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Abstract

This research presents the phased development of an algorithm to plan impulsive

orbital maneuvers based on the relative motion between multiple satellites and multiple

ground locations. The algorithm leverages the state transition matrix derived from the

equations of motion and the equations of variation for the non-spherical Earth and air

drag effects. The algorithm determines the impulsive maneuver to achieve the user-defined

terminal conditions. The first phase solves for the first burn of an orbital transfer between

user-defined altitudes. The optimum trajectory is determined and compared to the first burn

in a Hohmann Transfer. The results are expanded to include varying the inclination and

eccentricity of the initial orbit. The second phase solves for the minimum time trajectory

resulting from a fixed fuel maneuver to transfer a satellite between user-defined altitudes.

The results include the transfer time and transfer angle for the minimum time trajectory.

The third phase places a satellite within a sphere, of user-defined radius, centered on a non-

maneuvering satellite within a constrained time. The results are presented for prograde

orbits. An empirical method to determine the optimum ∆V is provided. The fourth

phase places a satellite within the overlapping spheres, of user-defined radii, centered

on multiple non-maneuvering satellites, within a constrained time. Empirical methods

are presented to determine the separation distance and optimum ∆V. The final phase

culminates by delivering a satellite within the overlapping spheres, centered on multiple

non-maneuvering satellites and ground locations, constrained by range and elevation angle,

within a constrained time. An empirical model to calculate the optimum ∆V is shown. All

results illustrate mission design trade-offs including ballistic coefficient, orbit inclinations,

eccentricity and orbit sizes.
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NAVIGATION SOLUTION FOR A MULTIPLE SATELLITE AND MULTIPLE

GROUND ARCHITECTURE

I. Introduction

1.1 Motivation

Significant effort and capital has been placed into the concepts regarding responsive

space and space superiority. The need for responsive space capabilities is recognized

throughout the Department of Defense (DoD). Specifically, this need led to the

establishment of the Operationally Responsive Space (ORS) Office with a charter to be

the “agent for change” [2] for how the DoD moves into the future regarding its space

capabilities. Additional resources are leveraged at numerous levels for the ability to better

monitor, understand and control the space domain.

Though the concepts of responsive space superiority are unbounded, most attention

has been focused towards the design, development and deployment of new hardware to

meet emerging needs[2]. However, this hardware continues to consistently leverage the

infrastructure that is already in place. Therefore, little forethought has been placed in

significant modification to, or the development and implementation of a new infrastructure

or concepts to specifically execute a responsive space superiority mission. One significant

capability of the necessary architecture is to provide the ability to relay both satellite

telemetry and payload communications between a ground station and the collection satellite

during a responsive space scenario. Additional capability is to analytically predict satellite

separation distances between multiple satellites as well as develop maneuver sequences in

complex dynamic scenarios.
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Addressing these types of responsive space superiority scenarios requires a new

paradigm of thinking. Therefore, it is the intent of this research to pass on to the reader a

concept for optimizing the necessary maneuvers between a single satellite and a number of

cooperative satellites including ground locations while satisfying defined criteria.

The study of astrodynamics and the theory of optimal orbital maneuvering is nothing

novel. The literature is robust in forms and methods of establishing and solving

optimal control problems applying to the minimization of both time and fuel for satellite

applications. The literature presents both continuous and impulsive thrust models with

the objectives of minimizing both time and fuel. The literature is full of many forms and

applications of solving the “problem of orbit determination from two positions and time”[3]

known as Lambert’s Problem. Specifically, Lambert’s Problem is regarded as a problem “of

considerable interest to modern astrodynamics since it has direct application in the solution

of intercept and rendezvous...”[3]. Significant research has been completed with a focus

on the algorithms necessary for satellite and missile intercept and rendezvous. One such

research topic was that of Chioma. Chioma presents an algorithm to satisfy the repeated

satellite intercept mission[4]. Chioma’s algorithm, called T-Matrix Navigation, provides

the foundation for this research. It is the focus of this research to enhance the T-Matrix

Navigation algorithm to present a new algorithm to ultimately demonstrate the ability to

optimize the desired geometry between multiple satellites and ground locations.

Throughout this research the algorithm complexity will build from one maneuvering

satellite and one cooperative satellite to the more general one maneuvering satellite with

multiple cooperative satellites with multiple ground locations. It is also the intent of this

research to provide a foundational argument for the optimality of the T-Matrix Navigation

algorithm. Although optimality was argued by Chioma[4], this research will present a more

general case for optimizing both orbital transfer time and fuel expended.
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1.2 Research Objectives

The overall vision of this research is to provide an algorithm that optimizes the

necessary impulsive thrust maneuvers to achieve the user-defined geometry between

multiple satellites as well as multiple ground locations. By successfully completing the

objectives below, this vision can be realized. There are four main objectives to be met and

presented from this research. They are broken into areas that are addressed throughout the

chapters of this document.

1. Demonstrate the robust optimality of the T-Matrix Navigation (TMN) algorithm.

(Chapters 5 and 6)

(a) Demonstrate a fixed time minimum fuel maneuver similar to the first burn of a

Hohmann Transfer. (Illustrated in Figure 1.1 and presented in Chapter 5).

(b) Demonstrate a constrained fuel minimum time maneuver. (Illustrated in

Figure 1.2 and presented in Chapter 6).

Figure 1.1: Minimum Fuel Solution (Objective 1a) Illustrated.
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Figure 1.2: Minimum Time with Fixed Fuel Solution (Objective 1b) Illustrated.

2. Demonstrate an optimized maneuver strategy for one maneuvering satellite with one

cooperative non-maneuvering satellite. (Chapter 7)

(a) Develop algorithm to solve for separation distance and ∆V with established

geometric criteria between satellites. (Illustrated in Figure 1.3 and presented in

Chapter 7).

3. Demonstrate an optimized maneuver strategy for one maneuvering satellite with ‘N’

non-maneuvering cooperative satellites. (Chapter 8)

(a) Develop algorithm to solve for separation distance and ∆V with established

geometric criteria between multiple satellites. (Illustrated in Figure 1.4 and

presented in Chapter 8).

4. Demonstrate an optimized maneuver strategy for one maneuvering satellite with ‘N’

non-maneuvering cooperative satellites and ‘p’ ground locations. (Chapter 9)
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Figure 1.3: Single Satellite: Spherical Separation Distance Solution (Objective 2)

Illustrated.

(a) Develop algorithm to solve for separation distance and ∆V with established

geometric criteria between multiple satellites and multiple ground locations.

(Illustrated in Figure 1.5 and presented in Chapter 9).
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Figure 1.4: Multiple Satellites: Spherical Separation Distance Solution (Objective 3)

Illustrated.
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Figure 1.5: Multiple Satellites and Multiple Ground Locations Solution (Objective 4)

Illustrated.
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II. Literature Review

2.1 Lambert’s Problem

Lambert’s problem is to determine the trajectory connecting specified initial and

terminal position vectors over a specified transfer time [5]. It is regarded as a significant

problem in the field of astrodynamics [3]. Many sources exist highlighting means to solve

Lambert’s Problem. Lambert’s Problem is recognized as a target / intercept astrodynamics

problem. This research will leverage various characteristics of Lambert’s Problem.

Engles and Junkins [6] use a Kustaanheimo-Stiefel Transformation to solve the first

order oblate Earth, J2, perturbed solution to Lambert’s Problem. Lawton and Martell [7]

demonstrate their ability to solve Lambert’s Problem in a ballistic missile boost phase

targeting algorithm by reducing residual velocity errors to place the interceptor on a nearly

exact intercept path.

Lawton and Byrum [8] highlight the necessity of discerning between the two possible

Lambert Solutions in their algorithm to intercept ballistic missiles. They address the

possibility of achieving the “lofted or depressed” [8] solutions. Lawton and Byrum

introduce the model in which Lambert’s Problem is solved by identifying moving targets

and interceptors, vs fixed position vectors [8]. Lawton and Byrum [8] demonstrate one

of the earliest applications of Lambert’s Problem as a target intercept problem. Bate,

Mueller and White [3], Kaplan [9], Vallado [10], Prussing and Conway [11] provide an

excellent derivation of the traditional Lambert’s Problem and highlight the most significant

drawback.

Bate, Mueller and White highlight that if the two position vectors are collinear, then a

unique solution to Lambert’s Problem does not exist [3]. This limitation is also validated by

Chioma [4]. The limitation means that if the initial position vector is also the final position

vector, representing one orbital revolution later with no perturbations or maneuvers, as
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designed the Lambert algorithms will not converge to a viable solution. The algorithm

would determine that it would need an infinite ∆V to accomplish the transfer [3, 10]. The

work developed and demonstrated by Chioma [4] and Geisel [12] demonstrate the ability

to overcome the limitation presented within Lambert’s Problem.

Vallado provides several algorithms to solve Lambert’s Problem with examples in

Reference[10]. Curtis [13] combines the challenge of solving Lambert’s Problem with a

Gauss method of preliminary orbit determination, which is also addressed by Boulet [14]

demonstrating numerical examples. Prussing and Conway [11] also demonstrate examples

of solving Lambert’s Problem utilizing a Gauss method for orbit determination.

The work presented throughout this document represents a form of satellite navigation,

which is an expanded capability from the basic Lambert’s Problem and its solutions.

Understanding the implementation and limitations of the Lambert’s Problem solutions is

the foundation for this work.

2.2 Optimal Control Problem

This research will deliver an optimized solution to a complex system of nonlinear

differential equations. In order to appreciate the optimality of that solution an in-depth

review of nonlinear optimal control problems is necessary. This includes the means

necessary to present and solve a nonlinear optimal control problem. Specifically, presenting

and solving nonlinear optimal control problems that relate to satellite orbital maneuvers.

2.2.1 Optimal Control Problem Definition.

The ability to build and analyze a nonlinear optimal control problem is established by

Kirk[15] and Bryson[16]. An in-depth analysis is provided which presents the ability to

tailor each nonlinear optimal control problem to its own uniqueness. Significant challenges

exist to establish a suitable optimal control problem for spacecraft trajectories. However,

optimizing space trajectories has shown significant development by the community.

Conway[17] highlights a summary of these developments, including strengths and
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weaknesses of the various techniques. Conway and Paris [18] break the optimization

problem down and analyze the importance of the correct initial guess. Izzo [19] discusses

the possibilities and challenges of establishing a global minimum. Specifically, he

addresses the importance of using multiple algorithms to check for various solutions before

declaring global optimality. One such challenge of the various algorithms is explained

by Jo and Prussing [20]. They establish a procedure to apply second-order necessary

and sufficient conditions using a transition matrix and Ricatti equation. Ultimately, the

dynamic optimization problems are broken down into static problems, which can be

directly solved using algorithms from Arora[21]. One such example is to use the Broyden-

Fletcher-Goldfarb-Shanno quasi-Newton algorithm to optimize hyperbolic intercepts as

demonstrated by Gilbert, Howe, Lu and Vinh [20].

2.2.2 Hohmann Transfer.

The literature is full of information regarding the Hohmann Transfer. Prussing and

Chiu [22] highlight the limitations of declaring the Hohmann Transfer the minimum fuel

solution. Boden[23], Humble[24], Vallado[10], Sellers[25], Bate, Mueller and White[3],

Wertz[26], Sidi[27], Curtis[13] and Kaplan[9] all give sufficient justice to the minimum

fuel construct of the Hohmann Transfer. Kaplan[9] derives the proof for the Hohmann

Transfer’s optimality.

2.2.3 Certainty Control.

The concept of certainty control is introduced by Alfano [28]. He highlights a form of

an optimal control problem based on controlling an interceptor to a reducing radius sphere

target over each iteration to minimize the initial impulsive velocity change required for

intercept. Alfano and Fasha [29] modify the methodology to a problem of constraining the

final state of an intercept trajectory to a projected error target state. Alfano enhances the

algorithm to replace the shrinking sphere with a shrinking ellipsoid [30]. An application of
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this control is demonstrated by Lawton, Martell and Jesionowski [31] to minimize terminal

state error for ballistic missile intercept.

2.2.4 Minimum Time/Minimum Fuel Continuous/Impulsive Thrust Trajectory

Optimization Models.

Minimum time spacecraft trajectory optimization problems do not frequently appear in

the literature, especially evaluations modeling impulsive thrust. The opposite is true for the

continuous thrust models. Thorne [32] develops a minimum time optimal control problem

utilizing continuous thrust. He also introduces the concept of deriving and propagating

the variational equations of motion to accurately integrate reference trajectories. Jezewski

[33] develops a model for time-optimum guidance equations of motion for planetary ascent

and descent trajectories. Again, Jezewski’s approach models continuous thrust applications

without perturbation effects.

The converse is true of the literature for the minimum fuel case. Specific to

the application at hand, Ng, Brietfeller and Ledebuhr [34] derive a cost function that

harnesses the multi-objective nature of trajectories. Their approach introduces a model

to both minimize the time and control effort with a known target trajectory and an

unknown target trajectory. Their overall objective is to minimize the total fuel usage

against the desire to achieve an earlier intercept time citing a boost phase ballistic missile

intercept application. Other well-researched topics include the maximum payload to orbit

application. Specifically, Deaton, Lomas and Mullins[35] provide a summary of the

potential benefits of incorporating a wait time before executing a minimum fuel maneuver.

Alfano and Thorne [36] demonstrate a method to produce minimum fuel trajectories

between coplanar circular orbits while using constant, continuous thrust. This line of

methodology is enhanced by Kluever [37]. Kluever utilizes an orbital averaging method for

solving the Lagrange Planetary equations of motion to ultimately demonstrate the viability

of a minimum time, low-thrust orbital transfer. Kechechian [38] redefines the problem into
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an unconstrained transfer and then one with altitude constraints throughout the maneuver.

Overall, Kechechian introduces the reader to a method utilizing constraints in an optimal

spacecraft trajectory.

Significant modeling was demonstrated by McAdoo, Jezewski and Dawkins [39] to

utilize impulsive maneuvers for optimizing spacecraft trajectories. The cornerstone of this

work was is Primer Vector Theory highlighted in section 2.2.5.

2.2.5 Primer Vector Theory.

Vast research has been executed in the field of primer vector theory. Most notable to

this application is its utilization of impulsive maneuvers. Jezewski [40] provides a very

detailed history and derivation of primer vector theory. McAdoo, Jezewski and Dawkins

[39] elaborate on the primer vector theory and demonstrate some utility of the algorithms

with a geostationary transfer mission. Prussing [41] also derives the aspects of primer

vector theory utilizing only impulsive maneuvers and applies his findings to a Hohmann

transfer with the addition of mid-course burns and wait times.

2.2.6 The Traveling Salesman Problem.

Barbee, Alfano, Pinon, Gold and Gaylor present a means of efficiently executing a

multiple rendezvous spacecraft trajectory problem, akin to the Traveling Salesman problem

[42]. It is framed as a nonlinear programming, complete combinatorial optimization where

the orbital debris pieces relate to the cities visited by the traveling salesman. Ultimately,

their goal demonstrates the ability to choose the order of orbital debris so as to minimize

the total path traveled to ultimately minimize the fuel required.

2.3 Orbital Model

There are many sources providing information regarding the selection of an orbital

model for various applications. This section serves to demonstrate the necessary research

required to hone in on the models selected for this research, as well as provide cause for

their selection.
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2.3.1 Drag Formulation.

Incorporating the drag acceleration into the system model is imperative. There are

three main areas associated with the development of the drag force utilized in this research.

They are the form of the acceleration term, the atmospheric model, and the constants related

to the drag terms.

Based on work completed by Cowell [43], a very good model for the drag term

is identified. Fichtl, Antar and Collins [44] highlight drag as a non-conservative force,

ultimately draining energy from an orbit. They also provide a model for the drag

force. Wiesel [45] describes the acceleration form of drag and highlights sources of

error associated with estimating drag. He cites, atmospheric variations, shifts in the

Earth’s magnetic field, as well as imperfections in the satellites’ attitude. Vallado [10]

and Meirovitch [46] provide sufficient derivations for the drag acceleration term.

Ignoring the variational effects of the atmosphere, a constant atmospheric model will

be pursued in this research. The model presented by Vallado [10] is sufficient for this

application. The model is also utilized by Wertz [26].

Finally, acceptable constants for the Coefficient of Drag (CD) and Ballistic Coefficient

(BC) terms need to be identified. Sengupta, Vadali and Alfriend [47] describe multiple

launch scenarios utilizing various values for CD. Their values for CD demonstrate the

impact of variations in CD on low altitude orbits. Humble [24] recommends a value for

CD. The BC value, a function of CD, surface area and mass, is derived for many systems

by Bowman [48]. Both, Wiesel [45] and Sidi [27] provide thoughts towards determining a

suitable BC.

2.3.2 Third Body Effects.

Incorporating the perturbations introduced by third bodies is addressed by Roscoe,

Vadali and Alfriend [49]. Excellent derivations of the acceleration effects of third bodies

is also explained by Wiesel [45], Vallado [10], Boulet [14] and Prussing and Conway [11].
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Vallado [10] points out that the effects caused by third bodies are not as dominant as the

Earth’s oblateness effects for Low Earth Orbiting (LEO) satellites. This is especially true

for modeling scenarios on the order of one low earth orbital period. Therefore, for the

purpose of this research, the third body effects will be ignored and will have no bearing on

the system models.

2.3.3 Two-body Equations of Motion.

Two-body effects will dominate the system dynamics during this research. Ocampo

[50] derives the Clohessy-Wiltshire equations for an intercept/target model assuming only

two body motion of the satellites. Thorne and Hall [51] utilize two-body equations of

motion to demonstrate minimum-time, continuous-thrust orbital transfers. Additional

development for the two-body equations of motion are found in References [25, 45, 52].

2.3.4 Equations of Motion including Equatorial Bulge.

Significant development of the equations of motion including the effects of J2 are

found in [4, 13, 52–56]. Schaub and Alfriend [53, 55, 56] present a model capitalizing

on the secular drifts in Ω and ω to control multiple spacecraft in formation. Schaub and

Alfriend highlight the necessity of modeling the effects of the oblate Earth over single

orbital period trajectories. While, Vadali, Vaddi and Alfriend [54] utilize equations of

motion including the effects of J2 to propagate multiple reference trajectories for error

approximations.

2.3.5 State Transition Matrix for Two-body System.

In order to execute the proposed algorithm, the state transition matrix for the relay

satellite is required. No further development in this particular research is required beyond

the scope introduced by Wiesel [45] and Vallado [10] for the state transition matrix for the

two body solution.

14



2.3.6 State Transition Matrix accounting for Equatorial Bulge.

Alfriend, Schaub and Gim [57] derive a form of state transition matrix for their

formation flying application capitalizing on the effects of J2. Vadali, Schaub and Alfriend

[58] generate a unique form of the state transition matrix propagating the states of the

satellite as the classical orbital elements. Their unique model also leverages the effects of

J2.

2.4 Tactics, Techniques and Procedures

2.4.1 Responsive Space.

Responsive space is quickly becoming a critical component of the United States’ space

strategy. It focuses on the ability for a system or series of systems to deliver a desired effect

to a particular region or latitude / longitude on the surface of Earth in satisfaction of agreed

to metrics [47]. France [59] identifies the necessity of harnessing the capability. Other

applications include satellite servicing [60] and space superiority [4].

2.4.2 Micro-Satellites.

Significant attention has been placed on the development of micro-satellites. Wertz

[26] analyzes the economics of developing micro-satellites. While, Boden [24] discusses

the limitations of micro-sat scaled propulsion technology.

2.4.3 Communications Range for Collector Satellite.

Richharia [61] devotes a tremendous amount of attention towards the factors that

influence the range of communications between a satellite and the ground station.

Additional attention is focused on the capability for a satellite to communicate with another

satellite. Vallado [10] provides a generic development and description of communication

range issues.

2.4.4 Earth Limits for Communication.

Richharia [61], also develops considerations for analyzing the impact of the Earth

’shine’ on satellite communications. Earth ’shine’ is comprised of water attenuation in the
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atmosphere, effects of the location of the sun relative to communications pointing, etc. An

overall impact will be evaluated for the limits of communication which will have a bearing

on solution space for effective satellite communication.

2.4.5 Communications Range for Ground Element.

Similarly developed to the communications range, significant literature exists covering

the limits of the ground component for a satellite communications architecture. Boden[23],

Richharia[61] and Vallado[10] provide examples and applications for consideration for the

communications range of ground stations. Ippolito [62] provides a detailed calculation to

effectively determine the range between a ground station and a satellite based on the latitude

and longitude of the ground station on a non-spherical Earth. Ippolito [62] also provides an

analysis concerning the level of noise existing between a ground station and satellite that

would need to be overcome for effective communication.

2.5 T-Matrix Navigation

T-Matrix Navigation is an algorithm developed which ultimately delivers a differential

correction control scheme leveraging the state transition matrix of a maneuverable satellite

and the state information of a non-maneuvering satellite. The concept was developed and

presented by Chioma [4] in 2007. He tailored the algorithm to demonstrate a repeated

intercept, with zero miss distance, between two separate satellites. Chioma, presented and

utilized the T-Matrix Navigation algorithm in a manner that required the state information

for an interceptor and target satellite as well as the state transition matrix for the interceptor

satellite. Combining this information and running it through his orbital model delivered

a minimum fuel solution for a single impulsive maneuver of the interceptor satellite to

rendezvous with the target satellite approximately one or ‘n’ target satellite orbit(s) later.

Chioma provided an algorithm to deliver a longer orbital period interceptor satellite to

a shorter orbital period target satellite from a zero miss distance starting point to a zero

miss distance ending point approximately one target satellite orbit later. The T-Matrix
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Navigation algorithm was further demonstrated and utilized by Geisel [12]. Geisel tailored

the algorithm to demonstrate repeated intercept from a Highly Elliptical Orbit (HEO). A

very similar technique for state transition matrix differential correction was demonstrated

by Sears. Sears utilized a form of the non-linear least squares algorithm in Reference [63]

to demonstrate optimal non-coplanar launch and rendezvous.

The T-Matrix Navigation Algorithm is summarized through the following steps. The

development of the algorithm is credited to Chioma[4].

1. Establish initial Classic Orbital Elements (COEs) for satellites.

2. Convert COEs to initial position, ~R0, and velocity, ~V0 vectors.

3. Establish scaling parameters and scaling matrix, S.

4. Establish weight matrix, Q.

5. Determine initial guess for required fuel, ∆V, and transfer time, t.

6. Integrate Equations of Motion (EOM) for target satellite for duration of t.

7. Calculate final state, ~R, ~V , for target satellite at t.

8. Apply ∆V to interceptor satellite to yield ~V0+.

9. Integrate EOM for interceptor satellite for duration of t.

10. Calculate final state ~R, ~V , for interceptor satellite at t.

11. Calculate component by component separation distance between interceptor satellite

and target satellite.

12. Integrate interceptor satellite’s State Transition Matrix (STM) using Equations of

Variation (EOV) for duration of t.

17



13. Declare φ matrix as upper right 3x3 portion of STM.

14. Calculate velocity difference vector, ~VDIFF , between interceptor satellite’s and target

satellite’s velocity vectors.

15. Calculate ∆V for interceptor satellite: ∆V = ~V0+ − ~V0.

16. Compile error vector, ē, as the component by component separation distance and

components of ∆V.

17. Build T̃ matrix:



φ ~VDIFF

3 × 3 3 × 1

I 0

3 × 3 3 × 1


.

18. Calculate T matrix: T = S−1T̃ .

19. Declare convergence criteria.

20. Determine ∂u: ∂u = −(T′Q−1T)−1T′Q−1ē.

21. Check ∂u components versus convergence criteria: ∂u =

[
∆VX ∆VY ∆VZ ∆t

]
.

22. If convergence criteria are satisfied then the algorithm is complete.

• Final ∆V = ∆V from error vector, ē

• Final transfer time = current t

23. Add ∆V from ∂u to ~V0+ yielding new ∆V.

24. Add ∆t from ∂u to transfer time, t, for updated time.

25. Return to #6.
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2.6 Methodology

The final section of this review can be broken into a few different areas. They are least

squares, linear algebra and general astrodynamics. They are mentioned for brevity on the

overall topic.

2.6.1 Nonlinear Least Squares.

Bate, Mueller and White [3] have a complete derivation on the solution to the least

squares iterative differential correction algorithm. The least squares differential correction

algorithm provides a method of orbit determination. The algorithm provides insight to

the necessity of deriving the state transition matrix and the impact of differential changes

over time. Significant additional information is provided by Wiesel [64]. Wiesel provides

the foundation for trajectory estimation utilizing the state matrix and the state covariance

matrix. Prussing and Conway [11] provide an additional model and examples utilizing

impulsive maneuvers to achieve rendezvous with a nonlinear least squares algorithm.

2.6.2 Matrix Mathematics.

Hoffman and Kunze [65] and Arora [21] provide complete analysis on the matrix

condition and all matrix mathematics. Arora, provides a method to analyze matrices for

optimization problems. Zill [66] provides numerous techniques to approximate solutions

to nonlinear differential equations utilizing matrices as well as providing techniques to

solve nonlinear boundary value problems.

2.6.3 General Astrodynamics.

There are several other methods utilized throughout this research that come from

several sources. Hughes [67] provides a complete summary of the linear approximation

for the system. Both Vallado [10] and Bate, Mueller and White [3] develop and provide

examples for solving Kepler’s problem. Additionally, they introduce the standard units

of Distance Unit (DU) and Time Unit (TU). Wertz [26] discusses overall parameters

of interest for designing spacecraft with potential trade-offs. While Meirovitch [46],
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Wiesel [45], and Sidi [27] sufficiently develop and analyze the disturbing function form

for determining the system’s equations of motion.

2.7 Summary

The previous sections provide an outline for the direction necessary for the scope

of this research. The literature has provided tools to implement the desired algorithms.

However, the literature reveals a gap in the community’s knowledge with regard to an

enhanced utilization of the T-Matrix Navigation algorithm. Specifically, this research

intends to expand on the nonlinear optimal control problem for determining impulsive

orbital maneuvers for various geometric relationships between multiple satellites and

ground locations utilizing the differential correction presented in the T-Matrix Navigation

algorithm as a foundation.
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III. System Dynamics

3.1 Two-body System Dynamics

The T-Matrix Navigation (TMN) algorithm requires the development of the maneu-

vering and non-maneuvering satellite’s Equations of Motion (EOM) and Equations of Vari-

ation (EOV). The 2-body orbital motion solution for this model is straightforward and

readily available. The position and velocity EOM for the satellites are in Eqs.(3.1) and

(3.2) respectively. ~R is the position vector, ~V is the velocity vector, and µ is the Earth’s

gravitational parameter.

~̇R = ~V (3.1)

~̇V = −
µ~R

|~R|3
(3.2)

The EOV for the 2-body model are straightforward as well. The general form for

deriving the State Transition Matrix (STM), Φ, is shown in Eqs.(3.3) and (3.4) directly

transfered from Reference[45]. ~Rn is the component of the position vector.

Φ(t) =

 0 I

Φ21 0

 (3.3)

Φ21 =


−

µ

|~R|3
+

3µ|~RX |
2

|~R|5
3µ|~RX ||~RY |

|~R|5
3µ|~RX ||~RZ |

|~R|5

3µ|~RX ||~RY |

|~R|5
−

µ

|~R|3
+

3µ|~RY |
2

|~R|5
3µ|~RY ||~RZ |

|~R|5

3µ|~RX ||~RZ |

|~R|5
3µ|~RY ||~RZ |

|~R|5
−

µ

|~R|3
+

3µ|~RZ |
2

|~R|5

 (3.4)

3.2 System Dynamics Using Earth’s 2nd Zonal Harmonic

The effect on the satellite’s motion from the Earth’s 2nd zonal harmonic, J2, is

captured in Eqs.(3.1) and (3.5)[4]. J2 is the unit-less constant for the oblate Earth and

R⊕ is the Earth’s radius.

V̇ =
µ~R

|~R|3
−

3
2

J2µR2
⊕
~R

|~R|5
(1 −

5|~RZ |
2

|~R|2
) (3.5)
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The general form of the J2 model’s EOV is captured in Eq.(3.6). Each specific

component of the lower left 3×3 matrix is expanded in Eqs.(3.7) through (3.15).

Φ(t) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Φ41 Φ42 Φ43 0 0 0

Φ51 Φ52 Φ53 0 0 0

Φ61 Φ62 Φ63 0 0 0



(3.6)

Φ41 =
µ

2|~R|9

(
3J2R2

⊕

(
4|~RX |

4 + 3|~RX |
2
(
|~RY |

2 − 9|~RZ |
2
)
− |~RY |

4 + 3|~RY |
2|~RZ |

2 + 4|~RZ |
4
)

+ 2
(
2|~RX |

2 − |~RY |
2 − |~RZ |

2
) (
|~RX |

2 + |~RY |
2 + |~RZ |

2
)2

)
(3.7)

Φ42 =

3µ|~RX ||~RY |

(
5J2R2

⊕

(
|~RX |

2 + |~RY |
2 − 6|~RZ |

2
)

+ 2
(
|~RX |

2 + |~RY |
2 + |~RZ |

2
)2
)

2|~R|9
(3.8)

Φ43 =

3µ|~RX ||~RZ |

(
5J2R2

⊕

(
3|~RX |

2 + 3|~RY |
2 − 4|~RZ |

2
)

+ 2
(
|~RX |

2 + |~RY |
2 + |~RZ |

2
)2
)

2|~R|9
(3.9)

Φ51 =

3µ|~RX ||~RY |

(
5J2R2

⊕

(
|~RX |

2 + |~RY |
2 − 6|~RZ |

2
)

+ 2
(
|~RX |

2 + |~RY |
2 + |~RZ |

2
)2
)

2|~R|9
(3.10)

Φ52 = µ

(
−|~RX |

2 + 2|~RY |
2 − |~RZ |

2

|~R|5

−
3J2R2

⊕

(
|~RX |

4 − 3|~RX |
2
(
|~RY |

2 + |~RZ |
2
)
− 4|~RY |

4 + 27|~RY |
2|~RZ |

2 − 4|~RZ |
4
)

2|~R|9

)
(3.11)
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Φ53 =

3µ|~RY ||~RZ |

(
5J2R2

⊕

(
3|~RX |

2 + 3|~RY |
2 − 4|~RZ |

2
)

+ 2
(
|~RX |

2 + |~RY |
2 + |~RZ |

2
)2
)

2|~R|9
(3.12)

Φ61 =

3µ|~RX ||~RZ |

(
5J2R2

⊕

(
3|~RX |

2 + 3|~RY |
2 − 4|~RZ |

2
)

+ 2
(
|~RX |

2 + |~RY |
2 + |~RZ |

2
)2
)

2|~R|9
(3.13)

Φ62 =

3µ|~RY ||~RZ |

(
5J2R2

⊕

(
3|~RX |

2 + 3|~RY |
2 − 4|~RZ |

2
)

+ 2
(
|~RX |

2 + |~RY |
2 + |~RZ |

2
)2
)

2|~R|9
(3.14)

Φ63 = µ

(
−|~RX |

2 − |~RY |
2 + 2|~RZ |

2

|~R|5

−
3J2R2

⊕

(
3|~RX |

4 + 6|~RX |
2
(
|~RY |

2 − 4|~RZ |
2
)

+ 3|~RY |
4 − 24|~RY |

2|~RZ |
2 + 8|~RZ |

4
)

2|~R|9

)
(3.15)

3.3 System Dynamics Utilizing Earth’s 2nd Zonal Harmonic and Air Drag

Using an atmospheric model derived from Vallado[10] and Wertz and Lawson[26],

the force of air drag is added to the system model. The first consideration for the effect of

air drag is to define the ballistic coefficient, B∗, defined by B∗ = CD∗A
m .

The coefficient of drag is denoted by CD, A is the cross-sectional area and m is the

mass of the satellite. The values for A and m are case specific and, therefore, user-defined

variables. For this study, a typical value for the coefficient of drag from [26] is used,

CD = 2.2.

According to [10] and [26], the atmospheric density, ρ, is determined by Eq.(3.16).

The nominal atmospheric density (ρ0), the base altitude (h0), and the scale height (H) are

pulled from a look-up table. The height above the elliptical, hellp, is simply the satellite’s

altitude.

ρ = ρ0 ∗ exp
(
−

hellp − h0

H

)
(3.16)

23



According to [10] and [26], the atmospheric density is nearly 0 at 2,000 km altitude

giving this model a relatively accurate range from altitudes of 150 km - 2,000 km.

Combining the ballistic coefficient and the atmospheric drag, a formula for the drag

acceleration term is presented in Eq.(3.17). The relative velocity term, ~VREL, requires its

own development.

~aDRAG = −
1
2

B∗ρ|~VREL|
2 (3.17)

The relative velocity term is the difference between the satellite’s velocity vector, and the

cross product of the Earth’s rotational vector and the satellite’s position vector ~VREL =

~V − ~ω × ~R. It is assumed that the atmosphere rotates at nearly the same rate as the rotation

of the Earth.

