is
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higher than the uncompensated CC and the known mis-registration. The fact that

the nonlinear optimization approach provides better results than the GLRT using the

known mis-registration is most likely due to unaccounted for mis-registration artifacts

in the original data set.
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Figure 29. ROC curves for CC (solid line), proposed GLRT-based nonlinear optimiza-
tion (dashed line), and the known mis-registration test statistic (dotted line).

Table 4. AUC values for the ROC curves displayed in Fig. 29.

CC
Minimum
Nonlinear

Optimization

Minimum
Known Mis-
registration

AUC 0.9973 0.9980 0.9974

4.5.1.2 Quadratic approximation

The quadratic approximation to the quartic test statistic is compared to the non-

linear optimization approach in order to demonstrate the efficacy of that approxi-

mation. This is accomplished by investigating specific pixel classes: tree, top-edge

of panel, side-edge of panel, change pixel, and grass. The figures show the percent

error between the test statistic (q(x, y;α, β)) from Eq. (19) and Eq. (26) prior to

minimization.
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Fig. 30 shows the different pixel classes and their spatial location in the imagery

used to assess the efficacy of the approximation. The labels display the x− and y−

coordinates, the RGB values, and the color index for each class of pixels. Fig. 31 shows

the percent error between the nonlinear optimization and the quadratic approximation

for Quadrant II (where the nonlinear optimization results are regarded as ‘truth’). In

the figures, the x-axis and y-axis are α and β respectively, while the z-axis corresponds

to the percent error between test statistics in Eq. (19) and Eq. (26). Based on the

simulation results, tree, change pixel, and grass pixel classes, it is seen that the

minima of the quadratic approximation matches very closely to the Nelder-Mead

results using the non-closed form solution. Error increases slightly for top-edge and

significantly for side-edge pixels. The results demonstrate the efficacy of the quadratic

approximation to replace the nonlinear optimization, yielding a more computational

efficient option over the Nelder-Mead numerical optimization method. There is a

30 times improvement in computation performance of the quadratic implementation

over the Nelder-Mead nonlinear optimization results.
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Figure 30. The spatial location of investigated pixels from the image representing (top-
to-bottom) a tree, top-edge of panel, side-edge of panel, change, and grass pixel. The
labels on the image display the x− and y− coordinates, the RGB values, and the color
index for each class of pixels.
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The test statistic for the four quadrants resulting from the quadratic approxima-

tion are shown in Fig. 32 for σx = σy = 0.05. Again, Quadrant II suppresses the

mis-registration effects observed on the panel edges as seen by the lower test statistic.

Fig. 33 displays the uncompensated CC result (bottom left) in comparison to the over-

all minimum of the quadratic approximation (top) and the known mis-registration

test statistic (bottom right). The true changes in the scene are indicated with a larger

(white) test statistic while a noticeable smaller (black) test statistic is observable on

the panel edges while some change errors occur from the variation in shadow positions

as indicated by the shot noise appearance in the test statistic imagery. The ROC re-

sults for the nonlinear optimization and quadratic approximation are nearly identical

(Fig. 34). This further supports the use of the more computationally efficient closed

form solution versus the nonlinear form requiring numeric approaches to solve. The

AUC value results shown in Table 5 highlight the similants of the quadratic approxi-

mation results to the nonlinear optimization results. Additionally, both overcome the

known mis-registration which likely does not account for mis-registration artifacts in

the original data set.

Table 5. AUC values for the ROC curves displayed in Fig. 34.

Minimum
Nonlinear

Optimization

Minimum
Quadratic

Approximation

Minimum
Known Mis-
registration

AUC 0.9980 0.9981 0.9974

4.5.1.3 Mis-registration estimates

While estimating sub-pixel shifts is not the goal of this work, it is instructive to

examine the statistics of α and β estimates for similar groups of pixels (e.g., tree, top-

edge of panel, side-edge of panel, change pixel, and grass) with both the nonlinear
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Figure 32. The four quadrant test statistics produced using the quadratic approxima-
tion.

optimization and the quadratic approximation for σx = σy = 0.5.

