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Abstract

This dissertation research produces the experimental techniques required to evaluate

mistuning in any rotor. Within operation, a rotor is subjected to a unique pattern of

frequencies acting to excite the rotor. Utilizing traveling wave excitation, a rotor’s critical

frequencies and the respective excitation pattern are reproduced. Individual rotor blade

frequency response functions are evaluated and statistically analyzed. The experimental

results serve to not only verify the degree to which a rotor is mistuned, but also to provide

an indication of the forced response amplification the mistuning induces. Within the

experiment, definitive specifications were developed to ensure peak rotor responses.

Numerical simulations of the experiment were performed in ANSYS using a model

developed by way of structured light scanning. With experimental and numerical

eigenvalue differences of less than 1%, the unique modeling technique, capturing a rotor’s

geometric mistuning, is a valid method to predict a rotor’s natural frequencies. Furthermore

these same numerical results serve to validate the experimental free boundary assumption.
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EXPERIMENTAL UNCERTAINTY ASSOCIATED WITH TRAVELING WAVE

EXCITATION

I. Introduction

In the late 1960s, a new term entered the turbomachinery industry’s lexicon. This term

was adopted to designate the blade-to-blade variations in both the geometric and material

properties within in a bladed disk. These variations became known as mistuning.

Mistuning can be attributed to manufacturing and assembly tolerances, non-uniform

wear realized during service, or even combinations of these factors. Thus, mistuning

is unavoidable in all real bladed disks. As a stochastic phenomenon, mistuning is a

random ailment. These small, random variances lead to amplifications in forced response

magnitudes over and above what would otherwise be seen in an ideal, or tuned, rotor. With

these increased forced response magnitudes, strain energy and stress are also increased. In

turn, the amplified response can lead to drastically lower service lives.

1.1 Research Goal and Contribution

Using a purpose built research compressor, this research focuses on developing a

process to experimentally evaluate mistuning for any rotor. Inside of an engine, other

upstream and downstream rotors, and additional engine components, disrupt the incoming

airstream. Together with the rotor’s angular velocity, the airflow obstructions excite the

rotor in a specific manner. This excitation pattern is unique to a rotor. This research utilizes

a novel traveling wave setup which mimics the various excitation patterns a specific rotor

is subjected to during operation. The experiment offers tremendous flexibility, in that any

rotor and excitation pattern can be simulated.
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Accounting for the rotor’s critical excitation pattern, a specific process will be

developed to ensure consistent experimental results when performing the traveling wave

excitation experiment. Within the framework of consistent results, experimental input

location tolerances and a technique to standardize these tolerances will be developed.

During this process, the research compressor’s finite element model will be validated using

the experimental results. As part of this validation process, the experimental boundary

condition assumption will be validated and a method to simulate a free boundary, by way

of physical supports, will be developed and validated.

1.2 Motivation

While there are multitudes of academic works discussing various methods to model

and predict mistuning, very few focus exclusively on the uncertainty associated with

experimentally obtaining such information. As such, the experimental uncertainty is often

an afterthought.

Early modeling techniques relied upon crude spring-mass-damper models in order

to understand the basic mechanics of mistuning. The models primarily involved varying

the blade stiffness values to destroy any inherent cyclic symmetry. As computing power

increased, finite element models were developed to determine a mistuned rotor’s forced

response. It was quickly seen that these models became too cumbersome and large as a

pragmatic means of solution. This led to many reduced order modeling methodologies.

Even as the physical model size shrank, these models still primarily relied upon perturbing

blade stiffness values in order to induce a mistuned condition. A brief overview of some of

the various modeling methods is discussed in Section 2.2.1.

A 3-D scanner, utilizing a structured light field, was used to capture a rotor’s global

geometry and associated primitives. Using a multi-tiered approach, a solid model was

developed from the scan data. Motivated by the new capabilities this automated scanner

affords, this research focuses on the geometric aspect of mistuning and corresponding
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experimental uncertainty. Brown [29] explains how, “traditionally, rotating turbomachinery

design has used safety factors as an approach to compensate for any uncertainty.”

Uncertainty present in problems is often categorized as randomness. This uncertainty is

well understood and has been extensively studied in the literature. Chen [30] discusses how

the stochastic aspect of “uncertainty arises from measurement or instrumentation errors

involved in experiments as well as random distributions associated with manufacturing

errors.” This is the specific type of uncertainty addressed in this research. Understanding

the impacts of the experimental uncertainty will aid in more effectively assessing a

mistuned rotor’s forced response.

1.3 Research Challenges

Vibration analysis of a mistuned rotor is categorized as either deterministic or

probabilistic. In a deterministic analysis, a rotor’s mechanical and/or geometric properties

are changed and the rotor’s response is calculated. This process is repeated for individual,

specific instances. Keerti [31] explains, in contrast, a probabilistic analysis predicts

the probability distribution of blade vibratory amplitudes due to mistuning. This is

particularly useful for uncertainty quantification because of experimental errors and

property variability.

The physical aspect of the research rotor introduces its own set of challenges. The

primary hurdle is in the rotor material itself. The research compressor is constructed of

steel. As such, the entire unit is magnetic. Since the rotor excitation system uses magnetic

actuators to generate the forcing function, the precise input location on each blade is

difficult to control. Hence, the rotor will respond to an input at any location. On the other

hand, the rotor’s inherent ferro-magnetic properties, initially thought of as a detriment, will

lend itself well to establishing input and output location tolerances for the experiment. True

production rotors are often constructed of materials which do not typically respond to an
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external magnetic disturbance. As such, special steel target disks (approximately 0.125

inch diameter) are adhered to the desired input location on each blade.

Another challenge in this research lies with the non-linear forcing function associated

with the traveling wave excitation equipment. In contrast to conventional methods of

excitation, such as air pressure or direct contact, the magnitude of the magnetic excitation

is highly sensitive to the distance between the excitation source and blade input location.

Within the existing finite element representation, the loading applied to each blade remains

constant - independent of the blade’s datum location within the analysis.

Addressing the rotors themselves, there are currently two types used inside of modern

jet engines. The first type is a more traditional design where the blades are inserted into

slots around a central hub. This design facilitates ease of maintenance and also affords a

small degree of mechanical damping. This is in contrast to what is known as the Integrally

Bladed Rotor (IBR). In the IBR, the blades and central hub are all manufactured from

the same material - as a single unit or welded onto the central hub as a monolithic entity.

This simpler design reduces the number of components within the engine as there are no

mechanical fasteners attaching the blades to the central hub. A consequence of this design

is that structural damping is very low. Avoiding a resonance condition with this rotor is

especially important.

1.4 Dissertation Structure and Research Plan

The structure of this dissertation is as follows: Chapter 2 provides top level definitions

and proceeds to illustrate some of the earlier techniques used to study mistuning.

Furthermore, this discussion includes earlier work in modeling and experimentation.

Lastly, this chapter covers stochastic approaches to examine mistuning, along with

techniques to capture uncertainty within modeling and experimental frameworks. Chapter

3 covers the applicable theories which will be utilized in this research. This includes

component mode synthesis, traveling wave theory, the laser vibrometer’s operation, and
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uncertainty areas within the experiment. Chapter 4 discusses the experimental equipment

which will be used in this dissertation research. It discusses the research rotor’s geometry,

3-D scanner, laser vibrometer, and the traveling wave excitation equipment. The signal

generation methodology used within the traveling wave equipment is also covered. Chapter

5 provides the experimental results and the associated discussion. Here, research success

is achieved if a method is produced to consistently evaluate the mistuning present in any

rotor, when exciting the rotor at a specific excitation excitation pattern.
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II. Literature Review

2.1 Mistuning Defined

Beck [1] defines mistuning as the “forced response amplification due to perturbations

of airfoil characteristics which break down the rotational periodicity of an IBR”. In other

words, small, random and inherent variations in all real materials and geometric deviations

tends to render each blade in a rotor slightly different than its neighbor. Ideally, these rotor

and blade systems are tuned, which means all blades are identical. However in practice,

there always exists small, random differences between the blades due to operational wear.

Manufacturing tolerances, which are specified in a rotor’s design, also contribute to the

mistuned condition. Small material variations, manufacturing tolerances, and operational

wear all effectively destroy the rotor’s cyclic symmetry.

Pierre [32] describes a tuned bladed-disk assembly as “featuring perfect cyclic

symmetry in the sense that all blades are identical and the first blade is adjacent to the Nth

blade. There is always some difference in the natural vibration frequencies of all blades

installed on the same disk”; Yan [33] reinforces that blade mistuning is “unavoidable”.

Because of this random nature, a tuned system will only exist within the theoretical

framework of a computer model. Computer simulations of tuned systems can be easily

implemented because only a single rotor sector (blade and its corresponding section of the

rotor disk) is modeled. Once the sector is created, it is simply replicated in a circular pattern

to produce the tuned system.

Mistuning is a stochastic process, resulting from the randomness seen with the

geometric and material property deviations. A stochastic process is one which involves

randomly determined observation sequences. Each of these observations is assumed to

be a single sample from a probability distribution. The stochastic process contrasts the

deterministic process, wherein an equation can be used to produce an output from a
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series of inputs. The inclusion of randomness in mistuning studies further adds to the

complexity, and as Mignolet [34] says, “transforms the problem into one of parametric,

random vibration”. Here, the system parameters are not known precisely, but rather, are

derived from probability distributions. There exists nominal values for system parameters,

but the actual values deviate from the nominal by some random quantity. The system

parameter variation cascades into vibrations exhibiting the same random nature as the

system parameters.

Beck [1] explains if “a pure deterministic approach is taken to examine mistuning,

one is restricted from developing forced response amplitude confidence intervals affecting

overall rotor life”. Deterministic solutions only provide information about a single, specific

instance in the entire forced response distribution. The stochastic solution can give

confidence bounds to the overall solution. These confidence intervals and probabilities

of response levels can be used in conjunction with Goodman and S-N diagrams to estimate

failure probabilities. Furthermore, the statistics of forced response for an entire population

of mistuned rotor can be computed.

2.1.1 Physical Impact of Mistuning.

Because of the breakdown in rotational periodicity due to mistuning, modal energy is

often concentrated in one localized area. Ideally, this energy would be evenly distributed

throughout the rotor. This phenomenon is known as localization. Localization is what

causes the mistuned system’s forced to be much greater than that of tuned system. In the

presence of small irregularities, even in nearly perfect periodic structures, the propagation

of vibration may be inhibited, and thus the vibration modes will be localized. Due to

the increase in localized energy, the forced response amplitudes are higher in these regions.

Pierre [35] discusses “for weakly coupled systems, mode shapes undergo dramatic changes

to become strongly localized when even a small disorder is introduced”. This confines the

energy associated with a given mode to a small geometric region.
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In free response, mistuning results in the localization of the vibratory energy. In

forced response, resonant amplitudes of some blades are significantly increased due to this

localization phenomenon. Laxalde [36] discusses how this may lead to “fatigue failures,

wear, or even rupture”. The peak response is the greatest concern with a mistuned rotor.

The blade or blades exhibiting the greatest response will serve as the system’s weakest

link. This greatest response can be a stress or displacement magnitude which is higher than

what is seen in other parts of the rotor. Since only a small rotor area exhibits this increased

response amplitude, it follows that this region could fail before other rotor components.

This energy localization directly contributes to the High Cycle Fatigue (HCF) failure

mechanism. The concept of HCF is characterized by repeated elastic stress cycling until

failure. A failure due to HCF is frequently characterized as occurring beyond 10,000 cycles.

Bartsch [37] states that “between 1982 and 1996, HCF accounted for 56% of all Air Force

Class A engine-related failure events”. “A Class A mishap is one which results in loss of

human life or at least two million dollars in damage” [38]. “In 1994 alone, HCF required

expenditure of 850,000 maintenance man-hours for repair, replacement, and inspections”

[3]. Unlike other failure modes, HCF failure can occur seemingly at random with no prior

warning.

For a mistuned cyclic structure under external forcing, a subcomponent’s response is

often much larger than that of a perfectly tuned cyclic structure. Thus, Yoo [7] discusses

the mechanical energy stored in a subcomponent of a cyclic mistuned structure is much

different than that which is stored in other subcomponents. An illustration of this localized

energy concentration is shown in Figure 2.1 and Figure 2.2.

These figures were produced using the finite element analysis program, ANSYS. The

energy displayed in the figures is the strain energy developed due to bending and twisting

in the blades. The resulting confinement in energy causes amplitudes higher than predicted

from an analysis on a tuned rotor. This energy is developed within the component resulting
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from the excessive displacement induced from the mistuned state. In Figure 2.1 and

Figure 2.2, the red color indicates a high displacement and thus increased strain energy. The

blue color represents an area of lower displacement indicating a reduced amount of strain

energy. Note how the mode shape is symmetric around the rotor for the tuned response,

while “the energy is localized to a single blade in the mistuned response” [1]. Another

example of a tuned rotor’s mode shape is given in Figure 2.3. In this figure, the mode

shape is described as having three nodal diameters. In rotor dynamics, a nodal diameter is

analogous to a node point on a 1-D beam or a node line on a 2-D plate. As with the node

points and lines, displacement along a nodal diameter is zero. The dashed lines show the

nodal diameters.

Figure 2.1: Tuned Rotor Modal Energy Distribution [1]
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Figure 2.2: Mistuned Rotor Modal Energy Distribution [1]

Figure 2.3: Three Nodal Diameter Mode Shape of a Tuned Bladed Disk [1]

Monolithic rotors lack the built-in damping native to the more traditional, insertion-type

rotors. Because of this lack of damping, avoiding resonance is of the utmost importance.

A resonance condition exists when the external forcing frequency is equal to that of the
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system’s own natural frequency. At resonance, the physical system response is much

greater than what is seen at other frequencies. Within a jet engine, a rotor’s excitation

comes in the form of a harmonic input driven by the interaction between rotating airfoils,

stators, or any other obstruction in the flow field. Because the airfoils and stators are

spaced in a symmetric pattern around the engine’s inner annulus, the rotor’s own rotation

sets up a harmonic excitation which is a function of the number of these disturbances.

Pressure variations exist behind these airfoils as a consequence of their cambered shape.

The pressure variations induce the harmonic input which excites the rotor.

Designers may ultimately know the environment into which a specific rotor will be

placed. As such, its operating conditions are also known. This includes both the operating

speed and Engine Order (EO) excitation levels. The EO excitation is a periodic force

induced by the number of equally spaced disturbances through which the rotor spins. The

number and the intensity of the disturbance pulses depend on the architecture of the engine

upstream and downstream of the rotor. This includes the number of combustion chambers,

stages, or stator vanes. These disturbances can induce a wide range of frequencies which, in

turn, excite the rotor. For example, if a rotor is spinning immediately behind a system of 12

inlet guide vanes, the EO excitation would be 12. The excitation frequencies on each blade

are a multiple of the rotor angular speed. Firrone [39] defines the EO excitation as “the

integer number multiplied by the rotor’s angular speed to produce the excitation frequency.”

This concept will be discussed in greater detail in Chapter, 3, Section 3.4. In the case of a

tuned rotor, where all the blades have identical natural frequencies, a given EO excitation

will cause all blades to vibrate with equal amplitudes. For a mistuned rotor, where each

blade’s natural frequency varies slightly with respect to one another, “a given EO excitation

will typically cause response localization and amplification above what would be seen in

the tuned response” [17].
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Nikolic [40] references Srinivasan [41] who says a rotor’s excitation is “inherently

unsteady, anything but uniform, either upstream or downstream, since the flow entering an

engine inlet meets with static obstructions (struts, vanes, etc.), and rotating obstructions

(blades) in its path from the inlet to the exhaust.” This excitation is, in other words,

induced by the number of equally spaced aerodynamic disturbances through which the rotor

spins. Within the flow field, “blades experience time-varying forces at speed-dependent

frequencies, so that the bladed disc modes can be excited into resonance at certain speeds

of rotation” [40]. Ewins [42] states, “It is assumed that n equally spaced obstructions will

cause the steady flow to contain a cos(nθ) fluctuation superimposed upon its mean level

and, in addition, smaller components of cos(2nθ), cos(3nθ), etc.” The nθ component will

excite any mode of the bladed disc which has an n nodal diameter component in its mode

shape, and “will do so at a frequency equal to nΩ, where Ω is the rotation speed” [40]. For

a tuned rotor, the nth engine order excitation level only excites n nodal diameters modes.

For a mistuned system, multiple modes may be excited by a single engine order excitation

level, not simply one mode as is seen with a tuned rotor.

One tool engineers often utilize to identify and avoid resonance conditions is called the

Campbell diagram. An example Campbell diagram is shown in Figure 2.4. This diagram

is a visual tool which plots resonant frequencies vs. rotating speed. While the diagrams

can tell the designer when a resonance condition might occur, they do not consider either

the detailed aerodynamic forcing function or the resulting airfoil unsteady aerodynamics.

Fulayter [2] explains how these diagrams “provide no amplitude measure of the resulting

vibration or stress at the resonant speeds.” The Campbell diagram only tells the designer a

resonant condition may exist if a prescribed set of conditions are met. These conditions are

a specific EO excitation occurring at a specific rotational speed. With this tool, engineers

can design the operational regime to be outside and away from these potentially dangerous

conditions.
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The EO excitation lines are shown with a positive slope beginning from the graph’s

origin. The EO values are typically given along the right vertical axis. Rotor frequency

is given along the left vertical axis. The lines emanating from this axis represent airfoil

resonant frequencies and “may either slope upward due to stress-stiffening with increased

RPM or downward due to temperature effects” [1]. The stiffening effect which comes about

from increased RPM is caused by centrifugal forces acting on the blades. Yan [33] also

discuses this phenomenon. These forces serve to stiffen the blades and hence increase their

natural frequencies. The opposite occurs with increased temperature; the blade material

softens and thus has a reduced natural frequency. These behaviors are a direct consequence

of the proportional relationship between material stiffness and natural frequency, ωn ∝ k.

Here, k, is the material’s stiffness and ωn is the natural frequency.

The industry-wide practice, according to Srinivasan [41], is to “place the frequencies

of integral order vibration in the low engine orders (2EO, 3EO, and sometimes 4EO and

5EO) either outside the operating range of rotor speeds or at lower speeds within the

operating range.” This is because lower EO excitation often induces fundamental blade

modes, such as the first bending or the first torsion modes. These modes are characterized

both by their low excitation frequency and the possibility of high vibration amplitudes.

Unavoidable crossing of resonant blade frequencies, with known engine excitation, may

occur for some blade designs. These interactions are usually for presumed weaker, higher

order modes [1]. Figure 2.4 [2] shows a generic Campbell diagram.
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Figure 2.4: Sample Campbell Diagram [2]

Here, the rotor’s operational regime is shown. This operating region lies between 15,000

and 20,000 RPM. As the chart indicates, this is 75% to 100% of the allowable operating

speeds. Rotor frequencies are plotted along the ordinate. The rotor’s first natural frequency

occurs at 1,000 Hz. This frequency excites the rotor’s mode 1 behavior. The second natural

frequency, and its corresponding mode 2 excitation, occurs at approximately 2,250 Hz.

Finally the third and fourth natural frequencies, exciting modes 3 and 4, occur at 5,300 Hz

and 6,000 Hz, respectively. EO 19 is shown in the diagram. Physically, this means there is a

radial pattern of 19 disturbances in the otherwise smooth air stream. From the diagram, EO

19 excites mode 1 if the rotor is spinning at 3,000 RPM, mode 2 at 7,000 RPM, and finally

modes 3 and 4 at 17,000 RPM and 19,000 RPM respectively. Since the first 2 modes are

outside of the operating regime, the rotor is unlikely to experience a resonance condition

exciting modes 1 or 2 during its normal operation. This cannot be said of modes 3 and 4.

2.1.2 Impact of Mistuning in the Frequency Domain.

Aside from the physical responses seen with a mistuned rotor, the frequency response

is where mistuning’s immediate effects are seen. Because the mistuned rotor has many
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natural frequencies instead of a single frequency, examining a rotor’s Frequency Response

Function (FRF) can immediately indicate a mistuned condition. An FRF is a graphical

depiction of the system’s steady-state response to a sinusoidal input. The FRF information

is just one of the many useful pieces of information gleaned from analyzing data in

the frequency domain. This domain allows for the clear decomposition of both spectral

(frequency) content with its corresponding phase information. The spectral information

indicates what frequencies tend to induce a resonance condition. The phase information,

on the other hand, provides system motion information at that frequency. This information

is not readily available when examining information in the time domain. Time domain data

is only real valued. Examples of both tuned and mistuned magnitude FRFs are shown in

Figure 2.5.

When comparing the mistuned system FRF to that of a tuned system FRF, the single

tuned frequency has become several distinct frequencies. The additional resonant peaks

represent the new system natural frequencies associated with each blade. In the presence

of the random airfoil geometric variations, the rotor’s ideal cyclic symmetry breaks down.

This results in changes to the rotor response and the splitting of the tuned natural frequency.

Instead of a single natural frequency, Brown [3] says there “will be N blade, closely spaced

natural frequencies for an isolated family of modes.” This is clearly seen in Figure 2.5

where the mistuned frequencies all closely surround the tuned case. The tuned natural

frequency is seen with the single resonant peak, while the mistuned system is displayed

with ten individual peaks.

Because of this behavior, when the system is excited at a natural frequency, multiple

modes may be excited simultaneously. Modal energy associated with one mode adds

with energy from other modes. This modal energy superposition leads to the energy

localization and ultimately forced response amplitudes greater than what would otherwise

be expected in a tuned system. Aside from the closely spaced peaks seen in the FRFs in
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Figure 2.5, mistuning is also indicated by examining a rotor’s Campbell diagram. If the

natural frequency lines are far apart, this indicates clear, distinct regions where resonant

conditions lie. Beck [1] illustrates that “two closely spaced airfoil resonant frequency lines

can indicate the presence of mistuning.” The two lines are spaced closely together because

of the asymmetry present within the system. Figure 2.6 is the Campbell Diagram for the

rotor used in this research effort. This diagram was constructed for the 0 nodal diameter

mode. The area indicated with the box is an area where three natural frequencies lie very

close to one another, around 8,000 Hz. Exciting the rotor in or around this frequency range

may excite these three modes simultaneously. This is sharply contrasted with the natural

frequencies seen at approximately 2,900 Hz and 5,800 Hz. These two frequencies are very

distinct and are relatively far apart on the Campbell diagram’s ordinate.

Figure 2.5: Tuned versus Mistuned FRFs [3]
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Figure 2.6: Transonic Campbell Diagram for 0 Nodal Diameter [2]

2.2 Previous Modeling and Experimental Endeavors

The following section summarizes several examples dealing with the modeling and

experimental studies of mistuned systems.

2.2.1 Modeling Efforts.

2.2.1.1 Early Modeling Methods.

Some of the earlier modeling methodologies employed lumped parameter models

wherein the component parameters and their associated properties are discretized within

the system. These are “convenient models to study because the coupling, mistuning, and

damping values are all distinct parameters” [6], and they provide researchers valuable
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insight into the mechanisms behind mistuning. The system components, common to most

models, involve both individual blades and their associated sectors along the disk. These

components were modeled as point masses, springs, and dash pots. Some of the modeling

techniques outlined in this section employ this methodology. To mistune these models,

the component parameters, blade mass, blade stiffness, or disk sector stiffness values, are

perturbed from some nominal value. Verified by experimental data, this process effectively

simulates irregularities within the a rotor. Forced response studies would then follow.

Though these lumped parameter models were reasonable at approximating a small number

of system modes, they were very crude approximations of an actual industrial rotor design.

As finite element modeling and analysis became more widely used and accepted, this

became the analytical weapon of choice. An example rotor model using the finite element

technique is shown in Figure 2.7. “A major disadvantage of simulation techniques is that

the computational cost may become prohibitive” [43], particularly for systems which are

required to be analyzed using high-fidelity finite element models. This computation cost

comes in the form of extremely long analysis times. The extended analysis time is due to

the number of system degrees of freedom associated with complex geometries. Further, as

mistuning is a stochastic phenomenon, analyzing the millions of possible combinations of

material and geometric variations add to the analysis time.

18



Figure 2.7: Finite Element Mesh for an Industrial Bladed Disk [4]

To simplify an analysis in exploring damping and energy dissipation, Lin [5] chose to

model the rotor in a rather simple way. There are N blades comprising the disk. Each blade

is a damped single degree of freedom system which is connected to its neighbor by identical

springs and dashpots. The single degree of freedom in the blade is the simplest manner to

simulate blade movement. This methodology is employed in order to simulate aeroelastic

effects and disk flexibility. Because real rotors are not infinitely stiff, the inclusion of

disk stiffness, k j, and damping, c j, terms allows for the disk portion of the model to

interact with the blades. Further, the blades on real rotors are coupled to one another

via aeroelastic effects. At a given speed, the alternating pockets of high and low pressure

between blades act as small springs and dampers. Thus, the behavior of one blade has an

influence on its neighbor. Figure 2.8 shows this interaction through the use of the kc and cc
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coupling parameters. Had these terms not been included, each blade’s behavior would be

independent of one another.

Figure 2.8: A Simple Model of a Bladed Disk [5]

Here, the authors assumed each blade contained an identical mass. The technique to

mistune the model concentrated on varying blade stiffness, k j, and damping coefficients,

c j. The uncertainties associated with the manufacturing process and energy dissipation

mechanisms motivated Lin, as he modeled these parameters as independent random

variables with prescribed probability density functions. The method the authors are

employing recognizes the random nature of mistuning. System parameters are drawn, at

random, from their respective probability distributions. Having these random parameters

within the model simulates a mistuned rotor because, in effect, each blade’s stiffness and

damping properties vary slightly from one to the other.

Mignolet [44, 45] uses a modified version of this model by incorporating a second

degree of freedom for each blade. He also adds an additional stiffness and damping element

to each mass. This was an improvement in model fidelity from Lin’s work where each

blade was a single mass and thus moved as a single entity. Adding the additional degree of

freedom to each blade allows the model to more accurately capture real blade motion. For

example, the blade root and tip are now permitted to move out of phase with one another,

allowing higher order modes to be captured.
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Another example of lumped parameter modeling is shown in Hollkamp’s work [6].

Here, the authors are again examining damping effects on the overall rotor assembly.

While the damping terms are not shown explicitly, the model accounts for this energy

dissipation mechanism by including a structural damping treatment on individual blades.

Their model is shown in Figure 2.9. Its design is similar to the construction shown in

Lin’s model. Here, Hollkamp does not account for any disk flexibility. There are N blades

with individual stiffness values, kbi , and masses, mi, attached to a rigid disk. The blades

are coupled by springs with the stiffness, kc, between adjacent blades. This linear elastic

coupling mechanism attempts to simulate the aeroelastic effects coupling blades in a real

rotor. The stiffness of each blade is permitted to vary from the nominal stiffness to introduce

mistuning.

Figure 2.9: Schematic of the Lumped Model [6]

This model introduces a coupling coefficient which is defined relative to the nominal blade

stiffness, kb.

R =
kc

kb
(2.1)

Assuming a constant blade stiffness, increasing the coupling stiffness will cause the

coupling coefficient to increase. The same behavior occurs for reduced blade stiffness

values, assuming a constant coupling stiffness. In the first case, increasing the strength of
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the coupling serves to force all blades to behave in concert with one another. The effect

of the individual blade stiffness becomes less significant. In the second case, where the

coupling stiffness remains constant and the blade stiffness is decreased, the blade stiffness

becomes less significant. Here, the coupling has more influence. This term is introduced

simply to assign a numerical value to the degree of coupling between the blades. Assuming

that all blade masses are equal, a nominal natural frequency is defined as:

ωb =

√
kb

m
(2.2)

Since the authors introduce mistuning by way of stiffness perturbations, the frequency of

each blade (in the absence of coupling) is defined as:

ω2
bi = ω2

b(1 + ∆ fi) (2.3)

where ∆ fi is the mistuning of the ith blade. The mistuning is introduced by way of stiffness

variations. The overall model is expressed as:

{q̈} + ω2
b[A] {q} =

1
m
{F} (2.4)

where,

[A] =



1 + 2R2 + ∆ f1 −R2 0 ... −R2

−R2 1 + 2R2 + ∆ f2 −R2 0 ...

... ... ... ... ...

... ... ... ... ...

−R2 0 ... −R2 1 + 2R2 + ∆ fN


(2.5)

An explanation behind Hollkamp’s equation of motion is shown in Appendix B. For N

blades, the matrix of forcing functions, F is defined as:

{
FT

}
= Fe jωt[1, e jθ2 , ..., e jθN ] (2.6)

θi =
2πC(i − 1)

N
i = 1, 2, ...,N (2.7)
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In this equation, F is the force magnitude and the expression e jωt represents the sinusoidal

input into the rotor. The term C is the EO excitation on the input force. Letting C = 0

shows that the forcing will be the same phase for all blades. This model is next modified to

include blade damping treatments through the additional stiffness term δA.

{q̈} + ω2
b[A + δA] {q} =

1
m
{F} (2.8)

These additional stiffness terms δA are complex valued. This matrix is diagonal, with

non-zero diagonal terms for the damped blades. The real part of the additional term is

the added stiffness of the damping treatment. The imaginary part represents the added

structural damping. The authors use this simplistic model to examine damped behavior.

The authors continue next investigate the system response when only certain blades are

damped. Hollkamp details the process by which damping can be applied to individual

blades. Solving the eigenproblem from Equation 2.8 produces the mistuned system’s modal

parameters.

Yang [46] discusses a methodology wherein closely spaced eigenvalues are examined.

Recall from the discussion in Section 2.1.2 that a mistuned system will exhibit closely

spaced natural frequencies. A problem of modal interaction is formulated in terms of a

normalized modal eigenvalue problem. A first-order perturbation solution is presented for

the case of two closely spaced modes. The author’s process is discussed in Appendix B.

The random perturbations simulate the effects of mistuning. Statistical behaviors of the

normalized frequencies and modes are then determined from the results of the perturbation

analysis. The author goes on to examine the perturbation solution’s range of validity

through the use of a Monte Carlo simulation.

2.2.1.2 Other Modeling Techniques in the Literature.

Yang [47] introduces a popular modeling technique known as the Subset of Nominal

Modes (SNM). This technique became popular because of its innate ability to reduce the

computational cost associated with analyzing a mistuned rotor’s forced response. He used
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this methodology to determine the effects of mechanical property variations on the system’s

vibratory response. This approach represents the mistuned system modes in terms of a

limited sum, or subset, of the “nominal” system modes. Nominal system modes are defined

as the modes of the system for a nominal blade and disk geometry. The authors’ assertion

is if the nominal system has modes with closely spaced natural frequencies, the mistuned

system will also have modes with closely spaced natural frequencies in the same frequency

range. The underlying assumption here is that a mistuned system mode can be represented

as a linear combination of tuned system modes.

Yang explains that “a nominal geometry could ideally be one in which every blade

and disk sector is identical.” In this derivation, the rotor system is treated as a single

entity - as opposed to breaking the system up into blade and disk components. This work

is based on the efforts the author put forth in 1997, found in [46, 47], wherein nominal

system modes can effectively describe the modes of a system if the system’s properties are

slightly altered. The accuracy of the subset of nominal modes technique depends on the

number of degrees of freedom used to represent the structure. This should be intuitive,

as increasing the number of system degrees of freedom more effectively captures realistic

system behavior. In developing the SNM technique, the authors ensure the number of

system degrees of freedom equal the number of modes used in the representation.

Capitalizing on the success of the SNM technique, Sinha [48] applies this method in

deriving his own model. The author realized to accurately model geometric mistuning using

this method, a sufficient number of tuned modes is required. If the number of tuned modes

is lacking, the model fails to effectively model the geometric mistuning. The resulting

method, Modified Modal Domain Approach (MMDA), yields another high fidelity model

accounting for geometric mistuning. Here, the author allows the variation of a system’s

physical geometry, not just variations in material properties. The author accounts for this
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by perturbing both the system mass and stiffness matrices simultaneously. These perturbed

matrices were then used to perform forced response studies.

As engineers attempted to understand the most simplistic underlying mechanisms

surrounding mistuning, Feiner and Griffin [49] devised a method which is mathematically

simpler than a spring-mass model. Once derived, their model identifies the primary

parameters controlling the mistuned response. This technique is aptly named the

Fundamental Mistuning Model (FMM). The FMM is actually a derivative of the SNM

technique Yang introduced just one year prior. “The SNM formulation may be simplified

when the nominal modes used in the representation are limited to a single family” [49].

The FMM was derived from the SNM theory using three main assumptions: “only a single,

isolated family modes is excited, the strain energy of that mode family is primarily in

the blades, and finally the mode family’s frequencies are closely spaced.” These ideal

“conditions are usually only found in the fundamental modes of a rotor”, such as the first

bending mode. Feiner justifies these assumptions in stating how the “higher frequency

families are often clustered close together, have a significant amount of strain energy in

the disk, and span a large frequency range.” The FMM requires only a minimum amount

of information in order to predict a mistuned response. One piece of information is the

set of tuned system nominal frequencies. The second piece of information is the set of

deviations of blade frequencies from their tuned value. The authors continue their work

several years later in [50] and [51]. Here they present both the theoretical development for

system parameter identification and applications for using these parameters for identifying

mistuned modes within the rotor system. Ayers [52] provides a work based on the FMM

technique. The author develops a new transient model of bladed disk vibration. An

extension of the FMM, this new method relies on evaluating the system equations of motion

to capture the transient effects. As the FMM will give mistuned modes, the methodology

employed here provides the modal information as they decay over time. The equations of
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motion are solved via numerical integration and the results are verified via experimentation.

Ayers shows in this verification, “the transient response was more sensitive to small errors

in the system’s natural frequencies than were the steady-state modal results.”

Deviating from the mistuning predictions of Feiner and Griffin, Yoo [7] returned to the

investigation of mistuning’s impact on vibration localization under and external harmonic

excitation. In contrast to a spring-mass model to describe the physical system, the authors

chose to employ a coupled pendulum model to represent a rotor. This system is shown

in Figure 2.10. System mistuning is introduced by altering pendulum lengths. All other

system parameters are equal. A linear viscous proportional damping force is assumed to

act on each pendulum mass - despite not being explicitly included in the model diagram.

The development of Yoo’s equation of motion is shown in Appendix B, Section B.4.

The author presents numerical results for weakly coupled, lightly damped systems with

a range of pendulum length ratios. The authors also present results for difference dynamic

magnifications factors of a weakly coupled system using different damping parameters.

While not explicitly tailored to a rotor, this pendulum model easily illustrates how small

deviations in both geometry and material effect the free and forced response system

characteristics. Here, the pendulums only permit transverse motion. This corresponds

to the blades’ bending modes.
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Figure 2.10: Multiple Coupled Pendulum [7]

2.2.2 Experimental Efforts.

Experimental work supporting mistuning research has almost always been carried out

in parallel with the modeling efforts. Aside from the validation and verification processes,

experimental work also serves to show the true to life effects mistuning plays on cyclic

structures. In this section, some of the previous experimental techniques researchers

employed are discussed. This outlines their path in chasing down not only the root cause

of but also the fundamental understanding behind the mistuning phenomenon.

Hollkamp [8] provides an example of rotor modal testing. The authors were tasked

to investigate new damping concepts for jet engine blades. In this study, modal tests were

conducted on an 8-bladed model of a engine fan. Here only one blade possessed any

additional damping over and above the natural damping properties of real materials. Since

it is more economical to test a few damped blades while leaving the remaining blades

unaltered, the researchers attempted to determine if the damping values measured with a
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mix of blades equal the values measured if all the blades are damped. The authors employ

a generic model of a first stage fan in a jet engine. Comprised of only 8 blades, the model

had a diameter of 18 inches. Each blade was 6 inches long, 4.5 inches wide, and 0.063

inch thick. The center hub was cylindrical shaped and had a diameter of 6 inches and a

wall thickness of 0.5 inch. Each blade was attached at a 45◦ angle with respect to the

fan’s axis of rotation. Figure 2.11 illustrates the experimental fan. Both the blades and

hub were fabricated from low-alloy steel. The authors chose 8 blades because this was

a “high enough number to sufficiently capture the complexities associated with a cyclic

structure. Additional blades would have increased the model complexity without adding to

the system’s dynamic characteristics.” For this study, each modal family in the model fan

consisted of 8 modes. A finite element model of a cantilevered blade was used to predict

modal frequencies of 412 Hz and 716 Hz, respectively, for the second bending and two-

stripe modes. Hollkamp states how “the two modal families were expected to occur near

these frequencies since the hub was relatively stiff.” The authors utilize bonded actuators to

serve as the means to energize the system. Additionally, their experiment used a scanning

laser vibrometer as the measurement device. Acknowledging the small perturbations the

bonded actuators induce was one reason behind using a non-contact means for vibration

measurement.
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Figure 2.11: Bladed Disk Experimental Model [8]

Judge and Pierre [9] also constructed their own blade model while investigating mode

localization and forced response amplitude magnification. Here, the authors recognized

the effects of mass variation and its impact on forced response. They were attempting

to experimentally perform the work, while simultaneously predict the response via finite

element techniques. They also desired to verify their model effectively captured any

localization effects. The authors used a flat, 12-bladed disk with a simple geometry. The

experimental rotor is shown in Figure 2.12. During this experimental effort, the rotor was

held stationary via a clamp in its center. The rotor was machined from a 3.24 mm thick,

precision ground 4140 steel plate. The disk has a diameter of 300 mm and the blades are 92

mm long and 10.14 mm wide. The center was clamped using two spindles which interlock

through a 25.4 mm hole in the rotor center. The spindles themselves are held in place by
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a 20-ton capacity bearing press. Piezoelectric actuators, adhered to the root of each blade,

provided the excitation. All vibration measurements were made using an eddy-current

proximity probe. The probe was free to move from blade to blade. Figure 2.13 shows the

measurement probe. A tip mass is also shown in this figure. Different masses were added

to the blades once the tuned system investigation was complete. The tip masses were used

to effectively mistune each blade by changing each blade’s natural frequency. The authors

go on to show good agreement between their experimental and finite element results.