The ~ω vector is defined by Eq.(3.18). The rotation rate of the Earth, ω⊕, is

7.2921158 × 10−5 rad
sec .

~ω = ω⊕


0

0

1

 (3.18)

Expanding the cross product and executing the subtraction, the general form of the relative

velocity vector is

~VREL =


~VX + ω⊕~RY

~VY − ω⊕~RX

~VZ

 . (3.19)

Once the definition of the relative velocity vector is established, the EOM for the orbital

model with the non-spherical effects due to J2 and the atmospheric drag acceleration are

captured in Eqs.(3.1) and (3.20).

V̇ =
µ~R

|~R|3
−

3
2

J2µR2
⊕
~R

|~R|5
(1 −

5R2
Z

|~R|2
) −

1
2

B∗ρ|~VREL|
2 (3.20)

Introducing the drag acceleration term in the EOM causes increased complexity in the

variational equations. To help define the EOV, the relative velocity vector is expanded in
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Eq.(3.21).

|~VREL|
2 = |~VX |

2 + 2ω⊕|~VX ||~RY | + ω2
⊕|
~RY |

2 + |~VY |
2 − 2ω⊕|~VY ||~RX | + ω2

⊕|
~RX |

2 + |~VZ |
2 (3.21)

Noticing the introduction of the velocity terms in the V̇ equation, the lower right 3×3

portion of the EOV are no longer ‘0’s as previously seen. The general form of the model’s

EOV are in Eq.(3.22).

Φ(t) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Φ41 + ∂~aDRAG

∂~RX
Φ42 + ∂~aDRAG

∂~RY
Φ43 + ∂~aDRAG

∂~RZ

∂~aDRAG

∂~VX

∂~aDRAG

∂~VY

∂~aDRAG

∂~VZ

Φ51 + ∂~aDRAG

∂~RX
Φ52 + ∂~aDRAG

∂~RY
Φ53 + ∂~aDRAG

∂~RZ

∂~aDRAG

∂~VX

∂~aDRAG

∂~VY

∂~aDRAG

∂~VZ

Φ61 + ∂~aDRAG

∂~RX
Φ62 + ∂~aDRAG

∂~RY
Φ63 + ∂~aDRAG

∂~RZ

∂~aDRAG

∂~VX

∂~aDRAG

∂~VY

∂~aDRAG

∂~VZ



(3.22)

Recall that the EOV in Eq.(3.22) are established based on the same dynamics as

the previous model, with the introduction of the air drag acceleration term. Therefore,

the initial Φ matrix is the same as Eq.(3.6). The addition to the variational equations

are the component associated with the drag acceleration vector, in Eq.(3.17), including

the expanded relative velocity term. The additions are the partial derivatives of the drag

acceleration vector with respect to the position and velocity vectors. Eqs. (3.23) through

(3.28) highlight these components.

∂~aDRAG

∂~RX

= B∗ρ
(
ω⊕|~VY | − ω

2
⊕|
~RX |

)
(3.23)

∂~aDRAG

∂~RY

= B∗ρ
(
−ω⊕|~VX | − ω

2
⊕|
~RY |

)
(3.24)

∂~aDRAG

∂~RZ

= 0 (3.25)
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∂~aDRAG

∂~VX

= B∗ρ
(
−|~VX | − ω⊕|~RY |

)
(3.26)

∂~aDRAG

∂~VY

= B∗ρ
(
ω⊕|~RX | − |~VY |

)
(3.27)

∂~aDRAG

∂~VZ

= −B∗ρ|~VZ | (3.28)

While the development of the system models are not new, including them ensures the

same baseline for implementing the model in the future. The development and presentation

of the system models’ EOM and EOV are the cornerstone for accurately executing the TMN

differential correction algorithm.

3.4 Coordinate System

Throughout this research the coordinate system used is the Geocentric Inertial

Coordinate System[3, 10, 25, 26]. The origin for this system is the center of the Earth.

The fundamental plane is the equatorial plane. The perpendicular component, completing

the right-hand-rule, is the North Pole. The principal direction of the coordinate system is

the vernal equinox when the Earth is aligned with the Sun and the First Point of Aires. The

principal direction is the X̂ axis. The Ẑ axis points through the North Pole and the Ŷ axis is

completed from the right-hand-rule.

3.5 Impulsive Maneuver

The duration of the thruster’s firing is significantly shorter than the orbital period

of the satellite. Therefore, the maneuver used throughout this research is considered

instantaneous and impulsive.
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IV. Navigation Solution to Solve Impulsive Tangential Orbital Maneuvers

4.1 Introduction

The development and execution of the Hohmann Transfer using various methods has

been studied for years. Boden[23], Humble[24], Vallado[10], Sellers[25], Bate, Mueller

and White[3], Wertz[26], Sidi[27], Curtis[13] and Kaplan[9] all give sufficient treatment

to the minimum fuel development and construct of the Hohmann Transfer. Kaplan[9]

analytically proves the Hohmann Transfer’s optimality. Prussing and Chiu [22] highlight

the limitations of declaring the Hohmann Transfer the minimum fuel solution. These

limitations include the requirement that the initial and final orbits are coplanar and cocentric

circular orbits with a final to initial orbital ratio of 11.94 [22]. This work will demonstrate

an orbit estimation driven, state transition matrix based, differential correction algorithm to

solve for the impulsive maneuver required for a tangential burn analogous to first burn of

the Hohmann Transfer.

T-Matrix Navigation is an algorithm that delivers a control scheme, leveraging the

state transition matrix of a maneuverable satellite and the state information of a non-

maneuvering satellite. The most recent application concerning the T-Matrix Navigation

approach was by Chioma and Titus [4, 68, 69]. The algorithm was further developed by

Geisel[12] to be utilized for Highly Elliptical Orbits (HEO). The algorithm they presented

was used to execute repeated intercept, between two separate satellites. Chioma, presented

and used the TMN algorithm for an interceptor and target satellite. Executing the algorithm

including the State Transition Matrix and the state information for the two satellites

delivered a unique solution for a single impulsive maneuver of the interceptor satellite to

rendezvous with the target satellite approximately one or ‘N’ target satellite orbit(s) later.

Chioma provided an algorithm to deliver a longer orbital period interceptor satellite to a

shorter orbital period target satellite approximately one target satellite orbit later. A very
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similar technique for state transition matrix differential correction was demonstrated by

Sears[63]. Sears, utilized a form of the nonlinear least squares algorithm to demonstrate

optimal non-coplanar launch and rendezvous.

The foundation for Chioma, Geisel and Sears’ work lies in the realm of nonlinear least

squares. Bate, Mueller and White [3] have a complete derivation on the solution to the least

squares iterative differential correction algorithm. The least squares differential correction

algorithm provides a method of orbit determination. The algorithm provides insight to the

necessity of deriving the state transition matrix and the impact of differential changes over

time. Significant additional information is provided by Wiesel [64] with the foundation for

trajectory estimation utilizing the state matrix and the state covariance matrix. Vallado[10]

provides guidelines for tolerances and convergence criteria least squares techniques.

Prussing and Conway [11] provide an additional model and examples utilizing impulsive

maneuvers to achieve rendezvous with a nonlinear least squares algorithm.

Extensive literature exists in the development and implementation of solving

Lambert’s Problem. Lambert’s Problem is to determine the trajectory connecting

specified initial and terminal position vectors over a specified transfer time [5]. It is

regarded as a significant problem in the field of astrodynamics [3]. Many sources exist

highlighting means to solve Lambert’s Problem. Lambert’s Problem is recognized as a

target/intercept astrodynamics problem. Engles and Junkins [6] utilize a Kustaanheimo-

Stiefel Transformation to solve the first order J2 perturbed solution to Lambert’s Problem.

Lawton and Martell [7] demonstrate their ability to solve Lambert’s Problem in a ballistic

missile boost phase targeting algorithm by reducing residual velocity errors to place the

interceptor on a nearly exact intercept path. Lawton and Byrum [8] highlight the necessity

of discerning between the two possible Lambert Solutions in their algorithm to intercept

ballistic missiles. They address the possibility of achieving the ”lofted or depressed” [8]

solutions. Lawton and Byrum introduce the model in which Lambert’s Problem is solved
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by identifying moving targets and interceptors, versus fixed position vectors [8]. Lawton

and Byrum [8] demonstrate one of the earliest applications of Lambert’s Problem as a

target intercept problem. Bate, Mueller and White [3], Kaplan [9], Vallado [10], Prussing

and Conway [11] provide an excellent derivation of the traditional Lambert’s Problem and

highlight the most significant drawback.

Bate, Mueller and White [3] highlight that if the two position vectors are collinear, then

a unique solution to Lambert’s Problem does not exist. This limitation is also validated

by Chioma [4]. This means that if the initial position vector is also the final position

vector, representing one orbital revolution later with no perturbations or maneuvers, as

designed, the Lambert algorithms will not converge to a viable solution. The algorithm

would determine that it would need an infinite ∆V to accomplish the transfer [3, 10].

However, Vallado provides several algorithms to solve Lambert’s Problem with examples

in Reference[10]. Curtis [13] combines the challenge of solving Lambert’s Problem with a

Gauss method of preliminary orbit determination. Which is also addressed by Boulet [14]

demonstrating numerical examples. Prussing and Conway [11] also demonstrate examples

of solving Lambert’s Problem utilizing a Gauss method for orbit determination.

The final idea, leveraging terminal guidance, delivers the backbone for the T-Matrix

Navigation algorithm. The most relevant contribution for terminal guidance is regarded

as certainty control. The concept of certainty control is introduced by Alfano [28]. He

highlights a form of an optimal control problem based on controlling an interceptor to a

reducing radius sphere target over each iteration to minimize the initial impulsive velocity

change required for intercept. Alfano and Fasha [29] modify the methodology to a problem

of constraining the final state of an intercept trajectory to a projected error target state.

Alfano enhances the algorithm to replace the shrinking sphere with a shrinking ellipsoid

[30]. An application of this control is demonstrated by Lawton, Martell and Jesionowski

[31] to minimize terminal state error for ballistic missile intercept.
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4.2 Problem Statement

Ultimately, this chapter aims to illustrate the robust optimality of the T-Matrix

Navigation algorithm. Demonstrating optimality will be accomplished by determining

the impulsive maneuver required to execute a tangential burn to transfer a satellite from

an initial altitude towards a desired final altitude. The algorithm will be presented and

configured in a manner which will apply to any general tangential impulsive maneuver

from an elliptic orbit from varying inclinations. This represents a unique application of the

TMN algorithm with results that are comparable to the first burn of the Hohmann Transfer,

the widely recognized minimum fuel maneuver sequence. The algorithm presented here

solves only for the first tangential burn, omitting the circularizing, second, burn to remain

at the desired altitude. This assumption allows the results in this paper to summarize a

‘fly-by’ orbital dynamics problem. Provided an initial altitude and a desired final altitude,

the algorithm will yield the impulsive maneuver required to achieve the desired orbital

altitude. The solution’s maneuver is applied tangentially, therefore it is defined as the

most fuel efficient maneuver necessary. This chapter also aims to prove that the T-Matrix

Navigation differential correction algorithm is not constrained to the previously identified

limitations of a standard Hohmann Transfer. Specifically, the algorithm presented allows

the user to declare the solution as the minimum fuel impulsive maneuver especially while

considering the effects of the oblate Earth and air drag. A summary of the optimal control
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problem being solved this this chapter is presented in (4.1).

Minimize: J =
∫ t f

t0
|u(t)| dt

Subject to:

~̇R, ~̇V

u(t) = ∆Vδ0(t − t0)

Initial Conditions:

~R1(t0) = ~R1t0

~V1(t0) = ~V1t0

~R2(t0) = ~R2t0

~V2(t0) = ~V2t0

t0 = 0

Terminal Conditions:

~R1(t f ) = ~R2(t f )

(4.1)

Solving this problem is summarized through the following procedure. The

contributions provided throughout this chapter are in boldface.

1. Establish initial Classic Orbital Elements (COEs) for satellites.

2. Convert COEs to initial position, ~R0, and velocity, ~V0 vectors.

3. Establish scaling parameters and scaling matrix, S[4].

4. Establish weight matrix, Q[4].

5. Determine initial guess for required fuel, ∆V, and transfer time, t.

6. Integrate Equations of Motion (EOM) for Satellite 2 for duration of t.

7. Calculate final state, ~R, ~V , for Satellite 2 at t.

8. Apply ∆V to Satellite 1 to yield ~V0+.
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9. Integrate EOM for Satellite 1 for duration of t.

10. Calculate final state ~R, ~V , for Satellite 1 at t.

11. Calculate component by component separation distance between Satellite 1 and

Satellite 2.

12. Integrate Satellite 1’s State Transition Matrix (STM) using Equations of

Variation (EOV) for duration of t.

13. Declare φ matrix as upper right 3x3 portion of STM[4].

14. Calculate velocity difference vector, ~VDIFF , between Satellite 1’s and Satellite 2’s

velocity vectors[4].

15. Calculate ∆V for Satellite 1: ∆V = ~V0+ − ~V0.

16. Compile error vector, ē, as the component by component separation distance and

components of ∆V[4].

17. Build T̃ matrix:



φ ~VDIFF

3 × 3 3 × 1

I 0

3 × 3 3 × 1


[4].

18. Calculate T matrix: T = S−1T̃ [4].

19. Declare convergence criteria[4].

20. Determine ∂u: ∂u = −(T′Q−1T)−1T′Q−1ē[4].

21. Check ∂u components versus convergence criteria: ∂u =

[
∆VX ∆VY ∆VZ ∆t

]
[4].

22. If convergence criteria are satisfied then the algorithm is complete.
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• Final ∆V = ∆V from error vector, ē

• Final transfer time = current t

23. Add ∆V from ∂u to ~V0+ yielding new ∆V.

24. Add ∆t from ∂u to transfer time, t, for updated time.

25. Return to #6.

4.3 T-Matrix Navigation Differential Correction Algorithm

T-Matrix Navigation (TMN) has its roots in nonlinear least squares. Fundamentally,

it is a method to reduce the amount of residual error in a system of complex nonlinear

differential equations. In order to use this method in an optimization problem, an algorithm

must be implemented to adequately bound the solution space of the nonlinear system

of equations, while allowing the variational equations to be iterated towards a solution.

Chioma presents the algorithm development [4].

In order to implement the TMN method, two orbits are needed. In this particular

case, they are the maneuvering satellite (Sat 1) and non-maneuvering satellite (Sat 2). The

maneuvering satellite will be the satellite to which the ∆V is applied. The non-maneuvering

satellite will be in a circular and equatorial orbit at the desired altitude for the maneuvering

vehicle. Assuming the maneuvering satellite is located directly in line with the X̂ axis at

the start time, the maneuvering satellite’s initial position vector is shown in Eq.(4.2).

It is fundamental to identify that the position vector of the maneuvering satellite

has one initial value, while the velocity vector has two. They are the velocity of the

maneuvering vehicle just before the maneuver and just after a maneuver, while still at the

original position. The state vectors for the maneuvering satellite are defined by equations
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(4.3) and (4.4) [4].

~RS at1 = Rt0


1

0

0

 km (4.2)

XS at1(t−0 ) =



RX(t0)

RY(t0)

RZ(t0)

VX(t−0 )

VY(t−0 )

VZ(t−0 )



(4.3)

XS at1(t+
0 ) =



RX(t0)

RY(t0)

RZ(t0)

VX(t−0 ) + ∆VX

VY(t−0 ) + ∆VY

VZ(t−0 ) + ∆VZ



(4.4)

The applied ∆V is implemented and adjusted during each iteration through the algorithm.

During each update the system is propagated through time to find each resulting end

position for each applied ∆V from the starting point. Therefore, for each ∆V, new position

and velocity vectors at t f can be determined.

Sat 2 is in a circular and equatorial orbit at the desired altitude for the transfer.

Therefore, utilizing 2-body dynamics, the initial position and velocity vectors can be

calculated for Sat 2. Because the desired orbit is circular and equatorial, Table 4.1 provides

the Classical Orbital Elements (COEs) necessary to determine the initial vectors.

The desired altitude is Rt f . The angle β is derived from the relationship between the

final orbital period and the expected transfer time knowing that the desired final location
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Table 4.1: COEs for Sat 2 Initial Conditions.

Orbital Element Symbol Value Units

Semi-Major Axis a Rt f km

Eccentricity e 0 n/a

Inclination i 0 Degrees

Right Ascension of Ascending Node Ω 0 Degrees

Argument of Perigee ω 0 Degrees

True Anomaly ν 180◦-β Degrees

for Sat 1 is 1800 from its starting position. This location is known as the final position

for the maneuvering satellite provided a minimum fuel transfer utilizing an impulsive

maneuver as demonstrated by the Hohmann Transfer. The relationship to calculate β is

β =
360◦×Trans f erT ime

PeriodS at2 .

Once the position vector in the future is determined for Sat 1, that same time is used

to determine the position vector of Sat 2 and an error vector is calculated. The error vector

is given by Eq.(4.5) [4].

ē =



RS AT1X − RS AT2X

RS AT1Y − RS AT2Y

RS AT1Z − RS AT2Z

∆VS AT1X

∆VS AT1Y

∆VS AT1Z



(4.5)

The error vector highlights the component by component miss distance between Sat 1 and

Sat 2, as well as the applied ∆V on Sat 1.
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It is necessary to identify that the integrated equations of motion for the solution

will vary based on the desired model and required fidelity. Specifically, this study will

demonstrate the versatility of the algorithm utilizing three separate models: (1) 2-body

EOM, (2) EOM including J2 and (3) EOM including both J2 and an air drag model. Each

system will require the appropriate variational equations according to the model that will

be demonstrated.

The maneuvering satellite’s State Transition Matrix (STM), Φ, needs to be determined

based on the variational equations. The STM is determined by integrating the satellite’s

equations of motion, as well as the variational equations of motion, which are the partial

derivatives of the EOM. This is the most computationally taxing calculation due to the fact

that there are 36 variational equations combined with the 6 EOM that have to be integrated

simultaneously. The general form of the EOV is Eq.(4.6) [4].

Φ =



∂~RX

∂~RX

∂~RX

∂~RY

∂~RX

∂~RZ

∂~RX

∂~VX

∂~RX

∂~VY

∂~RX

∂~VZ

∂~RY

∂~RX

∂~RY

∂~RY

∂~RY

∂~RZ

∂~RY

∂~VX

∂~RY

∂~VY

∂~RY

∂~VZ

∂~RZ

∂~RX

∂~RZ

∂~RY

∂~RZ

∂~RZ

∂~RZ

∂~VX

∂~RZ

∂~VY

∂~RZ

∂~VZ

∂~VX

∂~RX

∂~VX

∂~RY

∂~VX

∂~RZ

∂~VX

∂~VX

∂~VX

∂~VY

∂~VX

∂~VZ

∂~VY

∂~RX

∂~VY

∂~RY

∂~VY

∂~RZ

∂~VY

∂~VX

∂~VY

∂~VY

∂~VY

∂~VZ

∂~VZ

∂~RX

∂~VZ

∂~RY

∂~VZ

∂~RZ

∂~VZ

∂~VX

∂~VZ

∂~VY

∂~VZ

∂~VZ



(4.6)

Even though the entire STM needs to be calculated, only the upper right 3×3 portion is

needed in the algorithm. The upper right portion of the STM contains the information

regarding the maneuvering satellite’s differential position with respect to the applied ∆V.

The components of the upper right portion of the STM, identified by φ, is shown in equation

(4.7). Notice that the necessary piece of the STM is the component that relates Sat 1’s final

position vector components with the initial velocity vector components. This information

ultimately provides for how the various ∆V’s are integrated to find the best solution in the

36



algorithm.

φ =


∂~RX

∂~VX

∂~RX

∂~VY

∂~RX

∂~VZ

∂~RY

∂~VX

∂~RY

∂~VY

∂~RY

∂~VZ

∂~RZ

∂~VX

∂~RZ

∂~VY

∂~RZ

∂~VZ

 (4.7)

Another component necessary in the algorithm is the relationship between the

satellite’s final velocity vectors. Identifying this vector and combining this with φ, a form

of the T̃ matrix is determined and shown in equation (4.8) [4]. The upper right portion of

the STM, φ, is a 3 × 3 matrix. I is also a 3 × 3 matrix. While 0 is a 3 × 1 vector, yielding,

T̃ , a 6 × 4 matrix. The final T matrix is derived from scaling parameters combined with T̃ .

T̃ =

φ ~VS at1 − ~VS at2

I 0

 (4.8)

The final components of the TMN setup is the identification of a weight matrix, Q and

a scale matrix, S. The weight matrix allows for the user to shift convergence focus from

final position to applied ∆V. In order to maintain a balanced focus on both minimizing miss

distance and fuel used, an identity matrix, I, should be used. For this study, Q, is simply

a 6×6 I matrix. The scale matrix, S, is utilized to allow faster convergence within the

algorithm. For this study, S is a constant 6×6 matrix transfered directly from Reference[4].

S is defined in (4.9) while T is calculated from T̃ and S in (4.10). S is an adjustable matrix

to allow for better scaling of the nonlinear system of equations. Due to the placement of

the upper right portion of the STM in kilometers (km) and the difference between final

velocities in km
sec , within T̃ , allows for a the possibility of a poorly scaled matrix. The poorly

scaled matrix in some cases could result in a nearly singular matrix during the inversion

in Eq.(4.10). For this study however, the scaling between the variables achieves desired
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results using S in Eq.(4.9).

S =



0.1 0 0 0 0 0

0 0.1 0 0 0 0

0 0 0.1 0 0 0

0 0 0 0.1 0 0

0 0 0 0 0.1 0

0 0 0 0 0 0.1



(4.9)

T = S−1T̃ (4.10)

Ultimately, the variation of the control vector, ~u, can be calculated. The variation

of ~u is the core of TMN. Once the variation is within user defined tolerances, a unique

solution is declared for the model. Based on matrix dimensions, ~u, will have 4 components.

Specifically, the components of ~u are

~u =



∆VS AT1X

∆VS AT1Y

∆VS AT1Z

∆t


. (4.11)

The ∆V terms are the changes in the initial impulsive maneuver applied to Sat 1 and the

∆t term is the change in transfer time during each iteration. Summing the results for each

component after each iteration yields the total ∆V for the impulsive manuever. Combining

the sum of the ∆t’s with the initial transfer time, results in the final transfer time for the

optimum ∆V.

The model iterates on Eq.(4.12) [4] until all the convergence criteria have been

satisfied. Every iteration includes all of the previous steps for determining T. Q is the

weight matrix and ē is the error vector from Eq.(4.5).

∂u = −(T′Q−1T)−1T′Q−1ē (4.12)
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4.4 Results and Discussion

Recall in the derivation of the TMN differential correction algorithm that tolerance

levels are needed to declare model convergence. Once the variation of the ∆V components

is within 0.001 meters
sec and the variation of the ∆t component is within 0.01 sec on successive

iterations, convergence is complete and a unique solution to the model can be declared.

While there is no specific argument for these particular values, ’real life’ factors weigh in.

Considering at LEO velocity can be as high as 7500 m
sec , 0.01 sec translates to approximately

75 meters of error. At Geostationary Orbit (GEO) this translates to about 30 meters of error.

Balancing the desire to minimize computing time, while providing a viable solution, this

margin of error is accepted throughout this chapter.

Solving for the impulsive tangential burn demonstrated in a Hohmann Transfer

utilizing 2-Body dynamics is a basic exercise in the field of astrodynamics. Fortunately,

that is why this type of problem was chosen for demonstration of optimality of the TMN

differential correction algorithm. The same is not true for modeling the impulsive tangential

transfer maneuvers utilizing J2 system dynamics or the effects of air drag. However, the

TMN differential correction algorithm can be used to determine accurate solutions, using

these system dynamics, which represent a novel application of the previously developed

algorithm.

4.4.1 Two-body Hohmann Transfer Impulsive Tangential Burn Analytical Solu-

tion.

Leveraging example problems from several different sources, the TMN differential

correction algorithm was used to glean important information that can be expanded to user

specific scenarios. Table 4.2 includes five specific scenarios executed during this study.

In keeping with the guidance outlined by Kaplan [9], Prussing, and Chiu [22], the orbital

ratios are also identified and are well under the threshold of 11.94 [22] cited as the ratio

limit for the Hohmann Transfer being the optimum solution.
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Table 4.2: Table-Top Solutions for Various 2-body Hohmann Transfer Problems.

Scenario Initial Alt (km) Final Alt (km) Orbit Ratio ∆V ( m
sec ) Time (sec)

1 191.34411 35781.34857 6.417 2457 18924.2 [10]

2 6378.137 12756.3 1.5 533.565 10019.2 [3]

3 400 35785 6.22 2397 19048.6 [26]

4 300 35785 6.31 2425.8 18994.4 [13]

5 150 2000 1.283 470.708 3201.77

Recall that this study is focused on executing the algorithm to solve for the first of

the two burns necessary in a minimum fuel orbital transfer. This unique application of the

TMN algorithm is analogous to the first burn in a Hohmann Transfer maneuver sequence.

This means that the algorithm will prove optimality for solving for the impulsive tangential

burn intended to ‘fly-by’ the second satellite located at the desired orbit. It is not the intent

of this algorithm to achieve the final orbit, but simply to intercept it. Therefore, the ∆V’s

cited are only those for the magnitude of the first tangential burn. The transfer time is the

time to achieve fly-by with the second satellite at the desired orbit 180◦ from the starting

location.

4.4.2 Two-body Hohmann Transfer Impulsive Tangential Burn TMN Solution.

Using the TMN algorithm to solve the previous scenarios yields the results identified

in Tables 4.3 and 4.4.

The expected value is from the analytic solutions, while the actual values are

determined directly from the algorithm. The percent (%) error terms are the difference

between what the algorithm determined and the expected analytic solutions. As can be

seen, the results determined by the algorithm are excellent. What slight differences exist
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Table 4.3: Algorithm Solutions for Various 2-body Hohmann Transfer Problems.

Scenario Expected ∆V ( m
sec ) Actual ∆V ( m

sec ) % Error

1 2457.00 2457.04 0.001

2 533.57 533.53 0.006

3 2397.00 2397.46 0.019

4 2425.80 2425.72 0.003

5 470.71 470.72 0.003

Table 4.4: Algorithm Solutions for Various 2-body Hohmann Transfer Problems.

Scenario Expected Time (sec) Actual Time (sec) % Error

1 18924.20 18924.17 1.58e−4

2 10019.20 10019.18 1.99e−4

3 19048.60 19047.98 0.003

4 18994.40 18989.63 0.025

5 3201.77 3201.77 0

are due to order ε calculation differences throughout the actual implementation of solving

for the analytical solutions and executing a numerical integrator on the necessary 42 EOM

and EOV through the TMN algorithm.

These results demonstrate the optimality of the TMN differential correction algorithm.

However, more information can be gleaned from these problems. Thus providing further

evidence of the algorithm’s robustness.
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4.4.3 Two-body Varying Inclination Impulsive Tangential Burn TMN Solution.

Recall that the goal of the algorithm is to determine the minimum fuel maneuver

required to execute a fly-by between a maneuvering satellite at a starting altitude and a

non-maneuvering satellite located at the desired final altitude. Therefore, it is intuitive

that the algorithm should deliver the same solution regardless of the starting inclination,

utilizing 2-Body orbital dynamics. Figure 4.1 shows exaclty that result. The algorithm

was repeated for several hundred random inclinations following a normal distribution,

according to i = Mod(Abs(Normal) × π
4 , π)[70], and provided a fixed inclination for the

non-maneuvering satellite.

Figure 4.1: GTO Inclination vs. ∆V for Minimum Fuel Solution.

Recall that scenario 1 was a GTO from 191.34 km to 35781.35 km. This GTO was

repeated to demonstrate the negligible effect of the maneuvering satellite’s inclination

in achieving a fly-by with the non-maneuvering satellite at the desired orbital altitude.
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Keep in mind that for the purpose of the TMN differential correction algorithm, the non-

maneuvering satellite, was in a circular, equatorial orbit.

Further analysis presented in Figure 4.2 demonstrates that the fly-by time, or transfer

time, is also not effected by the change in inclination.

Figure 4.2: GTO Inclination vs. Rendezvous Time for Minimum Fuel Solution.

Overall, the effect of varying the inclination of the maneuvering vehicle does not have

an impact on the calculated optimum result from the TMN differential correction algorithm.

4.4.4 Two-body Varying Eccentricity Impulsive Tangential Burn TMN Solution.

Further robustness of the algorithm is demonstrated by varying eccentricity for

the maneuvering vehicle. The results in the previous section concluded what intuition

suggested. The same is true for varying the eccentricity of the maneuvering satellite.

Executing the previous GTO from perigee at 191.34411 km altitude yields the

following results from the TMN differential correction algorithm. Figure 4.3 shows a range

of eccentricity values that yield a possible solution for the GTO transfer problem. Notice
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the eccentricity ranges from 0 to 0.73. The value, 0.73, represents the eccentricity for an

orbit with a fixed perigee at 191.34 km altitude and a fixed apogee at the desired altitude,

35781.35 km. Utilizing 2-Body astrodynamics equations, the eccentricities were varied

within the differential correction algorithm to yield the final ∆Vs.

Figure 4.3: GTO Eccentricty vs. ∆V for Minimum Fuel Solution.

The results displayed in Figure 4.3 show the previously identified ∆V value of

2457.04 m
sec at e = 0 and, as expected, ∆V = 0 at the eccentricity that places apogee at the

desired altitude, therefore achieving a successful fly-by for a minimum fuel cost. Further

information from the TMN differential correction algorithm can be gleaned from Figure

4.4.

Figure 4.4 proves that the TMN differential correction algorithm is in fact finding a

unique solution to each initial starting orbit. Even though the ∆V magnitudes are different,

the resulting transfer time is identical. Therefore, considering the maneuvering vehicle is

beginning at the same starting point and ending at the same point, with an identical transfer
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Figure 4.4: GTO Eccentricty vs. Transfer Time for Minimum Fuel Solution.

time, then the algorithm is solving for the minimum fuel, impulsive and tangential ∆V,

to place the maneuvering satellite onto the optimum path to fly-by the non-maneuvering

satellite at the desired altitude.

Utilizing the algorithm yields Figures 4.5 and 4.6 to illustrate the impact to ∆V of

selecting an apogee height or the specific mechanical energy of the initial orbit with a fixed

perigee of 191.34 km. These figures further demonstrate that increasing the initial apogee

height and therefore increasing the specific mechanical energy, ultimately yields a lower

necessary ∆V to achieve the desired orbital altitude.

Figures 4.5 and 4.6 provide a valuable view for selecting an initial orbit prior to

applying an impulsive tangential maneuver determined by the algorithm.

4.4.5 Impulsive Tangential Burn TMN Solution Around Non-Spherical Earth.

The previous sections portray the capabilities of the TMN algorithm with 2-body

dynamics. That is important because those are the solutions that are easily verified
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Figure 4.5: GTO Apogee Height vs. ∆V for Minimum Fuel Solution.

Figure 4.6: GTO Specific Mechanical Energy vs. ∆V for Minimum Fuel Solution.
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analytically. However, 2-body dynamics do not yield the most accurate model for practical

use. It provides an excellent starting point for introducing the results from the algorithm

considering the effect on the orbits from J2.

The 2-body system demonstrated no effect on the optimum fuel solution for transfer

while varying the maneuvering satellite’s inclination. This will not be the case while

accounting for the Earth’s equatorial bulge. Scenarios 1 and 5, identified in Table 4.5, will

be re-executed using the TMN algorithm to demonstrate the changes and impact introduced

by modeling the effect of J2.

Table 4.5: Initial Conditions for Hohmann Transfer Problems.

Scenario Initial Altitude (km) Final Altitude (km) Orbit Ratio

1 191.34 35781.35 6.42 [10]

5 150 2000 1.28

Figures 4.7 and 4.8 show the resulting impact from introducing the J2 effect into the

system model given by Eqs. (4.13) and (4.14).

Ṙ = ~V (4.13)

V̇ =
µ~R

|~R|3
−

3
2
×

J2µR2
⊕
~R

|~R|5
× (1 −

5|~RZ |
2

|~R|2
) (4.14)

Figures 4.7 and 4.8 show that the minimum fuel condition is achieved at 90◦ and the

maximum fuel maneuver is at an inclination of 0◦ and 180◦. This produces the expected

results for the effects due to the oblate Earth.
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Figure 4.7: GTO Inclination vs. ∆V with J2 for Minimum Fuel Solution.