The β̄ estimate for the top-edge pixel is approaching the actual value of 0.5 with

moderate variance. The ᾱ estimate is larger, which is expected since a shift along

the edge has little effect. Based on the known mis-registration, (ᾱ, β̄) should be (0.5,

0.5). Table 6 provides the mean estimates of α and β (indicated with an overbar as

ᾱ and β̄). The ᾱ estimate for the side-edge pixels is near the actual value of 0.5 with

moderate variance. The β̄ estimate is not close to 0.5, presumably because a vertical

shift does not introduce a large change for the side-edge pixel. The minimum test

statistic for the grass and tree pixels do not necessarily fall in the correct quadrant.

This likely occurs because the mis-registration-induced effects are small relative to

the clutter/noise level resulting from a lack of fine spatial content. Additionally, the
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Figure 33. The uncompensated CC (bottom left), minimum quadratic approximation
(top), and the known mis-registration (bottom right) test statistics visually represented.

clutter/noise level impacts the α estimate on the horizontal edge and the β estimate

on the vertical edge. The local mixing model appears to weakly depend on the mis-

registration. The algorithm works well with regard to reducing the test statistic for

edge areas that are affected by spatial mis-registration, even if it does not provide a

precise estimate of the mis-registration.

4.5.1.4 Covariance equalization predictor

The experiments are repeated using the CE predictor to assess the relative behav-

ior with mis-registration compensation. As described in Section 2.4.2.1, CE estimates

can be substituted for CC estimates. The CE and CC test statistic images are com-

pared visually with and without compensation using the quadratic approximation
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Figure 34. ROC curves for test statistics based on minimum nonlinear optimization
(dashed line) and minimum quadratic approximation (dotted line).

in Fig. 35 and Fig. 36. The value of the mis-registration-induced test statistic is

higher than the true change, illustrating the impact mis-registration has on the un-

compensated change detectors (Fig. 35). For both algorithms, the mis-registration

compensation significantly suppresses false alarms around the panel edges (Fig. 36).

Comparing the corresponding ROC curves in Fig. 37, it is evident that CC provides

better results than CE for this case both with and without compensation. Further-

Table 6. Mean estimates and variance of sub-pixel shifts for Quadrant II

Nonlinear optimization Quadratic approximation

Pixels ᾱ σ2
α β̄ σ2

β ᾱ σ2
α β̄ σ2

β

Tree 0.233 0.145 0.174 0.034 0.303 0.056 0.142 0.055
Top-Edge 0.449 0.139 0.481 0.067 0.531 0.060 0.432 0.028
Side-Edge 0.565 0.138 0.191 0.134 0.661 0.123 0.332 0.044
Change 0.426 0.267 0.543 0.167 0.667 0.240 0.833 0.164
Grass 0.302 0.092 0.112 0.014 0.175 0.103 0.109 0.011
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more, the compensation algorithm provides more significant improvement for CC

than CE. The AUC values are presented in Table 7. The AUC indicates that the

detection rate of the quadratic approximation is higher than the uncompensated CC

or CE.

Figure 35. Visual results of the uncompensated CE change detector (left) and the CC
change detector (right).

Figure 36. The minimum quadratic approximation results using the CE estimates (left)
and the minimum quadratic approximation results using the CC estimates (right).
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Figure 37. ROC curve for uncompensated CE change detector (black solid) and the
CC change detector (black dashed) and the minimum quadratic approximation using
the CE (gray solid) and CC estimates (gray dashed).

Table 7. AUC values for the ROC curves displayed in Fig. 37.

CC
Quadratic

approximation
CC

CE
Quadratic

approximation
CE

AUC 0.9972 0.9981 0.9909 0.9954

4.5.1.5 Parameter sensitivity

The GLRT test statistic in Eq. (16) is based on three model parameters: the

noise covariance matrix Cn and the RMS mis-registration parameters σx and σy. The

value of Cn is estimated from the difference image while experiment-based estimates

for σx and σy are required. To further explore parameter sensitivity, the RMS mis-

registration parameter is varied from 0 to 1, calculating the ROC curve for each
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parameter value. The baseline CC algorithm corresponds to σx = σy = 0. The

ROC curves in Fig. 38 demonstrate the performance for the quadratic approximation

algorithm (with CC prediction) using σx = σy = {0.0, 0.05, 0.1, 0.5}. The best results

are achieved with σx and σy on the order of 0.05 to 0.1. This result indicates both the

importance of including the prior distribution for the residual mis-registration and the

challenge of appropriately setting the parameter. Having no prior distribution would

correspond to large σx and σy, which would tend to poor performance as indicated in

σx = σy = 0 (CC results) in Fig. 38. In the next section, the influence of parameter

sensitivity of the image data characteristics and the target mask employed in the

scoring is explored.