Figure 2.12: Experimental Bladed Disk [9]

Figure 2.13: Closeup of Experimental Blade with Eddy Current Probe [9]
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Feiner, Griffin, and Rossi [53] performed an experimental probabilistic study using

their own FMM and FMM ID techniques. The authors were investigating whether or not

the FMM technique can accurately predict the behavior of a rotor fleet. The authors’

experimental approach first involved generating data to which Monte Carlo simulation

results can be compared. This portion of the experiment involved measuring the forced

response of several blades, each possessing the same design. Next, the authors applied a

probabilistic procedure to simulate the response of a fleet of similarly constructed rotors.

Measuring the frequencies of several rotors, each of which have an identical design,

provides the required statistical framework. The FMM ID provides the necessary data

used in this probabilistic analysis. Once the data is collected, statistical models of both

tuned and mistuned systems were constructed. The statistical models were used with the

FMM to perform the Monte Carlo simulations of the rotor fleet. To ensure the structure

was tuned, the authors employed the FMM ID technique to measure each blade’s natural

frequency.

Each blade was essentially a simple beam. As such, beam theory was used to

determine the effects of a length change on its natural frequency. Blade lengths were altered

accordingly so as to result in a tuned system. For the mistuned statistical investigation,

different masses were added to each blade tip to alter the natural frequencies. The masses

were selected so as to produce a blade natural frequency variation approximately normally

distributed with a standard deviation of 2% of the nominal blade natural frequency. The

method the authors chose to excite the rotor closely resembles the traveling wave setup used

in this research effort (discussed more in detail in Section 4.4).1 The authors employed an

array of electromagnets positioned directly beneath the rotor. Each magnetic actuator was

energized in such a way so as to produce engine order excitation. In the end, the researchers

1Pierre also utilized traveling wave excitation in [54] and [55]. Pierre once used an acoustic traveling
wave system; it is discussed in [56].
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show their FMM and FMM ID techniques, together with the probabilistic information

gleaned from their experiments, can be used to assess fleet wide mistuning effects.

In a paper by O’hara et al. [10], the authors are directly concerned with experimentally

investigating geometric uncertainty. This work also employs the scanning laser vibrometer

as a means of non-contact based vibrations measurements. In examining the geometric

uncertainty, the researchers examined single blades mounted inside a broach block

specifically designed to hold the blade’s dovetail securely. Figure 2.14 shows the broach

block and blade setup. The broach block was secured to a linear motion table, as such, the

system was only permitted to move in a single direction. System excitation was produced

by a single 100 pound shaker unit. O’hara’s “...measurement setup was optimized for four

criteria: signal level, scanning head position, resolution, and scanning time. Each blade

was measured at 140 different locations using a bandwidth of 10 Hz to 5 kHz.” Figure 2.15

shows the measurement pattern.

Figure 2.14: Broach Block and Blade Assembly [10]
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Figure 2.15: Blade Sample points [10]

During the experiment, the blade natural frequencies and mode shapes were obtained

via the laser vibrometer and processed using the associated PolyTec software. The

authors invoke both the modal assurance criterion and coordinate modal assurance criterion

(Chapter 3, Section 3.8) as a means to indicate places along the blade which might be

contributing negatively to the results. In addition, O’hara performed a one way analysis of

variance on all coordinate modal assurance criterion values which helped aid in identifying

locations consistently having poor correlation values.

Throughout the experimental methods previously outlined, there was very little

mention of the optimal sensor placement locations. Several authors have devoted research

to this very topic. Peng [57] emphasizes how in any experimental modal testing, the

selected measurement locations have a major influence on the result quality.

An early publication by Yao [58] discusses sensor placement by means of a genetic

algorithm. This work is focused on ideal sensor placement for large space structures.

Because of weight and space limitations, ideal sensor placement for state of health and
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modal information is of the utmost importance. Here, the genetic algorithm is applied and

used to select the best sensor locations for modal identifications of a space station and its

photovoltaic arrays. Numerical analysis shows the genetic algorithm produces a superior

set of sensor locations, as compared with other sensor placement optimization methods.

This advantage in sensor location comes at an expense of increased computational

complexity.

Lastly, and possibly the most applicable to this current research, is a work published by

Sensmeier in 1998 [59]. The authors specifically discuss the optimal sensor placement for

turbine blade vibrations measurements. Similar to Yao [58], the authors here also employ a

genetic algorithm to establish the proper sensor location. They also discuss more practical

methods from which an ideal location can be chosen. The researchers acknowledge how

sensor locations must be chosen such that the measured response values are as close as

possible to the critical values of interest. However, these locations are often in regions

of high response gradients. In these regions, the measurement sensitivity due to small

inaccuracies of sensor placement is increased.

As vibratory mode shapes are mutually orthogonal [60],[61], if a full mode shape is

known, determining other modes is a trivial task. However, response data is only known at

discrete sensor locations. This collection of sensor data, in effect, produces a reduced mode

shape. Sensmeier emphasizes since “the number of sensors is not infinite, the mode shapes

do not retain their orthogonality.” If these mode shapes are considered as response vectors

in an N-dimensional space, the angle between any two modes shapes can be expressed as

follows:

θi− j = cos−1
~φi · ~φ j

‖~φi‖‖~φ j‖
(2.9)

An ideal instrumentation setup would exist if the angle between the two modes is as close to

90◦ as possible. “Optimally, it would be advantageous to place a sensor at the critical stress

location for each mode” [59], but these areas are often in regions of high response gradients.
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A sensor in these areas can lead to inaccurate results. As such, it is typically necessary to

extrapolate the response at locations other than where a physical sensor is located; the

maximum response must typically be estimated. Placing the sensors in optimal locations

can aid in reducing experimental uncertainty. This drives the sensor to locations of reduced

measurement gradients. Furthermore, the authors introduce a response ratio quantity. “The

main objective of a good instrumentation design will be to maximize the response ratio for

all modes of interest” [59].

δmaxi =
max[δ1, δ2, ..., δN]

δmax on blade
(2.10)

Also focusing on the experimental uncertainties associated with vibrations testing,

Laborde [62] shows by means of Monte Carlo simulation, a “stochastic cloud of the output

of interest can be generated. This provides an estimate of the test results’ global error. This

cloud is generated by assuming errors are generated from specific test uncertainties.” In

the case of the traveling wave test setup, these uncertainties would lie, for example, in the

actuator position, input strength, or laser vibrometer measurement locations. The authors

discuss how the “uncertain parameters are input as random variables into a Monte Carlo

simulation. The uncertainties are assigned to their own probability distributions and the

simulations use the parameters from these distributions.”

2.2.3 Stochastic Studies.

In 1989, Sinha and Chen [63] formulated a method to compute the statistics of a

mistuned rotor’s forced response. A similar type of analysis is shown in Bah’s work

[43]. The analytical technique presented in Sinha’s work produces complete information

regarding the rotor’s blades’ amplitude Probability Density Function (PDF). By using the

authors’ technique, the probability that a blade’s amplitude is less than a certain value can

be readily determined. The authors develop the methodology first, and then go on to verify

the technique using a spring-mass system, similar to the one seen in Figure 2.8.
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First, the authors assume the tuned system’s stiffness matrix has been contaminated

due to mistuning. To that end, any cyclic symmetry is now destroyed. Each element of Dk

is assumed to be non-zero and is a linear combination of independent, random Gaussian

variables with a zero mean. There are as many independent random variables as there are

blades in the system. This assumption is to state that each blade’s mistuning is “equal”

to the next. In other words, one blade does not have more random parameters than its

neighbor. The following equation shows how the system stiffness matrix is generated.

K = Kt + Dk (2.11)

And the external force on each blade will be assumed to represent a particular engine order

excitation, and as a result, is sinusoidal in time, and differs in phase by a constant amount

from blade to blade. The authors let the steady state response of the mistuned system differ

from that of the tuned system by ∆X. Thus

X = Xt + ∆X (2.12)

This says the total system response is the sum of the tuned and mistuned responses. The

authors ultimately provide a relationship which gives the probability that the response

amplitude, A j, will be less than a critical value, Ac:

Pr(A j < Ac) =

∫ Ac

0
g2(A j)dA j∫ ∞

0
g2(A j)dA j

(2.13)

The specific parameter definitions are found in Sinha’s work [63]. The authors indicate

that predictive accuracy is a function of the system damping factor, ζ and the ratio of the

standard deviation and the mean value of individual blade’s natural frequency, R. Further,

the authors show, given typical values of ζ and R, the technique developed in the paper

yields reasonably accurate results.

In another work some five years later, the Air Force Research Laboratory [64]

published an article describing its own internal methods to apply probabilistic techniques
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for component life estimation. While this paper involves the use of probabilistics, the

authors were not explicitly exploring forced response of mistuned rotors. This document,

while not technically rigorous, provides a top level view of the various types of programs

instated throughout the Air Force. Lee [65] provides a more technical assessment of

specific probabilistic methods to assess the mistuned rotor response.

Soize [66] addresses specific modeling uncertainties through use of a non-parametric

probabilistic approach. The author emphasizes how the mathematical-mechanical

modeling process of systems introduces two fundamental types of uncertainties: (1) data

uncertainties and (2) model uncertainties. These uncertainties must be taken into account

for improving the model’s predictive capabilities. In this work, the Soize introduces

several terms used in a model uncertainty analysis, namely the differences between real

and designed systems, and simple and complex real systems. He also introduces use of

the mean model as a predictive model, and the errors and uncertainties associated with

such an assumption. For general uncertainties, the author illustrates how the input and

parameters related to the mean model will be designated as the data of the mean model. The

mathematical modeling process of the designed system introduces two fundamental types

of uncertainties - the data uncertainties and the model uncertainties. These are described

next.

In addressing data uncertainties, the mean model’s input does not exactly represent

the real system’s input. In addition, there are uncertainties on parameters used in the mean

model. For instance, Soize states how “a static load represented by a point force is an

approximation of reality and a material’s Young modulus is not an exact value (which is

unknown), but corresponds to an uncertain value. Data uncertainties must be taken into

account in order to improve the mean model’s capability.” Soize recommends the best

approach to take into account data uncertainties is “the parametric probabilistic approach

consisting of modeling the data of the mean model by random quantities.” The parametric
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approach accounts for system and model parameters. For model uncertainties, the modeling

process itself used to create the mean model induces model uncertainties with respect to

the designed system. This uncertainty is mainly due to the simplifications used to reduce

system complexities. Soize says, for instance, “a slender cylindrical elastic medium will be

modeled using beam theory (such as an Euler or a Timoshenko beam), a thick rectangular

plate elastic medium will be modeled by using the thick plate theory (such as the Mindlin

plate theory).”

2.3 Capturing Uncertainty

In 1889, the famous physicist Lord Kelvin stated: “When you can measure what you

are speaking about, and express it in numbers, you know something about it; otherwise

your knowledge is of a meager and unsatisfactory kind” [67].

There has been a tremendous amount of effort in the area of capturing and quantifying

uncertainty. The following discussion will cover a few of the methods which are applicable

to the current research effort. The term error is often incorrectly confused with the

term uncertainty. “As uncertainty is attributed to a lack of knowledge, error is defined

as a recognizable deficiency in any phase or activity of the modeling, simulation, or

experiment that is not due to a lack of knowledge” [68]. For example, an experiment

might involve the use of temperature. Assuming a temperature, without using precise

measurements will introduce a degree of uncertainty into the results. Ignoring the effects of

temperature altogether would be an error. “Unacknowledged error is known as a mistake”

[68]. Uncertainty within engineering analysis and design is also defined as knowledge

incompleteness. Assumptions may be made regarding a specific material thickness. Thus,

the exact thickness is uncertain.

Ayyub [69] states “uncertainty can also be used to characterize the state of a system

as being in doubt - as in the uncertainty of an outcome.” If specific assumptions are made

regarding a process or a random parameter is introduced into the system, the exact nature
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of the outcome cannot be precisely defined. In general, uncertainty is categorized into

two broad categories: aleatory and epistemic uncertainties. Aleatory uncertainty can be

thought of as inherent randomness within the system. Mistuning fits within this framework

as small geometric and material deviations are perceived as random occurrences. Any

additional testing and evaluation does not fill in the gaps in knowledge associated with this

type of uncertainty. The second kind, epistemic uncertainty, is due to a lack of complete

knowledge. In contrast to those aleatoric events, additional testing and evaluation can

make up the gap in epistemic uncertainty. If a material thickness is assumed during a

test, this type of uncertainty is classified as epistemic. To alleviate this uncertainty, the

experimentalist would be required to simply measure the thickness in question. Therefore,

this parameter is no longer unknown or uncertain in its value. Swiler [11] discusses the use

of probability theory to represent epistemic uncertainty.

Taking a probabilistic approach when examining uncertainty involves assigning

probability distributions, such as a normal or uniform distribution, to the uncertain

parameters at hand. When performing an experiment, these parameters are drawn from

their respective distributions for use as inputs to the experimental process. Ayyub [69]

states, “when uncertainty is understood, recognized, and quantified, the framework of

probability can be used to represent it.” Many researchers have used such techniques in

their quest for handling uncertainty.

Model validation is another area where uncertainty quantification is paramount.

Thacker [70] points out that “validation is the process of determining the degree to

which a model is an accurate representation of the real world.” Alvin [68] then adds

that “uncertainty and error quantification is a two-step process. The first step requires

identifying all sources of uncertainty and error during each phase of modeling and

simulation. The second step is the assessment and propagation of the most significant

uncertainties and errors through the phases of the modeling and simulation process - all
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the way to the predicted response quantities.” Thacker [70] and Adhikari [71] echo the

same steps. However, Adhikari goes on to address both parametric and non-parametric

uncertainty propagation and computation as well. In this discussion, a parametric

uncertainty involves any uncertainty associated with a system parameter. These may be

parameters such as Poisson’s ratio or elastic modulus. A non-parametric uncertainty may

involve an unquantified term within the system’s equation of motion or even the inclusion of

noise on the output. The author addresses both parametric and non-parametric uncertainty

propagation and computation methods to validate the predictions. Several of the techniques

described in these works will be adopted in the current research, as they are applicable

to both analytical and experimental work. In the current research, some specific non-

parametric uncertainties are input and output measurement locations and measurement

noise. The parametric uncertainties will come in the form of mass and stiffness variations

as a function of the uncertain rotor geometries.

Several techniques involve perturbations in an effort to capture the unknown

quantities. These perturbation techniques address the aleatoric nature of the uncertainty

through perturbing nominal quantities by way a random variation. An early paper by

Doyle [72], though not specifically tailored to the forced response of integrally bladed

rotor, does cover such a technique. Here, the author employs a control system, together

with feedback. The author accounts for uncertainties by perturbing system values and

assessing the change in singular values compared to that of the nominal system. The

singular values are, in effect, the system’s natural frequencies. The perturbations affecting

the system’s physical makeup cascade downward and ultimately alter the system’s natural

frequencies. The author was assessing the robustness of theoretical systems in handling

property variations. Steinbuch [73] also employs singular values. Similar to the Doyle’s

work, Steinbuch creates a theoretical system with a feedback loop. His uncertainty lies

within the feedback loop itself, as opposed to being perturbations of system parameters
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within the system plant matrix. The uncertainties inside this loop are variations of system

parameters. Once the system is computed, singular values are examined and compared to

those realized with the nominal system.

Hasselman [74, 75] demonstrates another perturbation technique. In contrast to the

previously mentioned papers, this author chooses to linearly perturb the system stiffness

matrices and carry these perturbations through to a point where a statistical analysis can be

performed. Here, mass and stiffness uncertainty is represented by the difference between

the predicted and measured natural frequencies and mode shapes of generically similar

structures. Assuming that mass and stiffness uncertainty are independent of damping and

external forcing functions, the author begins with a homogeneous equation of motion.

Mẍ + Kx = 0 (2.14)

The author defines M and K as the true mass and stiffness matrices, respectively. Thus, the

undamped eigenproblem is given as:

(K − λ jM)φ j = 0 (2.15)

where λ j and φ j are the jth eigenvalue and eigenvector, respectively, for the true system.

The matrix perturbation comes in the form of small variations of the true system, added to

the analytical system matrices.

K = Ko + ∆K

M = Mo + ∆M

λ j = λo
j + ∆λ j

φ j = φo
j + ∆φ j

(2.16)

Here, the terms with the superscript “o” represent those associated with the analytical

system. Substituting these definitions into Equation 2.15 produces:

(Ko − λo
j M

o)∆φ j + (∆K − λo
j∆M − ∆λ jMo)φo

j = 0 (2.17)
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From here, standard modal analysis techniques are employed to obtain the system

eigenvalues and eigenvectors. The significance of this work lies with the results developed

which ultimately quantify the modeling uncertainty. “When replicate test data are available,

the results obtained from multiple perturbation trials can be used to quantify experimental

uncertainty, apart from any model, by substituting mean test measurements for analytical

model predictions” [74]. This would give a direct indication of the level of experimental

uncertainty.

Rahimi [76] also provides a similar type of perturbation technique by varying nominal

quantities by a random amount. The author presents a methodology which calculates the

forced vibration response of a mistuned system based on an exact relationship between

tuned and mistuned system representations. Uncertainty is accounted for using existing

manufacturing tolerances as upper and lower bounds, for example. The author then goes

on to find the worst case response for a given system, and finally introduces intentional

mistuning to demonstrate how the maximum response is reduced. This intentional

mistuning essentially counteracts the existing mistuning and reduces its effect.

Aside from perturbations, researchers have also employed methods to relate the

transient response histories from a predictive model and experiment. Geers [77] and

Russell [78] provide such a technique. These paper describes an objective error measure

for assessing the discrepancy between a calculated and measured response history. The

authors’ development produces what is called a “comprehensive error factor” which

substantially reduces the amount of data involved with transient response calculations and

quantifiably shows existing error between two time domain signals. The author attempts to

correct for any error bias which occurs if one set of data is assumed to be true, while the

other is not. This concept of biasing is important when examining entire responses, instead

of a single point - where the error bias is not as significant. Here at this single point, it may

simply be a coincidence that the two data sets are correlated.
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In contrast to the previously mentioned papers discussing transient responses,

Oberkampf [79] introduces a method for point comparisons. While this technique is not

developed for a transient response, it does provide a measure of agreement between a

model’s prediction and the experimental results. The validation metric is based on the

statistical concept of confidence intervals. “Using this fundamental concept, two specific

metrics are constructed. One requires the interpolation of experimental data, and the other

requires regression (curve fitting) of experimental data” [79]. “The emphasis in this work is

not on optimizing the agreement between a given model and experimental measurements.”

Such techniques are used in model updating methods where a model is changed based

on the results of an experiment. The authors focus on validation metric which is a blind

assessment of the model’s predictive capability.

Adhikari [80] provides an example in using both parametric and non-parametric

uncertainty associated with their model and experimental evaluation of a fixed-fixed beam

and vibrating plate. The authors propagate this uncertainty through the model. The goal is

to quantify uncertainty with the aim of gaining more insight into the nature of uncertainties

in medium and high frequency vibrations problems. In this paper, the authors adopt a

probabilistic approach, using normal distributions to assign random mass and un-modeled

dynamic values and locations. They authors utilize two experimental tests to investigate

two different phenomena. The first experiment involved a beam with fixed-fixed boundary

conditions. This experiment focused on capturing the uncertainty induced by randomly

varying mass distribution. The second experiment is a vibrating cantilevered plate. The

purpose of this experiment was to capture the effects of uncertain, un-modeled dynamics.

The authors attached oscillators at random locations and obtained FRFs.

The work in this paper aligns with the motivation behind this current research effort

because there will be uncertain force input and response output locations. In addition, the

rotor geometry can be handled in a similar manner. Techniques used in this paper can be
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modified to account for this geometric uncertainty, rather than only uncertain mass and

dynamic properties, as the geometry change will affect both mass and stiffness. Murthy

[81] performs a similar type of experiment and analysis.

Swiler, et al. [11], from Sandia National Laboratories, put together a paper

highlighting three methods to propagate epistemic uncertainty.

• Interval Analysis

• Dempster-Shafer Evidence Theory

• Second-Order Probability

The authors employ interval analysis by way of ascertaining the output intervals given a

set of inputs, also defined by intervals. The authors are attempting to answer the following

question: If the system inputs are bound by specific intervals, what is the corresponding

interval on the output? One technique they employed was a direct approach which used

optimization to find the maximum and minimum values of the output measure of interest.

This corresponds to the upper and lower interval bounds on the output, respectively.

Another technique involved sampling from the uncertain interval inputs. After such

sampling has taken place, the maximum and minimum values are used as an estimate for

lower and upper bounds. The values in between are assumed to be normally distributed.

Dempster-Shafer evidence theory relaxes the usual assumptions of probability theory

in situation where there is little information on which to evaluate a probability. For

example, there may be a specific set of parameters, when considered together, lend more

less credence to the likelihood of an event. In this theory, the epistemic uncertainties are

modeled as sets of intervals. The intervals are propagated to calculate belief (“a lower

bound on a probability which is consistent with the evidence”) and plausibility (“an upper

bound on a probability which is consistent with the evidence”) [11]. The minimum and

maximum values are collected to produce belief and plausibility curves.
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The second-order probability attempts to propagate both aleatory and epistemic

uncertainty. The process is illustrated by using an inner and outer loop. The epistemic

variables are specified in the outer loop, while the inner loop takes a variable from the outer

loop and performs sampling on the aleatory variables. Figure 2.16 below better illustrates

this concept. Techniques employed in this paper would serve well in the current research

as the unknowns with both the model and experimental setup could be modeled using

probability distributions or intervals.

Figure 2.16: Second-Order Probability [11]

The well established finite element technique has also evolved to capture uncertainty

quantities within the confines of the numerical simulations. DeLima [82] discusses such

a technique. Here, a classical probabilistic approach is taken to account for random

uncertainty. The random variables may terms identifying geometric characteristics, elastic

moduli, displacements, or loads.

Huang [83] describes a method for perturbation finite element analysis. The author

initially states that “traditional finite element approaches are based on well defined system

input parameters.” This work is motivated by the fact that realistic structural models often

have parameters which are not precisely known. These parameters might be material
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properties, or in the case of this dissertation research, geometry. In Huang’s work, the

author derives the classical finite element technique using an imprecise variable approach.

Here, he perturbs the “crisp” values with an unknown, imprecise parameter. Specifically

in the paper, the author begins by perturbing the system constitutive matrix. For a crisp

system, this matrix is defined as:

D =
E

(1 − ν2)


1 ν 0

ν 1 0

0 0
1 − ν

2

 , (2.18)

where E is the system elastic modulus and ν is Poisson’s ratio. These values will now be

perturbed by an imprecise parameter.

Ẽ = Eo + ẽ (2.19)

ν̃ = νo + ν̃ (2.20)

With the perturbed parameters, the system constitutive matrix is now given as:

D̃ =
Eo + ẽ

1 − (νo + ν̃)2


1 νo + ν̃ 0

νo + ν̃ 1 0

0 0
1 − (νo + ν̃)

2

 (2.21)

The body forces and applied forces can also be handled in a similar manner through

perturbing their known values by a small, imprecise amount. The complete details of this

method are found in [83].

Fraccone [84], [85] discusses the uncertainty associated with a rotor’s forced response.

The authors acknowledge both the material property and geometric deviations’ role in rotor

mistuning. The author models the rotor using beams which are then interconnected with

springs. Perturbation techniques are used to address uncertainty due to input, sensor-based,

and modeling anomalies.
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This literature review covered several distinct topics. These topics covered mistuning

and its impact in both the time and frequency domains. Second, this review discussed

previous modeling and experimental mistuning work and emphasized methods to capture

and characterize a mistuned structure’s behavior. Lastly, the concept of uncertainty was

explored. Here, several techniques were illustrated which capitalized on perturbations to

account for both modeling and experimental uncertainty.
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III. Theory

The following chapter will outline some of the overarching theories used in this current

research.

3.1 Cantilever Beam Forced Vibration Response Under the Effects of an Electro-

magnetic Actuator

This section will provide a top level examination of the forced vibration response of

a cantilever beam under excitation from an electromagnetic actuator. Rather than focusing

on an accurate blade model, this section focuses attention on the forcing function and the

response from a simple cantilever beam. Under magnetic excitation, as is the case when

using the traveling wave excitation equipment, the forcing function driving the blades varies

in magnitude both as a function of time and distance. The distance is measured between

the actuator and the blade. The development here will provide insight into the nature of a

rotor’s forced response under electromagnetic excitation. The simple beam model is used

because many earlier researchers used the beam model as an approximation of a blade.

3.1.1 Beam Theory for a General Case of Transverse Motion.

This development is taken from Rao [60]. The author gives the general differential

equations for a beam’s transverse vibration as:

−
∂

∂x

[
kAG

(
∂w
∂x
− φ

)]
+ ρA

∂2w
∂t2 = f (x, t) (3.1)

−
∂

∂x

(
EI
∂φ

∂x

)
− kAG

(
∂w
∂x
− φ

)
+ ρI

∂2φ

∂t2 = 0 (3.2)

There are two separate equations here. The first equation depicts the beam’s vertical

displacement,w, due to an external forcing function. While the second equation describes

the beam’s rotation, φ, during its vertical displacement. Throughout the derivation, it is

assumed that shear stress is uniform at every point in the cross section. Because this is not

necessarily true in reality, Timoshenko introduced a constant term to correct for the effects
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of a varying shear stress. This constant, k is defined as the shear correction factor. The

variables ρ, G, A, and I are the beam’s density, shear modulus, cross sectional area, and

moment of inertia, respectively. Because the beam in this example is uniform, Equations

3.1 and 3.2 can be combined into a single equation of motion.

− kAG
∂2w
∂x2 + kAG

∂φ

∂x
+ ρA

∂2w
∂t2 = f (3.3)

or,
∂φ

∂x
=
∂2w
∂x2 −

ρ

kG
∂2w
∂t2 +

f
kAG

(3.4)

and

− EI
∂2φ

∂x2 − kAG
∂w
∂x

+ kAGφ + ρI
∂2φ

∂t2 = 0 (3.5)

Differentiating Equation 3.5 with respect to x produces:

− EI
∂2

∂x2

(
∂φ

∂x

)
− kAG

∂2w
∂x2 + kAG

∂φ

∂x
+ ρI

∂2

∂t2

(
∂φ

∂x

)
= 0 (3.6)

Substituting Equation 3.4 into Equation 3.6 yields:

EI
∂4w
∂x4 + ρA

∂2w
∂t2 − ρI

(
1 +

E
kG

)
∂4w
∂x2∂t2 +

ρ2I
kG

∂4w
∂t4 +

EI
kAG

∂2 f
∂x2 −

ρI
kAG

∂2 f
∂t2 − f = 0 (3.7)

Expanding this equation produces:

EI
∂4w
∂x4 + ρA

∂2w
∂t2 − ρI

∂4w
∂x2∂t2 −

ρIE
kG

∂4w
∂x2∂t2 +

EI
kAG

∂2 f
∂x2 −

ρI
kAG

∂2 f
∂t2 − f = 0 (3.8)

The third term in the expanded expression accounts for the beam’s rotary inertia. The fourth

term accounts for any shear deformation occurring within the beam. Further, the fifth and

sixth terms reflect any shear deformation induced by the applied force. The final term is

the externally applied forcing function.

3.1.2 Euler-Bernoulli Beam.

If a beam’s length is at least 100 times its thickness, the beam’s rotary inertia, shear

deformation, and damping is negligible. Further, it is assumed any deflection due to
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bending does not exceed the beam’s thickness. Lastly, lines perpendicular to the neutral

axis prior to bending will remain perpendicular after the bending has occurred. Thus, the

Timoshenko beam can be reduced to the Euler-Bernoulli beam model. By neglecting the

terms accounting for rotary inertia and through the thickness shear, Equation 3.8 is reduced

to
∂2

∂x2 (EI
∂2w
∂x2 ) + ρA

∂2w
∂t2 = f (x, t) (3.9)

This equation is the Euler-Bernoulli beam model. Here, the variable w is used for

displacement, x represents the beam’s linear dimension, and t is a temporal variable. For a

cantilevered beam, the boundary conditions are clamped at x = 0 and free and x = l. To

that end, there does not exist displacement or slope at x = 0, nor does there exist moment

or shear at x = l. For the fixed end, the following are the mathematical relations expressing

the boundary conditions:

w(0, t) = 0

∂w
∂x

(0, t) = 0
(3.10)

Following suit, the mathematical relations expressing the boundary conditions for the free

end are given as:

EI
∂2w
∂x2 (l, t) = 0

∂

∂x
(EI

∂2w
∂x2 )(l, t) = 0

(3.11)

In the traveling wave excitation equipment, each blade is actuated by way of an

electromagnetic solenoid. The forcing function from an electromagnetic solenoid is unique

in that its strength varies as functions of both distance away from the actuator and in time.

The inverse square law dictates the field strength from a magnetic source. From Coey [86],

the field strength, F, of an electromagnetic solenoid can be expressed as

F =
(NI)2kA

2g2 (3.12)
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In this equation, N is the number of wire turns within the solenoid coil, I is the applied

current (amps), A is the solenoid’s cross sectional area (m2), and g is the distance between

the solenoid and the blade. The parameter k is called the magnetic constant, which has a

value of 4π × 10−7 V · sec
amp · m

. One drawback to this equation is that it assumes a constant

distance between the solenoid and blade. To compensate for this, the distance, g, needs to

be defined as a function of time. Assume the beam’s motion is proportional to the driving

frequency. The traveling wave system excites the blades by sweeping through a range of

frequencies. Mark [25] derives an equation which defines the frequency sweep.

Y(t) = sin
(
2π

[
1
2

{
f2 − f1

Ts

}
t + f1

]
t + φ

)
(3.13)

In this equation f1 and f2 are the initial and final frequencies, respectively, Ts is the

frequency sweep time, and φ is any phase difference between the two frequencies.

Therefore, with an assumed initial blade to actuator standoff distance, s (m), the equation

will now provide the beam tip distance as a function of time.

g(t) = s + Y(t) (3.14)

Since the distance between the beam and actuator has been established, the forcing

function, F(t), expression is given as:

F(t) =
(NI)2kA
2g(t)2 (3.15)

with the distance between the blade and actuator tip as a function of time as given in

Equation 3.14.

Solving this forced vibration equation involves solving both the homogeneous and

non-homogeneous equations associated with the cantilever beam. The homogeneous

equation represents the free vibration solution. Under the assumption the beam is both

homogeneous and prismatic, the equation of motion for free vibration is given as:

c2∂
4w
∂x4 (x, t) +

∂2w
∂t2 (x, t) = 0 (3.16)
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The term c represents
√

EI
ρA

. E is the beam’s elastic modulus, I is the moment of inertia, ρ

is the material density, and A is the beam’s cross sectional area.

The free vibration solution is found using the separation of variables technique. Let:

w(x, t) = W(x)T (t) (3.17)

Using this definition in Equation 3.16 produces:

c2

W(x)
d4W(x)

dx4 = −
1

T (t)
d2T (t)

dt2 = a = ω2 (3.18)

Since each side of the equation is a function of its own variable and forced equal to one

another, each side of the equation is therefore equal to a constant term. Let this constant

term be defined as: a = ω2. This single equation can thus be rewritten as two separate

equations, each a function of its own variables.

d4W(x)
dx4 − β4W(x) = 0 (3.19)

d2T (t)
dt2 + ω2T (t) = 0 (3.20)

where,

β4 =
ω2

c2 =
ρAω2

EI
(3.21)

The solution to Equation 3.20 is given as:

T (t) = Acos(ωt) + Bsin(ωt) (3.22)

The constants A and B are found by using the initial conditions. The solution for Equation

3.19 is assumed to be of the form:

W(x) = Cesx (3.23)

The change to a capital W was made because the displacement equation is now a function

of a single variable.
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Substituting this solution into Equation 3.19 produces the following relation:

s4 − β4 = 0 (3.24)

which has roots given as:

s1,2 = ±β s3,4 = ±iβ (3.25)

Therefore the solution to Equation 3.19 can be written as:

W(x) = C1eβx + C2e−βx + C3eiβx + C4e−iβx (3.26)

Another form of this equation is the following:

W(x) = C1cos(βx) + C2sin(βx) + C3cosh(βx) + C4sinh(βx) (3.27)

where C1,C2,C3, and C4 are constants which are determined using the system boundary

conditions.

The beam’s natural frequencies can be determined using Equation 3.21.

ω = β2

√
EI
ρA

= (βl)2

√
EI
ρAl4 (3.28)

The boundary conditions for a cantilevered beam are given in Equations 3.10 and 3.11.

EI
d2W
dx2 (l) = 0 or

d2W
dx2 (l) = 0 (3.29)

EI
d3W
dx3 (l) = 0 or

d3W
dx3 (l) = 0 (3.30)

The displacement and slope boundary conditions in Equation 3.27 shows that:

C1 = C3 = 0 (3.31)

Using the moment and shear boundary conditions in Equation 3.27 produces:

C2(cos(βl) + cosh(βl)) + C4(sin(βl) + sinh(βl))

C2(−sin(βl) + sinh(βl)) + C4(cos(βl) + cosh(βl))
(3.32)
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These two equations thus lead to the frequency equation. The roots of this equation aid in

determining the beam’s natural frequencies.

cos(βl)cosh(βl) + 1 = 0 (3.33)

Therefore:

C4 = −
cos(βl) + cosh(βl)
sin(βl) + sinh(βl)

C2 (3.34)

Therefore, the nth mode shape is given as:

Wn(x) = (cos(βnx − cosh(βnx) −
cos(βnl) + cosh(βnl)
sin(βnl) + sinh(βnl)

(sin(βnx) − sinh(βnx)) (3.35)

where, for the first four bending modes and corresponding natural frequencies

• β1l = 1.8751 ω1 = (1.8751)2

√
EI
ρAl4

• β2l = 4.6941 ω2 = (4.6941)2

√
EI
ρAl4

• β3l = 7.8547 ω3 = (7.8547)2

√
EI
ρAl4

• β4l = 10.9956 ω4 = (10.9956)2

√
EI
ρAl4

The homogeneous solution produces the portion known as the system normal modes. The

solution to the forced response is assumed to be a linear combination of all normal modes.

This approach is analogous to the modal analysis techniques applied to discrete systems.

w(x, t) =

∞∑
i=1

Wi(x)ηi(t) (3.36)

where, Wi(x) is the ith normal mode found by solving Equation 3.35 and ηi(t) is the ith

generalized, or modal, coordinate. Analogous to the discrete system modal analysis, Wi(x),

is a system eigenvector and ηi(t) is a modal coordinate of that eigenvector. These modal

coordinates, in contrast to their physical coordinate counterparts, do not measure a physical
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distance. Rather, these terms give an indication as to the level of participation each mode,

or eigenvector, has on the resulting solution.

The equation of motion can be expressed as:

∞∑
i=1

d2

dx2

[
EI

d2Wi(x)
dx2

]
ηi(t) + ρA

∞∑
i=1

Wi(x)
d2ηi(t)

dt2 = f (x, t) (3.37)

Using the relationship:

d2

dx2

[
EI

d2Wi(x)
dx2

]
− ρAω2

i Wi(x) = 0 (3.38)

Equation 3.37 can be rewritten as:

ρA
∞∑

i=1

ω2
i Wi(x)ηi(t) + ρA

∞∑
i=1

Wi(x)
d2ηi(t)

dt2 = f (x, t) (3.39)

Here in this equation, the ith mode shape is depicted through the term Wi(x). Multiplying

through by the jth mode shape, W j(x), and integrating from 0 to l (integrating over the

beam’s length) produces:

∞∑
i=1

ηi(t)
∫ l

0
ρAω2

i W j(x)Wi(x)dx +

∞∑
i=1

d2ηi(t)
dt2

∫ l

0
ρAW j(x)Wi(x)dx =

∫ l

0
W j(x) f (x, t)dx

(3.40)

This integration is performed in order to ultimately determine the entire beam’s response.

The beam’s forced response is the sum of the responses for each infinitely small section

within the beam.

Because of the orthogonality property realized with normal modes, all terms within

the summations go to zero except where i = j, thus:

d2ηi(t)
dt2 + ω2

i ηi(t) = Qi(t) (3.41)

The term Qi(t) is the generalized force corresponding to the ith mode. The generalized,

or modal, force is the realization of the applied force together with a mode shape of free

vibration. When integrated over the entire beam’s length, it gives the depiction of the
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forcing function’s influence on that particular mode shape. This generalized force is given

in the next equation.

Qi(x) =

∫ l

0
Wi(x)F(x, t)dx (3.42)

The complete solution of Equation 3.41 is the sum of the homogeneous and non-

homogeneous portions. Shown for completeness, the general procedure to solve the non-

homogeneous problem is given in the next section.

3.1.2.1 Solution Procedure for the Non-Homogeneous Equation 3.41.

In general, the equation of motion for a viscously damped system is given by:

mẍ(t) + cẋ(t) + kx(t) = f (t) (3.43)

Dividing through by the mass:

ẍ + 2ζωn ẋ + ω2
nx = F(t) (3.44)

Here, ζ is the system’s damping ratio is given as:

ζ =
c

2mωn
=

c
cc

(3.45)

and the critical damping constant is defined as:

cc = 2mωn = 2
√

km (3.46)

and finally

F(t) =
f (t)
m

(3.47)

For a general forcing function, f(t), the solution of Equation 3.44 is found by taking Laplace

transforms of each term in the equation.