Figure 4.8: 150km to 2000km Transfer Inclination vs. ∆V with J2 for Minimum Fuel

Solution.
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Recall that this information has been gleaned from the TMN differential correction

algorithm. The algorithm produced the minimum fuel, impulsive tangential burn, placing

the maneuvering satellite onto the optimum trajectory to achieve a fly-by of the non-

maneuvering satellite at the desired orbital altitude, provided a random sampling of initial

inclinations. Figures 4.7 and 4.8 illustrate the versatility of the TMN algorithm to determine

the impulsive tangential maneuver, provided the effects of the oblate Earth, analogous to

the first burn of the Hohmann Transfer maneuver sequence.

4.4.6 Impulsive Tangential Burn TMN Solution Around Non-Spherical Earth

with Air Drag.

The value of the TMN algorithm can be demonstrated by incorporating the air drag

model into the system. Coupled with the J2 effects of the non-spherical Earth, the impact

of drag is significant. The same two scenarios are executed within the algorithm. This time,

however, a ballistic coefficient, B∗, is added in order to illustrate the specific impacts of air

drag on the minimum fuel solution. Table 4.6 summarizes the results of incorporating air

drag into the model for the GTO from 191.34 km to 35781.35 km.

Table 4.6: Min ∆V Solutions for Varying Inclination GTO with J2 and Air Drag.

B∗ ∆V ( m
sec ) Inclination (deg)

0 2459.99 90

0.044 2460.07 87.84

0.5 2460.88 67.68

1 2461.72 23.04

Figure 4.9 illustrates the impact of air drag on this maneuver. Based on the information

in Table 4.6 and Figure 4.9, it is clear that there is a significant impact from the addition of
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air drag into the model. The TMN differential correction algorithm still accounts for this

and determines the necessary maneuver to place the vehicle onto the optimum trajectory to

fly-by the non-maneuvering satellite located at the desired orbital altitude.

Figure 4.9: GTO Inclination vs. ∆V with J2 and Air Drag for Minimum Fuel Solution.

Further evaluation of Table 4.6 and Figure 4.9 illustrate that the more the satellite

is orbiting against the rotation of the Earth (i > 90◦), the larger magnitude ∆V is

required to obtain the optimum trajectory. This is clear upon further understanding of

the development of the relative velocity vector calculated in the air drag EOM and EOV.

For further reference, the TMN differential correction algorithm also yields the maximum

∆V maneuvers for various inclinations for the GTO scenario in Table 4.7.

This coincides with earlier conclusions that the more the satellite is maneuvering

against the rotation of the Earth, the larger the required maneuver is to obtain the optimum

trajectory.
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Table 4.7: Max ∆V Solutions for Varying Inclination GTO with J2 and Air Drag.

B∗ ∆V ( m
sec ) Inclination (deg)

0 2460.12 0 and 180

0.044 2460.21 180

0.5 2461.1 180

1 2462.08 180

A similar analysis was completed with the transfer from 150 km to 2000 km. This

scenario was selected because it would illustrate the biggest impact of air drag due to the

entire flight regime residing within the atmospheric model (150 km to 2000 km)[10, 26].

Figure 4.10: LEO Orbital Transfer Inclination vs. ∆V with J2 and Air Drag for Minimum

Fuel Solution.
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Figure 4.10 illustrates the impact of various ballistic coefficients over the range of

possible inclinations. Tables 4.8 and 4.9 provide the minimum and maximum ∆V at their

respective inclinations for the given ballistic coefficient.

Table 4.8: Min ∆V Solutions for Varying Inclination LEO Transfer with J2 and Air Drag.

B∗ ∆V ( m
sec ) Inclination (deg)

0 473.22 90

0.044 473.79 89.28

0.5 479.71 83.52

1 486.14 72

Table 4.9: Max ∆V Solutions for Varying Inclination LEO Transfer with J2 and Air Drag.

B∗ ∆V ( m
sec ) Inclination (deg)

0 475.83 0 and 180

0.044 476.40 180

0.5 482.33 180

1 489.00 180

4.5 Chapter Summary

Overall, this chapter has applied and adapted the TMN algorithm in a new way. This

chapter has clearly shown the optimality of the T-Matrix Navigation differential correction

algorithm to determine the single, minimum fuel, impulsive, tangential maneuver required
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to achieve a fly-by with a non-maneuvering satellite. This study demonstrates and validates

an extremely useful extension of the TMN differential correction algorithm. The extension

of this study allows the TMN differential correction algorithm to be utilized as an additional

tool for calculating generic orbital transfers utilizing a complex orbital model. This

research also validates the algorithm’s ability to determine the solution to a developed

system of nonlinear equations, including the EOM and the EOV that make up the satellite’s

STM. The results within this chapter demonstrate the TMN algorithm’s flexibility to

determine the maneuver required to achieve a fly-by with a non-maneuvering satellite

orbiting at a desired altitude. Specifically, this study accomplished these results by varying

the initial eccentricity, as well portraying the impact of mission design considerations

relating to the ballistic coefficient, initial orbital inclination, and initial apogee altitude

with a fixed perigee altitude. Ultimately, the TMN algorithm was adapted and extended to

this problem based on its previous utilization and success. Demonstrating the algorithm’s

ability to determine the impulsive tangential maneuver to fly-by a non-maneuvering

satellite provides a more general and unique application for the algorithm. This study

provides evidence that the TMN algorithm’s solutions match those of the first tangential

burn of a Hohmann Transfer, which validates the algorithm’s solution as the minimum fuel

maneuver.
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V. Navigation Solution to Solve a Minimum Time, Fixed ∆V Optimal Trajectory

5.1 Introduction

Minimum time, impulsive tangential thrust spacecraft trajectory optimization prob-

lems are of interest, but somewhat rare in literature. Kluever, Kechichian, Martin and Con-

way [37, 38, 71] each develop optimal spacecraft transfer trajectories using non-impulsive,

low-thrust models. Thorne [32] develops a minimum time optimal control problem uti-

lizing continuous thrust. He also introduces the concept of deriving and propagating the

variational equations of motion to accurately integrate reference trajectories. This chapter

aims to develop and utilize a differential correction algorithm to ultimately solve for the

minimum time trajectory that results from a fixed magnitude impulsive tangential thrust

maneuver to deliver a satellite from an initial altitude to a desired altitude.

5.2 Problem Statement

Leveraging the work initiated by Chioma and Titus [4, 68, 69], Sears[63], Leigh

and Black[1], this chapter aims to develop the case for the state transition matrix driven,

differential correction algorithm solution to the fixed ∆V, minimum time spacecraft

trajectory problem. The algorithm presented here solves for the rendezvous time

and rendezvous angle, between an initial and desired final altitude, resulting from a

fixed ∆V. The result of this algorithm is not intended to achieve orbit at the desired

altitude, but to intercept it. This assumption turns the resulting solutions into a type of

rendezvous/intercept orbital dynamics problem. Given an initial altitude and a desired

final altitude, the differential correction algorithm will ultimately yield the minimum time

trajectory, from a fixed magnitude impulsive tangential maneuver, to achieve the desired

orbital altitude. This chapter will prove that the differential correction algorithm presented

allows the user to declare the solution as the minimum time trajectory. The summary of the
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optimal control problem that is being solved through this chapter is shown in Eq.(5.1).

Minimize: J = tt f − tt0

Subject to:

~̇R, ~̇V

u(t) = ∆Vδ0(t − t0)

Initial Conditions:

~R1(t0) = ~R1t0

~V1(t0) = ~V1t0

~R2(t0) = ~R2t0

~V2(t0) = ~V2t0

t0 = 0

Terminal Conditions:

~R1(t f ) = ~R2(t f )

(5.1)

The step-by-step procedure to solve this problem is provided. The items that represent

a unique contribution from the original algorithm are highlighted in boldface.

1. Establish initial Classic Orbital Elements (COEs) for satellites.

2. Convert COEs to initial position, ~R0, and velocity, ~V0 vectors.

3. Establish scaling parameters and scaling matrix, S[4].

4. Establish weight matrix, Q[4].

5. Determine initial guess for required fuel, ∆V, and transfer time, t.

6. Integrate Equations of Motion (EOM) for Satellite 2 for duration of t.

7. Calculate final state, ~R, ~V , for Satellite 2 at t.

8. Apply ∆V to Satellite 1 to yield ~V0+.
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9. Integrate EOM for Satellite 1 for duration of t.

10. Calculate final state ~R, ~V , for Satellite 1 at t.

11. Calculate component by component separation distance between maneuvering

satellite and cooperative satellite(s)[4].

12. Integrate Satellite 1’s State Transition Matrix (STM) using Equations of Variation

(EOV) for duration of t.

13. Declare φ matrix as upper right 3x3 portion of STM[4].

14. Calculate velocity difference vector, ~VDIFF , between Satellite 1’s and Satellite 2’s

velocity vectors.

15. Calculate ∆V for Satellite 1: ∆V = ~V0+ − ~V0.

16. Compile error vector, ē, as the component by component separation distance

and 0’s for fixed fuel scenario.

17. Build T̃ matrix:



φ ~VDIFF

3 × 3 3 × 1

I 0

3 × 3 3 × 1


[4].

18. Calculate T matrix: T = S−1T̃ [4].

19. Declare convergence criteria[4].

20. Determine ∂u: ∂u = −(T′Q−1T)−1T′Q−1ē[4].

21. Check ∂u components versus convergence criteria: ∂u =

[
0 0 0 ∆t

]
.

22. If convergence criteria are satisfied then the algorithm is complete.
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• Final ∆V = Fixed initial ∆V

• Final transfer time = current t

23. Add ∆V from ∂u yielding new ∆V.

24. Add ∆t from ∂u to transfer time, t, for updated time.

25. Return to #6.

5.3 T-Matrix Navigation Differential Correction Algorithm

TMN has its roots in nonlinear least squares. Fundamentally, it is a method to reduce

the amount of residual error in a system of complex nonlinear differential equations. In

order to use this method in an optimization problem, an algorithm must be implemented to

adequately bound the solution space of the nonlinear system of equations, while allowing

the variational equations to be iterated towards a solution. Chioma presents the algorithm

development [4].

In order to implement the TMN method within this chapter, two orbits are needed.

In this particular case, they are the maneuvering satellite (Sat 1) and non-maneuvering

satellite (Sat 2). For the minimum time fixed ∆V problem, the maneuvering satellite will

be the satellite to which the ∆V is applied. The non-maneuvering satellite will be in a

circular and equatorial orbit at the desired altitude for the maneuvering vehicle. Assuming

the maneuvering satellite is located directly in line with the X̂ axis at the start time, the

maneuvering satellite’s initial position vector is shown in Eq.(5.2).

It is fundamental to identify that the position vector of the maneuvering satellite

has one initial value, while the velocity vector has two. They are the velocity of the

maneuvering vehicle just before the maneuver and just after a maneuver, while still at

the original position. The state vectors for the maneuvering satellite are given in equations
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(5.3) and (5.4) [4].

~RS at1 = Rt0


1

0

0

 km (5.2)

XS at1(t−0 ) =



RX(t0)

RY(t0)

RZ(t0)

VX(t−0 )

VY(t−0 )

VZ(t−0 )



(5.3)

XS at1(t+
0 ) =



RX(t0)

RY(t0)

RZ(t0)

VX(t−0 ) + ∆VX

VY(t−0 ) + ∆VY

VZ(t−0 ) + ∆VZ



(5.4)

Normally, the applied ∆V is implemented and adjusted during each iteration through

the algorithm. However, solving for the minimum time, fixed ∆V solution, the system

is propagated through time to find each resulting end position for the varying time. The

applied ∆V is not updated through each iteration. Therefore, for each iteration and updated

time, only new position and velocity vectors at t f will be determined.

Sat 2 is in a circular and equatorial orbit at the desired altitude for the transfer.

Therefore, simply utilizing 2-body dynamics, the initial position and velocity vectors can

be calculated for Sat 2. Because the desired orbit is circular and equatorial, Table 5.1

provides the COEs necessary to determine the initial vectors.
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Table 5.1: COEs for Sat 2 Initial Conditions.

Orbital Element Symbol Value Units

Semi-Major Axis a Rt f km

Eccentricity e 0 n/a

Inclination i 0 Degrees

Right Ascension of Ascending Node Ω 0 Degrees

Argument of Perigee ω 0 Degrees

True Anomaly ν β Degrees

The desired altitude, Rt f , for the transfer and β are derived from the final orbital period

and the expected transfer time. The initial guess for the transfer time is derived from the

2-body dynamics relationship between the original velocity, the fixed ∆V, and the ratio

between the initial orbital altitude and the final orbital altitude. Eqs. (5.5) through (5.11)

provide the foundation for determining β in Eq. (5.12). The transfer ellipse velocity, ~VT ,

the eccentricity of the transfer ellipse, eT , the semi-major axis of the transfer ellipse, aT ,

and the eccentric anomaly of the transfer ellipse, E, are all intermediate values required to

determine β.

|~VT | = |~V0| + |∆V | (5.5)

aT = −µ/
(
|~VT |

2 −
2µ

|~RS at1|

)
(5.6)

eT = 1 −
|~RS at1|

aT
(5.7)

R−1 =
|~RS at1|

|~RS at2|
(5.8)

ν0 = cos−1
(
R−1 − 1

eT
+ R−1

)
(5.9)
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E = cos−1
(

eT + cos(ν0)
1 + eT ∗ cos(ν0)

)
(5.10)

Trans f erT imeGuess =

√
a3

T

µ
∗ (E − eT ∗ sin(E)) (5.11)

β = 180◦ − ν0 + (
360◦ ∗ Trans f erT imeGuess

PeriodS at2
) (5.12)

Once the position vector in the future is determined for Sat 1, that same time is used

to determine the position vector of Sat 2 and an error vector is calculated. The error vector

is displayed in Eq.(5.13).

ē =



RS AT1X − RS AT2X

RS AT1Y − RS AT2Y

RS AT1Z − RS AT2Z

0

0

0



(5.13)

The error vector highlights the component by component miss distance between Sat 1 and

Sat 2, as well as 0’s as the applied ∆V on Sat 1. Since the ∆V is fixed, there is no change

in the applied ∆V between iterations, therefore the 0’s in the error vector.

Provided the direction for the algorithm to proceed, it is necessary to identify that the

integrated equations for the solution will vary based on the desired model and required

fidelity. Specifically, this study will demonstrate the versatility of the algorithm utilizing

three separate models: (1) 2-body EOM, (2) EOM including J2 and (3) EOM including both

J2 and an air drag model. Each system will require the appropriate variational equations

according to the model that will be demonstrated.

The remaining development and implementation of the T-Matrix Navigation algorithm

throughout this chapter follows directly with Section 4.3.
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5.4 Results and Discussion

Recall in the derivation of the algorithm that tolerance levels are needed to declare

model convergence. Once the variation of the ∆t component is within 0.00001 sec on

successive iterations, convergence is complete and a solution exists for the fixed ∆V.

While there is no specific argument for this particular value, ’real life’ factors weigh in.

Considering that at LEO velocity can be as high as 7500 m
sec , thus 0.00001 sec translates to

approximately 0.075 meters of error. At GEO this translates to about 0.03 meters of error.

Balancing the desire to minimize computing time, while providing a viable solution, this

margin of error is acceptable throughout this study.

It is also noteworthy that in order to efficiently complete the computations required

through the algorithm, new units need to be introduced. According to Bate et al.[3] and

Chioma[4], it is acceptable to define the constants DU and TU. The DU is simply the

radius of the Earth (1 DU = 6378.137 km) and to simplify the system models, the Earth’s

Gravitational Parameter, µ, will equal 1 if TU = 806.811 seconds.

Solving for the transfer time and transfer angle, utilizing a fixed ∆V, is an intermediate

astrodynamics exercise utilizing 2-body dynamics. However, it is still achievable by hand

and with the assistance of a desktop calculator. This feature leads itself as a prime candidate

for proving the optimality of the differential correction algorithm. Unfortunately, similar

ease is not present for modeling the minimum time maneuver utilizing J2 system dynamics

or including the effects of air drag. However, the differential correction algorithm can be

used to determine accurate solutions in these systems.

5.4.1 Two-body Minimum Time Tangential Burn Analytical Solution.

Leveraging example problems, the differential correction algorithm was utilized to

glean important information that can be expanded to user specific scenarios. Table 5.2

includes two scenarios executed during this study.
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Table 5.2: Table-Top Solutions for 2-body Minimum Time / Fixed ∆V Transfer Problems.

Scenario t0 Altitude (km) t f Altitude (km) ∆V ( m
sec ) Time (sec) Angle (deg)

1 191.34 35781.35 2575.48 12446.02 160 Ref[10]

2 191.34 35781.35 3000 8690.87 139.74

Recall that this study is focused on executing the differential correction algorithm to

solve for the minimum transfer time provided a fixed ∆V. This means that the algorithm will

prove optimality for solving for the minimum time, assuming a tangential burn, necessary

to ‘fly-by’ the second satellite at the desired orbital altitude. It is not the intent of this

algorithm to achieve the final orbit, but simply to intercept it. Therefore, the ∆V’s cited

are only those for the magnitude of the tangential burn. The ‘Time’ column is the time to

achieve intercept with the desired orbit. The ‘Angle’ column, represents the angle between

the initial and final position vectors for Satellite 1.

5.4.2 Two-body Minimum Time Tangential Burn TMN Solution.

Using the fully developed differential correction algorithm to solve the previous

scenarios yields the results identified in Tables 5.3 and 5.4.

Table 5.3: Algorithm Solutions for 2-body Minimum Time / Fixed ∆V Transfer Problems.

Scenario ∆V (m
s ) Calc Time (s) Actual Time (s) % Error

1 2575.48 12446.02 12404.51 0.335

2 3000 8690.87 8680.61 0.118
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Table 5.4: Algorithm Solutions for 2-body Minimum Time / Fixed ∆V Transfer Problems.

Scenario ∆V (m
s ) Calc Angle (deg) Actual Angle (deg) % Error

1 2575.48 160 159.82 0.113

2 3000 139.74 139.70 0.029

The ‘Calc Angle’ value is actually the expected value from the analytic solutions,

while the actual values are determined directly from the algorithm. The % error terms

are the difference between what the algorithm determined and the expected analytic

solutions. As can be seen, the results determined by the algorithm are excellent. What

slight differences exist are due to order ‘ε’ calculation differences throughout the actual

implementation of solving for the analytical solutions and executing an integrator on the

necessary 42 EOM and EOV through the differential correction algorithm.

While these results demonstrate the optimality of the differential correction algorithm,

more information can be gleaned from these problems, further proving the robustness of

the algorithm.

5.4.3 GTO in Minimum Time with Fixed ∆V Using TMN Solution.

Keep in mind that the goal of the algorithm is to determine the minimum time

maneuver required to execute a rendezvous between a starting altitude and a final altitude.

Therefore, it is intuitive that the algorithm should deliver a solution that varies with the

amount of fixed ∆V. Additionally, it is intuitive that the rendezvous angle, the angle

between the initial and final position vectors for Satellite 1, should decrease as the amount

of fixed ∆V applied is increased. In summary, both the amount of time and the rendezvous

angle, for the maneuvering satellite to reach the desired altitude, should decrease as the

amount of the applied ∆V increases. Figures 5.1 and 5.2 display these exact results utilizing
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the aforementioned differential correction algorithm. These figures show the algorithm’s

results for a GTO from 191.34 km initial altitude to 35781.35 km final altitude.

Figure 5.1: GTO ∆V vs. Rendezvous Time for Minimum Time Solution.

The results displayed in Figures 5.1 and 5.2 are for an initial eccentricity and

inclination equal to zero. According to Reference [1] the minimum fuel tangential burn

solutions for this problem are summarized in Table 5.5. B∗, or BC, is the ballistic coefficient

while ‘N/A’ simply means that the results are for the 2-body solution. The results in Table

5.5 drive the lower range for the fixed ∆V while 5,000 m
sec is arbitrarily selected as a very

high value only for illustrative purposes on the impact of varying the ∆V on the minimum

time solution utilizing the differential correction algorithm.

Recall that the results of the minimum fuel solutions match the Hohmann Transfer

results. Therefore, the solution requires that the angle between the initial and final position

vectors for the maneuvering satellite be equal to 180◦. Table 5.5 also shows that regardless
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Figure 5.2: GTO ∆V vs. Rendezvous Angle for Minimum Time Solution.

Table 5.5: Hohmann Transfer Results for GTO at 0◦ Inclination [1].

B∗ ∆V ( m
sec ) Rendezvous Time (s) Rendezvous Angle (deg)

N/A 2457.04 18924.17 180

0 2460.12 18956.82 180

0.044 2460.19 18956.78 180

0.5 2460.93 18956.31 180

1 2461.74 18955.80 180

of the BC value, the ∆V variation is approximately 4.7 m
sec between the 2-body solution and

the highest BC value, 1, at 0◦ inclination.
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Tight variation exists between the minimum fuel solutions, as well as the minimum

time results. Figure 5.3 represents a closer range for ∆V. This zoomed in plot identifies the

variation between the solutions, however slight.

Figure 5.3: GTO ∆V vs. Rendezvous Time for Minimum Time Solution.

Figure 5.4 displays a zoomed in section of the high end of fixed ∆V’s studied. Figure

5.4 simply shows that the higher the initial ∆V, the tighter the grouping between the models

from the 2-body solution to the B∗ = 1 solution. Table 5.6 summarizes these results for

both ends of the ∆V range.

The results summarized in Table 5.6 validate what intuition conceives. To further

validate this point, utilizing the differential correction algorithm, Figure 5.5 shows the

percentage of time the maneuvering satellite remains in the atmosphere (150 km - 2000

km). Recall that the atmospheric model in this study is valid from 150 km to 2000 km

altitude. Therefore, identifying within the algorithm’s solution, the time that the satellite
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Figure 5.4: GTO ∆V vs. Rendezvous Time for Minimum Time Solution.

exceeds 2000 km altitude and dividing that time by the total transfer time results in the

percentage of time the satellite traversed the valid atmosphere. Figure 5.5 validates this

simply by illustrating the point that as the applied ∆V increases, the amount of time the

vehicle remains in the atmosphere range decreases. This is also evident through the results

in Table 5.6 showing how the solution’s grouping gets closer due to less impact on the

trajectory from the atmopshere.

Other mission design considerations can be gleaned from utilizing the differential

correction algorithm to solve for the minimum time maneuver. According to Figure 5.6 the

user can select a desired location, rendezvous angle, for his application and then determine

the minimum time solution based on the 2-body solution, J2 only or the design B∗.

It is also possible to utilize the differential correction algorithm to make further

mission design decisions including the initial eccentricity for the maneuvering vehicle.

Figures 5.7 and 5.8 display the results of varying the initial eccentricity for a given fixed
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Table 5.6: Rendezvous Times and Differences from 2-body Solution for GTO at 0◦

Inclination.

B∗ ∆V ( m
sec ) Rendezvous Time (s) Time Difference (sec)

N/A 2520.94 13736.74 0

N/A 4910.80 4957.92 0

0 2520.94 13809.35 72.61

0 4910.80 4958.34 0.42

0.044 2520.94 13838.45 101.71

0.044 4910.80 4960.32 2.4

0.5 2520.94 13848.21 111.47

0.5 4910.80 4960.82 2.9

1 2520.94 13858.68 121.94

1 4910.80 4961.46 3.54

∆V of 3000 m
sec at 40◦ inclination. The results assume that perigee is located at 191.34 km

altitude, while the desired altitude is 35781.35 km. The range of values for eccentricity are

0 to 0.73, which represents an apogee altitude equivalent to the desired altitude (35781.35

km).

Leveraging the differential correction algorithm to solve for the minimum time

trajectory for the GTO example has proven to yield significant mission design utility. A

further example of the algorithm’s flexibility is evaluating the minimum time solutions for

LEO transfer within the entirety of the referenced atmospheric altitude 150 km to 2000 km.
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Figure 5.5: GTO ∆V vs. Percent of Time in Atmosphere for Minimum Time Solution.

Figure 5.6: GTO Rendezvous Time vs. Rendezvous Angle for Minimum Time Solution.
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Figure 5.7: GTO Eccentricity vs. Rendezvous Time with Fixed ∆V=3000 m
sec for Minimum

Time Solution.

5.4.4 LEO transfer in Minimum Time with Fixed ∆V Using TMN Solution.

Keep in mind that both the amount of time and the location, rendezvous angle, for

the maneuvering satellite to reach the desired altitude should decrease as the amount

of the applied ∆V increases. Figures 5.9 and 5.10 display these exact results utilizing

the aforementioned differential correction algorithm. These figures show the algorithm’s

results for a LEO transfer from 150 km initial altitude to 2000 km final altitude.

The results displayed in Figures 5.9 and 5.10 are for an initial eccentricity and

inclination equal to zero. According to Reference [1] the minimum fuel tangential burn

solutions for this problem are summarized in Table 5.7. The results in Table 5.7 drive the

lower range for the fixed ∆V, while 5,000 m
sec is arbitrarily selected as a very high value only

for illustrative purposes on the impact of varying the ∆V on the minimum time solution

utilizing the differential correction algorithm.
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Figure 5.8: GTO Eccentricity vs. Rendezvous Angle with Fixed ∆V=3000 m
sec for Minimum

Time Solution.

Figure 5.9: LEO Orbital Transfer ∆V vs. Rendezvous Time for Minimum Time Solution.
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Figure 5.10: LEO Orbital Transfer ∆V vs. Rendezvous Angle for Minimum Time Solution.

Table 5.7: Hohmann Transfer Results for LEO Transfer at 0◦ Inclination [1].

B∗ ∆V ( m
sec ) Rendezvous Time (s) Rendezvous Angle (deg)

N/A 470.71 3201.77 180

0 475.83 3208.05 180

0.044 476.32 3207.02 180

0.5 481.42 3205 180

1 487.03 3202 180

Recall that the results of the minimum fuel solutions match the Hohmann Transfer

results. Therefore, the solution requires that the angle between the initial and final position

vectors for the maneuvering satellite be equal to 180◦. Table 5.7 also shows that regardless

of the BC value, the ∆V variation is approximately 17 m
sec between the 2-body solution and
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the highest BC value, 1, at 0◦ inclination. This value displays the significant impact the

atmosphere plays on the trajectory in the LEO transfer example.

Further demonstration of this fact is captured in Figure 5.11. Figure 5.11 shows the

significant difference between the algorithm’s solutions for the 2-body solution and the

solutions based on the various ballistic coefficients.

Figure 5.11: LEO Orbital Transfer ∆V vs. Rendezvous Time for Minimum Time Solution

with Low Fixed ∆V.

Figure 5.12 portrays the tighter variation of the solutions between the 2-body solution

and the various ballistic coefficients at much higher fixed ∆V.

The minimum time differential correction algorithm is also suited to aid in mission

design through the selection of a desired rendezvous location to determine the resulting

transfer time and therefore the required ∆V. For this example, Figure 5.13 shows this

information for a LEO transfer between 150 km altitude to 2000 km altitude at 0◦

inclination and 0 eccentricity.
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Figure 5.12: LEO Orbital Transfer ∆V vs. Rendezvous Time for Minimum Time Solution

with High Fixed ∆V.

Figure 5.13: LEO Orbital Transfer Rendezvous Time vs. Rendezvous Angle for Minimum

Time Solution.
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5.5 Chapter Summary

Overall, this chapter has demonstrated the ability for the differential correction

algorithm to determine the single minimum time, fixed ∆V, impulsive maneuver required to

achieve a fly-by with a desired final orbital altitude. This study demonstrates and validates

an extremely useful extension of the differential correction algorithm by utilizing the STM

to allow the user to investigate individual design impacts on the minimum time trajectory.

This research also validates the algorithm’s ability to determine the minimum time solution

to a developed system of nonlinear equations, including the EOM and the EOV that

make up the satellite’s STM. While determining the transfer time and rendezvous angle

with a fixed ∆V can be easily verified utilizing only 2-body dynamics, the results within

this chapter demonstrate the differential correction algorithm’s flexibility to calculate this

solution provided a more complex system model including both J2 and atmospheric drag.

Further, the presented algorithm, allows the user to specify mission design parameters in

order to assess their impacts on the overall solution. These design parameters include the

ballistic coefficient, initial orbital eccentricity with a fixed perigee altitude, and the selection

of a final rendezvous angle at the desired altitude.

This chapter demonstrates that the differential correction algorithm can be expanded

to solve for the minimum time trajectory provided a fixed maneuver magnitude within

a complex system model and a non-circular initial orbit. The results from this study

demonstrate the capability of the differential correction algorithm to determine the

minimum time satellite transfer trajectory. These results also lead themselves to the

possibility of utilizing the algorithm to determine more complex non-tangential maneuvers

to achieve minimum time trajectories with a provided fixed magnitude maneuver.
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VI. Navigation Solution to Maneuver a Spacecraft Relative to a Sphere Centered

on a Cooperative Satellite

6.1 Introduction

This chapter seeks to extend the T-Matrix Navigation algorithm to allow for a varying

geometric solution between the maneuvering satellite relative to a single non-maneuvering

satellite. The concept of theater-based responsive relay satellite coverage is of interest

in this study. Provided a vector for guiding this research, an algorithm is presented and

then modified to introduce the orbit considerations for satisfying the potential mission

requirement of ultimately optimizing the required ∆V.

6.2 Problem Statement

The purpose of this chapter is to demonstrate the ability for the modified TMN

algorithm to deliver an impulsive maneuver to a satellite to place it within a sphere, with

a user-defined radius, centered around a non-maneuvering satellite within a constrained

time. Specifically, the proceeding results are generalized for the satellites’ altitudes, but it

is assumed throughout that the non-maneuvering satellite must complete one full orbit +/-

10%, based on orbital period, before the maneuvering satellite can successfully declare a

solution within the radius with margin. The maneuvering satellite must only complete one

orbit as well, in order to synchronize the orbital phase. This study only focuses on prograde

orbits, therefore inclinations range between 0◦ and 90◦. The focus of the results is based

on the success of the modified TMN algorithm, while demonstrating unique aspects of

this problem. Ultimately, this chapter will present generalized modifications to the TMN

algorithm which allow for expanded utilization of the algorithm to be applied towards a

user-defined scenario. Throughout this chapter the terms Satellite 1, Sat 1 and maneuvering

satellite are one in the same, while Satellite 2, Sat 2 and the non-maneuvering satellite are
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all the same. A summary of the optimal control problem being solved in this chapter is

displayed in Eq.(6.1)

Minimize: J =
∫ t f

t0
|u(t)| dt

Subject to:

~̇R, ~̇V

u(t) = ∆Vδ0(t − t0)

t f ∈ [0.9P2, 1.1P2]

Initial Conditions:

~R1(t0) = ~R1t0

~V1(t0) = ~V1t0

~R2(t0) = ~R2t0

~V2(t0) = ~V2t0

t0 = 0

Terminal Conditions:

~R1(t f ) ∈ B(~R2(t f ), η) = {~R1(t f ) ∈ R3 : |~R1(t f ) − ~R2(t f )| ≤ η}

(6.1)

A brief summary of the step-by-step procedure to solve this problem is provided. The

unique contributions from this chapter are highlighted in boldface.

1. Establish initial Classic Orbital Elements (COEs) for satellites.

2. Convert COEs to initial position, ~R0, and velocity, ~V0 vectors.

3. Establish scaling parameters and scaling matrix, S[4].

4. Establish weight matrix, Q[4].

5. Determine initial guess for required fuel, ∆V, and transfer time, t.

6. Integrate Equations of Motion (EOM) for Satellite 2 for duration of t.
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7. Calculate final state, ~R, ~V , for Satellite 2 at t.

8. Apply ∆V to Satellite 1 to yield ~V0+.

9. Integrate EOM for Satellite 1 for duration of t.

10. Calculate final state ~R, ~V , for Satellite 1 at t.

11. Calculate spherical separation distance between Satellite 1 and Satellite 2.

12. Integrate Satellite 1’s State Transition Matrix (STM) using Equations of Variation

(EOV) for duration of t.

13. Declare φ matrix as upper right 3x3 portion of STM[4].

14. Calculate velocity difference vector, ~VDIFF , between maneuvering satellite and

cooperative satellite(s) velocity vectors.

15. Calculate ∆V for Satellite 1: ∆V = ~V0+ − ~V0.

16. Compile error vector, ē, as the spherical separation distance and components of

∆V.

17. Build T̃ matrix:



φ ~VDIFF

3 × 3 3 × 1

I 0

3 × 3 3 × 1


[4].

18. Calculate T matrix: T = S−1T̃ [4].

19. Declare convergence criteria[4].

20. Determine ∂u: ∂u = −(T′Q−1T)−1T′Q−1ē[4].

21. Check ∂u components versus convergence criteria: ∂u =

[
∆VX ∆VY ∆VZ ∆t

]
[4].
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22. If convergence criteria are satisfied then the algorithm is complete.