Figure 38. The ROC curve compares the performance using the quadratic approxi-
mation for the tower data with varied RMS mis-registration parameters (σx and σy)
where CC (σx = σy = 0) is the solid line, σx = σy = 0.05 is the dashed line, σx = σy = 0.1
is the dotted line, and σx = σy = 0.5 is the dash-dot line.
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4.5.1.6 Extended performance investigation

In this section the Mojave data set is explored to provide additional insight on the

performance of the proposed mis-registration GLRT-based algorithm. The results

are examined against various truth masks to demonstrate the performance impact

of edge pixels. Detection results in the form of ROC curves and AUC are used to

show the performance of the proposed mis-registration GLRT-based algorithm against

LCRA. Upsampling is a pre-processing requirement for sub-pixel LCRA. In order to

provide a fair comparison between LCRA and the GLRT-based approach, images are

upsampled by two in both the x and y direction prior to running the CD routine.

The proposed mis-registration GLRT-based algorithm and LCRA algorithm are

demonstrated on both the tower data and Mojave data sets for comparison purposes.

Multiple GLRT curves are generated by varying the size of the truth pixel mask while

fixing the mis-registration parameter σx = σy = 0.5.

Fig. 40 shows ROC curves corresponding with an increasing erode of the truth

mask for the tower data set. The ROC curves include CC, σx = σy = 0.1, σx =

σy = 0.5, and LCRA. There is one true change in the tower data set and the ground

truth mask provides the spatial pixel locations to develop the ROC curve for every

threshold. The ground truth is defined at the pixel-level where the truth mask is

derived using the CC test statistic. The target truth mask is 4x4 resulting in 16

target pixels. A 3 pixel ignore mask extends the true target mask for a total size of

20x20 pixels. As such, 20x20 is the maximum extent of the truth plus ignore pixel

region. The masks vary based on the number of pixels associated with the target

centroid. The target centroid begins with a 4x4 true change pixel mask and erodes

outward by 1 pixel in the x− and y− direction toward the ignore mask edge per

ROC curve evaluation iteration. Thereby, the background pixels remain unchanged

at 66,632 pixels. The sizes of the target centroid pixels for each ROC curve is 4x4,
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6x6, 8x8, 10x10, and 12x12 (a pixel diagram is shown in Fig. 39 for reference). Thus,

the ignore mask continues to shrink as the true target centroid expands. The ignore

mask begins with an 8 pixel boundary outward from the 4x4 target pixels and shrinks

by 1 pixel until it reaches the 12x12 target with a 4 ignore pixel boundary. The ROC

curves intersect thus the AUC is considered and shown in Table 8. Although, the

LCRA tends to have a higher AUC value for this data, it must be noted that the

AUC gives equal weight to the full range of threshold values obscuring the fact that

the proposed GLRT-based algorithm performs better for lower false alarm values

specifically those truth masks that extend into the target mask to reduce effects of

uncertain edge pixels.

Figure 39. The diagram shows the target centroid surrounded by a pixel ignore mask.
As the ROC performances are evaluated at each performance iteration the truth target
size increases toward the edge of the ignore mask. The truth mask sizes of the target
centroid pixels for each ROC curve is 4x4 (red square), 6x6 (green square), 8x8 (blue
square), 10x10 (purple square), and 12x12 (orange square) for the tower data set.
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Table 8. AUC values for the ROC curves displayed in Fig. 40 (tower data).