L[x(t)] = x̄(s) (3.48)

L[ẋ(t)] = sx̄(s) − x(0) (3.49)

L[ẍ(t)] = s2 x̄(s) − sx(0) − ẋ(0) (3.50)

L[F(t)] = F̄(s) (3.51)
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Therefore, using these definitions, Equation 3.44 can be expressed as:

[s2 x̄(s) − sx(0) − ẋ(0)] + 2ζωn[sx̄(s) − x(0)] + ω2
n x̄(s) = F̄(s) (3.52)

Stated alternately:

x̄ =
1
∆

[F̄(s) + (s + 2ζωn)x0 + ẋ0] (3.53)

Where the initial displacement and initial velocity terms, x0 and ẋ0, are equal to the x(0)

and ẋ(0) terms respectively. And the ∆ term is defined as:

∆ = s2 + 2ζωns + ω2
n = (s + ζωn)2 + ω2

d (3.54)

Here, the term ωd is defined as the damped natural frequency. Since ζ equals zero in this

example, the damped natural frequency will equal the undamped natural frequency,ωn. The

relationship between the damped and undamped natural frequencies is given in Equation

3.55.

ωd = ωn

√
1 − ζ2 (3.55)

Now, by employing the inverse Laplace transform on each term produces the following

expressions:

L−1
[

1
∆

]
=

e−ζωnt

ωd
sin(ωdt) (3.56)

L−1
[ s + ζωn

∆

]
= e−ζωntcos(ωdt) (3.57)

L−1
[
F̄ s
∆

]
=

1
ωd

∫ t

0
F(τ)e−ζωn(t−τ)sin(ωd(t − τ))dτ (3.58)

The total solution to this problem is the combination of these inverse Laplace transform

results.

x(t) =

∫ t

0
F(τ)h(t − τ)dτ + g(t)xo + h(t)ẋo (3.59)

where:

h(t) =
1
ωd

e−ζωntsin(ωdt) (3.60)
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g(t) = e−ζωnt

(
cos(ωdt) +

ζωn

ωd
sin(ωdt)

)
(3.61)

Furthermore, there is no initial displacement (xo) or initial velocity (ẋo). Therefore:

x(t) =

∫ t

0
F(τ)h(t − τ)dτ (3.62)

h(t) =
1
ωn

sin(ωnt) (3.63)

Therefore, the solution to Equation 3.41 is the sum of its homogeneous and non-

homogeneous solutions.

ηi(t) = Aicos(ωit) + Bisin(ωit) +
1
ωi

∫ t

0
Qi(τ)sin(ωi(t − τ))dτ (3.64)

Finally, the total solution to Equation 3.9 is given by Equation 3.36 and 3.64.

w(x, t) =

∞∑
i=1

[
Aicos(ωit) + Bisin(ωit) +

1
ωi

∫ t

0
Qi(τ)sin(ωi(t − τ))dτ

]
Wi(x) (3.65)

Because the beam begins at rest and at an equilibrium position, the coefficients A and B are

zero. This reduces the equation to:

w(x, t) =

∞∑
i=1

[
1
ωi

(∫ t

0
Qi(τ)sin(ωi(t − τ)dτ

)]
Wi(x) (3.66)

Using the first four bending modes, the following is an equation which describes the beam’s

forced response.

w(x, t) =

(
1
ω1

(∫ t

0
Q1(τ)sin(ω1(t − τ)dτ

)
W1(x)

)
+(

1
ω2

(∫ t

0
Q2(τ)sin(ω2(t − τ)dτ

)
W2(x)

)
+(

1
ω3

(∫ t

0
Q3(τ)sin(ω3(t − τ)dτ

)
W3(x)

)
+(

1
ω4

(∫ t

0
Q4(τ)sin(ω4(t − τ)dτ

)
W4(x)

)
(3.67)

3.2 The Free-Free Beam

The subject of system boundary conditions arises in all aspects of structural dynamics.

Generally, the number of boundary conditions required to solve a given differential equation
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is the same as the differential equation’s order. In experimentation, it is often desirable to

isolate the test article from any outside influence. This is particularly true in the field of

vibrations analysis. Here, any energy imparted into the test article, should remain in the

test article. When the article is free from any physical boundaries, only then can the true

test article’s behavior be captured. In practice, it is often extremely difficult to produce a

pure clamped or simply supported boundary. From Reference [87], “experience has shown

that the free conditions are easier to simulate that either fixed or clamped-type conditions

that are meant to be representative of connections during operation.”

Mathematically, these conditions are induced through a simple exercise of assigning

zero displacements, slopes, and/or taking the proper time derivatives and setting these

equal to zero. Furthermore, the mathematical representation of clamps and simply supports

are theoretically perfect; they are applied at infinitesimally small discrete points. To that

end, the free boundary is often simulated. A beam with free boundary conditions can be

simulated by supporting/hanging the beam at known node points. For this method to work,

the node points for the mode under excitation must be known a prioi. For this dissertation

research, suspending a rotor from a point would not be feasible. Therefore, an isolation mat

is used to simulate the free condition. Manufactured by Fabreeka, the “FabCel pad material

is specifically designed to provide vibration isolation/reduction in industrial applications

where structure-borne noise and vibration occur.” [88]

In this section, an analysis of the isolation pad will be used in conjunction with a beam

to explore its ability to deliver an effective free boundary. First, the analysis of a beam with

a continuous elastic support is examined. This beam is continuously supported with an

elastic foundation along its entire length. For this analysis, the traditional Euler-Bernoulli

beam equation (Equation 3.9) is modified. This theory and the associated numerical results

will be used in conjunction with the assumed free experimental boundary in Chapter

∂2

∂x2 (EI
∂2w
∂x2 ) + ρA

∂2w
∂t2 + k f w = f (x, t) (3.68)
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For the case of free vibration:

EI
(
∂4w
∂x4

)
+ ρA

∂2w
∂t2 + k f w = 0 (3.69)

In each equation, the term k f w is defined as the foundation modulus. It is the “load per

unit length of the beam necessary to produce a compression in the foundation equal to

unity [89].” The solution to this equation is assumed as the linear superposition of all

homogeneous and non-homogeneous modal solutions. It is assumed to be of the form:

w(x, t) =

inf∑
i=1

Wi(x) (Cicos(ωit) + Disin(ωit)) (3.70)

Here, Wi(x) is the ith mode shape and ωi is ith the natural frequency. This solution is then

substituted back into the original equation to produce:

d4Wi(x)
dx4 +

(
−
ρAω2

i

EI
+

k f

EI

)
Wi(x) = 0 (3.71)

This expression can be further simplified by allowing:

α4
i =

(
−

k f

EI
+
ω2

i

c2

)
(3.72)

where:

c =

√
EI
ρA

(3.73)

Thus, the natural frequency is found via:

ωi = cα2
i

√
1 +

k f

EIα4
i

(3.74)

This gives:
d4Wi(x)

dx4 − α4
i Wi(x) = 0 (3.75)

The solution to this equation is analogous to the solution shown in Equation 3.27.

Wi(x) = C1icos(αix) + C2isin(αix) + C3icosh(αix) + C4isinh(αix) (3.76)

60



Here, the beam’s only support is only the elastic foundation. Since there are no additional

end supports, it is assumed there is no shear or moment at either end (x = 0 and x = L).

Therefore, at the end x = 0, and taking the required derivatives of Equation 3.76 gives, for

shear:

W
′′′

(0) = 0 (3.77)

−C2α
3 + C4α

3 = 0 (3.78)

C2 = C4 (3.79)

and for the moment:

W
′′

(0) = 0 (3.80)

−C1α
2 + C3α

2 = 0 (3.81)

C1 = C3 (3.82)

Similarly, at x = L, for shear:

W
′′′

(L) = 0 (3.83)

C3(α3sin(αL) + α3sinh(αL)) + C4(−α3cos(αL) + α3cosh(αL)) = 0 (3.84)

(3.85)

and for the moment:

W
′′

(L) = 0 (3.86)

C3(−α2cos(αL) + α2cosh(αL)) + C4(−α2sin(αL) + α2sinh(αL)) = 0 (3.87)

(3.88)

For these two equations at x = L, there exists two equations and two unknowns. For the

non-trivial solution, the determinate of these equations’ coefficient matrix must equal zero.

The resulting equation is:

cos(αL)cosh(αL) − 1 = 0 (3.89)
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And using Equation 3.86, C4 can be defined as:

C4 = C3
−cos(αL) + cosh(αL)

sin(αL) − sinh(αL)
(3.90)

Therefore, using Equation 3.76, the mode shape equation can be expressed as:

W(x) = C3 (cos(αx) + cosh(αx)) −
(cos(αL) − cosh(αL))(sin(αx) + sinh(αx))

sin(αL) − sinh(αL)
(3.91)

Solving Equation 3.89 and verifying this result by plotting Equation 3.91, Table 3.1 gives

the individual arguments for the frequency equation (Equation 3.89)

Table 3.1: Frequency Equation Arguments for a Beam on a Continuous Elastic Foundation

Mode Argument (αiL)

1 4.73

2 7.8532

3 10.9956

4 14.1372

Not surprisingly, these are the same values found when examining a free-free beam.

Examining the natural frequency expression for this continuously supported beam in

Equation 3.74 corroborates this. As the foundation modulus term in Equation 3.74

approaches zero, the natural frequency for the continuously supported beam and the free-

free beam equal one another. The issue here lies with the relatively high stiffness in the

isolation mat used in the laboratory. Perhaps the solution here lies in only supporting the

beam at discrete points.

3.2.1 Supported Mode 1 Beam.

Rather than continuously supporting the beam along its length, the beam will be

supported at its node points for a given mode. A beam’s first bending mode examined here.

For mode 1, the beam’s first and second node points are located at 24.4159 and 77.5849

percent of the beam’s length, respectively. A beam’s node points are determined by solving
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for the zeros in its unique mode shape equation. Any text on continuous vibrations, such

as Rao [60], provides the necessary relationships to determine the node points’ locations.

For the numerical exercise, a free-free beam’s 1st natural frequency will be directly

compared to that of a beam supported at its nodes. Furthermore, the beam length to support

diameter (L/D) relationship will be established based on these numerical results. This can

then be used to size a beam vibrations experiment where a free-free condition is desired.

Figure 3.1 shows the typical setup for this series of analyses. Figures 3.2 and 3.3 show the

pertinent dimensions used during this analysis.

Table ?? gives the beam’s material and geometric properties. The beam will be

supported on 7075-T6 aluminum supports, 0.1016 m (4 in.) tall. The support diameter

will be altered with each iteration to change the (L/D) ratio.

Table 3.2: Supported Plate Material and Geometric Properties

Beam Material Al 7075-T6

Beam Length (m) 1

Beam Thickness (m) 0.01

Beam width (m) 0.1

Beam Stiffness (GPa) 71.7

Beam Density (
kg
m3 ) 2810

Poisson’s Ratio 0.33

Beam Mass (kg) 2.81
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Figure 3.1: Supported Beam Example

Figure 3.2: Beam Schematic

Figure 3.3: Beam Schematic (L/D)

First, a series of analyses were conducted by supporting the beam on the aluminum

pedestals without the isolation mat. For each case, the beam was modeled using 5120

C3D20R elements. The support was modeled using 4352 C3D20R elements. Tie
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constraints were used to connect the support to the beam. The support was fully constrained

at its bottom face. Table 3.3 shows how the first bending mode natural frequency decreases

drastically as the (L/D) ratio increases. The natural frequency drops below that of the free-

free beam because the slender supports begin to buckle and are thus interfering with the

overall beam’s modal behavior.
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Table 3.3: Supported Beam Without Isolation Mat

Case Number Support Diameter (m) (L/D) 1st Natural Freq. (Hz)

1 0.1 10 162.03

2 0.05 20 134.51

3 0.025 40 115.75

4 0.0125 80 72.856

5 0.00625 160 50.321

6 0.003125 320 47.858

7 0.0015625 640 47.404

8 0.00078125 1,280 45.857

The mat was next placed between the beam and support column. The mat’s material

properties were estimated from manufacturer supplied technical specifications in Reference

[88]. Because the material is a foam/rubber type material, Possion’s ratio is assumed to

be 0.49. The mat thickness is a constant 0.00635 m (0.25 inch). The mat density was

estimated using a precisely cut specimen and determining its mass (657.3 (kg/m3)). The

mat was modeled using 2162 C3D20R elements. During the analysis, the mat and support

are the same diameter. Tie constraints were used between all material interfaces, except for

the support’s base. The support was fully constrained at its bottom face. The finite element

representation for both the pedestal and isolation mat are shown in Figure 3.4.
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Figure 3.4: Isolation Mat with Support Pedestal

Figure 3.5: Supported Beam Mode 1 (Natural Freq. Within 4.5% of Free Beam)

Table 3.4 summarizes the supported beam’s results. Using the isolation mat, a beam

at least 20x longer than the support diameter, gives a first bending natural frequency

within 4.5% as a free-free beam. If the beam is 40x longer than the support diameter,

the first bending natural frequency is 0.08% different than that seen in the free-free

beam. Increasing the (L/D) to 80 sees a significant decrease in natural frequency. This

is caused from the slender support buckling and interfering with the beam’s modal energy

distribution.
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Table 3.4: Supported Beam With Isolation Mat

Case Support and (L/D) 1st Natural

Number Mat Diameter (m) Freq. (Hz)

1 0.1 10 86.237

2 0.05 20 49.555

3 0.025 40 51.983

4 0.0125 80 44.083

3.2.2 Supported Mode 1 Plate.

Analogous to the support technique in Section 3.2.1, the circular plate will be

supported along a nodal diameter, at the plate’s center. The same support configuration

(Figure 3.4 is used in this numerical analysis. For modes exhibiting nodal diameters,

the plate’s center will always lie on this node line. Based on the numerical results, a

relationship will be established between the ratio of plate diameter to support diameter

(D/d) to the natural frequency giving one nodal diameter. Figure 3.6 shows the typical setup

for this series of analyses. Figures 3.7 and 3.8 show the pertinent dimensions. Appendix D

provides the derivation for the theoretical circular plate with a free edge.

The plate is supported on a single 7075-T6 aluminum pedestal, 0.1016 m (4 in.) tall.

As with the supported beam, the support diameter will be altered with each iteration to

change the (D/d) ratio. The support is located at the plate’s center during each iteration.
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Figure 3.6: Supported Plate Example

Figure 3.7: Supported Plate Schematic

Figure 3.8: Supported Plate Schematic (D/d)

A series of analyses were performed by supporting the plate on the aluminum pedestal

without any aid of the isolation mat. The pedestal was fully constrained at its bottom

face. The support was modeled using 240 C3D20R elements. Tie constraints were used to
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Table 3.5: Supported Plate Material and Geometric Properties

Plate Material Al 7075-T6

Plate Diameter (m) 1

Plate Thickness (m) 0.01

Plate Stiffness (GPa) 71.7

Plate Density (
kg
m3 ) 2810

Poisson’s Ratio 0.33

Plate Mass (kg) 0.007853982

connect the support to the beam. From Table 3.6, using a (D/d) ratio of 80 gives a natural

frequency 0.015% different from the free circular plate’s natural frequency.

Table 3.6: Supported Plate Without Isolation Mat

Case Number Support Diameter (m) (D/d) 1st Natural Freq. (Hz)

1 0.2 5 329.33

2 0.1 10 262.29

3 0.05 20 218.02

4 0.025 40 215.08

5 0.0125 80 201.33

6 0.00625 160 201.33

7 0.003125 320 201.33

The mat was then placed atop the plate’s central pedestal. Possion’s ratio is again

assumed to be 0.49, and the mat thickness is a constant 0.00635 m (0.25 inch). The mat

density remained 657.3 (kg/m3). The mat was modeled using 2162 C3D20R elements.

During the analysis, the mat and support are the same diameter. Tie constraints were

again used between all material interfaces, and the support’s bottom face was completely
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constrained. From Table 3.7, using a plate at least 20x larger in diameter than the support

will effectively give the same behavior as a free plate. Using a plate with a diameter at least

10x larger than its support diameter exhibits less than 1% difference from the free plate first

natural frequency. This method is applicable for supporting a plate whose modes shapes

exhibit nodal diameters or exhibit node points at its center.

Table 3.7: Supported Plate With Isolation Mat

Case Support and (D/d) 1st Natural

Number Mat Diameter (m) Freq. (Hz)

1 0.1 5 238.93

2 0.05 10 202.47

3 0.025 20 201.42

4 0.0125 40 201.33

3.3 Structured Light Optical Measurement Technique

The section provides a basic overview of structured light scanning, to include an

overarching view of the theory. The motivation behind using the structured light optical

measurement technique, as opposed to traditional contact based measurement methods,

lies in its speed. Conventional coordinate measurement machines measure a single point at

a time, by way of a mechanical touch probe. In contrast, the structured light scanner uses a

field of light to measure numerous points simultaneously.

In the computer vision field, Xin [90] defines “structured light as light with a certain

feature, such as a stripe pattern.” The basic principle behind the structured light approach

is to project known light patterns onto an object, and with a digital camera, take images

of the object with the known projection patterns imposed upon it. Because of surface

curvature and any irregularities on the surface, this image appears distorted. Through

a process of locating pattern positions and matching them to locations on the projected

pattern, realistic textured surfaces can be reproduced through a triangulation process. Peng
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[57] discusses how the “images are analyzed to construct a 3-D point cloud which is

capable of introducing the observed distortions in the images.” Since the light pattern

has a specific structure, or shape, to it, “there exists a direct correspondence between points

on the resulting image and points on the projected light pattern.” It is this correspondence

which aids in the triangulation process to reconstruct the textured surfaces. The principle

of triangulation is a crucial component in the scanned object’s reconstruction. In standard

projective imaging, “one dimension (usually depth or distance information) from a 3-D

scene is lost” [12]. This is the rationale behind utilizing triangulation theory: to reconstruct

this “lost” dimension.

In the most basic sense, a 1-D triangulation scheme, is shown in Figure 3.9.

Figure 3.9: 1-D Triangulation Schematic [12]

In this figure, b, is called the triangulation optical basis. The light source ray angle, α, is

fixed. “The angle on the detector side, β, changes and is defined by the illuminated point

on the internal Charge Coupled Device (CCD). Based on the the knowledge of these two

angles, one side of the triangle and the attributes of camera and objective (CCD chip size
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and objective focal length), the distance can be determined” [12].

b =
l

tan(α)
+

l
tan(β)

(3.92)

Thus:

l =
b

1
tan(α)

+
1

tan(β)

(3.93)

And since tan(α) =
sin(α)
cos(α)

and sin(α+β) = sin(α)cos(β) + cos(α)sin(β), the distance l can

be expressed as:

l =
bsin(α)sin(β)

sin(α + β)
(3.94)

Figure 3.10 depicts a 3-D triangulation scenario.

Figure 3.10: 3-D Triangulation Schematic [13]

There have always been requirements for the accurate sensing of three-dimensional data

in real applications since, after all, the real world is three-dimensional. “To achieve this

goal, many 3-D range finding techniques have been developed such as laser, ultrasonic,

triangulation, time of flight, Moire fringing, or structured light” [91]. An overview of the

Moire technique can be found in Boone and Chen’s work, References [16] and [92].

Although optical techniques provide measurement accuracy and reproductions which

are photo realistic, they do have several significant drawbacks. Since the technique
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involves a light source, it is more or less restricted to an indoor or other low ambient light

environments. Additionally, not all points on the surface can be viewed in both the camera

and projector. Keizer [91] discusses how “a scan’s spatial resolution is limited since the

structured light system can only compute the 3-D data of the surface onto which the pattern

is projected.” If the surface is extremely complex, and the light patterns cannot reach all

portions of the object, there will not be any data for these areas. This was a challenge in

scanning the rotors used in this current research. To alleviate this problem, the scanner was

moved around the rotor to ensure all surfaces were captured.

Fofi [14] explains:

“In its simplest form, structured light is a laser beam projecting a single dot

on the scene. Since only one point is projected, the correspondence is direct.

However, scanning along both x and y axes is required Figure 3.11(i). A second

solution consists of projecting a light plane, which appears as a single slit on

the object surface. Scanning only along one axis is necessary Figure 3.11(ii).

In order to avoid a time consuming mechanical scanning process, the last

solution consists of projecting a multi-stripe pattern, a grid field, or multiple

dots Figure 3.11(iii and iv). Figure 3.11 below illustrates each type.”

Figure 3.11: Structured Light Geometry Types [14]
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As early as the 1970s, the recent advances in holographic imagery motivated researchers

to search for alternate methods to record and reconstruct three dimensional scenes. As

discussed in [15] ambient light was used, along with photosensitive film, to capture an

object’s three dimensional presence. Figure 3.12 below illustrates this technique.

Figure 3.12: Early 3D Image Capture Schematic [15]

Through advancing optical technologies in the mid 1980s, the ability to project accurate

patterns onto subjects evolved. The simplest of techniques utilize a “single strip of light or a

stripe pattern projected by a slide projector” [16]. This can then be recorded sequentially for

a number of projection directions. An advantage of projecting a line is that the projection

direction does not need to be at a right angle to the viewing direction. The curved lines can

be considered as intersections of planes with the object. An example of this is shown in
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Figure 3.13 below. The distortions in the stripe pattern indicate surface texture which will

be recorded as different point coordinates in the resulting model.

Figure 3.13: Direct Projection of Line Patterns - At Right Angle with Observation [16]

Since the light pattern is structured, it has a known pattern. Examining Figure 3.13 clearly

show a distorted stripe pattern on the statue’s cheek. The severity of these distortions is

directly related to the surface curvature. Based on these distortions, a 3-D triangulation

technique is employed to gauge the points’ distance from the light projector. Therefore, the

surface can be reconstructed in three dimensions by calculating the spatial coordinates of

the object in question.
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As optical technology continued to advance, systems involving light stripes of multiple

colored evolved. “This technique was employed in an effort to mitigate effects of object

surface colors, system noise, or limitations in camera/projector resolution for real-time

imaging in a single video frame (“one shot”) and for near real time imagine in double

video frames (“two shots”)” [93]. In addition, coloring the stripes stemmed from the

need to “maximize the contrast between the light and the object, especially if the object

itself is colored. This reduces ambiguities in reconstructing the object surface geometry.”

Invisible structured light techniques are also used for these same reasons, as Fofi discusses

in Reference [14]. Newer technologies evolved, incorporating special wavelengths of the

structured light in an effort to decrease sensitivity to ambient lighting in virtually any

environment.

The solid model created in this research was created from a system of such a design.

The narrow-band blue light this scanner affords enables precise measurements to be

carried out “independently of environmental lighting conditions” [94]. Schneider [95] has

performed validation work of models developed using this equipment. In his validation

scheme, a mechanical forming process was performed and then simulated. Because the

simulation required a model identical to that used during the actual forming process, a

narrow-band, blue structured light scanner was employed to recreate the model.

3.4 Traveling Wave Theory

The forced response of a bladed disk can be experimentally studied one of two ways.

First, the disk can be rotated through a stationary excitation source. Alternately, the

excitation can be rotated around the bladed disk. Spinning bladed disks at realistic engine

speeds requires complex and expensive test equipment. Because of the inherent danger

associated with a spinning rotor, increased testing cost, and equipment complexities, it is

desired to produce engine order excitation in a stationary bladed disk wherein standard

laboratory vibration measurement equipment can be used. Numerically, the rotor can be
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studied using computational fluid dynamics routines and finite element analysis previously

discussed in this chapter.

Jones [17] has said “engine order excitation can be simulated in stationary BLISKs2

by applying harmonic excitation to all blades whereby the excitation differs from blade

to blade by a constant inter-blade phase angle.” The inter-blade phase angle is a phase

relationship representing the motion of one blade with respect to the other blades. For

example, in a well-defined traveling wave mode, the motion of a blade can be shown to be

identical to the motion of its neighbor, except for a phase angle between them. Srinivasan

[41] summarizes that “each blade will experience exactly the same motion, except at a

slightly different time.” This is illustrated in the following equations from Jones [17]; for

the ith blade:

Fi = Asin(ωt + iθ) (3.95)

i = 1, ..., n − 1 (3.96)

θ = 2π
c
n

(3.97)

Here, A is the forcing amplitude, ω is the angular input frequency to the blades, t is time,

i is the blade number, c is the EO excitation, n is the total number of blades, and θ is a

constant inter-blade phase angle.

While traveling wave excitation cannot replicate the effects of centrifugal stiffening

seen in a real rotating rotor, it can, however, replicate the blades’ behavior under different

kinds of frequency excitation patterns. For a given rotor, there exists a critical EO excitation

value. Together with the rotor’s angular velocity, this EO value induces the excitation into

the rotor. The experimental equipment simulates this phenomenon by way of the constant

inter-blade phase angle. Each blade is hit with the peak signal amplitude at a slightly

different time, driven by the EO value. Figures 3.14, 3.15, and 3.16 further illustrate this

concept. These figures assume the rotor has 18 blades. For simplicity, forcing on 5 adjacent
2BLISK is an acronym - short for bladed disk
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blades will be shown. This is done purely for figure clarity. A sinusoidal input with unit

amplitude is assumed.

It is important to keep in mind, for any moment in time, all blades are excited

simultaneously. For this first figure, the EO excitation 0. Physically, this implies all

blades are receiving the same input amplitude at the same time. Because there is no EO

excitation, there is no input phase difference between each blade. Each blade’s input signal

is superimposed onto the next.

Figure 3.14: 0 EO Excitation Forcing Function Pattern

In Figure 3.15, the EO excitation has been increased to 1. Using Equations 3.95

through 3.97, Figure 3.15 is produced. Note how at a given moment in time now, the

maximum input amplitude to each blade has been shifted slightly. Specifically the phase

difference between each blade’s maximum signal amplitude is
π

9
. This pattern of slight

phase shifting continues for increased EO values.
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Figure 3.15: 1 EO Excitation Forcing Function Pattern

Since there are 18 blades on the Purdue Transonic Research Compressor, EO of 9 places

every other blade in phase with one another. This is shown in Figure 3.16. With an EO of 9,

the phase difference between each blade’s maximum amplitude is π. The figure illustrates

how blades 1, 3, and 5 are in phase with one another. Similarly, blades 2 and 4 are in phase

with one another.

Figure 3.16: 9 EO Excitation Forcing Function Pattern
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These previous graphs assume a perfect system in that all actuators are firing with an

equal force magnitude and at an equal phase. The next section discusses calibration

within the traveling wave system. These same figures will be revisited again, after taking

into account small variations existing in the experimental setup, for which the calibration

process attempts to account.

Spinning Rotor and EO Excitation. For a spinning rotor within a jet engine, the

EO excitation is what provides the harmonic input to the blades. The rotor spins through

the incoming air stream which has been disturbed due to the circumferential obstructions

within the engine annulus. The rotor excitation frequency is directly related to the number

of obstructions in the air stream and the rotor RPM. This is shown below:

pulse
rev︸︷︷︸
EO

rev
min︸︷︷︸
RPM

1 min
60 sec

=
pulse
sec

Here, the resulting (pulse/sec) is the excitation applied to each blade.

Stationary Rotor and EO Excitation. For a stationary rotor, as is utilized with the

traveling wave experiment, the EO excitation serves solely to drive the phase shift between

each blade’s input. In contrast to the spinning rotor, the stationary EO excitation does not

act as a multiplicative harmonic index. This phase shift between each actuator has values

from 0 to 2π. Using modulo arithmetic, the phase shift can readily be calculated.

θ = mod
(
2πc
n
, 2π

)
(3.98)

This equation provides the remainder after completing the division of 2π c by n. Again, c

is the EO excitation number and n is the number of blades on the rotor. For example, 18

EO is also equivalent to 0 EO and 20 EO has the same phase shift as 2 EO. This is more

clearly illustrated when plotting the inter-blade phase angle against the EO excitation level.

Table 3.8 is generated using Equation 3.98. Figure 3.17 depicts this pattern graphically.
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Table 3.8: Inter-blade Phase Angle (θ) as Function of EO Excitation for an 18 Bladed Rotor

EO Excitation θ (rad) EO Excitation θ (rad)

0 0.00 18 0.00

1 0.35 19 0.35

2 0.70 20 0.70

3 1.05 21 1.05

4 1.40 22 1.40

5 1.75 23 1.75

6 2.09 24 2.09

7 2.44 25 2.44

8 2.79 26 2.79

9 3.14 27 3.14

10 3.49 28 3.49

11 3.84 29 3.84

12 4.19 30 4.19

13 4.54 31 4.54

14 4.89 32 4.89

15 5.24 33 5.24

16 5.59 34 5.59

17 5.93 35 5.93
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Figure 3.17: EO Excitation Forcing Function Pattern

3.5 Traveling Wave Calibration Process

The calibration process permits the traveling wave excitation to better approximate the

harmonic forcing a rotor experiences during operation.

The calibration frequency is set such that a 0 nodal diameter mode shape is induced.

In this mode shape, all blades move in phase with one another. This mode is chosen so

as to ensure there are no node lines passing through blades, measurement points, or input

locations. It is assumed that once the system can impart a force with a certain magnitude

and phase to induce the 0 nodal diameter using 0 EO excitation, any other mode can

be excited using other EO values of interest. Determining the frequency to induce this

mode requires performing initial traveling wave scans at 0EO. Since the scanning software

records both blade magnitude and phase, determining this specific mode shape is relatively

simple. The software permits active exploration of the entire frequency range used in the

test. The frequency inducing this mode is noted; it becomes the calibration frequency.

The calibration process attempts to attenuate two types of errors: non-uniformity

and position errors. These errors need to be minimized so as to ensure that each blade

is being actuated with an equal force. A non-uniformity error acknowledges that each
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magnetic actuator is a real component, and as such, there exists variability within each

unit originating from manufacturing tolerances or other physical variations affecting output

signal quality. Jones [17] explains how “the position error is caused by amplitude and

phase differences induced by the varying distances between the exciters and the blades.”

The position error is significant because the input force into the blades is sinusoidal.

Despite careful actuator placement, there will always exist a degree of variability in the

standoff distances between adjacent actuators. Shown in Figure 3.18, both the amplitude

and phase are functions of the actuator standoff distance. Having small variations in

actuator placement from blade to blade affects both the input magnitude and phase. The

variable e in Figure 3.18 represents the standoff distance error between two actuators;

ideally, each actuator is placed in the same location and using the same standoff distance

on each blade.

Figure 3.18: Actuator Magnitude and Phase [17]

Position errors are primarily controlled by precise placement of the exciters. Since the

actuators are electromagnets, their force amplitudes can be very sensitive to position errors

- namely the standoff distance, or gap between the actuator tip and blade. This sensitivity is
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driven by the inverse square law relationship. Figure 3.19 below illustrates the gap between

the magnet and blade tip.

Figure 3.19: Magnet Standoff Distance Illustration [18]

To demonstrate the effect of the actuator-to-blade standoff distance, 3.20 is shown. If the

magnetic excitation is driven at a frequency ω, in the form

f (t) = Fosin(ωt) (3.99)

and since the electromagnetic force is directly proportional to the supplied current, and is

thus always positive, DiMaio [18] states the “force the blade experiences may be related to

the standoff distance as”:

F(t) −→ |
1
δ2 Fosin(ωt)| (3.100)

The
1
δ2 scales the magnetic field strength, via the inverse square law, as a function of the

standoff distance. In Figure 3.20, a 1 Hz signal of 1×10−6 lbf amplitude is applied. The

field strength, f (t), using difference standoff distances, δ, is shown. The following standoff

distances are typically seen during traveling wave testing: 0.02 inch, 0.03 inch, and 0.04

inch. Despite small variations in the standoff distance, there can be a significant difference

in force amplitude.
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Figure 3.20: Effect of Magnet Standoff Distance on Field Strength at the Blade Tip

Through an iterative process, calibration attempts to drive each magnetic actuator with

an input magnitude and phase such that the overall system response is the same, regardless

of the input location. For example, the system response recorded at Blade 5 when Blade

18 is excited will be the same as the system response recorded at Blade 13 when Blade 4 is

excited.

Holland [96] discusses a similar type of calibration procedure. When calibrating, only

a single blade is excited at a time - in contrast to a performing an actual traveling wave

test where all the blades are excited simultaneously. The resulting output from this single

input is measured at each blade. For example, blade 1 is initially excited at the calibration

frequency. The output is measured at blade 1. Blade 1 is excited again; the output at blade

2 is taken. This process continues until the output is measured at all 18 blades. Then

blade 2 is excited. The output for all 18 blades is measured. This cycle of exciting a

single blade and measuring the output at all blades continues until all blades have been

86



excited. Since the rotor used in this research has 18 blades, 18 separate calibration scans

will be performed. At the conclusion of all calibration scans, the responses from each

blade are sent to the actual calibration software. This program, based in MatLab, utilizes

the principle of reciprocity to adjust each actuator’s input magnitude and phase such that

an identical response at each blade is achieved.

The principle of reciprocity says when a force is applied at blade A, the resulting

response at blade B will be the same as when the force is applied at blade B and the

response is measured at blade A. For this rotor, this is a reasonable approximation because

the system is lightly damped and behaves in a linear fashion, for the frequency ranges used

in this research. The calibration code produces an output file. This output file contains

magnitude and phase adjustments for each actuator. The traveling wave system reads this

file and makes the necessary adjustments to each actuator’s signal. The calibration process

is performed again. This process continues until no further adjustments are needed to

achieve an identical rotor response, independent of the input location. The calibration

process is summarized in the next figure.
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Figure 3.21: Traveling Wave Calibration Process

Figures 3.14, 3.15, and 3.16 are now revisited, taking into account small variations

existing in the experimental setup. The calibration process attempts to account for these

variations. A perturbation method can be employed to simulate the forcing function

characteristics under the influence of both amplitude and phase changes to each actuator’s

signal. The perfect actuator and rotor assumption of Equation 3.95 is modified to

incorporate the slight variations in input signal which would result from the calibration

process. This produces Equation 3.101. In this example, pseudo-random values from a

normally distributed population between 0 and 1 attempt to simulate the variation between

each actuator and or blade. This variation is given as the ∆ shown in Equation 3.101.

This gives a more realistic depiction of the forcing functions used in the Traveling

Wave Excitation (TWE) experiment, in contrast to the perfect signals in Figure 3.14, Figure

3.15, and Figure 3.16. These changes in input signals stem from subtle differences in

construction between the actuators themselves, position differences between the actuators
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and blade, and variations to the blades’ mass and stiffness. For example, a slightly stiffer

blade would require more input force to achieve the same response amplitude than its more

compliant neighbor. A 10 Hz sinusoid with unit amplitude is again used to generate each

figure.

Fi = (A + ∆Ai) sin(ωt + i(θ + ∆θi)) (3.101)

where ∆Ai and ∆θi are the amplitude and phase deviations respectively.

During the calibration process, the reference is the “weakest” blade. In Figure 3.22,

the reference is Blade 4. Thus, this example graph may be interpreted as indicating blade

2 requires almost twice the input power than blade 4 to achieve the same response. Note

blades 1 and 2 are almost identical in their power requirements. Since the EO equals 0 in

this example, any phase irregularities are not seen. However, this added complexity clearly

shows up in Figure 3.23 where the EO excitation is now 1. Here, the effect of the phase

shift is noted. Figure 3.18 illustrates this concept. The phase angle between each input

signal continues to shift as the EO excitation level is increased. Figure 3.24 shows the

effects of the more realistic input signals if the EO excitation is increased to 9. The system

imperfections are evident and sharply contrast the input pattern seen in Figure 3.16.

Figure 3.22: 0 EO Forcing Function Pattern with Amplitude and Phase Adjustments
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Figure 3.23: 1 EO Forcing Function Pattern with Amplitude and Phase Adjustments

Figure 3.24: 9 EO Forcing Function Pattern with Amplitude and Phase Adjustments

3.6 Laser Vibrometer Theory

The laser vibrometer is a well established as an effective non-contact alternative to

using a traditional contact based vibration transducer. This device is used to perform all

rotor measurements during the TWE experiments. O’hara [10] used this technology in his

work because it allowed the “identification of blade natural frequency and displacements
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of the associated mode shapes.” Pai [97] lauds the laser vibrometer as it provides “non-

contact (measuring velocities of a dynamic system by checking the frequency shift of a

back-scattered laser beam), remote (up to 30 m away), large-area scanning (up to 40◦ x

40◦), dense (up to 512 x 512 points), high-frequency bandwidth (0.2 Hz-20 MHz), and

accurate (a velocity resolution of 0.1 µm/s) measurements.” The non-contact measurement

quality is especially attractive for mistuning research because there is no need to attach

additional measurement devices, such as accelerometers, to the rotor. These items would

add additional mass and would further exacerbate the mistuning problem. The scanning

head both launches a probe beam to the rotors surface and collects the back-scattered

light signal. Pai [97] provides an overview of the vibrometer controller functions. The

“controller provides power for the scanning head, controls the rotation of the two mirrors

within the head, scanning of the laser beam, and processing the interferometry created

by the back-scattered laser beam and the reference laser beam in the sensor head.” The

principle behind this unit relies on the detection of a Doppler shift in the frequency of

coherent light scattered by a moving target. From this, a time resolved measurement of the

target velocity is obtained.

Figure 3.25 shows the optical configuration in the scanning laser vibrometer. In this

figure, BS , stands for “beam splitter”. The Bragg Cell is a unit that determines which

direction the object is moving - either away from or towards the laser vibrometer. It

accomplishes this by examining the beam’s frequency, or Doppler shift. A higher frequency

would indicate the object is moving towards the detector, while a lower frequency would

indicate the object is moving in the opposite direction. In the PolyTec laser vibrometer

used with the traveling wave equipment, the Bragg Cell determines the direction the object

is moving by comparing the reference and object beams.

The following discussion addresses the theory behind how this unit makes its

vibrations measurements. This includes an overview of the pertinent equations and
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mathematical relationships used within the laser vibrometer software to determine an

object’s velocity.

Figure 3.25: Optical Configuration in the PSV-400 Scanning Head [19]

The laser itself is a helium-neon (HeNe) beam which is split into two separate beams: the

object beam and the reference beam. These beams are linearly polarized, which means the

light waves are all moving in the same plane - like a sine wave moving in space.