• Final ∆V = ∆V from error vector, ē

• Final transfer time = current t

23. Add ∆V from ∂u to ~V0+ yielding new ∆V.

24. Add ∆t from ∂u to transfer time, t, for updated time.

25. Return to #6.

6.3 Establishing the Algorithm

The initial position for Satellite 2 is random. Even though the initial altitude is fixed,

the orbital period is random, following a normal distribution. Specifically for this study,

a fixed number of orbital periods could be randomly selected from for Satellite 2’s orbital

period. Once the orbital period was randomly selected, knowing the fixed initial altitude,

the semi-major axis could be determined, as well as the eccentricity. The minimum and

maximum periods allowed for this study were 90 and 1,440 minutes. This allowed for

a range between a low eccentricity orbit, as well an extremely elliptical orbit. Provided

Satellite 2 began at the fixed initial altitude of 150 km, this ensured that the initial true

anomaly, ν, was at 0◦. To complete the initial conditions for the non-maneuvering satellite,

the remaining Classical Orbital Elements (COEs), were determined following a normal

distribution according to Eqs.(6.2), (6.3) and (6.4) [70].

i = Mod(Abs(Normal) ×
π

4
,
π

2
) (6.2)

Ω = Mod(Abs(Normal) × 2π, 2π) (6.3)

ω = Mod(Abs(Normal) × 2π, 2π) (6.4)

Once the initial COEs were determined for the non-maneuvering satellite, the original

position and velocity vectors needed to be determined for the maneuvering satellite,
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Satellite 1. The process to determine the initial conditions for Satellite 1 are much more

involved.

The orbital period for Satellite 1 is randomized with the same range of values as the

non-maneuvering satellite, between 90 and 1,440 minutes. Provided the orbital period and

a fixed initial altitude, the semi-major axis and eccentricity of Satellite 1 is calculated. Then

the initial specific mechanical energy, ε, of the orbit is determined from Eq.(6.5). Further,

assuming the maneuvering satellite begins at perigee along the same unit position vector

as the non-maneuvering satellite, the position vector, ~R, is known. The magnitude of ~R is

R⊕ + 250 km. The magnitude of the initial velocity of Satellite 1 is calculated by Eq.(6.6).

Therefore, the magnitude of the specific angular momentum can also be calculated using

Eq.(6.7).

ε =
−µ

2aS at1
(6.5)

|~V | =
√

2(
µ

|~R|
+ ε) (6.6)

|~h| = |~R||~V | (6.7)

Provided all three components of the position vector, the magnitude of the velocity

vector, and the magnitude of the specific angular momentum vector, a nonlinear system of

six equations will need to be solved for the remaining six unknowns. The unknowns are

the three components of both the velocity vector, as well as the specific angular momentum

vector. The first of the six equations, Eq.(6.8), comes from the dot product relationship

between two vectors. Therefore, knowing that the maneuvering satellite is beginning at

perigee, the angle between the position vector, ~R, and the velocity vector, ~V , is 90◦. The

second and third equations, Eqs.(6.9) and (6.10), come from the magnitude equations for

a vector of three dimensions. While the final equations, Eqs.(6.11) through (6.13), come

from the cross product relationship between the position and velocity vectors to yield the
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specific angular momentum vector.

0 = RX(t0)VX(t0) + RY(t0)VY(t0) + RZ(t0)VZ(t0) (6.8)

|~Vt0 | =
√

VX(t0)2 + VY(t0)2 + VZ(t0)2 (6.9)

|~ht0 | =
√

hX(t0)2 + hY(t0)2 + hZ(t0)2 (6.10)

hX(t0) = RY(t0)VZ(t0) − RZ(t0)VY(t0) (6.11)

hY(t0) = −(RX(t0)VZ(t0) − RZ(t0)VX(t0)) (6.12)

hZ(t0) = RX(t0)VY(t0) − RY(t0)VX(t0) (6.13)

While the specific angular momentum vector is not needed for this algorithm, it is a

by-product necessary to determine the maneuvering satellite’s initial velocity vector. A

straightforward conversion to COEs is now possible for the maneuvering satellite.

In order for the algorithm to proceed, the future state, both the position and velocity

vectors, needs to be determined for the maneuvering satellite. Once the position vector in

the future is determined for Sat 1, that same time is used to determine the position vector of

Sat 2, and an error vector is calculated. The original error vector within the TMN algorithm

is represented by Eq.(6.14)[4]. The updated error vector for this chapter is displayed in

Eq.(6.15).

ē =



RS AT1X − RS AT2X

RS AT1Y − RS AT2Y

RS AT1Z − RS AT2Z

∆VS AT1X

∆VS AT1Y

∆VS AT1Z



(6.14)
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ē =



ΛX

ΛY

ΛZ

∆VS AT1X

∆VS AT1Y

∆VS AT1Z



(6.15)

Recall that this particular problem is establishing an algorithm to yield a solution that

maneuvers a satellite within a sphere, with a user-defined radius, from the non-maneuvering

satellite. Therefore, the introduction of the vector, ~Λ, represents a relationship between the

maneuvering and non-maneuvering satellites according to the radius of the user-defined

sphere. The components of the ~Λ vector are presented in Eqs.(6.16) through (6.18).

ΛX = RS AT1X −

(
RS AT1X − RS AT2X

|~RS AT1 − ~RS AT2|
× η + RS AT2X

)
(6.16)

ΛY = RS AT1Y −

(
RS AT1Y − RS AT2Y

|~RS AT1 − ~RS AT2|
× η + RS AT2Y

)
(6.17)

ΛZ = RS AT1Z −

(
RS AT1Z − RS AT2Z

|~RS AT1 − ~RS AT2|
× η + RS AT2Z

)
(6.18)

Eqs.(6.16) through (6.18) displays the components of the unit vector of the component by

component miss distance vector between Sat 1 and Sat 2. The unit vector components

are multiplied by η, the radius of the sphere, and added to the component of the non-

maneuvering satellite. Interestingly, this technique makes the solution dynamic. Meaning,

that the solution to the sphere edge changes with each iteration because the solution itself

is based on the position of both the maneuvering and non-maneuvering satellites.

Overall, the error vector, Eq.(6.15), represents the dynamic solution for the position

and the applied ∆V on the maneuvering satellite, Sat 1.

The remaining development and implementation of the algorithm proceeds according

to Section 4.3.
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6.4 Results and Discussion

Recall in the derivation of the dynamic TMN differential correction algorithm that

tolerance levels are needed to declare model convergence. Once the variation of the applied

∆V components are within 0.001 meters
sec and the variation of the ∆t component is within 0.01

sec on successive iterations, convergence is complete and a unique solution to the model

can be declared. While there is no specific argument for these particular values, ’real life’

factors weigh in. Considering at LEO velocity can be as high as 7500 m
sec , a ∆t of 0.01 sec

translates to approximately 75 meters of error. At GEO ∆t of 0.01 sec, translates to about

30 meters of error. Balancing the desire to minimize computing time and providing a viable

solution, this margin of error is acceptable throughout this study.

It is also noteworthy that in order to efficiently complete the computations required

through the algorithm, new units need to be introduced. According to References [3] and

[4], it is acceptable to define the constants DU and TU. The DU is simply the radius of the

Earth (1 DU = 6378.137 km) and to simplify the system models, the Earth’s Gravitational

Parameter, µ, will equal 1 if TU = 806.811 seconds.

Throughout the results of this study, the range, η, utilized was 100 km. The margin for

error was 1%, allowing for a maximum sphere radius of 101 km, or 0.016 DU. Provided

the solution sphere radius, solving for the impulsive tangential phasing maneuver required

utilizing standard 2-body dynamics. Fortunately, that is why this type of problem is

used to demonstrate the versatility of the dynamic TMN differential correction algorithm.

Additionally, the dynamic algorithm is able to provide the required impulsive maneuver for

Sat 1, to meet the specified sphere radius utilizing complex system dynamics including the

effects of J2 and air drag.

Additionally, the following results are illustrated for various values of ballistic

coefficient regarding design decision impacts. The ballistic coefficient is identical for both

the maneuvering and non-maneuvering satellite, for each specific value, throughout these
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results. It is also important to keep in mind that the goal of this study is to deliver the

maneuvering satellite within the solution sphere of the non-maneuvering satellite at the

time that the non-maneuvering satellite has completed one single orbit.

6.4.1 Results Based on Initial Maneuvering Vehicle Inclination.

Figure 6.1 illustrates the impact of the miss distance between the maneuvering

and non-maneuvering satellites, Sat 1 and Sat 2, based on the initial inclination of the

maneuvering satellite. The normalized value represents the maximum sphere radius.

Overall, Figure 6.1 shows that there is little impact on the miss distance due to the initial

inclination of Sat 1, regardless of the ballistic coefficient. Keep in mind that the desired

value is to be at or within the user defined sphere, 0.99, with 1% margin representing a

normalized value of 1. Also, the algorithm begins with Sat 1 located at the 0.99 sphere

range.

Figure 6.1: Maneuvering Satellite’s Inclination vs. Normalized Miss Distance.
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Not surprisingly, the 2-body solutions in Figure 6.2 show a normalized transfer time

very near 1. This normalized transfer time is the algorithm’s time solution for the maneuver

divided by the orbital period of the non-maneuvering satellite. Therefore, a normalized

transfer time of 1 is equal to Sat 2’s orbital period. Values less than 1 are times shorter

than the non-maneuvering satellite’s orbital period, while values greater than 1 represent

times greater than Sat 2’s orbital period. Figure 6.2 shows that there is a slight increase in

time relative to the non-maneuvering satellite’s orbital period as the maneuvering satellite’s

initial inclination is increased. Recall, that the initial position for the maneuvering satellite

is based on the initial position of the non-maneuvering satellite and that the maneuvering

satellite begins at the edge of the solution sphere of the non-maneuvering satellite along

its unit position vector. Therefore, a lower maneuvering satellite inclination will deliver

Sat 1 to the solution sphere sooner than a higher initial inclination ultimately due to

the differences between the satellite’s initial inclinations. Also recall that the range of

normalized time values is dependent on the orbital period, an integer value from 90 to

1440 minutes. Therefore, the range which represents the majority of the simulations, in

Figure 6.2, of ≈0.99 to ≈1.01 represents +/- 0.9 to +/- 14.4 minutes depending on the

non-maneuvering satellite’s orbital period.

Figure 6.3 demonstrates that there is no specific correlation between only the

maneuvering satellite’s initial inclination and the required ∆V.

6.4.2 Results Based on Non-maneuvering Vehicle Inclination.

There is no specific impact on the normalized miss distance or required ∆V resulting

from the non-maneuvering satellite’s initial inclination. However for reference the plots

are included in this chapter’s Appendix as Figures 6.1 and 6.2.

Similarly to the maneuvering satellite results, Figure 6.4 also shows a slight upward

trend in transfer time as the non-maneuvering satellite’s initial inclination is increased.
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Figure 6.2: Maneuvering Satellite’s Inclination vs. Normalized Transfer Time.

Figure 6.3: Maneuvering Satellite’s Inclination vs. ∆V.
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Figure 6.4: Non-maneuvering Satellite’s Inclination vs. Normalized Transfer Time.

6.4.3 Results Based on Initial Maneuvering Vehicle Semi-major Axis.

Now considering the results for the semi-major axis, recall how the study was

executed. The semi-major axis will only have certain values based on the random integer

selection for the orbital period. Therefore, an orbital period ranging from 90 to 1440

minutes and a fixed initial altitude of 250 km yields semi-major axis values of 6652.56

km to 42241.1 km for the maneuvering satellite.

Figures 6.5 and 6.6 illustrate that varying the maneuvering satellite’s initial semi-major

axis does not impact the normalized miss distance or transfer time.

Much more interesting information can be gleaned from analyzing Figure 6.7. It is

clear a pattern is trying to emerge from the information. However, at this point, based only

on the initial semi-major axis of the maneuvering satellite, it can be seen that a larger range

for ∆V exists with the lowest initial semi-major axis value, 6652.56 km. The range in this

case is ≈0 to ≈2750 m
sec . The opposite is illustrated for an initial semi-major axis value
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Figure 6.5: Maneuvering Satellite’s Semi-major Axis vs. Normalized Miss Distance.

Figure 6.6: Maneuvering Satellite’s Semi-major Axis vs. Normalized Transfer Time.
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Figure 6.7: Maneuvering Satellite’s Semi-major Axis vs. ∆V.

of 16763.39 km. The range in this case is only ≈0 to ≈800 m
sec . Keep in mind that these

particular results are based solely on the randomness of the initial conditions. Meaning, that

the specific values ultimately are random. They are provided to illustrate the value of the

contribution of the dynamic TMN algorithm. These results again, appear to be independent

of the dynamics model used or the ballistic coefficient.

6.4.4 Results Based on Initial Non-maneuvering Vehicle Semi-major Axis.

Similar to the maneuvering satellite’s semi-major axis results, there are only fixed

values for the non-maneuvering satellite’s semi-major axis. Therefore, Satellite 2, also has

a semi-major axis range of 6652.56 km to 42241.1 km, however, with an initial altitude of

150 km.

The impact on the normalized miss distance, based solely on the non-maneuvering

satellite’s initial semi-major axis, is negligible. For reference, Figure 6.3 in this chapter’s

Appendix illustrates this relationship.
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Figure 6.8 shows that a tighter range of transfer times exists at the lower values

of initial semi-major axis, with a larger range of times at the higher initial semi-major

axis values. While this information is not directly applicable in a mission design, it can

demonstrate that a generally lower non-maneuvering satellite initial semi-major axis leads

to a higher probability for Satellite 1’s maneuver solution to drive it to the sphere with a

transfer time closer to Satellite 2’s orbital period. However, these results by themselves

are inconclusive due to the lack of visual knowledge of the maneuvering satellite’s initial

semi-major axis at these points.

Figure 6.8: Non-maneuvering Satellite’s Semi-major Axis vs. Normalized Transfer Time.

The results presented in Figure 6.9 begin to display more useful design information. It

can be clearly seen that the lower the initial non-maneuvering satellite’s initial semi-major

axis, the lower the range of required ∆V. Specifically, the range at the lowest values for

semi-major axis is from ≈0 to ≈650 m
sec , while the higher values of initial semi-major axis

yield the largest range from ≈0 to ≈2750 m
sec . This makes sense considering the fixed initial
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altitudes for both the maneuvering and non-maneuvering satellites. Meaning, the lower

non-maneuvering satellite’s semi-major axis, has a higher chance of requiring a lower ∆V.

While interesting, these results are still not independent of the initial maneuvering satellite’s

semi-major axis.

Figure 6.9: Non-maneuvering Satellite’s Semi-major Axis vs. ∆V.

6.4.5 Results Based on Initial Semi-major Axis Ratio.

Since there were design implications gleaned from analyzing the individual impacts

of the initial semi-major axes for both the maneuvering and non-maneuvering satellites,

more information can be gained by comparing the values together. This is accomplished

by determining the ratio between the non-maneuvering satellite’s semi-major axis vs. the

maneuvering satellite’s semi-major axis.

Figure 6.10 shows the range of semi-major axis ratios and illustrates the majority of

data points exist with a ratio less than 5.
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Figure 6.10: Satellites’ Semi-major Axis Ratio vs. Normalized Miss Distance.

The results in Figure 6.11 illustrate that based on the relationship between the semi-

major axes, the majority of transfers occurs within +/- 0.01, or 0.9 to 14.4 minutes, of the

non-maneuvering satellite’s orbital period.

Significant information can be gleaned from the semi-major axis ratio relationship

versus the required ∆V. Figure 6.12 presents these results for the range of system dynamics

and ballistic coefficients. Clearly, the lowest ∆V occurs when the size of Satellite 2’s orbit

is the same as Satellite 1’s orbit, i.e. the ratio is equal to 1. It is more interesting, however,

when the non-maneuvering satellite’s semi-major axis is smaller than the maneuvering

satellite’s semi-major axis, making the ratio less than 1. The grouping of results in this

range is very tight, leading to a very accurate model to then predict a ∆V for any provided

values for Satellite 1 and Satellite 2’s semi-major axes. For a non-maneuvering semi-major

axis, to a maneuvering semi-major axis ratio range of 0.25 to 0.97, Eq.(6.19) provides a

very accurate approximation of the required ∆V to solve this mission, regardless of system
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Figure 6.11: Satellites’ Semi-major Axis Ratio vs. Normalized Transfer Time.

model and ballistic coefficient. ∆V is in m
sec and aR is aS at2

aS at1
.

∆V = 1639 × a−0.4745
R − 1658 (6.19)

While not nearly as accurate, Rough-Order-of-Magnitude (ROM) values for ratio

values greater than 1 can be approximated based on the system model and ballistic

coefficient. These values represent starting points for further evaluation during mission

design. Following the template in Eq.(6.20), Table 6.1 summarizes the values for these

ROM approximations. These approximations are valid for a ratio value of 1.03 to 6.5.

∆V = A × aB
R −C (6.20)

In summary, Figure 6.13 is a plot of the approximations in Eqs. (6.19) and (6.20). For

ratio values between 0.97 and 1.03, the ∆V is ≈0 m
sec .

Valid solutions to complex nonlinear differential equations require excellent knowl-

edge of the system’s dynamics and initial conditions. Initiating the dynamic TMN algo-
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Figure 6.12: Actual Satellites’ Semi-major Axis Ratio vs. ∆V.

Table 6.1: Coefficients for ∆V ROM Estimations for Semi-major Axis Ratio.

Dynamics A B C

2-body 1979 0.5174 2015

J2 1840 0.5367 1866

BC=0.044 2099 0.4792 2112

BC=0.5 1948 0.5079 1958

BC=1 1848 0.5253 1848

rithm is no exception. Specifically, the algorithm is much more efficient provided a valid

input for the required ∆V. Previous to the development of the results in Figure 6.13, the

initial guess at the required ∆V for the dynamic TMN algorithm followed five steps:

94



1. Calculate specific mechanical energy of the non-maneuvering satellite at the

specified semi-major axis.

2. Calculate velocity magnitude, assuming 150 km starting altitude.

3. Calculate specific mechanical energy of the maneuvering satellite at the specified

semi-major axis.

4. Calculate velocity magnitude, assuming 250 km starting altitude.

5. Calculate initial ∆V, |~VS AT2| − |~VS AT1|.

While the five step method is not extremely laborious, the relationships highlighted in

Table 6.1 using Eq.(6.20) requires only one step and its accuracy is highlighted in Table

6.2. The TMN ∆V is the simulation result from the initial semi-major axes. The column

marked ‘Eq.(6.20) ∆V m
sec ’ are the results from said equation utilizing the values from

Table 6.1. The, ‘5 Step ∆V m
sec ’, is calculated following the previously identified steps. The

percent error columns are for the empirical results compared to the simulated results from

the dynamic TMN differential correction algorithm.

The ‘Better’ column in Table 6.2 shows which method delivers a more accurate

prediction to the actual results found through the TMN algorithm. Out of the eight

examples, it is a draw, four and four, on which method is better, however a closer evaluation

highlighted in Table 6.3 tells a different story.

Overall, as evidenced by the results in Table 6.3, the equation presented by Eq.(6.20)

and the results in Table 6.1, provide a better estimate of the required ∆V to execute the

prescribed mission.

Figure 6.13 provides a very good starting point for conducting mission design trade-

offs. Ultimately, keep in mind that these results are possible due to the implementation of

the dynamic TMN differential correction algorithm.
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Table 6.2: Summary of Results for Semi-major Axis Ratio Initial ∆V Guess for TMN

Algorithm Using 2-body System Dynamics

Ratio TMN ∆V m
sec Eq.(6.20) ∆V m

sec % Error 5 Step ∆V m
sec % Error Better ∆V

0.303 1087.80 1230.7 13.1 990.73 8.9 5 Step

0.816 119.82 147.02 22.7 31.01 74.1 Eq.(6.20)

1.498 394.36 424.25 7.5 484.17 22.8 Eq.(6.20)

2.378 1132.90 1083.12 4.4 1222.9 7.9 Eq.(6.20)

3.302 1846.20 1656.65 10.3 1935.6 4.8 5 Step

4.642 2591.60 2364.24 8.8 2681.2 3.5 5 Step

5.429 2683.83 2734.32 1.9 2770.9 3.2 Eq.(6.20)

6.172 2745.40 3059.72 11.4 2833.3 3.2 5 Step

Table 6.3: Average % Error for Empirical Method.

Eq.(6.20) ∆V 5 Step ∆V

10.01% 16.05%

6.4.6 Results Based on Initial Inclination Ratio.

The following results are presented by defining the initial inclination ratio as the non-

maneuvering satellite inclination versus the maneuvering satellite inclination. Therefore,

an inclination ratio value less than one means that the non-maneuvering satellite is at a

lower inclination than the maneuvering satellite and vice versa for a ratio value greater

than one. Recall that the non-maneuvering satellite’s inclination is selected first, following

a random normal distribution according to Eq.(6.2). The maneuvering satellite’s inclination
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Figure 6.13: Estimated Satellites’ Semi-major Axis Ratio vs. ∆V.

is determined as a result of the conversion to COEs of Satellite 1’s initial position and

velocity vectors following from the algorithm development in Section 6.3.

Figure 6.14 highlights that all of the simulations still achieve the desired sphere radius

of 100 km, with a 1% margin for 101 km regardless of inclination ratio. The majority of

simulations result in an inclination ratio less than six.

No additional significant design considerations can be gleaned from the results

illustrated in Figure 6.15, except that the largest range of transfer time values occurs at
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Figure 6.14: Satellites’ Inclination Ratio vs. Normalized Miss Distance.

Figure 6.15: Satellites’ Inclination Ratio vs. Normalized Transfer Time.
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a ratio value ≈1. Based solely on the ratio value at this point does not provide helpful orbit

design information.

Figure 6.16 illustrates that overall, the lower values for inclination ratio, yield the

higher required ∆Vs with the largest range of values, even though no specific pattern

emerges.

Figure 6.16: Satellites’ Inclination Ratio vs. ∆V.

6.4.7 Results Based on Initial Semi-major Axis and Initial Inclination Ratio.

The preceding analysis has demonstrated that the most significant impact on the

required ∆V to complete the mission has been based ultimately on the ratio between the

non-maneuvering satellite’s semi-major axis and the maneuvering satellite’s semi-major

axis. However, [3, 10, 25–27, 45] all cite the perturbation modeling as a function of

inclination. Note, these sources also cite eccentricity, but how this problem was framed,

with a fixed initial altitude, impacts due to eccentricity are the same as the semi-major

axis impacts. Therefore, the most complete analysis of mission design impacts can be
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attributed to the relationship between Satellite 1 and Satellite 2’s semi-major axes and

inclinations. This information has already been presented independently, but is better

illustrated combined in Figures 6.17 through 6.19.

Figure 6.17: Satellites’ Inclination Ratio vs. Semi-major Axis Ratio vs. ∆V.

Figure 6.17 represents a 3-Dimensional view illustrating the impacts of the orbit

design parameters of the semi-major axis, as well as the inclination. Presenting the

information in this form ultimately allows the user to define four variables and picture

their impact on the resulting required ∆V. The four variables are the maneuvering satellite’s

semi-major axis and inclination, as well as the non-maneuvering satellite’s semi-major axis

and inclination.
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Figure 6.18: Satellites’ Inclination Ratio vs. Semi-major Axis Ratio vs. ∆V.

A view that is partial towards the inclination ratio’s impact on overall ∆V is presented

in Figure 6.18. A biased view towards the semi-major axis ratio impact is provided in

Figure 6.19.

6.4.8 Results Based on Combined Initial Vehicle Semi-major Axes.

Ultimately, the most significant ∆V mission design consideration can be gleaned

from a comparison of the actual semi-major axis values for the maneuvering and non-

maneuvering satellites. Figure 6.20 provides that information. It follows intuition that the

higher required ∆V values occur when the largest difference exists between the size of the

non-maneuvering satellite’s orbit compared to the size of the maneuvering satellite’s orbit.
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Figure 6.19: Satellites’ Inclination Ratio vs. Semi-major Axis Ratio vs. ∆V.

Figure 6.20 also highlights the line titled ‘1/1 Ratio Line’ as the series of points in the

solution space where the values of both, Satellite 1 and Satellite 2’s semi-major axes are

equivalent, resulting in the minimum fuel expenditure.

6.5 Chapter Summary

Overall, this chapter presented the Dynamic T-Matrix Navigation algorithm to deliver

an impulsive maneuver to place a satellite within a sphere of user defined radius, centered

around a non-maneuvering satellite within a constrained time. The methodology and results

were presented for a non-maneuvering satellite, beginning at a perigee altitude of 150 km
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Figure 6.20: Satellite 1 Semi-major Axis vs. Satellite 2 Semi-major Axis vs. ∆V.

and a maneuvering satellite, beginning along the same unit position vector at an altitude

of 250 km. The sphere radius was 100 km with a 1% margin allowing for a solution

when the maneuvering satellite returns to within 101 km of the non-maneuvering satellite

at a time +/- 10% of the non-maneuvering satellite’s orbital period. The presented results

were constrained to prograde orbits. In the end, the focus of the results was based on

the success of the modified Dynamic T-Matrix Navigation algorithm, while demonstrating

unique information about this problem. Several orbit design considerations were studied,

including the selection of the satellites’ initial inclinations, semi-major axes, as well as the

ballistic coefficients. The capstone of the study is the ability for the user to empirically
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predict the necessary ∆V for a desired combination of semi-major axes. Ultimately, the

successful modification to the original T-Matrix Navigation algorithm further demonstrates

the algorithm’s flexibility, especially while laying the groundwork for a theater based

responsive relay satellite coverage or responsive cooperative collection capability.
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6.6 Chapter Appendix

Figure 6.1: Non-maneuvering Satellite’s Inclination vs. Normalized Miss Distance.

Figure 6.2: Non-maneuvering Satellite’s Inclination vs. ∆V.
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Figure 6.3: Non-maneuvering Satellite’s Semi-major Axis vs. Normalized Miss Distance.
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VII. Navigation Solution to Maneuver a Spacecraft Relative to Spheres Centered

on Multiple Cooperative Satellites

7.1 Introduction

This chapter will continue to expand on the development of the Dynamic T-Matrix

Navigation algorithm presented in the previous chapter, leveraging the T-Matrix Navigation

algorithm. Specifically, this chapter will present the algorithm for varying the geometric

solution between the maneuvering satellite relative to multiple non-maneuvering satellites.

7.2 Problem Statement

The purpose of this study is to demonstrate the ability for the Dynamic TMN

algorithm to deliver an impulsive maneuver to a satellite to place it within the overlapping

3-Dimensional space of multiple spheres, with a user-defined radius, centered around

multiple non-maneuvering satellites within a constrained time. Figure 7.1, illustrates the

problem.

Specifically, the proceeding methodology and results are based on multiple non-

maneuvering satellites beginning at a perigee altitude of 274.41 km and a maneuvering

satellite beginning along the same unit position vector at an altitude of 1406.4 km. The

radius within this study is 1500 km with a 5% margin, allowing for a viable solution to be

achieved when the maneuvering satellite returns to within 1575 km of the non-maneuvering

satellites. Further, it is assumed throughout that the non-maneuvering satellites must

return to their original inertial positions in space relative to the Earth +/- 10% before the

maneuvering satellite can successfully declare a solution within the overlapping spheres.

This study only focuses on prograde orbits, therefore inclinations range between 0◦ and

90◦. The focus of the results is based on the success of the Dynamic TMN algorithm, while

demonstrating unique information about this problem. Throughout the development and
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Figure 7.1: Illustration of Problem Statement.

results, the terms ‘Satellite 1’, ‘Sat 1’ and ‘maneuvering satellite’ are one in the same, while

‘cooperative satellites’ and ‘non-maneuvering satellites’ are both the same. A summary of
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the optimal control problem solved in this chapter is in Eq.(7.1)

Minimize: J =
∫ t f

t0
|u(t)| dt

Subject to:

~̇R, ~̇V

u(t) = ∆Vδ0(t − t0)

t f ∈ [0.9LCM(PCOOP1 , . . . ,PCOOPN ), 1.1LCM(PCOOP1 , . . . ,PCOOPN )]

Initial Conditions:

~R1(t0) = ~R1t0

~V1(t0) = ~V1t0

~RCOOP1(t0) = ~RCOOP1t0

~VCOOP1(t0) = ~VCOOP1t0

...

~RCOOPN (t0) = ~RCOOPNt0

~VCOOPN (t0) = ~VCOOPNt0

t0 = 0

Terminal Conditions:

~R1(t f ) ∈ B(~RCOOP1(t f ), η)
⋂
. . .

⋂
B(~RCOOPN (t f ), η)

(7.1)

A summary of the step-by-step procedure to solve the problem is shown. The unique

contributions in this chapter are highlighted by boldface.

1. Establish initial Classic Orbital Elements (COEs) for satellites.

2. Convert COEs to initial position, ~R0, and velocity, ~V0 vectors.

3. Establish scaling parameters and scaling matrix, S[4].

4. Establish weight matrix, Q[4].

5. Determine initial guess for required fuel, ∆V, and transfer time, t.
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6. Integrate Equations of Motion (EOM) for cooperative satellites for duration of

t.

7. Calculate final state, ~R, ~V , for cooperative satellites at t.

8. Apply ∆V to maneuvering satellite to yield ~V0+.

9. Integrate EOM for maneuvering satellite for duration of t.

10. Calculate final state ~R, ~V , for maneuvering satellite at t.

11. Calculate spherical separation distance between maneuvering satellite and

cooperative satellites.

12. Integrate maneuvering satellite’s State Transition Matrix (STM) using Equations of

Variation (EOV) for duration of t.

13. Declare φ matrix as upper right 3x3 portion of STM[4].

14. Calculate velocity difference vector, ~VDIFF , between maneuvering satellite and

cooperative satellites velocity vectors.

15. Calculate ∆V for maneuvering satellite: ∆V = ~V0+ − ~V0.

16. Compile error vector, ē, as the spherical separation distance between the

maneuvering satellite and each cooperative satellite and components of ∆V.

17. Build T̃ matrix:

φ1φ2...φN ~VDi f f

I 0

.
18. Calculate T matrix: T = S−1T̃ [4].

19. Declare convergence criteria when all control contributions to ∆V are 0.

20. Determine ∂u: ∂u = −(T′Q−1T)−1T′Q−1ē[4].
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21. Check ∂u components versus convergence criteria.

22. If convergence criteria are satisfied then the algorithm is complete.

• Final ∆V = ∆V from error vector, ē

• Final transfer time = current t

23. Add
∑

∆V from ∂u to ~V0+ yielding new ∆V.

24. Add ∆t from ∂u to transfer time, t, for updated time.

25. Return to #6.

7.3 Establishing the Algorithm

In order to implement the Dynamic TMN algorithm, the initial orbits are needed.

Depending on how the problem is framed there can be a variable number of non-

maneuvering satellites within the scenario. This number will simply be referred to as ‘N’

cooperative satellites. Regardless of the number of cooperative satellites, there will only be

one maneuvering satellite (Sat 1). The maneuvering satellite will be the satellite to which

the ∆V is applied. For this particular problem, all satellites will begin along the same unit

position vector. Specifically, the ‘N’ cooperative satellites will begin at the same point,

therefore the position vector is identical for each. They will begin at an altitude of 274.41

km. The maneuvering satellite, along the same initial unit vector is at 1406.4 km altitude.

An additional assumption for establishing this problem places all satellites along the X̂ axis

at the starting time, providing for the initial position vectors in Eqs.(7.2) and (7.3).

~RS at1 = |~RS at1|


1

0

0

 km (7.2)
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~RN = |~RN |


1

0

0

 km (7.3)

The initial positions for the cooperative satellites are fixed, as are their orbital periods.

Specifically for this chapter, the fixed orbital periods are different for each cooperative

satellite, therefore resulting in differing final positions after each orbital period. However,

the lowest value for the orbital period is 90 minutes, resulting in a circular orbit at 274.41

km altitude. Considering 90 minutes as the fastest orbital period, this ensures that the

initial position vectors for the cooperative satellites are at perigee. Because the cooperative

satellites are beginning along the X̂ unit vector, the Right Ascension of the Ascending

Node (RAAN) and the argument of perigee are 0◦. Also, provided a fixed initial position

and orbital period, the semi-major axis and eccentricity are determined. That simply means

that the initial COEs are nearly complete.

To complete the initial conditions for the cooperative satellites, the only remaining

COE, inclination, is determined following a normal distribution according to Eq.(7.4)

[70]. Each cooperative satellite has a random value for inclination between 0◦ and 90◦.