CC
Quadratic

approximation
σx = σy = 0.1

Quadratic
approximation
σx = σy = 0.5

LCRA

AUC 1 0.99864 0.99939 0.99959 0.99956
AUC 2 0.99875 0.99949 0.99955 0.99974
AUC 3 0.99871 0.99945 0.99841 0.99964
AUC 4 0.99656 0.99607 0.98460 0.99818
AUC 5 0.98135 0.97968 0.96089 0.99137

Fig. 41 displays the ROC curves for the Mojave data set. Similar to the tower

data, the ROC curves for CC, σx = σy = 0.1, σx = σy = 0.5, and LCRA were

calculated for varying truth masks. The Mojave data contains two change targets

and were again derived using the CC test statistic. An ignore mask for both targets

extended 3 pixels past the observed true target for a total size of 24x24 pixels. Both

target truth masks varied at the same rate per evaluation. The target pixels begin

with a 2x2 square true change region before expanding outward toward the edge of

the ignore mask. The background pixels account for a total of 196,860 pixels. The

sizes of the target centroid pixels for each ROC curve calculation, starting with the

upper left plot of Fig. 41, is 2x2, 6x6, 10x10, 14x14, and 18x18. The ignore mask

starts with an 11 pixel boundary and reduces to a 3 pixel boundary for the final ROC

curve. The AUC values for the curves in Fig. 41 are provided in Table 9.
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Table 9. AUC values for the ROC curves displayed in Fig. 41 (Mojave data).

CC
Quadratic

approximation
σx = σy = 0.1

Quadratic
approximation
σx = σy = 0.5

LCRA

AUC 1 0.99256 0.99666 0.99800 0.99793
AUC 2 0.99240 0.99679 0.99816 0.99824
AUC 3 0.99307 0.99735 0.99862 0.99863
AUC 4 0.99362 0.99789 0.99916 0.99913
AUC 5 0.99279 0.99512 0.97564 0.95889

After observing the (σx, σy) parameter sensitivity with the varying truth analysis,

the change detection performance is found to vary somewhat based on user-defined

parameters for the underlying prior probability distribution for the residual misreg-

istration. While this supports the importance of including a prior distribution in

the model, it motivates further work to better understand this parameter sensitivity.

This specific experiment demonstrates that the algorithmic performance is largely

based on coverage of the truth mask. The conclusion of which algorithm has superior

performance can change depending on the truth mask used in the analysis. For the

middle truth mask, the proposed mis-registration GLRT-based approach and LCRA

are comparable.
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The (σx, σy) parameter tuning results for the propsed GLRT-based algorithm on

the interpolated data justify further exploration of the parameter and its impact

on performance. The RMS mis-registration parameter is varied from 0 to 1 for the

Mojave data set, calculating the ROC curve for each parameter value. The truth mask

in Fig. 42 (left) contains one change target as defined at the pixel-level and derived

using the CC test statistic. There is a border surrounding the truth target that is

ignored during evaluation to eliminate uncertainty along the target edges. The white

target pixels are a 6x6 square consisting of 36 pixels and the boundry pixels radiate

outward 7 pixels in each direction creating a border of 364 pixels (or a 20x20 square

region excluding the target pixels). The total number of background pixels is 66,632.

The baseline CC algorithm corresponds to σx = σy = 0. The ROC curves in Fig. 42

(right) demonstrate the performance for the quadratic approximation algorithm (with

CC prediction) using σx = σy = {0.0, 0.05, 0.1, 0.5} on the tower data. The best

results on the upsampled imagery are achieved with σx and σy are on the order of

0.5 and 0.1. In the non upsampled domain, the results correspond to 0.25 and 0.05

respectively. The results are consistent with results presented in Section 4.5.1.5, even

though the truth mask may be somewhat different. The variation in results is due to

a difference in edge pixels between the upsampled and original imagery.

In addition, the Mojave data set was used to explore the variation of performance

with the mis-registration parameters. The truth mask in Fig. 43 (left) contains two

change targets, both have ignore pixels surrounding the target edges. The left and

right changes include an 8x8 target square (64 pixels) with 8 ignore boundry pixels

(24x24=576 square region excluding the target pixels). The total number of back-

ground pixels is 196,860. The ROC curves are generated by varying the (σx, σy)

parameter and are shown in Fig. 43 (right). The best results are achieved with the

upsampled Mojave data set are on the order of 0.25 and 0.05 in the original non
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upsampled space (Section 4.5.1.5). The conclusion is the best performing parameter

range is consistent through repeated results on different imagery and varying truth

masks.