Figure 3.26: Example of a Linearly Polarized Signal [20]

The object beam passes through another splitter and a quarter-wave plate. This plate

reduces the wavelength by one-quarter and thus transforms the beam into one possessing

circular polarization.
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Figure 3.27: Quarter Wave Plate Effect on Beam [20]

The beam is then focused through the lens onto the directional mirrors which control where

the beam will be pointed. The beam is then reflected back to the vibrometer where it is

compared with the reference beam at the detector. The resulting difference, or interference,

signal between the reference and object beams is converted into an electrical pulse within

the detector. This electrical pulse is next passed to the vibrometer controller where it is

decoded into a velocity measurement. This interference is observed when the reference

and object beams coincide. The resulting intensity on the detector varies with the beams’

phase difference. This is governed by the next equation (the following equations are also

found in Reference [19]). The next equations provide a mathematical description of the

vibrometer’s operation.

I(φ) =
Imax

2
· (1 + cos(φ)) (3.102)

In this equation, Imax is the maximum beam intensity. The phase angle difference, φ, is a

function of the optical path difference L between the two beams. The optical path in this

system is the product of the geometric length the light path through the system and air’s

refractive index. Since the reference beam is unaltered, it will have a different optical path
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than the beam returning from the object. The refractive index is defined as the ratio of

the speed of light in a vacuum to the speed of light in air. It describes how light beam

propagates through the air. This phase angle between difference between the object and

reference beams can be expressed as:

φ = 2π ·
L
λ

(3.103)

where, λ is the laser beam wavelength. As the two beams have different optical paths, the

velocity component of the object beam is a function of the paths’ difference, L. Thus the

velocity is twice the time derivative of this path difference.

dL(t)
dt

= v(t) · 2 (3.104)

For a constant velocity, v:

|
dL(t)

dt
| =

λ

2π
· |

dφ
dt
| = fD · λ = |v| · 2 (3.105)

where:

fD = 2 ·
|v|
λ

(3.106)

The movement of the object causes a frequency shift in the object beam, called the Doppler

shift, fD. When the reference beam and object beam are superimposed onto the detector,

their phase difference sets up a beat frequency. This beat frequency is equal to the Doppler

shift. This equation, when used to determine the velocity, is always positive because of the

absolute value sign. This is corrected by introducing a fixed frequency shift, fB, within the

device. This is added to the Doppler shift and results in the following expression for the

frequency at the detector:

fdetector = fB + 2 ·
v
λ

(3.107)

3.7 Developing the Solid Model

When an object is scanned using structured light, its faces and surface textures are

represented using a finite number of closely spaced points. The points form a dense point
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cloud which, to a degree, describe the object’s shape. The section describes the processes

used to develop the solid rotor model. This section is based upon work Kaszynski provided

in [21]. The scanning process results in a dense point cloud depicting the overall geometry.

The point cloud is processed in the following steps: merging, decimation, tessellation, and

final editing. Several of these processes take place within the scanning software itself. The

next sections describe each step.

3.7.1 Merging.

In order to effectively capture all aspects of the rotor’s geometry, multiple scans must

be performed. As discussed in Section 3.3, scanning the object from multiple angles to

ensure all details of the object are captured. If the structured light is not able to reach

all surfaces from one angle, the scanner is re-positioned, and the object is scanned again.

For the rotor used in this dissertation research, the rotor’s top surface was scanned, along

with the bottom surface. Furthermore, multiple scans were performed around the rotor’s

perimeter so as to capture the geometric makeup of each blade.

The merging process collects all of the individual scans and merges them into a

single point cloud. Adhesive markers are affixed to the rotor’s surface for use as common

reference points between the individual scans. The software uses these markers as a

method to relate and orient each image to one another. Kaszynski [21] says “the processing

software is able to recognize and identify these markers within the point cloud, merge the

scans, and then remove the the marker geometries from the measured part.”

3.7.2 Decimation.

The point cloud for the Purdue Transonic Research Compressor contained approxi-

mately 2,000,000 points. The decimation process reduces the number of data points in the

cloud to a more reasonable number. The rotor’s point cloud was reduced to about 500,000

points. This process is performed by removing “redundant” points. Enough points are kept

so as to ensure the object is still faithfully represented. The same theory is realized if 100
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points are used to represent a line. All of these points aren’t absolutely necessary, as only

the end points are needed to faithfully represent the line. Figure 3.28 below shows the re-

sulting point cloud after the decimation process. This is a lower resolution point cloud than

what was initially produced from scanning the rotor. Note how the rotor’s physical shape

is still readily identifiable, despite the 75% reduction in the number of points describing its

shape.

Figure 3.28: Transonic Rotor Point Cloud [21]

3.7.3 Tessellation.

In the field of computer generated graphics, the term tessellation “describes the

organization of information which gives the appearance of surfaces to represent realistic

three-dimensional objects” [98]. The tessellation process generates a mesh connecting each

retained data point to its three closes measurements. This process is performed within the

scanning software. Since each retained data point is connected to its three closest points, a

surface of triangles is created.

3.7.4 Final Editing.

The final editing process is required when, on occasion, extraneous data is captured,

such as a fixture holding the scan article or a piece of the table. Data can also be curiously

absent because the light was not able to reach an area or the location was highly reflective.
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Keizer [91] discussed this very issue. Final editing can be performed manually or by using

a software tool. The process of repairing a point cloud can be extremely time consuming.

To reduce the chances of capturing extra information or missing object pieces, care should

be taken during the scanning process. The light pattern should be projected directly onto

the object of interest, with minimal overlap onto the surrounding areas.

Prior to exporting the final data set, the rotor’s point cloud is brought into a common

reference frame. This process is known as registration. The registration process performs

an optimization process which attempts to minimize any deviations seen between the

scan data and a reference object. Mitra [99] says “the goal of registration is to find a

transformation that optimally positions the data with respect to the model.” The reference

object can be a nominal Computer Aided Design (CAD) model, an existing point cloud,

or the actual scanned object itself - by way of the the attached reference markers. This

process can also be performed in the MatLab environment using an iterative closest point

algorithm.

3.7.5 CAD Model Creation.

With a properly registered and tessellated point cloud mesh, the process continues by

reverse engineering the data into a CAD model. This was the process by which the rotor

model was created for use in this research. For the purposes of creating this solid model,

Kaszynski [21] utilized software focusing on solid modeling and found it to be the most

effective for model construction. To create the model, the disk for the rotor population was

assumed to be both axisymmetric and identical for all rotors. As a consequence of this

assumption, a single disk sector was modeled and then replicated around a central axis.

Thus, for each rotor, only the blades required modeling and meshing.
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Figure 3.29: Overall Process for Disk Construction

To define surfaces, curves were first produced. The curves defining airfoil surfaces were

created directly from point cloud data. The airfoil cross sections could be readily extracted

and the blade surfaces could be created by interpolating between the sets. Figure 3.30

below shows the results of extracting the blade shape from the point cloud.

Figure 3.30: Extracted Airfoil Cross Sections [21]

Blade volumes were created by interpolating between the surfaces beginning at the disk-

blade interface and extending through either the blade leading edge, trailing edge, suction

side, or pressure side. This volume is then meshed inside the modeling software.

Figure 3.31: Overall Process for Blade Construction

98



Figure 3.32 shows the results of the aforementioned processes.

Figure 3.32: Modeled Rotor [21]

In summary, developing the solid model takes several steps. The first step involves

scanning the rotor using a structured light scanner. Next, the resulting scan data are

merged into a single point cloud. The point cloud is then reduced in size, through the

process of decimation, into a smaller, more manageable size. The smaller point cloud is

now tessellated with triangles to form a surface. Next, the model is edited, to ensure all

information has been sufficiently captured in the scanning process. Finally, the solid model

is created.

3.8 Modal Assurance Criterion

Developed by Allemang [100], “the Modal Assurance Criterion (MAC) serves as a

means to measure the consistency, or degree of linearity, between two modal vectors. The

MAC is a scalar value which ranges from zero, representing no correspondence between

the two vectors, and one, which represents a consistent correspondence.” A MAC matrix

formulation can be employed in which the matrix will be close to identity when good
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correlation exists between the experimental and modeled of mode shapes.

MACq,t =
|φ

T (experiment)
q φ(model)

t |2

|φ
T (experiment)
q φ

(experiment)
q | |φT (model)

t φ(model)
t |

(3.108)

Blaschke [101] provides additional examples of using this well known method.

3.9 Coordinate Modal Assurance Criterion

Allemang [102] also discusses the Coordinate Modal Assurance Criterion (COMAC)

and how this technique attempts to identify which measurement degree of freedom

negatively contributes to a low MAC value. Recall a low MAC value indicates poor

correspondence between the two vectors under investigation. There will be a COMAC

value computed for each measurement point in the two modal vectors. The MAC illustrates

whether or not the two vectors are depicting the same mode. Once the MAC has identified

the modal pair, the following equation computes the COMAC.

COMACq =

∑L
r=1 |ψqrφqr|

2∑L
r=1 ψqrψ∗qr

∑L
r=1 ψqrψ∗qr

(3.109)

In this equation, ψqr represents the modal coefficients for mode r obtained at point q.

Similarly, φqr represents the other mode’s coefficients for mode r measured at point q.

For example, the experimental mode could be ψqr, where point q is located on the blade tip

and the rth mode is the blade’s first bending mode. The mode found in the model would

be represented as φqr. Here, point q would be same measurement output location as used

in the experiment, and mode r would be the model’s predicted first bending mode. Each

of the products are summed over the number of modes of interest, from r = 1 to L in the

desired frequency range.

3.10 Relationship Between Samples in the Time and Frequency Domains

Because the Fourier Transform is the map between the time and frequency domains

(See Appendix A), there exists a direct correspondence between sampling in each of these

domains.
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The time step, or time between samples, is simply the inverse of the signal sampling

rate. In this equation, ∆t is the time step in second
sample , and fs is the sampling rate in sample

second .

∆t =
1
fs

(3.110)

Analogous to the time between samples in the time domain, there is a similar type of

frequency spacing in the frequency domain. This is known as the frequency resolution, ∆ f .

It is inversely proportional to the total acquisition time T . This total acquisition time is

given through the following equation.

T = N∆t (3.111)

In this equation, N is the total number of samples taken and ∆t is the time step between

samples. Therefore, the frequency resolution is given by:

∆ f =
1

N∆t
(3.112)

The frequency resolution also exhibits a relationship with both the sampling rate and the

total number of samples taken.

∆ f =
fs

N
=

1
N∆t

(3.113)

The frequency resolution is also related to the number of spectral (FFT) lines, or total

number of “frequency bins” in which the measured signal can be discretized, and to

the maximum resolvable frequency. The finer the discretization of a given maximum

measurable frequency equates to a finer frequency resolution.

1
∆ f

=
No. of FFT Lines

Max Resolvable Frequency
(3.114)

3.11 Leakage

Because a continuous phenomenon is being discretely sampled, a phenomenon known

as leakage occurs. The rotor’s continuous response is observed using finite pieces of time.

Rather than the single, discrete frequency in a PSD (Reference Appendix A), there will be
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multiple frequency components observed in and around the prominent peak. It results from

an assumption, when performing an FFT, that the time domain signal is periodic and this

period is precisely contained within the length of time the signal occupies.

Windowing aids in reducing any leakage effects because the window forces a signal

to adopt a periodic nature by zeroing out the signal at its beginning and end. Fortunately,

in following the procedures in Chapter 5, Section 5.4, Subsection 5.4.0.4, the user will

define a scan time such that the response effectively decays to zero before each input is

applied. Had the response signal not decayed to zero, there would exist a discontinuity

at the moment the input signal is applied. Not only will the existing response superpose

with the new response in the time domain, but also in the frequency domain. The signal

analyzer attempts to place unique signal components onto their respective spectral line,

but this cannot happen. As such, smaller and smaller frequency components are spread to

adjacent spectral lines until all components have been distributed. This reinforces the need

to ensure a proper data acquisition time.

This phenomenon is illustrated in the following discussion. Assume there exists a 3

Hz signal, sampled at 100 Hz, and observed for 30 seconds (Figure 3.33). Because the

signal is periodic, there exists 90 distinct cycles during the observation period. Each cycle

starts and ends at the same value: zero. The corresponding FFT produces Figure 3.34.

Here, the is a clear, distinct peak at 3 Hz. The frequency components surrounding the is a

necessary evil of discretely sampling a continuous phenomenon. Now let the observation

time be changed to 17.16 seconds. Rather than an integer number of cycles, there are now

51.78 cycles during the observation time. Clearly, a non integer number of cycles is seen

in this time interval. Figure 3.35 gives the resulting FFT of this signal. Note here, there are

significant signal portions spread to the adjacent spectral lines. Because of the significant

leakage effect, the signal amplitude at 3 Hz has been reduced from unity to approximately

0.8.
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Figure 3.33: Leakage Discussion: 3 Hz Signal

Figure 3.34: FFT of 3 Hz Signal, Observed for 30 Seconds
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Figure 3.35: FFT of 3 Hz Signal, Observed for 17.16 Seconds

3.12 Validation Method

3.12.1 Degrees of Freedom Discussion.

This section will further illustrate the concept of degrees of freedom. Assume each of

the 18 blades on the rotor each have a random displacement, x. Let these displacements be

normally distributed. These displacements can be represented by a random vector. Since

the vector is completely random, each value can exist anywhere in an n-dimensional space.

Therefore, this vector has n degrees of freedom. Because the mean blade displacement is

easily obtained, X̄, this random vector of blade displacements can be decomposed into a

sum of the sample mean and residual vector.

X1

X2

...

Xn


= X̄



1

1
...

1


+



X1 − X̄

X2 − X̄
...

Xn − X̄


(3.115)
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The first vector on the right hand side of the equation can only be the quantity X̄, as such,

it has 1 degree of freedom. The second vector on the right hand side of the equation is

constrained via:
n∑

i=1

(Xi − X̄) = 0 (3.116)

The first n − 1 quantities of this vector can be any value. Once the first n − 1 quantities

are known, the constraint states that the final value is now known. As such, this vector has

n − 1 degrees of freedom.

3.12.2 Validation Method.

Here, in lieu of comparing complex vector quantities, for magnitude and phase

analysis, direct quantities, such as eigenvalues, will be correlated. At a minimum, this

process will give confidence into the finite element model’s ability to accurately predict

a rotor’s natural frequencies. Additionally, it will validate the process by which the rotor

model was created. Because a population of natural frequencies can easily be obtained

using both the the experiment and finite element model, a hypothesis test on the difference

between the two population means can be performed. Navidi [103] explains it is often

desirable “to determine whether the difference between two means might be equal to some

specified value.” This is performed via hypothesis testing on the difference of the two

population means, µx − µy.

The null hypothesis3, Ho is µx − µy = ∆o. Navidi gives the Ho distribution of X̄ − Ȳ as:

X̄ − Ȳ ∼ N
(
∆o,

σ2
X

nX
+
σ2

Y

nY

)
(3.117)

And the test statistic is given as:

z =
X̄ − Ȳ − ∆o√
σ2

X

nX
+
σ2

Y

nY

(3.118)

3The null hypothesis says any effects seen in the sample is due to random variation between the sample
and overall population.

105



Here, X̄ and Ȳ , represent the two sample means. The terms nX and nY are the number of

samples in each respective group.

Commonly, researchers utilize tables which graphically display the relationship

between the Z-Score and the P-Value. Given the Z-Score, the tables quickly provide an

indication as to how likely the data were to have occurred by chance. From References

[104] and [103], Equation 3.119 gives the relationship between the Z-Score and P-Value.

This can be used if exact tables are not available.

P(z) =

∫ z

− inf

 1
√

2π
e
−u2

2

 du (3.119)

Once the P-value is known, a decision can be made on whether or not to reject the null

hypothesis, for a specific level of confidence. Establishing a 95% confidence level, defines

the significance level, α, as 0.05. This is determined by subtracting 0.95 from 1.00. Table

3.9 gives several other confidence levels and their respective significance levels. If the

P-Value is greater than α, then the the null hypothesis is plausible (fail to reject the null

hypothesis).
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Table 3.9: Confidence and Significance Levels

Confidence Level (%) α

99 0.01

95 0.05

90 0.10

3.13 Analysis of Variance and Design of Experiments

“A Design of Experiments (DOE) is the design of any information-gathering exercises

where variation is present” [105]. This variation may or may not be under the

experimenter’s control. With the DOE, an Analysis of Variance (ANOVA) examination

is performed in order to test hypotheses and examine the differences between experimental

groups. A DOE approach is taken because it will illustrate any dependence the results have

on either the single, main experimental factors, or any interactions between the factors.

Discussed in Montgomery [106], there are several ANOVA models from which to choose.

For this research, the fixed effects models will be used.

3.13.1 Fixed Effects Model.

The development shown here is taken from Montgomery [106]. A single factor

ANOVA using the fixed effects model is shown. It can be extended to account for the three

factors used in this research. Let yi. be the sum of the observations under the ith treatment

and ȳi. represent the average of the observations using the ith treatment. Similarly, let y..

represent the grand total of all observations and ȳ be the grand average of all observations.

yi. =

n∑
j=1

yi j ȳi. =
yi.

n
i = 1, 2, ..., a (3.120)

y.. =

a∑
i=1

n∑
j=1

yi j ȳ.. =
y..
N

(3.121)
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In this model, N is the total number of observations. In the fixed effects model, the equality

of a treatments is tested. In the following equation, the expected value, E(·), of the ith

treatment and jth replication is the overall mean µ plus some additional treatment effect.

E(yi j) = µ + τi = µi, i = 1, 2, ..., a (3.122)

In the fixed effects model, the ith treatment mean, µi can be separated into two components,

where µi = µ + τi. The overall mean µ is given as:∑a
i=1 µi

a
= µ (3.123)

This implies:
a∑

i=1

τi = 0 (3.124)

Each treatment effect is a deviation from the overall mean.

With this model, the null hypothesis is that each treatment produces the same results.

The alternate hypothesis states that a given treatment level produces a different response.

Ho : µ1 = µ2 = ... = µa (3.125)

Ha : µi , µ j for at least one pair (i,j) (such that i , j) (3.126)

An alternate way to state the previously hypotheses is in terms of treatment effects.

H0 : τ1 = τ2 = ... = τa = 0 (3.127)

H1 : τi , 0 for at least one i (3.128)

The method of examining the equality of a treatments is the analysis of variance.

3.13.2 Analysis of Variance.

From Montgomery [106], “the name analysis of variance is derived from a partitioning

of total variability into its component parts.” The total corrected sum of the squares is used

as a measure of overall variability within the data.

S S T =

a∑
i=1

n∑
j=1

(yi j − ȳ..)2 (3.129)
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The total sum of squares can also be expressed as

S S T =

a∑
i=1

n∑
j=1

[
(ȳi. − ȳ..) + (yi j − ȳi.)

]2
(3.130)

Or equivalently as

S S T = n
a∑

i=1

(ȳi. − ȳ..)2 +

a∑
i=1

n∑
j=1

(yi j − ȳi.)2 + 2
a∑

i=1

n∑
j=1

(ȳi. − ȳ..)(yi j − ȳi.) (3.131)

The cross-product terms in the previous equation are zero because

n∑
j=1

(yi j − ȳi.) = yi. − nȳi. = yi. − n
yi.

n
= 0 (3.132)

Therefore

S S T = n
a∑

i=1

(ȳi. − ȳ..)2 +

a∑
i=1

n∑
j=1

(yi j − ȳi.)2 (3.133)

This equation says that the total variability within the data can be expressed as the sum

of squares of the differences between the treatment averages and the grand average plus a

sum of the squares of the differences of observations within treatments from the treatment

average. Symbolically, Equation 3.133 can be expressed as:

S S T = S S Treatments + S S E (3.134)

Where S S Treatments is the sum of the squares between treatments and S S E is the sum of the

squares due to error (within treatments). Since there are an = N total observations, S S T

has N − 1 degrees of freedom. Because there are a treatment levels, S S Treatments has a − 1

degrees of freedom. Lastly, there are n replicates within any treatment. Therefore, there

are n − 1 degrees of freedom with which to estimate experimental error. Since there are a

treatments, there are a(n − 1) = an − a = N − a degrees of freedom for error.

Examining the error sum of squares expression:

S S E =

a∑
i=1

n∑
j=1

(yi j − ȳi.)2 =

a∑
i=1

 n∑
j=1

(yi j − ȳi.)2

 (3.135)
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Dividing the term within the brackets by the number of degrees of freedom for error, n− 1,

gives the sample variance for the ith treatment.

S 2
i =

∑n
j=1(yi j − ȳi.)2

n − 1
(3.136)

A single estimate for the population variance can be determined using a sample variances.∑a
i=1

[∑n
j=1(yi j − ȳ.)2

]∑a
i=1(n − 1)

=
S S E

(N − a)
(3.137)

This is a pooled estimate of the common variance within each of the a treatments. If there

were no difference between each of the treatment means, the variation of treatment averages

from the grand average could be used to estimate the overall experimental variance, σ2.

S S Treatments

a − 1
=

n
∑a

i=1(ȳi. − ȳ..)2

a − 1
(3.138)

Two estimates of experimental variance are provided. One is based on the inherent

variability within treatments, while the other is based on the variability between treatments.

If there is no difference between treatment means, the two estimates will be similar in value.

The following equations give the mean square of the treatments and error, respectively.

These expressions are the sum of squares terms divided by their respective degrees of

freedom.

MS Treatments =
S S Treatments

a − 1
(3.139)

MS Error =
S S Error

N − a
(3.140)

Montgomery [106] also says “since the sum of degrees of freedom for treatments and error

is N − 1, a test statistic can be constructed.” This test statistic is defined as follows:

F0 =
MS Treatments

MS Error
(3.141)

A P-Value approach can be used to investigate the test statistic and make a recommendation

on which hypothesis to accept. “The P-Value is the probability the test statistic will take

110



on a value which is at least as extreme as the test statistic’s observed value, when the null-

hypothesis is true” [106]. Appendix C gives a physical description of the P-Value. “The

null hypothesis is rejected when the P-Value is less than predetermined significance level

which is often, 0.05” [107]. This indicates the observed result would be highly unlikely

under the null hypothesis. Stated alternately, the observation is not likely the result of

random chance. An FPercentage table can be used to find the bounds on the P-Value. Such

a table is found in Montgomery [106]. A small P-Value implies that the null hypothesis

cannot be correct.

Once F0 is calculated, it is compared to the FPercentage found using the appropriate table

in [106]. An F0 larger than FPercentage implies there is more variability between treatments

rather than within the treatments. The null hypothesis is then rejected and the alternate

hypothesis is not rejected. Therefore, the treatments have an effect on the outcome.

3.13.3 Three Factor Fixed Effects Model.

The model in Chapter 3, Section 3.13 is thus modified to handle the three factors;

this model is given in Equation 3.142. This will be used in Chapter 5, Section 5.9 to

handle the three factors under experimental control. Table 3.10 defines the individual

terms in Equation 3.142. Here, factor A contains a levels, factor B contains b levels,

and factor C contains c levels. If there are n replicates, there exists a total of N = abcn

observations. Table 3.12 gives the experimental definitions to the variables. The developed

here is extended from the two factor fixed effects model discussed in Montgomery [106].

yi jkl = µ + αi + β j + γk + (αβ)i j + (αγ)ik + (βγ) jk + (αβγ)i jk + εi jkl (3.142)
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Table 3.10: Definitions of Terms in 3 Factor Fixed Effects Model

µ Grand Mean

αi Factor A Main Effect

β j Factor B Main Effect

γk Factor C Main Effect

(αβ)i j Interaction of A and B

(βγ) jk Interaction of B and C

(αγ)ik Interaction of A and C

(αβγ)i jk Interaction of A, B, and C

The total sum of squares is given by:

S S T =
∑

i

∑
j

∑
k

∑
l

(yi jkl − ȳ....)2 (3.143)

The error sum of squares is given as:

S S E =
∑

i

∑
j

∑
k

∑
l

(yi jkl − ȳi jk.)2 (3.144)

Following suit, the sum of squares for each main effect are given as:

S S A = bcn
∑

i

(ȳi... − ȳ....)2 (3.145)

S S B = acn
∑

j

(ȳ. j.. − ȳ....)2 (3.146)

S S C = abn
∑

k

(ȳ..k. − ȳ....)2 (3.147)

(3.148)

112



Similarly, the sum of squares for the two-factor interactions are:

S S AB = cn
∑

i

∑
j

(ȳi j.. − ȳi... − ȳ. j.. + ȳ....)2 (3.149)

S S AC = bn
∑

i

∑
k

(ȳi.k. − ȳi... − ȳ..k. + ȳ....)2 (3.150)

S S BC = an
∑

j

∑
k

(ȳ. jk. − ȳ. j.. − ȳ..k. + ȳ....)2 (3.151)

(3.152)

The three-factor interaction sum of squares is give as:

S S ABC = n
∑

i

∑
j

∑
k

(ȳi jk. − ȳi j.. − ȳi.k. − ȳ. jk. + ȳi... + ȳ. j.. + ȳ..k. + ȳ....)2 (3.153)

And lastly, the ANOVA table is constructed:

Table 3.11: ANOVA Table: 3 Factor Fixed Effects Model

Source Sum of Squares Degrees of Freedom Mean Square

A S S A a - 1 S S A
a−1

B S S B b - 1 S S B
b−1

C S S C c - 1 S S C
c−1

AB S S AB (a - 1)(b - 1) S S AB
(a−1)(b−1)

AC S S AC (a - 1)(c - 1) S S AC
(a−1)(c−1)

BC S S BC (b - 1)(c - 1) S S BC
(b−1)(c−1)

ABC S S ABC (a - 1)(b - 1)(c - 1) S S ABC
(a−1)(b−1)(c−1)

Error S S E abc(n-1) S S E
abc(n−1)

Total S S total abcn - 1 N/A
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Table 3.12: Variables for 3 Factor Fixed Effects Model

Factor Definition Variable No. of Levels

A EO Excitation a 2

B Input Location b 3 per blade

C Output Location c 5 per blade

3.14 Sufficient Sample Size

When performing an experiment, or series of experiments, determining the sample

size from which statistical information can be drawn is of critical importance. Statistically

inaccurate information may be inferred if the sample size is too small. In this experiment,

there are 3 rotors, each with 18 blades. Examining the frequencies exciting the blades’ first

bending mode, there exists 18 separate natural frequencies for each rotor. For simplicity,

only the first bending mode family will be examined here. This results in 54 responses

which could potentially be measured in an experiment. From Montgomery [106] and

Mandell [104], Equation 3.154 gives the required sample size, and Equation 3.155 corrects

for a finite population.

Sample Sizein f inite =

(
Zscore(1 − σ)

E

)2

(3.154)

Sample Size f inite =
Sample Sizein f inite

1 +
Sample Sizein f inite − 1

population

(3.155)

Dodge [108] defines the Z-Score as the number of standard deviations an observation is

above or below the mean. A positive Z-Score represents an observation above the mean,

while a negative standard score indicates an observation below the mean. The Z-Score is a

dimensionless quantity found using the following steps:

• Subtract Population Mean from Individual Observation

• Divide this Difference by the Population Standard Deviation
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The Z-Score is typically associated with a prescribed confidence level. For a 95% level

of confidence, the Z-Score is 1.96 and for a 99% level of confidence, the Z-Score is

2.326 (Reference [109]). The term σ is the response standard deviation. As discussed

in References [108] and [109], because the response standard deviation is unknown at this

point, this value can take on the value of 0.5. This will ensure the sample size will be large

enough. Lastly, the term E is the margin of error associated with the sample and population

means. Stated another way, this value describes how much higher or lower one permits the

sample mean to fall.

Using a 95% confidence interval, a response standard deviation of 0.5, and a 5%

margin of error, Equation 3.154 produces:

Sample Sizein f inite =
Z2

score − σ(1 − σ)
E2 (3.156)

Sample Sizein f inite =
1.962 − 0.5(1 − 0.5)

0.052 (3.157)

Sample Sizein f inite = 385 (3.158)

This says, for an infinite population of responses, 385 samples are required to draw any

significant conclusions. If a confidence level of 99% is used, 542 samples are required,

assuming the same margin of error and response standard deviation. Using a confidence

level of 95%, and assuming the population of responses is finite, Equation 3.155 gives:

Sample Size f inite =
Sample Size

1 +
Sample Size − 1

population

(3.159)

Sample Size f inite =
385

1 +
385 − 1

54

(3.160)

Sample Size f inite = 48 (3.161)

Thus, since there are 54 possible response magnitudes, corresponding to each blade’s first

bending mode, 48 samples is sufficient. This says to maintain a 95% level of confidence in

the experimental results, the responses from 48 blades should be obtained.
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3.15 Cumulative Distribution Function

In the study of statistical analysis, a distribution function is one of the most

fundamental concepts. Typically a probability distribution “function f(x) gives the

probability pi = f (xi) that x is exactly xi” [110]. Oftentimes, a researcher may be interested

in the probability that some random event is less than or equal to x. If a certain probability

function is known, this implies the probability of an event is also known. Therefore the

probability of an event less than or equal to a number x is just the sum of all of the

probabilities of the event leading up to x. Taken from Boas in Reference [110], Figure

3.36 shows the probability of the sum of numbers for a toss of two dice. ”The probability

that x is say, less than or equal to 4 is the sum of the probabilities that x is 2, 3, or 4, that

is,
1

36
+

2
36

+
3
36

=
1
6

.” [110]. Following the same principle, the probability x is less than

or equal to a given number can be readily determined. This resulting function of x is called

the Cumulative Distribution Function (CDF). The CDF for the data here, in Figure 3.37,

can be interpreted as such: the probability of the sum of two thrown dice being less than or

equal to 12 is 100%. This makes intuitive sense as the maximum sum of two dice must be

less than or equal to 12, as the largest number on each die is 6.

Figure 3.36: Example Probability Function
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Figure 3.37: Example Cumulative Distribution Function

3.16 Cantilever Beam Forced Response Uncertainty Example

Because of the difficulty in both producing and quickly manipulating an analytic rotor

model, a cantilever beam model is used. Here, much like in a real experiment, material

properties remain constant. As with the traveling wave excitation experiment, the main

factors under experimental control, and hence influencing the experimental outcome, are

the input and output locations. Section 3.1.2 details the process by which the forced

response for a cantilever beam is determined. In this present section, however, the force is

a constant magnitude sinusoid applied at a point. The forcing function’ frequency sweeps

through a predetermined range.

3.16.0.1 Example Cantilever Beam Properties.

The mechanical and geometric properties of this example beam are given in Table

3.13.
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Table 3.13: Mechanical and Geometric Properties for the Example Cantilever Beam

Length (in) 25

Width (in) 0.05

Thickness (in) 0.0063

Density (
slug
in3 ) 0.0032

Elastic Modulus (psi) 10,500,000

3.16.0.2 Example Cantilever Beam Forcing Function and Modal Informa-

tion.

In this example, the force is unit magnitude applied downward at the beam’s midpoint.

The forcing frequency ranges from 0 to 200
rad
sec

(0 - 31.831 Hz). Table 3.14 gives the first

ten modes for the cantilever beam.
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Table 3.14: First Ten βnL Terms for a Cantilever Beam

Mode βnL Mode βnL

1 1.8751 6 17.2788

2 4.6941 7 20.4204

3 7.8547 8 23.5619

4 10.9956 9 26.7035

5 14.1372 10 29.8451

The values, together with the beam’s mechanical and geometric properties produces the

first ten natural frequencies using Equation 3.28.

Table 3.15: First Ten Natural Frequencies for the Example Cantilever Beam

Mode ω (rad/sec) ω (Hz) Mode ω (rad/sec) ω (Hz)

1 0.5861 0.0933 6 49.764 7.9202

2 3.6728 0.5845 7 69.505 11.062

3 10.284 1.6367 8 92.536 14.728

4 20.152 3.2074 9 118.86 18.917

5 33.313 5.3020 10 148.47 23.630

The maximum response at each forcing frequency is retrieved and then plotted against

its respective forcing frequency. This frequency response function4 is displayed in Figure

3.38.
4The detailed process by which a frequency response function is developed is shown Appendix A
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Figure 3.38: Ideal Response for the Cantilever Beam Example

3.16.1 Propagate Input Location Uncertainty.

Here, the forced response for the cantilever beam is once again calculated. Rather than

using a single, crisp input location at x = L/2, the input location is slightly perturbed. This

simulates the events taking place in an actual laboratory, as measurement locations cannot

be exact for multiple experimental runs. To aid in this example, a Monte Carlo simulation

of 300 separate forced responses is performed. For each run, the input location is perturbed

away from the ideal location. This is accomplished by way of adding a scalar value drawn

from a normal distribution on the interval -0.5 to 0.5. Physically, this implies the input is

applied anywhere from L = 12 to L = 13 inches - since the ideal input is applied at L =

12.5 inches. For each input location, a new frequency response function is developed. The

results of these 300 simulations are shown in Figure 3.39.
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Figure 3.39: Response Using Perturbed Input Locations for the Cantilever Beam Example

The red curve is the ideal frequency response, and the cloud of blue curves are the 300

separate frequency response functions - each corresponding to a separate input location.

For this example, since only the uncertain quantity is the precise input location, this

quantity is the only system variable contributing the overall response uncertainty. The effect

of this input location uncertainty serves to produce a ±3% from the ideal response at the

prominent response peak. While this may not appear to be significant in terms of a simple

cantilever beam, within the strict tolerance existing inside of a jet engine, this uncertainty

could induce a premature failure. The effect of input location uncertainty is even more

pronounced at the resonant peak around 2.2 Hz. The same level of uncertainty produces

a response variance of approximately ±13.5% from the perfect response curve. Another

significant region for response variance occurs around 5.5 Hz. Here, the uncertainty

produces response magnitudes approximately ±30% away from the ideal situation.

3.17 Cantilever Plate Forced Response Uncertainty Example

While the previous example illustrated the tremendous impact experimental and

material variability play on simple beams, this example shows the impact both input and
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output location uncertainty plays on a cantilever plate. Here, the cantilever plate is sized to

approximately match that of a single blade on the Purdue Transonic Research Compressor.

3.17.1 Cantilever Plate Example Properties and Equation.

Classical analysis methods do not permit a cantilever condition for a plate. Young

[27] states that “an exact solution of the differential equation of a vibrating plate is known

for the case of a rectangular plate which is simply supported at all four edges and also

for a rectangular plate which is simply supported along one pair of opposite edges with

any conditions at the other two edges.” Rayleigh and Timoshenko discuss the same

phenomenon in References [111] and [89], respectively. As such, approximate methods

have been used to explore plate behavior with other boundary conditions - such as one edge

clamped with the remaining edges free. Leissa [22] presents such a solution for a cantilever

plate. This solution is developed in [27] and is summarized in Appendix B Section B.5.

Figure 3.40 shows the plate’s coordinate system and geometric configuration to which the

solution makes reference.

Figure 3.40: Cantilever Plate Example [22]

Leissa [22] gives the following equation depicting a cantilever plate’s mode shapes:
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W(x, y) =

p∑
m=1

Am1 + Am2

√
3
(
1 − 2

y
a

)
+

q∑
m=3

Amn

[
cosh

εny
b

+ cos
εny
b
− αn

(
sinh

εny
b

+ sin
εny
b

)][
cosh

εmx
a
− cos

εmx
a
− αm

(
sinh

εmx
a
− sin

εmx
a

)]
(3.162)

In this expression, the terms Amn are defined as amplitude coefficients and α and ε are

defines as eigenfunction parameters. These amplitude coefficients for a cantilever plate’s

first five modes are given in Figure 3.41. The plate’s eigenfunction parameters are shown

in Figure 3.42.
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Figure 3.41: Plate Amplitude Coefficients [22]

Figure 3.42: Eigenfunction Parameters [22]

For this example, the plate’s material and geometric properties (Figure 3.16) mirror those

found on the Purdue Transonic Research Compressor.
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Table 3.16: Mechanical and Geometric Properties: Cantilever Plate Example

Length (a) 0.0508 (m)

Width (b) 0.0508 (m)

Thickness (h) 0.00127 (m)

Elastic Modulus (E) 205 (GPa)

Poisson’s Ratio (ν) 0.29

Mass per Area (ρ) 9.9695 (kg/m2)

Flexural Rigidity (D) 38.2064 (N-m)

Here, the thickness measurement is the experimental rotor’s average blade thickness.

While the actual blade tapers towards its edges and exhibits a slight twist, this plate model

is only applicable for a constant cross section, flat plate. The equation defining flexural

rigidity is given in Equation 3.163.

D =
Eh3

12(1 − ν2)
(3.163)

The plate’s first five natural frequencies are obtained using the constants shown in the top

portion of Figure 3.41. Here, each constant is equated to the plate’s frequency equation.

ωa2

√
ρ

D
= constant (3.164)

For convenience, Table 3.17 gives these constant terms.

Table 3.17: Cantilever Plate Natural Frequency Constants

Mode Constant

1 3.494

2 8.547

3 21.44

4 27.46

5 31.17
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As such, Table 3.18 provides the natural frequencies used in this example.

Table 3.18: Cantilever Plate Natural Frequencies

Mode Frequency (
rad
sec

) Frequency (Hz)

1 2,650.5 421.76

2 6,483.6 1,031.9

3 16,264 2,588.5

4 20,830.7 3,315.31

5 23,645.1 3763.23

3.17.2 Forcing Function Information and Locations.

Since only modal information is known for the first five modes, the forcing function

information must be appropriately defined so as to excite these modes. Therefore, the

forcing function frequency vector is defined as ranging from 2,000 to 24,000 rad/sec.