A straightforward conversion from COEs is now possible for the cooperative satellites.

i = Mod
(
Abs(NormalDistribution) ×

π

4
,
π

2

)
(7.4)

Once the initial COEs were determined for the cooperative satellites, the original

position and velocity vectors needed to be determined for the maneuvering satellite,

Satellite 1. Provided the fixed altitude, Satellite 1 is in a circular orbit, therefore, semi-

major axis and eccentricity are known. Understanding the initial position vector for

Satellite 1, at the fixed altitude of 1406.4 km in Eq.(7.2) leads to a RAAN and argument

of perigee of 0◦. The inclination for Satellite 1 is also randomized according to Eq.(7.4)

and has a range of 0◦ and 90◦. Converting to ~R and ~V is possible with the COEs for the

maneuvering satellite.
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In order for the algorithm to proceed, the future state, both the position and velocity

vectors need to be determined for the maneuvering satellite. Once the position vector in

the future is determined for Sat 1, that same time is used to determine the position vectors

for the cooperative satellites, and an error vector is calculated. The error vector for this

study is displayed in Eq.(7.5). Because the error is in vector form, it is a function of

the number of relationships between the maneuvering satellite and the ‘N’ cooperative

satellites. Therefore, the error vector in Eq.(7.5) is representative of any number of

cooperative satellites and has dimensions, (3N + 3) × 1.

ēT =

[
Λ1X Λ1Y Λ1Z Λ2X Λ2Y Λ2Z · · · ΛNX ΛNY ΛNZ ∆VX ∆VY ∆VZ

]
(7.5)

The vector ~Λ represents a relationship between the maneuvering and non-maneuvering

satellites, according to the radius of the user-defined sphere. The components of the ~Λ

vector relationships are described in Eqs.(7.6) through (7.8).

ΛNX = RS AT1X −

(
RS AT1X − RNX

|~RS AT1 − ~RN |
∗ η + RNX

)
(7.6)

ΛNY = RS AT1Y −

(
RS AT1Y − RNY

|~RS AT1 − ~RN |
∗ η + RNY

)
(7.7)

ΛNZ = RS AT1Z −

(
RS AT1Z − RNZ

|~RS AT1 − ~RN |
∗ η + RNZ

)
(7.8)

Eqs.(7.6) through (7.8) display the elements of the unit vector of the component by

component miss distance vector between Sat 1 and the cooperative satellites. The unit

vector components are multiplied by η, the radius of the sphere, and added to the component

of the non-maneuvering satellites. Interestingly, the solution is dynamic. Meaning that the

solution to the sphere edge changes with each iteration because the solution itself is based

on the position of the maneuvering and each of the non-maneuvering satellites.

It is necessary to identify that the integrated equations for the solution will follow

two separate models. The first is for the maneuvering satellite and the second is for the

cooperative satellites. The maneuvering satellite will be subject to EOM including both J2
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and an air drag model. While, the cooperative satellites will simply follow 2-body EOM.

The cooperative satellites will be simulating active orbit control needing to return over to

the same inertial position in space.

The development and derivation of the maneuvering satellite’s State Transition Matrix

follows from Section 4.3.

Another component necessary in the algorithm is the relationship between the

satellites’ final velocity vectors. Identifying this vector and combining this with φ, a

form of the T̃ matrix is determined and shown in equation (7.9). Noticing that the T̃

matrix is adjustable based on the number of cooperative satellites yields the dimensions,

(3N + 3) × (3N + 1).

T̃ =

φ1φ2...φN ~VDi f f

I 0

 (7.9)

~VDi f f =
∑

~VS AT1 − ~VN (7.10)

The φN , terms come directly from Eq.(4.7). It is required to insert an additional φ for

each of the ‘N’ cooperative satellites. Eq.(7.10) represents the sum of the differences

between the maneuvering satellite’s final velocity vector and each cooperative satellite and

has dimensions, 3×1. Therefore, the I matrix requires dimensions (3N×3N) and 0 requires

dimesions (3N × 1). The final T matrix is derived from scaling parameters combined with

T̃ .

The final components of the Dynamic TMN setup is the identification of a weight

matrix, Q and a scale matrix, S. The weight matrix allows for the user to shift convergence

focus from final position to applied ∆V. In order to maintain a balanced focus on both,

minimizing miss distance and fuel used, an identity matrix, I, should be used. For this

study, Q, is simply a (3N + 3) × (3N + 3) I matrix. The scale matrix, S, is utilized to allow

faster convergence within the algorithm. For this study, S is a constant (3N + 3) × (3N + 3)

matrix. S is defined in (7.11) while T is calculated from T̃ and S in (7.12). S is an adjustable
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matrix to allow for better scaling of the nonlinear system of equations.

S = 0.1 × I (7.11)

T = S−1T̃ (7.12)

Ultimately, combining all of this information, the variation of the control vector, ~u,

can be calculated. The variation of ~u is the core of the Dynamic TMN algorithm. Once

the maneuvering satellite is within the overlapping space of the ‘N’ cooperative satellite

spheres, the minimum fuel solution is declared for the model within the constrained time.

It is important to note that based on units and matrix dimensions, ~u, will have (3N + 1) × 1

components. Specifically, the components of ~u are shown below in Eq.(7.13).

~uT =

[
∆V1X ∆V1Y ∆V1Z ∆V2X ∆V2Y ∆V2Z · · · ∆VNX ∆VNY ∆VNZ ∆t

]
(7.13)

The ∆V terms are the changes in the initial impulsive maneuver applied to Sat 1 and the

∆t term is the change in transfer time during each iteration. Summing the results for

each component after each iteration, and then dividing by ‘N’, yields the total ∆V for the

impulsive manuever. Combining the sum of the ∆t’s with the initial transfer time results

in the final transfer time for the optimum ∆V. However, the Dynamic TMN algorithm is

designed so that once the maneuvering satellite is within a sphere, the contribution to the

solution from that cooperative satellite is zeroed out for that iteration. If the next iteration’s

solution forces the maneuvering satellite outside of the sphere, it is reconsidered towards

the solution again. For example, Eqs.(7.5) and (7.13) have been updated in Eqs.(7.14)

and (7.15), considering that the maneuvering satellite is within the sphere of cooperative

satellite 2.

ēT =

[
Λ1X Λ1Y Λ1Z 0 0 0 · · · ΛNX ΛNY ΛNZ ∆VX ∆VY ∆VZ

]
(7.14)

The T̃ and therefore the T matrices are not adjusted as derived in Eqs.(7.9) and (7.12)

because the final velocity difference towards solution is still viable since it will never equal
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~0 for a non-rendezvous mission. Considering this change, the resulting ~u is demonstrated

in Eq.(7.15) for a satisfying solution for cooperative satellite 2.

~uT =

[
∆V1X ∆V1Y ∆V1Z 0 0 0 · · · ∆VNX ∆VNY ∆VNZ ∆t

]
(7.15)

Ultimately, once the net ∆V contribution is 0 in any given iteration, the algorithm declares

a solution. The algorithm iterates on Eq.(7.16) [4]. Every iteration includes all of the

previous steps for determining T. The weight matrix is Q and ē is the error vector from

Eq.(7.5).

∂u = −(T′Q−1T)−1T′Q−1ē (7.16)

7.4 Background for Results

Throughout the results of this study, the range, η, utilized was 1500 km. The margin

for error was 5%, allowing for a maximum sphere radius of 1575 km, or 0.25 DU. Provided

the sphere radius, solving for the impulsive tangential phasing maneuver required utilizing

2-body dynamics, which is a basic astrodynamics exercise. Fortunately, that is why this

type of problem is used to demonstrate the versatility of the Dynamic TMN differential

correction algorithm. Additionally, the dynamic algorithm is able to provide the required

impulsive maneuver to be applied to Sat 1, to meet the specified sphere radius utilizing

complex system dynamics including the effects of J2 and air drag.

It is also of note that this study focused only on prograde orbits, therefore inclination,

i, is between 0◦ and 90◦ for both the maneuvering and non-maneuvering satellites.

Additionally, the following results are illustrated for one single value of ballistic coefficient

for the maneuvering satellite. That value is 0.044, which is a reasonable value from

Reference [48]. The cooperative satellites, however will follow only 2-body dynamics

in satisfaction of the assumption that their mission requirements are to maintain the same

inertial position in space relative to the Earth. It is also important to keep in mind that the

goal of this study is to deliver the maneuvering satellite within the overlapping region of the
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spheres of the non-maneuvering satellites at the time that the non-maneuvering satellites are

nearly at their beginning positions, as soon as possible. Due to the differing orbital periods

of the cooperative satellites, this time is the time that is the Least Common Multiple (LCM)

of the orbital periods.

Overall, there are two viable solutions for solving this problem within the provided

time constraints of being near the same inertial position in space relative to the Earth. One

is the solution that executes a maneuver to allow Satellite 1 to become in phase with the

combination of cooperative satellites’ orbital periods. The second, is to execute a maneuver

only to offset the perturbations in order for Satellite 1 to be in the correct inertial position in

space relative to the Earth at the time when the cooperative satellites’ orbital periods line up.

Either solution requires the LCM for the orbital periods, however the phasing solution only

requires the LCM for the cooperative satellites, while the non-phasing maneuver solution

requires the LCM of the cooperative satellites with Satellite 1.

In order to facilitate the best comparison, the orbital periods used throughout the

results allow for the same time solution for both the phasing and non-phasing scenarios.

Specifically, the transfer time is the LCM for the scenario with and without the orbital

period of the maneuvering satellite included. That orbital period is 108,000 seconds, or 30

hours, or 133.86 TU.

Demonstrating the effectiveness of the algorithm throughout these results is paramount.

Some interesting characteristics of the problem design are also realized. These results are

presented for 3 separate scenarios. All scenarios have one maneuvering satellite. The first

is a scenario with two cooperative satellites, for a total of three satellites. The second is a

scenario with three cooperative satellites, while the third has four cooperative satellites to

make four and five total satellites respectively. Because of the identical LCM for the orbital

periods, Tables 7.1 through 7.3 displays the initial conditions for the satellites.
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Table 7.1: Initial Orbits for Maneuvering and Cooperative Satellites 3 Total Sats Scenario.

Man. Sat Coop. Sat 1 Coop. Sat 2

Semi-major Axis, a (DU) 1.264 1.043 3.695

Eccentricity, e 0 0 0.718

Period (TU) 8.924 6.693 44.620

Table 7.2: Initial Orbits for Maneuvering and Cooperative Satellites 4 Total Sats Scenario.

Man. Sat Coop. Sat 1 Coop. Sat 2 Coop. Sat 3

a (DU) 1.264 1.043 1.264 1.466

e 0 0 0.175 0.289

Period (TU) 8.924 6.693 8.924 11.155

7.5 Results and Discussion with Phasing Maneuver

Recall that the phasing maneuver results highlight the maneuver required to deliver

the maneuvering satellite on a trajectory that has an orbital period in phase with

Table 7.3: Initial Orbits for Maneuvering and Cooperative Satellites 5 Total Sats Scenario.

Man. Sat Coop. Sat 1 Coop. Sat 2 Coop. Sat 3 Coop. Sat 4

a (DU) 1.264 1.043 1.264 1.466 1.657

e 0 0 0.175 0.289 0.370

Period (TU) 8.924 6.693 8.924 11.155 13.386
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cooperative satellites’ orbital periods. The period is 108,000 seconds or 30 hours. The

phasing maneuver was analyzed for the maneuvering satellite to cooperative satellite miss

distance, transfer time, and required ∆V. These three quantities were evaluated versus the

maneuvering satellite’s initial inclination, the cooperative satellite’s inclination, the ratio of

the cooperative satellites’ semi-major axis versus the maneuvering satellite’s semi-major

axis and the ratio of the cooperative satellites’ inclination versus Satellite 1’s inclination.

Unfortunately, the majority of the analysis was inconclusive. Figures 7.14 through 7.23

in this chapter’s Appendix, provide the analysis for the maneuvering satellite inclination,

cooperative satellite inclination and semi-major axis ratio versus the miss distance, transfer

time and required ∆V.

Significant orbit design information was learned from the Dynamic TMN algorithm’s

results for the initial satellite inclination ratio analysis. The inclination ratio is defined as the

average cooperative satellite inclination divided by the maneuvering satellite inclination.

To begin, Figure 7.2 illustrates the range of values between the maneuvering satellite’s

initial inclination and the average cooperative satellites’ initial inclination. A good random

range in this plot is what is expected and what is displayed.

The actual range of inclination ratio values is from ≈0 to ≈41. Over 93% of the

Dynamic TMN algorithm’s solutions have an inclination ratio less than 2.5. For illustrative

purposes the following figures are only displayed from 0 to 2.5 to show the emerging

patterns.

Figure 7.3 shows the beginning of a pattern with the expected normalized miss

distance and the ratio of the initial inclinations of all of the satellites within the scenario.

The normalized average miss distance is the average distance of the difference between

the maneuvering satellite and each of the cooperative satellites. Keep in mind that the

maximum sphere radius was 1575 km with a 5% margin, therefore the ‘1’ value represents

1575 km.
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Figure 7.2: Maneuvering Satellite Inclination vs. Average Cooperative Satellites’

Inclination.

Figure 7.3: Satellites’ Initial Inclination Ratio vs. Normalized Miss Distance.
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Figure 7.4 represents the normalized ∆V required to send the maneuvering vehicle

within the overlapping spheres of the cooperative satellites. The ∆V is normalized by the

transfer time in TUs.

Figure 7.4: Satellites’ Initial Inclination Ratio vs. Normalized ∆V.

These results, based on the inclination ratio, have all presented emerging patterns.

Polynomial expressions were derived to estimate the behavior of any given inclination ratio

from 0 to 2.5 with reasonable accuracy.

Eq.(7.17) shows the a polynomial approximation model for predicting the expected

normalized miss distance provided an inclination ratio, iR. The coefficients for the

approximation model are in Table 7.4 for each of the 3, 4, and 5 satellite scenarios.

Miss = Ai7
R + Bi6

R + Ci5
R + Di4

R + Ei3
R + Fi2

R + GiR + H (7.17)

Provided the coefficients for the normalized miss distance, Figure 7.5 shows the results

for inclination ratios from ≈0 to 2.5. While the results are not as good as simulated results,
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Table 7.4: Coefficients for Empirical Solution for Normalized Miss Distance.

Scenario A B C D E F G H

3 Total Sats -0.1386 1.177 -3.631 4.794 -2.325 0.2704 -0.351 0.9866

4 Total Sats 0 -0.1325 1.094 -3.363 4.689 -2.807 0.4479 0.9669

5 Total Sats 0 -0.08954 0.7439 -2.32 3.311 -2.053 0.3511 0.9686

they are a ROM approximation of the system output. Tables 7.6 through 7.11 provide more

detailed illustration of the values of the analytical solutions.

Figure 7.5: Satellites’ Initial Inclination Ratio vs. Analytical Normalized Miss Distance.

Eq.(7.18) is presented as the polynomial expression for the required ∆V based on the

inclination ratio. Table 7.5 highlights the coefficients necessary to accurately estimate the
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normalized ∆V for each scenario.

∆V = Ai5
R + Bi4

R + Ci3
R + Di2

R + EiR + F (7.18)

Table 7.5: Coefficients for Empirical Solution for Normalized ∆V.

Scenario A B C D E F

3 Total Sats 0 -0.01224 0.1724 -0.7858 1.245 18.09

4 Total Sats -0.001438 0.003057 0.1526 -1.011 1.838 18.24

5 Total Sats -0.006143 0.03691 0.2417 -2.08 3.874 18.15

Figure 7.6: Satellites’ Initial Inclination Ratio vs. Analytical Normalized ∆V.

The overall accuracy of the required ∆V polynomial approximation model is also

highlighted in Tables 7.6 through 7.11.
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Table 7.6: Empirical vs. Dynamic TMN Results for 3 Satellite Scenario.

Ratio Value Actual Miss Estimate Miss Actual ∆V Estimate ∆V

0.0500 0.9740 0.9695 18.152 18.1503

0.1419 0.9717 0.9373 18.0936 18.2513

0.2640 0.9178 0.8890 18.1604 18.3670

0.4630 0.8110 0.8053 18.5984 18.5145

1.1108 0.8245 0.8236 18.6598 18.7210

2.3211 0.8316 0.8251 18.6564 18.5469

Table 7.7: % Error for Empirical vs. Dynamic TMN Results for 3 Satellite Scenario.

Ratio Value Miss % Miss Value (km) ∆V % ∆V Value m
sec

0.0500 0.4657 7.3346 0.0093 0.2266

0.1419 3.5362 55.6949 0.8717 21.1139

0.2640 3.1359 49.3897 1.1378 27.6590

0.4630 0.7028 11.0695 0.4509 11.2265

1.1108 0.1045 1.6467 0.3281 8.1950

2.3211 0.7807 12.2961 0.5872 14.6643

Within Tables 7.6 to 7.11, the actual and estimated values are the normalized values

presented throughout the figures. It is very promising to note that the largest percentage

of error of all the simulations is 5.2593% in the 4 satellite scenario for miss distance.

The 5.2593% is just slightly higher than the the 5% margin of error allowed for the miss

distance. Overall, this highlights that the polynomial approximation solutions and the
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Table 7.8: Empirical vs. Dynamic TMN Results for 4 Satellite Scenario.

Ratio Value Actual Miss Estimate Miss Actual ∆V Estimate ∆V

0.0511 0.9911 0.9831 18.4280 18.3313

0.1468 0.9763 0.9855 18.4811 18.4885

0.2632 0.9633 0.9610 18.4743 18.6565

0.4462 0.9104 0.9094 18.634 18.8725

1.1059 0.9201 0.9083 19.1695 19.2448

2.2848 0.9338 0.8847 18.9346 18.9756

Table 7.9: % Error for Empirical vs. Dynamic TMN Results for 4 Satellite Scenario.

Ratio Value Miss % Miss Value (km) ∆V % ∆V Value m
sec

0.0511 0.8111 12.7749 0.5247 12.944

0.1468 0.9429 14.8508 0.0401 0.9926

0.2632 0.2359 3.7149 0.9863 24.3921

0.4462 0.1048 1.6511 1.2798 31.9234

1.1059 1.2863 20.2588 0.3926 10.0752

2.2848 5.2593 82.8335 0.2166 5.4904

coefficients presented do a very good job at providing a ROM for the miss distance and

required ∆V, to deliver a maneuvering satellite within the overlapping spheres of multiple

non-maneuvering satellites.
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Table 7.10: Empirical vs. Dynamic TMN Results for 5 Satellite Scenario.

Ratio Value Actual Miss Estimate Miss Actual ∆V Estimate ∆V

0.0564 0.9926 0.9824 18.7469 18.3619

0.1487 0.9824 0.9852 18.7994 18.6809

0.2636 0.9656 0.9689 18.9387 19.0313

0.4740 0.9162 0.9260 19.146 19.5464

1.0954 0.9047 0.9200 20.2815 20.2589

2.3461 0.9497 0.9049 19.6273 19.5928

Table 7.11: % Error for Empirical vs.Dynamic TMN Results for 5 Satellite Scenario.

Ratio Value Miss % Miss Value (km) ∆V % ∆V Value m
sec

0.0564 1.0233 16.1173 2.0536 51.5334

0.1487 0.2869 4.5189 0.6304 15.8646

0.2636 0.3374 5.3138 0.4887 12.3895

0.4740 1.0743 16.921 2.0913 53.5985

1.0954 1.6871 26.5711 0.1113 3.0223

2.3461 4.7176 74.3023 0.1755 4.6121

7.6 Results and Discussion without Phasing Maneuver

The solution without the phasing maneuver, highlights the maneuver required to

overcome perturbations and ultimately deliver the maneuvering satellite on a trajectory

that has an orbital period very similar to its initial orbital period. The following scenario

is similarly constrained to deliver the maneuvering satellite within the overlapping spheres
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of the non-maneuvering satellites within 108000 seconds or 30 hours. The ‘phase-less’

maneuver results are presented for miss distance, transfer time and required ∆V versus the

maneuvering satellite’s initial inclination, the cooperative satellite’s inclination, the ratio of

the cooperative satellites’ semi-major axis versus the maneuvering satellite’s semi-major

axis, and the ratio of the cooperative satellites’ inclination versus Satellite 1’s inclination.

Similar to the phasing maneuver analysis, only certain information is significant for

the ‘phase-less’ maneuver. Results for the average cooperative satellite inclination, initial

semi-major axis ratio, and initial inclination ratio can be found in this chapter’s Appendix,

Figures 7.24 through 7.34. However, considerable mission design information is gleaned

from the initial maneuvering satellite’s orbital inclination. The results illustrated in Figures

7.7 through 7.13 highlight these impacts.

Figure 7.7: Maneuvering Satellite’s Inclination vs. Normalized Miss Distance.

Clearly there is a relationship between the maneuvering satellite’s initial inclination

and the Dynamic TMN algorithm’s miss distance between the maneuvering satellite and
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the overlapping spheres of the non-maneuvering satellites. This is evidenced in Figure 7.7.

There is little difference between the results achieved with the 3, 4 or 5 satellite scenarios.

Between 0◦ and ≈52.5◦ there is a clear pattern and any inclination greater than 52.5◦ yields

the maximum value of the range, 1575 km. Figures 7.8 and 7.9 show the lower inclinations,

0◦ − 52.5◦, and the higher inclinations, 52.5◦ − 90◦. respectively.

Figure 7.8: Maneuvering Satellite’s Inclination vs. Normalized Miss Distance.

Provided the obvious relationship, an analytical solution for estimating the miss

distance based on the maneuvering satellite’s initial inclination is possible. Eq. (7.19)

provides the polynomial approximation model that represents a very good representation

of the Dynamic TMN algorithm’s results. The inclination, i, is simply represented in Eq.

(7.19).

Miss(i) = −1.628x10−9i5 + 1.817x10−7i4 − 2.666x10−6i3−

1.224x10−4i2 − 1.365x10−4i + 9.99x10−1 (7.19)
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Figure 7.9: Maneuvering Satellite’s Inclination vs. Normalized Miss Distance.

The results for the analytical representation are summarized in Tables 7.12 through

7.14. Clearly, the empirical model is an excellent fit for the expected value for normalized

miss distance regardless of the 3, 4 or 5 satellite scenario.

Tables 7.12 through 7.14 display the miss distance as the normalized value unless

noted otherwise. Figure 7.10 represents the full range of polynomial approximation

solutions between 0◦ and ≈52.5◦. For initial inclinations greater than 52.5◦, a normalized

value of 1 is used.

More orbit design information can be gleaned from the results of the Dynamic TMN

algorithm. The maneuvering satellite’s inclination versus the required ∆V is portrayed in

Figure 7.11. Figure 7.11 also displays an impact at ≈52.5◦. Table 7.15 shows the minimum

values and the associated inclinations. Keep in mind, however, even at 48◦, the actual

required ∆V is still only 1.205 m
sec .
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Table 7.12: Empirical vs. Dynamic TMN Results for 3 Satellite Scenario.

Inclination (deg) Actual Miss Estimate Miss Miss % Error Miss Value (km)

0 0.9989 0.9990 0.0100 0.1577

10 0.9846 0.9643 2.0618 32.4726

30 0.9209 0.9204 0.0543 0.8551

45 0.9468 0.9468 0.0000 0.0000

60 0.9978 1 0.2205 3.4726

75 0.9998 1 0.0200 0.3151

90 0.9999 1 0.0100 0.1575

Table 7.13: Empirical vs. Dynamic TMN Results for 4 Satellite Scenario.

Inclination (deg) Actual Miss Estimate Miss Miss % Error Miss Value (km)

0 0.9989 0.9990 0.0100 0.1577

10 0.9844 0.9643 2.0419 32.1592

30 0.9204 0.9204 0.0000 0.0000

45 0.9468 0.9468 0.0000 0.0000

60 0.9985 1 0.1502 2.3660

75 0.9990 1 0.1001 1.5766

90 0.9983 1 0.1703 2.6821

Figure 7.12 illustrates the Dynamic TMN algorithm’s solutions provided maneuvering

satellite inclinations greater than 54◦.
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Table 7.14: Empirical vs. Dynamic TMN Results for 5 Satellite Scenario.

Inclination (deg) Actual Miss Estimate Miss Miss % Error Miss Value (km)

0 0.9989 0.9990 0.0100 0.1577

10 0.9844 0.9643 2.0419 32.1592

30 0.9204 0.9204 0.0000 0.0000

45 0.9468 0.9468 0.0000 0.0000

60 0.9997 1 0.0300 0.4726

75 0.9994 1 0.0600 0.9456

90 0.9994 1 0.0600 0.9456

Figure 7.10: Maneuvering Satellite’s Inclination vs. Empirical Normalized Miss Distance.

With such a clear representation of the algorithm’s results, developing a polynomial

approximation expression to predict the expected ∆V, based on the maneuvering satellite’s
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Table 7.15: Minimum Required ∆V and Associated Maneuvering Satellite Inclinations.

Scenario Inclination (deg) ∆V m
sec

3 Total Sats 53.1 0.2627

4 Total Sats 53.46 0.295

5 Total Sats 53.46 0.00797

Figure 7.11: Maneuvering Satellite’s Inclination vs. Normalized ∆V.

inclination, is desired. For a ROM value, a piecewise function is necessary. There is a

function for representing inclinations less than 47◦ and a function for inclinations greater

than 55◦. Between 47◦ and 55◦, it is expected that the required ∆V is simply less than 1 m
sec .

The lower inclinations can be empirically modeled by Eq.(7.20). The higher inclinations

follow a form of the equation highlighted by Eq.(7.21), with the coefficients in Tables 7.16
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Figure 7.12: Maneuvering Satellite’s Inclination vs. Normalized ∆V.

and 7.17 depending on the scenario.

∆V = 2.006x10−7i3 − 3x10−5i2 + 5.801x10−5i + 5.323x10−2 (7.20)

∆V = A1sin(B1i + C1) + A2sin(B2i + C2) + A3sin(B3i + C3) + A4sin(B4i + C4)+

A5sin(B5i + C5) + A6sin(B6i + C6) + A7sin(B7i + C7) + A8sin(B8i + C8) (7.21)

For the complete range of maneuvering satellite initial inclinations, Figure 7.13

illustrates the empirical solutions using Eqs.(7.20) and (7.21) with the appropriate

coefficients in Tables 7.16 and 7.17.

Tables 7.18 through 7.20 provide more detailed results for the empirical solution for

the required ∆V versus the Dynamic TMN algorithm’s solutions. Keep in mind that the

actual and estimated ∆V values are normalized per the orbital time unit.
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Table 7.16: Coefficients for Empirical Solution for Required ∆V Without Phasing

Maneuver.

Coefficient 3 Total Sats 4 Total Sats 5 Total Sats

A1 0.3003 0.3189 0.4488

B1 0.06866 0.02912 0.04559

C1 2.495 5.367 4.39

A2 0.05227 0.1589 0.2661

B2 0.1498 0.1015 0.1042

C2 0.5295 5.751 5

A3 0.01592 0.02461 0.1006

B3 0.3215 0.2534 0.1572

C3 4.44 9.828 16.66

A4 0.007044 0.006606 0

B4 0.4761 0.4135 0

C4 2.985 7.602 0

The results highlighted in Tables 7.18 through 7.20 are very positive for the empirical

model. The highest value of concern however, is the % error value of 10.4235 in the 3

satellite scenario. While the percentage is relatively high, the absolute value of the error

margin is only 1.2851( m
sec ).
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Table 7.17: Coefficients for Empirical Solution for Required ∆V Without Phasing

Maneuver.

Coefficient 3 Total Sats 4 Total Sats 5 Total Sats

A5 0.004551 0.001546 0

B5 0.6336 0.5841 0

C5 1.025 5.209 0

A6 0.003777 0 0

B6 0.7896 0 0

C6 5.815 0 0

A7 -0.002605 0 0

B7 1.084 0 0

C7 -6.636 0 0

A8 0.001644 0 0

B8 1.103 0 0

C8 10.84 0 0
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Figure 7.13: Maneuvering Satellite’s Inclination vs. Empirical Normalized ∆V.

Table 7.18: Empirical vs. Dynamic TMN Results for 3 Satellite Scenario.

Inclination (deg) Actual ∆V Estimate ∆V ∆V % Error ∆V Value ( m
sec )

0 0.0534 0.0532 0.3745 0.0268

10 0.0510 0.0510 0.0000 0.0000

30 0.0338 0.0334 1.1834 0.0535

45 0.0134 0.0134 0.0000 0.0000

60 0.0921 0.0825 10.4235 1.2851

75 0.2554 0.2570 0.6265 0.2142

90 0.2992 0.2857 4.5120 1.8071

136



Table 7.19: Empirical vs. Dynamic TMN Results for 4 Satellite Scenario.

Inclination (deg) Actual ∆V Estimate ∆V ∆V % Error ∆V Value ( m
sec )

0 0.0534 0.0532 0.3745 0.0268

10 0.0510 0.0510 0.0000 0.0000

30 0.0334 0.0334 0.0000 0.0000

45 0.0134 0.0134 0.0000 0.0000

60 0.1389 0.1341 3.4557 0.6425

75 0.4067 0.4088 0.5164 0.2811

90 0.4661 0.4619 0.9011 0.5622

Table 7.20: Empirical vs. Dynamic TMN Results for 5 Satellite Scenario.

Inclination (deg) Actual ∆V Estimate ∆V ∆V % Error ∆V Value ( m
sec )

0 0.0534 0.0532 0.3745 0.0268

10 0.0510 0.0510 0.0000 0.0000

30 0.0334 0.0334 0.0000 0.0000

45 0.0134 0.0134 0.0000 0.0000

60 0.1552 0.1598 2.9639 0.6158

75 0.4975 0.4963 0.2412 0.1606

90 0.5666 0.5612 0.9531 0.7228
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7.7 Chapter Summary

Overall, this chapter presented the Dynamic TMN algorithm to deliver an impulsive

maneuver to a satellite to be within overlapping spheres, with user-defined radii, centered

around multiple non-maneuvering satellites at a specific time, as illustrated in Figure 7.1.

The methodology and results were presented for non-maneuvering satellites, beginning at

a perigee altitude of 274.41 km and a maneuvering satellite, beginning along the same

unit position vector at an altitude of 1406.4 km. The sphere radius was 1500 km with a

5% margin, allowing for a solution when the maneuvering satellite returns to within 1575

km of the non-maneuvering satellites at a time +/- 10% of the least common multiple of

the non-maneuvering satellites’ orbital periods. The presented results were constrained to

prograde orbits. In the end, the focus of the results was based on the success of the Dynamic

TMN algorithm, while demonstrating unique information about this problem. A critical

mission design consideration was presented through the selection of the satellites’ initial

inclinations. A significant result from this study is the ability for the user to empirically

predict the necessary ∆V, for a desired combination of inclinations for the phasing orbit

solution. Another result is the ability to empirically predict the average miss distance

and required ∆V based on the maneuvering satellite’s initial inclination for the solution

without the phasing orbit. Ultimately, the successful presentation of the Dynamic TMN

algorithm lays the groundwork for continued development of theater based responsive

space capabilities.
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7.8 Chapter Appendix

Figure 7.14: Maneuvering Satellite’s Inclination vs. Normalized Miss Distance.

Figure 7.15: Maneuvering Satellite’s Inclination vs. Normalized Transfer Time.
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Figure 7.16: Maneuvering Satellite’s Inclination vs. Normalized ∆V.

Figure 7.17: Cooperative Satellites’ Inclination vs. Normalized Miss Distance.
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Figure 7.18: Cooperative Satellites’ Inclination vs. Normalized Transfer Time.

Figure 7.19: Cooperative Satellites’ Inclination vs. Normalized ∆V.
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Figure 7.20: Satellites’ Initial Semi-major Axis Ratio vs. Normalized Miss Distance.

Figure 7.21: Satellites’ Initial Semi-major Axis Ratio vs. Normalized Transfer Time.
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Figure 7.22: Satellites’ Initial Semi-major Axis Ratio vs. Normalized ∆V.

Figure 7.23: Satellites’ Initial Inclination Ratio vs. Normalized Transfer Time.
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Figure 7.24: Maneuvering Satellite’s Inclination vs. Normalized Transfer Time.

Figure 7.25: Cooperative Satellite’s Inclination vs. Normalized Miss Distance.
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Figure 7.26: Cooperative Satellite’s Inclination vs. Normalized Transfer Time.

Figure 7.27: Cooperative Satellite’s Inclination vs. Normalized ∆V.
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Figure 7.28: Satellites’ Initial Semi-major Axis Ratio vs. Normalized Miss Distance.

Figure 7.29: Satellites’ Initial Semi-major Axis Ratio vs. Normalized Transfer Time.
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Figure 7.30: Satellites’ Initial Semi-major Axis Ratio vs. Normalized ∆V.

Figure 7.31: Maneuvering Satellite Inclination vs. Average Cooperative Satellites’

Inclination.
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Figure 7.32: Satellites’ Initial Inclination Ratio vs. Normalized Miss Distance.

Figure 7.33: Satellites’ Initial Inclination Ratio vs. Normalized Transfer Time.

148



Figure 7.34: Satellites’ Initial Inclination Ratio vs. Normalized ∆V.
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VIII. Navigation Solution to Maneuver a Spacecraft Relative to Multiple Satellites

and Ground Locations

8.1 Introduction

The following chapter will extend the presentation of the Dynamic T-Matrix

Navigation algorithm to allow for varying geometry between the maneuvering satellite

relative to both multiple non-maneuvering satellites as well as multiple ground locations.