Figure 42. Parameter investigation for (σx, σy) with the tower data. The truth mask
(left) displays target pixels in white and boundry pixels in gray which are ignored during
evaluation. The ROC curve (right) compares the performance using the quadratic
approximation with varied RMS mis-registration parameters (σx, σy) where CC (σx =
σy = 0) is the solid line, σx = σy = 0.05 is the dashed line, σx = σy = 0.1 is the dotted line,
and σx = σy = 0.5 is the dash-dot line.

4.5.2 Parallax-compensation algorithm

This section discusses the results for the parallax compensation algorithm derived

in Section 3.2. The primary experimental results are promising by visual inspection

as any potential quantitative assessment would be difficult to derive with lack of truth

data. For the synthetic DIRSIG data set, the assessment is performed visually and

good change detection is obtained while minimizing parallax errors.

4.5.2.1 Synthetic DIRSIG data

This section shows that the correspondence matching pixel shift estimate from

Section 3.2 provides a good approximation of the parallax direction (denoted here as

the computed parallax direction). The results for the manually estimated parallax
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Figure 43. Parameter investigation for (σx, σy) with the Mojave data. The truth mask
(right) displays target pixels in white and boundry pixels in gray which are ignored
during evaluation. The ROC curve (left) compares the performance using the quadratic
approximation with varied RMS mis-registration parameters (σx, σy) where CC (σx =
σy = 0) is the solid line, σx = σy = 0.05 is the dashed line, σx = σy = 0.1 is the dotted line,
and σx = σy = 0.5 is the dash-dot line.

direction (90◦ as computed directly from the imagery) are shown visually in Fig. 44.

The parallax error parameter (σp) is varied while the mis-registration parameter is

held constant (σm = 0.5) while searching over (m̃, ñ) = (−1, {−8,−7...7, 8}) and

(m̃, ñ) = (0, {−8,−7...7, 8}) regions of whole pixel shifts (double in extent in the ñ

direction relative to the known maximum parallax shift). The first entry in Fig. 44 is

the baseline CC and the visual result for increasing σp follow. According to Fig. 44,

as σp progresses from low (too severe a penalty function) to high (too lax a penalty

function), best performance occurs at σp = 4.0 pixels (approximately the true paral-

lax).

Fig. 45 shows the per pixel mapping of the minimum value of q( · ) in Eq. (41)

resulting from the (m̃, ñ) search window between a fixed pixel in the reference image

to the search area in the test image for a fixed value of σp. For the ground plane where

no parallax exists, values of (m̃, ñ) should be approximately (0, 0). This observation

is shown in the visual (m̃, ñ) maps as the ground plane values are represented by

ñ = 0. For buildings that exhibit parallax, values of (m̃, ñ) should approximate the
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parallax shift (in pixels) along edges in the parallax direction. The ñ values should

correspond roughly to the truth map shown in Fig. 23. The value of σp stabilizes at

approximately σp = 4 as shown in the (m̃, ñ) mapping plots where the building edges

take on a vertical value shift of ñ according to the truth map.

Fig. 46 displays the results using the computed parallax direction attained by

Eq. (46) versus the manually estimated parallax direction. The computed parallax

angle is φ = 86.6◦ which is very close to the manually estimated parallax direction

of 90◦. The minimum selection map (Fig. 47) is now well-structured and the ñ = −4

pixels on the building edges are easily identified. Results between the manually

estimated φ and the computed value φ show significant differences in structure. This

indicates some sensitivity in the value of φ during the optimization. The difference

between the manual estimate and the computed are likely due to a slight sub-pixel

parallax shift attained during the registration process of the temporal images. The

results show there is little sensitivity to the parallax parameter (σp) and for values of