Different locations are defined because the purpose of this example is to analytically

explore the effect of input-output variation. Table 3.19 provides the different locations

in terms of Cartesian Coordinates. (Reference Figure 3.40 for the plate’s axis system)

Table 3.19: Cantilever Plate Input Output Locations

Run No. Input Location (x,y) [m] Output Location (x,y) [m]

1 (0.0508, 0.0508) (0.0508, 0)

2 (0.04826, 0.04826) (0.04826, 0.00254)

3 (0.04572, 0.04572) (0.04572, 0.00508)

4 (0.04826, 0.04572) (0.04572, 0)

5 (0.04826, 0.04572) (0.04826, 0.00508)

6 (0.04953, 0.04953) (0.04953, 0.00127)

7 (0.0508, 0) (0.0508, 0)
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Notice the pattern of these locations. The first run applies input and output at corners along

the plate’s free edge. For runs 2 and 3, the locations are both moving towards the plate’s

center by the same length increment. Runs 4, 5, and 6 move the locations around arbitrarily.

Lastly, run 7 co-locates the input and output.

3.17.3 Cantilever Plate Forced Response.

The solution for the forced response problem is assumed to be a summation of the

product of the plate’s normal modes and generalized coordinates (modal participation

factors). The sum here only uses five terms because there are only five normal modes

used in this analysis procedure. This process is shown for completeness.

W(x, y, t) =

5∑
i=1

Wnm(x, y)ηi(t) (3.165)

The first step in the cantilever plate forced response analysis is to calculate the generalized

force for a given mode.

Nnm(t) =

∫ a

0

∫ b

0

[
Wnm(x, y) f (x, y, t)

]
dxdy (3.166)

Since the sinusoidal input force is assumed to be applied at a point, the generalized force is

zero everywhere except at the point of load application.

f (x, y, t) = Fo(xo, yo)sin(Ωt)δ(x − xo)δ(y − yo) (3.167)

The generalized force for mode nm assumes the form:

Nnm(t) = FoWnmsin(Ωt) (3.168)

The next step involves calculating the generalized coordinate, or modal participation factor,

for each mode. Assuming the plate begins at rest - with no initial displacement or velocity,

the generalized coordinate for the ith mode is given as:

ηi(t) =
1
ωi

∫ t

0
[Ni(τ)sin(ω(t − τ))]dτ (3.169)
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The forced response is finally determined by the relationship in Equation 3.165. Using

the seven different input-output locations the frequency response function shown in Figure

3.43.

Figure 3.43: Cantilever Plate Example Frequency Response Functions

The legend indication of “Ideal I/O Location” corresponds to the location of Run 1 shown

in Table 3.19. Examining the data points shown in this figure clearly indicate the effects of

input-output location changes. Shown at the second mode, the response at the coincident

input-output location is more than 4x larger than what is considered the “ideal” location.

This is caused by the by the amplitude coefficients and eigenfunction parameters Young

developed in [27].

At the remaining 4 modes, the coincident and “ideal” locations exhibit very similar

responses. Exploring the forced responses associated with the 1st, 2nd, and 3rd positions

show a relative constant ratio of maximum responses for each of the five modes. This is
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because these three different locations were incrementally changed by a constant amount

(0.00254 m). Figure 3.44 summarizes the peak responses for the cantilever plate’s five

modes.

Figure 3.44: Cantilever Plate Example Maximum Responses

Input-Output locations 4, 5, and 6 used arbitrary locations on the blade planform. The

responses for these locations fell within the envelope established using the locations for

runs 1, 2, and 3. In general for this example, Input-Output Locations 1 and 3 can be

thought of as maximum and minimum bounds, respectively, for the cantilever plate’s forced

response. To create a non-dimensional tolerance bound for the input-output locations, each

value is normalized by the respective horizontal and vertical blade dimensions. Therefore,

if the input and output locations are kept within the established percentages for plate’s

horizontal and vertical dimensions, the plate’s forced response will be captured. Here, the
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input location should be placed greater than or equal to 90% of both the blade’s horizontal

and vertical dimensions. The output location is restricted to lying within a region bounded

by greater than or equal to 90% of the horizontal dimension and less than or equal to 10%

of the vertical dimension. Figure 3.45 gives a graphical depiction of these tolerances.

Table 3.20: Cantilever Plate Example Normalized Input/Output Location Tolerances

Location 1

Input Output

x y x y

Dimension (m) 0.0508 0.0508 0.0508 0.0000

Normalized Dim. 1 1 1 0.0000

Location 2

Input Output

x y x y

Dimension (m) 0.04826 0.04826 0.04826 0.00254

Normalized Dim. 0.95 0.95 0.95 0.05

Location 3

Input Output

x y x y

Dimension (m) 0.04572 0.04572 0.04572 0.00508

Normalized Dim. 0.9 0.9 0.9 0.1
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Figure 3.45: Cantilever Plate Example Tolerances
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IV. Experimental Equipment

4.1 Purdue Transonic Research Compressor

The rotor used in this study is the Purdue Transonic Research Compressor. The rotor

was “designed by Prof. S. Fleeter at Purdue University in cooperation from Pratt & Whitney

Aircraft to reflect the aerodynamic and structural properties of a modern compressor” [51].

The research compressor is constructed of 17PH5 stainless steel.

Table 4.1: Mechanical Properties for 17-PH Stainless Steel [28]

Property Value

Elastic Modulus (GPa) 196

Density (kg/m3) 7750

0.2% Offset Yield Strength (MPa) 760

Ultimate Tensile Strength (MPa) 1030

This compressor is representative of the front stages of advanced aircraft engine high-

pressure compressor designs. The rotor itself has 18 blades, and a tip diameter of 12 inches.

The rotor blades consist of Controlled Diffusion Airfoil (CDA) profiles having a 1.8 in. to

2.0 in. chord from hub-to-tip and a thickness distribution varying from 11.6% at the root

to 7.8% at the tip [2]. This rotor is shown in Figure 4.1. The white powder coating is used

to facilitate the blue-light scanning process, which is the initial step used in developing the

finite element model.
5Precipitation Hardening
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Figure 4.1: Purdue Transonic Research Compressor

Figure 4.2 shows a typical location for both the compressors and stators.

Figure 4.2: Jet Engine Schematic [23]

4.2 ATOS 3-D Scanner

In this research, the ATOS Scanner will be used to construct three dimensional models

of the Purdue Transonic Research Compressors. The process by which the model is created

was outlined in Chapter 3, Section 3.7. The optical scanning system employs a structured

light approach with a stereoscopic camera configuration. On the scanning device, a central

blue LED illuminates the part with a pattern of lines. These lines are photographed by two
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8 megapixel cameras on either side of the central LED source. Their projected shapes on

the part are used to triangulate surface coordinates. Figure 4.3 shows one particular light

pattern. The object in the figure is a 1-2-36 calibration block. The pattern is depicted as

alternating blue and black stripes, known as a sinusoidal fringe pattern.

Figure 4.3: Projected Light Patterns from ATOS Scanner

“Accuracy of these systems has been shown to be accurate to within 0.0001 inch” [21].

The scanner is used in lieu of the more traditional contact based Coordinate Measurement

Machine (CMM) because of the complexity associated with the rotor’s geometry. The

CMM certainly provides a concise set of data points from which a solid model can be

created, but the process is extremely time consuming and is more suited for quality control

purposes than for developing a solid model from a complex object. Another advantage of

the optical scanner lies in its ability to capture large measurements of surface data rather

than singular point data at a time. Figure 4.4 shows the scanner used in this research. In

this figure, this two cameras are seen. They are each housed within a red colored fairing.

6Named as such for its 1 inch thickness, 2 inches width, and 3 inches length
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Figure 4.4: ATOS Blue LED Structured Light Scanner [24]

Different camera lenses can be used on the scanner to alter the size of each scan image. As

such, smaller scan images will be used for smaller parts, and larger scan images will be

used as the object size increases.

The rotor is placed atop a Computer Numerical Controlled (CNC) rotating table. The

scanning software is linked to the table and controls its rotation. This allows multiple

images to be automatically captured circumferentially at a given scanning head height

and angle. “After circling the part with images, the scanner head can then be manually

adjusted to a new height and angle in order to capture all interblade surface passages” [21].

Figure 4.5 below illustrates a portion of the scanning process. The rotor is resting on the

CNC table. The scanner is elevated on the right, and the blue LED light is seen illuminating

the fan. The monitor on the left shows several blades’ worth of data collected in a single

scan.
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Figure 4.5: Portion of the Scanning Process [21]

4.3 Scanning Laser Vibrometer

A PolyTec PSV-400 scanning laser vibrometer will be used to measure the rotor’s

transverse velocities under traveling wave excitation. As discussed in Chapter 3, Section

3.6, the laser vibrometer is used because measurements can be made without contacting the

rotor. Therefore, the measurement system will not induce further anomalies into the rotor.

The unit is mounted in a vertical position above a vibrations isolation table so its laser is

shining downward onto the tested rotor. Figure 4.6 shows this configuration.
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Figure 4.6: Scanning Laser Vibrometer Position

4.4 Traveling Wave Excitation Equipment

This section describes the traveling wave excitation equipment used in this research.

As a rotor spins during operation, flow disturbances set up periodic forcing on each blade.

Recall from Chapter 3, Section 3.4, this excitation is known as EO excitation. This concept

was also discussed in Section 2.1.1.

In the case of a tuned rotor, the EO excitation causes all blades to vibrate with equal

amplitude. In contrast, when the rotor is mistuned, “the EO excitation usually causes

response localization and amplifications above the tuned response” [17]. Some blades

will experience displacements and vibration amplitudes greater than others. As discussed
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Chapter 3, Section 3.4, when testing a rotor’s response to some external forcing, the rotor

can either be rotated around a disturbance field or have the disturbance field rotated around

the rotor. “Rotating a BLISK at realistic speeds requires complex and expensive test

fixtures, therefore it is desired to produce engine order excitation in a stationary bladed disk

where standard laboratory vibration measurement devices can be used” [17]. Producing the

required EO excitation on a stationary disk is called traveling wave excitation.

The traveling wave system employed in this research effort is flexible enough to

test bladed disks of varying sizes and blade numbers. The excitation source can be

either magnetic and acoustic. For this research, magnetic excitation was chosen because

of its ability to faithfully reproduce engine order excitation. There are several chief

advantages realized when using the TWE equipment. “First, a traveling wave excitation

system provides harmonically pure sinusoidal excitation. Next, the design is flexible; the

equipment can be easily configured to test a variety of different bladed disks. And finally,

the TWE used in this research is equipped with a phase shifting circuit which allows for

smooth and accurate EO excitation” [17].

The system consists of a mounting fixture to hold the bladed disk and its associated

array of magnetic actuators. For the current research, the actuators are held in place using

a nylon ring produced from a 3-D printer by way of a CAD generated stereo-lithography

file. The ring fixture is shown in Figure 4.7 and Figure 4.8.
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Figure 4.7: Magnetic Actuator Ring Beneath Rotor
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Figure 4.8: Rotor Mounted on Pedestal Above Actuator Ring

Each magnetic actuator is positioned below each blade, close, but not so close as to

contact the blade. Traveling wave testing experience has shown that a 0.020 inch initial

standoff distance is practical for most applications. Chapter 3, Section 3.4 illustrated the

standoff distance and its effect on excitation force strength. This distance is driven by

the frequencies and forcing function magnitudes most often used during traveling wave

excitation. The calibration process, discussed in Chapter 3, Section 3.5, illustrates how

the forcing magnitude can be adjusted to account for standoff distance errors between

actuators or adjusted if the forcing is not of the correct magnitude to induce the desired
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mode shape in the rotor. Figure 4.9 shows the actuator orientation within the excitation

ring. This orientation is set so as to ensure the actuator is as close to perpendicular to the

blade surface as possible. By orienting the actuator normal to the surface, each blade’s

forcing function input is maximized. Further, this design is attempting to control the exact

location where the input is applied. If the actuator is not normal to the blade, the input

area is less controlled and the input force is applied over a larger, less defined area. And

because the input force is in the form of an electromagnetic field, the input would not

be uniform over the target area. Another consequence of this would be the great difficulty

arising in attempting to model the traveling wave process using the finite element technique.

The input force would be spread out, and its magnitude would be non-uniform over the

application area. Forcing the actuator normal to the blade surface effectively minimizes

these effects. As indicated in the figure, this angle is fixed at 69◦.

Figure 4.9: Actuator Angle Within the Excitation Ring

An overall schematic is shown next in Figure 4.10.
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Figure 4.10: Traveling Wave Overview Schematic [25]

4.4.0.1 Traveling Wave Excitation Signal Path - From Input Voltage to FRF

Generation.

This section provides a signal flow path for the TWE equipment. In doing so, it will

clarify the system’s overall operation. There are two main parts to the TWE setup: the

signal generation component and the signal recording and processing component. The

signal generation component is based in LabView. The signal recording and processing

component is a PolyTec Commercial off the Shelf (COTS) item.

Signal Generation Component. Prior to signal generation, the operator inputs the

number of blades, desired EO excitation, and frequency range. These inputs initialize the

system by instructing the software on the number of amplifiers needed (8 blades can be

excited by a single amplifier), and appropriate phase shifting between each actuator. A
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National Instruments PXIe-1065 chassis houses 13 individual PXI-6713 12-bit high speed

analog output cards. All phase shifting and amplitude modulation is performed within these

cards using the waveform stored in their internal buffers.

The output cards have a maximum output rate of 740,000 points/second. Within the

TWE software, this rate was decreased to 700,000 points/second so as not to intrude on

the hardware’s physical limits. In its current design iteration, the TWE software uses a

minimum of 10 points and a maximum of 2000 points to define each output cycle. This

output cycle is the sinusoidal waveform, at the prescribed frequency, sent to the magnetic

actuator. Given the maximum card output rate and the minimum and maximum points per

cycle, is follows that the maximum frequency output is 70kHz and the minimum is 370Hz.

Based on the user defined frequency range, the software selects the appropriate integer

value for the number of output points used to describe each cycle.

The TWE software employs this technique of using “points” to represent a continuous

signal in a discrete manner. This method is known as the “single cycle algorithm”. The

algorithm uses a single cycle of a sinusoid to depict the signal. This one cycle of data is

stored in the memory, and the number of points used to represent the waveform is consistent

throughout the waveform. The first step in signal generation involves discretizing one

complete sinusoidal cycle into N segments. This produces N + 1 points. The amplitude of

each point is stored in memory. Here, a sinusoid is discretized using 11 points, making 10

segments.
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Figure 4.11: One Sinusoidal Cycle With 10 Points [25]

Since the first and last amplitude values are the same, only the first N points are used. In

Figure 4.11, note how the points at 0% and 100% of the cycle are equal. Because this cycle

is continually repeated to generate the waveform, “storing the last point of the sinusoid

(shown in red) would cause leakage in the signal, which would drastically affect the results

in the frequency domain and cause varying excitation to the component under test” [25].

These points are then output when triggered by an external timing signal. This permits

a variable update rate which ultimately creates the user defined frequency sweep. As the

timing signal increases in frequency, so does the point output. This is what generates the

frequency sweep signal output.

A National Instruments PCI-5402 function generator card, located within the signal

generation computer, generates this timing signal in the form of a square wave. The
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square wave is a function of both the initial and final sweep frequencies and the number of

points used to discretize the initial cycle. The following equations describe this frequency

behavior. Here, f1 and f2 are the initial and final desired sweep frequencies, respectively.

f1square = f1N

f2square = f2N
(4.1)

For example, the desired frequency sweep has an initial and final frequency of 1 and 11Hz,

respectively, is shown in Figure 4.12. Here only the first three cycles are displayed.

Figure 4.12: Linear Chirp: 1Hz - 11Hz Sweep (First 3 Cycles) [25]

From Chapter 3, Section 3.1, the equation defining a frequency sweep is given as: (Ts is

signal sweep ending time)

Y(t) = sin
(
2π

[
1
2

{
f2 − f1

Ts

}
t + f1

]
t + φ

)
(4.2)
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This produces the signal shown in Figure 4.13.

Figure 4.13: Example of Multiplied Waveform: 1Hz - 11Hz Sweep [25]

The square wave timing signal is generated from this waveform in Figure 4.13. When the

waveform is positive, the square wave is also positive. This relationship also holds for a

negative waveform value; the square wave is negative or zero. Figure 4.14 illustrates this

concept.
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Figure 4.14: Superimposed Square Wave onto Multiplied Waveform [25]

This waveform is sent to the PXI-6713 analog output cards where it is used to trigger the

cards. The square wave, of varying frequency, ultimately serves as an indication to begin

the signal output. The PolyTec system sends its own timing signal to the function generator

to begin the frequency sweep.

The user specifies the initial and final frequencies of interest for the traveling wave

excitation. The square wave timing signal then sweeps from the initial frequency to the

final frequency. Proceeding along the square wave, when a rising edge in the wave is

detected, the output waveform voltage amplitude is updated from the single cycle stored in

the memory. Recall the discretized single cycle shown in Figure 4.11. In other words, a

single point from this stored sinusoid is used. The voltage remains the same until another

rising edge is detected, where the next point is used. This signal is sent to its respective

amplifier by way of an externally mounted National Instruments TB-2705 terminal block
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module. Because the timing signal is a square wave, the output waveform is stepped. For

the same 1-11Hz frequency, this stepped output is shown in Figure 4.15. With each rise

in the square wave, the analog output cards change output voltage to that value defined

corresponding to the next point stored in memory. Since the square wave timing signal’s

frequency increases through time, the output cards fire their internal signals faster and

faster. This simulates the frequency sweep for the TWE experiment.

Figure 4.15: Stepped Output Waveform [25]

Each point corresponds to a point lying on the initially discretized sinusoidal wave shown

in Figure 4.11. Note how there are 10 points defining each cycle. Figure 4.16 shows the

step function type of output with the corresponding ideal frequency sweep.
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Figure 4.16: Ideal Frequency Sweep with Stepped Output [25]

It is intuitive how with more points discretizing the stored sinusoid, its discrete

representation would more closely resemble the continuous waveform. All waveforms are

shown together in Figure 4.17.
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Figure 4.17: All Waveforms for 1-11 Hz Frequency Sweep: 10 points [25]

Figure 4.18 shows the TB-2705 terminal block module modules and amplifier cable

connections. Each output module is connected to a single amplifier. Amplifiers are required

to increase signal power to drive the magnetic actuators.
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Figure 4.18: NI TB-2705 Modules’ Output Connection to Amplifiers

Depending on the desired forcing function, the amplifiers can increase this amplitude

approximately 6 times but not exceed 30V into the actuators. This limit is driven by the

magnetic actuator’s physical capacity. A voltage over this limit will overheat the magnetic

actuators. The amplified signal, now at the proper amplitude and at the initially prescribed

phase is sent to the magnetic actuators.

A reference signal is also captured. This signal is simply split away from the first

analog output card. It is this signal, to which, calibrations and the signal from the laser

vibrometer channel are compared. This reference channel is a 2V peak to peak. There is no

additional amplification or phase shifting applied to this reference channel. The reference

signal displays the same frequency sweep as the output sent to the magnetic actuators.

Signal Recording and Processing Component. The signal recording component is a

COTS system. PolyTec manufactures both the scanning laser vibrometer and its associated

software. The PolyTec system allows for flexible scan point assignments of virtually any

location on the object’s surface. The software also provides the pertinent data required for

a vibrations test. As the laser vibrometer scans the object, various pieces of information

can be viewed in real-time. The PolyTec software controls the entire measurement system,
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which “includes the high-speed Fast Fourier Transform (FFT) processor, analog-to-digital

converters, laser focus and position, vibrometer electronics, and a live video system” [97].

The reference signal sweeps from the initial to the final frequency in the user-defined

time interval. The laser vibrometer velocity is the velocity of the point currently being

measured. Finally the displayed FRF, gives a real time indication of the structure’s resonant

frequency content. Figure 4.19 shows a typical layout for several information windows

within the PolyTec software.

Figure 4.19: Typical Signal Window Arrangement for PolyTec Software

The upper left quadrant shows a real time view of the laser position with the scan points

superimposed onto the rotor imaged. The upper right quadrant is the laser vibrometer

measured point velocity in the time domain. This can also be changed to display the

recorded displacement or to the actual voltage within the system. The lower left quadrant

is the real time FRF for the current scan point. In this figure, the ordinate is displayed in

velocity/volt (ratio of measured velocity to reference voltage). Flexibility is afforded within

the software to display the desired information in virtually any format. Lastly, the lower

right quadrant shows the reference signal voltage.
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The PolyTec software also has its own internal function generator. This feature is

used strictly for timing. The PolyTec software sends its timing signal to the external signal

generation component discussed in the previous section. In doing so, the PolyTec system

lets the signal generation component know when it is ready to begin scanning, and thus

when to begin providing the input signal to the magnetic actuators. When the signal is

sent to the magnets, the magnetic actuators excite the rotor at the blade tips. The laser

vibrometer measures this movement as a change in voltage. This change in voltage is

digitized and processed as the vibrometer signal. Since the input and output signals are

known, the corresponding FRF can be calculated. When the actuators excite the rotor, the

laser vibrometer begins to record the response. Chapter 3, Section 3.6 discusses the theory

behind the laser vibrometer’s operation. The vibrometer’s signal is sent to the PolyTec

software computer and processed into a real-time display for analysis (Reference Figure

4.19).

153



V. Experimental Work and Related Discussion

Prior to performing a traveling wave test on a particular rotor, some idea of its

operational environment should be known. This information is typically garnered from

the specific rotor’s Campbell diagram. For example, the researcher should be aware of

the pertinent frequency range and with that, which modes will be excited. Additionally,

the rotor’s EO excitation should be known. During operation, a rotor is subjected to

specific harmonic inputs induced by EO excitation. The traveling wave test should

effectively reproduce this loading. Granted, the loading magnitude won’t be representative

of the operational environment, but the frequency content will be present. Prescribing the

frequency sweep information and excitation pattern (dictated by EO) tailors the traveling

wave experiment to the specific rotor under investigation.

5.1 Experimental Methodology

5.1.1 Initial Experimental Data Acquisition Details.

In order to ensure all information collected is consistent from blade to blade and rotor

to rotor, the PolyTec software was set up to maintain a constant frequency resolution, and

thus sample rate, for all scans. A maximum resolvable frequency of 40kHz was used

throughout all testing. Within the PolyTec software, this is known as the bandwidth.

Physically, this sets a maximum frequency which could be recorded. This frequency

was chosen because it was much larger than any frequency used in the experiments.

Additionally, 409,600 FFT lines (Chapter 3, Section, 3.10) were used in each test. The

combination of this maximum frequency and number of FFT lines dictated the response

acquisition time, frequency resolution, and sampling frequency. Reference Chapter 3,

Section 3.10.
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Existing lab practices and prior experience indicate when performing a frequency

sweep, the end frequency should not exceed twice the starting frequency. Since the rotor is

stationary in the experiment, 0EO through 9EO (N/2) will produce all the necessary phase

angles between blade inputs. The time to sweep through each of the input frequency bands

is a constant 5 seconds. This input time is kept shorter than the response acquisition time

to ensure the laser vibrometer captures both transient and steady state rotor responses. The

following table details these initial acquisition parameters.

Table 5.1: Data Acquisition Details

Frequency Bandwidth (kHz) 40

Total FFT Lines 409,600

Sampling Frequency (kHz) 102.4

Frequency Resolution (mHz) 97.656

Response Acquisition Time (sec) 10.24

Input Signal Sweep Time (sec) 5

5.1.2 Single Scan Point Justification.

In the traveling wave experiment, a single measurement, or scan point, is employed

per blade. The scan point location is chosen for several reasons. First, there will always

be a portion of the blade in view of the scanning laser vibrometer oriented above the table.

Figure 5.1 illustrates the typical blade portions in view of the laser vibrometer. For the

Purdue Transonic Research Compressor, there is no overlap between adjacent blade. In

other types of rotors, there is significant overlap between adjacent blades. Figure 5.2

shows the blade overlap dimension, indicated with the capital letter A. As the dimension

A becomes smaller, and eventually negative, the blade positions are closer and eventually

overlap. The overlapped region would therefore be invisible to the overhead scanning laser

vibrometer. Additionally, the point opposite the input location was theoretically shown to

exhibit the largest displacement magnitude. Reference Table 5.21 for an illustration of this
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phenomenon. Lastly, the modes of interest to engineers researching rotor dynamics do not

exhibit nodes or nodal diameters near the measurement locations. This could not be said if

the measurement location was placed near the blade root or blade center.

Figure 5.1: Example Blade Output Locations

Figure 5.2: Blade Overlap Dimensions
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5.2 Effect of Calibration Process

The theory behind the calibration process was discussed in Chapter 3, Section 3.5.

Here, the practical effects of calibrating the electromagnetic actuators will be shown.

Recall calibrating is an iterative process which adjusts the voltage, and hence strength,

or each actuator such that the input at one blade will induce the same response at at

each blade - at the calibration frequency. As each actuator is activated, the response at

each blade is recorded. Figure 5.3 illustrates the average response convergence seen with

three consecutive calibration iterations. Blade numbers are given along the abscissa. The

curves depict the average rotor response when a blade’s actuator is energized. Here, the

most significant change occurs between the first and second calibration iterations. The

differences in response curves between the second and third calibrations illustrate how

a blade’s input signal has converged. Between the first and second iterations, there is,

on average a 56% difference in the average response curves. Between the second and

third iterations, the average percent difference has decreased to 10%. This is within the

acceptable tolerance level to indicate satisfactory convergence. A fourth calibration, used

to verify the convergence, was performed. Those results were almost identical to those seen

in the third calibration iteration. There was less than a 0.01% change in response between

the third and fourth calibrations trials.

An alternate way to envision the calibration data is to examine a given blade’s response

when its actuator is energized. Since the experimental research rotor has 18 blades, a given

calibration iteration produces an 18 x 18 matrix of response. Each column represents the

response at that blade. For example, column 1 represents the rotor response when blade 1

is excited, column 2 is the response when when blade 2 is excited, and so on. Therefore,

the diagonal terms provide the response at blade N when blade N is excited.
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Figure 5.3: Calibration Convergence Response Curves

Figure 5.4: Calibration: Blade N Response to Blade N Excitation

5.3 Initial Experimental Results

The initial experimental results shown in this section will reveal the degree of

mistuning present in the Purdue Transonic Research Compressor. Recall from Chapter

2, Section 2.1.2, a tuned rotor will exhibit blades with identical natural frequencies. In

other words, for a given mode, a tuned system will exhibit a single natural frequency, as

all blades behave in an identical manner. These experimental results will also be used to
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validate a finite element model developed by way of structured light. The process by which

the validation is performed is outlined in Chapter 3, Section 3.12.2.

5.3.1 Effect of Experimental Uncertainty.

Repositioning the rotor forces the need to re-center the rotor on its pedestal, re-

measure each blade to actuator standoff distance, re-measure each blade tip to actuator

radial distance, and each blade trailing edge to actuator distance. These actuator

positions are absolutely critical if the need arises to maintain a consistent forced response

measurement for multiple rotors. Even with careful positioning and measurements, these

distances will likely differ each time the rotor is lifted off of its pedestal and placed down

again. Because the rotor is a continuous system, there exists a unique FRF for each input-

output combination.

Figures 5.5 and 5.7 illustrate the drastic difference in forced response one rotor can

experience by merely lifting the rotor from its pedestal, re-positioning it, and placing it

back down again. The first figure shows the magnitude FRF for five separate runs, at EO 0,

sweeping from 1kHz - 2kHz. This was not entirely unexpected, as removing and replacing

the rotor onto the test setup completely changed the experimental configuration. Here, there

was no degree of precision embedded within the setup procedures.
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Figure 5.5: Position 1 Magnitude FRFs: 1kHz - 2kHz (0EO)

In this frequency band, there are 18 separate natural frequencies. Each of these

frequencies correspond to each blade’s first bending mode. Figure 5.6 depicts a normalized

response plot at each natural frequency for all five runs. The response magnitude at each

natural frequency was normalized by the overall average response for that respective run.

This gives an indication as to the level of mistuning present in each blade, as compared to

the overall average response.
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Figure 5.6: Position 1 Normalized Responses: 1kHz - 2kHz (0EO)

The rotor was then lifted off its pedestal, turned 90o clockwise. This introduces

experimental variability in the form of varying the rotor’s position. Because the rotor’s

position was altered, the measurement points and input locations were redefined. Five more

runs, sweeping from 1kHz - 2kHz. Figure 5.7 shows each of the five FRFs superimposed

onto one another.
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Figure 5.7: Position 2 Magnitude FRFs: 1kHz - 2kHz (0EO)

In this instance, while the natural frequencies line up consistently with those seen

in Figure 5.5, variance realized between individual runs is evident. Rather than all

five FRFs lying perfectly on top of one another, each individual FRF is clearly seen.

The experimental variability is even more apparent when the responses at each natural

frequency are normalized by the average response of that respective run, as shown in Figure

5.8.
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Figure 5.8: Position 2 Normalized Responses: 1kHz - 2kHz (0EO)

Finally, in superimposing each position’s average magnitude FRF, the effect of this

variability is immediately evident.
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Figure 5.9: Positions 1 and 2 Magnitude FRFs: 1kHz - 2kHz (0EO)

Figures 5.10 5.11 depict a closer view of the resonant peaks for each position’s

magnitude FRF. Here, the abscissa scale has been reduced to closely fit the range of

frequencies.
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Figure 5.10: Alternate View, Positions 1 and 2 Magnitude FRFs: 1kHz - 2kHz (0EO)
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Figure 5.11: Positions 1 and 2 Response Magnitudes at the 18 Resonant Frequencies: 1kHz

- 2kHz (0EO)

Here, the magnitude FRF obtained for the rotor’s first position is significantly greater

than that determined from the second position. The following section details a procedure

to mitigate the effects of rotor re-positioning, defining input locations, and defining output

locations.

5.4 A Method to Produce Consistent Experimental Results

The data acquisition parameters here supersede those shown in Section 5.1.1. The

process detailed in this current section came about after examining the experimental results

in Section 5.3.1. The procedure detailed here is used for all remaining traveling wave

tests, and is taken from Cox’ work in Reference [112]. The following list shows the items

required for consideration in developing a method to ensure consistent experimental results.
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1. Rotor Position

(a) Identify Center of Actuator Ring

(b) Align Ring Center with Laser Vibrometer Home Position

(c) Identify Center of Rotor

(d) Position Rotor at Actuator Ring Center

2. Rotor 2D Alignment

3. Focus Laser Vibrometer Beam

4. Define Rotor Measurement Locations

5. Define an Appropriate Scan Time

5.4.0.1 Centering the Rotor and Input Locations.

Rotor input and response output locations are examined as the experimenter has the

most control of these two variables. To that end, the experimental setup is of prime

importance. The initial setup steps involve precise rotor positioning and establishing the

input locations. After powering up the laser vibrometer, the actuator/excitation ring (Figure

4.7) is positioned beneath the unit such that the laser’s home position is approximately at

the ring’s center. The home position is the default beam location and reference point for

all beam location coordinates. In a sense, it becomes the rotor’s global coordinate system

origin.

To identify the ring’s center, Thales’ Theorem is employed. The theorem states:

“the diameter of a circle always subtends a right angle to any point on the circle” [113].

Invoking this theorem, the actuator ring’s center is identified by marking its diameter in

two places around the ring. This was performed using two alignment lasers and a T-square.

The intersection of these diameters identifies the center (Figure 5.12). This location is

established so as to coincide with the laser vibrometer’s home position.
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Figure 5.12: Actuator Ring Center

The rotor is next centered within the actuator ring. The same alignment lasers are used

to ensure the rotor is centered on the vibrometer’s home position and within the ring center.

To aid in this process, Thales’ Theorem is once again employed. The rotor’s central hub is

marked with several diameter indications (Figure 5.13 and Figure 5.14). Additionally, these

reference marks lie coincident with the lower corners on each blade. This was performed

in order to both center the rotor and align the blades with the input locations. This process

consistently places each actuator 0.150±0.02 inch from each blade’s radial and trailing

edges, as measured using laboratory feeler gauges. Each actuator is then threaded up

through the ring, stopping at 0.02 inch from each blade (Figure 5.15).

5.4.0.2 Rotor 2D Alignment and Beam Focus.

When performing the TWE experiment, it is imperative to give the laser vibrometer

software sufficiently accurate information regarding the plane in which to measure
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information. This is performed by way of a 2D alignment. The user instructs, or

“teaches”, the system the two dimensional plane where the velocity returns will be

measured. For optimum consistency, locations returning maximum signal returns should

be chosen. Shown in Figure 5.16, these 2D alignment points are chosen on the actual blade

measurement locations. Intuitively, the more locations chosen for the alignment process

results in a greater degree of accuracy when measuring the response. During this process,

it is also crucial to re-focus the laser vibrometer’s beam. The beam is focused on a point

which lies on the reflective tape. This ensures an optimal signal return. These pieces of

reflective tape are placed in areas where the scan points will ultimately lie.

5.4.0.3 Scan Point Identification.

Peng [57] emphasizes how in any experimental modal testing, the measurement

locations have a major influence on the result quality. The TWE experiment is no exception.

Within the experimental setup, individual blade input locations are positioned with respect

to their own blade. Each output location, on the other hand, is established by way of

transforming local blade locations back to a global rotor location. This relationship between

local and global coordinates is established because blade locations change with respect to

their position around the rotor hub. Relating the unique blade measurement positions to a

fixed global coordinate system establishes a consistent relationship between the scan points.

In general, the global coordinate system can be visualized as a three dimensional

orthogonal set of Cartesian axes whose origin lies at the rotor center. This is depicted

in Figure 5.17. Here, the measurement plane is depicted as the oval. This plane was

established by way of the 2D alignment process described in Section 5.4.0.2. The angle

φ is displayed in the PolyTec software desktop window as the beam position, measured

in degrees from the horizontal and vertical axes which emanates from the laser’s home

position / origin. The angle β is the angular position around the rotor. Ideally each

measurement location is at the same local location on each blade. For a given rotor, there
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exists n blades equally dividing a single 2π radian revolution. For a single measurement

point per blade, the angle, β, between each measurement location is defined as:

β =
2π
n

(5.1)

The three dimensional coordinate system is projected onto the the two-dimensional x-y

measurement plane. Both the three and two dimensional coordinate systems share the

same origin at the rotor center. Further, the origin and the Z-axis lie coincident with the

laser vibrometer’s home position.
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Figure 5.13: Close Up View of Rotor Hub Diameter Reference Marks

Figure 5.14: Centered Rotor
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Figure 5.15: View of Actuator Below Blade

Figure 5.16: Sample 2D Alignment Points
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Figure 5.17: Rotor Global Coordinates Schematic

The global rotor and local blade coordinate systems are seen when viewing the rotor

from above, as shown in Figure 5.18. From this view, the global rotor information is

mapped to each blade. Since the laser position is given in terms of degrees from both the

horizontal and vertical axes, the use of a Polar to Cartesian Coordinate map is appropriate.

Locally, there exists an axis tangent to the rotor hub and an axis parallel to the blade’s

leading edge. The origin for each local coordinate system is at the intersection of the hub

to blade interface and blade leading edge.

By allowing one axis of the coordinate system to lie on the blade’s edge, any variation

in blade width is not a concern. A local measurement location is thus given in terms of an

ordered pair: (r, β). Each system is shown in Figure 5.18. The global coordinates are shown

with their origin at the rotor center, and the local coordinates are shown superimposed onto

each blade. In general, the global scan point location, (x, y), on the (c − 1)th blade is given
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as:

x = r cos
[
(c − 1)β

]
, y = r sin

[
(c − 1)β

]
(5.2)

Here, x and y are the global coordinates on the blade of interest. The blade counter is

(c−1). For example, the first blade’s counter would be 0 and the eighteenth blade’s counter

would be 17. The radial component of the local scan point location is given as r. Because

there are 18 blades on this research rotor, the angle, β, between each scan point is (2π/18).

For this research, each scan point was placed at the same location on each blade. The

PolyTec software provides real-time laser vibrometer beam location information through

an desktop display. This readout is given in terms of beam location, in horizontal and

vertical degrees, from beam home position. For this experimental configuration, 1 inch of

beam displacement translates to 1.099 degrees. This is a direct function of the scanning

head height from the rotor. This measurement should be checked prior to testing a new

rotor or if the laser vibrometer’s position is altered.

Table 5.2 gives the global locations for each scan point. The columns x degree and

y degree shown in Table 5.2 are the global angular scan point positions which appear in

the software window. Figure 5.19 shows the rotor variables superimposed onto a rotor. For

clarity, only a single scan point for a single blade is shown.
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Table 5.2: Example Global Scan Point Coordinates

Blade Blade Local Local Global Global x y

No. Ctr. r (in) β (rad) x (in) y (in) deg. deg.

1 0 6 0.000 6.000 0.000 6.594 0.000

2 1 6 0.349 5.638 2.052 6.196 2.255

3 2 6 0.698 4.596 3.857 5.051 4.239

4 3 6 1.047 3.000 5.196 3.297 5.711

5 4 6 1.396 1.042 5.909 1.145 6.494

6 5 6 1.745 -1.042 5.909 -1.145 6.494

7 6 6 2.094 -3.000 5.196 -3.297 5.711

8 7 6 2.443 -4.596 3.857 -5.051 4.239

9 8 6 2.793 -5.638 2.052 -6.196 2.255

10 9 6 3.142 -6.000 0.000 -6.594 0.000

11 10 6 3.491 -5.638 -2.052 -6.196 -2.255

12 11 6 3.840 -4.596 -3.857 -5.051 -4.239

13 12 6 4.189 -3.000 -5.196 -3.297 -5.711

14 13 6 4.538 -1.042 -5.909 -1.145 -6.494

15 14 6 4.887 1.042 -5.909 1.145 -6.494

16 15 6 5.236 3.000 -5.196 3.297 -5.711

17 16 6 5.585 4.596 -3.857 5.051 -4.239

18 17 6 5.934 5.638 -2.052 6.196 -2.255
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Figure 5.18: Rotor Coordinate System Used for Placing Scan Points
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Figure 5.19: Rotor Scan Point Variables
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5.4.0.4 Appropriate Scan Time Identification.

During excitation, all blades are excited simultaneously. However, only output from a

single blade is measured at any one time. For example: the rotor is excited, and the response

at blade 1 is measured; the rotor is excited, and the response at blade 2 is measured.