8.2 Problem Statement

The purpose of this chapter is to demonstrate the ability for the Dynamic TMN

algorithm to deliver an impulsive maneuver to a satellite and place it within overlapping

spheres, with user-defined radii, centered around multiple non-maneuvering satellites

within a constrained time. The algorithm will also account for user-specified range and

elevation constraints for multiple ground locations. The algorithm will ultimately deliver a

solution within the overlap of the cooperative satellites and ground locations ranges. Figure

8.1 illustrates the problem.

Specifically, the proceeding results are generalized for the satellites’ altitudes, but it

is assumed throughout that the Earth must complete one full rotation, 24 hours, before the

maneuvering satellite can successfully declare a solution within the overlapping spheres.

This study only focuses on prograde orbits, therefore inclinations range between 0◦ and

90◦. The focus of the results is based on the success of the Dynamic TMN algorithm,

while demonstrating unique aspects of this problem. Ultimately, this study will present a

generalized algorithm that allows for expanded utilization to be applied towards any user’s

scenario. The description of the optimal control problem being addressed by this chapter
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Figure 8.1: Illustration of Problem Statement

is in Eqs.(8.1) and (8.2).

Minimize: J =
∫ t f

t0
|u(t)| dt

Subject to:

~̇R, ~̇V, ~VGND

u(t) = ∆Vδ0(t − t0)

t f ∈ [0.9LCM(PCOOP1 , . . . ,PCOOPN , ω⊕), 1.1LCM(PCOOP1 , . . . ,PCOOPN , ω⊕)]

el ≥ 10◦

(8.1)
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Initial Conditions:

~R1(t0) = ~R1t0

~V1(t0) = ~V1t0

~RCOOP1(t0) = ~RCOOP1t0

~VCOOP1(t0) = ~VCOOP1t0

...

~RCOOPN (t0) = ~RCOOPNt0

~VCOOPN (t0) = ~VCOOPNt0

φGS 1(t0) = φGS 1t0

λ1(t0) = λ1t0

...

φGS p(t0) = φGS pt0

λp(t0) = λpt0

Terminal Conditions:

~R1(t f ) ∈ B(~RCOOP1(t f ), η)
⋂
. . .

⋂
B(~RCOOPN (t f ), η)⋂

B(~RGS 1(t f ), γ)
⋂
. . .

⋂
B(~RGS p(t f ), γ)

(8.2)

A brief summary of the procedure to solve this problem is provided below. The unique

contributions to this chapter are highlighted in boldface.

1. Establish initial Classic Orbital Elements (COEs) for satellites.

2. Establish initial conditions for the ground locations.

3. Convert COEs to initial position, ~R0, and velocity, ~V0 vectors.

4. Establish scaling parameters and scaling matrix, S[4].

5. Establish weight matrix, Q[4].

6. Determine initial guess for required fuel, ∆V, and transfer time, t.
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7. Integrate Equations of Motion (EOM) for cooperative satellites for duration of

t.

8. Calculate final state, ~R, ~V , for cooperative satellites at t.

9. Integrate EOM for ground locations for duration of t.

10. Calculate final state for ground locations at t.

11. Apply ∆V to maneuvering satellite to yield ~V0+.

12. Integrate EOM for maneuvering satellite for duration of t.

13. Calculate final state ~R, ~V , for maneuvering satellite at t.

14. Calculate spherical separation distance between maneuvering satellite and

cooperative satellites.

15. Calculate range separation distance between maneuvering satellite and ground

locations.

16. Integrate maneuvering satellite’s State Transition Matrix (STM) using Equations of

Variation (EOV) for duration of t.

17. Declare φ matrix as upper right 3x3 portion of STM[4].

18. Calculate velocity difference vector, ~VDIFF , between maneuvering satellite’s and

cooperative satellites’ velocity vectors.

19. Calculate velocity difference vector between maneuvering satellite’s and ground

locations’ velocity vectors.

20. Calculate ∆V for maneuvering satellite: ∆V = ~V0+ − ~V0.
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21. Compile error vector, ē, as the component by component separation distance and

components of ∆V.

22. Build T̃ matrix:

φ1φ2...φN+p ~VDi f f

I 0

.
23. Calculate T matrix: T = S−1T̃ [4].

24. Declare convergence criteria when all control contributions to ∆V are 0.

25. Determine ∂u: ∂u = −(T′Q−1T)−1T′Q−1ē[4].

26. Check ∂u components versus convergence criteria.

27. If convergence criteria are satisfied then the algorithm is complete.

• Final ∆V = ∆V from error vector, ē

• Final transfer time = current t

28. Add
∑

∆V from ∂u to ~V0+ yielding new ∆V.

29. Add ∆t from ∂u to transfer time, t, for updated time.

30. Return to #7.

8.3 Establishing the Algorithm

In order to implement the Dynamic TMN algorithm, the initial orbits and ground

locations are required. Depending on how the problem is framed, there can be a variable

number of non-maneuvering satellites within the scenario, as well as ground locations. This

number will simply be referred to as ‘N’ cooperative satellites and ‘p’ ground locations.

Regardless of the number of cooperative satellites and ground locations, there will only

be one maneuvering satellite (Sat 1). The maneuvering satellite will be the satellite to

which the ∆V is applied. To simplify the illustration of the algorithm within this particular
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problem, all satellites will begin along the same unit position vector. Specifically, the ‘N’

cooperative satellites will begin at the same point, therefore the position vector is identical

for each. An additional assumption for establishing illustrating this problem places all

satellites along the X̂ axis at the starting time, providing for the initial position vectors in

Eqs.(8.3) and (8.4).

~RS at1 = |~RS at1|


1

0

0

 km (8.3)

~RN = |~RN |


1

0

0

 km (8.4)

The initial positions for the cooperative satellites are fixed, as are their orbital periods.

Specifically for this study, the orbital periods are different for each cooperative satellite,

therefore resulting in differing final positions after a certain amount of time. The lowest

value for the orbital period is 90 minutes, resulting in a circular orbit at 274.41 km

altitude. Considering 90 minutes as the fastest orbital period ensures that the initial position

vectors for the cooperative satellites are at perigee. Because the cooperative satellites are

beginning along the X̂ unit vector, the RAAN and the argument of perigee are 0◦. Also,

provided a fixed initial position and orbital period, the semi-major axis and eccentricity are

determined. The initial COEs are nearly complete.

To complete the initial conditions for the cooperative satellites the only remaining

COEs, inclination, is explored over a range of values following a normal distribution

according to Eq.(8.5) [70]. Each cooperative satellite has a random value for inclination

between 0◦ and 90◦. A straightforward conversion from COEs is now possible for the

cooperative satellites.

i = Mod(Abs(Normal) ×
π

4
,
π

2
) (8.5)
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Once the initial COEs were determined for the cooperative satellites, the original

position and velocity vectors needed to be determined for the maneuvering satellite,

Satellite 1. Provided a fixed altitude, Satellite 1 is in a circular orbit, therefore, semi-major

axis and eccentricity are known. Understanding the initial position vector for Satellite 1, at

a fixed altitude in Eq.(8.3) leads to a RAAN and argument of perigee of 0◦. The inclination

for Satellite 1 is also randomized according to Eq.(8.5) and has a range of 0◦ and 90◦.

Converting to ~R and ~V is possible with the COEs for the maneuvering satellite.

For this particular problem the initial position of the ground locations is randomized.

However, they must satisfy the user defined range and elevation constraints relative to the

cooperative satellites. Also note, the ground locations are on the surface of a spherical

Earth.

In order for the algorithm to proceed, the future state, both the position and velocity

vectors need to be determined for the maneuvering satellite. Once the position vector in

the future is determined for Sat 1, that same time is used to determine the position vectors

for the cooperative satellites and the ground locations, and an error vector is calculated.

The error vector for this chapter is displayed in Eq.(8.8). Because the error is in vector

form, it is a function of the number of relationships between the maneuvering satellite and

the ‘N’ cooperative satellites and the ‘p’ ground locations. Therefore, the error vector in

Eq.(8.8) is representative of any number of cooperative satellites and ground locations. The

dimensions of the error vector are, (3(N + p) + 3) × 1.

ēT
Λ =

[
Λ1X Λ1Y Λ1Z · · · ΛNX ΛNY ΛNZ

]
(8.6)

ēT
Υ =

[
Υ1X Υ1Y Υ1Z · · · ΥpX ΥpY ΥpZ

]
(8.7)

ēT =

[
ēT

Λ
ēT

Υ
∆VS AT1X ∆VS AT1Y ∆VS AT1Z

]
(8.8)

Recall that this particular problem is establishing an algorithm to yield a solution that

maneuvers a satellite within the combined spheres, with a user-defined radius, from the
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non-maneuvering cooperative satellites constrained by the range and elevation of multiple

ground locations. Therefore, the introduction of the vector, ~Λ, represents a relationship

between the maneuvering and non-maneuvering satellites, according to the radius of the

user defined sphere. ~Υ, represents a relationship between the maneuvering satellite and the

ground locations. The components of the ~Λ and ~Υ vectors are defined in Eqs.(8.9) through

(8.14).

ΛNX = RS AT1X −

(
RS AT1X − RNX

|~RS AT1 − ~RN |
∗ η + RNX

)
(8.9)

ΛNY = RS AT1Y −

(
RS AT1Y − RNY

|~RS AT1 − ~RN |
∗ η + RNY

)
(8.10)

ΛNZ = RS AT1Z −

(
RS AT1Z − RNZ

|~RS AT1 − ~RN |
∗ η + RNZ

)
(8.11)

ΥpX = RS AT1X −

(
RS AT1X − RpX

|~RS AT1 − ~Rp|
∗ γ + RpX

)
(8.12)

ΥpY = RS AT1Y −

(
RS AT1Y − RpY

|~RS AT1 − ~Rp|
∗ γ + RpY

)
(8.13)

ΥpZ = RS AT1Z −

(
RS AT1Z − RpZ

|~RS AT1 − ~Rp|
∗ γ + RpZ

)
(8.14)

Eqs.(8.9) through (8.11) display the elements of the unit vector of the component by

component miss distance vector between Sat 1 and the cooperative satellites. The unit

vector components are multiplied by η, the radius of the sphere, and added to the

componenent of the non-maneuvering satellites. Eqs.(8.12) through (8.14) display the

elements of the unit vector of the component by component miss distance vector between

Sat 1 and the ground locations. The unit vector components are multiplied by γ, the range

of the ground location, and added to the componenent of the non-maneuvering satellites.

Interestingly, this makes the solution dynamic. This means that the solution to the sphere

edge changes with each iteration because the solution itself is based on the position of the

maneuvering and non-maneuvering satellites and ground locations.

Overall, the error vector, Eq.(8.8), represents the dynamic solution for the position and

the applied ∆V on the maneuvering satellite, Sat 1.
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Provided the direction for the algorithm to proceed, it is necessary to identify that the

integrated equations for the solution will follow three separate models. The first is for the

maneuvering satellite and the second is for the cooperative satellites, while the third is the

rotation of the ground location on the surface of the Earth. The maneuvering satellite will

be subject to EOM including both J2 and an air drag model. For simplicity, the cooperative

satellites will follow 2-body EOM simulating active orbit control with the desire to return

over the same inertial position in space over the Earth. The model for the maneuvering

satellite will require the appropriate variational equations.

The development and derivation of the maneuvering satellite’s State Transition Matrix

follows from Section 4.3.

Another necessary component in the algorithm is the relationship between the

satellites’ final velocity vectors. Identifying this vector and combining this with φ, a form

of the T̃ matrix is determined and shown in equation (8.15). Even though the solution

to this algorithm will be within the radius of the sphere, the relationship between the

maneuvering satellite’s velocity and the non-maneuvering satellites’ velocity and ground

location velocity vectors is important. Recall that the solution space, the spheres, will

be moving identically to the movement of the non-maneuvering satellites and ground

locations. This means that the solution for the maneuvering satellite will most likely be

at higher altitude than the non-maneuvering satellites. The sphere at that higher altitude is

still moving at the velocity of the non-maneuvering satellites. Noticing that the T̃ matrix

is adjustable based on the number of cooperative satellites and ground locations yields the

dimensions, (3(N + p) + 3) × (3(N + p) + 1).

T̃ =

φ1φ2...φN+p ~VDi f f

I 0

 (8.15)

~VDi f f =
∑

~VS AT1 − ~VN − ~Vp (8.16)
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The φN+p, terms come directly from Eq.(4.7). It is required to add an additional φ for each

of the ‘N’ cooperative satellites and each of the ‘p’ ground locations. Eq.(8.16) represents

the sum of the differences between the maneuvering satellite’s final velocity vector and

each cooperative satellite’s velocity vector and ground location velocity vector and has

dimensions, 3 × 1. Therefore, the I matrix requires dimensions (3(N + p) × 3(N + p)) and

0 requires dimesions (3(N + p) × 1). The final T matrix is derived from scaling parameters

combined with T̃ .

The final components of the Dynamic TMN setup are the identification of a weight

matrix, Q and a scale matrix, S. The weight matrix allows for the user to shift convergence

focus from final position to applied ∆V. In order to maintain a balanced focus on both,

minimizing miss distance and fuel used, an identity matrix, I, should be used. For this

study, Q, is simply a (3(N + p) + 3) × (3(N + p) + 3) I matrix. The scale matrix, S, is

utilized to allow faster convergence within the algorithm. For this study, S is a constant

(3(N + p) + 3) × (3(N + p) + 3) matrix. S is defined in (8.17) while T is calculated from T̃

and S in (8.18). S is an adjustable matrix to allow for better scaling of the nonlinear system

of equations.

S = 0.1I (8.17)

T = S−1T̃ (8.18)

Ultimately, combining all of this information, the variation of the control vector, ~u, can

be calculated. The variation of ~u is the core of the Dynamic TMN. Once the maneuvering

satellite is within the overlapping area of the ‘N’ cooperative satellite spheres and with

range and elevation constraints of ‘p’ ground locations, a unique solution is declared for

the model. It is important to note that based on units and matrix dimensions, ~u, will have

(3(N + p) + 1) × 1 components. Specifically, the components of ~u are shown below in
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Eq.(8.19).

~uT =
[
∆V1X ,∆V1Y ,∆V1Z , · · · ,∆VNX ,∆VNY ,∆VNZ ,∆V1X ,∆V1Y ,∆V1Z , · · · ,

∆VpX ,∆VpY ,∆VpZ ,∆t
]

(8.19)

The ∆V terms are the changes in the initial impulsive maneuver applied to Sat 1 and the

∆t term is the change in transfer time during each iteration. Summing the results for each

component, after each iteration, and then dividing by ‘N+p’, yields the total ∆V for the

impulsive maneuver. Notice that there are three contributions to the ∆V from each of the

‘N’ cooperative satellites and each of the ‘p’ ground locations. Combining the sum of

the ∆t’s with the initial transfer time results in the final transfer time for the optimum ∆V.

However, the Dynamic TMN algorithm is designed so that once the maneuvering satellite

is within a sphere, the contribution to the solution from that cooperative satellite is zeroed

out for that iteration. The same is true for the ground locations, including the constraint

from the elevation angle. If the next iteration’s solution forces the maneuvering satellite

outside of the sphere, it is reconsidered towards the solution again. For example, Eqs.(8.8)

and (8.19) have been updated in Eqs.(8.20) and (8.21), considering that the maneuvering

satellite is within the sphere of cooperative satellite 2 and in range and elevation of one

ground location.

ēT =
[
Λ1X ,Λ1Y ,Λ1Z , 0, 0, 0, · · · ,ΛNX ,ΛNY ,ΛNZ , 0, 0, 0,∆VX,∆VY ,∆VZ

]
(8.20)

The T̃ and therefore the T matrices are not adjusted as derived in Eqs.(8.15) and (8.18)

because the final velocity difference towards solution is still viable since it will never equal

~0 for a non-rendezvous mission. Considering this change, the resulting ~u is demonstrated

in Eq.(8.21) for a satisfying solution for cooperative satellite 2 and one ground location.

~uT =

[
∆V1X ∆V1Y ∆V1Z 0 0 0 · · · ∆VNX ∆VNY ∆VNZ 0 0 0 ∆t

]
(8.21)

Ultimately, once the net ∆V contribution is 0 in any given iteration, the algorithm

declares a solution. The algorithm iterates on Eq.(8.22) [4]. Every iteration includes all of
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the previous steps for determining T. The weight matrix is Q and ē is the error vector from

Eq.(8.8).

∂u = −(T′Q−1T)−1T′Q−1ē (8.22)

8.4 System Dynamics for Rotating Ground Location

In order to sufficiently model the motion of the ground station as the Earth rotates

through time, the latitude angle, λ and initial φGS angle need to be determined. These are

calculated through some simple algebraic manipulations of the dot product of the ground

station’s position unit vector, with the Ẑ unit vector for λ and the Ŷ unit vector for φGS .

The initial velocity of the ground station is a little bit more challenging. The full

representation for the initial velocity for the ground station is in Eq.(8.23). R⊕ is the radius

of the Earth and ω⊕ represents the rotation rate of the Earth.

~VGND0 =


R⊕ × cos(λ) × ω⊕ × sin(φGS 0)

R⊕ × cos(λ) × ω⊕ × cos(φGS 0)

0

 (8.23)

The final position and velocity vectors of the ground locations are determined by

executing Eq.(8.24) for the final angle, φGS , at the determined transfer time, t. The position

vector is updated according to the dot product relationships between the final φGS angle

and Eq.(8.25). Eq. (8.25) represents the final velocity vector for the ground locations.

φGS t f = φGS 0 + (cos(λ) × t × ω⊕) (8.24)

~VGNDt f =


R⊕ × cos(λ) × ω⊕ × sin(φGS t f )

R⊕ × cos(λ) × ω⊕ × cos(φGS t f )

0

 (8.25)

8.5 Background for Results

Recall in the derivation of the Dynamic TMN differential correction algorithm that due

to all of the variational equations, new units need to be introduced in order to efficiently
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complete the computations required through the algorithm. According to [3] and [4], it

is acceptable to define the constants DU and TU. The DU is simply the radius of the

Earth (1 DU = 6378.137 km) and to simplify the system models, the Earth’s Gravitational

Parameter, µ, will equal 1 if TU = 806.811 seconds.

Throughout the results of this study, the satellite range, η, used was 1800 km. The

margin for error was 5%, allowing for a maximum sphere radius of 1890 km, or 0.2963

DU. The range for the ground station, γ, was 35000 km, or 5.4875 DU with no margin.

The required elevation angle between the ground locations and the maneuvering satellite

was > 10◦.

It is also of note that this study focused only on prograde orbits, therefore inclination,

i, is between 0◦ and 90◦ for both the maneuvering and non-maneuvering satellites.

Additionally, the following results are illustrated for one single value of ballistic coefficient

for the maneuvering satellite. That value is 0.044, which is a reasonable value from

Reference [48]. The cooperative satellites, however, will follow only 2-body dynamics.

It is also important to keep in mind that the goal of this study is to deliver the maneuvering

satellite within the overlapping region of the spheres of the non-maneuvering satellites,

within the range and elevation constraints of the ground locations within one day, 86400

seconds. For this particular demonstration, there are only 2 cooperative satellites and for

illustration purposes their orbits are multiples of 86400 seconds, therefore they will be at

the same location over the Earth every 86400 seconds.

Overall, there are two viable solutions for solving this problem within the provided

time constraints. One is the solution that executes a maneuver to allow Satellite 1 to achieve

a 24 hour period and become in phase with the combination of cooperative satellites’ orbital

periods. The second, is to execute a maneuver only to offset the perturbations in order for

Satellite 1 to satisfy the constraints when the cooperative satellites’ orbital periods are

aligned.
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Demonstrating the effectiveness of the algorithm throughout these results is paramount.

Some interesting characteristics of the problem design are also realized. These results are

presented for two separate scenarios. Each scenario has one maneuvering satellite. The first

is a scenario with two cooperative satellites, for a total of three satellites with one ground

location. The second is a scenario with two cooperative satellites, for a total of three satel-

lites with two ground locations. Because of the constrained transfer time of 86400 seconds,

Table 8.1 displays the initial conditions for the satellites.

Table 8.1: Initial Orbit Information for Maneuvering and Cooperative Satellites.

Maneuvering Sat Coop Sat 1 Coop Sat 2

Semi-major Axis, a (DU) 1.264 1.043 1.264

Eccentricity, e 0 0 0.175

Period (TU) 8.924 6.693 8.924

8.6 Results and Discussion

8.6.1 Results for Phasing Maneuver.

The phasing maneuver solution for this problem is simply allowing the algorithm to

find the solution that applies the tangential ∆V required to place the maneuvering satellite in

phase with the cooperative satellites. In this particular problem, the phasing maneuver is the

maneuver that places the maneuvering satellite in a 24 hour period, in order to demonstrate

the Dynamic TMN algorithm’s ability to incorporate the ground locations into the solution.

A thorough analysis was completed to determine orbit design trade-offs for this problem.

Since the thrust of this problem was to incorporate the ground location impact into

the Dynamic TMN algorithm’s solution, the phasing maneuver analysis will look at the
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contributions from the ground locations first. Recall that the the ground locations were

initially placed randomly while satisfying the range and elevation constraints for the

cooperative satellites. Interestingly, patterns emerge from the algorithm’s solution based

on the maneuvering satellite’s initial inclination and the elevation angle from the ground

locations to the maneuvering satellite. Figure 8.2 illustrates this relationship. Keep in mind

that the elevation angle is an average for the number of ground locations.

Figure 8.2: Maneuvering Satellite Inclination vs. Final Ground Elevation Angle.

The minimum elevation angle that was allowed for this scenario was 10◦, therefore

every solution satisfies the elevation constraint. Figure 8.3 illustrates the relationship

between the maneuvering satellite and the initial elevation angle from the ground locations.

Comparing the results between Figures 8.2 and 8.3 clearly portrays that there exists an

impact from the ground locations on the Dynamic TMN algorithm’s solution.
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Figure 8.3: Maneuvering Satellite Inclination vs. Initial Ground Elevation Angle.

The second constraint of the ground location was the range. The range limit for

these results was large and according to the results in Figure 8.4, the range constraint was

satisfied. Again, keep in mind that the miss distance, is an average based on the number of

ground locations. Considering that the maneuvering satellite is beginning at an altitude of

≈1680 km, it is clear there is an impact on the final distance between the ground location

and the maneuvering satellite after the phasing maneuver.

Figure 8.5 illustrates how the Dynamic TMN algorithm also incorporates the

cooperative satellites into the solution to meet the constraints. Recall, that the sphere range

for the cooperative satellites was 1800 km, with a 5% margin for a maximum range of

1890 km. Fortunately, the results portrayed in Figure 8.5 illustrate that this constraint was

satisfied. Further, the results highlight that the cooperative satellites have an impact on the

solution due to the initial separation distance of ≈1406 km.
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Figure 8.4: Maneuvering Satellite Inclination vs. Average Ground to Maneuvering Satellite

Range.

The most significant information gleaned from the Dynamic TMN algorithm is

presented in Figure 8.6. The required ∆V is normalized based on the transfer time in TUs.

Therefore, the difference between the normalized value of 22.677 and 22.68 is a realized

value of 0.325 m
sec . Even though the difference between the highest and lowest required ∆V

is less than 0.325 m
sec , a clear predictable pattern is seen based on the maneuvering satellite’s

initial inclination.

Specifically, a 4th degree polynomial provides an approximation for the required ∆V,

based on the maneuvering satellite’s initial inclination, i. The frame of the equation is in

Eq.(8.26) with the values for the coefficients in Table 8.2 for the empirical solution.

∆V = Ai4 + Bi3 + Ci2 + Di + E (8.26)
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Figure 8.5: Maneuvering Satellite Inclination vs. Average Satellite Miss Distance.

Table 8.2: Coefficients for Empirical Solution for Required ∆V for Phasing Maneuver.

Coefficients 1 Ground Location 2 Ground Locations

A −7.794 × 10−12 1.444 × 10−15

B 1.321 × 10−9 7.854 × 10−9

C −1.321 × 10−7 −1.06 × 10−6

D 6.806 × 10−6 3.675 × 10−6

E 22.67 22.68

For the prograde inclinations for the maneuvering satellite, Figure 8.7, captures the

empirical solution for the required ∆V, demonstrating the impact of multiple cooperative

satellites and ground locations on the solution from the Dynamic TMN algorithm.
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Figure 8.6: Maneuvering Satellite Inclination vs. Normalized ∆V.

Figure 8.7: Maneuvering Satellite Inclination vs. Normalized ∆V.
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Figures 8.14 through 8.21 in the this chapter’s Appendix complete the analysis

performed for the phasing maneuver solution for this problem.

8.6.2 Results without Phasing Maneuver.

Recall that the solution without the phasing maneuver is the impulsive burn that offsets

the perturbations over the duration of the scenario. Specifically, for this scenario, the time

was 86400 seconds. Since the initial maneuvering satellite and cooperative satellites’ orbits

share 86400 seconds as a common multiple, it is possible to view the results of the Dynamic

TMN algorithm with the ground locations.

Keep in mind that the ground locations were initially placed randomly, while satisfying

the range and elevation constraints for the cooperative satellites. The maneuvering

satellite’s inclination versus the initial elevation angle is displayed in Figure 8.8. The

ground locations’ impact on the Dynamic TMN algorithm is apparent in Figure 8.9.

Figure 8.8: Maneuvering Satellite Inclination vs. Ground Elevation Angle.
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Figure 8.9: Maneuvering Satellite Inclination vs. Ground Elevation Angle.

Notice that the elevation angle is an average for the number of ground locations. The

minimum value that was allowed for this scenario was 10◦. Therefore, every solution

satisfies the elevation constraint. Based on the initial conditions these results clearly portray

the impact of the ground locations on the Dynamic TMN algorithm’s solution.

The additional constraint regarding the ground locations was the range. Figure 8.10

clearly demonstrates that the range requirement is satisfied. The figure also illustrates that

the ground locations have a clear impact on the Dynamic TMN algorithm’s results simply

from the fact that the initial maneuvering satellite altitude was ≈1680 km. Every value of

maneuvering satellite inclination yields an average miss distance from the ground location

that is greater than the maneuvering satellite’s initial altitude.

The cooperative satellites still have an impact on the Dynamic TMN algorithm’s

solution. Figure 8.11 displays the relationship between the maneuvering satellite’s initial

170



Figure 8.10: Maneuvering Satellite Inclination vs. Average Ground Miss Distance.

inclination and final average separation distance between the maneuvering satellite and the

cooperative satellites. The results in Figure 8.11 are promising for showing the contribution

of the cooperative satellites on the Dynamic TMN algorithm’s solution since the initial

separation distance between the maneuvering and cooperative satellites is ≈1406 km, with

a limit of 1890 km. Clearly the constraints imposed by the cooperative satellites on the

solution are satisfied.

Again, the most significant information gleaned from the Dynamic TMN algorithm for

the maneuver without phasing is presented in Figure 8.12. The required ∆V is normalized

based on the transfer time in TUs. Therefore, the difference between the normalized value

of 0.07 and 0 is a realized value of 7.496 m
sec . A clear predictable solution for the required

∆V is evident based on the maneuvering satellite’s initial inclination.
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Figure 8.11: Maneuvering Satellite Inclination vs. Average Satellite Miss Distance.

A 3rd degree polynomial provides an approximation of the required ∆V based on the

maneuvering satellite’s initial inclination, i. The frame of the equation is in Eq.(8.27)

with the values for the coefficients in Table 8.3 for the empirical solution. The empirical

expression is broken into two parts to account for the minimum at 54.9◦. The second

column of Table 8.3 show the values from 0◦ to 54.9◦, while the third column is for

inclinations from 55◦ to 90◦.

∆V = Ai3 + Bi2 + Ci + D (8.27)

For the prograde inclinations for the maneuvering satellite, Figure 8.13 captures the

empirical solution for the required ∆V. These results demonstrate the impact of multiple

cooperative satellites and ground locations on the solution from the Dynamic TMN

algorithm.
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Figure 8.12: Maneuvering Satellite Inclination vs. Normalized ∆V.

Table 8.3: Coefficients for Empirical Solution for Required ∆V Without Phasing

Maneuver.

Coefficients 0◦ ≤ i ≤ 54.9◦ 55◦ ≤ i ≤ 90◦

A 2.803 × 10−7 −1.951 × 10−7

B −3.943 × 10−5 1.808 × 10−5

C 1.032 × 10−4 1.457 × 10−3

D 0.0665 −0.102

Figures 8.22 through 8.28 in the Appendix complete the analysis performed for the

Dynamic TMN algorithm’s solution without the phasing maneuver for this problem.
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Figure 8.13: Maneuvering Satellite Inclination vs. Normalized ∆V.
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8.7 Chapter Summary

This chapter presented the Dynamic T-Matrix Navigation algorithm to deliver an

impulsive maneuver to place a satellite within the overlapping spheres of user-defined

radius, centered around multiple non-maneuvering satellites, within a constrained time.

The solution was also required to satisfy range and elevation constraints of multiple ground

locations. The methodology and results were presented for the non-maneuvering satellites,

beginning at a perigee altitude of 274 km and a maneuvering satellite, beginning along

the same unit position vector at an altitude of 1680 km. The sphere radius for the

cooperative satellites was 1800 km, with a 5% margin, allowing for a solution when the

maneuvering satellite returns to within 1890 km of the non-maneuvering satellites. The

range between the ground locations and the maneuvering satellite was constrained to 35000

km with an elevation ≥ 10◦. The presented results were constrained to prograde orbits.

In the end, the focus of the results was based on the success of the Dynamic T-Matrix

Navigation algorithm, while demonstrating unique information about this problem. The

most significant orbit design consideration studied was the maneuvering satellite’s initial

inclination. The capstone of the study is the ability for the user to empirically predict the

necessary ∆V for a desired maneuvering satellite’s initial inclination for both a phasing

orbit solution and a solution without a phasing orbit. Specifically, a prediction of the

required ∆V for the phasing orbit solution provides a nearly constant result of 2,428.12 m
sec

with a margin of ±0.5 m
sec regardless of initial maneuvering satellite inclination. The non-

phasing maneuver results obviously yielded a significantly lower required ∆V. The results

also demonstrated that a minimum fuel inclination exists at 54.9◦. The maximum fuel

initial inclination is 0◦. The maximum fuel solution was 7.23 m
sec with the minimum being

≈0 m
sec .
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8.8 Chapter Appendix

Figure 8.14: Maneuvering Satellite Inclination vs. Average Cooperative Satellite

Inclination.

Figure 8.15: Average Cooperative Satellite Inclination vs. Satellite Miss Distance.
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Figure 8.16: Average Cooperative Satellite Inclination vs. Ground Miss Distance.

Figure 8.17: Average Cooperative Satellite Inclination vs. Normalized ∆V.
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Figure 8.18: Ground Latitude vs. Ground Miss Distance.

Figure 8.19: Ground Latitude vs. Normalized ∆V.
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Figure 8.20: Ground Elevation Angle vs. Normalized ∆V.

Figure 8.21: Ground Elevation Angle vs. Normalized ∆V.
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Figure 8.22: Maneuvering Satellite Inclination vs. Average Cooperative Satellite

Inclination.

Figure 8.23: Average Cooperative Satellite Inclination vs. Satellite Miss Distance.
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Figure 8.24: Average Cooperative Satellite Inclination vs. Ground Miss Distance.

Figure 8.25: Average Cooperative Satellite Inclination vs. Normalized ∆V.
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Figure 8.26: Ground Latitude vs. Ground Miss Distance.

Figure 8.27: Ground Latitude vs. Normalized ∆V.
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Figure 8.28: Final Ground Elevation Angle vs. Normalized ∆V.
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IX. Conclusions and Contributions

Throughout this research many conclusions and contributions were drawn. This

chapter presents the major findings.

9.1 T-Matrix Navigation for Tangential Burns

The first significant contribution of this research was the demonstration of the TMN

algorithm to solve for the first burn of a Hohmann Transfer. This is significant because it has

been clearly documented and demonstrated that, provided the limitations (Chapter 5), the

Hohmann Transfer is the minimum fuel maneuver to execute satellite transfer. Therefore

by extension, demonstrating the ability for the TMN algorithm to determine the magnitude

and transfer time identical to the first burn of the Hohmann Transfer also proves optimality

which is provided by the TMN algorithm. Further limitations of the Hohmann Transfer

claim to maneuver only from a circular orbit. This research demonstrated that the TMN

algorithm can deliver the minimum fuel, impulsive maneuver to transfer a satellite from

perigee of an elliptical orbit to a circular orbit, 180◦ from the maneuver point. So, regardless

of the initial orbit’s eccentricity, the TMN algorithm was shown to solve for the minimum

fuel, impulsive tangential maneuver to execute a satellite transfer 180◦ from the maneuver

point.