σp greater than the manually estimated parallax direction, there is no penalty paid.
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The calculated synthetic ground truth mask described in Section 4.2.2.1 provides

further insight into the performance of the algorithm. The truth parallax class pixels

mean and variance were calculated as 1.9124 and 0.7228, respectively, as defined in

the truth mask in Fig. 23. The computed parallax direction maps computed via the

correspondence algorithm shown in Fig. 47 were limited to ñ as the parallax shift is

vertical in order to compare the parallax shift in pixels to the truth parallax shift. The

visual results are displayed in Fig. 48. The first image corresponds to the calculated

parallax truth based on the heights of the buildings. The middle of the buildings

are then catergorized as ignore pixels unless the pixels are along the edges signifying

parallax pixels. The subsequent images are the visual results cooresponding to the ñ

shift as selected by the proposed parallax-compensation algorithm as σp is increased.
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Table 10 tabulates the mean and variance for each σp ranging from zero to one (for

σm = 0.5) for the ground plane pixels and the parallax pixel results in the minimum

selection map (Fig. 48). Accordingly, the ground plane pixel statistics are close to

zero which is anticipated but as σp increases so does the error. The parallax mean

statistics get closer to the actual known value as σp increases. The variance of the

parallax pixels also increases which increases the uncertainty of the mean estimates.

In addition, the ground plane mean and variance diverge from the calculated value

becoming less accurate while σp increases beyond the true parallax shift. Both cases

result in the increased clutter appearance in Fig. 48. The impact is that true change

pixels could be lost as σp grows too large.
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Table 10. Statistics of the detection statistic q( · ) for the parallax and ground plane pixels.

σp µq( · ) σ2
q( · )

0
ground 0.504565 ground 0.292905
parallax 0.880782 parallax 0.704813

1
ground 0.753677 ground 0.555484
parallax 1.405863 parallax 1.276498

2
ground 1.043424 ground 0.81114
parallax 1.629967 parallax 1.510966

3
ground 1.155527 ground 0.888017
parallax 1.686645 parallax 1.555591

4
ground 1.203219 ground 0.917929
parallax 1.715961 parallax 1.593324

5
ground 1.227652 ground 0.935127
parallax 1.725081 parallax 1.598425

6
ground 1.242345 ground 0.944134
parallax 1.72899 parallax 1.601864

7
ground 1.251017 ground 0.949046
parallax 1.731596 parallax 1.601967

8
ground 1.256184 ground 0.951562
parallax 1.736156 parallax 1.607655

9
ground 1.259919 ground 0.953887
parallax 1.738111 parallax 1.614551

10
ground 1.262952 ground 0.954663
parallax 1.741368 parallax 1.618203

Further, performance is visualized through a sequence of magnified test statistic

images (here, the magnification refers to zooming in on the building of interest vice

processing on the test statistic itself) of a few of the buildings from the CC CD with

σp = 0 to σp = 10. For reference, Fig. 49 shows the buildings in the scene designated

with a numeric label. The results for building label 3 are shown in Fig. 50, where it

is evident that the increase in σp decreases the test statistic surrounding the build-

ing which is caused by parallax. These magnified test statistic images are for the
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computed parallax direction derived via correspondence matching (φ = 86.6◦). The

corresponding histograms are shown in Fig. 51, which shows the distribution changes

for the parallax pixels as σp approaches the manually estimated parallax direction.

The histograms show increasing pixel occurrences for the lower brightness values (i.e.,

pixel has been re-classified to a lower brightness value) as σp steps to the next incre-

ment. In other words, the histograms represent the false alarm mitigation activity,

a larger test statistic pixel value is mitigated to a smaller test statistic pixel value

as σp increases toward the manually estimated parallax direction. This is repeated

for building labeled 6 to emphasize the reduction in parallax-induced false alarms

(Fig. 52 and Fig. 53).

Figure 49. RGB of DIRSIG image, where buildings are labeled 1− 7.
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Although ROC curve analysis is preferred, performance would be hampered by

other spurious false alarm sources. Additional false alarms sources not caused by

parallax can affect the reliability of the change detector system and are in influenced

by factors such as shadows, illumination differences, and atmospheric effects.

In addition to the visual magnified test statistic images, the SCR is used. The

SCR is computed individually for each building defined as

SCR =
µChange target − µBuilding

σBuilding

(50)

where µChange target and µBuilding are the mean of the change target and the mean of the

building of interest, respectively, and σBuilding is the standard deviation of the building

of interest. The plot shown in Fig. 54 is the SCR versus σp and demonstrates how the

clutter from the edge artifacts is reduced with an increase of σp resulting in a higher

signal. The SCR plot suggests for a large σp there is no penalty paid for this parallax

compensation improvement. This is likely because the change target is spectrally

different than the local surroundings. Otherwise, the SCR would start to decrease at

some point or perhaps not increase as σp increases because the algorithm would find

a local match for the true change target. Contrary to the SCR plot, the statistics

(Table 10) and the visual interpretation images indicate that a σp value greater than

the true parallax would result in missed true change pixels.