Because of its own physical limitations, the laser vibrometer can only measure a single

point at a time. This is because the unit only produces a single laser beam for its velocity

measurements.

The PolyTec software generates the overall rotor FRF by taking the average of the

individual blade FRFs. Since input signals are applied successively in the TWE experiment,

it is important to make certain any response from the (i−1)th input has sufficiently decayed

before applying the ith input. Rationale for this stems from the additive nature of the a

response with an input. If the rotor response from the (i − 1)th input is present when the

ith input is applied, the response for this input will superpose onto what remains from the

previous input. This will lead to erroneous and inconsistent forced response results. To

alleviate this potential source of error, a system time constant and an associated settling

time are defined. Torvik [114] defines a system time constant as:

τ =
2
ηωn

(5.3)

In this equation, η is the system’s loss factor and ωn is the natural frequency. Torvik gives

the loss factor as:

η =
1
Q

(5.4)

Meirovitch [61] defines quality as:

Q =
1
2ζ

(5.5)

Therefore, the time constant can be expressed in terms of the damping ratio, ζ, and natural

frequency, ωn.

τ =
1
ζωn

(5.6)
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The time constant is the time required for a system’s transient response to decay from some

initial value to a steady state value. Rao [60] says the time for a system to settle to 2% of

its original value is given as 4 time constants. This will later be used to develop a total time

in between successive inputs.

As the rotor is a continuous system, there exists an infinite number of natural

frequencies. However, for the frequency band examined in this research (1kHz - 2kHz),

and at 0EO7, each blade’s first bending mode is excited. While not truly representative of

EO excitation inside a real engine, this EO level is chosen as an initial, simple experimental

parameter because all blade input signals are in phase with one another. Excitation at 0EO

implies no up or downstream disturbances in the airflow exciting the rotor - which is not

entirely realistic for a real engine.

Within the aforementioned band, there are 18 distinct natural frequencies to examine

(Figure 5.20). Here, each frequency corresponds to a different blade’s first bending mode.

Since each blade contributes to the overall rotor’s forced response, it follows that defining

the appropriate scan time is ultimately a function of the natural frequency exhibiting the

least damping. Since the TWE equipment utilizes a frequency sweep for rotor excitation,

Torvik [114] recommends using several different sweep rates to investigate whether or not

the sweep rates adversely affect the damping estimates. He explains how too high of a

sweep rate can lead to erroneously high values of damping. Having an accurate damping

estimate is important because the settling time is a function of damping. A high estimate

can lead to low settling times which would exacerbate the problem of superposing the ith

input with the response from the (i − 1)th input. Before moving forward, the sweep rate’s

effect on the damping estimate was explored. Tests using two different sweep rates were

performed. The first test swept from 1kHz - 2kHz in 5 seconds and the second test swept the

same frequency range in 1 second. Using the half-power method, as detailed in Meirovitch

7The 0EO dictates there is no phase shift between input signals. That is to say, the input signal peak
reaches each blade at the same time.
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Figure 5.20: Example Rotor Frequency Response Function

[61], the damping for each natural frequency can be readily estimated. Damping ratio

estimates for these two different sweep rates are shown in Table 5.3. Here, the effect of

different sweep rates on damping estimates is apparent. Given the variance in damping

estimates, it behooves the experimenter to compare the resulting settling times for each

sweep rate. Table 5.4 compares the settling times for each sweep rate.

The appropriate total data acquisition time is defined in such a way so as to ensure

the response from the frequency exhibiting the largest settling time is exceeded. Using

the 5 second sweep time, Table 5.4 indicates that 1262.02 Hz exhibits the largest settling

time. This time is 14.802 seconds. For a sweep rate of 1 second, the settling time is 11.368

seconds at the 1332.98 Hz natural frequency. This frequency will be used to determine the

appropriate time constant, settling time, and ultimately the total acquisition time. As the

sweep rate is 1 second, the settling time for the rotor, at the conclusion of the input signal, is

maximized. This frequency and its associated damping ratio corresponds to a time constant
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of 2.8421 seconds. This time constant is calculated using Equation 5.6.

τ =
1
ζωn

=
1

(4.201 × 10−5)(1332.98 cycle
sec )(2π) rad

cycle

= 2.8421 sec (5.7)

Using the 2% criterion from Rao [60], 4 time constants gives:

4T = 4(2.8421 sec) = 11.368 sec (5.8)

Therefore, when using the 1 second input frequency sweep, the total acquisition time must

be greater than or equal to 12.368 seconds. Since the input time is 1 second, the remaining

11.368 seconds will allow the rotor response to sufficiently decay.

5.4.0.5 New Experimental Data Acquisition Parameters.

Table 5.5 gives the data acquisition parameters used for the refined TWE process. In

the experimental frequency range, the highest natural frequency is approximately 1,443

Hz. Therefore, the bandwidth was adjusted to the next higher increment, as permitted

in the PolyTec software package. The number of Fast Fourier Transform (FFT) lines,

frequency resolution, and total acquisition time are all directly related. Cox [112] provides

an overview of their relationships. Each of these terms were adjusted to ensure a sufficient

data acquisition time which allows the rotor’s forced response to sufficiently decay as the

2% criteria dictates. Further, the parameters themselves have only limited values within

the software’s internal constraints. From Section 5.4.0.4, Table 5.4, the 2% criterion says

the total acquisition time should be approximately 11.37 seconds. Given existing software

constraints, the ideal total data acquisition time will be 16.38 seconds. During this time,

the input is applied for 1 second, leaving 15.38 seconds for the response to decay before

the next input.

5.4.1 Experimental Results and Discussion.

This section illustrates experimental results obtained using both the existing and newly

developed TWE experimental methods. In each case, the rotor is tested in one orientation
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on its pedestal. Next the rotor is removed from its pedestal, re-positioned, and tested again.

For each rotor orientation, multiple test replicates are performed. Comparisons are made

between results using both experimental techniques. It is shown how using a higher degree

of experimental precision, repeatable, consistent forced response results are produced.

5.4.2 Initial Experimental Results.

Baseline results were obtained using existing laboratory practices. These practices

did not include any rigorous methods to position the rotor nor were there any guidelines

for data acquisition parameters. These baseline settings were shown in Table 5.1. Here,

the bandwidth is 40kHz. Existing practices suggested setting the bandwidth to a maximum

frequency much greater than what would be measured in the TWE experiment. Using these

settings, a sufficient acquisition time is not permitted. This is driven primarily by software

limitations. These settings indicate the input signal is applied for 5 seconds; the sweep

from 1kHz-2kHz takes 5 seconds. Since the laser vibrometer is continuously measuring

the rotor response, this total acquisition time only allows for a 5.24 second response decay

time before the next input is applied. Based on the discussion in Section 5.4.0.4, this is

insufficient.

In addition to performing a traveling wave experiment with the rotor in a single

orientation, the rotor was removed from its support, rotated, and replaced back onto

its pedestal. This was done to introduce experimental uncertainty. Not only was the

rotor boundary condition completely altered, but the entire experimental setup must be

reestablished. This includes rotor positioning, laser vibrometer alignment, and input and

output location definitions. Since the same rotor is being tested again, it follows that the

forced response should be the same. Figure 5.21 shows the average FRFs for both rotor

orientations. From this graph, the impact of the experimental disturbances and uncertainty

is clearly evident. The bottom graph shows the FRF for the altered rotor position, while

top graph is the original position’s FRF. Figure 5.22 provides a clearer indication of the
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disturbances’ impact on the rotor’s forced response. Here, the result for each experimental

run is also shown. Figure 5.21 illustrates the difference in forced response amplitude

between the two rotor orientations. The first orientation is approximately twice that which

is seen in the second orientation. This is readily observed by examining the ordinate range

in each FRF.

Figure 5.21: FRFs for the Initial and Re-Positioned Rotor

Using a technique shown in Reference [115], a cumulative distribution function (CDF)

can be used to express a degree of comparison between two sets of results. This method

is known as an area validation metric. Here, the system response quantity of interest is the

rotor forced response magnitude. The CDF gives the probability of having a response

magnitude less than x. This concept is covered in more detail in Chapter 3, Section

3.15. In this method, there is no relationship established between a natural frequency

and its corresponding magnitude. Rather, the relationship is made between an assumed

distribution of the individual response magnitudes. The area between the two curves can be

thought of as the error between the two quantities. For the two CDFs shown in Figure 5.23,
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Figure 5.22: Natural Frequency Response Magnitude Stem Plots for the Initial and Re-

Positioned Rotor

the average difference between the two curves is approximately 29%. This was determined

by fitting a third order polynomial to each data set and then taking the definite, analytic

integral of these polynomials’ difference. The bounds on the integral are taken as the

response approximate response interval, 0 to 1.5. Here, this polynomial approximation is

only valid for the given data region.

d(S 1, S 2) =

∫ x

0
|S 1 − S 2|dx (5.9)

The polynomial representing the initial data is given as:

S 1(x) = 0.3056x3 − 1.3392x2 + 2.0083x − 0.0553 (5.10)

The polynomial fit to the second set of data, representing the re-positioned rotor, is given

as:

S 2(x) = 1.8947x3 − 4.6629x2 + 3.8451x − 0.0817 (5.11)
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Figure 5.23: CDF vs Response Magnitude for the Initial and Second Rotor Positions

A more traditional method of comparison involves directly comparing response

magnitudes at each natural frequency for each respective rotor orientation. Here, the

average percent difference (Equation 5.12) between the natural frequency responses is 83%.

Examining Figure 5.22 illustrates the large variance associated with these results. For each

rotor orientation, 5 test replicates were performed. Within the replicates for the initial

rotor orientation, there exists an average response variance across the frequency spectrum

of 2.6×10−14 (m/V). After the rotor was replaced, the average response variance was

1.3×10−13 (m/V). This is a 5× increase in response variance. While still an extremely small

number, this is a significant difference observed simply by adjusting the experimental setup.

This variance in forced response would be especially critical if a population of seemingly

identical rotors were tested. A wide range of peak responses would not necessarily be

indicative of the rotors’ true behavior.

% Di f f . =

(
high resp. − low resp.

low resp.

)
× 100 (5.12)
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5.4.3 Refined Experimental Results.

By capitalizing on the techniques outlined in Section 5.4, additional TWE experiments

were performed. Analogous to the procedure discussed in Section 5.4.2, the rotor was

tested in one orientation, removed from its pedestal, replaced, and tested again. As

before, this introduced a tremendous amount of experimental uncertainty into the scenario.

Figures 5.24 and 5.25 show the magnitude FRFs for both rotor configurations using the

new experimental setup techniques and data acquisition parameters. These figures have

superimposed the FRFs for multiple replicates. There is little difference shown between

runs. Peak responses at each natural frequency are also shown in Figures 5.26 and 5.27.

One reason for the relatively constant response magnitudes is a direct consequence of

allowing the response from the (n − 1)th to decay before applying the nth input.

Figures 5.26 and 5.27 provide the individual response magnitudes at each natural

frequency. The average difference between the peak responses at each natural frequency

is 8.47%. Improving the experimental setup methodology and using a sufficient data

acquisition time, an approximate 880% improvement is realized compared to the initial

results from Section 5.4.2. The average variance across the experimental frequency

spectrum for this first rotor orientation’s test replicates (Figure 5.26) is 2.03×10−14(m/V).

The experimental results for the rotor in the second position showed a forced response

variation between its test replicates of 2.63×10−14(m/V). Compared to the results obtained

in Section 5.4.2, these response variances are nearly constant - thus indicating little

difference in experimental results. This demonstrates using carefully defined experimental

procedures gives repeatable results.

Figure 5.28 shows the CDF vs. Average Response Magnitude for the two rotor

orientations. Here, the difference between each curve is approximately 2.2%. Compared to

Figure 5.23, the new CDF vs. Response Magnitude curves show very little difference.

Results for Figure 5.28 were found using the same technique for Figure 5.23: a third
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order polynomial was analytically integrated across the approximate response interval.

The polynomial approximations are, again, only valid for the data range. The equations

representing the CDFs for the first and second rotor positions, respectively, are given as:

S 1(x) = 0.0000005x3 − 0.0002x2 + 0.0236x − 0.0522 (5.13)

S 2(x) = 0.0000005x3 − 0.0002x2 + 0.0241x − 0.0707 (5.14)

5.4.4 Section Conclusion.

In this section, experimental results for traveling wave excitation were shown. First,

results were obtained using general laboratory practices, which did not dictate any

methodology for experimental setup or data acquisition. The initial results were produced

from testing a rotor in two different orientations within the experiment. Between these

two sets of experimental replicates, the average difference in response magnitude was

83%. For the initial rotor orientation, the average response variance between test replicates

was 2.6×10−14 (m/V). Results from the rotor’s second orientation showed a 5× increase in

response variance. The existing experimental methodology gives little confidence into the

process of experimentally evaluating a population of rotors.

New experimental procedures were developed which focused on rotor alignment

and setup, consistent scan point identification, and data acquisition time. Using these

procedures, consistent results were obtained for a rotor’s forced response. These new

procedures demonstrated an approximate 880% improvement in test replicate consistency,

over the course of multiple rotor orientations. The average difference between response

magnitude was 8.47%. The response variance between test replicates for the first rotor

orientation was 2.03×10−14 (m/V) and 2.63×10−14 (m/V) for the second orientation. The

significant reduction in response difference between each orientation’s the test replicates

and near constant response variance demonstrates the effectiveness of the new experimental

methodology.
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5.5 Summary of Experimental Technique

The purpose of this section is to summarize the previous section for the proper

experimental technique when performing traveling wave excitation. This summary will

reference the previous section, as necessary, for the proper techniques. Appendix F

provides an additional list of equipment necessary to configure the experiment.

Experimental Setup. For the proper experimental setup techniques, reference

Section 5.4. This will ensure both the input locations and measurement locations are placed

in their optimal locations.

Frequency Range of Interest. In performing the traveling wave test, the researcher

does not merely place the rotor into the test fixture and begin sweeping through frequencies.

Rather, prior to the test, the modes of interest and their corresponding natural frequencies

must be known. Since the rotors undergoing testing are not merely random pieces of metal,

their modal information is typically known beforehand. This information usually comes

from the manufacturer. Such information may include specific EO excitation levels and

critical modes and respective frequencies of interest. Once this information is known, these

will become input parameters for the experiment.

To avoid signal corruption due to windowing8, the range of input frequencies is larger

than the range of frequencies containing the modes of interest. When mapping information

from the time to the frequency domains, there is an assumption of signal periodicity. A

window function operates on the signal, typically forcing it to zero at the beginning and

end of its duration. It ensures a periodic signal for mapping into the frequency domain.

However, if there is important signal information at the extreme ends, the window function

would zero out this information. Together with a larger excitation range, the range of

frequencies on which the system performs its measurements is also kept larger than the

frequency range of interest. This also ensures any negative effects of windowing is avoided.

8Windowing is also discussed in Paragraph 5.5
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For example, with the Purdue Transonic Research Compressor, the first bending mode in

the blades is between 1200 Hz and 1430 Hz. The frequency range of interest is indicated in

Figure 5.29. The extreme ends of the data acquisition range is kept away from this range.

Total Acquisition Time. Once the experiment is set up and the desired frequency

range is known, the next step is to define the total acquisition time. This is the amount of

time the system will actually record information before beginning the next input sequence.

This is a function of the system damping in the frequency range of interest. Note, the total

acquisition time includes the input sweep time as well. The system begins to record the

rotor response as soon as the input it applied. The input time should be no smaller than 1

second for each 1kHz of input frequency.

Discussed in Section 5.4, an initial traveling wave test is required for this step. Because

the exact acquisition time is not known at this point, the researcher is encouraged to use as

many FFT lines as possible, as the system will increase or decrease the total acquisition

time accordingly, depending on the number of lines selected. Performing this initial,

exaggerated increased time test performs several critical functions:

1. This initial, exceedingly long scan ensures the response from the (n-1)th input has

sufficiently decayed before the nth input is applied.

2. It identifies the highest natural frequency for the mode family of interest

3. It allows for a damping estimate which is used to define the system time constant

Section 5.4, Subsection 5.4.0.4 shows the half power method used as the method by which

the damping is estimated. From this estimate, a time constant is defined. Rao [60] says

the time for a system to settle to 2% of its original value is given as 4 time constants. The

researcher will use the worst case, or largest, time constant, to define the time satisfying

the 2% criterion.
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In the PolyTec user interface, the number of FFT lines is then adjusted until the total

acquisition time meets or exceeds the time prescribed using the 2% criterion. This ensures

there is no overlap between the response from the (n-1)th input and nth input. Furthermore,

the maximum resolvable frequency (denoted as bandwidth in the PolyTec system) should

be reduced to ensure only the frequencies of interest are captured. From Figure 5.29, the

highest natural frequency is this mode is readily identified. If the maximum resolvable

frequency is set just beyond that of the highest natural frequency of interest, the user is

afforded more flexibility in manipulating the data acquisition parameters. This is illustrated

in Figure 5.30. In particular, this affects the frequency resolution, which is discussed next.

Frequency Resolution. Recall from Chapter 3, Section 3.10, the relationship

between frequency resolution, sampling frequency, total acquisition time, and the FFT

block size.

Given the maximum resolvable frequency, the PolyTec system automatically selects

the sample rate, fs. The system defines the sample rate as approximately 2.5 times the

maximum resolvable frequency. This alleviates any aliasing effects realized when sampling

a signal. Because the maximum resolvable frequency has now been reduced to just above

the highest frequency of interest, the number of FFT lines can be increased to improve

the frequency resolution. Graphically, this places the FFT, or spectral, lines closer together.

Physically, this means smaller frequency components can be captured to recreate the signal.

Comparing Figures 5.29 and 5.30, note the difference in the start and stop (max resolvable)

frequencies. Assume, for instance, the researcher uses 6400 FFT lines. In Figure 5.29,

this equates to a frequency resolution of 0.15625 Hz. The 1000 Hz spread of frequencies

is divided into 6400 frequency “bins”. In contrast, reducing the frequency window to 300

Hz, as shown in Figure 5.30, gives a frequency resolution of 0.046875 Hz. While the

desired frequency range is still captured in each case, reducing the range of frequencies

can significantly improve frequency resolution.
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5.6 Mistuning Amplification Factor

In Section 5.4, a process was developed which provides consistent, stable experimental

responses. Even with inconsistent forced response magnitudes, as shown in Figure 5.21,

the rotor’s natural frequencies still coincide. Since the rotor response magnitudes produced

within the TWE experiment are much much lower than what would be realized during

operation, performing component life expectancy calculations on the raw TWE data is not

trivial. However, the consistent data does provide an important piece of information which

is as unique to the individual rotor as its own mistuning pattern9. With the consistent TWE

forced responses, a rotor’s Mistuning Amplification Factor (MAF) can be defined. This

factor is defined as the maximum blade response divided by the average blade response for

a given mode (Equation 5.15). A single rotor was used for this illustration. Assuming a

blade’s MAF remains constant for a given mode, a maximum mistuned response can be

estimated if the external forcing function is known.

MAF =
max blade response

average blade response
(5.15)

Recall Figure 5.21. Here, The same traveling wave experiment produces very different

response magnitudes, despite indicating the same natural frequencies. Table 5.6 gives the

MAF for the experimental rotor upon exciting the blades’ first bending mode. Examining

this table shows striking differences and inconsistencies in the resulting MAF.

9pattern of natural frequencies for the frequency range of interest
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Table 5.3: Damping Ratio Estimates for Two Different Sweep Rates

Frequency 5 Second Sweep Time 1 Second Sweep Time Percent

(Hz) Damping Estimate Damping Estimate Difference

1204.91 0.00014692 0.00014773 0.553

1207.51 0.00013170 0.00013996 6.273

1262.02 0.00003408 0.00005626 65.085

1273.32 0.00004241 0.00006754 59.243

1283.6 0.00006155 0.00006856 11.380

1296.94 0.00006709 0.00006168 8.764

1304.07 0.00007362 0.00005751 28.016

1308.23 0.00005348 0.00005351 0.052

1315.46 0.00005930 0.00005929 0.013

1315.98 0.00008512 0.00006079 40.023

1321.01 0.00005981 0.00005905 1.299

1327.46 0.00006705 0.00008512 26.963

1332.98 0.00005027 0.00004201 19.663

1341.36 0.00012004 0.00014388 19.860

1356.7 0.00009288 0.00010393 11.890

1374.21 0.00006987 0.00007932 13.522

1417.66 0.00011076 0.00009593 15.456

1442.95 0.00009288 0.00009702 4.460
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Table 5.4: Sweep Rate Settling Time Comparison

Frequency 5 Second Sweep 1 Second Sweep Percent

(Hz) 2% Crit. Settling Time 2% Crit. Settling Time Diff.

1204.91 3.596 3.577 0.553

1207.51 4.003 3.767 6.273

1262.02 14.802 8.966 65.085

1273.32 11.788 7.403 59.243

1283.6 8.058 7.234 11.380

1296.94 7.317 7.958 8.764

1304.07 6.631 8.488 28.016

1308.23 9.099 9.095 0.052

1315.46 8.161 8.162 0.013

1315.98 5.683 7.958 40.023

1321.01 8.057 8.162 1.299

1327.46 7.153 5.634 26.963

1332.98 9.500 11.368 19.663

1341.36 3.954 3.299 19.860

1356.7 5.052 4.515 11.890

1374.21 6.630 5.841 13.522

1417.66 4.054 4.681 15.456

1442.95 4.750 4.547 4.460
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Table 5.5: Modified Acquisition Parameters

Bandwidth (kHz) 1.5625

Total FFT Lines 25,600

Sampling Frequency (kHz) 4

Frequency Resolution (mHz) 61.351

Total Acquisition Time (sec) 16.38

Total Input Time (sec) 1

Figure 5.24: First Rotor Position Magnitude FRF Using the New Techniques

Figure 5.25: Second Rotor Position Magnitude FRF Using the New Techniques
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Figure 5.26: First Rotor Position Natural Frequency Responses Using the New Techniques

Figure 5.27: Second Rotor Position Natural Frequency Responses Using the New

Techniques

195



Figure 5.28: CDF vs Response Magnitude for the Initial and Second Rotor Positions Using

the New Techniques

Figure 5.29: Indicating the Frequency Range of Interest
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Figure 5.30: Indicating the Frequency Range of Interest
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Table 5.6: Mistuning Amplification Factor After Initial Experimental Techniques

Orientation 1

Run Max Response Avg. Response MAF

(×10−6(m/V) (×10−8(m/V)

1 16.07 7.289 220.5

2 16.01 7.298 219.4

3 16.18 7.289 222.0

4 15.98 7.297 219.0

Orientation 2

1 10.93 8.048 135.8

2 10.89 8.047 135.3

3 10.80 8.051 134.1

4 10.66 8.045 132.5

After performing the improved experimental procedures discussed in the previous

section, the rotor’s response magnitudes are nearly identical (Figures 5.24 and 5.25. This

produces a near constant rotor MAF for the blades’ mode 1 behavior. Table 5.7 shows MAF

for the rotor is approximately 135. For the blades’ first bending mode, the rotor’s inherent

mistuning will amplify the rotor response 135 times over what the average rotor response.

Comparing Tables 5.6 and 5.7 reinforces the need to ensure rotor forced responses are

consistent. Inconsistent responses, and hence inconsistent MAFs, can ultimately lead to

erroneous response estimates for increased magnitude forcing functions.
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Table 5.7: Mistuning Amplification Factor After Refined Experimental Techniques

Orientation 1

Run Max Response Avg. Response MAF

(×10−6(m/V) (×10−8(m/V)

1 8.076 5.967 135.3

2 8.107 5.958 136.1

3 8.186 5.958 136.1

4 7.925 5.955 137.5

Orientation 2

1 7.893 6.130 128.8

2 8.380 6.125 136.8

3 8.450 6.130 137.8

4 8.216 6.133 134.0
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5.7 The Experimental Free Boundary Condition

The boundary condition verification in this section will be performed through a direct

eigenvalue comparison between the experimental and numerical results. Close agreement

between these two quantities indicates the finite element model can be used to predict the

modal behavior of a geometrically mistuned rotor. Here, the eigenvalues are the measured

natural frequencies.

Applying an input frequency sweep of 1kHz - 2kHz, at 0EO, induces the rotor’s first

bending mode. The experiment was simulated using the finite element analysis program,

ANSYS. The rotor model was developed using the techniques discussed in Chapter 3,

Section 3.7. This same frequency range also induced the first bending mode for the system

of blades.

Table 5.8 directly compares the ANSYS and experimental eigenvalues. The

eigenvalues populating the ANSYS column in Table 5.8 were pulled directly from the

ANSYS generated FRF. A percent difference is also provides as a means to directly

compare the numerical values. From Table 5.8, on average the two sets of eigenvalues are

0.37% different. Similar results are shown for the remaining EO excitation levels. Table

5.9 shows the comparisons for some additional EO excitation levels. Table 5.10 compares

eigenvalues for higher order frequencies inducing torsional and chordwise bending modes.

Because the differences in the eigenvalues are so small, it can be assumed the experimental

setup does indeed provide a free boundary condition.
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Table 5.8: 1kHz-2kHz, 0EO ANSYS and TWE Eigenvalue Comparison

Eigenvalue (Hz) Eigenvalue (Hz) Percent

(ANSYS) (TWE) Difference

1211 1204 0.58

1217 1207 0.83

1260 1261 0.08

1276 1273 0.24

1284 1283 0.08

1296 1296 0.00

1307 1303 0.31

1320 1307 0.99

1322 1315 0.53

1326 1315.15 0.83

1328 1320 0.61

1330 1327 0.23

1333 1332 0.08

1334 1341 0.52

1354 1356 0.15

1371 1374 0.22

1416 1417 0.07

1438 1442 0.28
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Table 5.9: 1kHz-2kHz, Additional EO Level ANSYS and TWE Eigenvalue Comparison

EO Percent Difference

1 0.26

2 0.22

3 0.15

4 0.27

5 0.23

6 0.38
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Table 5.10: 7.5kHz-8.5kHz, Additional 0EO Level ANSYS and TWE Eigenvalue

Comparison

TWE Freq. (Hz) ANSYS Freq. (Hz) % Diff. TWE Freq. (Hz) ANSYS Freq. (Hz) % Diff.

7547.66 7717 2.24 8055.27 8154 1.23

7620.12 7782 2.12 8073.32 8165 1.14

7667.87 7818 1.96 8092.29 8182 1.11

7698.34 7828 1.68 8098.12 8218 1.48

7728.03 7892 2.12 8110.92 8224 1.39

7751.86 7913 2.08 8140.43 8252 1.37

7793.95 7938 1.85 8169.34 8266 1.18

7810.45 7957 1.88 8176.76 8275 1.20

7843.75 7985 1.80 8213.89 8286 0.88

7864.94 7992 1.62 8240.1 8295 0.67

7873.34 8039 2.10 8261.04 8318 0.69

7931.74 8061 1.63 8288.09 8333 0.54

7958.11 8068 1.38 8307.62 8359 0.62

7973.24 8084 1.39 8391.04 8399 0.09

7984.18 8092 1.35 8425.96 8429 0.04

7995.31 8107 1.40 8447.56 8442 0.07

8001.95 8114 1.40 8456.64 8462 0.06

8017.48 8136 1.48 8488.1 8482 0.07
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5.8 Using the Finite Element Model

5.8.1 The ANSYS Input File.

Because multiple finite element simulations would be performed and evaluated, a

general MatLab based code was developed to automate the process of generating the

ANSYS input files. An example MatLab script is given in Appendix E. Interfacing with

ANSYS via the input file permitted minimal involvement from the user. The rotor model

was simply opened and the program was directed where to read the input information. The

input file prescribes the following elastic properties: Poisson’s ratio, density, and elastic

modulus.

Poisson’s ratio, by definition, is unitless. Since the model was developed using English

units, in this system, the density is defined within ANSYS as slinch
in3 . Here, a slinch is defined

as a unit of mass equal to 12 slugs, or 1 lb f sec2

in . The elastic modulus, or Young’s modulus,

is given in units of lb f

in2 . The system damping ratio (ζ) is also defined. In the current file

iteration, both the damping ratio and elastic modulus are constant over the entire model.

The damping ratio used in this research was the value estimated from the experimental

results. The damping ratio was estimated using the half-power method, as discussed in

Reference [61].

The file sets the maximum number of mode shapes the finite element solver shall

retain. In this research, this was set to 108. This allows for 6 different modes to be

captured for each blade. On this same note, the file defines the frequency range and desired

frequency resolution for the harmonic analysis. The file also instructs ANSYS at which

nodes the input force is applied and nodes for the output. For simulating the actual traveling

wave experiment, the true input and output locations can be defined. Manipulating the

MatLab file (shown in Appendix E is summarized in the following steps:

1. Define the input and output nodes corresponding to the respective locations on the

physical rotor
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2. Define the frequency range of interest

3. Define the desired EO excitation level

4. Define the damping ratio for the frequency of interest

5.8.2 Finite Element Model Exploration and Validation.

As a tuned rotor only exists within the theoretical confines of a finite element model,

its FRF offers up a useful comparison to its theoretical mistuned counterpart. Since the

model here only accounts for geometric mistuning, the material properties were constant

throughout the models during each analysis.

For the 1kHz - 2kHz frequency range depicted in Figure 5.31, the first bending mode

for the blades is approximately 1320 Hz. This FRF was generated in ANSYS by performing

a harmonic analysis on a tuned rotor. This model was built from replicating a nominal rotor

sector around a central axis. The damping ratio used in the model was estimated from the

experimental results of the same frequency band. For an interesting comparison, the tuned

Figure 5.31: Tuned FRF for the Purdue Transonic Research Compressor
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Purdue rotor FRF is superimposed onto the ANSYS generated FRF for the actual rotor

(Figure 5.32). This frequency range excites the blades’ first bending mode.

Figure 5.32: Comparison Between the Tuned and Mistuned ANSYS FRFs

Only a single finite element model was developed in the course of this research.

Therefore, only experimental results from that specific rotor are utilized here to validate

the model. The response quantities compared here are the system eigenvalues. Tables 5.8

and 5.10 provides the values used herein. While the relative percent difference between

the two sets of eigenvalues are extremely close, this process here will provide statistical

validity. The technique shown in Chapter 3, Section 3.12, Subsection 3.12.2 will be used.

For both the model and experiment, there are 54 data points, so this comparative technique

is valid. Recall the test statistic given in Equation 3.118.

z =
X̄ − Ȳ − ∆o√
σ2

X

nX
+
σ2

Y

nY

(5.16)
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Here, let X represent data from the ANSYS finite element model and Y from the

experiment.

Table 5.11: ANSYS and Experimental Eigenvalue Statistics

ANSYS (X) Experiment (Y)

Count 48 48

Mean 5866.4 5799.5

Std. Dev. 3250.9 3207.4

The null hypothesis here is that the two groups of samples come from populations

whose mean is the same. Using a confidence level of 99%, the significance level, α, is

0.01. The most extreme case exists when forcing the difference between the two samples

to be 0. As such, using Equation 3.118 says the test statistic is approximately 0.108. It’s

corresponding P-Value is found using published tables or Equation 3.119.

z =
X̄ − Ȳ − ∆o√
σ2

X

nX
+
σ2

Y

nY

(5.17)

z =
5866.4 − 5799.5 − 0√

3250.92

54
+

3207.42

54

(5.18)

z = 0.1076 (5.19)

P(z) =

∫ z

− inf

 1
√

2π
e
−u2

2

 du (5.20)

P(z) =

∫ 0.1076

− inf

 1
√

2π
e
−u2

2

 du (5.21)

P(z) = .543 (5.22)
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The values reveal that the P-Value is greater than α. This implies the null hypothesis

is not rejected. Physically, this is interpreted as one saying, with 99% confidence, the

eigenvalues the ANSYS model predicts come from the same population as the eigenvalues

measured when performing the traveling wave experiment. Stated in another way, the

results conclude there does not exist sufficient evidence between the two groups of

eigenvalues. For predicting a rotor’s natural frequencies, the finite element model and

its unique structured light development technique offer a valid alternative to traveling wave

testing.

Since the rotor model is now considered a valid representation of the experimental

rotor, a direct analysis is made between the tuned and experimental rotor eigenvalues

(natural frequencies). This can provide a numerical definition to the level of mistuning

present within the rotor. Recall the density with ANSYS is in terms of (slinch/in3), where

a slinch is defined as a unit of mass equal to 12 slugs, or 1 lb f sec2

in . As compared to the

tuned representation, the ANSYS model shows a spread of 211 Hz encompassing the first

modes’ natural frequencies, while the experimental rotor shows 238 Hz spread across the

first bending mode.

Table 5.12: ANSYS Finite Element Model Rotor Model Mechanical Properties

Elastic Modulus (Msi) 28.427

Density (slinch/in3) 0.00072981

νxy 0.27
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Table 5.13: Tuned and Mistuned Rotor: Blade First Bending Mode Comparison

Tuned ANSYS FEM TWE

1st Bend (Hz) 1st Bend (Hz) 1st Bend (Hz)

1320

1211 1204

1217 1207

1260 1261

1276 1273

1284 1283

1296 1296

1307 1303

1320 1307

1322 1315

1326 1315.15

1328 1320

1330 1327

1333 1332

1334 1341

1354 1356

1371 1374

1416 1417

1438 1442

5.9 ANOVA Study and Results

An ANOVA was performed using blades on the Purdue Transonic Research

Compressor to identify any effects of input-output location dependence in the experiment.
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The ANOVA model for this study is discussed in Chapter 3, Section 3.13, Subsection

3.13.3. In this study, the signal input location, response measurement response output

location, and EO excitation levels were the experimental variables under consideration.

These three factors were chosen since they are under the greatest amount of control when

performing the traveling wave experiment.

Section 5.4, Subsection 5.4.0.3, shows the method by which the response output

locations were identified. Input locations were assigned by measuring distances from the

respective blade edges. Figure 5.33 shows the actuator stand. This was used in lieu of

utilizing the entire actuator ring. Because two blades were tested simultaneously, 8 random

blades were selected from each of the three rotors. From Chapter 3, Section 3.14, 48

total blades are needed for the test. Selecting 8 blades from each rotor gives 24 samples.

The remaining 24 blades were chosen from randomly selecting adjacent blades, giving the

48 blades required to draw any significant conclusions. Two adjacent blades were tested

because the EO excitation level was not zero. The electromagnetic actuator is 0.25 inch

in diameter. Using this dimension as a reference, three input locations on each blade were

defined. The following list, and Figure 5.34, indicate the input and output regions.

1. The actuator edge extends 0.150 inch out from edges A and B on the blade. This

places the actuator’s conductive element at the blade tip (at the intersection of edges

A and B).

2. The actuator edge is flush with blade edges A and B. This places the conductive

element 0.125 inch away from edges A and B.

3. The actuator edge is 0.150 inch from edges A and B. The actuator’s conductive

element is positioned inboard 0.275 inch.
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Figure 5.33: Single Actuator Stand

Since two adjacent blades are used for each test, 9 combinations of input locations are

available. The blade notation for these input locations are given as follows: (Blade 1,

Blade 2).

Two EO excitation levels are used: 1EO and 2EO. On each blade, 5 separate output

locations were established. These global locations are given in Table 5.14. Here, Scan

Points 1-5 are defined on Blade 1, and Scan Points 6-10 are defined on Blade 2. Three

replicates for each factor combination were performed. The excitation system was set to

excite the blades and record a response three times in succession. The system then provided

the average of these responses. Appendix G gives the details behind performing the series

of experiments.
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Figure 5.34: Blade Input and Output Regions for the ANOVA

Table 5.14: Global Scan Points Used for Input-Output ANOVA Test: Increased EO Level

Scan Pt. Horz. Deg. Vert. Deg. Global X (in.) Global Y (in.)

1 -7.154 0.362 -6.002 0.304

2 -7.153 0.270 -6.000 0.227

3 -7.073 0.267 -5.934 0.224

4 -7.067 0.356 -5.929 0.299

5 -7.111 0.314 -5.966 0.263

6 -6.596 2.175 -5.534 1.825

7 -6.622 2.629 -5.555 2.206

8 -6.534 2.616 -5.482 2.195

9 -6.513 2.692 -5.464 2.258

10 -6.566 2.665 -5.508 2.236

For each pair of blades, the data were recorded in a table as shown in Table 5.15. This

data table was used for each input location combination. After recording results for the nine
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input combinations, the EO level was changed to “2” and the tests were repeated. After

completing the full test on a pair of adjacent blades, the rotor was re-oriented, and the scan

points were redefined using the locations from Table 5.14. For the research compressor, 17

natural frequencies were consistently observed during each test.

Table 5.15: Example Data Collection Table

1EO

Resonant Frequencies

Scan Point Frequency Nos. 1 - x

1 Max Response at Freq. 1 · · · Max Response at Freq. x

2 Max Response at Freq. 1 · · · Max Response at Freq. x

3 Max Response at Freq. 1 · · · Max Response at Freq. x

4 Max Response at Freq. 1 · · · Max Response at Freq. x

5 Max Response at Freq. 1 · · · Max Response at Freq. x

6 Max Response at Freq. 1 · · · Max Response at Freq. x
...

...
...

...