Provided the foundation for the minimum fuel maneuver, this research also delivered

the ability to analyze mission design trade-offs utilizing the TMN algorithm. The trade-

offs include the satellite’s ballistic coefficient, initial orbit’s apogee height, initial orbit’s

specific mechanical energy, initial orbit’s eccentricity and the initial orbit’s inclination.

This analysis was presented for the impact on the required ∆V.

184



9.2 T-Matrix Navigation for Minimum Time Trajectories

The second major contribution of this research was the development of the TMN

algorithm to execute fixed ∆V minimum time maneuvers. Through a straightforward

modification of the error vector development within the TMN algorithm the user can

specify the ∆V and the algorithm will proceed to determine the transfer time. Provided

that there is a unique time solution for each ∆V from a unique starting point to a unique

ending point allows for the declaration of the minimum time trajectory. A comparison to

literature results proves that the TMN algorithm delivers accurate solutions for the final

angle and transfer time for these trajectories.

Further conclusions can be drawn for mission design parameters. These include

the relationship between the rendezvous angle and transfer time, the required ∆V versus

the transfer time and the ∆V versus the rendezvous angle. All of the aforementioned

conclusions are drawn for various values for the satellite’s ballistic coefficient.

9.3 T-Matrix Navigation for Relative Satellite Motion

The next major contribution of this research was the development of the TMN

algorithm to provide the required impulsive maneuver to place a satellite within a user-

defined geometry relative to another satellite. Specifically, modifications to the TMN

algorithm allowed for a user-defined radius around a non-maneuvering satellite to define the

valid solution space for the TMN algorithm. The definition of the spherical miss distance

vectors is a unique development contributing to the results of this research.

Another unique development within this research was the identification of a

polynomial approximation to model the required ∆V based on the semi-major axis ratio

of the maneuvering and non-maneuver satellite’s initial orbits. While the results are not

perfect, a ROM solution is provided with the empirical models based on the maneuvering

satellite’s ballistic coefficient. Significant orbit design information can be gleaned from
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this analysis at the onset of mission development. However, more refinement would still be

required based on more mission specifics.

9.4 Dynamic T-Matrix Navigation for Relative Multiple Satellite Motion

The development of the Dynamic TMN algorithm is the next significant contribution

through this research. The Dynamic TMN algorithm incorporates the relative geometry

solution for the single non-maneuvering satellite and applies it towards multiple non-

maneuvering satellites. Specifically, the algorithm allows for the user-defined radii for

multiple satellites to define the valid solution space where the spheres overlap. The

algorithm becomes dynamic from the elimination of each non-maneuvering satellite’s

impact on the overall solution once the sphere has been satisfied for that specific non-

maneuvering satellite. If on successive iterations, the sphere is not satisfied it is then

again considered for impact on the final solution for the maneuvering satellite’s impulsive

maneuver.

Interestingly more mission design information is leveraged from this phase of the

research. The results were summarized for two possible solutions. The first solution

required a phasing maneuver to align all orbital periods of the maneuvering satellite

to the non-maneuvering satellites. The second solution only offset the impacts of the

perturbations on the maneuvering satellite’s orbit.

The phasing maneuver contributions from this research included an empirical

expression for predicting the separation distance between the maneuvering satellite and

the average of each non-maneuvering satellite. Also, an empirical solution for the required

∆V is derived. These results only depend on the inclination ratio between the satellites.

The contributions resulting from the solution without the phasing maneuver may be

more substantial in that they also allow for predicting the separation distance as well as the

required ∆V but they are only dependent on the initial maneuvering satellite’s inclination.

The most significant result from a mission design perspective, based on this phase of the
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research, is that the minimum fuel solution for the described orbital geometry exists at

a maneuvering satellite initial inclination of ≈ 53◦. Regardless of the non-maneuvering

satellite’s inclination, cost savings is demonstrated and achieved with these results.

9.5 Dynamic T-Matrix Navigation for Relative Multiple Satellite and Multiple

Ground Location Motion

The final significant contribution from this research was the development and

refinement of the Dynamic TMN algorithm to include the addition of multiple ground

locations to the multiple satellite scenario. Specifically, in addition to the ‘N’ multiple

satellites, there were introduced ‘p’ multiple ground locations. The algorithm allows for

each to have user-defined radii and elevation constraints. The solution is where all of the

spheres overlap. The algorithm is similarly dynamic to omit contributions to the solution

once the solution satisfies that specific satellite’s or ground location’s user defined criteria.

Significant results also include both the phasing maneuver and non-phasing maneuver

solutions.

The phasing maneuver contributions ultimately include an empirical solution for the

required ∆V to meet the mission requirements based only on the maneuvering satellite’s

initial inclination. While the non-phasing maneuver solution also yields a solution for the

required ∆V based on the maneuvering satellite’s initial inclination. Regardless of multiple

satellites or multiple ground locations, the minimum fuel solution exists at an inclination

of 54.9◦. This result is a very important starting point for the mission design of responsive

space capabilities.

9.6 Overall Conclusion

Throughout this research the ability to conceptualize and consider responsive space

superiority scenarios and architectures was realized. Specifically, the algorithm presented

could be leveraged to address these types of capabilities. One such capability of the
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necessary architecture is to provide the ability to relay both satellite telemetry and payload

communications between a ground station and the collection satellite during a responsive

space scenario. Another capability is the ability to analytically predict satellite separation

distances between multiple satellites. As well as develop maneuver sequences in complex

dynamic scenarios. Overall, the intent of this research was to develop algorithms for

determining the optimal maneuvers between a single satellite and a number of cooperative

satellites including ground locations while satisfying user-defined criteria. The Dynamic

T-Matrix Navigation algorithm leverages the work previously accomplished by Chioma[4]

and Geisel[12]. However, the work presented in this research moves well beyond their

contributions by providing to the literature proof that the algorithm can be further expanded

to yield favorable results in user-defined scenarios. Moreover, the literature now has

a single tool available to determine the impulsive maneuver required for satisfying the

geometric criteria of multiple non-maneuvering satellites while simultaneously adhering

to the range and elevation constraints of multiple ground locations. The community is

also provided the ability to further expand the empirical solutions to estimate the fuel and

separation distance requirements based on clear mission design criteria. Ultimately, this

research yielded the ability for the reader to hone a new set of tools in order to support and

execute responsive space superiority scenarios.

9.7 Areas for Continued Research

1. Multiple maneuvering satellites: Expand the Dynamic TMN algorithm to include the

calculation of single impulsive maneuvers to be applied to multiple satellites based

on the relative geometries.

2. Continuous thrust models: Explore the possibility of incorporating low magnitude,

continuous thrust capabilities into algorithm development.
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3. Various geometry solutions: Explore various geometry relationships for the solutions

with multiple satellites and/or ground locations. Include sun location, moving ground

locations (ships), and enhanced air drag modeling with ballistic coefficients and

seasonal variations.

4. Range of limits for single relative solutions: Identify the range of valid TMN

solutions for the analytical expressions for the relative single satellite scenario.

5. Range of limits for multiple relative solutions: Identify the range of valid Dynamic

TMN solutions for the analytical expressions for the relative multiple satellites

scenario.

6. Range of limits for multiple relative solutions including ground locations: Identify

the range of valid Dynamic TMN solutions for the analytical expressions for the

relative multiple satellites and multiple ground locations scenario.
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Appendix: Initial Model Results

This endeavor requires establishing credibility towards the model and methodology in

order to be effective. Specifically, an indepedent study was conducted in order to achieve

and prove the desired level of accuracy for the system being proposed. This study pursued

results to ultimately drive the system model to achieve a near zero miss distance between

an interceptor and target satellite. The summary and conclusions of this study are found

throughout the following sections. The goal of this study is to match the published results

from Reference[4].

A.1 T-Matrix Navigation Background

T-Matrix Navigation (TMN) has its roots in nonlinear least squares. Fundamentally,

it is a method to reduce the amount of residual error in a system of complex nonlinear

differential equations. In order to use this method in an optimization problem, an algorithm

must be implemented to adequately bound the solution space of the nonlinear system

of equations while allowing the variational equations to be iterated towards a solution.

Chioma presents the algorithm necessary to accomplish this [4]. Highlights from his work

are presented.

In order to implement the TMN method, two orbits are needed. In this particular case,

they are the target and interceptor orbits. Determining the position and velocity vectors

from the provided COEs is the first step. Second, it is fundamental to identify that the

position vector of the interceptor has one initial value, while the velocity vector has two.

They are the velocity of the interceptor just before a manuever and just after a manuever,

while still at the original position. This is highlighted in (A.1) [4] and (A.2) [4].
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Xint(t−0 ) =



Rx(t0)

Ry(t0)

Rz(t0)

Vx(t−0 )

Vy(t−0 )

Vz(t−0 )



(A.1)

Xint(t+
0 ) =



Rx(t0)

Ry(t0)

Rz(t0)

Vx(t−0 ) + ∆Vx

Vy(t−0 ) + ∆Vy

Vz(t−0 ) + ∆Vz



(A.2)

Understanding how the ∆V’s are implemented and adjusted during each iteration

through the algorithm allows the system to propogate through time to find each updated

end position for each updated starting point. Therefore, for each ∆V , new position and

velocity vectors at t f can be determined.

Once the position vector in the future is determined for the interceptor that same time

is used to determine the position vector of the target and an error vector is calculated. The

error vector is displayed in (A.3) [4].

ē =



Rintx − Rtgtx

Rinty − Rtgty

Rintz − Rtgtz

∆Vintx

∆Vinty

∆Vintz



(A.3)
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The error vector highlights the component by component miss distance between the

interceptor and the target satellites as well as the applied ∆V on the interceptor.

The second major piece that needs to be determined is the interceptor’s STM, Φ.

The STM is determined by integrating the satellite’s equations of motion as well as the

variational equations of motion. This is the most computationally taxing calculation due

to the fact that there are 36 variational equations combined with the 6 EOM which have

to be integrated simultaneously. Even though the entire STM needs to be calculated only

the upper right 3X3 portion is necessary in the TMN algorithm. The upper right portion of

the STM contains the information regarding the interceptor satelite’s differential position

with respect to the applied ∆V. The components of the upper right portion of the STM,

identifed by φ, is shown in equation (A.4). Notice that the necessary piece of the STM is

the component that relates the interceptor’s final position vector components with the initial

velocity vector components. This information ultimately provides for how the various ∆V’s

are integrated to find the best final position in the algorithm.

φ =



∂Rx(t f )
∂Vx(t0)

∂Rx(t f )
∂Vy(t0)

∂Rx(t f )
∂Vz(t0)

∂Ry(t f )
∂Vx(t0)

∂Ry(t f )
∂Vy(t0)

∂Ry(t f )
∂Vz(t0)

∂Rz(t f )
∂Vx(t0)

∂Rz(t f )
∂Vy(t0)

∂Rz(t f )
∂Vz(t0)


(A.4)

Another component necessary in the TMN algorithm is the relationship between the

interceptor and target’s final velocity vectors. Identifying this vector and combining this

with φ, a form of the T̃ matrix is determined and shown in equation (A.5) [4]. The final T

matrix is derived from scaling paramters combined with T̃ .
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T̃ =



φ ~Vint − ~Vtgt

3 × 3 3 × 1

I 0

3 × 3 3 × 1


(A.5)

The final components of the TMN setup is the identification of a weight matrix, Q

and a scale matrix, S. The weight matrix allows for the user to shift convergene focus from

final position to applied ∆V. In order to maintain a balanced focus on both minimizing miss

distance and fuel used, an identity matrix, I, should be used. For this study, Q, is simply a

6x6 I matrix. The scale matrix, S, is utilized to allow faster convergence within the TMN

algorithm. For this study, S is a constant 6x6 matrix transfered directly from Reference[4].

S is defined in (A.6) while T is calculated from T̃ and S in (A.7).

S =



0.1 0 0 0 0 0

0 0.1 0 0 0 0

0 0 0.1 0 0 0

0 0 0 0.1 0 0

0 0 0 0 0.1 0

0 0 0 0 0 0.1



(A.6)

T = S−1T̃ (A.7)

Ultimately, combining all of this information, the variation of the control vector, ~u,

can be calculated. The variation of ~u is the core of TMN. Once the variation is within

user defined tolerances, a unique solution is declared for the model. It is important to note

that based on units and matrix dimensions, ~u, will have 4 components. Specifically, the

components of ~u are shown below in (A.8).
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~u =



∆Vintx

∆Vinty

∆Vintz

∆t


(A.8)

Where the ∆V terms are the changes in the initial impulsive maneuver applied to

the interceptor, and the ∆t term is the change in rendezvous time during each iteration.

Summing the results for each component after each iteration yields the total ∆V for the

impulsive manuever. Combining the sum of the ∆t’s with the initial orbital period, results

in the final rendezvous time for the optimum ∆V.

Once the variation of the ∆V components is within 0.001 meters
sec [4] and the variation of

the ∆t component is within 0.01 sec [4] on successive iterations, convergence is complete

and a unique solution to the model can be declared. The development of the convergence

criteria comes directly from Chioma[4]. The model iterates on equation (A.9) [4] until all

the convergence criteria have been satisfied. Every iteration includes all of the previous

steps for determining T. Q is the weight matrix and ē is the error vector from Equation

(A.3).

∂u = −(T′Q−1T)−1TQ−1ē (A.9)

A.2 System Dynamics

The utility of the system model leads itself ultimately to its reliability and accuracy.

For the single orbital rendezvous model, this is no different. Because of how this study was

implemented, there are two separate models for the target and interceptor satellites. The

first model is a numerical integration model and the second uses an analytical approach.

The numerical integration model takes into account the bulge around the equator of

the Earth, J2. It also takes into consideration the atmospheric drag on both the target and
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interceptor satellites. In order to validate the atmospheric drag model, a BC for both the

target and interceptor satellites has to be assumed. In this model, the target satellite’s

ballistic coefficient is 5x’s larger than the interceptor’s, which implies that the relative

size to weight ratio of the target satellite to the interceptor satellite is about 5 times larger

assuming the satellites have roughly the same shape and therefore the same coefficient of

drag, CD. This assumption is necessary to effectively model the atmospheric drag effects

on both satellite’s orbital motion. Specifically, the assumption is in line with Wertz’s[26]

calculations for micro-satellite technology for the interceptor satellite versus traditional

technology for the target satellite.

The atmospheric model used in this model is derived from Vallado’s Fundamentals

of Astrodynamics and Applications[10]. The model looks up the atmospheric density, ρ,

at each iteration of the orbital altitude and determines the impact of that density as the

drag component of the satellite’s acceleration represented in (A.10)[43] where ~VREL is the

satellite’s relative velocity with respect to the rotating Earth.

~aDrag = −.5 × B∗ × ρ × | ~VREL|
2 (A.10)

With the addition of the drag term, the EOM for each satellite is captured in (A.11)

and (A.12).

Ṙ = ~V (A.11)

V̇ =
µ × ~R

|~R|3
−

3
2
×

J2 × µ × R2
EART H ×

~R

|~R|5
× (1 −

5 × R2
z

|~R|2
) + ~aDrag (A.12)

The second system model is based on the analytical solution for the COEs at a future

instant in time. In order to proceed, the Lagrange Planetary Equations in the disturbing

function form are utilized[45]. The disturbing function that is utilized is accurate to J2 and

establishes the foundation for the analytical solution. Key assumptions required for the
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analytical solutions include the fact that based only on J2, the satellite’s eccentricity and

inclination do not change over the course of one orbital period[45]. Therefore, et0 = et f and

it0 = it f . The RAAN angle, Ω, is determined from (A.13).

Ω = Ω0 + −
(3 × n × J2 × R2

EART H)
(2 × a2

0 × (1 − e2
0)2)

× cos(i0) × t (A.13)

Knowledge of the orbital mean motion, n, and eccentric anomaly, E, are necessary

to determine the initial mean anomaly, M0. Once obtaining the expression for M0 the

future value for the semi-major axis, a, can be calculated from (A.14) [4]. Knowledge of

the initial semi-major axis, a0, the Earth’s gravitation parameter, µ, Earth’s second zonal

harmonic constant, J2, radius of the Earth, REART H, mean motion, n, initial eccentricity, e0,

initial inclination, i0, inital mean anomaly, M0, perigee drift rate, ω̇ and initial argument of

perigee ω0 are required.

a = a0+((2×µ×J2×R2
EART H)/(n×a4

0))×(((3×e0/n)×(−.25+.75×cos(i0)2)×cos(M0+n×t)

+ (.75 − .75 × cos(i0)2) × ((−3 × e0)/(2 × (n + 2 × ω̇)) × cos((M0 + n × t)

+ 2 × (ω0 + ω̇ × t)) + (1/(n + ω̇)) × cos(2 × (M0 + n × t) + 2 × (ω0 + ω̇ × t))

+ ((21 × e0)/(2 × (3 × n + 2 × ω̇))) × cos(3 × (M0 + n × t) + 2 × (ω0 + ω̇ × t)))

−(((3×e0)/n)×(−.25+.75×cos(i0)2)×cos(M0)+(.75−.75×cos(i0)2)×(((−3×e0)/(2×(3×n+2×ω̇)))

× cos(M0 + 2×ω0) + (1/(n + ω̇))× cos(2×M0 + 2×ω0) + ((21× e0)/(2× (3× n + 2× ω̇)))

× cos(3 × M0 + 2 × ω0))))) (A.14)

The next step is to determine the partial derivatives of the disturbing function, R with

respect to the eccentricity, inclination and semi-major axis. Wiesel[45] fully describes their

derivation. It is also required to determine the partial derivative of the mean motion with

respect to the semi-major axis[45].

Knowing the various partial derivatives leads to the determination of the argument of
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perigee, ω, and mean anomaly at the future time. Determining the future mean anomaly

then solving Kepler’s problem[10] for the eccentric anomaly results in an expression for

the true anomaly at the future time expressed in equation (A.15).

ν = cos−1(
cos(E) − e

1 − (e × cos(E))
) (A.15)

Ultimately, the numerical model is determined to a fidelity including J2 and

atmospheric drag, while the analytical model only accounts for J2. Remember however,

the selection of the model is not used in the determination of Φ. The method is the same

in both the numerical and analytical models and requires the numerical integration of the

interceptor satellite’s equations of motion and the variational equations. The variational

equations are the partial derivatives of the EOMs with respect to the position and velocity

vector components.

A.3 Initial Conditions

Assuming the interceptor and target satellites are beginning at the same starting

position, rendezvous will occur approximately one target satellite revolution later. The

initial conditions for both the interceptor and target satellites are in tabular form in

Table A.1. These initial conditions were directly transfered from Chioma[4]. The initial

conditions are identified through each satellite’s COEs.

A function was developed to convert the initial COEs to position and velocity vectors

for the target and interceptor satellites. A function was also implemented to convert the

initial COEs into radians, then calculate the semi-paramter value for the orbits and convert

the COEs into the Perifocal Coordinate System (PQW), then rotate into the Geocentric

Equatorial System. The intial position and velocity vectors for the target are represented

below in (A.16).
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Table A.1: Initial COEs for Target and Interceptor Satellites for Initial Model Validation

Orbital Element Target Sat Interceptor Sat

Semi-Major Axis, a, Earth radii 1.06 1.0709

Eccentricity, e .005 .0152

Inclination, i, Degrees 15 40.0519

Right Ascension of Ascending Node, Ω , Degrees 45 106.3808

Argument of Perigee, ω , Degrees 70 13.3168

True Anomaly at Epoch, ν, Degrees 10 10.0182

~Rtgt = [−3699.4, 5351.7, 1714.9] km

~Vtgt = [−6.2922,−4.4529, .3485] km
sec

(A.16)

The intial position and velocity for the interceptor are in (A.17).

~Rint = [−3699.4, 5351.7, 1714.9] km

~Vint = [−4.3738,−4.4679, 4.5868] km
sec

(A.17)

Notice the difference in the velocity vector of the interceptor, representing an initial

velocity of 7.75 km
sec vs. 7.71 km

sec for the target satellite. The slight difference in the initial

orbits also yeilds a orbital period of 5,532 sec for the target while the interceptor has an

initial orbital period of 5,618 sec. Therefore, after one revolution of both the target and

interceptor satellites, they will not achieve rendezvous. In order for the interceptor satellite

to meet the target satellite, a maneuver is necessary.

A.4 No Maneuver

Since it is only intuitively obvious that a maneuver is necessary to achieve rendezvous,

Figure A.1 displays the position of the interceptor satellite after just one orbital period
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Figure A.1: Initial Miss Distance After One Target Satellite Revolution

of the target satellite. Remember, the satellites began at the same position with different

velocities. Therefore, after one orbit, the miss distance between the interceptor and target

satellite is 681.77 km. This demonstrates the necessity of executing a maneuver to achieve

rendezvous.

A.5 Collinear Burn

A.5.1 Initial Conditions.

The collinear burn is executed using the same initial conditions highlighted in Table

A.1. Therefore, the position of the interceptor and target satellites are identical at t=0 with

different initial velocities. However, in order to initiate the algorithm, initial conditions

must be assumed to search for the minimum fuel maneuver to achieve the closest possible

intercept approximately one orbit later. A fundamental understanding of the initial orbits

is necessary to drive the observation that to achieve the intercept one orbit later, the

interceptor’s orbital period must be nearly identical to the target’s orbital period. Therefore

the initial guess for the time of closest intercept is the original orbital period of the target

satellite, 5,532 sec. In order to achieve this specific time an initial ∆V is required, -38.6 m
sec .
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A.5.2 Collinear Methodology.

The T-Matrix Navigation algorithm is previously highlighted in sections A.1 and A.2.

However, a few modifications are necessary in order to implement the algorithm in the

collinear case. The collinear model for achieving intercept of the target satellite assumes

that the only direction that the velocity can be changed is along the initial velocity direction.

Therefore, the ∆V can only be in the + or - original velocity’s direction. This requires

that the algorithm be adjusted to accomodate this limitation. Specifically, the T̃ matrix

is adjusted to include a sensitivity portion based on the the STM sub matrix, φ shown in

equation (A.18)[4].

T̃ =

φ ×
~V0

| ~V0 |
~Vint − ~Vtgt

3 × 1 3 × 1

 (A.18)

T̃ is a 3x2 matrix. Utilizing a 3x3 S matrix, converting T̃ into T yields different

dimensions than the full 3-D case. This is necessary since the maneuver is only allowed

to happen in the +/- original velocity direction for the interceptor. Noticing this change in

dimension of T requires a slight modification to the error vector, ē shown in (A.19).

ē =


Rintx − Rtgtx

Rinty − Rtgty

Rintz − Rtgtz

 (A.19)

Other than the updated matrix dimensions, the TMN algorithm will proceed as

described in Section A.1 with a 3x3 I for Q.

A.5.3 Collinear Integration.

Utilizing the system dynamics described in Section A.2, a 4th order Runge-Kutta

numerical integrator was implemented. Provided the overall initial conditions and the

initial conditions specific to the collinear burn case, the target and interceptor satellites

are propogated via numerical integration. Table A.2 summarizes the performance of the
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TMN algorithm on finding the minimum fuel expended solution for this model. These

results are validated as the minimum from an analysis completed in Reference[4].

Table A.2: Results for Collinear Burn via Numerical Integration for Initial Model

Validation

Miss Distance, meters 440.0933

∆V, meters
sec -41.2701

Rendezvous Time, seconds 5512.9

Number of Algorithm Iterations 4

Of note is the relatively high miss distance of 440 m. Keep in mind that with no

maneuver the miss distance was 681 km. Knowing that the maneuver is constrained to

only occur in the + or - velocity direction directly impacts this value.

A.5.4 Collinear Analytical.

The only change in the analytical approach over the collinear numerical integration

is using the analytic method highlighted in Section A.2. The analytic method determines

the future value of both the target and interceptor satellite’s COEs at a specified future

time. Table A.3 displays the results of TMN limited to a collinear burn using the analytical

method.

Interestingly, the analytical method yields a lower possible ∆V, but it converges to a

further miss distance of 492 meters. It is also of interest that the analytical method, in

the TMN algorithm, computes a rendezvous time that is about 4.5 seconds later than the

numerical integration method.
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Table A.3: Results for Collinear Burn via Analytic Approach for Initial Model Validation

Miss Distance, meters 492.4583

∆V, meters
sec -41.0111

Rendezvous Time, seconds 5517.3

Number of Algorithm Iterations 3

A.6 Coplanar Burn

A.6.1 Initial Conditions.

The coplanar burn is executed using the same initial conditions highlighted in Table

A.1. Therefore, the position of the interceptor and target satellites are identical at t=0 with

different initial velocities. Similar to the collinear cases, in order to initiate the algorithm,

initial conditions must be tailored to the coplanar assumptions. These assumptions allow

the algorithm to search for the minimum fuel expended maneuver in order to achieve the

closest possible intercept approximately one orbit later. As above, the initial guess for the

time of closest intercept is the original orbital period of the target satellite, 5,532 sec. In

order to achieve this specific time an initial ∆V is required in the amount of -38.6 m
sec .

A.6.2 Coplanar Methodology.

The coplanar maneuver removes the constraint that the impulsive burn must be

exectuted only in the + or - velocity direction. It also allows for the maneuver to occur in the

radial direction of the satellite in its orbit. Combining the velocity and radial componenents

obviously leads to an overall 3-D manuever, but the algorithm is constrained to apply the

velocity changes along the unit vectors of the original position vector and the original

velocity vectors. The initial ∆V is applied only in the velocity direction. While the initial

∆V in the radial direction is 0.

Additional modifications are necessary to the TMN method described in Section A.1.
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For the coplanar case the T̃ matrix is modified from the collinear version to include an

additional sensitivity matrix based on the original position and velocity vectors of the

interceptor. The sensitivity matrix is a combination of the upper right portion, φ, of

the interceptor’s state transition matrix and the unit vectors for the interceptor satellite’s

original position and velocity vectors. The modified T̃ matrix is identified in equation

(A.20)[4].

T̃ =

φ ×
~V0

| ~V0 |
φ ×

~R0

| ~R0 |
~Vint − ~Vtgt

3 × 1 3 × 1 3 × 1

 (A.20)

Even though the sensitivity portion to the original position vector was added, the T

matrix is similarly derived. Since the dimensions are consistent, the same error vector, ē

shown in (A.19), will be used in the coplanar case as in the collinear case. Other than the

noted changes the algorithm proceeds as outlined in section A.1.

A.6.3 Coplanar Integration.

Utilizing the system dynamics described in Section A.2, a 4th order Runge-Kutta

numerical integrator was implemented. Provided the overall initial conditions and the

initial conditions specific to the coplanar burn case, the target and interceptor satellites

are propogated via numerical integration. Table A.4 summarizes the performance of the

TMN algorithm on finding the minimum fuel expended solution for this model.

An immediate observation is that the overall miss distance of the model has been

reduced to a mere 3.2 meters while expending .01 m
sec less fuel than the collinear numerical

integration method. This is a reasonable result due to the model’s ability to apply the

∆V along both the +/- radial and velocity directions of the original interceptor’s position

and velocity vectors respectively. Similar to the collinear numerical integration method,

the coplanar numerical integration method yields an optimum rendezvous time of 5,512.9

seconds.
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Table A.4: Results for Coplanar Burn via Numerical Integration for Initial Model

Validation

Miss Distance, meters 3.2241

∆V, meters
sec -41.2644

Rendezvous Time, seconds 5512.9

Number of Algorithm Iterations 5

A.6.4 Coplanar Analytical.

The only change in the analytical approach over the coplanar numerical integration

is using the analytic method highlighted in Section A.2. Table A.5 displays the results of

TMN limited to the coplanar maneuver described using the analytical method.

Table A.5: Results for Coplanar Burn via Analytic Approach for Initial Model Validation

Miss Distance, meters .0103

∆V, meters
sec -41.0524

Rendezvous Time, seconds 5517.3

Number of Algorithm Iterations 28

A significant improvement in miss distance is achieved using the analytical method for

the coplanar maneuver. A miss distance of 0.0103 meters is achieved with a ∆V savings of

approximately 0.21 m
sec over the numerically integrated approach. Also note, the analytic

rendezvous time is identical to the collinear analytical rendezvous time.
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A.7 3-Dimensional Burn

A.7.1 Initial Conditions.

The 3-Dimensional burn is executed using the same initial conditions highlighted in

Table A.1. Therefore, the position of the interceptor and target satellites are identical at t=0

with different initial velocities. Previously identified assumptions for the initial guess for

the time of closest intercept is the original orbital period of the target satellite, 5,532 sec

and an initial ∆V of -38.6 m
sec .

A.7.2 3-D Methodology.

The 3-D manuever removes the constraint that the impulsive burn must be exectuted

only in the velocity or radial directions. It ultimately allows for a maneuver within the

full 3-D space. The algorithm is no longer constrained to executing the maneuver in any

particular direction allowing a full use of the search space. The initial ∆V is applied

along all three dimensions of the original velocity vector according to the unit vector of

the interceptor’s initial velocity.

No modifications are necessary to the TMN method described in Section A.1.

Specifically, the scale matrix, S, is as defined in (A.6). Therefore, T is a 6x4 matrix, Q

is a 6x6 I matrix and ē is a 6x1 vector highlighted in (A.3).

A.7.3 3-D Integration.

Utilizing the system dynamics described in Section A.2, a 4th order Runge-Kutta

numerical integrator was implemented. Provided the overall initial conditions and the

initial conditions specific to the 3-D burn case, the target and interceptor satellites are

propogated via numerical integration. Table A.6 summarizes the performance of the TMN

algorithm on finding the minimum fuel expended solution for this model.

Noteworthy, is the fact that the miss distance of the 3-D numerical integration method

increases to 0.7215 meters over the coplanar analytic method. While this is still a very

good result it highlights the discrepancy introduced into the model with the modified error
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Table A.6: Results for 3-Dimensional Burn via Numerical Integration for Initial Model

Validation

Miss Distance, meters .7215

∆V, meters
sec -41.2634

Rendezvous Time, seconds 5512.9

Number of Algorithm Iterations 27

vector in equation (A.3). The full 3-D case requires the introduction of the applied ∆V’s,

therefore a different solution is expected. However, as anticipated, for all of the numerically

integrated approaches it ultimately yields the best result for overall miss distance.

A.7.4 3-D Analytical.

The only change in the analytical approach over the 3-D numerical integration is using

the analytic method in section A.2. Table A.7 displays the results of the unconstrained

TMN.

Table A.7: Results for 3-Dimensional Burn via Analytic Approach for Initial Model

Validation

Miss Distance, meters 1.718

∆V, meters
sec -41.0505

Rendezvous Time, seconds 5517.3

Number of Algorithm Iterations 46
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Executing the 3-D analytical approach yields a favorable miss distance of 1.718

meters, but it is not an improvement over the coplanar analytical solution. Most likely

this is due to the increased value of ē including adjustments for each ∆V.

A.8 Conclusions

The overall results of the study are summarized in Table A.8. As you can see, there

are a few patterns that emerge. First, based on the dynamics of the system, regardless of

which method of maneuver is utilized, the rendezvous times are the same for all numerical

integration methods and the same for all analytic methods. It is also important to note, with

the exception of the coplanar method, the analytic approach is significantly faster in the

computational time over the numerical integration. This is a very important metric for long

time interval simulations. The numerical integration methods require significant computing

time, while the analytical approach is much faster albeit slightly less accurate, again with

exception to the coplanar case.

Table A.8: Summary of Results for Initial Model Validation

Miss Dist, m ∆V, meters
sec Time, sec Iterations Comp time, sec

Collinear Integration 440.0933 -41.2701 5512.9 4 61.85

Collinear Analytic 492.4583 -41.0111 5517.3 3 16.95

Coplanar Integration 3.2241 -41.2644 5512.9 5 60.09

Coplanar Analytic .0103 -41.0524 5517.3 28 99.48

3-D Integration .7215 -41.2634 5512.9 27 248.78

3-D Analytic 1.718 -41.0505 5517.3 46 158.84
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It is extremely important to note that throughout the model validation, the ∆V’s that

are identified are the result of the magnitude of the new velocity minus the magnitude of the

original velocity. The resulting value is very different from the component by component

∆V that would be required to actually execute the maneuver. This is a result of the triangle

inequality for the subtraction of the vectors in 3-D space.

A final note should be provided that the difference between the results of the numerical

integration methods versus the analytical methods cannot be easily compared. They are

compared throughout this study from a summary view point, but they are drastically

different models. Having only utilized the effects of J2 in the analytic approach can

and will yield a significantly different result from the numerical method using J2 and

atmospheric drag. Remember however, that the state transition matrix, Φ, of TMN for

either method requires numerical integration accurate to J2 and atmospheric drag making

their comparrison applicable, as demonstrated.