4.6 Summary

Incorporating a spatial mis-registration model into a GLRT-based CD methodol-

ogy leads to a fourth order polynomial test statistic that must be numerically mini-

mized to detect changes in hyperspectral imagery. Results using controlled imagery

with synthetically introduced mis-registration show that the approach is able to sup-
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Figure 54. SCR plot for Buildings 1-7 as referenced in Fig. 49 of the synthetic DIRSIG
data. This plot shows there is no penalty for the parallax compensation improvement
as σp increases because the SCR does not decrease.

press mis-registration-introduced false alarms due to high spatial frequency content

as seen at edges caused by larger contrast differences (e.g., edges of the panel and

fine spatial structure with tree leaves). While the nonlinear optimization is numer-

ically complex, a closed-form quadratic approximation provides nearly identical CD

performance while running 30 times faster. While the mis-registration compensation

approach provides a benefit for both CC and CE change predictors, a much more

substantial improvement in the presence of residual mis-registration is achieved using

the CC method.

The CD performance is found to vary somewhat based on user-defined parameters

for the underlying prior probability distribution for the residual mis-registration. The

best performance appears to be data-dependent. While this supports the importance

of including a prior distribution in the model, a unique contribution of our approach

over prior methods, it also motivates further work to better understand this parameter
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sensitivity.

The largest contribution of our generalized CD approach is that it can be ex-

tended to incorporate more complicated prior probability distributions for residual

mis-registration and serves as a starting point to account for other known image

acquisition and preprocessing artifacts. In particular, current hyperspectral CD al-

gorithms (CC and CE) are leveraged in conjunction with bilinear interpolation and

stereo correspondence to develop an algorithm for performing hyperspectral CD to

address sub-pixel mis-registration and parallax effects. The experiments clearly show

that parallax mitigation using correspondence matching gives superior performance

when compared to the manual parallax estimate approach. The visual detections ex-

emplify the ability of the hyperspectral algorithm to reduce parallax by eliminating

the strong test statistic at building or structure edges. In addition to the visual perfor-

mance of the algorithm, the test statistic histograms and SCR computations provide

evidence of the reduction in parallax-induced edge artifacts in HSCD performance.
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V. Conclusion

In this final chapter, a summary of the research is provided. Additionally research

contributions are highlighted and the possibility of future work discussed.

5.1 Summary

A summary of change detection (CD) processes was discussed and a framework was

outlined to understand the design space of CD applications in Chapter 2. A detailed

mathematical formulation of the algorithms developed was presented in Chapter 3.

The proposed mis-registration algorithm compensates for mis-registration in the CD

process based on minimizing the detection test statistic derived using the generalized

likelihood ratio test (GLRT). It was demonstrated that the GLRT formulation results

in a closed form solution for the test statistic minimized relative to the unknown local

shift parameters. The mathematical formulation led to a fourth-order polynomial

solution that was minimized numerically. By performing a second order Taylor series

expansion of the test statistic, a quadratic approximation was developed leading to a

less computationally-complex closed-form analytical solution. Moreover, the GLRT

formulation provided a gateway to address more complex false-alarm sources typically

found in persistent surveillance scenarios. To that end, the mis-registration GLRT

test statistic was extended to address parallax compensation by rotating the axis along

the parallax direction to account for the relative orientation between two consecutive

image views.

In Chapter 4, experimental results showed that the methods developed in this

research achieve good performance when applied to real or synthetic hyperspectral

data sets. This was demonstrated by comparing performances with those reached by

two standard anomalous CD methods, chronochrome (CC) and covariance equaliza-
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tion (CE). In the case of the mis-registration GLRT, performance was additionally

compared with the local co-registration adjustment (LCRA) algorithm. The results

indicated far superior performance relative to CC and CE, and comparable perfor-

mance relative to LCRA. An important benefit to the approach developed in this

dissertation, however, is the ability to extend it to other more complex signal pro-

cessing functions, an attribute not exhibited by LCRA.