9 Max Response at Freq. 1 · · · Max Response at Freq. x

10 Max Response at Freq. 1 · · · Max Response at Freq. x

Recall for each input and output combination, there exists a unique FRF. Each FRF

was observed and the peak response for each natural frequency was recorded. The ANOVA

was performed on the recorded responses at each observed natural frequency. The results

for this ANOVA are summarized in Tables 5.16, 5.17, and 5.18. An Excel add-on program,

DOE Pro, was used to handle the large amount of data and required calculations. Here,

only the main effects are shown. All two and three factor interactions exhibited P-

Values approaching 1.000; for brevity, this information is not included in the tables. The
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results here show the input location is the most significant factor influencing the response

magnitude. Three separate tables are shown, each corresponding to a unique rotor.
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Table 5.16: ANOVA 3: Increased EO Excitation - Main Effects - Rotor A

Response (Hz) EO Level P-Val. Input Location P-Val Output Locations P-Value

1205 0.206 3.61×10−5 0.998

1262 0.123 8.71×10−6 0.905

1273 0.194 2.56×10−5 0.999

1284 0.401 6.94×10−9 0.999

1297 0.103 1.64×10−6 0.999

1304 0.160 2.89×10−4 0.999

1308 0.239 3.38×10−10 0.999

1316 0.166 3.51×10−10 0.990

1321 0.962 2.26×10−8 0.994

1327 0.335 7.08×10−4 0.999

1333 0.294 1.58×10−6 0.999

1341 0.656 2.41×10−6 0.999

1357 0.362 5.42×10−18 0.891

1375 0.137 1.02×10−4 0.988

1418 0.337 8.58×10−8 0.998

1443 0.179 9.61×10−5 0.987
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Table 5.17: ANOVA 3: Increased EO Excitation - Main Effects - Rotor B

Response (Hz) EO Level P-Val. Input Location P-Val Output Locations P-Value

1202 0.280 4.52×10−5 0.981

1269 0.120 8.56×10−5 0.995

1273 0.101 1.56×10−5 0.999

1285 0.301 6.20×10−5 0.999

1297 0.111 1.74×10−6 0.999

1303 0.156 3.00×10−3 0.999

1310 0.250 3.40×10−11 0.999

1316 0.150 2.98×10−8 0.971

1322 0.872 2.25×10−7 0.994

1325 0.321 6.00×10−3 0.999

1330 0.280 2.02×10−5 0.999

1340 0.666 2.50×10−5 0.989

1356 0.352 2.02×10−19 0.997

1377 0.095 2.02×10−13 0.988

1380 0.277 9.92×10−5 0.979

1391 0.180 8.50×10−5 0.990
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Table 5.18: ANOVA 3: Increased EO Excitation - Main Effects - Rotor C

Response (Hz) EO Level P-Val. Input Location P-Val Output Locations P-Value

1205 0.210 4.00×10−6 0.999

1262.4 0.021 4.02×10−6 0.999

1272 0.914 3.01×10−6 0.999

1283 0.111 9.95×10−6 0.999

1299 0.752 3.78×10−6 0.999

1300 0.100 3.01×10−6 0.999

1308.2 0.100 3.32×10−9 0.999

1314 0.156 5.91×10−9 0.991

1321.1 0.200 3.21×10−9 0.972

1325 0.030 6.28×10−6 0.999

1331 0.183 2.00×10−5 0.999

1342 0.056 1.01×10−5 0.999

1358.3 0.162 6.82×10−9 0.998

1375 0.337 1.01×10−5 0.998

1380.2 0.373 8.58×10−7 0.998

1390.2 0.179 9.50×10−3 0.991
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Figure 5.35: Blade 16 ANOVA Results: 1204.9 Hz and 1EO

Examining each blade’s response, it is shown that for each natural frequency, the

response magnitude is approximately a constant value across all five scan points. A typical

example of this trend is shown in Figures 5.35 and 5.36. Here, all nine input location

combinations are given. As was expected, the input at Location 1 for each blade (AA)

shows the greatest response magnitude. This same response trend was observed for all

resonant frequencies measured on each blade. This includes excitation both 1EO and 2EO.

Compared to the single blade excitation, the increased EO excitation produces increased

response magnitudes because multiple blades are excited simultaneously.

Because the response magnitude is approximately constant across all output locations,

an average value is taken and plotted against the measured natural frequencies. This is

performed for each input combination. Figures 5.37 and 5.39 show this relationship for

two blades used in this ANOVA for 1EO. Figures 5.41 and 5.43 show this relationship for
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Figure 5.36: Blade 17 ANOVA Results: 1204.9 Hz and 1EO

the two blades used in this ANOVA for 2EO. Figures 5.38, 5.42, 5.40, and 5.44 show the

same information, but simply highlight the frequencies associated with Blades 16 and 17.

These results continue to indicate placing the input location at the blade tip provides the

optimum response. These results continue to indicate how the input location, despite the

addition of EO excitation into the analysis, continues to significantly influence the rotor’s

forced response. This is also the observed trend for the remaining blades tested. In these

figures, despite taking measurements at one blade, the response of both blades are clearly

seen.
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Figure 5.37: Average Responses for Multi-Blade ANOVA (Blade 16, 1EO)

Figure 5.38: Highlighted Frequencies: Average Responses for Multi-Blade ANOVA (Blade

16, 1EO)
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Figure 5.39: Average Responses for Multi-Blade ANOVA (Blade 17, 1EO)
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Figure 5.40: Highlighted Frequencies: Average Responses for Multi-Blade ANOVA (Blade

17, 1EO)
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Figure 5.41: Average Responses for Multi-Blade ANOVA (Blade 16, 2EO)

Figure 5.42: Highlighted Frequencies: Average Responses for Multi-Blade ANOVA (Blade

16, 2EO)
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Figure 5.43: Average Responses for Multi-Blade ANOVA (Blade 17, 2EO)

Figure 5.44: Highlighted Frequencies: Average Responses for Multi-Blade ANOVA (Blade

17, 2EO)
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5.9.1 Theoretical Cantilever Plate Model: ANOVA Study.

The results in the previous section beg the question: for an isotropic plate with a

constant cross section, does the input location play a more significant role in affecting the

forced response? Here, the cantilever plate model developed in Appendix B, Section B.5

will be explored in the same manner as the rotor blade. The input and output locations

will be used as factors in this analysis. Four levels within each factor will be utilized. The

plate properties are shown in Table 5.19. The quantities here are independent of units. The

numbers were arbitrarily chosen as part of this exercise. The input and output locations are

given in Table 5.20. A sinusoidal load, of magnitude 2, was applied at the indicated input

locations, over a 0 to 2
rad
sec

frequency range. An arbitrary moment in time was selected

at which to examine the theoretical results. Here, these results correspond to t equals 20

seconds. The theoretical maximum responses for the cantilever plate are shown in Table

5.21.

The results in Table 5.21 are from a two factor, 4 level analysis. This ANOVA

technique is shown in Chapter 3, Section 3.13. As expected, neither factor plays a more

dominant role in affecting the plate’s forced response. The ANOVA table is provided in

Table 5.22. These results show both factors are an equal contributor to the plate’s forced

response magnitude. The F-Statistic and corresponding P-Value are identical for each

factor. To that end, each factor is an equal contributor in determining the plate’s forced

response.

There are stark differences in the ANOVA results between the theoretical cantilever

plate and the population of rotor blades. Summarizing, the ANOVA on the sampled rotor

blades indicated the input location is more significant in affecting the response magnitude

than the measurement location. When examining the theoretical cantilever plate, the

ANOVA illustrated there is no difference between the two factors in affecting the forced

response magnitude.
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Table 5.19: Theoretical Cantilever Plate Model ANOVA - Mechanical Properties

Length 10

Width 10

Thickness 0.05

Density 10

Poisson’s Ratio 0.3

Elastic Modulus (×106) 10

Table 5.20: Theoretical Cantilever Plate Model ANOVA - I/O Locations

Input (x, y) Output (x, y)

(10,10) (10, 0)

(9, 9) (9, 1)

(8, 8) (8, 2)

(7, 7) (7, 3)

One factor affecting the difference in the two sets of results stems from the mistuned

nature of the blades themselves. Despite careful machining, there will always exist subtle

geometric variations from blade to blade and even within each blade. In addition, the

blade possesses a variable cross sectional area. Furthermore, there exists material property

variations within the blade which are not present in the cantilever plate model. Each of

these reasons contribute to differences realized between the actual blade and theoretical

cantilever plate ANOVA results.
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Table 5.21: Theoretical Cantilever Plate Model ANOVA - Maximum Responses

Output (10, 0)

Input (10,10) (9,9) (8,8) (7,7)

Max. Resp. 833.0 668.7 525.8 409.0

Output (9, 1)

Input (10,10) (9,9) (8,8) (7,7)

Max. Resp. 668.7 545.4 437.7 347.4

Output (8, 2)

Input (10,10) (9,9) (8,8) (7,7)

Max. Resp. 525.8 437.7 359.0 290.4

Output (7, 3)

Input (10,10) (9,9) (8,8) (7,7)

Max. Resp. 409.0 347.4 290.4 238.4

Table 5.22: Theoretical Cantilever Plate Model Resulting ANOVA Table

Source Sum of Squares DOF Mean Square F-Statistic P-Value

Input Loc. 185067.3 3 61689.1 27.261 0.0000754

Output Loc. 185067.3 3 61689.1 27.261 0.0000754

5.10 Deriving the Experimental Tolerances

Analogous to the technique shown in Chapter 3, Section 3.17.3, a set of tolerances can

be derived which will place bounds on the input location. In turn, this will place bounds

on the response magnitudes. Detailed in Section 5.9, the input locations serve to drive the

response magnitude more significantly than the output locations. The method to ensure
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consistent, global and local output locations is developed in Section 5.4. Therefore, the

remaining factor influencing the response magnitude is the input location.

From previous single blade experimental work, Figure 5.45 shows the measured

response value vs. solenoid location. Here, the solenoid is defined as the actuator’s central

core. The effect of blade mistuning is evident by the different response magnitudes; each

blade was tested using the same actuator.

The significant portion of this figure is the response vs. location curve for each blade.

To corroborate these curves, 46 more single blade tests were conducted. This number was

chosen to ensure a sufficient sample size. The resulting curves were nearly identical to

those depicted in Figure 5.45. For clarity, only two blades are shown in Figure 5.45. The

only significant differences lie in the vertical shift in the curves themselves - indicating the

inherent mistuning present in each blade.

Figure 5.45: Single Blade Response vs. Solenoid Position
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The response magnitudes at each input location for 48 blades were recorded. For each input

location, an average response magnitude was created and then normalized by the average

peak response for all measured blades. An exponential function was then fit to the resulting

data curve. The input location was normalized by the average diagonal blade dimension.

This was done because the input location was uniformly moved down the blade span and

along the blade chord with each test iteration. The resulting response equation and its

respective curve is shown in Equation 5.23 and Figure 5.46.

f (x) = 0.9522e−7.612x (5.23)

Figure 5.46: Normalized Single Blade Response vs. Normalized Solenoid Position

Using this curve, input location limits can be established which will dictate the maximum

response. If the solenoid is placed directly at the blade tip, the measured response will be
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greater than or equal to 95% of the maximum blade response. Placing the actuator at 1%

of the blade’s diagonal dimension ensures the response will be near 90% of its maximum.

To explore whether this input tolerance could be applied to another rotor type, several

more tests were carried out on a small population of actual production rotors. These rotors

are constructed of titanium and each has 22 blades. The blade dimensions in Figure 5.47

are normalized with respect to the indicated diagonal measurement. Table 5.23 provides

the normalized blade dimensions. Figure 5.48 shows the input locations used for this series

of validation experiments. The input locations along the indicated diagonal are shown in

Table 5.24. The origin for these normalized input locations is the lower left corner of the

blade, as indicated in Figure 5.48.

Figure 5.47: Sketch of Validation Blade for Input Tolerances
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Table 5.23: Input Tolerance Validation Blade: Normalized Dimensions

A 0.486

B 0.874

C 0.486

D 0.68

E 1.00

Figure 5.48: Input Tolerance Validation Blade: Input Locations

Table 5.24: Input Tolerance Validation Blade: Normalized Input Locations

Location 1 0.0000

Location 2 0.0366

Location 3 0.1399

Location 4 0.2615

For each experiment, the rotor was centered on the laser vibrometer home position

using the techniques outlined in Section 5.4. A new single actuator stand was used for this

series of experiments. The initial stand in Figure 5.33 was developed specifically for the
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Purdue Transonic Research Compressor. The new stand was needed because the validation

rotors’ blades twisted around their long axes. The new stand allowed the actuator to remain

normal to the blade’s surface as the input location was re-positioned along the blade’s chord

and span.

Figure 5.49: Single Actuator Stand for the Validation Rotors

After a blade was evaluated, the rotor was rotated to bring the next blade over the

actuator. Each blade used a constant output location. On the PolyTec screen, the output

location coordinates for each test were (-5.370◦, 0.501◦). Since only a finite population of

blades was available for this validation test, a sufficient number of blades required testing

to draw any significant conclusions. A total of 88 blades were available to test; the peak

response at each blade was measured. Equations 3.154 and 3.155 dictated 72 of the 88

blades required testing10.

Analogous to the behavior seen in Figure 5.45, the differences between each blade was

a vertical shift in the exponentially decaying response vs. input location curves. Again, this

is indicative of the relative mistuning in the rotor. For each input location, an average of the

10For 95% confidence in the results
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responses was taken. The resulting average was normalized by the peak average response.

An exponential function was fit to the resulting normalized data points. The exponential

function is given in Equation 5.24 and its corresponding curve is shown in Figure 5.50.

As shown with the experimental results from the Purdue Transonic Research Compressor,

placing the solenoid directly at a blade’s tip will, on average produce a response greater

than or equal 97% of the blade’s maximum. Similarly, to ensure the blade’s response is

near 90% of its maximum, the solenoid should be placed at a location corresponding to 1%

of the blade’s diagonal measurement.

f (x) = 0.9674e−8.028x (5.24)

Figure 5.50: Input Tolerance Validation Blade: Normalized Single Blade Response vs.

Normalized Solenoid Position

Specific input locations will now be defined using the same technique which defined

the measurement points in Section 5.4 in this chapter; polar coordinates were once again
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employed. This technique is rooted in centering the rotor on the laser vibrometer’s home

position. Reference the method developed in Section 5.4. Figure 5.51 gives an example

polar coordinate input location. Here, the dashed line on the blade indicates the blade

diagonal onto which the input is placed. Figure 5.52 incorporating the 1% input location

tolerance on the Purdue Transonic Research Compressor.

Figure 5.51: Polar Coordinate Input Location
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Figure 5.52: Purdue Rotor Tolerance Schematic

Figure 5.53: Purdue Rotor Tolerance Schematic With Radial and Angular Measurements

The origin is defined at the rotor’s center, coincident with the laser vibrometer’s home

position. Referencing the blade adjacent to the horizontal axis in Figure 5.51 and the

measurements in Figure 5.53 a linear relationship exists between the radius and angle for

both the ideal input and maximum allowable locations. This technique can be extended

to any rotor blade. Table 5.25 provides the ideal and ”allowble” input locations, in polar

coordinates. These input locations are derived directly from the results in this chapter. The

ideal location, ensures the blade will respond, on average, greater than or equal to 97% of
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its maximum response. The maximum allowable location ensures the blade will respond,

on average, greater than or equal to 90% of its maximum response. Table 5.26 provides

these same tolerance values in Cartesian coordinates.

Table 5.25: Global Input Location Positioning Tolerances:

Purdue Transonic Research Compressor (Polar)

Ideal Location Allowable Location

Blade No. r (in) θ (rad) r (in) θ (rad)

1 6 0.349 5.94 0.346

2 6 0.698 5.94 0.691

3 6 1.047 5.94 1.037

4 6 1.396 5.94 1.382

5 6 1.745 5.94 1.728

6 6 2.094 5.94 2.073

7 6 2.443 5.94 2.419

8 6 2.793 5.94 2.765

9 6 3.142 5.94 3.110

10 6 3.491 5.94 3.456

11 6 3.840 5.94 3.801

12 6 4.189 5.94 4.147

13 6 4.538 5.94 4.492

14 6 4.887 5.94 4.838

15 6 5.236 5.94 5.184

16 6 5.585 5.94 5.529

17 6 5.934 5.94 5.875

18 6 6.283 5.94 6.220
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Table 5.26: Global Input Location Positioning Tolerances:

Purdue Transonic Research Compressor (Cartesian)

Ideal Location Allowable Location

Blade No. x (in) y (in) x (in) y (in)

1 5.638 2.052 5.589 2.012

2 4.596 3.857 4.577 3.786

3 3.000 5.196 3.024 5.113

4 1.042 5.909 1.113 5.835

5 -1.042 5.909 -0.929 5.867

6 -3.000 5.196 -2.862 5.205

7 -4.596 3.857 -4.456 3.928

8 -5.638 2.052 -5.523 2.187

9 -6.000 0.000 -5.937 0.187

10 -5.638 -2.052 -5.649 -1.836

11 -4.596 -3.857 -4.694 -3.641

12 -3.000 -5.196 -3.183 -5.015

13 -1.042 -5.909 -1.296 -5.797

14 1.042 -5.909 0.744 -5.893

15 3.000 -5.196 2.697 -5.293

16 4.596 -3.857 4.330 -4.066

17 5.638 -2.052 5.451 -2.359

18 6.000 0.000 5.928 -0.373
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5.11 Tolerance Generalities

In deriving these tolerances for the traveling wave excitation system, a very specific set

of input parameters were used. These parameters were EO excitation (Chapter 3, Section

3.4) and input sweep frequencies. This begs the question as to the applicability of such a

location tolerance.

5.11.1 Concern 1.

If the input location tolerance for one frequency band and EO level is established, will

the location tolerance be applicable to another frequency band and EO level?

The short answer is yes.

Different Input Frequencies. The experimental input and output locations would

both be ineffective if node points or nodal lines were located at or passed through the

respective locations. In the experiment, however, any nodal diameters remain near each

blade’s center. Even with a highly mistuned rotor, such as the Purdue Transonic Research

Compressor, the nodal diameter lines remain a significant distance away from the input

and output locations. In addition, individual blade modes with nodes at the free corners

(experimental input and output locations) are of such high order, they are not excited during

the traveling wave experiment. Examining a rotor’s Campbell diagram shows the modes

of greatest concern; these are typically the lower order bending and torsion modes. Node

locations with these modes are not located at the blades’ free corners. Because experimental

excitation frequencies will not invalidate the input and output locations, the input location

tolerances are independent of the experimental excitation frequencies.

EO Excitation Levels. For the stationary rotor within the experiment, the EO value

serves only to drive the phase difference between each blade (Reference Figure 3.17). The

maximum phase difference occurs at EO (N/2), where N is the number of blades. With the

stationary rotor, the EO excitation also develops a number of nodal diameter corresponding

to its respective EO value. For example, 3EO will induce 3 nodal diameters. Even with an
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intentionally, highly mistuned rotor, such as the Purdue Transonic Research Compressor,

the nodal diameter lines remain a significant distance away from the critical input and

output locations. Therefore, experimental input frequency EO excitation level does not

adversely affect the established input location tolerances.

5.11.2 Concern 2.

The input location tolerance was developed by examining a population of blade FRFs,

and recording the peak response for several different input locations on each blade. Will the

rotor response at the different input locations, within the tolerance band, create a problem

for the overall rotor response?

The answer to this question is no.

Blade Responses Within the Tolerance Band. The tolerance band was developed

by examining the FRFs for a population of rotor blades. The input location was precisely

positioned beneath each blade. The peak response was then recorded. The resulting

input location tolerance was derived to ensure a blade’s peak response is recorded. By

precisely positioning both the rotor and input actuators, all input actuators will lie within

the prescribed tolerance band.

During the experiment, all blades are excited simultaneously. The scanning laser

vibrometer obtains the response output at each blade individually. The system then

averages out the blade responses, in the frequency domain, to obtain the overall average

rotor response.

FRF Distortion from Windowing and Leakage. In using the Fourier Transform to

map from the time to the frequency domains, therein lies an assumption of periodicity with

the data. If there exists a great deal of noise with the signal, or there is a significant random

component associated with the data, its periodicity is destroyed. This is a chief reason for

windowing. It effectively simulates a periodic behavior by “zeroing” out the signal at the

239



beginning and ends of the window. The window is simply a mathematical expression which

operates on the data which forces the data into a periodic shape.

This could cause issues with the signal at the extremes in the window. For this reason,

the signal generation component’s starting frequency is below the range of frequencies of

interest. Furthermore, the signal generation component’s ending frequency is above the

frequency range of interest. With that being said, the frequency range of interest is known

before testing a rotor. As such, the frequency sweeps are only large enough to encompass

the frequency range of interest. This strategy places the frequencies of interest near the

window’s center.

A rectangular window is used within the traveling wave experiment. This window is,

in effect, no window. The chief advantage behind the rectangular window is that it does not

interfere with a signal’s amplitude. Because the TWE is used for mistuned rotors, a range

of natural frequencies may exist, corresponding to the same mode in each blade. Other

windows, such as the Hanning window, will only allow for peak amplitude at the window’s

center. In summary, the rectangular window is ideal for the TWE as it does not impinge on

the rotor’s response amplitudes.

The Issue of Leakage. As discussed in Section 5.5, leakage occurs as a consequence

of discretely sampling a continuous signal. Since computer software is used to sample

a continuous response, this signal is sampled discretely. Only a finite number of FFT

(spectral) lines can be used to represent the signal’s frequency components. If a portion of

the signal doesn’t fit “evenly” into a spectral line, it “leaks” onto adjacent lines, until all

components of the signal are accounted for. This is especially problematic for signals which

are not periodic, thus violating a key assumption involved in Fourier analysis. Applying a

window function can force periodicity into an otherwise non-periodic signal. This ensures

a smooth transition from one signal to the next. When performing the TWE experiment as

this research prescribes (Section 5.4), there exists a smooth transition from one response
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signal to the next. The total acquisition time is defined in such as way so as to ensure the

response from the (n-1)th input has decayed before the nth input is applied. Because the

signal is essentially zero at its beginning and end, there does not exist a sharp discontinuity

between signals. By defining the acquisition time in this manner, the notion of signal

periodicity remains a valid assumption.
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VI. Conclusion, Contributions, and Future Work

This chapter summarizes and discusses the scientific achievements attributed to this

dissertation research. Focusing on an experimental evaluation of engine rotor mistuning,

a procedure was developed which can evaluate the level of mistuning in any rotor. As

a rotor’s mistuning pattern can be attributed to both manufacturing tolerances and wear,

providing a means in identifying the level to which a rotor is mistuned provides several

pieces of critical information.

Initially, a robust experimental technique was developed for the existing traveling

wave experiment which ensures consistent forced response results, independent of a rotor’s

orientation on the test stand. This technique is summarized in Appendix F. An 880%

improvement in test replicate consistency, over the course of multiple rotor orientations,

was demonstrated. By ensuring a consistent base is established, confidence is built into the

TWE results to effectively produce a mistuned rotor’s forced response. Not only does this

technique give consistent results, but in turn it also ensures consistency in the experimental

setup and measurement locations.

In addressing the measurement locations, this research produced a method by which

local blade measurement locations are related to a global coordinate system. In doing this,

the measurement points remain consistent from rotor to rotor. Single rotors are seldom

evaluated, rather small populations of rotors are tested. By providing a foundation of

consistent results and a common method by which the output locations are defined, a true

mistuning evaluation is available.

Because the experimental results are now constant, specific attributes of a rotor’s

forced response are available. Identifying the mistuning pattern, and in turn, the miustuning

amplification factor, ultimately aids in evaluating the rotor’s remaining useful life. Since the

mistuning amplification factor is assumed to be a constant for a given rotor’s mode family,
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these critical modes can be further evaluated using numerical finite element analyses. Here

the forced response amplification would indicate a localized increase in strain energy

and thus increased stress levels. For various forcing function magnitudes and excitation

patterns, an estimate of the rotor’s life can be obtained using the given material’s Goodman

diagram.

Within the experiment, the free boundary condition assumption was specifically

addressed. This was implicitly handled when validating the rotor model against the

experimental data, as there exists less than 1 percent difference between the mode 1 natural

frequencies from the experiment and finite element model. This was also observed for

increased EO excitation levels. Exciting higher order modes demonstrated less that 1.3

percent difference between the model and experiment. Despite being supported atop a

pedestal covered with a special vibration isolation material, the rotor’s modal behavior

mimicked that seen in the numerical simulation. Research was performed to investigate the

possibility of defining specific geometric support dimensions for both a beam and a circular

plate to effectively simulate a free boundary condition. This analysis was performed by way

of finite element simulation. For a supported beam, excited at its first natural frequency,

prescribing a beam length to support diameter ratio (L/D) of 20 gives the supported beam’s

first natural frequency 4.5% different than the true free-free beam. Increasing the (L/D) to

40 places the supported beam’s natural frequency to within 0.08% of the free-free beam.

This concept was then extended to a circular plate. Defining a plate diameter to support

diameter (D/d) ratio of 10 permits the supported plate’s natural frequency to lie within

0.58% of the theoretical free plate’s natural frequency. Increasing the (D/d) ratio to 20

reduces this difference to 0.0596%. As a consequence of these results, the isolation mat

used in the experiment was sized appropriately. Given the 12 inch diameter rotor, the pad

sitting atop its pedestal was 1.2 inches in diameter.
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This research also validated the method by which the finite element model was

developed/constructed and this model’s ability to predict the experimental rotor’s natural

frequencies. Therefore, the tuned approximation can be considered a valid “nominal”

representation of the experimental rotor. To that end, when comparing the FRF for the

tuned approximation for a given mode, to its experimental counterpart, the degree to

which the mistuning affects the rotor becomes immediately apparent. As this research

developed a method to produce consistent experimental results using the traveling

wave excitation equipment, comparing a specific rotor’s tuned approximation to its

corresponding experimental results aids in quantifying the mistuning present for a rotor

population.

Lastly, capitalizing on the effectiveness of the newly developed experimental

procedures this research produced a set of experimental input tolerances. Deciding

to establish these tolerances stemmed from ANOVA results obtained through testing a

population of blades on both the current research compressor and from blades on a different

rotor type. These results were conclusive: the response magnitude is more sensitive to

the input location than the output location. To that end, the output locations are set at

the outside blade corners, opposite from the input location. The method by which the

measurement points are defined was previously discussed, thus leaving only the input

location as a variable. Once again, a population of blades from both the existing research

compressor and the other rotor type was studied. Exciting single blades at a time, three

separate input locations were used on each blade. These input locations were placed along

the blades’ long diagonal dimension - as measured from the outside tip location towards the

opposite corner at the root. The results from all tests illustrated the same results: if the input

location is kept within 1% of the blades’ long diagonal dimension, the blade will respond

with greater than or equal to 90% of its max response. For the Purdue Transonic Research

Compressor, this equates to placing the input location within a window 0.02 inch from

244



the blade corner. Following the experimental setup procedures set forth in this research

and using existing laboratory equipment, this tolerance level is completely realistic. This

linear type tolerance was also extended to a polar relationship using a technique similar to

what produced the global and local measurement points. Using the laser vibrometer’s home

position as a global coordinate reference, ideal and allowable radial and angular coordinates

were developed.

In summary, this research addressed several items of interest to the turbine engine

community. First, a rigorous procedure was developed which can determine the amount

of mistuning within a rotor. Accompanying this contribution, a process was developed

and numerically validated to consistently produce forced response results when utilizing

traveling wave excitation. Furthermore, a unique method which produced the finite element

model was validated against experimental results. The experimental boundary condition

assumption was also validated using finite element analysis. In addressing the experimental

support condition, a numerical analysis demonstrated a structure’s free response can be

simulated using a method of physical supports. Lastly, an input location tolerance was

established so as to ensure each blade responds with peak magnitude.

While the research contributions and methods contained within this document are

sound, there exists several remaining items of interest to further the body of knowledge.

Despite the effectiveness the finite element model demonstrated in reproducing the

experimental rotor’s natural frequencies, the existing research neglected to address any

correlation between the experimental and numerical forced response magnitudes. The

primary difference here lies in the different forcing functions utilized in each scenario.

The TWE equipment makes use of electromagnetic actuators. The force field imparted to

the blade is not constant throughout the blade’s displacement range. The force magnitude

between the blade and actuator is governed by inverse square relationship. Here, the force

magnitude decreases with the square of the distance between the actuator and blade. While
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this method of excitation provides consistent EO excitation, it is not representative of the

excitation type realized in an actual engine. In the finite element model, in contrast, the

loading magnitude is a constant force applied to the blades. Updating the numerical model

to produce the same response magnitudes seen in the TWE experiment would involve

modifying the existing forcing function to recognize the non-linear forcing type utilized

in the TWE.

Also noteworthy, the current finite element model is only valid for linear responses

for the given rotor. While the TWE response is always linear because the magnitude of

excitation is on the order of micropounds, the finite element model will provide rotor

response magnitudes for the rotor would induce permanent deformation for a real rotor.

These plastic deformations are not realistic depictions of true non-linear material behavior,

which occurs post-yielding. The model’s implicit assumption dictating the applied load

and the blade response be linearly related is incorrect.

While the TWE experiment is a valid method to experimentally evaluate mistuning

on any rotor, the finite element model developmental method was only validated for

an IBR. Recall these rotors are carved from a single piece of material, or created by

welding several components together. The insertion type rotor was not evaluated in the

course of this research. Here, the level of complexity involved in developing the finite

element model increases tremendously. Rather than scanning the rotor as a single entity,

each component requires a separate scan. After scanning, a solid model of each piece

would then be constructed. A finite element model would then developed from each solid

component. Within the modeling program, these separate components would be assembled.

The associated technique to develop the model would require significant modifications to

account for the inherent damping and contact present at the component interfaces, as well

as any variation between the joints around the rotor hub. These maladies are not present
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in the IBR, nor would they be present if the entire insertion type rotor was scanned as a

monolithic entity.

Further model validation would entail a direct complex eigenvector comparison

between the numerical model and experiment. The traveling wave equipment currently

produces the complex FRF for each scan point. The finite element program provides

the real FRF for each output location. The finite element input file can be modified to

instruct ANSYS to produce a complex FRF for each output location. With the complex

FRFs, both magnitude and phase information is produced. While the real FRF information

can certainly be used to establish a degree of correlation between the experiment and

numerical solution. Given the experimental and numerical complex eigenvalues, further

model validation would be performed using the MAC and COMAC as discussed in Chapter

3, Sections 3.8 and 3.9.

Even with significant differences in blade geometries, the 1% tolerance established

on the research compressor remained true for the validation rotor. As these rotors possess

blades which are relatively flat and rectangular, the input location tolerance was not verified

on blades with significant twist or a non-rectangular planform. Nor have the tolerances

been verified on advanced rotor types exhibiting blades with curved edges. The tolerances

could be verified on these types of blades through invoking a transformation between the

curved surface and the Cartesian plane. Assuming there exists a transformation matrix

between the flat reference plane and highly curved blade surface, the input tolerances could

be generalized to any blade.
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Appendix A: Frequency Response Functions

A.1 FRF Information

A.1.1 Frequency Response Function Discussion.

Fundamentally, the FRF is the ratio of system response to the system input in the

frequency domain. This is shown in the following equation.

H(ω) =
X(ω)
F(ω)

(A.1)

Here, ω is the frequency variable, X(ω) is the system response, and F(ω) is the system

input. As each of these variables are a function of frequency, this implies each is

represented in the frequency domain. The foundation of the FRF lies in the mapping

from the time domain to the frequency domain. This is performed through the Fourier

Transform.

F( f ) =

∫ ∞

−∞

f (t)e−2πikxdt (A.2)

Because computers sample at discrete times, rather than continuously, the Fourier

Transform can be represented in the following manner.

F(k) =
1
N

N−1∑
r=0

xre
−i2πkr

N (A.3)

The variable N is the number of signal samples taken. The variable r represents the time

steps which range from 0 to N−1. Finally, k and x represents a frequency harmonic and the

temporal variables, respectively. For each frequency harmonic, k, the signal is evaluated

for each discrete time step. The Fourier Transform is applied to both the input and response

signals.

Two techniques are shown for deriving a system’s FRF. The first technique is used

when distinct signal frequencies may not be necessarily known a priori. The second

technique can be used when the specific harmonic forcing is known. With this precisely
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known input, the system’s output for this harmonic can be measured. In each case, the

system response will be measured.

A.1.1.1 First FRF Method.

Creating the FRF for the first scenario involves mutiple steps, as it is not simply the

ratio of Fourier Transforms. The FRF is a ratio of two Power Spectral Density (PSD)

quantities. Like the FRF, the PSD also gives a signal’s frequency content. It provides the

power of a signal distributed over a range of frequencies. To create the FRF, an input auto

PSD and output cross PSD is needed.

There is no phase information associated with the auto PSD because it is a real valued,

even function. The cross PSD, on the other hand, is an odd function and does possesses

phase information. Intuitively, this phase relationship is possible because there may exist a

phase difference in signals between the input and output.

The input auto PSD is calculated by taking the product of the input signal’s Fourier

Transform and it’s complex conjugate. The asterisk (*) represents the complex conjugate.

S xx = Input∗ × Input (A.4)

The output cross PSD is the product of the input signal’s Fourier transform and the

corresponding output’s complex conjugate.

S xy = Input∗ × Output (A.5)

Finally, the ratio of the output cross PSD to the input auto PSD gives the FRF.

H1 =
S xy

S xx
(A.6)

A.1.1.2 Second FRF Method.

The second method for developing the system’s FRF involves using discrete points

to create the graph. Using this strategy implies the input frequency is known. The system

input is applied at the known frequency. Next, the system’s maximum response is recorded.
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This gives a single point on the FRF. This process is repeated for different frequencies.

Typically, the ordinate on the FRF is in units of decibels (dB). This unit is used because of

its ability to represent both large and small quantities on the same scale. Converting from

response amplitude to decibels is performed through the following equation.

YdB = 20log10(Ymag) (A.7)

By ascertaining the maximum forced response for a system at 10,000 different frequencies

between 1 and 1,500.
rad
sec

, the following FRF is produced.

Figure A.1: Ideal System FRF

On this FRF, the frequencies associated with the first five bending modes of the simply

supported beam are clearly seen. Each natural frequency, corresponding to its own bending

mode, it seen with each peak on the FRF.
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Appendix B: Previous Authors’ Equation Derivations

The information in Appendix provides additional insight into the ideas and rationale

behind some of the previous researchers’ work.

B.1 Hollkamp Development

The section will illustrate how Hollkamp developed the equation of motion used in his

research. Following a simplified approach for a two degree of freedom system, the process

illustrates how Hollkamp developed his model.

Figure B.1: Simple Two Degree of Freedom System

Here, the mass matrix is given as:

[m] =

m1 0

0 m2

 (B.1)

Similarly, for each spring, the next equation shows the stiffness matrices.

[k] =

 k −k

−k k

 (B.2)

Next, a free body diagram of the two degree of freedom system model is given.
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Figure B.2: Simple Two Degree of Freedom System Free Body Diagram

Applying Newton’s second law of motion to each mass element produces the following

equations for the displacement functions x1(t) and x1(t).

F = ma (B.3)

F1(t) = m1 ẍ1 + (k1 + k2)x1 − k2x2 (B.4)

F2(t) = m2 ẍ2 + (k2 + k3)x2 − k2x1 (B.5)

These equations can be recast into matrix form:m1 0

0 m2




ẍ1

ẍ2

 +

k1 + k2 −k2

−k2 k2 + k3




x1

x2

 =


F1(t)

F2(t)

 (B.6)

Thus:

[m]ẍ + [k]x = F(t) (B.7)

Multiplying through by the inverse of the mass matrix produces:

ẍ + [m]−1[k]x = [m]−1F(t) (B.8)

The middle term is conveniently expressed as the square of the system’s natural frequency,

ω2
n. In the case of a matrix equation, such as this, this middle term is a matrix of the system

natural frequencies along the diagonal. This is no different from what it seen in Hollkamp’s
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model. Equation 2.3 gives the representation of the natural frequencies in Hollkamp’s work.

Hollkamp’s coupling term, Equation 2.1, connects each blade to one another. This same

connection is seen in Equation B.6 where, when examining the stiffness matrix, the spring

k2 connects masses m1 and m2.

B.2 Yang Development

Yang considers an eigenproblem for an ideal system.

KoΦo = MoΦoΩo2
(B.9)

The terms K and M are the system stiffness and mass matrices, respectively. The term Φo

is a matrix comprised of the system eigenvectors, and the term Ωo is a diagonal matrix of

the system natural frequencies, or eigenvalues.

Φo = [Φo
1,Φ

o
2, ...,Φ

o
N] (B.10)

Ωo = diag(ωo
1, ω

o
2, ..., ω

o
N) (B.11)

The subscript N represents the number of system degrees of freedom. The ideal system is

then perturbed using variations in both the mass and stiffness matrices.

(Ko + ∆K)Φ = (Mo + ∆M)ΦΩo2
(B.12)

In this formulation, Φ and Ω are the mode shape and natural frequency of the perturbed

system.

Φ = [Φ1,Φ2, ...,ΦN] (B.13)

Ω = diag(ω1, ω2, ..., ωN) (B.14)

And since the ideal system mode shapes form a complete basis, it is possible to describe a

perturbed mode in terms of the ideal system modes.

φ j =
∑

i

φo
i αi j (B.15)
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Here, αi j is the component of the ith unperturbed mode in the jth perturbed mode. Because

the modes are orthogonal, Equation B.12 can be expressed as:

Ωo(I + ∆Ik)ΩoCα = (I + ∆Im)CαΩ
2 (B.16)

Here, Cα is a matrix of αi j coefficients. If the modal mass is assumed to be unity,

the perturbations in the normalized modal mass and stiffness matrices, ∆Im and ∆Ik

respectively, result in:

∆Im = ΦoT
∆MΦo (B.17)

∆Km = Ωo−1
ΦoT

∆KΦoΩo−1
(B.18)

In a similar manner, the normalized frequency matrix can be defined as:

Γ =
1
$

Ω (B.19)

The variable $ is a frequency reference, and Γ is a diagonal matrix of frequency terms.

Γ = diag(γ1, γ2, ..., γN) (B.20)

In this formulation, γ1 =
ωi

$
. Now the perturbed eigenproblem can be expressed as:

Γo(I + ∆Ik)ΓoCα = (I + ∆Im)CαΓ
2 (B.21)

Next, the eigenvalues are perturbed away from their nominal values using random

variations. Assume the system has two closely modes with corresponding natural

frequencies, ωo
1 and ωo

2.