Overall, the initial model validation proved to be successful by achieving a near zero

miss distance of 0.7215 meters in the 3-D case with an achievable ∆V of -41.2634 m
sec .

A.9 Appendix Summary

The previous chapter was completed as an effort to replicate the published results of

previous work. The methods and results of the chapter provide the basis for establishing

credibility for the system model that will be the foundation for this research. The final

results state that the model and algorithm being utilized in this research provided for a final

miss distance accuracy of 0.7215 meters. For the proposed application that this research is

aiming for, those results are tremendous. Considering, the impact from various altitudes on

both the interceptor and target satellites, to yield results to within 2.5 feet over the course

of an orbit are valid.
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Appendix: Introduction to Relay and Collector Model with Preliminary Results

Utilizing the TMN methodology highlighted in Section A.1, modifications are

introduced and ultimately, a new algorithm is demonstrated to maneuver a relay satellite

in order to achieve a specified geometry between itself and one collector satellite. In

the following material, the terminology has been changed from the previous chapter.

Specifically, the interceptor satellite is now considered the relay satellite and the target

satellite is called the collector satellite. From a theoretical view, there is no change in

their concept, just a change in their application. The goal of the following chapter is to

present to the reader the ability to establish an algorithm, based upon TMN, which allows

for a relay satellite maneuver that satisfies user defined criteria utilizing the differential

correction convergence from TMN. The initial approach and conclusions are summarized

throughout the following sections.

B.1 Models for Relay and Collector Satellites

The system dynamics of this model are relatively straightforward. In order to execute

the higher altitude orbit maneuver modeling the collector and relay satellites are propagated

using numerical integration. The numerical integrator model takes into account the bulge

around the equator of the Earth, J2. The EOM for each satellite are captured in (B.1) and

(B.2) [4] They are the same EOM highlighted in the previous chapter without the effect of

atmoshperic drag.

Ṙ = ~V (B.1)

V̇ =
µ × ~R

|~R|3
−

3
2
×

J2 × µ × R2
EART H ×

~R

|~R|5
× (1 −

5 × R2
z

|~R|2
) (B.2)
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Ultimately, the numerical model is determined to a fidelity including J2. Remember

however, calculating the STM, Φ, requires numerically integrating the relay satellite’s

equations of motion and the relay satellite’s variational equations of motion. The variational

equations are the partial derivatives of the EOM with respect to the position and velocity

vector components.

B.2 Model Assumptions for Relay and Collector Satellites’ Mission

The baseline assumption for this model is that the high altitude relay satellite and

the collector satellite lie along the same radial vector from the center of the Earth, at the

initial time. Fundamentally, the velocity vectors will be significantly different because

of the differing orbital altitudes, which will be demonstrated. Therefore, this assumption

ultimately results in two orbital planes that are significantly off-set from each other. The

goal throughout the analysis is to maintain disparate orbits resulting in achieving end state

altitudes as near to the initial conditions as possible. Fully understanding the dynamics

within the TMN algorithm, yields a possible solution. Therefore, this can be achieved

through the modifications of the error vector, ~e, and the T matrix. In order to make the

necessary modification, the initial magnitude of the separation distance between the relay

and collector satellites is needed, as well as the initial difference between the relay and

collector satellite’s velocity vectors. Equations (B.3) and (B.4) highlight these resulting

vectors, ~Λ and ~Γ respectively.

~Λ = MissRELAYt0−COLLECTORt0 = ~RRELAYt0 −
~RCOLLECTORt0 (B.3)

~Γ = VelRELAYt0−COLLECTORt0 = ~VRELAYt0 −
~VCOLLECTORt0 (B.4)

Once these values are determined, they are appropriately placed within the framework

of the algorithm. Specifically, a form of |~Λ| will be input into the error vector while ~Γ will

have influence within the T matrix.
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From the onset, there are two variables that can be adjusted to begin iteration. The first

is the guess at the required ∆V, and the second essentially works out to be the rendezvous

time. Recall, the rendezvous time in this scenario equates to the arrival of the relay satellite

at the determined end state. Differing from the intercept mission, the initial guess at the

rendezvous time will be the initial orbital period of the relay satellite. This initial guess

allows for the algorithm to most appropriately begin searching for a solution, which would

ultimately minimize fuel expenditure by the relay satellite. Still, the initial period of the

collector satellite should also be explored. The guess at the ∆V is self explanatory and later

proven to be somewhat arbitrary.

Inputing the initial guesses drives the algorithm to compute the resulting position and

velocity vectors for both the collector and relay satellites at the future time. This results

in the second calculation of the miss distance between the relay and collector satellites,

as well as the second calculation of the velocity difference between the integrated orbits.

These values contribute to the first iteration of the algorithm. Recall from Section A.1,

how to calculate the error vector for the intercept mission. The intercept mission’s error

vector is shown in (B.5). This is where the value for the error vector is modified for the

high altitude communications relay mission. Instead of driving the miss distance to zero as

in equation (B.5), the miss distance is iterated towards a value related to |~Λ|. The new error

vector is shown in equation (B.6).

ē =



Rintx − Rtgtx

Rinty − Rtgty

Rintz − Rtgtz

∆Vintx

∆Vinty

∆Vintz



(B.5)
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ē =



(RRELAYx − RCOLLECTORx) + η|~Λ|

(RRELAYy − RCOLLECTORy) + η|~Λ|

(RRELAYz − RCOLLECTORz) + η|~Λ|

∆VRELAYx

∆VRELAYy

∆VRELAYz



(B.6)

η is an adjustable variable to account for the various conditions of the optimal solution

that ultimately maintains the integrity of the higher altitude relay orbit referenced to the

lower collector orbit.

Also from Section A.1, the T̃ matrix calculated in (A.5) has a component in the

upper right that is equal to the difference in the relay and collector velocity vectors at

the final time. This is the location for ~Γ. Integrating the relay’s STM, Φ, and extracting

the upper right portion, φ, which relates the relay satellite’s final position with respect to

initial velocity, results in the modified T̃ matrix given by (B.7). These modifications are

necessary for the high altitude solution.

T̃ =



φ ~VRELAY − ~VCOLLECTOR + ~Γ

3 × 3 3 × 1

I 0

3 × 3 3 × 1


(B.7)

The addition of ~Γ ensures the integrity of the solution to maintain the initial reference

between the relay and collector satellites.

Introducing these modifications, the improved algorithm can proceed as described in

Section A.1 towards a viable solution.
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B.3 Initial Conditions and Methodology for Relay and Collector Satellites’ Mission

Throughout the high altitude study, there is one set of initial conditions that is universal

regardless of the relay’s initial altitude, the guess at the ∆V and the initial guess at the

rendezvous time. Specifically, the initial COEs for the collector satellite remain the same

throughout the study. They are shown below in Table B.1[4]. The COEs that define the

position and velocity of the collector satellite in this model are identical to those used for

the target satellite in the previous chapter.

Table B.1: Initial COEs for the Collector Satellite in 1 Relay + 1 Collector Scenario

Orbital Element Collector Sat

Semi-Major Axis, a, km 6760.8

Eccentricity, e .005

Inclination, i, Degrees 15

Right Ascension of Ascending Node, Ω , Degrees 45

Argument of Perigee, ω , Degrees 70

True Anomaly at Epoch, ν, Degrees 10

As a result of the fixed initial conditions for the collector satellite, the orbital period

for the collector satellite is also fixed at 5532.4 sec.

For this phase, there are two specific relay satellite orbits being investigated. The first

represents an orbital altitude of approximately 2000 km. The second is an orbital altitude

of approximately 4000 km, which represents a relay satellite in an orbit with an orbital

period nearly 2x’s the collector’s orbital period. To further simplify the scenarios, the relay

satellite will begin on the same unit position vector as the collector satellite. This results in

the COEs in Table B.2.
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Table B.2: Initial COEs for the Relay Satellites in 1 Relay + 1 Collector Scenario

Orbital Element Relay Sat 1 Relay Sat 2

Semi-Major Axis, a, km 8378.1 10732.2

Eccentricity, e .0152 .0152

Inclination, i, Degrees 40.0519 40.0519

Right Ascension of Ascending Node, Ω , Degrees 106.3808 106.3808

Argument of Perigee, ω , Degrees 13.3168 13.3168

True Anomaly at Epoch, ν, Degrees 10.0182 10.0182

Provided the COEs, this study was conducted using three different initial ∆V’s and the

two guesses at the rendezvous time including the collector satellite’s orbital period and the

relay’s orbital period. The test summary is outlined in Table B.3.

B.4 Relay Satellite 1 Results

Figure B.1 provides a view of the initial orbits without a maneuver for the first

scenario.

In Figure B.1, notice that the original position vectors are collinear. The relay’s

position vector is longer, representing a higher altitude. This image of the original orbits is

to provide some context for the results using Relay Satellite 1. Utilizing the aforementioned

adjutments within the TMN algorithm, test cases 1 through 6 were executed. The results

from the various tests are in Table B.4 keeping in mind that the semi-major axis for the

collector satellite remains fixed at 6760.8 km. Test cases 1-6 utilized η = .5.

In Table B.4, t0 Distance and t f Distance represent the initial and final separation

distance between the relay and collector satellites, respectively. Notice upfront that the
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Table B.3: Test Methodology for High Altitude Relay Satellite Control using TMN

Test Case # Relay Satellite Guess ∆V m
sec Time Guess

1 Relay Sat 1 -50 Collector Sat Period

2 Relay Sat 1 0 Collector Sat Period

3 Relay Sat 1 +50 Collector Sat Period

4 Relay Sat 1 -50 Relay Sat 1 Period

5 Relay Sat 1 0 Relay Sat 1 Period

6 Relay Sat 1 +50 Relay Sat 1 Period

7 Relay Sat 2 -50 Collector Sat Period

8 Relay Sat 2 0 Collector Sat Period

9 Relay Sat 2 +50 Collector Sat Period

10 Relay Sat 2 -50 Relay Sat 2 Period

11 Relay Sat 2 0 Relay Sat 2 Period

12 Relay Sat 2 +50 Relay Sat 2 Period

final separation distance between the relay and collector satellites is the same at the end of

the algorithm regardless of the intial guess at the ∆V or the initial guess for the time. It

is very important to note though, that differences do exist between the cases depending on

the initial guess for the time. Specifically, when the orbital period of the collector satellite

is used as the initial guess, it yields the same acutal ∆V and actual time regardless of the

initial ∆V guess. The same is the case for the orbital period of the relay satellite. This

shows the sensitivity to of the algorithm towards the guess at the initial time. The final ∆Vs

achieved all lie within 2% of each other, while the final time is within 0.07%.

Figure B.2 shows the results from one of the above cases. The inner circle represents

the collector orbit, while the semi-circle represents the relay orbit. The top solid line is the

215



Figure B.1: Relay 1 and Collector Satellite after One Orbital Period

Table B.4: Results for Relay Satellite 1: Semi-Major Axis = 8378.1 km

Case # t0 Sep (km) t f Sep (km) ∆V Guess m
sec Actual ∆V m

sec Guess t Actual t (sec)

1 1525.1 1320.8 -50 -281.9 Col Period 6915.7

2 1525.1 1320.8 0 -281.9 Col Period 6915.7

3 1525.1 1320.8 +50 -281.9 Col Period 6915.7

4 1525.1 1320.8 -50 -289.79 Relay 1 Period 6910.6

5 1525.1 1320.8 0 -289.79 Relay 1 Period 6910.6

6 1525.1 1320.8 +50 -289.79 Relay 1 Period 6910.6

initial separation distance between the collector and relay satellites, while the lower solid

line is the final separation distance. The shorter arrows represent the collector satellite’s
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position vector at its initial and final time, while the longer arrows are the relay’s position

vector at its initial and final time.

Figure B.2: Solution for Relay 1 and Collector Satellites’ Orbits

The evolution of the satellite’s miss distance through the algorithm’s iterations is

captured in Figure B.3. This simply shows that throughout the algorithm, various solutions

are explored, while it shows a gradual convergence towards the final solution.

B.5 Relay Satellite 2 Results

Figure B.4 provides a view of the initial orbits without a maneuver for the first

scenario.
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Figure B.3: Miss Distance per Iteration

Figure B.4: Relay 2 and Collector Satellite after One Orbital Period

In Figure B.4 notice that the original position vectors are again, collinear. Utilizing

the aforementioned adjutments within the TMN algorithm, test cases 7 through 12 were

executed. The results from the various tests are in Table B.5, keeping in mind that the
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semi-major axis for the collector satellite remains fixed at 6760.8 km. Test cases, 7-12 also

utilized η = .5.

Table B.5: Results for Relay Satellite 2: Semi-Major Axis = 10732.2 km

Case # t0 Sep (km) t f Sep (km) ∆V Guess m
sec Actual ∆V m

sec Guess t Actual t (sec)

7 3844.0 3329.0 -50 -307.28 Col Period 6724.7

8 3844.0 3329.0 0 -307.28 Col Period 6724.7

9 3844.0 3329.0 +50 -307.28 Col Period 6724.7

10 3844.0 3329.0 -50 -315.7 Relay 2 Period 6767.0

11 3844.0 3329.0 0 -315.7 Relay 2 Period 6767.0

12 3844.0 3329.0 +50 -315.7 Relay 2 Period 6767.0

Similar to the 8,378 km orbit, the final separation distance between the relay and

collector satellites is the same at the end of the algorithm regardless of the initial guess at

the ∆V or the initial guess for the time. Similarly, differences do exist between the cases

depending on the initial guess for the time. Specifically, when the orbital period of the

collector satellite is used as the initial guess, it yields the same acutal ∆V and actual time

regardless of the initial ∆V guess. The final ∆Vs achieved all lie within 3% of each other,

while the final time is within 0.7%.

Figure B.5 shows the results from one of the above cases. The inner ellipse represents

the collector orbit, while the semi-circle represents the relay orbit. The top solid line is the

initial separation distance between the collector and relay satellites, while the lower solid

line is the final separation distance. The shorter arrows represent the collector satellite’s

position vector at its initial and final time, while the longer arrows are the relay’s position

vector at its initial and final time.
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Figure B.5: Solution for Relay 2 and Collector Satellites’ Orbits

The evolution of the satellite’s miss distance through the algorithm’s iterations is

captured in Figure B.6. Similar to the first scenario, this demonstrates that throughout

the algorithm, various solutions are explored while it shows a gradual convergence towards

the final solution.

Figure B.6: Miss Distance per Iteration
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B.6 Introduction to Relay and Collector Model: Preliminary Conclusions and Way

Forward

Throughout this section it has been sufficiently demonstrated that an algorithm can

be produced to initiate a maneuver that aims to optimize the ∆V required to achieve a

desired end state based on the dynamics of a relay and collector satellite. However, the

initial results still demonstrate that revisions are necessary in order to prove a design that is

sustainable, the ∆V’s identified through these results are too large.

That being said, since the modified algorithm works and demonstrates convergence,

the work that needs to be completed hovers around the use of the η variable. More

importantly, the path forward is to better understand and modify the system’s geometry

to demonstrate an ability to implement a strategy to optimize the fuel consumed over the

course of a responsive space scenario. While a minimum distance end state separation is

achieved throughout these scenarios, it is not the primary goal. The primary goal was

to demonstrate the ability to modify the TMN algorithm into a new algorithm, which

succeeded in converging towards a maneuver to a point in space based on the user defined

geometry between the relay and collector satellites.
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Appendix: Introduction to Relay, Collector and Ground Model with Preliminary

Results

Utilizing the methodology highlighted in Section A.1 modifications are introduced

and a new algorithm is demonstrated to achieve the desired effect of maneuvering a relay

satellite in order to achieve a specified geometry between itself, one collector satellite and

one fixed ground station. The initial approach and conclusions are summarized throughout

the following sections.

C.1 Models for Relay and Collector Satellites and Ground Station

The satellite system dynamics are relatively straightforward. Numerical integration is

utilized to propogate the the collector and relay satellites. The model accounts for the bulge

around the equator of the Earth, J2. The equations of motion for each satellite are captured

in (B.1) and (B.2)[4].

The position and velocity components of the ground station are required as well. These

vectors are represented in the same frame as the collector and relay satellites. The EOM for

the ground station are ultimately a function of the ground station’s latitude and the rotation

rate of the Earth. Details regarding the derivation of the initial position and velocity vectors

for the ground station are found in a later section.

C.2 Model Assumptions for Relay and Collector Satellite’s Mission with Ground

Station

The baseline assumption for this model is that the relay satellite, the collector satellite,

and the ground station lie along the same radial vector from the center of the Earth at the

beginning time. Fundamentally, the velocity vectors will be significanlty different because

of the differing orbital altitudes and the rotation of the Earth. Therefore, this assumption

ultimately results in three planes that are significantly off-set from each other. This requires
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the analysis of the ground station as a point subject to its own EOM within its plane, the

surface of the rotating Earth. The goal throughout the analysis is to maintain disparate

satellite orbits, resulting in achieving end state altitudes as near to the initial conditions

as possible. This is achieved through significant modifications to the TMN construct. In

order to make the necessary modifications, the initial magnitude of the separation distance

between the relay and collector satellites is needed, as well as the initial difference between

the relay and collector satellite’s velocity vectors. This information is also required for the

difference between the relay satellite and the ground station at the initial time. Equations

(C.1), (C.2), (C.3) and (C.4) highlight these resulting vectors, ~Λ, ~Γ, ~Υ and ~Ψ respectively.

~Λ = MissRELAYt0−COLLECTORt0 = ~RRELAYt0 −
~RCOLLECTORt0 (C.1)

~Γ = VelRELAYt0−COLLECTORt0 = ~VRELAYt0 −
~VCOLLECTORt0 (C.2)

~Υ = MissRELAYt0−GNDt0 = ~RRELAYt0 −
~RGNDt0 (C.3)

~Ψ = VelRELAYt0−GNDt0 = ~VRELAYt0 −
~VGNDt0 (C.4)

In order to appropriately place the ground station at the initial time, the unit vector

of the collector satellite’s position is acquired. Multiplying by the radius of the Earth,

assuming a perfect sphere, yields the position vector for the ground station in the same

coordinate frame as both the collector and relay satellites. In order to sufficiently model

the motion of the ground station as the Earth rotates through time, the latitude angle, λ

and initial φGS angle need to be determined. These are calculated through some simple

algebraic manipulations of the dot product of the ground station’s position unit vector with

the ẑ unit vector for λ and the ŷ unit vector for φGS .

The initial velocity of the ground station is a little bit more challenging. The full
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representation for the initial velocity for the ground station is in equation (C.5). REART H is

the radius of the Earth and ωEART H represents the rotation rate of the Earth.

~VGND0 =


REART H × cos(λ) × ωEART H × sin(φGS 0)

REART H × cos(λ) × ωEART H × cos(φGS 0)

0

 (C.5)

The EOM for the collector and relay satellites and the relay’s Φ matrix are integrated

as previously identified. The change in the ground station is determined from the amount

of time surpased × ωEART H and the cos(λ). This determines the change in the angle, φGS .

Knowing that the position of the ground station cannot change in the ẑ direction, a simple

manipulation of the original magnitude of the ground station in the x and y directions,

multiplied by the cos(φGS ) and the sin(φGS ) in the x̂ and ŷ directions, respectively yields

the final ground station position. Utilizing the current value of φ and (C.5) determines the

ground station’s final velocity.

Now a form of |~Λ| and |~Υ| will be input into the error vector, while ~Γ and ~Ψ will have

influence within the T matrix.

The first major modification to the algorithm is with the error vector. Now, considering

the role and influence of the ground station over the optimum solution, the modified error

vector is in equation (C.6).
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ē =



(RRELAYx − RCOLLECTORx) + η|~Λ|

(RRELAYy − RCOLLECTORy) + η|~Λ|

(RRELAYz − RCOLLECTORz) + η|~Λ|

(RRELAYx − RGROUNDx) + σ|~Υ|

(RRELAYy − RGROUNDy) + σ|~Υ|

(RRELAYz − RGROUNDz) + σ|~Υ|

∆VRELAYx

∆VRELAYy

∆VRELAYz



(C.6)

η is an adjustable variable to account for the various conditions of the optimal solution

that ultimately maintains the integrity of the higher altitude relay orbit referenced to the

lower collector orbit. And σ serves that function for the refrence between the relay satellite

and the ground station.

Obviously, this is a significant modification to the TMN algorithm. Not only does it

increase the dimension of the error vector, but it also demonstrates that the solution of the

algorithm must satisfy both the initial reference between the relay and collector orbits, as

well as between the relay orbit and the ground station. These will be competing interests

throughout each iteration while implementing the algorithm. So much so, that the resulting

output of each iteration is the variation of the control vector, ~u, which is modfied to reflect

this competition. It is important to note that based on matrix dimensions, ~u, will now have

seven components. Specifically, the components of ~u are shown below in (C.7).
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~u =



∆Vcolx

∆Vcoly

∆Vcolz

∆Vgndx

∆Vgndy

∆Vgndz

∆t



(C.7)

The ultimate result after each iteration is to prove balance in both the collector

satellite’s and ground station’s influence over the solution. Therefore, a mean average of

the ∆V’s for each component is fed back into the algorithm for successive iterations.

In order to adjust for the change in matrix dimension of the error vector, a ripple effect

changes the weight matrix, Q. The addition of the ground station requires Q to change to a

9x9 I matrix and the T matrix will adjust to a 9x7 matrix.

Previously identifying the simple change to the T̃ matrix to maintain the reference

between the relay and collector satellite in Section B.2 in equation (B.7), a more robust

change is necessary to capture the ground component. The relay’s Φ matrix is fixed and

therefore φ is fixed. Since the dimension of the T̃ matrix has to be adjusted, the adjustments

must come in another form. To maintain the intent of the T matrix would be to follow the

same form as before. Therefore, the upper left corner is the φ matrix, the lower left corner

is a 6x6 I matrix, the lower right corner is a column of zeros, leaving the upper right corner

as a 3x4 matrix. It is also known from before that some form of the velocity difference

between the relay and collector satellite must go here. Additionally, some form of the

difference between the relay satellite and the ground station must be captured here as well.

Therefore, new matrices are formed using the previously calculated Γ and Ψ vectors and the

φ matrix. Equations (C.8) and (C.9) describe these matrices, resulting in two 3x2 matrices

to fill the upper right corner of T̃ .
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Ξ̄1 = φ ×


Vrelx − Vcolx

~Γ Vrely − Vcoly

Vrelz − Vcolz

 (C.8)

Ξ̄2 = φ ×


Vrelx − Vgndx

~Ψ Vrely − Vgndy

Vrelz − Vgndz

 (C.9)

Now the new T matrix can be calculated from the modified T̃ matrix. This update is

provided in equation (C.10) and is necessary for the relay and collector satellites with the

ground station solution.

T̃ =



φ Ξ1Ξ2

3 × 3 3 × 4

I 0

6 × 6 6 × 1


(C.10)

Now the algorithm can proceed to determine the optimum control for the relay satellite

to meet the desired end state.

C.3 Initial Conditions and Methodology for Relay and Collector Satellite’s Mission

with Ground Station

Throughout the ground station phase of the study, there is one set of initial conditions

that is universal regardless of the relay’s initial altitude, the guess at the ∆V and the initial

guess at the rendezvous time. Specifically, the initial COEs for the collector satellite remain

the same throughout the study. They are shown below in Table C.1[4].

As a result of the fixed initial conditions for the collector satellite, the orbital period

for the collector satellite is also fixed at 5532.4 sec.

For this phase of the study, there are three specific relay satellite orbits being
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Table C.1: Initial COEs for the Collector Satellite

Orbital Element Collector Sat

Semi-Major Axis, a, km 6760.8

Eccentricity, e .005

Inclination, i, Degrees 15

Right Ascension of Ascending Node, Ω , Degrees 45

Argument of Perigee, ω , Degrees 70

True Anomaly at Epoch, ν, Degrees 10

investigated. The first represents an orbital altitude of approximately 2000 km. The second

is an orbital altitude of approximately 4000 km, which represents a relay satellite in an orbit

with an orbital period nearly 2x’s the collector’s orbital period. The first two are identical

to the high altitude phase of the study, while the third is the case that represents the relay

and collector satellite being at nearly the exact same starting position. To further simplify

the scenarios, the relay satellite and the ground station will begin on the same unit position

vector as the collector satellite. This results in the COEs in Table C.2.

Provided the COEs, this phase of the study was conducted using a fixed initial ∆V of

-50 m
sec . This is possible due to the negligible impact of the initial ∆V demonstrated in the

first phase of the study. Therefore, the only variable to change is to alternate between the

two guesses at the rendezvous time, including the collector’s orbital period and the relay’s

orbital period. The test summary is outlined in Table C.3.
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Table C.2: Initial COEs for the Relay Satellites

Orbital Element Relay Sat 1 Relay Sat 2 Relay Sat 3 [4]

Semi-Major Axis, a, km 8378.1 10732.2 6830.35

Eccentricity, e .0152 .0152 .0152

Inclination, i, Degrees 40.0519 40.0519 40.0519

Right Ascension of Ascending Node, Ω , Degrees 106.3808 106.3808 106.3808

Argument of Perigee, ω , Degrees 13.3168 13.3168 13.3168

True Anomaly at Epoch, ν, Degrees 10.0182 10.0182 10.0182

Table C.3: Test Methodology for Space to Ground Tracking

Test Case # Relay Satellite Initial Time Guess

1 Relay Sat 1 Collector Sat Period

2 Relay Sat 1 Relay Sat 1 Period

3 Relay Sat 2 Collector Sat Period

4 Relay Sat 2 Relay Sat 2 Period

5 Relay Sat 3 Collector Sat Period

6 Relay Sat 3 Relay Sat 3 Period

C.4 Relay Satellite 1 Results with Ground Station

Figure C.1 provides a view of the initial orbits without a maneuver for the first

scenario. The collector’s orbit is slightly more circular, while the relay’s initial orbit is the

other ellipse. This is the identical configuration explored in Section B.4 with the addition

of the ground station.
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Figure C.1: Relay 1 and Collector Satellites’ Orbits After One Orbital Period

In Figure C.1, notice that the original relay and collector satellites, and ground station

position vectors are collinear at the starting time. Utilizing the modifications within the

algorithm, test cases 1 and 2 were executed. The results from these scenarios are in

Table C.4. Keep in mind that the semi-major axis for the collector satellite remains fixed at

6760.8 km. Test cases, 1 and 2 utilized arbitrary values for η and σ, η = 0.333 and σ = 0.5.

Table C.4: Results for Relay Satellite 1: Semi-Major Axis = 8378.1 km

# Col t0 (km) Col t f (km) Gnd t0 (km) Gnd t f (km) ∆V m
sec t Guess t (sec)

1 1525.1 3991.3 1874.5 1629.1 -293.9 Col Period 5508.4

2 1525.1 3991.3 1874.5 1629.1 -294.6 Relay 1 Period 5510.2

Even though the results summarized in Table C.4 are promising, there is still an

impact on the solution based on the initial time guess. However, the proposed algorithm
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demonstrates convergence towards a solution given the paramaters of the problem.

Figure C.2 provides an image for the solution summarized in Table C.4. In Figure C.2, the

top solid line represents the original separation between the ground station and the relay

satellite, while the rightmost solid line represents the final separation between the ground

station and the relay satellite. The solid line between the two is the separation between the

collector and relay satellites at the final time. The medium vectors are the position vectors

of the collector satellite. The longest vectors are the position vectors of the relay satellite

and the shortest vectors are the positions of the ground station at the initial and final times.

Figure C.2: Orbital Solution for Relay 1 with Collector Satellite and Ground Station

Figures C.3 and C.4 illustrate the evolution of the miss distance between the relay

satellite and the collector satellite, and the relay satellite and the ground station through

each iteration of the aglorithm.

Similarly to the high altitude solutions, the miss distance figures demonstrate that the

algorithm is exploring an expansive search space for the final solution before converging.
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Figure C.3: Relay 1 to Collector Miss Distance per Iteration

Figure C.4: Relay 1 to Ground Station Miss Distance per Iteration

C.5 Relay Satellite 2 Results with Ground Station

Figure C.5 provides a view of the initial orbits without a maneuver for the second

ground station scenario. The collector’s orbit is more circular than the elliptical relay orbit.

This is the identical configuration explored in section B.5, with the addition of the ground

station.
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Figure C.5: Relay 2 and Collector Satellites’ Orbits After One Orbital Period

In Figure C.5, notice that the original relay and collector satellites, and ground station

position vectors are collinear at the starting time. The results from scenarios 3 and 4 are in

Table C.5. Remember that the semi-major axis for the collector satellite remains fixed at

6760.8 km. These test cases, utilized arbitrary values for η and σ, η = 0.333 and σ = 0.5.

Table C.5: Results for Relay Satellite 2: Semi-Major Axis = 10732.2 km

# Col t0 (km) Col t f (km) Gnd t0 (km) Gnd t f (km) ∆V m
sec t Guess t (sec)

3 3844.0 5896.1 4193.3 3638.3 -996.47 Col Period 5510.9

4 3844.0 5084.1 4193.3 3636.9 -946.59 Relay 2 Period 5636.8

Based solely on the results summarized in Table C.5, the algorithm demonstrates

convergence to two separate solutions given the paramaters of the problem. Only further

analysis outside the scope of this study could determine if the algorithm is actually finding
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the same solution. Considering the difference in the final relay to collector distance,

combined with the lower ∆V and the increased time, the results from this scenario could

actually be converging towards very similar solutions.

Figure C.6 provides an image for the solution summarized in Table C.5. In Figure C.6,

the leftmost solid line represents the original separation between the ground station and the

relay satellite, while the rightmost solid line represents the final separation between the

ground station and the relay satellite. The solid line in the middle is the separation between

the collector and relay satellites at the final time. The medium vectors are the position

vectors of the collector satellite. The longest vectors are the position vectors of the relay

satellite and the shortest vectors are the positions of the ground station at the initial and

final times.

Figure C.6: Orbital Solution for Relay 2 with Collector Satellite and Ground Station

Figures C.7 and C.8 illustrate the evolution of the miss distance between the relay

satellite and the collector satellite, and the relay satellite and the ground station through

each iteration of the aglorithm.
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Figure C.7: Relay 2 to Collector Miss Distance per Iteration

Figure C.8: Relay 2 to Ground Station Miss Distance per Iteration

C.6 Relay Satellite 3 Results with Ground Station

Figure C.9 provides a view of the initial oribits without a maneuver for the final ground

station scenario. This is a unique scenario to this phase with the relay and collector satellites

within very near proximity of each other but in separate orbital planes with differing

inclinations and right ascension of the ascending nodes.
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Figure C.9: Relay 3 and Collector Satellites’ Orbits After One Orbital Period

In Figure C.9 notice that the original relay and collector satellites, and ground station

position vectors are collinear at the starting time. The results from scenarios 5 and 6 are

in Table C.6. These test cases, utilized η = 0.333, σ = 0.5 and a fixed collector orbit

semi-major axis.

Table C.6: Results for Relay Satellite 3: Semi-Major Axis = 6830.35 km

# Col t0 (km) Col t f (km) Gnd t0 (km) Gnd t f (km) ∆V m
sec t Guess t (sec)

5 .532 2804.5 449.92 407.8 -333.56 Col Period 5507.2

6 .532 2804.5 449.92 407.8 -333.56 Relay 3 Period 5507.2

The results in Table C.6 demonstrate no impact on the final solution from the initial

time guess. The algorithm converges to one unique solution given the paramaters of the
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problem. Figure C.10 provides an image for this solution. In Figure C.10, the solid line is

the separation between the collector and relay satellites at the final time.

Figure C.10: Orbital Solution for Relay 3 with Collector Satellite and Ground Station

The convergence of the miss distance between the relay satellite and collector satellite,

as well as the relay satellite and the ground station, is shown in Figures C.11 and C.12

respectively.

C.7 Introduction to Relay and Collector Model with Ground Station: Preliminary

Conclusions and Way Forward

Throughout this section it has been sufficiently demonstrated that an algorithm can be

produced to initiate a maneuver that aims to optimize the ∆V required to achieve a desired

end state based on the dynamics of a relay and collector satellite with a ground station.

However, the initial results still demonstrate that revisions are necessary in order to prove

a design that is sustainable, the ∆V’s identified through these results are too large.

Since the modified algorithm works and demonstrates convergence, the work that
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Figure C.11: Relay 3 to Collector Miss Distance per Iteration

Figure C.12: Relay 3 to Ground Station Miss Distance per Iteration

needs to be completed hovers around the use of the η and σ variables. Similarly to the

high altitude scenarios, the path forward is to better understand and modify the system’s

geometry to demonstrate an ability to implement a strategy to optimize the fuel consumed

over the course of a responsive space scenario. Again, the goal was to demonstrate the a

new algorithm could be presented, based on the principles of TMN, to apply differential
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correction to execute a maneuver for one satellite versus the geometry of another satellite

and a ground station.
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