Change detector performance was assessed through a visual analysis and quanti-

tatively using the receiver operating characteristic curves (ROC) and the area under

the ROC curve (AUC) subject to the availability of detailed truth information. Ex-

periments showed that significant performance improvement is accomplished in the

presence of mis-registration for CC (AUCGLRTCC
= 0.9981 and AUCCC = 0.9972) and

CE (AUCGLRTCE
= 0.9954 and AUCCE = 0.9909). The GLRT showed similar per-

formance over LCRA for sub-pixel shifts. Experiments clearly showed that parallax

artifacts in the detection statistic are reduced compared to CC. LCRA is not designed

to address this type of structured mis-registration and was therefore not evaluated

against it.

5.2 Research contributions

The contributions of this work included practical and theoretical aspects. From

the practical point of view, the CD framework helps the CD researcher identify re-

search areas of interest and helps the analyst build functional CD systems. From the

theoretical point of view, the mis-registration GLRT test statistic provided a gateway

to more complex signal processing tasks related to CD and the quadratic approxima-

tion to the GLRT test statistic provided a practical implementation of that approach.

Extending the mis-registration GLRT test statistic to include parallax compensation

for hyperspectral change detection provided a novel contribution in that such an
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algorithm has yet to be published in the literature.

5.3 Future work

Although the research presented in this dissertation document is highly successful

and presents novel approaches to reducing complex false-alarm sources in CD, there

are possible areas for future work. These are outlined briefly in this section.

As shown in Chapter 4, excellent false-alarm mitigation results are achieved us-

ing (SIFT) features for the correspondence matching in the parallax compensation

algorithm. However, other correspondence algorithms exist and may improve perfor-

mance by providing more reliable feature matching between the test and reference

images. Possible correspondence approaches include contrast invariant matching [92]

and iterative approaches [93]. In doing so, however, the correspondence matching

approach may be more complex. Emerging new research areas such as computational

photography give rise to novel applications for correspondence problems that may be

applicable to the current body of research [94].

A critical component in the calculation of the parallax direction is the accuracy

in mapping corresponding pixels between image pairs. Higher accuracy of the cor-

respondences results in a more accurate estimate of the parallax direction. Another

consideration in an urban surveillance scenario is that building occlusions hinder

the matching of potentially good image features. Investigation of mismatches or ap-

proaches accounting for occlusion pixels may uncover a more accurate correspondence

matching method. It is recognized in the literature that multiple sources of correspon-

dence matching errors exist [94]. These error sources include left-right consistency and

the flatness of the cost curve [95]. These errors are mitigated by using the matching

cost with heuristics rules [95]. Occlusion is a relevant problem to mismatching errors

and there exist three classes of algorithms for handling occlusion: methods that de-
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tect occlusion, methods that reduce sensitivity to occlusion, and methods that model

the occlusion geometry [96]. Correspondence robustness and optimization matching

should be considered in future work. The matching algorithm may favor a target

data set, for example, hyperspectral data, multi-spectral data, or intensity (gray-

scale) data. Furthermore, the user must decide whether or not any accuracy gains in

more complex correspondence matching approaches are worth the potential increase

in computational time.

The parallax-compensation algorithm requires a (m̃, ñ) search space defined by

the user. Future research can focus on automatizing the (m̃, ñ) search space through

the estimated parallax direction. For example, targeting a larger search along the φ

direction and limiting the orthogonal direction to a smaller search for efficiency.

The CD performance is found to vary somewhat based on user-defined parame-

ters for the underlying prior probability distribution for the residual mis-registration.

In fact, the best performing parameter range, as determined through experimenta-

tion, was found to be consistently lower than the known mis-registration. While this

supports the importance of including a prior distribution in the model (a unique

contribution to this work) it also motivates further work to better understand the

relationship of the model parameters to the known mis-registration. Finally, the ad-

dition of more extensive, real, truthed, hyperspectral data to exercise and test would

refine the approach. This requires such data to be available, which is currently a

major shortcoming.
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