$ =
1
2

(ωo
1 + ωo

2) (B.22)

The variations are defined as:

δ =
1

2$
|ωo

1 − ω
o
2| (B.23)

The perturbed modal stiffness and mass matrices are expressed as:

∆Ik =

k11 k12

k12 k22

 (B.24)

263



∆Im =

m11 m12

m12 m22

 (B.25)

Now the normalized modal eigenproblem can be written as: 1 − δ 0

01 + δ


1 + k11 k12

k12 1 + k22


1 − δ 0

0 1 + δ



α1 j

α2 j

 = γ2
j

1 + m12 m12

m12 1 + m22



α1 j

α2 j


(B.26)

The term γ j depicts a perturbed natural frequency, or eigenvalue.

B.3 Lim Development

The techniques the authors adopt only use a few modes of a mistuned cantilevered

blade to develop the model. Because the deviations which induce the mistuning are

assumed to be small, any type of small structural mistuning can be accounted for. Their

technique is known as component mode mistuning. Applications for this method have also

been shown to be useful for handling large structural variations, such as in the case of blade

damage.

The following process steps through Lim’s development.

Figure B.3: Substructuring of a Mistuned Rotor [26]
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The mistuning components are defined by the differences between the mistuned and tuned

blade mass and stiffness matrices. For blade n:

Mδ
n = Mn − Mo Kδ

n = Kn − Ko (B.27)

The authors model the tuned system components as having both normal and attachment

modes. These normal modes are simply the component eigenvectors, and the attachment

modes are obtained by applying a unit force to each component interface degree of freedom

successively. The subscript, Γ, is a variable for the finite element blade degree of freedom.

Mreducedtuned =

 I ΦT
tuned MtunedΨtuned

ΨT
tuned MtunedΦtuned ΨT

tuned MtunedΨtuned

 (B.28)

Kreducedtuned =

 Λtuned ΦT
tunedKtunedΨtuned

ΨT
tunedKtunedΦtuned ΨtunedΓ

 (B.29)

Where in this formulation, Φ is the normal mode and Ψ is the attachment mode. Also, M

and K are expressed in physical coordinates, as opposed to modal coordinates. The variable

Λ is a diagonal matrix of normal mode eigenvalues. Summarizing the system in physical

coordinates, the authors provide the following:

xtuned =


xtuneddisk

xtunedblades

 =

 Φtuneddisk Ψtuneddisk

Φtunedblades Ψtunedblades

 (B.30)

The authors introduce mistuning using constraint modes. A constraint mode is obtained

by applying a unit displacement to each interface degree of freedom, successively, with

all other interface degree of freedom restrained. Because the authors assume mistuning

only occurs with the constraint modes, there are no normal component modes. Thus, the

constraint modes completely describe all mistuned motion. When expressed in generalized

coordinates, the mass and stiffness matrices are the same as when expressed in physical

coordinates. For the N th blade in the system:

Mreducedmistuned = IT MmistunedI = Mmistuned = Bdiagn=1,...,N[Mmistuned
n ] (B.31)
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Kreducedmistuned = IT KmistunedI = Kmistuned = Bdiagn=1,...,N[Kmistuned
n ] (B.32)

The overall system is coupled by enforcing a compatibility condition between each

component at their respective interfaces. In this paper, this is physically xtuned
blades = xmistuned.

Enforcing this constraint between the tuned and mistuned components produces:

Φtuned
blades ptuned

Φ + Ψtuned
blades ptuned

Ψ = pmistuned
Ψ (B.33)

This leads to the following equation of motion for the mistuned system.

[−ω2Msynthesized + (1 + jγ)K synthesized]psymthesized = [ΦtunedΨtuned]T f (B.34)

Where the “synthesized” mass and stiffness matrices are defined as:

Msynthesized = Mtuned +

Φ
tunedT

blades MmistunedΦtuned
blades ΦtunedT

blades MmistunedΨtuned
blades

ΨtunedT

blades MmistunedΦtuned
blades ΨtunedT

blades MmistunedΨtuned
blades

 (B.35)

K synthesized = Ktuned +

Φ
tunedT

blades KmistunedΦtuned
blades ΦtunedT

blades KmistunedΨtuned
blades

ΨtunedT

blades KmistunedΦtuned
blades ΨtunedT

blades KmistunedΨtuned
blades

 (B.36)

Lastly, the modal coordinates are expressed as:

psynthesized =


ptuned

Φ

ptuned
Ψ

 (B.37)

B.4 Yoo Development

This section depicts the development for Yoo’s equation of motion.

ml2
1 0 ... 0

0 ml2
2 ... 0

... ... ... ...

... ... ... ml2
n





θ̈1

θ̈2

...

θ̈n


+



cl2
1 0 ... 0

0 cl2
2 ... 0

... ... ... ...

... ... ... cl2
n





θ̇1

θ̇2

...

θ̇n


+



kr + 2kta2 −kta2 ... −kta2

−kta2 kr + 2kta2 ... 0

... ... ... ...

−kta2 0 ... kr + 2kta2





θ1

θ2

...

θn


=



l1Fosin(Ωt)

l2Fosin(Ωt)
...

lnFosin(Ωt)



(B.38)
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The authors then recast the equation in terms on non-dimensional parameters as shown:

αi ≡
li

l
, β ≡

kta2

kr
, γ ≡

Tc
m
, ω ≡ TΩ, f ≡

T 2Fo

ml
, τ ≡

t
T

(B.39)

where l represents the nominal length of each pendulum and

T =

√
ml2

kr
(B.40)

These parameters can be reinserted into the equation of motion to obtain a more

generalized representation. Be aware since after non-dimensionalizing the parameters,

the differentiation is now with respect to τ instead of t. The non-dimensional system is

expressed as follows:

α2
1 0 ... 0

0 α2
2 ... 0

... ... ... ...

... ... ... α2
n





θ̈1

θ̈2

...

θ̈n


+



γα2
1 0 ... 0

0 γα2
2 ... 0

... ... ... ...

... ... ... γα2
n





θ̇1

θ̇2

...

θ̇n


+



1 + 2β −β ... −β

−β 1 + 2β ... 0

... ... ... ...

−β 0 ... 1 + 2β





θ1

θ2

...

θn


=



α1fsin(ωτ)

α2fsin(ωτ)
...

αnfsin(ωτ)



(B.41)

B.5 Young Development

Because traditional methods do not permit the development of a cantilever plate’s

equation of motion, approximate methods - such as the Ritz Technique (Reference [116])

must be considered. While the convergence and accuracy of the Ritz Technique has been

explored throughout the literature, Young [27] says this method is not always an accurate

depiction of reality. Young goes on to state “that this method gives an upper bound for

the frequencies, that is, the frequencies calculated by Ritz’s procedure are always higher

than the exact value.” Furthermore, the amount of computational time required to solve
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a given problem is directly related to the set of functions used to approximate a body’s

movement. For a plate, some researchers have used polynomials, “while others have used

combinations of the characteristic functions which define the normal modes of vibration of

a uniform beam [27]”. This latter technique of using beam functions is shown here. It is

noted that this development applies to a homogeneous plate of uniform thickness.

B.5.1 The Ritz Method for a Uniform Plate.

These equations and subsequent development are all taken from D. Young’s paper in

Reference [27].

Assume there exists a uniform plate which is vibrating harmonically with an amplitude

of w(x, y) and angular frequency ω (
rad
sec

). As such, the plate’s maximum potential energy

is given as:

V =
D
2

" (∂2w
∂x2

)2

+

(
∂2w
∂y2

)2

+ 2µ
∂2w
∂x2

∂2w
∂y2 + 2(1 − µ)

(
∂2w
∂x∂y

)2 dxdy (B.42)

The maximum kinetic energy can be expressed as:

T =
1
2
ρhω2

"
ω2dxdy (B.43)

Equating the potential and kinetic energy relationships produces:

ω2 =
2
ρh

V!
ω2dxdy

(B.44)

Timoshenko (Reference [89]) describes the process to find the plate’s natural frequency:

Equation B.44 is minimized using expressions for w which satisfy the plate’s boundary

conditions. Young states “the direct application of the calculus of variations to minimize

Equation B.44 leads to the partial differential equation for a vibrating plate.” But rather

using this technique, the Ritz Method is employed. Here, the plate deflection, w, is assumed

to be a linear series of what are known as “admissible11” functions. The coefficients for

each admissible function are adjusted so as to minimize Equation B.44. This is the method
11An admissible function satisfies what are known as “artificial boundary conditions”. These boundary

conditions are prescribed as the plate’s slope and deflection.
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shown in Timoshenko’s work (Reference [89]). For rectangular plates, with the edges

parallel to the x and y axes, Young uses the following series approximation for the plate

deflection, w(x, y):

w(x, y) =

p∑
m=1

q∑
n=1

AmnXm(x)Yn(y) (B.45)

When Equation B.45 is substituted into Equation B.44, the right hand side becomes a

function of the coefficients, Amn. This expression is then minimized by taking the partial

derivative with respect to each coefficient and equating it to zero. As such, this produces a

system of equations having the following form:

∂V
∂Aik

−
ω2ρh

2
∂

∂Aik

"
ω2dxdy = 0 (B.46)

Here, the term Aik is any one of the coefficients Amn. The natural frequencies are found

from the condition that the determinant of the system equations must vanish.

B.5.2 Characteristic Functions.

As stated, the plate deflection is assumed to be combinations of those characteristic

functions defining the normal vibration modes of a uniform beam. Timoshenko (Reference

[89]) gives those functions applicable to the cantilever plate, specifically functions for

clamped-free and free-free beams (Equation B.47 and Equations B.48 through B.51,

respectively).

φr = cosh
(
εr x
L

)
− cos

(
εr x
L

)
− αr

(
sinh

(
εr x
L

)
− sin

(
εr x
L

))
(B.47)

φ1 = 1 (B.48)

φ2 =
√

3
(
1 −

2x
L

)
(B.49)

φr = cosh
(
εr x
L

)
+ cos

(
εr x
L

)
− αr

(
sinh

(
εr x
L

)
+ sin

(
εr x
L

))
(B.50)

(r = 3, 4, 5, ...) (B.51)

In each of these equations, r = 1, 2, ..., inf; thus, there are infinite number of functions

associated with each equation. The values of αr and εr are given in Figure 3.42. Note:
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in this figure, the subscript m equals the subscript r in Equation B.47. Note: in this

figure, the the subscript n equals the subscript r in Equations B.48 through B.51. The

boundary conditions satisfied in each set of equations are the same as the end conditions of

the corresponding beam. That is to say, for a clamped-free condition, there does not exist

any displacement or slope at x = 0, nor does there exist moment or shear at x = L. For a

free-free condition, there does not exist moment or shear at either end of the beam (x = 0

and x = L).

B.5.3 Characteristic Function Orthogonality Relationships.

Each set of functions is orthogonal on the interval 0 to L. As such, for any two

functions φr and φs in the same set of functions, the following relations hold:

∫ L

0
φrφsdx =


1, if r = s

0, if r , s
(B.52)

∫ L

0

d2φr

dx2

d2φs

dx2 dx =


ε4

r

L3 , if r = s

0, if r , s
(B.53)

For φ1 and φ2 from the free-free functions:∫ L

0

(
d2φ1

dx2

)2

dx =

∫ L

0

(
d2φ2

dx2

)2

dx = 0 (B.54)

In addition to evaluating the expressions in Equations B.52 and B.53, the following

integrals also require evaluation when using these types of functions in the Ritz Method∫ L

0
φr

d2φs

dx2 dx (B.55)

∫ L

0

dφr

dx
dφs

dx
dx (B.56)

For the Clamped-Free and Free-Free beams, Figures B.4 and B.5, respectively provide the

values for the integrals in Equations B.55 and B.56.
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Figure B.4: Characteristic Function Values for the Clamped-Free Beam [27]
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Figure B.5: Characteristic Function Values for the Free-Free Beam [27]

B.5.4 Application of the Ritz Method.

The characteristic functions will be used for the Xm and Yn terms in Equation B.45. If

the plate in Figure B.6 is clamped along the edge x = 0 and free along the remaining three

edges, the clamped-free equation should be used for Xm and the free-free equation should

be used for Yn. When using one of the characteristic functions for Xm, take L = a. Similarly,

when using one of the characteristic functions for Yn, let L = b, and then replace x with y.
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The appropriate change in subscripts r and s to either m and i or to n and k are to be made

in each case.

Figure B.6: Plate Coordinate System [22]

To further simplify the problem definition, the following notation is adopted.

Eim = a
∫ a

0
Xi

d2Xm

dx2 dx Emi = a
∫ a

0
Xm

d2Xi

dx2 dx (B.57)

Fkn = b
∫ b

0
Yk

d2Yn

dy2 dy Fnk = b
∫ b

0
Yn

d2Yk

dy2 dy (B.58)

Him = a
∫ b

0

dXi

dx
dXm

dx
dx Kkn = b

∫ b

0

dYk

dy
dYn

dy
dy (B.59)

Using Equation B.45 and Equation B.42 and using the orthogonal relationships in

Equations B.52 and B.53, the set of expressions in Equation B.46 can be reduced to:

p∑
m=1

q∑
n=1

[C(ik)
mn − λδmn]Amn = 0 (B.60)
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Where:

λ =
ω2ρha3b

D
(B.61)

δmn = 1 f or mn = ik (B.62)

= 0 f or mn , ik (B.63)

When mn , ik:

C(ik)
mn = µ

a
b

[EmiFkn + EimFnk] + 2(1 − µ)
a
b

HimKkn (B.64)

and for the case when mn = ik:

C(ik)
ik =

b
a
ε4

i +
a3

b3 ε
4
k + 2µ

a
b

EiiFkk + 2(1 − µ)
a
b

HiiKkk (B.65)

There will be one Equation B.60 for each of the pq combinations of ik. The characteristic

values of λ are found by ensuring the determinant of this system of equations equals zero.

B.5.5 Square Cantilever Plate.

Assume the plate shown in Figure B.6 is clamped along the edge x = 0 and free on the

remaining three. Because of these boundary conditions, the Xm term is expressed using the

clamped-free functions and the Yn term is expressed using the free-free functions. Letting

a = b and Poisson’s ratio = 0.3, Young established the coefficients C(
mnik) for an 18-term

series by taking m = 1, 2, 3 and n = 1, 2, 3, 4, 5, 6. This results in a system of 18 equations

via Equation B.60. This system of 18 equations can be divided into 2 groups of 9 equations

each. One group includes those equations where n = 1, 3, 5 and represents deflection which

is symmetric about the line y = b/2. The other group, consisting of n = 2, 4, 6, represents

deflection which is antisymmetric about the line y = b/2. Young provides the coefficients

for the symmetrical group. These are shown in Figure B.7.
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Figure B.7: Cantilever Plate Symmetric Mode Coefficients [27]

The equations obtained from Figure B.7 are expressed as:

(12.36 − λ)A11 + 4.79A13 + 11.33A15 + ... = 0 (B.66)

4.79A11 + (828.51 − λ)A13 + 244.21A15 + ... = 0 (B.67)

11.33A11 + 244.21A13 + (15, 794.99 − λ)A15 + ... = 0 (B.68)

Here, only the first three equations are shown; the remaining six equations follow the same

pattern, using the information from Figure B.7. Solving this system involves assuming an

initial value, such as 1.0, for A11. This results in the following expression:

λ = 12.36 + 4.79A13 + 11.33A15 + ... (B.69)

The remaining equations are expressed in the form of the following equation.

A13 = −(4.79 + 244.21A15 + ...)/(828.51 − λ) (B.70)

For the first trial, values for the remaining coefficients (A13, A15, ...) are assumed. Using

these initial trial values, λ is found using Equation B.69. The coefficient A13 is then

determined from Equation B.70. This same procedure is performed for the remaining

coefficients. After the values for Amn are calculated, they are substituted back into Equation

B.69 and a second value for λ is found. This procedure is repeated until a sufficient level

of convergence for λ and Amn is achieved.
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Appendix C: Physical Interpretation of the Statistical Concept of ”P-Value”

In the course of this research, especially with the ANOVA and its interpretation, I

continued to inquire about the physical meaning behind the P-Value. I am including

this section to further clarify this concept. Physically, the P-Value is the probability the

collected data will be at least this inconsistent with the hypothesis, assuming the hypothesis

is true.

The P-Vaue is not a direct probability the null hypothesis is true. Rather, a high P-

Value means the data is highly consistent with the hypothesis. Conversely, a low P-Value

indicates a hypothesis should be rejected. The P-Value does not provide direct probabilities

about the hypothesis itself. On the other hand, assume two means were compared, and a

P-Value of 0.02 was obtained. This indicates there is a 2% chance of observing a difference

in the means as large as was observed, even if the population means were identical.
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Appendix D: Circular Plate Equation Derivation

The development to reach this step is given in Reference [60]. The process to derive

the free vibration solution from the equation of motion for a circular plate’s transverse

vibration is shown here. Equation D.1 is the free vibration equation for a circular plate.

D∇4w + ρh
∂2w
∂t2 = 0 (D.1)

Here, the Laplacian is defined as:

∇2 =
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2 (D.2)

Using the Laplacian to expand out Equation D.1 gives:

D(
∂4w
∂r4 +

2
r
∂3w
∂r3 −

1
r2

∂2w
∂r2 +

1
r3

∂w
∂r

+
2
r2

∂4w
∂r2∂θ2

−
2
r3

∂3w
∂r∂θ2 +

4
r4

∂2w
∂θ2 +

1
r4

∂4w
∂θ4 ) + ρh

∂2

∂t2 = 0
(D.3)

Let:

w(r, θ, t) = W(r, θ)T (t) (D.4)

Substituting this expression into Equation D.3 gives:

DT (t)[· · · ] + ρhW(r, θ)
d2T (t)

dt2 = 0 (D.5)

In this equation, the term ”[· · · ]” is the expanded portion of Equation D.3. Continuing:

DT (t)[· · · ] = −ρhW(r, θ)
d2T (t)

dt2

D
ρh

W(r, θ)
[· · · ] = −

1
T (t)

d2T (t)
dt2 = ω2

(D.6)

Here, since each side of the equation is a function of its own variable type (spatial or

temporal) and the equations are equal to one another, it follows that each equation is equal
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to a constant. The temporal portion of this expression is:

−
1

t(T )
d2T (t)

dt2 = ω2

d2T (t)
dt2 + ω2T (t) = 0

(D.7)

Following, the spatial portion can be found via:

D
ρh

W(r, θ)
[· · · ] = ω2

D
ρh

[· · · ] = W(r, θ)ω2

[· · · ] = W(r, θ)
ρhω2

D

[· · · ] −
ρhω2

D
W(r, θ) = 0

(D.8)

Here, let:

λ4 =
ρhω2

D
(D.9)

And recall:

[· · · ] = ∇4W(r, θ) (D.10)

Therefore, the circular plate’s spatial equation is given as:

∇4W(r, θ) − λ4W(r, θ) = 0 (D.11)

Using the definition of the Laplacian (Equation D.2 in the spatial equation produces two

separate equations.

∂2W
∂r2 +

1
r
∂W
∂r

+
1
r2

∂2W
∂θ2 + λ2W = 0 (D.12)

∂2W
∂r2 +

1
r
∂W
∂r

+
1
r2

∂2W
∂θ2 − λ

2W = 0 (D.13)

These two equations can be further broken down by invoking the separation of variables

technique once more. Allowing:

W(r, θ) = R(r)Θ(θ) (D.14)
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Substituting this expression back into Equations D.12 and D.13 and dividing each equation

by R(r)Θ(θ)/r2 gives:

r2

R(r)

[
d2R(r)

dr2 +
1
r

dR(r)
dr
± λ2

]
= −

1
Θ(θ)

d2Θ

dθ2 = α2 (D.15)

Following the same rationale as before, since each side of the equality is an equation of

its own variable, and each equation is equal to one another, it follows that each equation

is also equal to a constant. Each side of the equation gives its own type of information.

Specifically, the left hand side provides angular displacement information and the right

hand side gives radial displacements. Thus, the angular equation can be expressed as:

d2Θ

dθ2 + α2Θ = 0 (D.16)

The solution to Equation D.16 is the well known form:

Θ(θ) = Acos(αθ) + Bsin(αθ) (D.17)

And the expression for the radial portion of displacement:

d2R
dr2 +

1
r

dR
dr

+

(
±λ2 −

α2

r2

)
R = 0 (D.18)

The expression for the plate displacement, W(r,θ), must be a continuous function to make

physical sense, the angular portion of the displacement, Θ(θ), must be periodic. Proceeding

around the circular plate, its period equals 2π. Thus the displacement function can be

expressed as:

W(r, θ) = W(r, θ + 2π) (D.19)

Since the angular displacement is periodic around the plate’s circumference, the term α

must be an integer value. Let this integer equal m. The equation describing the radial

portion of the plate’s displacement can again be expressed as two separate equations:

d2R
dr2 +

1
r

dR
dr

+

(
λ2 −

α2

r2

)
R = 0 (D.20)

d2R
dr2 +

1
r

dR
dr
−

(
λ2 +

α2

r2

)
R = 0 (D.21)
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Equation D.20 is a Bessel differential equation of order αwith an argument λr. The solution

of said equation is given as:

R1(r) = C1Jm(λr) + C2Ym(λr) (D.22)

The terms Jm and Ym are Bessel functions of the first and second kind, respectively. Each

of these Bessel functions is of order m. Equation D.21 is a Bessel differential equation of

order α with an imaginary argument iλr. The solution to this equation is given by:

R2(r) = C3Im(λr) + C4Km(λr) (D.23)

The terms Im and Km are modified Bessel functions of the fist and second kind. Again, these

equations are of order m. Using this information, the general solution to Equation D.11 is

therefore:

W(r, θ) =
[
C(1)

m Jm(λr) + C(2)
m Ym(λr) + C(3)

m Im(λr) + C(4)
m Km(λr)

]
(Amcos(mθ) + Bmsin(mθ))

(D.24)

Here, the variable m takes on integer values (0,1,2,...). The constants C(1)
m ,C(2)

m ,C(3)
m ,C(4)

m , Am, Bm,

and λ depend on the plate’s boundary conditions.

For this work, the circular plate has free edges. Analogous to other continuous

structures with a free edge, a free boundary does not possess moment or shear. The moment

resultant is given as:

Mr = −D
[
∂2w
∂r2 + ν

(
1
r
∂w
∂r

+
1
r2

∂2w
∂θ2

)]
= 0 (D.25)

And the shear:

Vr = Qr +
1
r
∂Mrθ

∂θ
(D.26)

Expanding out the differential in the shear equation gives:

− D
[
∂

∂r
(∇2w) +

1 − ν
r

∂

∂θ

(
1
r
∂2

∂r∂θ
−

1
r2

∂w
∂θ

)]
= 0 (D.27)
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Substituting the moment and shear expressions into Equation D.24, gives the circular

plate’s frequency equation. Leissa shows this portion of the derivation in Reference [22].

The result is given in Equation D.28. In this equation, the prime notation denotes a

“derivative with respect to the argument.” [60]

(λa)2Jm(λa) + (1 − ν)[λaJ
′

m(λa) − m2Jm(λa)]
(λa)2Im(λa) − (1 − ν)[λaI′m(λa) − m2Im(λa)]

=

=
(λa)2I

′

m(λa) + (1 − ν)m2[λaJ
′

m(λa) − Jm(λa)]
(λa)2I′m(λa) − (1 − ν)m2[λaI′m(λa) − Im(λa)]

(D.28)

Rao [60] shows a table (Table D.1) which gives the natural frequencies for a free circular

plate with a Poisson’s ratio of 0.33. Here, m is the number of nodal diameters. This

information was originally found in Leissa [22] and Colwell [117]. Here, the Bessel

function roots are found via:

(λa)2 = ωa2

√
ρh
D

(D.29)

Table D.1: Natural Frequencies of Vibration for a Circular Plate with a Free Edge

No. of Nodal Circles (n) m = 0 m = 1 m = 2 m = 3

0 - - 5.253 12.23

1 9.084 20.52 35.25 52.91

2 38.55 59.86 83.9 111.3

3 87.80 119.0 154.0 192.1
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Appendix E: ANSYS Input File Example

This appendix gives an example MatLab m-file which generates the required text

based file for a harmonic analysis within ANSYS. Capt Alex Kaszynski (AFRL/RQTI)

developed this code. This code’s function is summarized in Table E.1.
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Table E.1: Summary of MatLab File Function

Line Numbers Function

1-2 Clear all workspace variables

3 Define the output file name

Give this file the variable name “outputname”

4 Open “outputname” and assign it the variable

name f id

7-20 Define the Input and Output node numbers

22-23 Specify the number of modes to solve for in the analysis

25-26 Define the frequency range (Hz)

27-28 Specify the number of steps the analysis should

take in this frequency range (frequency resolution)

30 Define number of blades

31 Engine Order excitation level

32 Number of blades

33 load magnitude applied to each blade (lbf)

36-38 Decompose load into real and imaginary components

50 Define Poisson’s ratio

51 Define the density (
slinch

in3 )

52 Define the elastic modulus (psi)

92-114 Set the force at each input node

124-125 Set the damping ratio (ζ)
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1 clc

2 clear all

3 outputname = strcat(pwd,'./ Modal SUP Analysis.inp');

4 fid = fopen(outputname,'w+');

5

6

7 node = [4929,31691:18430:326571]; % Output Nodes

8 out = node; % Variable for Output Nodes

9

10 % Output Nodes

11 % node out = [338931, 338997, 339063, 339129, 339195, 339261,...

12 % 339327, 339393, 339459, 339525, 339591, 339657,...

13 % 339723, 338601, 338667, 338733, 338799, 338865];

14 % out = node out;

15

16 % Input Nodes

17 % node in = [4929, 31691, 50121, 68551, 86981, 105411,...

18 % 123841, 142271, 160701, 179131, 197561, 215991,...

19 % 234421, 252851, 271281, 289711, 308141, 326571];

20 % in = node in;

21

22 nmodes = 108; % original

23 %nmodes = 18;

24

25 fr range = [1150 1450]; % original

26 %fr range = [1250 1300];

27 Loadsteps = 300; % original

28 %Loadsteps = 50;

29

30 blade = 1; % Output blade

31 EO = 1; % Engine Order
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32 N = 18; % Number of Blades

33 Fmag = .000001; % Magnitude of Force (lbf)

34

35 % Force as a function engine order

36 F = ...

Fmag*(cos(2*pi*EO*(0:1:N-1)'/N)+sqrt(-1)*sin(2*pi*EO*(0:1:N-1)'/N)); ...

% Fmag Forcing in Z-Dir

37 Freal = real(F);

38 Fimag = imag(F);

39

40

41

42 %-------------------------------------------------------------------------

43 % MODAL ANALYSIS AND DATA RETRIEVAL

44 %-------------------------------------------------------------------------

45

46

47 fprintf(fid,'/PREP7\n');

48 fprintf(fid,'ALLSEL\n');

49 fprintf(fid,'ALLSEL\n');

50 fprintf(fid,'MP, NUXY, 1, 0.270\n'); % Poisson

51 fprintf(fid,'MP, DENS, 1, 7.2981E-04\n'); % Density ...

(slinch/cubic inch)

52 fprintf(fid,'MP, EX, 1, 29.9255E06\n'); % Elastic ...

Modulus (psi)

53 fprintf(fid,'EMODIF,ALL,MAT,1\n');

54

55

56 % ANALYSIS is Free-Free

57

58

59 % Modal analysis parameters
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60 fprintf(fid,'/SOLU\n');

61 fprintf(fid,'ANTYPE,2,new\n');

62 fprintf(fid,'MODOPT,lanb,%i,1,40000\n',nmodes); % original

63 %fprintf(fid,'MODOPT,lanb,%i,1,1350\n',nmodes);

64 fprintf(fid,'EQSLV,SPARSE\n');

65 fprintf(fid,'LUMPM,0\n');

66 fprintf(fid,'MXPAND,,,,YES\n');

67 fprintf(fid,'PSTRES,0\n');

68 fprintf(fid,'BCSOPTION,,INCORE\n');

69 fprintf(fid,'SOLVE\n');

70 fprintf(fid,'FINI\n');

71

72 % Output mode Frequencies

73 % fprintf(fid,'/POST1\n');

74 % fprintf(fid,'/OUTPUT,MODES RST,txt\n');

75 % fprintf(fid,'SET,LIST\n');

76 % fprintf(fid,'/OUTPUT,TERM\n');

77

78

79 %-------------------------------------------------------------------------

80 % HARMONIC ANALYSIS AND DATA RETRIEVAL

81 %-------------------------------------------------------------------------

82 fprintf(fid,'/PREP7\n');

83

84 % Clear Forces

85 fprintf(fid,'ALLSEL\n');

86 % fprintf(fid,'F,ALL,FX,0\n');

87 % fprintf(fid,'F,ALL,FY,0\n');

88 % fprintf(fid,'F,ALL,FZ,0\n');

89 fprintf(fid,'DDEL,ALL,ALL\n'); % Delete degree of freedom constrains

90

91 % Set Force
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92 for ii=1:length(node)

93 fprintf(fid,'F,%i,FZ,%f,%f\n',node(ii),Freal(ii),Fimag(ii));

94 end

95

96 % Components of load applied at each blade

97 % Radial X = [0.0284, 0.2077, 0.3619, 0.4725, 0.5261, 0.5162,...

98 % 0.4440, 0.3183, 0.1543, -0.0284, -0.2077, -0.3619,...

99 % -0.4725, -0.5261, -0.5162, -0.4440, -0.3183, -0.1543];

100 %

101 % Tangent Y = [0.5292, 0.4945, 0.3995, 0.2563, 0.0822, -0.1018,...

102 % -0.2735, -0.4123, -0.5013, -0.5298, -0.4945, ...

-0.3995,...

103 % -0.2563, -0.0822, 0.1018, 0.2735, 0.4123, 0.5013];

104

105 % Set Force

106 for ii=1:length(node)

107 fprintf(fid,'F,%i,FZ,%f,%f\n',node(ii),Freal(ii),Fimag(ii)); ...

% Pure Z

108 %(Pure Z was originally here)

109

110 % fprintf(fid,'F,%i,FX,%f,%f\n',in(ii),Radial X(ii),0.0);

111 % fprintf(fid,'F,%i,FY,%f,%f\n',in(ii),Tangent Y(ii),0.0);

112 % fprintf(fid,'F,%i,FZ,%f,%f\n',in(ii),-0.8480,0.0); % ...

Constant FZ (doesn't change around rotor circumference)

113

114 end

115

116

117 fprintf(fid,'NSEL,ALL\n');

118

119 % Analysis

120 fprintf(fid,'/solu\n');
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121 fprintf(fid,'antype,3,new\n');

122 fprintf(fid,'HROPT,MSUP\n');

123 fprintf(fid,'HROUT,OFF\n');

124 %fprintf(fid,'DMPRAT,0.00002\n'); % original

125 fprintf(fid,'DMPRAT,0.00007882\n'); % Updated Damping Ratio for ...

the blades' first bend freq. range.

126

127

128

129

130 fprintf(fid,'OUTPR,BASIC,1\n');

131 fprintf(fid,'LUMPM,0\n');

132 fprintf(fid,'NSUBST,%i\n',Loadsteps);

133 fprintf(fid,'EQSLV,SPARSE\n');

134 fprintf(fid,'HARFRQ,%i,%i\n',fr range(1),fr range(2));

135 fprintf(fid,'PSTRES,0\n');

136 fprintf(fid,'KBC,1\n'); % Step not Ramp input

137 fprintf(fid,'SOLVE\n');

138 % fprintf(fid,'save\n');

139 fprintf(fid,'FINI\n');

140

141 % Modal Superposition Solution Expansion

142 fprintf(fid,'/SOLU\n');

143 fprintf(fid,'EXPASS,ON\n');

144 fprintf(fid,'NUMEXP,ALL,,,NO\n');

145 fprintf(fid,'SOLVE\n');

146 fprintf(fid,'FINI\n');

147

148

149 % HARMONIC ANALYSIS Write Results

150 fprintf(fid,'/post26\n');
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151 fprintf(fid,'PLCPLX,0\n'); % Specifies the part of a complex ...

variable to ...

152 % display 0 - Amplitude, 1 Phase ...

angle, 2 real, 3 imaginary

153 fprintf(fid,'PRCPLX,1\n'); % Defines the output form for complex ...

variables

154 % 0 - Real and imaginary, 1 - ...

Amplitude and

155 % phase

156

157 for ii=1:size(out,2)

158 fprintf(fid,'NSOL,2,%i,U,X\n',out(ii));

159 fprintf(fid,'NSOL,3,%i,U,Y\n',out(ii));

160 fprintf(fid,'NSOL,4,%i,U,Z\n',out(ii));

161

162 if ii<10

163 fprintf(fid,'/OUTPUT,blade0%i,vec\n',ii);

164 else

165 fprintf(fid,'/OUTPUT,blade%i,vec\n',ii);

166 end

167 fprintf(fid,'PRVAR,2,3,4\n');

168 fprintf(fid,'/OUTPUT,TERM\n');

169 end

170

171

172 fprintf(fid,'/POST1\n');

173 fprintf(fid,'/OUTPUT,Driving Freq,txt\n');

174 fprintf(fid,'SET,LIST\n');

175 fprintf(fid,'/OUTPUT,TERM\n');

176 fclose(fid);
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Appendix F: Additional Experimental Equipment and Revised Technique

Aside from the equipment discussed in Chapter 4, this appendix adds several items

to that list. The items in this appendix are used in the revised experimental setup. The

following list those items:

• Standard level

• T-Square

• Laser Straight Edge

Here, the level is used to ensure both the actuator ring and rotor stack (rotor atop its

central pedestal) are level. If the components are not level, the electromagnetic actuators

will no longer be normal to the blade surfaces. The T-square is used in conjunction with

the actuator ring to mark diameter locations. Recall Thales’ Theorem in Chapter 5, Section

5.4. Lastly, the laser straight edge tools are used in the rotor alignment.

The key points for the revised experimental technique are summarized as follows:

• Center Rotor and its Actuator Ring on the Laser Vibrometer Home Position

• Perform Rotor 2-D Alignment

– Ensure alignment locations are near the output locations

– Ensure peak signal return at each alignment locations

• Define the measurement locations around the rotor

– Define the local measurement locations with respect to the global origin.

– Perform necessary global to local coordinate transformation to ensure the local

measurement locations depict the same points on each blade.
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• Focus the laser beam at a measurement location

• Perform initial traveling wave test

• Estimate damping for each natural frequency for the mode of interest

• Define a system time constant

• Define bandwidth as next increment larger than the highest natural frequency for the

mode of interest

• Adjust the number of FFT lines to define the total acquisition time as greater than or

equal to 4 time constants
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Appendix G: Additional Details for the ANOVA Process in Chapter 5.9

When performing the ANOVA for each pair of blades, maintaining constant input

and output locations for each pair of blades is critical. This is the rational for invoking

the techniques in Chapter, 5, Section 5.4, Subsection 5.4.0.3 when defining the scan point

array. Because a population of blades was tested, any experimental variability requires

careful control. For reference, Figure G.1 provides the input location information. Recall

Table 3.12 for the 3 factors and their respective levels.

Figure G.1: Blade Input Regions for the ANOVA

Starting with a prescribed EO level, the input actuators are positioned at the

outboard input locations. The excitation system then sweeps through a specified range of

frequencies. In this research, this frequency range excited the blades’ first bending mode.

Analogous to the standard traveling wave test, the blades are excited and a response is

measured at a point. This is repeated three times for each output location. This process

produces the three replicates per output location. This process is repeated for all ten output

locations.
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The PolyTec system produces both an overall average FRF and individual scan point

FRFs depicting the blades’ response. The individual FRFs are of interest here. Figure G.2

gives a sample of a data table recorded for two blades.

In Figure G.2, the input locations for each blade are denoted as “A”, indicating the

actuator is at the most outboard location. For each natural frequency, the peak response is

measured at each output location. This is highlighted in Figure G.3. After recording the

peak response from each output location and natural frequency, one blade’s input location

is incremented inward to the next location. The excitation and measurement process is

repeated for all 9 input location combinations, as indicated in Figure G.4.

After recording the maximum responses at each natural frequency, at each output

location, and for each input combination, the ANOVA can be performed. This ultimately

produces 90 observations at each natural frequency. This is determined by way of

the 9 input combinations and 10 output locations. The ANOVA is performed at each

natural frequency, as highlighted in Figure G.5. For the research compressor, 17 natural

frequencies were easily observed during each test. For the 2 levels of EO excitation, this

produced 3,060 data points. This is for a single pair of blades. In this research, 24 pair of

blades on the research compressor were tested. This produced 73,440 data points.

Using the Excel add-on program, DOE Pro, the response data was organized according

to the respective factor levels, for each natural frequency, as demonstrated in Table G.1. The

table is significantly truncated from what was actually collected. The factor levels Table

G.1 continue to be incremented until all 180 combinations of EO, input location, and output

location for the data points are captured. For each natural frequency, DOE Pro produces

an ANOVA table: indicating the main effects, interactions, sum of squares, degrees of

freedom, mean square, F-statistic, and P-value. Figure G.2 illustrates a sample ANOVA

table.
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Figure G.2: Sample Data Table

Figure G.3: Highlighted Sample Data Table
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Figure G.4: Extended Sample Data Table
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Figure G.5: Highlighted Extended Sample Data Table
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Table G.1: DOE Pro Data Organization for ANOVA

Blade No. EO Level Input Loc. Output Loc. Max Response

1 1 1 1

1 1 1 2

1 1 1 3

1 1 1 4

1 1 1 5

2 1 1 6

2 1 1 7

2 1 1 8

2 1 1 9

2 1 1 10

1 1 1 1

1 1 1 2

1 1 1 3

1 1 1 4

1 1 1 5

2 1 2 6

2 1 2 7

2 1 2 8

2 1 2 9

2 1 2 10
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Table G.2: Sample ANOVA Table from DOE Pro
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